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ABSTRACT
Since August 2017, more than 744,400 stateless Rohingya refu-
gees – an ethnic Muslim minority group from the Rakhine State –
have entered Bangladesh to escape serious crimes against
humanity conducted by the Myanmar Army. Extensive level of
deforestation and hill cutting activities took place in Cox’s Bazar
District (CBD) in Bangladesh to accommodate them. The refugee
camps are sitting on hills and loose soil and are highly vulnerable
to rainfall-triggered landslides. Notably in June 2017, landslides in
the same region killed at least 160 people. From this perspective,
the study aims to develop a localised landslide early warning sys-
tem (EWS) for the Rohingya refugees and their host communities
in CBD. A novel method, combining landslide inventory and sus-
ceptibility maps, rainfall thresholds and dynamic web-based alert
system, has been introduced to develop the landslide early warn-
ing system (EWS) by applying advanced geoinformation techni-
ques. Results suggest that approximately 5,800 hectares of forest
land cover disappeared due to the 2017 Rohingya influx. Land
cover changes through hill cutting andslope modifications, and
unplanned urbanisation are predominantly responsible for slope
failures and consecutive 5-day periods of rainfall between
95–220mm could initiate landslides in high susceptible areas. The
EWS would support the local authorities and international organi-
sations in reducing disaster risks and saving lives from landslides
in a humanitarian context.

ARTICLE HISTORY
Received 10 November 2019
Accepted 8 February 2020

KEYWORDS
Landslides; GIS; remote
sensing; disaster risk
reduction; susceptibility
mapping; conflict; Rohingya

CONTACT Bayes Ahmed bayes.ahmed@ucl.ac.uk
Supplemental data for this article is available online at https://doi.org/10.1080/19475705.2020.1730988.

! 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

GEOMATICS, NATURAL HAZARDS AND RISK
2020, VOL. 11, NO. 1, 446–468
https://doi.org/10.1080/19475705.2020.1730988



GRAPHICAL ABSTRACT

1. Introduction

Disasters and conflict impact life, livelihood and critical infrastructure. At present,
there are around 70.8 million people who were forcibly displaced worldwide and
among them 25.9 million are refugees (UNHCR 2018). In most occasions, the refu-
gees are being hosted in developing countries where they live in ecologically degraded
environment and areas highly vulnerable to natural hazards (Pollock et al. 2019). To
achieve the United Nations (UN) Sustainable Development Goals (SDGs), it is essen-
tial to ensure the refugee populations’ safety, reduce their disaster vulnerability, and
protect the environment.

Landslide disasters are evident in the Chittagong Hill Districts (CHD), located in
the southeast region of Bangladesh (Figure 1(a)), that is home to nearly 12 million
people (BBS 2014; Ahmed 2017; Rabby and Li 2019). Between 1990 and 2019, a num-
ber of catastrophic landslide disasters took over 400 lives and affected 56 thousand
people in Bangladesh (Chisty 2014; Rahman et al. 2017). For instance, in June 2017,
torrential rainfall-triggered landslides in the CHD claimed at least 162 lives and left
80 thousand inhabitants affected (Ahmed 2017). This study has taken into consider-
ation the Rohingya refugee crisis in Bangladesh as a case study and presented an
innovative method by applying advanced geospatial techniques to address issues
related to landslide disaster risk reduction (DRR).

Since August 2017, nearly one million Rohingya, an ethnic Muslim minority group
from Myanmar, have arrived in Cox’s Bazar (Figure 1(b)) to escape an escalation in vio-
lence in the Northern Rakhine State. The UN Independent International Fact Finding
Mission on Myanmar has quoted this as ‘genocide, crimes against humanity and war
crimes’, and urges financial isolation of Myanmar military (Human Rights Council
2019). On 23 January 2020, the International Court of Justice (ICJ) has ordered
Myanmar to take effective measures to prevent genocide of the Rohingya (ICJ 2019). As
of 30 September 2019, the UN High Commissioner for Refugees (UNHCR) has officially
registered at least 914,998 Rohingya refugees in the Cox’s Bazar District (CBD). This
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number includes 744,400 new arrivals from Myanmar after 25 August 2017 and 33,956
previously registered Rohingya refugees in Bangladesh (UNHCR 2019). In addition,
there are still more than 250,000 Rohingyas who are illegally staying outside the official
camps as undocumented individuals (Farzana 2017).

The majority of the displaced people are residing in overcrowded temporary make-
shift shelters made of bamboo frames, tarpaulin and plastic sheeting in CBD (ISCG
2019). An enormous area of hill forests has already been swiped-out to build the huts
by cutting hills and to arrange fuel for cooking. Henceforth, the Rohingya population,
mostly women and children, are forced to live in landslide vulnerable camps (Figure
2(a,b)). The 2017 Rohingya exodus has adversely impacted over 336,000 host commu-
nity members in CBD, who are now in dire need of humanitarian assistance (ISCG
2019). Additionally, the urbanised hilly communities (many of them are also hosting
the Rohingyas), predominantly poor and landless people settle in the foothill areas,
also live in landslide vulnerable areas (Figure 2(c,d)). It is estimated that around a
million people are currently living with landslide risks in CBD; it includes the
Rohingya refugees, their host communities, and the urbanized hilly communities
(Ahmed 2017; Ahmed, Orcutt, et al. 2018; Ahmed et al. 2020). There is an urgent
need to develop and strengthen landslide disaster risk mitigation strategies to support
resilient futures for them. In this context, this study aims to develop a landslide early
warning system (EWS) for the Rohingya refugees and their host communities
in CBD.

Effective early warning systems are instrumental for saving lives, increasing pre-
paredness and reducing the adverse impacts of disasters from natural hazards. The

Figure 1. Location of the Chittagong Hill Districts (CHD) in Bangladesh.
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recent advances of satellite based remote sensing (RS), geographic information system
(GIS), and earth observation (EO) tools and techniques are contributing significantly
in producing landslide hazard maps and EWSs (van Westen et al. 2008; Pisano et al.
2017). Globally a number of frameworks have been proposed to develop EWSs or
near-real time situational awareness models for landslide hazard monitoring by com-
bining landslide susceptibility maps (LSM) and rainfall data (Hong and Adler 2007;
Kirschbaum and Stanley 2018). For example, Hong et al. (2006) utilized the National
Aeronautics and Space Administration’s (NASA) tropical rainfall measuring mission
(TRMM) data to identify the potential areas of landslides after 1-day, 3-days and 7-
days of rainfall at the global-scale. The recent trend of developing regional-scale land-
slide EWSs is primarily based on combining LSMs (Lagomarsino et al. 2013) and
empirical rainfall thresholds (Guzzetti et al. 2007; Gariano et al. 2017; Naidu et al.
2018), and disseminating alerts via Web-GIS based platforms (Segoni et al. 2015,
2018). At the local-scale, the standard practice is to install rain gauges or advanced
displacement monitoring systems, analyse area-specific hourly rainfall thresholds, pre-
pare detailed landslide hazard maps, conducting social vulnerability assessment, train
community members, and disseminate information (Yin et al. 2010; Karnawati et al.
2011; Intrieri et al. 2012). However, several issues regarding landslide EWSs’ design,
implementation, communication and management are still in question and need fur-
ther improvements.

Guzzetti et al. (2019) proposed some recommendations to improve the reliability
and credibility of geographical landslide EWSs that include – implementing new and

Figure 2. Landslide vulnerable (a, b) Rohingya makeshift camps, and (c, d) urbanised hilly commu-
nity settlements in Cox’s Bazar District (CBD). Source: Fieldwork, 2015–18.
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localised EWSs at high risk areas, addressing local climate and environmental
changes, using standard statistical methods for modelling, and appropriately integrat-
ing susceptibility maps in operational landslide EWSs. In addition, Peters (2019) sug-
gested to integrate conflict contexts into DRR activities. To overcome the research
gaps, this study has emphasised on developing a sub-national scale landslide EWS
where the context is intersecting between conflict and disasters (i.e., landslides). The
work has also proposed a novel method by dynamically connecting rainfall thresholds
and landslide susceptibility zones by applying advanced geoinformation and EO sys-
tems in a least developed country (i.e., Bangladesh). The ultimate vision is to advance
the current state of knowledge in the fields of DRR and application of geoinformation
by focusing on a refugee crisis context.

2. Materials and methods

2.1. The study area: CBD

Cox’s Bazar District (CBD) is bounded on the north by Chittagong district (recently
renamed as Chattogram), on the east by Bandarban district; and on the south-east by
Myanmar, the Naf River, and the Bay of Bengal (Figures 1 and 3). The total popula-
tion of CBD is approximately 2.29 million, excluding the Rohingya refugees, with an
area of 2,491.82 km2. The annual average rainfall of CBD is 4,288mm (BBS 2014).
The hills of CBD range between 100 to 300 meters. The hill soil is primarily com-
posed of unconsolidated sandstones, siltstones, and shales (Brammer 2012). Climate
change also threatens the region with the likelihood of increased precipitation in a
short period of time (IPCC 2018). Consequently, CBD and particularly the Rohingya
camps are highly prone to cyclones, landslides and flash flooding (Ahmed 2015;
Ahmed et al. 2019; Alam et al. 2019). In recent years, CBD has experienced a series
of periodic landslide disasters (see supplementary material, Table S1) due to rapid
urban growth without proper planning, indiscriminate deforestation and hill cutting.
However, the sudden arrival of a million Rohingya refugees in the Ukhia and Teknaf
Upazilas (an Upazila is a sub-district) has further aggravated landslide risk in the
entire district.

The Kutupalong camp (Figure 3(b)) is now considered as the world’s most densely
populated (with an average density of 75,000 individuals/km2) and largest refugee
settlement. Nearly 200,000 refugees are currently living at risk of severe landslides in
the camps (UNHCR 2019), whereas, more than three quarters of them are women
and children. The host population, who are now outnumbered by the Rohingya refu-
gees, are also struggling to cope with the adverse impacts of deforestation, loss of
agricultural lands, health-hazards, groundwater depletion and hill cutting. As for
example, since 21 April 2019, monsoon-related events specifically landslides affected
more than 50,000 refugees, out of which 6,300 refugees were temporarily displaced,
10 fatalities were reported and 42 refugees were injured (ISCG 2019). The crisis is
seen as a threat to the national security of Bangladesh. There are social strains devel-
oping between the refugee and host communities. Gross environmental degradation
due to the 2017 Rohingya influx has severely increased landslide risks particularly in
the Ukhia and Teknaf Upazilas (Figure 3). This has been a matter of great concern
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for the government agencies, stakeholders and international communities to protect
the devastated forced migrants and affected local host community members in CBD.

2.2. Methodology

This study aims to integrate landslide susceptibility zones, rainfall thresholds, fore-
casted daily rainfall data, and web-based geospatial technologies to develop a landslide
EWS for CBD. Land cover change and hill cutting have been identified as the key
triggering factors for landslides in CBD. Land cover maps of four different years
(1998, 2001, 2017, and 2018) are considered for change monitoring. The land cover
maps are helpful to understand both the general trend of land cover change and the
change due to the 2017 Rohingya exodus in Cox’s Bazar. The surrounding islands of
CBD (e.g., Saint Martin’s Island) are excluded from analysis as they are not related to
landslides. Landslide susceptibility maps are produced applying multiple regressions
(MR) and self-organizing map (SOM) methods. The landslide causative factor maps
and updated landslide inventory of the study area have been considered for suscepti-
bility modelling. The landslide susceptibility index map is then categorised into three
susceptibility zones – low, medium, and high. Rainfall thresholds for different suscep-
tibility zones are analysed using historical rainfall information following the landslide
events. Finally, a web-based landslide early warning system has been developed based
on analysing the susceptibility zones, rainfall thresholds, and rainfall forecast. The
details of the methodological steps are discussed in the following sub-sections:

2.2.1. Land cover mapping
The land cover maps of four different years were prepared using images from the
Landsat satellite missions (Table S2). The images were download from the earth explorer
which is an archived data portal of the United States Geological Survey (USGS). An
object-based image analysis (OBIA) was applied for the image classification, because of
its advantages over other image classification techniques. OBIA tools available in the
eCognition software platform was utilized for landcover mapping. OBIA is a combination
of both supervised and unsupervised learning of image classification. At first, the image
object is assessed through the internal characteristics of data through spatial, spectral,
and temporal scale. Images are then segmented based on the spectral response of differ-
ent landcover types. The multispectral segmentation is used over the Landsat multispec-
tral images to merge thee neighbouring pixels of same land cover types based on relative
homogeneity criteria (Hay and Castilla 2008; Bajracharya et al. 2010).

Segments are then grouped together to define image objects by user-defined rules.
The image objects are then coded according to their attributes such as normalized
difference vegetation index (NDVI), land-water mask, colour, slope, and relative pos-
ition (Uddin et al. 2015). A harmonized land cover classification system as proposed
by Gregorio (2005) was applied. Next, the land cover maps were prepared by labelling
a coded group of segments using ground truth information collected from high-reso-
lution Google Earth images. The land cover maps were validated through accuracy
assessment. Over one thousand reference pixels were selected through stratified ran-
dom sampling for the accuracy assessment.
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2.2.2. Preparing landslide inventory and factor maps
A detailed and up-to-dated landslide inventory map was prepared through collecting
historical landslide information from different organizations and newspapers, and
later verifying the locations by reconnaissance and global positioning system (GPS)
surveys in the field (Table S1). A landslide investigation form was prepared to collect
information on landslide movement type, state, distribution, style, rate, damage,

Figure 3. The location of Rohingya refugee camps in Cox’s Bazar District (CBD), Bangladesh.
Source: Fieldwork and ISCG (2019).
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material, displacement volume, causes of movement and other necessary information
(Ahmed 2017). The landslide locations in the Rohingya camps and boundary shape-
files were collected from the data portal of the United Nations Office for the
Coordination of Humanitarian Affairs (UN-OCHA) (ISCG 2019). Cox’s-bazar district
and other administrative boundaries were collected from the Cox’s Bazar
Development Authority (CoxDA). The topography-based landslide causative factors
such as slope, aspect, elevation, topographic wetness index (TWI), integrated moisture
index (IMI), and stream networks were derived from the digital elevation model
(DEM). The Shuttle Radar Topography Mission (SRTM) global !30-meter spatial
resolution DEM (dated: 11 February 2000) was used for this study (LP DAAC 2019).
Geological causative factor maps such as surface geology map and fault map were col-
lected from the Geological Survey of Bangladesh. The hill cut map was prepared by
analysing landcover change between 1998 and 2018, and respective slope information.
Distance to major roads, hill cut, fault, and stream maps were generated using the
Euclidian distance from these factors. Finally, all the landslide causative factor maps
were projected to the UTM-46N to ensure the same geographic reference.

2.2.3. Landslide susceptibility mapping
Landslide susceptibility is defined as the quantitative or qualitative analysis of classifi-
cation, area and spatial distribution of landslides that exist or potentially can occur in
an area (Couture et al. 2013). LSMs are frequently used for decision making by local
authorities. Researchers and experts have produced LSMs using a variety of statistical,
weight based, and machine learning methods; notably – the artificial neural network,
multiple regressions, weights of evidence, analytic hierarchy process, random forest,
and support vector machine algorithms (Gupta et al. 2018; Oh et al., 2018; Valencia
Ortiz and Mart!ınez-Gra~na 2018; Dou et al. 2019; Ahmed et al. 2020).

In this study, MR and SOM methods were applied using the TerrSet software
(Eastman 2016). These two methods were successfully applied in previous works to
produce scientifically valid LSMs for the Cox’s Bazar region (Ahmed 2015). By for-
mulating a linear relationship, the MR determines the probability of being in a par-
ticular category of the dependent variable given the independent variables. In this
case, the dependent variable was the landslide inventory map which is a dichotomous
variable (consists two categories). The landslide factors maps were considered as the
independent variables (Eastman 2016). The SOM undertakes a supervised classifica-
tion of remotely sensed imagery through the artificial neural networks Self-
Organizing Map technique (Kohonen 1990; Eastman 2016). Here, the landslide factor
maps were considered as input layers where a separate neuron was implied for each
reflectance band organised in a two-dimensional array of neurons. A synaptic weight
was assigned to all the interconnected input layers to finally produce the output layer
or the susceptibility map (Eastman 2016). The two LSMs were validated using the
Area Under the relative operating characteristics (ROC) Curve (AUC) method. In
determining the statistical reliability of landslide susceptibility maps, an AUC value
between 0.7 and 0.9 is scientifically acceptable (Vakhshoori and Zare 2018).
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2.2.4. Rainfall threshold analysis
The rainfall thresholds for landslide events were determined through empirical mod-
elling. It is a simple and fewer data demanding method compared to physical models,
which require wide-ranging data on various morphological, hydrological, geological,
and soil physical properties (Brunetti et al. 2018). The empirical rainfall threshold
analysis is mainly a cartesian plotting of rainfall amount of the day of the landslide
occurrence versus the amount of antecedent rainfall for few days before the landslide
event (Ahmed, Rahman, et al. 2018). Localization of rainfall threshold is one of the
most important advantages of the empirical process of rainfall threshold analysis
(Calvello et al. 2015). The daily rainfall data between 1960 and 2018 were collected
from the Bangladesh Meteorological Department (BMD) and the National Oceanic
and Atmospheric Administration (NOAA). The landslide occurrence is highly
depended on antecedent rainfall because of the moisture contained in the soil pore. If
soil pores already have enough moisture for the slope failure, a landslide can occur
even with no or little amount of rainfall. This study has used the information on total
rainfall for seven consecutive days prior to a landslide event as the antecedent rainfall.
The rainfall threshold was then determined and linked with different landslide sus-
ceptibility zones.

2.2.5. Framework for landslide early warning system
The conceptual framework for the development of a landslide early warning system
primarily depends on the spatial probability of landslide occurrence (landslide suscep-
tibility) and chances of rainfall above the calculated threshold. The assumption is that
the areas with high susceptibility can trigger landslides with low rainfall amount com-
pared to areas with low susceptibility and vice-versa. The conceptual framework of
the landslide warning system is explained with the following hypothetical example
(see Figure 4). Suppose there is a study area divided into equal sized 36 zones (6" 6
grid cells). These zones – No, Low, Medium, High – are classified into four categories
based on the landslide susceptibility analysis (Figure 4(a)). Next, after analysing the
historical rainfall amount for landslide events in this area, the rainfall rates are cate-
gorised into low, medium, and high rainfall events. Landslides can be occurred in
high susceptible zones with any rainfall amount. In contrast, there is no chance of
occurring landslides in no-susceptible zone whatever the rainfall amounts are.
Combining rainfall and landslide susceptibility information, Figure 4(b–d) illustrates
the three possible warning scenarios for this hypothetical example. Scenario-1, scen-
ario-2, and scenario-3 shows the possible cells with warning and non-warning states
under low, medium, and high rainfall condition, respectively.

2.2.6. Framework for the web-warning system
The warning system was designed based on four major components: susceptibility
zonation, rainfall thresholds, forecasted rainfall, and user subscription at the client
end. Susceptibility map gives spatial information on possible landslide initiation
zones. Rainfall thresholds provide the ranges of rainfall for which landslide may initi-
ate based on the relationship between antecedent and current rainfall. The system col-
lects forecasted rainfall twice a day from an application programming interface (API)

454 B. AHMED ET AL.



operated by the world weather online (www.worldweatheronline.com) for the subse-
quent five days. The system produces warning zonation maps by incorporating infor-
mation obtained from the susceptibility zones, rainfall thresholds, and forecasted
rainfall. Finally, the warning zonation map is overplayed on the ‘Open Street Map’
for displaying the landslide warning zones in the designated web portal. In addition,
the users can subscribe to respective alert zones by registering their email addresses
from the landslide warning platform. The system keeps user email addresses in the
database to send alerts five days before any possible landslide occurrence.

Figure 4. The proposed framework for the landslide early warning system.
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The warning system has leveraged various frameworks and libraries available from
the open source community, such as Python programming language with geospatial
data abstraction library (GDAL), MySQL, HTML, PHP, CSS, and JavaScript. The ras-
ter LSMs were reclassified using GDAL. MySQL and PHD were utilized for database
management at the server end. The system allows the client to interact with warning
system through the system user interface. Thus client-side interaction is managed by
JavaScript APIs, for instance, the OpenLayers is used for displaying maps in web
browsers. Another JavaScript user interface library, W2UI, was deployed for making
map layout based on the user query. User queries from client end are managed and
send to the server by utilizing jQuery and HTML5.

The susceptibility maps are stored in the system database as a raster database in
tiff format for the entire study area. The metadata of raster on the projection system
is used for the reprojection of warning zone mapping while overlaying on the open
street map. The system creates a special raster format for faster display of alert zones
in the rendering process by using PHP. Forecasted precipitation data is stored in a
MySQL database. Figure 5 shows the top-level architecture of the landslide early
warning system. Static datasets were used to process the landslide susceptibility map
and rainfall thresholds. Dynamic data, i.e., forecasted rainfall, is extracted from the
external API twice a day. Warning zonation process is run twice a day at the server
end to display warning zones at the system interface. A user gets alert only if there is
a likelihood of landslides. The methodological steps are illustrated in Figure 5.

3. Results

3.1. Land cover change detection analysis

Seven broad land cover classes, namely – hill forest, shrubland, grassland, cropland, barren
land, waterbodies, and builtup areas were chosen (Figure 6). Please see Table S3 (supple-
mentary document) for more details about the land cover classification. The 1998–2017
land cover changes (Figure 6(a,c)) represent the before Rohingya exodus scenario, and the
2017–2018 (Figure 6(c,d)) changes in land cover represent the after-exodus scenario. The
1998, 2017, and 2018 land cover maps were found to be 78.05%, 91.22%, and 91.44%
accurate, respectively (for details see Tables S4–S6 in the supplementary document).

The land cover change analysis indicates that deforestation and urbanisation is promin-
ent in CBD over the years (Table S7 and Figure S1). Due to the 2017 Rohingya exodus,
at least 58km2 forest disappeared (Figure S1(d)). Grassland type that contains deciduous
forests was significantly reduced (approx. 235km2) because of the influx. These two types
primarily disappeared for the purpose of constructing new Rohingya makeshift camps and
collecting fuel for cooking for the refugee population (Figure S2). Similar results for land
cover changes solely for the Rohingya camps were found by Hassan et al. (2018) and
Braun et al. (2019), however, this study covers the entire district.

3.2. Landslide inventory and factor maps

A comprehensive landslide inventory map containing 432 locations for CBD was pre-
pared that was randomly divided into two groups (Figure 3) – training set for model
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running, and testing set for model validation purposes. In CBD, the type of move-
ment was predominantly found as ‘slides’ (rotational and translational), and the
engineering soil was categorised as ‘earth slides’. The landslide factor maps are shown
in Figure 7. The geology map (Figure 7(b)) was classified as beach and dune sand
(csd), Bhuban formation (Miocene, Tb), Boka Bil formation (Neogene, Tbb), Dihing
formation (Pleistocene and Pliocene, QTdi), Dihing and Dupi Tila formations undiv-
ided (QTdd), Dupi Tila formation (Pleistocene and Pliocene, QTdt), Girujan clay
(Pleistocene and Neogene, QTg), Marsh clay and peat (ppc), Tipam Sandstone
(Neogene, Tt), valley alluvium and colluvium (ava), and water (H2O). Boka Bil,
Tipam, Dupi Tila, and Dhing formations are actually hilly deposits from the Tertiary

Figure 5. The flowchart of methodology.
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period. Beach sand and valley formations are from the Quaternary period. Beach
sand/tidal deposits are formed near the coast due to tidal actions and are dominated
by silt/silt and clay. Valley deposits are formed due to erosional activities near the
hilly region and are composed of sand, sandy clay, and silty clay (Brammer 2012).

3.3. Landslide susceptibility modelling results

The landslide training dataset, and the ten factor maps were considered as dependent
and independent variables, respectively for producing the MR and SOM LSMs
(Figure 8). The ROC AUC values were calculated 0.85 and 0.70 for the MR and
SOM, respectively. The MR LSM was selected for further analysis based on higher
AUC value.

The ‘F-test’ and ‘T-test’ were performed for the overall regression and independent
variable’s significance analysis, respectively. The statistical hypothesis testing assumes
significance at p< 0.05. The apparent R (¼0.020568), apparent R square (¼0.000423),
adjusted R (¼0.020476) and adjusted R square (¼0.000419) values were calculated
very low. The F-test (10, 2376995)¼ 100.604408 result was found significant
(p< 0.0001). It means the overall MR regression is statistically valid (Table 1). Land
cover, slope, and distance from hill-cut variables were found statistically highly sig-
nificant (p< 0.0001) as shown in Table 2. It validates our assumption on strong cor-
relations between landslide occurrences and the relevant independent factor maps
(i.e., deforestation, unplanned urbanization, and hill cutting).

Lastly, the MR map was classified into – no warning, and low, medium, and high
susceptibility zones as shown in Figure 9(a).

Figure 6. Land cover maps of Cox’s Bazar District (CBD).
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3.4. Rainfall threshold analysis results

To calculate the rainfall thresholds, 8-day rainfall data for the major historical land-
slide events in CBD were analysed. The results reveal that landslides primarily
occurred in the months of June and July. As per the median values, 95mm rainfall in
24 hours, and/or 185mm rainfall in 48 hours, and/or 241mm rainfall in 72 hours
could trigger landslides in CBD (Table 3). It is also found that landslides are associ-
ated with up to 4-day rainfall prior to the events and a landslide warning could be
issued accordingly. In this study, 5-day cumulative rainfall ranging between
95–400mm was considered for rainfall threshold analysis, as around 93% of the
median values fitted the model (i.e., coefficient of determinants, R2¼ 0.93).
Subsequently, the rainfall threshold was classified into three rates: low rainfall
(95–220mm), medium rainfall (221–345mm), and high rainfall (>345mm).

In total, 392 landslides were used to validate the proposed method of calculating
rainfall thresholds. As per the matrix assumption, the least number of landslides will
occur in low rainfall/low susceptibility (R1/S1) zone, and the majority of landslides
will occur in high rainfall/high susceptibility zone (R3/S3). The results show that only

Figure 7. The factor maps used for landslide susceptibility mapping.
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one and four landslides were reported in zone R1/S1, and R2/S1, respectively (Table
4). Around 65%, and 63% landslides occurred in high rainfall, and high susceptibility
zones, respectively. As assumed, most landslides (132) were observed in zone R3/S3
(Table 4). It proves that the proposed method of combining various rainfall rates and
susceptibility classes, as described in this study, is statistically valid.

3.5. Landslide web-warning system development

Table 5 shows the association between landslide susceptibility indices and the (fore-
casted) rainfall rates. If cumulative rainfall for five consecutive days is forecasted
within the limit of low rainfall rate (i.e., 95–220mm), then the cell values between
0.73–1 would be susceptible to landslides (Table 5). At that point, landslide warnings
should be immediately disseminated, and this context has been depicted as ‘Scenario
1’ (Figure 9(b)). Similarly, for the same context, if the total amount of rainfall exceeds
345mm in 5 days, then areas with cell values between 0.54–1 would receive warnings
(Figure 9(d)). LSM cell values between 0–0.53 has been excluded from getting land-
slide warnings under any circumstances, as it contains low-lands, water bodies, sea
beach, and non-hilly areas.

Figure 8. Landslide susceptibility maps of CBD produced by applying the (a) multiple regressions
(MR), and (b) self-organizing map (SOM) methods.
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The dynamic web-warning system (WWS) is useful in getting landslide warnings
five days in advance and is publicly available at https://www.landslidebd.com/coxs-
bazar-warning/. The forecasted rainfall values of CBD are updated on a daily basis
from the World Weather Online website. The WWS displays 5-day forecasted rainfall
values and automatically generates different warning scenarios as described in Table 5
and Figure 9. Anyone can register in the WWS and receive email alerts as per their
requirements. The system has a provision to insert rainfall values manually and it
also stores previous 30 days rainfall data. It helps the end-users to generate different
warning scenarios by utilizing forecasted data collected from other reliable sources.

The EWS effectively predicted the 10 September 2019 landslide event that killed
two Bangladeshi (host community) children and injured ten people in the Teknaf
area in Cox’s Bazar. The event was triggered by 422mm rainfall in just 24 hours time-
frame. At least 15 landslides and 5 flooding incidents were reported in the refugee
camps in Teknaf (primarily camp 26) that displaced 14,801 Rohingya refugees, and
damaged 427 shelters partially and 66 shelters completely (Figure S3).

4. Discussion

The research paper has four major contributions. First, it has ideally demonstrated
the application of advanced geoinformation in land cover and landslide susceptibility
mapping, and EWS development. Landslide EWSs are operating in many countries.
For example, the U.S. Geological Survey (USGS) issues warnings for rainfall-triggered
landslides in the Seattle area solely by analysing rainfall thresholds for landslide activ-
ity (USGS 2018), which is a popular trend. However, this study is original as it pro-
poses a method to connect the rainfall thresholds with various landslide hazard
zones. The work also addresses some of the recommendations suggested by Guzzetti
et al. (2019) regarding geographical landslide EWSs; e.g., developing site-specific
EWSs, utilising standard methods for landslide and rainfall threshold models, explain-
ing how susceptibility is used in operational EWSs, and evaluating all parts of a EWS
by using user-friendly appropriate tools and criteria.

Table 1. ANOVA regression table for the F-test.
Model Apparent degrees of freedom (df) Sum of squares Mean square p-value

Regression 10 0.10 0.01 <0.0001
Residual 2,376,995 246.87 0.00
Total 2,377,005 246.97

Table 2. The T-test results for the independent variables.
Variable Coefficient T-score p-value

Land cover 0.000118 27.499697 <0.00001
Aspect $0.000003 $1.041638 0.32239
Fault_dist $0.000063 $11.870442 <0.00001
Geology 0.000006 2.959666 0.014298
Hill cut_dist $0.000000 $13.527241 <0.00001
IMI $0.000011 $1.029410 0.327726
Road_dist 0.000016 2.397961 0.03745
Slope 0.000081 8.738854 <0.00001
Stream_dist 0.000013 2.249783 0.048204
TWI $0.000018 $2.422774 0.035939
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Figure 9. Landslide warning zoning of CBD by applying the multiple regressions method in different scenarios.
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Second, until today, no landslide EWS is effectively operating in CBD. In 2010, the
Government of Bangladesh (GoB) tried to introduce a community-based landslide
EWS in some parts of the Cox’s Bazar Municipality area, but it failed due to lack of
project funding and consequential maintenance (CDMP-II 2012). Currently, landslide
warnings are given by the Bangladesh Meteorological Department (BMD), and are
solely based on forecast of heavy rainfall at the regional scale. This coarse warning is
often recognised as ‘ineffective’ and ‘insufficient’ at the local level where the spatial
distribution and other geomorphological factors are not considered (Ahmed 2017).
Disseminating landslide warnings for a vast area could create panic among the local

Table 3. Relationship between rainfall pattern and triggering landslides in Cox’s Bazar District.

ID Date of the event

Chronology of days

$7 $6 $5 $4 $3 $2 $1 0

Rainfall amount (mm)

E1 16 June 2003 17 21 110 66 13 42 8 77
E2 29 July 2003 5.08 24.89 0 7.11 36.07 56.90 36.07 82.04
E3 10 June 2006 107.95 11.94 1.02 1.02 41.91 55.12 105.92 117.09
E4 11 June 2007 0.00 0.00 0.00 0.00 36.07 2.03 25.91 181.10
E5 06 July 2007 0.00 16.00 180.59 72.90 58.93 66.04 149.10 21.08
E6 06 July 2008 27 131 188 74 65 100 90 107
E7 29 July 2009 34.04 10.92 28.96 0.00 36.07 51.05 11.94 141.99
E8 15 June 2010 0.00 0.00 0.00 41.91 1.02 74.93 77.98 248.92
E9 26 June 2012 173.99 134.11 0.00 10.92 19.05 32.00 111.00 21.08
E10 27 June 2015 2.03 59.94 74.93 82.04 430.02 255.02 262.89 97.03
E11 27 July 2015 0.00 80.01 41.91 129.03 138.94 213.11 78.99 89.92
E12 04 July 2017 0.00 0.00 5.08 22.10 16.00 71.12 116.08 64.01
E13 25 July 2017 0.00 6.10 103.12 105.92 33.02 167.89 175.01 91.95
E14 10 June 2018 0.00 1.02 0.00 7.87 0.00 0.00 61.98 242.06
E15 12 June 2018 7.87 0.00 0.00 61.98 242.06 66.04 88.90 93.73
E16 25 June 2018 0.00 2.03 0.00 0.00 19.05 42.93 102.11 82.04
E17 04 July 2018 102.11 82.04 4.06 2.03 10.41 29.97 8.89 116.08
E18 25 July 2018 2.29 5.08 3.05 22.61 11.94 35.31 164.34 365.00
Mean 26.63 32.56 41.15 39.30 67.14 75.64 93.06 124.40
Median 02.16 11.43 3.56 22.36 34.55 56.01 89.45 95.38

Here, ‘6’ represents 6 days prior to landslides, and ‘0’ represents the day of the landslide event.

Table 4. Validation results of rainfall rates and landslide susceptibility zones.

Validation matrix
S1¼ Zone 2
(low LSM)

S2¼ Zone 3
(medium LSM)

S3¼ Zone 4
(high LSM)

Total
landslides (%)

R1 (low rainfall) 1 11 49 61 (15%)
R2 (medium rainfall) 4 8 66 78 (20%)
R3 (high rainfall) 44 77 132 253 (65%)
Total landslides (%) 49 (13%) 96 (24%) 247 (63%) 392 (100%)

Table 5. Association between landslide susceptibility zoning and rainfall rates.
Rainfall amount (mm)
[consecutive 5 days cumulative]

Zone and scenario
delineation

LSM index
value coverage

Low rainfall (R1) ¼ 95–220 Zone 4 [Scenario 1] 0.73–1
Medium rainfall (R2) ¼ 221–345 Zones 4þ 3 [Scenario 2] 0.62–1
High rainfall (R3) > 345 Zones 4þ 3þ2 [Scenario 3] 0.54–1
No warning Zone 1 0–0.53
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residents and they might not rely on the system. The proposed method can resolve
this issue and reduce the number of false warnings.

Third, the Inter Sector Coordination Group (ISCG) requested for US$920.5 million
in 2019 to provide the much needed humanitarian assistance for the Rohingya refu-
gees and their host communities in Cox’s Bazar. However, as of September 2019,
only 37.80% of the appeal is funded (UNHCR 2019). The UN and other non-govern-
mental organisations (NGO) are struggling to meet the basic needs in the camps such
as food, shelter, medical care, education, water and sanitation etc. During this diffi-
culty, the proposed landslide EWS – which is simple and easily accessible, developed
based on freely available data, and effectively functioning – would be beneficial for
the authorities to warn the people at risk well in advance.

Fourth, humanitarian crises triggered by violence and disasters in conflict-affected
developing countries can set back hard-won development gains and are barriers to
achieving the UN SDGs (Peters 2019). The work particularly addresses two of them.
The SDG-15 highlights on sustainable management of forests, half deforestation,
restore degraded forest, and increase afforestation. The SDG-11 will cover targets
related to sustainable urbanisation, significantly reduce the number of deaths and the
number of people affected caused by disasters with a focus on protecting the poor
and people in vulnerable situations, and support the least developed countries in line
with the Sendai Framework for Disaster Risk Reduction 2015–2030 (UNISDR 2015).
The Sendai Framework emphasizes on enhancing disaster preparedness for effective
response to build back better. The proposed work directly contributes in tackling
these defining challenges as mentioned in the SDGs.

The work has some limitations that could be addressed for future research. First, a
detailed (historical) landslide inventory map is missing for CBD. Only information about
the major landslide events were collected from various secondary sources and were vali-
dated through fieldwork. Second, historical hourly rainfall intensity data is not available
from BMD. Recently, BMD and their partners have installed some rain gauges in the
region, nevertheless, the data is not public. BMD also does not provide any API services
to connect forecasted rainfall data in external websites. Third, hill-cutting is a major con-
cern for Cox’s Bazar. The LSM map should be regularly updated by incorporating the
most recent land cover, hill cut, road cut, and landslide inventory. The rainfall thresholds
should be updated on a regular basis by considering the impacts of regional climate
change, cyclone intensities, and consequent rainfall patterns. Fourth, a !30 meters spatial
resolution SRTM DEM (1 arc-second for global coverage) and Landsat images were used
for analysis; this is another major drawback. High-resolution DEM and satellite images
could be useful for producing better results. Finally, it should be admitted that the effect-
iveness of a landslide EWS also depends on appropriate community training, planning
for evacuation routes and shelters, community vulnerability assessment, and integrating
local and indigenous knowledge in emergency planning and disaster management
(Ahmed 2017; Guzzetti et al. 2019).

5. Conclusions

Since August 2017, around a million Rohingya refugees fled Myanmar’s violent cam-
paign of genocide and ethnic cleansing that is straining Bangladesh. It is considered
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as the world’s fastest growing refugee crisis in recent times. The stateless Rohingya
refugees are now forced to live on temporary hilly camps in CBD that severely
restrict permanent and safer constructions. Henceforth, the context emphasizes the
importance of preparedness and early warning systems to reduce vulnerability to
landslide disasters.

Given the circumstances, a framework for developing a web-based dynamic land-
slide early warning system has been proposed in this study. The landslide EWS has
taken into consideration land cover changes, historical landslide events, local rainfall
thresholds, landslide susceptibility maps, and a hazard matrix to dynamically relate 5-
day forecasted rainfall and their spatial association with the susceptibility map. The
results reveal that an enormous forest area has been wiped out to build the camps in
CBD that has significantly increased landslide vulnerability of the Rohingya refugees
and their host communities. Landslides in the region largely occur in June and July,
and consecutive 5-day cumulative rainfall of 95–220mm could trigger landslides in
high susceptible areas. Based on the hazard matrix combinations, three different
warning scenarios (Figure 9) have been proposed.

The study focuses on the complex nexus between conflict and natural (-hazard
induced) disasters. The proposed EWS is replicable and can be contextualised in simi-
lar settings. The originality and novelty of this work essentially reflects in addressing
the Rohingya refugee crisis in Bangladesh with a view to reach the population fur-
thest behind. The work addresses the UN Sustainable Development Goals by promot-
ing the application of geoinformation in natural hazard assessment, environmental
planning and disaster risk reduction.
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Supplementary Material 1 

Table S1. Major landslide disasters in the CR[¶V Ba]aU DiVWUicW, BaQgladeVh. 2 

Date Location of Landslides 
Rainfall 

Sequence 
Consequences 

16 June 2003 
LighW HRXVe PaUa, CR[¶V 
Bazar 

474 mm ± 12 days 

4 ± 15 June 2003 

6 fatalities and 2 

injuries 

29 July 2003 KalaWali, CR[¶V Ba]aU 
330 mm ± 11 days 

19 ± 28 July 2003 

6 killed and 9 

injuries 

3 July 2008 
CR[¶V Ba]aU SadaU/ 

Municipality (CBM) 

688 mm ± 7 days 

26 June ± 2 July  

12 fatalities and 

several injured 

6 July 2008 TekQaf, CR[¶V Ba]aU 
981 mm ± 10 days 

26 June ± 5 July  
4 people killed 

7 April 2010 
RamX, CR[¶V Ba]aU 

District  

No rainfall, but 

landslide occurred 

2 fatalities and 

several injuries 

15 June 2010 

Different locations in 

BaQdaUbaQ aQd CR[¶V 

Bazar districts 

523 mm ± 6 days 

10 ± 15 June 2010 

47 faWaliWieV iQ CR[¶V 

Bazar and 7 in 

Bandarban and over 

100 injured 

26 June 2015 

Ramu, Saint Martin; 

Ghonapara, Lighthouse 

Para and Shahittika Polli 

iQ CR[¶V Ba]aU 

Municipality  

978 mm ± 4 days 

23 ± 26 June 2015 

8 killed, 100 villages 

flooded, 1000 

houses damaged, 

roads damaged, 2 

people untraced and 

many injured 

28 June 2015 

Teknaf, Ramu, Chokoria, 

aQd PekXa USa]ila, CR[¶V 

Bazar 

5 days of heavy 

rainfall (674 mm) 

21 killed, roads and 

municipalities are 

flooded 

27 July 2015 
South Baharchharha 

aUea, CR[¶V Ba]aU 

682 mm rainfall in 

6 days 

5 fatalities, and 4 

houses buried 

13 June 2017 All five hill districts 
300 mm rainfall in 

24 hours 

159 killed and 88 

injured 

25 July 2017 
Sadar and Ramu Upazila, 

CR[¶V Ba]aU 

677 mm rainfall in 

6 days 
5 killed and 5 injured 

11 June 2018 Ukhia Rohingya camps 
459 mm rainfall in 

4 days 

1 killed and 500 

injured 
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Date Location of Landslides 
Rainfall 

Sequence 
Consequences 

12 June 2018 Maheshkhali Upazila 1 killed 

25 July 2018 

Miar Ghona, CBM and 

Dokkhin Mithachori, 

Ramu Upazila  

228 mm rainfall in 

24 hours 
5 killed 

May±July 

2019 

Ukhia Rohingya Camps, 

CR[¶V Ba]aU 

Several days of 

continuous rainfall 

Landslides affected 

more than 50,000 

refugees, 6,300 

refugees were 

temporarily 

displaced, 10 

fatalities have been 

reported and 42 

refugees have been 

injured 

10 

September 

2019 

Notun Pollan Para, 

TekQaf, CR[¶V Ba]aU 

422 mm rainfall in 

24 hours 

2 children killed and 

6 injured 

Source: Ahmed, 2017 and national daily newspapers. 3 

 4 

 5 

Table S2. Details of the satellite images used for land cover mapping. 6 

Serial 

No 

Satellite/ 

Sensor 

Row 

No 

Path 

No 

Date  

(dd/mm/yyyy) 

Cloud 

Cover (%) 

1 Landsat TM 136 45 27/03/1998 0.00 

2 Landsat TM 136 45 31/10/2001 0.00 

3 Landsat 8 136 45 15/03/2017 0.05 

4 Landsat 8 136 45 02/03/2018 0.02 

 7 

 8 
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Table S3. Land cover classification system. 9 

Land cover classification Label 

A3 = Trees (Main Layer) 

A11 = Open General (60-70%) ± (20- 10%) (Main 

Layer) 

B2 = >30- 3 m (Tree height Main Layer) 

D1 = Broadleaved 

E1 = Evergreen 

E4 = Semi-Deciduous or Semi-Evergreen 

Zt38 = Floristic Aspect: Artocarpus chaplasha, 

Dipterocarpus spp 

Forest 

A4 = Shrubs (Main Layer) 

A10 = Close > 60-70% Main Layer 

B3 = 5-0.3m (Shrubs Height Main Layer) 

D1 = Broadleaved 

E1 = Evergreen 

L2 = Sloping Land 

L8 = Hilly Terrain 

Shrubland 

A6 = Graminoids 

A10 = Deciduous  

B4 = 3 - 0.03 m (Herbaceous Height Main Layer) 

A5 = Bare Soil and/or Other Unconsolidated 

Material(s) 

Grassland 

A3 = Herbaceous Crops 

C3 = One Additional Crop 

 B2= Small Sized Field(s) 

Cropland 

A2 = Unconsolidated Bare Area Barren land 
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Land cover classification Label 

A5 = Bare Soil & Unconsolidated Material  

A1= Inland Water Waterbodies 

A4 = Built Up Area ± Non-Linear 

A13 = Urban Area(s) 

A15 = Medium Density 

Builtup areas 

Source: Gregorio, 2005. 10 

 11 

Table S4. Land cover classification accuracy of 2018. 12 

Land cover 
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(%
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Forest 359 16  8    383 93.73 

Shrubland 10 88 2 3   2 105 83.81 

Grassland  1 38 2 2 2  45 84.44 

Cropland 14  2 272 1 1  290 93.79 

Barren land   1 3 74 6  84 88.10 

Waterbodies   1 1 7 88  97 90.72 

Built-up areas   1 1   10 12 83.33 

Total 383 105 45 290 84 97 12   

Producer's Accuracy 

(%) 
93.73 83.81 84.44 93.79 88.10 90.72 83.33   

 13 

Total Number of Samples 1016 Standard Error of kappa 0.02 

No. of Accurate Samples 929 95% Confidence Interval 0.770 to 0.850 

Overall Accuracy (%) 91.44 Weighted Kappa 0.906 

Kappa  0.81     
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Table S5. Land cover classification accuracy of 2017. 15 

Land Cover 
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Forest 359 16  6    381 94.23 

Shrubland 10 88 2 3   2 105 83.81 

Grassland  1 37 2 3 2  45 82.22 

Cropland 14  1 272 2 1  290 93.79 

Barren land   1 4 72 7  84 85.71 

Waterbodies   1 2 7 87  97 89.69 

Built-up areas   1 1   10 12 83.33 

Total 383 105 43 290 84 97 12   

Producer's 

Accuracy (%) 
93.73 83.81 86.05 93.79 85.71 89.69 83.33   

 16 

Total Number of Samples 1014 Standard Error of kappa 0.02 

No. of Accurate Samples 925 95% Confidence Interval 0.770 to 0.850 

Overall Accuracy (%) 91.22 Weighted Kappa 0.906 

Kappa  0.81     

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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Table S6. Land cover classification accuracy of 1998. 24 

 25 

Land Cover 
Fo

re
st

 

Sh
ru

bl
an

d 

G
ra

ss
la

nd
 

C
ro

pl
an

d 

B
ar

re
n 

la
nd

 

W
at

er
bo

di
es

 

B
ui

lt-
up

 a
re

as
 

To
ta

l 

U
se

r's
 A

cc
ur

ac
y 

(%
) 

Forest 368 46 6 13 7 3 5 448 82.14 

Shrubland 0  0     0  

Grassland 6 41 35 7 1 1 3 94 37.23 

Cropland 9 4 1 255 2 5 3 279 91.40 

Barren land  8 3 5 62 16  94 65.96 

Waterbodies  6  10 12 72  100 72.00 

Built-up areas       1 1 100.00 

Total 383 105 45 290 84 97 12   

Producer's 

Accuracy (%) 
96.08 0.00 77.78 87.93 73.81 74.23 8.33   

 26 

Total Number of Samples 1016 Standard Error of kappa 0.02 

No. of Accurate Samples 793 95% Confidence Interval 0.770 to 0.850 

Overall Accuracy (%) 78.05 Weighted Kappa 0.906 

Kappa  0.81     

 27 

 28 

 29 

 30 

 31 

 32 

 33 
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Table S7. Land cover change pattern in CBD. 34 

Land cover 

type 

Area (km2) 

1998 2017 2018 

Forest 962.73 907.62 851.87 

Shrubland 0.00 33.90 221.19 

Grassland 220.78 330.30 90.29 

Cropland 611.25 508.37 618.61 

Barren land 222.94 218.81 211.86 

Waterbodies 111.83 121.00 111.71 

Built-up areas 9.84 19.38 33.85 

 35 

  

  

  

Fig. S1. Land cover changes between 1998-2017 and between 2017-2018 (all units 36 

are in km2). 37 

 38 
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 39 

Fig. S2. Changes in grassland, forest, and builtup areas land cover types (a-c) 40 

between 1998±2017, (d-f) and between 2017±2018. 41 

 42 

 43 

 44 

 45 

 46 



GEOMATICS, NATURAL HAZARDS AND RISK 2020, VOL. 11, NO. 1, 446–468  https://doi.org/10.1080/19475705.2020.1730988 

 

 9 

 47 

  

 

Fig. S3. (a, b) Destructions caused by the 10th September 2019 landslides in the 48 

RRhiQg\a camSV iQ TekQaf, CR[¶V Ba]aU (SRXUce: UNHCR in Bangladesh, 2019); and 49 

(c) a screen-shot from the website validating the predictive capacity of the proposed 50 

landslide EWS. 51 

 52 


