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Machine learning: a long way from implementation in cardiovascular disease 

 
The term, “machine learning” (ML), dates back to the 1950s to describe how 
algorithms and neural network models can assist computer systems in progressively 
improving their performance. In the last decade, advanced ML algorithms have been 
increasingly used for phenotypic identification in different cardiovascular diseases 
(CVDs), driven by two major factors. First, a gap persists between disease definitions 
from research or consensus guidelines and routine clinical practice. Second, as 
electronic health records (EHR) are increasingly adopted within and across countries, 
there are unprecedented opportunities to investigate disease definitions in a more 
reproducible and generalizable manner. The objective of ML algorithms in such 
analyses is to develop replicable EHR-based phenotypical definitions for a given 
CVD(1), and to predict group assignments of new patients.  
 
EHRs include diagnostic codes from primary care, secondary care and administrative 
data. To produce homogenous subgroups of EHR data, clustering methods are 
unsupervised ML algorithms which aim to group objects with similar attributes relying 
on similarity and distance measures. In this issue, Hedman and colleagues(2) identify 
six phenotypes of heart failure with preserved ejection fraction (HFpEF), derived using 
data from 320 HFpEF out-patients in the Karolinska-Rennes cohort study. HFpEF is 
the example par excellence of a disease where disease definitions, and consequently 
knowledge regarding pathophysiology and management, remain elusive. The team 
provides a prediction tool for patient assignment of identified subtypes, although this 
has not been externally validated.  
 
The authors provide new insights in a disease lacking a single evidence-based therapy 
to alter prognosis. They found that two pheno-groups had worst prognosis: those with 
hypertension and highest prevalence of coronary artery disease, renal disease, 
anaemia and diabetes (pheno-group 1) and those with atrial fibrillation and high 
prevalence of COPD, old age, kidney dysfunction and anaemia (pheno-group 2). 
Pheno-group 1 is consistent with underlying myocardial dysfunction and what the 
authors term, “forward failure”, resembling heart failure with reduced ejection fraction, 
whereas pheno-group 2 showed increased evidence of diastolic dysfunction and right 
ventricular dysfunction, more in line with HFpEF and a “backward failure” 
phenotype(2). These phenotypes are consistent with previous studies(3). However, 
this work also highlights how far we are from routine ML implementation for phenotype 
discovery, despite much coverage in lay and scientific press suggesting the contrary. 
Figure 1 summarises the different steps required for ML to reach patient care.  
 
Data 
ML is dependent on underlying data for training and validation, which current literature 
underplays. To-date, published studies investigating CVD phenotypes have been 
heterogeneous in their study design, including national registry(4), 
prospective/retrospective cohorts (5), cross-sectional(6) and randomised clinical 
trials(7). As with traditional epidemiologic studies, design and size matter. A small 
sample size leads us to question the internal and external validity of the observations 
and whether the pheno-groups identified are representative of HFpEF patients on the 
whole. Greater transparency of diagnostic codes and inclusion criteria will lead to 
greater reproducibility of analyses and results for phenotypic models. In addition, the 



way in which missing data and outliers are handled is crucial and should be reported(8) 
as in this analysis by Hedman and colleagues(2), again facilitating reproducibility of 
these data. The process by which variables are selected and reduced to a set of 
principal variables (dimensionality reduction) should be explicitly stated. 
 
Covariates 
The number, range and representativeness of covariates is crucial for identification of 
meaningful phenotypes. Current covariates extracted from EHR include baseline 
characteristics, comorbidities, laboratory investigations, medications, symptoms and 
outcomes. Hedman and colleagues add proteomic data to the range of variables linked 
with particular HFpEF phenotypes. However, variables frequently overlooked by 
published analyses to-date (including this one) are those unrelated to CVD. Non-CVD 
variables are often available in patients’ historical EHR as part of their longitudinal 
trajectories, potentially adding to phenotype discovery(9).  
 
The particular processes and criteria for variable selection also need consideration. A 
small number of patients with a large number of variables can lead to the “curse” of 
dimensionality and overfitting. Variance within a dataset is also a key factor, and can 
be mitigated by dimensionality reduction techniques such as principal component 
analysis for continuous variables and multiple correspondence analysis for categorical 
variables to remove “noisy” features. There are multiple approaches to reduce 
dimensionality, but investigators should take into account completeness of available 
covariates with consideration of size of the patient cohort and whether selected 
covariates can be linked to study outcomes.  
 
Machine learning 
Clustering is important in grouping data into subtypes which are affected by different 
clustering algorithms and number of clusters. There are many different clustering 
algorithms, but “hierarchical” (e.g. agglomerative clustering(10)) and “partitioning” 
(e.g. k-means(3))approaches are most commonly used. Different clustering algorithms 
have different strengths and weaknesses, necessitating comparative studies to inform 
algorithm selection before using the method for phenotype discovery(11), but again 
this aspect is often neglected in published studies. Often just one clustering algorithm 
which has been applied to the data in each study(3, 10), which may increase the risk 
of missing important patterns of diseases. Moreover, indices for finding optimal 
number of clusters should be carefully examined, as different indicators may yield 
contradictory results, leading to different clusters.  
 
Computing capacity is a key determinant of which ML analyses can and are performed 
and has been largely neglected by published literature. Ideally, a large cohort with a 
large number of covariates will increase research generalisability of a given study, but 
will require greater computing power. On the other hand, the clinical generalisability of 
such analyses may be limited since such computing power is currently restricted or 
absent in the clinical context. Despite the substantial opportunities for research from 
growing datasets with increasing numbers of variables, there are significant 
challenges for computation, which may be a factor in determining the size of 
population, number of covariates and the particular ML models used in published 
phenotype models. For example, calculations which are based on “sample dissimilarity 
matrix” require more intensive computation. Even when research and clinical 
institutions upgrade their hardware, generation of usable results is not guaranteed 



because many clustering algorithms are not robust enough in large datasets with high 
dimensionality. Therefore, the majority of phenotypical studies have been limited to 
smaller or more homogenous datasets(12).  
 
Validation 
Just as in models produced by standard regression techniques, the external validity of 
results from ML-driven analyses is crucial to make findings interpretable and 
translatable to clinical care. However, the majority of phenotypical studies for CVD to-
date only validated results internally(5-7) and not externally (in an independent, 
prospective dataset). Datasets are usually divided into training and validation sets of 
pre-specified proportions, and measures of accuracy (e.g. area-under-the-curve, 
sensitivity and specificity) are calculated. The reason for only conducting internal 
validation maybe due to the lack of independent cohort, but as both training and 
validation sets are from same cohort, positive results suggested from such studies are 
likely to introduce bias, overestimating potential impact on healthcare. External 
validation itself can be by several methods. First, baseline characteristics may be 
compared between the derivation and validation cohorts. Second, the predicted and 
actual clustering of patients in two cohorts can be compared. Third, clusters can be 
used to predict outcomes, in order to examine the utility of the phenotypes and the 
possibility of their clinical implementation. There are currently no specific guideline 
recommendations for validation of ML results in phenotype definition.  
 
Implementation 
Even after an ML algorithm is externally validated, several factors need to be 
addressed before it is ready for clinical implementation. First, outcome data would help 
to show that the method adds effectiveness to the clinical pathway, whether in a 
“before-after” study or trial design. Second, the way in which the algorithm will actually 
fit into a patient pathway should be considered in different settings to understand how 
the ML application will change current clinical practice, and to understand its feasibility 
and acceptability with different stakeholders, including health professionals and 
patients. Finally, perhaps the most significant obstacles to implementation of ML 
(assuming that it is proven to effective and validated) are external to ML algorithms 
related to “digital readiness” of the health system (e.g. EHR and IT capacity) and 
workforce (e.g. training of health professionals in the use of ML). Without consideration 
of  
     
The road ahead 
Hedman and colleagues have made an important contribution in a patient population, 
where significant clinical and research questions remain. However, their analyses 
have to be taken in the context of multi-factorial complexity where ML solutions will 
have to operate. In order to improve the data-driven characterisation of CVD and make 
impact on clinical decision-making, ML studies for subtyping and risk prediction need 
to be larger-scale, across diseases, with standardised reporting and validation. 
Consensus guidelines for ML in research and clinical practice are urgently required if 
these tools are going to translate to patient care. External validation in research 
studies using ML in healthcare will help to understand which clustering and prediction 
tools are of greatest use to the data; and suitable for clinical implementation. In order 
for ML to create patient benefit, the investigations need to shift from the frameworks 
of discovery science to evidence-based healthcare and implementation science.  
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