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Abstract: Diffuse optical tomography (DOT) uses near infrared light for in vivo imaging
of spatially varying optical parameters in biological tissues. It is known that time-resolved
measurements provides the richest information on soft tissues, among other measurement types
in DOT such as steady state and intensity modulated measurements. Therefore, several integral
transform based moments of the time-resolved DOT measurements has been considered, to
estimate spatially distributed optical parameters. However, the use of such moments can result
in low contrast images and cross-talks between the reconstructed optical parameters, limiting
their accuracy. In this work we propose utilizing a truncated Fourier series approximation in
time-resolved DOT. Using this approximation, we obtained optical parameter estimates with
accuracy comparable to using whole time-resolved data, using low computational time and
resources. The truncated Fourier series approximation based estimates also displayed good
contrast and minimal parameter cross-talk, and the estimates further improved in accuracy when
multiple Fourier frequencies were used.

© 2019 Optical Society of America

1. Introduction

Near-infrared diffuse optical tomography (DOT) is a non-invasive technique for imaging spatially
varying optical properties, typically the absorption and scattering coefficients, in soft biological
tissues. The distribution of these optical coefficients are particularly useful in obtaining tissue
biochemical and structural information with applications, for example, in early diagnosis of
breast cancer [1], in neonatal brain imaging [2—4] and small animal imaging [5].

There are three modalities of DOT based on the type of light source used in the experimental
systems: continuous wave DOT, frequency-domain DOT and time-domain DOT. Continuous
wave DOT (CW-DOT) systems use continuous wave lasers or lamps for illuminating the tissues.
Both absorption and scattering parameters cannot be simultaneously estimated from CW-DOT
data, due to non-uniqueness of the image reconstruction problem [6]. Frequency-domain DOT
(FD-DOT) uses radio-frequency modulated light, and it has been the most commonly used method
for DOT till date. FD-DOT systems employ light sources and detectors which are relatively less
expensive than those required for time-domain DOT (TD-DOT) systems [7]. However, recently
developed photonic components have demonstrated that compact and wearable TD-DOT, with
exceptional depth penetration and sensitivity, can be achieved at relatively low-cost [8]. Also,
TD-DOT systems can be used to measure and image larger tissue thickness compared to FD-DOT,
and the information content in the measured temporal point spread function is known to be greater
than in amplitude and phase measurements performed at one frequency using FD-DOT [7].

TD-DOT was developed during early 1990s’, for the first simulation studies see e.g [9],
and for the first 32-channel experimental system see [10]. This first system has been applied
for imaging human forearm movement [11], imaging newborn infant brains [2—4], for optical
mammography [12], and monitoring breast cancer therapy responses [13, 14]. Several other
TD-DOT systems have been developed for imaging tissue-mimicking phantoms [15, 16], for



imaging brain [17-19] and recently for breast imaging [1].

The image reconstruction problem of TD-DOT involves estimating spatially varying optical
parameters, using time-resolved boundary measurements. A few approaches to solve the image
reconstruction problem have been proposed. These include, using the whole time-resolved
measurement data [20,21], and using moments of the time-resolved measurement data. Here, the
moments refer to integral transforms of the measured temporal intensity function, which provides
a description or statistics of the temporal function. The various moments considered in TD-DOT
are, the first temporal moments (or Mellin transforms) [9,22], Laplace transform [23] and the
Mellin-Laplace transform [23,24]. Use of these moments has led to reduction of computation
time and memory requirements, due to compression of the time-resolved measurement data [9].
A comparison of estimation accuracies obtained using different choices of moments, using one
in silico target, was presented in [24]. It was shown that using only one moment was inadequate
to reconstruct both absorption and scattering parameters simultaneously. Specifically, there
were inter-parameter cross-talks, such that the absorption and scattering estimates significantly
affected each other. It was suggested in Ref. [24] that these effects were due to non-uniqueness of
the reconstruction problem similarly as in using intensity data alone [6]. Using a combination of
moments was shown to improve results. As such, earlier in vivo studies [2,3, 11, 17] were carried
out using temporal moments such as Mellin transforms, rather than using the whole time-resolved
data. The authors in Ref. [3] recognized that the use of moments resulted in parameter cross-talks
and thus limited the accuracy of their estimated parameters. A systematic study of the number of
moments required for reasonable quality reconstruction, has not been carried out. Ref [24] also
demonstrated that the choice of the optimal moment depends on the distribution of target optical
properties, which is only partially known in real applications.

Using the whole time-resolved data was shown to be the most accurate method in estimating the
optical parameters, compared to using Mellin transforms or combinations of Mellin transforms,
in Ref. [20]. However, using the whole time-resolved data required around 1100% higher
computation time, compared to using single moments [20].

Apart from the above mentioned moments, a few other data types have been suggested in the
literature, such the integral of time-resolved data over a limited temporal period (time-gating),
peak intensity of the data, logarithmic slope of the temporal decay, etc. [24]. These data types
only partially use the full temporal information measured, and to our knowledge they have not
been studied in detail.

A different approach was proposed by Selb et al. [25], where the TD-DOT sensitivity
matrix was calculated by Fourier transforming the FD-DOT sensitivity matrices obtained at
101 frequencies. This approach was computationally relatively intensive, since 101 sensitivity
matrices corresponding to each Fourier frequency, were required in the estimation. A relatively
faster approach was proposed by Gibson et al. [4], where the measurement data was Fourier
transformed to one particular frequency, to reconstruct optical parameter changes due to brain
activation. The method presented in [4] used difference imaging, by subtracting the brain
activation data with the resting stage data. As we later demonstrate in this work, the method used
in [4] does not account for the finite pulse width of the source, and as such cannot be applied for
absolute imaging of the optical parameters.

In this article we propose an approach for reconstruction of optical parameters in TD-DOT
utilising truncated Fourier-series approximation. The approach is based on exact modelling of
Fourier transformed measurements. It includes modelling of the temporal length of the source
pulses and noise in the Fourier transformed measurements, unlike the previously proposed
methods using Fourier transform [4] or other moments [24]. Furthermore, the methodology
enables choice of frequencies that are used in the solution of the image reconstruction problem.

The paper is organized as follows. We describe the measurement model, reconstruction
methods and simulations in Section 2. The results of the simulations are presented on Section 3.



The conclusions are presented in Section 4.

2. Theory
2.1. Time-domain diffuse optical tomography

In a typical TD-DOT measurement setup near-infrared light is introduced into an object from the
boundary of the object. Let Q@ ¢ RY, where d is the dimension of the medium (= 2,3), model this
object domain. In a diffuse medium like biological tissue, the commonly used light transport
model for TD-DOT is the diffusion approximation (DA) to the radiative transport equation [26,27]
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where ®(r, t) is the photon fluence, u,(r) is the absorption coefficient and w;(r) is the (reduced)
scattering coefficient. Further, c is the speed of light in the medium, parameter Q(r, t) is the
strength of the pulsed (temporal) light source at boundary locations s € 0Q. The parameter
v is a dimension dependent constant (y = 1/7 when Q ¢ R?, y = 1/4 when Q c R?) and «
is a parameter governing the internal reflection at the boundary Q2. The measurable quantity
exitance I'(r, t) is given by
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where £ is the outward normal to the boundary.

In this work, the numerical approximation of the model (1)-(3) is based on a finite element
(FE) approximation, following the framework derived in [28,29]. In the FE-approximation, the
domain Q is divided into N non-overlapping elements joined at N;, vertex nodes. The photon
fluence at time instant ¢, in a finite dimensional basis is given by
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where Q" is a finite dimensional subspace spanned by basis functions ¢y, k = 1...N,, and
or(t),k = 1...N, are the photon density at the N, nodes of the FE mesh. We write finite
dimensional approximations for u,(r) and p{(r)
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where p, 1, 115 denote the absorption and scattering at N, nodes of the FE mesh.
The FE-approximation of the time-domain diffusion equation (1)-(2) is
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where matrices K and M and vector Q(¢) are
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where m and k are the nodal indices. In this work, we use a finite-difference method to integrate
Eq. (6) for a sequence of time steps, t; = iAr (i = 1,2,...)
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where parameter 6 controls the coupling of adjacent time steps. Here, we set 8 = 0.5, which
corresponds to the Crank-Nicholson scheme. A typical TD-DOT measurement setup collects the
time-varying boundary exitance I'(¢), ¢ = 1,...,T, Eq. (3), where T is the temporal range of the
output signal.

In practice, the measured data is corrupted by noise. In the case of additive noise, a discretized
observation model for TD-DOT is

y = Ai(fa, 13) + € (1)

where A; denotes the FE solution of I'(¢), y € RNm js data vector, N,, is the number of
measurements, e € RNm denotes the random noise in measurements, and (i, ) € RN are the
discretized optical coefficients, Eq. (5).

2.2. Truncated Fourier series approximation

Let us consider a delta function (in time) source at the boundary, and denote the corresponding
boundary excitance as I's(f). The truncated Fourier series approximation of the time-resolved
boundary excitance I's(¢) is given by [30],
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where i is the imaginary unit, N, is the number of Fourier frequencies wy = 27k /T involved in
the approximation, I'(wy ) are the Fourier coefficients computed with operator £(-) as
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The temporal range of the point-spread function I'(¢) is [0, T]. For light sources with a finite
temporal length, the measurable output I'(¢) can be expressed as a convolution () of the source
Q(t) and exitance due to delta source I's(¢) as,

[(1) = Ts(1) = Q(1), (14)



implying that taking a Fourier transform results in the pointwise product (-) of their Fourier
transforms (by convolution theorem) as,

LT@) = LTs(1)) - LIQ)). (15)

As such, we can formulate an observation model for a Fourier-transform ygr of a measured
noisy data y
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where Qpr is the Fourier transform of the source pulse and epr is the Fourier transform of the
noise. We can then construct the normalized measurement data
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where the normalized data J, now corresponds to noisy measurements carried out at frequencies
Wk, € = epr/QFr is the random noise, and A,, can be numerically modelled using the frequency-
domain diffusion approximation model [9,31,32] as
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The matrices K, M are defined in Egs. (7),(8), and the source vector Q(wy) is given by
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where Q(r, wy) is an amplitude-modulated source with an angular modulation frequency wy.
In comparison to using the whole time-domain measurement data, which requires matrix
multiplications and divisions at each time step (Eq. (10)), the measurement model (17) requires
only one of these operations at each frequency, thereby reducing the computational requirements
significantly, when only a few Fourier frequencies are used. Also, in contrast to earlier proposed
temporal moments [9,24], the truncated Fourier series approximation model (17) explicitly
models the finite temporal source length and the measurement noise in the transformed data.

2.3. Bayesian approach to the inverse problem of TD-DOT

In the Bayesian approach to inverse problems, all the parameters are considered random variables
and the uncertainty of their values is encoded into probability density models [31-33]. Let us
consider the TD-DOT observation model Eq. (11). The solution of the inverse problem is the
posterior probability density which is obtained through Bayes’ theorem and can be written as
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where 7(y|u,, pf) is the likelihood density and m(u,, yg) is the prior density. The posterior
density m(ua, ¢]y) is a probability density in a very high-dimensional space. Since we aim at
computationally efficient solutions, we compute point estimate(s) from the posterior density,



the most typical choice being the maximum a posteriori (MAP) estimate. Assuming that the
unknowns p, and p} and noise e are mutually independent and Gaussian distributed, i.e

Ha ~ N(#a,*, r,ua)s ﬂ; ~ N(ﬂ;,*’ Fug)’ e~ N(e.T),

where (g 4, ts,+ and e, are the means, and I, , I, and I, are the covariance matrices, the MAP
estimate is obtained as
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where the Cholesky factors are L Ly, =T}, L} Ly =T,' and L{L, =T, ".
When considering the truncated Fourier series approximation based observation model, Eq.
(17), with Gaussian distributed , and pg, and Gaussian distributed noise

é~N(.,T;),
the MAP estimate is obtained as
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where the Cholesky factor LEL(; = Fefl.

In this work, the MAP estimates (21) and (22) were calculated using the Gauss-Newton method
with a positivity constraint and a line search for determining the step length. The calculation of
the Jacobians for the Gauss-Newton algorithm are described in Appendix A. The relative errors,
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where xymap are the MAP estimates and xruge are the target optical parameters, was used to
evaluate the accuracy of the estimation.

2.3.1. Prior model

In this work we use Gaussian Ornstein-Uhlenbeck prior [34]. The covariance matrix of the
Ornstein-Uhlenbeck prior between nodes m and k of a FE-mesh is defined as
el o
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where x denotes the optical coefficients, o the corresponding variances, r,,, ;. are the nodal
locations and [ is the characteristic length scale which controls the spatial range of correlation.
For calculating the MAP estimates, the means (u, «, is,«) Were set as the background optical
parameters, the standard deviations (0',1;,, 0'#;) were set such that maximum target values corre-
sponded to two standard deviations from the background. The characteristic length scale was set
as 16 mm, corresponding approximately to the size of the inhomogenities in the targets used.

3. Simulations

The computations were carried out in a Fujitsu Celcius W550 desktop workstation, with
Intel®Xeon(R) W-2125 CPU @ 4.00GHzx8, using MATLAB (R2017b, Mathworks, Natick,
MA). The Toast++ software [35] was utilized in the FE-solution of the diffusion equation.



3.1. Data generation

In the numerical studies, the domain Q c R? was a circle with a radius of 25mm. The
measurement setup consisted of 16 sources and 16 detectors. The source and detector optodes
were modeled as Gaussian surface patches with 2mm width, located at equi-spaced angular
intervals on the boundary 0Q.

First, we studied a target with background optical properties g, = 0.0lmm~!, x = Imm~!,
containing two absorption inclusions with g, = 0.02mm™', g, = 0.005mm~"! and two scatter
inclusions with g = 2mm~!, g/ = 0.5mm™!, as shown in the first column of Fig. 1.

For the second test, we studied randomly simulated targets. Therefore, 50 separate draws
of optical parameter distributions, from the prior model (24) were used to simulate optical
parameters and to generate data. An example of one sample drawn is shown in the first column
of Fig. 2. These were used to test the performance of the proposed truncated Fourier series
approximation model (17), using multiple Fourier frequencies.

For all simulated targets, the time-resolved data was simulated using FE-approximation of the
DA in a mesh with 33806 nodes and 67098 triangular elements. The time discretization was 0.1
pico-second (ps), the source pulses had 10 ps duration, and the temporal range was specified as
5000 ps. The total number of measurements Ny, were 12800000 (256 combination of sources and
detectors, 50000 time steps). Random measurement noise e, that was drawn from a zero-mean
Gaussian distribution

n(e) = N(0.T.), T, =diag(c?.....00\.) (25)

where the standard deviations o-i |2+ s TeNy, WEre specified as 1% of the simulated noise free
measurement data, was added to the simulated measurement data. In real experiments, more
complicated noise can be expected due to the laser fluctuations, thermal noise, etc. However,
if many measurement noise samples can be obtained, a Gaussian approximation for the noise
model could be sufficient, due to the central limit theorem. Errors due to laser source instabilities
and detector sensitivities can also be calibrated or marginalized in DOT separately, see e.g. [31]
and the references therein.

3.2. Estimation
3.2.1. Using multiple Fourier frequencies

For calculating the MAP estimates with the truncated Fourier series approximation (17), we used
a FE-mesh with 26075 nodes and 51636 elements, and sampling the measurements at 1ps. The
modelling errors due to discretisation and sampling in this case were lower than the additive
measurement error (25), implying that the MAP estimation (22) effectively marginalized the
modelling errors. We studied the estimation accuracies utilizing different number of Fourier
frequencies.

For calculating the MAP estimates (22), the noise means and covariances were assumed known.
Note that the distribution of ¢, given the distribution of e (25) is

n(@) = N(0.Tz), Te =diag([Re(L(07 ... ..00 y DL IM(L(07 .. ... 00 ).

3.2.2. Comparison to reference estimates

We compared the estimates obtained using the truncated Fourier series approximation model
to reference estimates using the whole time-resolved measurement data y, Eq. (11). Due to
computational limitations, a mesh with a lower discretization was used, with 379 nodes and 702
elements. To ensure that these reference estimates were devoid of modelling errors, the same FE
mesh was used to generate the data and calculate MAP estimates (21), and the measurements
were sampled at the same time interval they were generated (at 0.1ps intervals).
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Fig. 1. Absorption (first row) and scattering (second row) distributions. First column:
simulated (true) target. Columns 2-6 from left to right: estimated parameters using one
to five Fourier frequencies (N, = 1,...,5). The numbers below the images indicate the
relative errors of the estimates, Eq. (23).

4. Results
4.1.  Using multiple Fourier frequencies

MAP estimates obtained using multiple Fourier frequencies (N,, = 1, ..., 5) and using the first
target object is displayed in Fig. 1. The MAP estimate using one example target drawn from the
prior model (24) is shown in Fig. 2. The relative errors (23) of these estimates are displayed
below each image.

We observe that the estimates obtained using the proposed truncated Fourier transform model
(17) show minimal parameter cross-talk, and provide estimates with similar contrast to target
objects, unlike previously proposed temporal moments or data types [20,24]. The previously
proposed temporal moments were inadequate to reconstruct both absorption and scattering
parameters, possibly due to non-uniqueness in the image reconstruction problem using only
intensity data [24]. In contrast, the proposed method used both intensity and phase of the Fourier
transformed measurements, which very likely alleviates the non-uniqueness issues. Furthermore,
it can be noticed that the relative errors of the estimates slightly decrease as the number of the
Fourier frequencies increase. However, after three or four frequencies both image quality and
relative errors do not clearly change even if the number of Fourier components is increased.

The computational time of the estimates in Fig. 1 are given in Table 1. We observe an increase
in computation time with increasing number of Fourier frequencies. This is because, as the
number of Fourier frequencies increases, the forward model (18) and Jacobian, needs to be
calculated separately for each Fourier frequency.

The statistics of the estimation errors using 50 targets drawn from the prior (24), using multiple
Fourier frequencies, are shown in Fig. 3. The parameter maps in Figs. 1, 2, and estimation
accuracies in Fig. 3, appear improved on using multiple Fourier frequencies. However, from the
statistics in Fig. 3, we observe that the medians and standard deviations of the estimation errors
don’t change considerably after four Fourier frequencies, especially for the more interesting
absorption parameter (u,).

4.2. Comparison to reference estimates and discussion

The reference MAP estimates obtained using full time-domain data are shown in Fig. 4. The
figure also shows the estimates obtained four Fourier frequencies (N, = 4). The relative errors
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Fig. 2. Absorption (first row) and scattering (second row) distributions. First column:
simulated (true) target. Columns 2-6 from left to right: estimated parameters using one
to five Fourier frequencies (N, = 1,...,5). The numbers below the images indicate the
relative errors of the estimates, Eq. (23).
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Fig. 3. Statistics of estimation errors using 50 targets drawn from the prior, and using multiple
Fourier frequencies. The boxplots represent the distribution of the relative estimation error
in estimated absorption coefficient E;,, (left image) and, scattering coefficient E,;; (right
image), using one to six Fourier frequencies (N, = 1, ..., 6). On each boxplot, the central
red mark indicates the median, and the bottom and top blue edges of the box indicate the
25th and 75th percentiles, respectively. The outliers are plotted individually using the red ’+’
symbol.

Table 1. Computational times t(s), of reference estimates, and estimates with the truncated
Fourier series approximation using N, = 1,...,5.

Reference N,=1 N,=2 Ny,=3 N,=4 N,=5
t(s) 18624 21 18 45 70 92




(23) are given below each image. As it can be seen, the truncated Fourier transform estimate
matches closely to the target optical properties and also to the reference estimate.

The computation time for calculating the reference estimate is given in Table 1. We can see that
the proposed approach utilizing truncated Fourier series approximation (17) used considerable
lower computation time, compared to using the whole measurement data. Even though, for
estimating using the whole measurement data, we used a mesh with much lower discretisation.
As such, the truncated Fourier transform model (17) provides an effective data compression and
reconstruction technique for TD-DOT, allowing estimation of optical parameters, with good
accuracy, using low computational resources.

We observe from the statistics of estimation errors in Fig. 3 and computation times in Table 1,
that the estimation errors do not change considerably after four Fourier frequencies, in comparison
to the loss in computational efficiency. Also, the reconstruction accuracy using four Fourier
frequencies is almost comparable to the reference estimate, presented in Fig. 4. However, it
should be noted that although four frequencies could be optimal in this case, the target optical
properties can be expected to affect on the number of frequencies required.

The temporal point spread function (TPSF) of a data simulated with a target with constant
optical properties and the corresponding power spectrum are shown in Fig. 5. In addition, TPSFs
of a truncated Fourier series approximation of the data approximated using different number
of frequencies are shown. The data was simulated in a two-dimensional circle with a radius
of 25mm, with constant optical parameters g, = 0.0lmm~!, y/ = lmm™'. The source and
measurement locations were on the opposite sides of the domain. We can observe in Fig. 5 that a
few Fourier frequencies are enough to reconstruct the whole point spread function. This is also
reflected in the power spectra shown on the right image, where the spectral energy distribution is
mainly in the first few frequencies. However, it can also be noticed that, although four frequencies
could be used to produce as good quality reconstructions as with the whole time-domain data, it
is not enough to capture the TPSF exactly.

Reconstructions in a 3D geometry are shown in Appendix B. The computation times using the
3D mesh was slightly higher, due to the larger number of mesh nodes and elements. However, the
number of Fourier frequencies required for reasonable reconstructions in this case was also low.

Compared to previously proposed Fourier transform based method in Ref. [4], the proposed
method works independent of source pulse width and models the measurement noise accurately.
For a more detailed comparison, see Appendix C.

Future work will include comparison of the truncated Fourier series approximation method
to previously proposed moments and data types.We will also consider parallelization of the
computations of the forward model and Jacobians of the independent Fourier frequencies.
Furthermore, these methods will be evaluated with experimental TD-DOT data.

5. Conclusions

We have shown the feasibility of the truncated Fourier series approximation in reliable estimation
of spatially varying optical coefficients using TD-DOT. The approach was tested with 2D and
3D simulations, and comparing against a reference estimate using a whole time-domain data.
Further, the estimation accuracy using several Fourier frequencies was also analyzed. The results
show that the proposed approach can recover reliable estimates of optical parameters, using only
few Fourier frequencies (~ 4), using significantly low computational resources. Based on these
results, we suggest that the truncated Fourier series approximation could provide an efficient
modeling protocol in practical TD-DOT imaging situations.
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Fig. 4. Absorption (first row) and scattering (second row) distributions. First column:
simulated (true) target. Second column: reference estimates computed using whole time-
domain data. Third column: estimates computed using four Fourier frequencies. The
numbers below the images indicate the relative errors of the estimates, Eq. (23).
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Fig. 5. Left image: Temporal-point spread function (TPSF) of data (bold grey line) and the
reconstructed TPSFs using 1, 2, 4 and 10 Fourier frequencies (black lines). Right image:
The power spectrum of the data.




Appendix A: Calculation of Jacobian

We present here the FE-based Jacobians for the whole time-domain observation model (11), and
for the truncated Fourier series approximation model (17). For this, we explicitly differentiate the
time-domain FE-approximation (6) with respect to u, and p{. We obtain the following recursive
relations by differentiating Eq. (6),
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h
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where p is either u, or u, matrices K and M are defined as in Eqgs. (7),(8), and g—l]f for u = u,
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Differentiating the FE-approximation for the truncated Fourier series approximation model,
Eq. (18) with u, we obtain
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Appendix B: Reconstructions in a 3D mesh

We generated time-resolved measurement data and carried out truncated Fourier series recon-
structions in 3D. A mesh with 5413 nodes and 24064 elements, shown in Fig. B1 was used
both simulating the data and solving the inverse problem in order to avoid modeling errors
due to discretization. It should however be noted that this can lead to over optimistic results,
and in practice, finer discretizations are required for a 3D problem especially close to the light
sources. The computation times for the truncated Fourier series estimates using this mesh, with
N, = 1,..5 frequencies were 418s, 679s, 770s, 1436s and 1607s respectively.

Appendix C: Comparison to Fourier transform model in Ref. [4]

The model proposed in Ref. [4] can be stated as follows: the Fourier transform of the difference
of two TD-DOT measurements, at a particular frequency, is equal to the difference in frequency
domain measurements at that particular frequency. We compare here our proposed Fourier series
approximation model (17), to the model proposed in Ref. [4], applied in absolute (not difference)
imaging.

Let us consider a modified measurement vector ymoq, using the logarithm of the Fourier
transformed measurement data I'(¢), and assume negligible measurement noise e¢ ~ 0. Following
from Eq. (16), the modified measurement vector ynoq is given by

Relog L(I'(1)) _ Re log(T'(wy)) .\ Relog(L(Q(2)))
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Fig. B1. Left image: The three-dimensional simulation domain with 16 sources (red stars)
and 16 detectors (green stars) located at equi-spaced angular intervals on the waist of the
cylinder. The dimensions shown are in millimeters. Right images: Target absorption and
scattering distributions (top row) along xy-plane (at z=0), xz-plane (at y=0) and yz-plane (at
x=0), and reconstructed distributions using two Fourier coefficients (bottom row) along the
same planes.
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Fig. C1. Absorption (first row) and scattering (second row) distributions. First column:
simulated (true) target. Second column: Estimates computed with the proposed model (17).
Third column: estimates computed using using the modified model where ypjoq,s Was set as
zero. One Fourier frequency (N, = 1) was used in both estimates.

where ymod,s is the modified source Fourier transform. Considering difference imaging, where
the measurements ypoq due to two different optical parameter distributions are subtracted, the
source Fourier transform ywmod,s cancels out. As such, difference imaging with measurements
YMod iS unaffected by the source characteristics, as carried out in Ref. [4]. Nevertheless for
absolute imaging, the source Fourier transform ywjod,s, needs to be included in the model. That is
demonstrated in Fig. C1, where we the reconstruction accuracy of proposed measurement model
(17), is compared to a modified measurement model where ypoq,s Was set as zero.

We observe that ignoring the source Fourier transform, produces artefacts in the reconstructed
parameters, due to incorrect modelling of the 10ps source pulse used in these simulation. TD-DOT
instruments mentioned earlier [2,3, 11, 17], used pulse widths of 4-100ps. Hence, achieving
absolute imaging with these instruments and ignoring the finite size pulse width, could cause



similar artefacts in the estimated images. The results in Sec. 4 also indicate that using a few
frequencies (~ 4) produces better estimates than using one frequency.
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