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Disrupted principal network 
organisation in multiple sclerosis 
relates to disability
Thalis Charalambous   1, Jonathan D. Clayden2, Elizabeth Powell1,3, Ferran Prados   1,4,5,  
Carmen Tur   1, Baris Kanber   1,4, Declan Chard1, Sebastien Ourselin4, 
Claudia A. M. Gandini Wheeler-Kingshott1,6,7, Alan J. Thompson   1 & Ahmed T. Toosy1*

Structural network-based approaches can assess white matter connections revealing topological 
alterations in multiple sclerosis (MS). However, principal network (PN) organisation and its clinical 
relevance in MS has not been explored yet. Here, structural networks were reconstructed from diffusion 
data in 58 relapsing-remitting MS (RRMS), 28 primary progressive MS (PPMS), 36 secondary progressive 
(SPMS) and 51 healthy controls (HCs). Network hubs’ strengths were compared with HCs. Then, PN 
analysis was performed in each clinical subtype. Regression analysis was applied to investigate the 
associations between nodal strength derived from the first and second PNs (PN1 and PN2) in MS, 
with clinical disability. Compared with HCs, MS patients had preserved hub number, but some hubs 
exhibited reduced strength. PN1 comprised 10 hubs in HCs, RRMS and PPMS but did not include the 
right thalamus in SPMS. PN2 comprised 10 hub regions with intra-hemispheric connections in HCs. 
In MS, this subnetwork did not include the right putamen whilst in SPMS the right thalamus was also 
not included. Decreased nodal strength of the right thalamus and putamen from the PNs correlated 
strongly with higher clinical disability. These PN analyses suggest distinct patterns of disruptions in MS 
subtypes which are clinically relevant

Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous 
system (CNS)1. Conventional whole brain magnetic resonance imaging (MRI) measures do not necessarily reflect 
processes of brain reorganisation in pathology and poorly reflect the long-term course of the disease2 meaning 
that additional biomarkers for disease progression and treatment effects are needed.

Structural network analysis provides a framework to study whole brain connectivity patterns and their disrup-
tions, incorporating data beyond focal pathology (i.e. lesions). In this approach, grey matter regions are modelled 
as nodes connected by structural pathways known as edges derived from diffusion data. The pairwise connection 
between nodes can be represented in a connectivity matrix and graph theory is applied to quantify differences in 
connectivity patterns in pathology3.

The application of network-based approaches in MS has shown interesting findings. Previous studies demon-
strated that network measures were different between MS patients and controls4–6 or between clinical profiles7,8. 
Additionally, structural network measures were associated with clinical disability9 and lesion load6 and with cog-
nitive deficits4. Interestingly, structural network metrics explained physical disability and cognitive impairment 
over and above non-network measures8 highlighting the clinical relevance of these studies in MS.

Network-based techniques have the potential to not only allow the quantitative characterisation of global 
connectivity patterns but also to provide a framework to elucidate important topological features. For instance, 
studies have identified the existence of a number of highly connected regions, hubs, and how these are affected in 
MS6. It has also been proposed that hub nodes have the tendency to be more densely connected with each other10 
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and in fact such ‘rich-club’ organisation is affected in MS11,12. Despite these promising results, further work is 
needed to gain deeper understanding of the topological alterations occurring in MS.

Recently, a data-driven framework for structural network decomposition has been proposed which provides 
stable, meaningful and reproducible subnetworks with strong internal connectivity13. Briefly, applying the principal 
component analysis-based technique, the full connectivity matrix is decomposed into partial connectivity matri-
ces through linear decomposition. The derived subnetworks, namely principal networks (PNs) are ranked based 
on their internal connectivity such that the first PN (PN1) is the most interconnected subnetwork13. Decomposing 
the whole network into subnetworks may reveal changes otherwise undetected and understanding how these 
are affected in pathology could provide potential biomarkers to monitor disease progression and treatment  
effects. Applications of PNs in MS are yet to be explored.

The aim of this study was (a) to characterise the PNs in MS and (b) to explore their relationships with motor 
disability and information processing speed impairment in a previously studied cohort8.

Methods
Participants.  This study included 122 MS patients (58 RRMS (40 female, mean age (±SD) 49 ± 12 years), 28 
PPMS (18 female, mean age 46 ± 9 years) and 36 SPMS (28 female, mean age 52 ± 9 years)) and classified based 
on Lublin and Reingold criteria14. Fifty-one HCs (26 female, mean age 41 ± 13 years) not known to have neu-
rological or psychiatric disorder were also examined. Participants underwent MRI assessment and neurological 
assessment using EDSS (Expanded Disability Status Scale)15. Information processing speed capacity was also 
assessed using SDMT (Symbol Digit Modalities Test) in a subset of MS patients (n = 60; eTable 1 Supplemental 
results). Additional information for these patients can be found in the supplemental material. Written informed 
consent was obtained for participation in the study, which was approved by the Institutional Ethics Committee 
of the National Hospital of Neurology and Neurosurgery, University College London Hospital NHS foundation 
trust. All methods were performed in accordance with the relevant guidelines and regulations. Demographics of 
the participants are summarised in Table 1.

MRI data acquisition.  MRI data were acquired using a Philips Achieva 3 T MR scanner (Philips Healthcare, 
Best, Netherlands) using a 32-channel coil. The high angular resolution diffusion imaging (HARDI) scan con-
sisted of a cardiac-gated spin-echo (SE) sequence with echo planar imaging (EPI) readout (resolution = 2 × 2 × 2 
mm3, repetition time (TR) = 24000 ms; echo time (TE) = 68 ms; 61 isotropically distributed diffusion-weighted 
directions, b-value = 1200 s/mm2, 7 b = 0 volumes, field of view 112 × 112, number of slices 72). In each subject, 
the following data were also acquired: (1) T1-weighted images acquired using a 3D fast-field echo scan (resolu-
tion = 1 × 1 × 1 mm3, TR = 6.9 ms, TE = 3.1 ms, inversion time (TI) = 824.5 ms) and (2) dual-echo proton den-
sity/T2-weighted axial oblique scans (resolution = 1 × 1 × 3 mm3, TR = 3500 ms, TE = 19/85 ms, field of view 
240 × 180, number of slices 50). All data were acquired with slices aligned with the anterior commissure (AC) –  
posterior commissure (PC) line to minimise the effect of head positioning on data analysis.

Structural imaging processing.  Subsequent steps for network reconstruction are reported elsewhere8. 
Briefly, a non-rigid transformation was performed to register the subjects’ non-filled T1-weighted bias-field cor-
rected image to the corresponding diffusion-weighting image (DWI) using BrainSuite v.15b16. The target volume 
was the first b = 0 image after DWI pre-processing, resulting in a structural image of resolution 2 × 2 × 2 mm3. 
T2-hyperintense lesions were manually delineated from the PD-T2-weighted scans using JIM (v6.0, Xinapse 
Systems, Aldwincle, UK), non-rigidly transformed to DWI space and then filled the T1-weighted images using a 
modality-agnostic patch-based method. The filled T1-weighted images were then segmented into different tissue 
types and parcellated according to Desikan–Killiany–Tourville atlas protocol using GIF17,18.

HCs (n = 51) MS patients (n = 122) RRMS (n = 58) PPMS (n = 28) SPMS (n = 36) *P values

Demographics

Age, years 41 ± 13 48 ± 11 42 ± 10 52 ± 9 53 ± 7 p < 0.001a

Gender (M/F) 25/26 36/86 18/40 10/18 8/28 p = 0.06b

Disease duration, years — 15 ± 10 11 ± 8 14 ± 7 22 ± 10 p < 0.001a

% (no) patients of DMTs — 58 (67) 84 (48) 13 (3) 47(16) p < 0.001b

LL (ml) — 14.37 ± 15.92 12.78 ± 15.72 16.56 ± 19.83 15.23 ± 12.73 p < 0.001a

Clinical scores

EDSS, median — 5.5 (0–8.5) 2 (0–7) 6 (3–8) 6.5 (4–8.5) p < 0.001a

SDMT 65.08 ± 8.31 45.50 ± 13.27 51.04 ± 14.28 42.86 ± 9.46 39.00 ± 10.88 p < 0.001a

Table 1.  Demographics Of The Study Participants. Abbreviations: HCs = Healthy controls; MS = multiple 
sclerosis; RRMS = relapsing remitting MS; PPMS = primary progressive MS; SPMS = secondary progressive 
MS; DMT = Disease Modifying Treatment; LL = Lesion load; EDSS = Expanded Disability Status Scale; 
SDMT = Symbol Digit Modalities Test; ANOVA = analysis of variance. *P values in bold denote statistical 
significance at p < 0.05; statistical test between the various clinical subtypes and healthy controls where 
applicable. aOne-way ANOVA. bChi Squared test.
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Diffusion-weighted imaging processing and tractogram reconstruction.  The mean b0 obtained 
from the extra 7 b0s was registered to the first b0 of the diffusion data. Then, using the obtained transformation, 
we resampled the extra b0s to the DWI space. We then corrected for eddy current, head motion19 and EPI distor-
tions16. We used second order integration over fibre orientation distributions (iFOD2) estimated with constrained 
spherical deconvolution (CSD)20 for probabilistic tractography. 107 streamlines were generated by implementing 
the anatomically constrained tractography (ACT) algorithm21 followed by spherical-deconvolution informed fil-
tering of tractograms (SIFT2)22. Additionally, by providing a white matter mask during tractogram reconstruc-
tion, as part of the ACT step, we ensured that no streamlines were incorrectly terminated in white matter due to 
the presence of lesions8.

Structural network and principal networks reconstruction.  For the structural brain network, we 
defined as nodes the cortical and subcortical regions, and as edges the sum of the weights of streamlines con-
necting a pair of nodes resulting in a symmetrical network of 115 nodes22. We generated one brain network per 
subject, estimated the mean connectivity matrix for each group and then defined hubs as regions that exhibited 
higher strength (≥ mean + 1 standard deviation (SD))23. Strength is defined as the sum of all edge weights con-
nected to the node.

For PN estimation, we applied PN analysis to the mean connectivity matrix for each clinical profile using the 
default loading threshold of 0.113. Loadings are the normalised eigenvectors of the connectivity matrix. Their 
magnitude corresponds to the influence of each node to the PN and the sign reflects the sense of their connectiv-
ity, relative to the other nodes. This decomposition method is implemented in TractoR (http://www.tractor-mri.
org.uk)24. The derived subnetworks are ranked based on their internal connectivity such that PN1 is the most 
strongly interconnected subnetwork. We focused on PN1 and PN2 as they have the highest and second highest 
internal connectivity.

To estimate PN specific measures, we used PN1 and PN2 defined in HCs as a basis to estimate the connectivity 
matrices for the HCs and MS subtypes. Effectively, we constructed two symmetrical subnetworks with 10 nodes 
each and then estimated the nodal strengths in each subnetwork.

Statistical analysis.  Statistical analysis was performed using R software (https://www.r-project.org/ v3.3.0). 
To explore nodal strength differences between MS patients and HCs we used regression analysis adjusting for 
age, gender, lesion load, disease duration and total intracranial volume (TIV). To evaluate whether the derived 
PNs are clinically relevant we performed a post-hoc analysis on the subnetwork nodal strengths of right putamen 
and right thalamus as they tended to be lost from PN1 and PN2 in MS subtypes. Specifically, multiple regression 
analyses were performed in the whole MS population, in which clinical scores (EDSS or SDMT) were considered, 
in turn, as the dependent variable. As independent variables we included the PN1 or PN2 nodal strengths (sepa-
rately, in different models) together with age, gender, disease duration and lesion load. Because the right putamen 
and thalamus were subcortical regions, deep grey matter volume was also added to the model as a covariate. 
P-values < 0.05 were considered statistically significant. For completion, we also performed an exploratory anal-
ysis by constructing a pairwise univariate association matrix that includes all brain regions belonging to PN1 and 
PN2 and the clinical scores.

Results
Network hubs analysis.  Table 2 shows the identified network hubs for HCs, RRMS, PPMS and SPMS. 
There were 18 network hubs in HCs and MS subtypes indicating preserved hub nodes and number across all 
groups under investigation. We detected significantly reduced strength in some hubs in MS subtypes. The num-
ber of regions with reduced strength increased in more progressive phenotypes. For instance, compared to HCs, 
in RRMS, 6 hub regions showed decreased strength whereas in SPMS 13 out of 18 regions exhibited statistically 
reduced strength. Also, the deep nuclei showed reduced strength in MS subtypes compared to HCs (Table 2; 
p < 0.05). All models were adjusted for age, gender, lesion load, disease duration and TIV.

Principal network analysis.  Figure 1A and Table 3 demonstrate PN1 identified in HCs consisted of 10 
regions that are a subset of the previously defined hubs Table 2. Figure 1A shows that the connectivity of PN1 pre-
dominantly includes inter-hemispheric connections with important intra-hemispheric connections. We used the 
same loading threshold (0.1) to identify PN1 in each MS group. In RRMS and PPMS, PN1 is the same as in HCs, 
whereas in SPMS a loss of the right thalamus was detected (Fig. 1A, Table 3 and eFig. e1 Supplemental Results).

Figure 1B and Table 4 show that PN2 in HCs is comprised of 10 brain regions that are very similar to PN1 
with the exception of the right putamen and left thalamus. Specifically, the right putamen is identified as network 
hub in PN2 while the left thalamus no longer qualifies. Additionally, PN2 is comprised of regions with strong 
intra-hemispheric connections (Fig. 1B). In all MS subtypes, this network did not include the right putamen 
compared to HCs, while in SPMS group there was additional loss of the right thalamus (Fig. 1B and eFig. 2 
Supplemental Results).

Associations between nodal principal network strength and clinical scores in multiple sclerosis 
patients.  We found that lower strengths of the right thalamus in PN1 (p = 0.014), of the right thalamus in 
PN2 (p = 0.007) and of the right putamen in PN2 (p = 0.006) were associated with higher EDSS score across all 
MS patients (Table 5). Additionally, lower strengths of the right thalamus (p = 0.002) and of the right putamen 
(p = 0.002), both in PN2, were associated with worse (lower) SDMT scores in all patients. There was borderline 
evidence of an association between lower nodal PN1 strength of the right thalamus with lower SDMT (p = 0.081) 
also in all patients. All models were adjusted for age, gender, lesion load, disease duration and deep grey matter 
volume.
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Additional post-hoc exploratory analysis that included all brain regions belong to the PN1 and PN2 showed 
that the higher correlation coefficient between clinical scores disability and brain regions is shown in PN1 right 
thalamus, PN2 right thalamus and PN2 right putamen. (eFig. 3; Supplemental Results).

Discussion
In this study, we first characterised the well-studied network hubs, then evaluated the subnetwork topological 
changes that occur in MS subtypes through PN analysis and whether these changes are clinically relevant. This 
technique decomposes the whole network into subnetworks and ranks them based on their internal connectivity13.  
Here, we focused on PN1 and PN2 as these subnetworks include the most interconnected nodes. The study 
findings show that compared to controls, MS patients had preserved hubs in terms of regions and quantities, but 
reduced strength in some hubs. When we studied the subnetworks, we found that deep grey matter connections 
are affected in MS and their nodal strengths are associated with EDSS and SDMT independently.

Structural network hubs.  Within the framework of network science, nodes that are found to have a central 
role in the network are generally referred to as network hubs. In this study, we identified 18 hub nodes, including 
regions from frontal, temporal and parietal lobes and deep grey matter structures. Previous studies using the 
same tractography reconstruction methods showed high overlap of nodes identified as hubs25 despite the usage of 
different parcellation schemes (i.e. Desikan-Killiany vs GIF17,26).

The relevance of network hubs has already been studied in MS. Some nodes exhibited increased strength 
and were hence classified as hubs in MS and not in controls4,6, whilst others showed preserved hub distribution 
in RRMS compared to HCs27. Here, we report relatively preserved hub node and number not only in RRMS but 
also in PPMS and SPMS. When comparing the hubs’ strength between each of MS subtype and HCs we found 
that patients exhibited reduced strength shown in a disease-specific pattern. For instance, in RRMS, a condition 
thought to have less tissue loss than SPMS, reduced strength was detected in a subset of hubs when compared to 
controls whereas in SPMS, which is the condition with a relatively high neurodegenerative component28 reduced 
strength was exhibited in the majority of hubs. A post-hoc analysis showed that reduced strength is associated 
with reduced brain volume (p = 0.034) which further supports our findings.

Principal network organisation.  PN decomposition is a novel technique that allowed us to disentangle 
the different subnetworks based on the brain’s internal connectivity13. The PN approach allows the researcher to 
delineate the networks into subnetworks in a non-mutually exclusive way13. For example, if a brain node is part of 
one PN, it can also be part of another PN if certain criteria are met. This is the case in biology in which it is known 
that a brain area can be part of more than one network i.e. the thalamus serves as a relay region in the visual and 

Brain region HCs (x105) RRMS (x105) PPMS (x105) SPMS (x105)

Frontal lobe

Right precentral gyrus 3.39 (0.21) 3.34 (0.27) 3.27 (0.24) 3.23 (0.23)

Left precentral gyrus 3.53 (0.23) 3.38 (0.28) 3.36 (0.30) 3.34 (0.32)

Right superior frontal gyrus 3.37 (0.18) 3.22 (0.23) 3.11 (0.26) 3.09 (0.25)

Left superior frontal gyrus 3.28 (0.17) 3.20 (0.26) 3.10 (0.03) 3.13 (0.24)

Right middle frontal gyrus 2.88 (0.20) 2.78 (0.25) 2.75 (0.23) 2.58 (0.22)

Left middle frontal gyrus 3.04 (0.19) 2.92 (0.27) 2.77 (0.23) 2.76 (0.22)

Parietal lobe

Right postcentral gyrus 2.25 (0.10) 2.28 (0.16) 2.20 (0.16) 2.16 (0.18)

Left postcentral gyrus 2.32 (0.12) 2.27 (0.14) 2.31 (0.19) 2.32 (0.18)

Right superior parietal lobule 2.26 (0.10) 2.21 (0.13) 2.09 (0.16) 2.08 (0.15)

Left superior parietal lobule 2.01 (0.10) 1.96 (0.12) 1.93 (0.13) 1.85 (0.11)

Right precuneus 2.20 (0.10) 2.14 (0.13) 2.10 (0.16) 1.98 (0.13)

Left precuneus 2.01 (0.10) 1.95 (0.12) 1.94 (0.13) 1.85 (0.12)

Temporal lobe

Right middle temporal gyrus 2.06 (0.10) 1.96 (0.13) 1.89 (0.12) 1.88 (0.12)

Left middle temporal gyrus 1.85 (0.09) 1.78 (0.12) 1.73 (0.10) 1.74 (0.11)

Subcortical grey matter

Right thalamus 2.67 (0.15) 2.32 (0.02) 2.27 (0.19) 2.08 (0.15)

Left thalamus 2.53 (0.15) 2.22 (0.13) 2.23 (0.17) 2.06 (0.14)

Right putamen 2.34 (0.13) 2.13 (0.12) 2.11 (0.02) 2.03 (0.13)

Left putamen 2.20 (0.09) 2.03 (0.11) 2.04 (0.15) 1.94 (0.13)

Table 2.  Network Hubs In Healthy Controls And Multiple Sclerosis Subtypes. Average values and standard 
deviations (SD) of region-specific strength. Bold values represent regions that exhibit significant decrease in 
nodal strength against HCs. The italicized regions are those that belong to the first principal network in healthy 
controls. Abbreviations: HCs = healthy controls; RRMS = relapsing-remitting MS; PPMS = primary progressive 
MS; SPMS = secondary progressive MS. Reproduced from Charalambous44.
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auditory pathways29. The application on HCs demonstrated that hub nodes form specific subnetworks (i.e. PN1 
and PN2) and also there is high overlap of nodes in both subnetworks as assessed qualitatively.

On clinical-radiological grounds (lesion load and EDSS), the progressive MS subtypes (PPMS/SPMS) exhibit 
greater disease burden than the RRMS group although a few RRMS patients have high EDSS due to accrual of 
disability. The SPMS group however showed network differences not apparent in the PPMS group despite similar 
EDSS and lesion load. The SPMS group have reduced PN1/2 size (Fig. 1) and show more nodes with reduced 
strength than PPMS compared to HCs (Table 2). This suggests that there might be subtle differences between 
SPMS and PPMS that manifest after network analysis, but this requires further study with larger cohort numbers. 
Additionally, the right thalamus was not included in SPMS. This is not surprising as there is reduced thalamic 
strength in SPMS compared to HCs (Table 2). Additionally, a further post-hoc analysis showed that smaller deep 

Figure 1.  The first and second principal network in healthy controls and multiple sclerosis subtypes. (A) There 
is a loss of the right thalamus in the first principal network in SPMS. (B) For the second principal network, 
there is a loss of the right putamen connections in all MS subtypes, and an additional loss of the right thalamus 
in SPMS. Intensity of the edges’ colour denotes the strength of the connection. Abbreviations: HCs = healthy 
controls; RRMS = relapsing-remitting MS; PPMS = primary progressive MS; SPMS = secondary progressive 
MS. Reproduced from Charalambous44.

1st principal network nodes

HCs RRMS PPMS SPMS

Frontal lobe

Right precentral gyrus Right precentral gyrus Right precentral gyrus Right precentral gyrus

Left precentral gyrus Left precentral gyrus Left precentral gyrus Left precentral gyrus

Right superior frontal gyrus Right superior frontal gyrus Right superior frontal gyrus Right superior frontal gyrus

Left superior frontal gyrus Left superior frontal gyrus Left superior frontal gyrus Left superior frontal gyrus

Right middle frontal gyrus Right middle frontal gyrus Right middle frontal gyrus Right middle frontal gyrus

Left middle frontal gyrus Left middle frontal gyrus Left middle frontal gyrus Left middle frontal gyrus

Parietal lobe

Right postcentral gyrus Right postcentral gyrus Right postcentral gyrus Right postcentral gyrus

Left postcentral gyrus Left postcentral gyrus Left postcentral gyrus Left postcentral gyrus

Subcortical grey matter

Right Thalamus Proper Right Thalamus Proper Right Thalamus Proper

Left Thalamus Proper Left Thalamus Proper Left Thalamus Proper Left Thalamus Proper

Table 3.  First Principal Network Nodes In Healthy Controls And Multiple Sclerosis Subtypes. Abbreviations: 
HCs = healthy controls; RRMS = relapsing-remitting MS; PPMS = primary progressive MS; SPMS = secondary 
progressive MS. Reproduced from Charalambous44.
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grey matter atrophy is associated with reduced strength of subnetwork nuclei after controlling for age, gender, 
lesion load and total intracranial volume suggesting that tissue atrophy relates to reduced connections towards 
those deep nuclei atrophy. The findings from the hub approach, looking at the strength of individual nodes, and 
PNs approach, studying the hub connections among each other, are mutually supportive and further strength-
ened by this post-hoc analysis. Also, impaired thalamocortical connections are reported elsewhere30 supporting 
our findings and suggesting that our technique is sensitive to such changes. Although several hypothesis have 
been proposed to explain this loss31, the exact mechanisms are yet to be elucidated.

The study findings show that the right deep grey matter regions are involved in MS subtypes. Recent studies 
have shown asymmetrical damage accumulation32–34. Hand dominance has been suggested to be associated with 
higher lesion in the dominant hemisphere35. Unfortunately, due to the lack of such data we could not assess this 
further.

Other brain organisation features that have been studied in neurological disorders including MS, include 
the rich-club organisation and modularity. The former is the tendency of hub nodes to be more interconnected 
amongst themselves10. Disrupted rich-club organisation was reported in Alzheimer’s disease36 while decreased 
strength within the rich-club was reported in clinically isolated syndrome (CIS)11 and in PPMS12. Recently, it has 
been demonstrated that there are nodes common to PNs and to rich-club organisation37, highlighting that there 
is a subset of nodes with specific role in the network independent of the choice of the decomposition method. 
Modularity describes how well a network is divided into modules, which are nodes that are densely intercon-
nected and have sparse connections to other modules. Network modularity has been recently investigated in 
several functional and structural MS network studies attesting to its clinical relevance5,9,38. Mapping out structural 
linkages of nodes and how these are affected in pathology could serve as a framework to identify subtle subnet-
work changes.

Clinical relevance of principal networks.  The PNs are relevant to disability. Previous studies have 
reported that loss of thalamus volume increases the risk of EDSS worsening during follow-up28. Here, we showed 
that the connections of the subnetworks of the thalamus are associated with EDSS beyond volume of deep 
nuclei. Similarly, putamen plays a crucial role in MS as putamen atrophy starts directly after initial symptom 

2nd principal network nodes

HCs RRMS PPMS SPMS

Frontal lobe

Right precentral gyrus Right precentral gyrus Right precentral gyrus Right precentral gyrus

Left precentral gyrus Left precentral gyrus Left precentral gyrus Left precentral gyrus

Right superior frontal gyrus Right superior frontal gyrus Right superior frontal gyrus Right superior frontal gyrus

Left superior frontal gyrus Left superior frontal gyrus Left superior frontal gyrus Left superior frontal gyrus

Right middle frontal gyrus Right middle frontal gyrus Right middle frontal gyrus Right middle frontal gyrus

Left middle frontal gyrus Left middle frontal gyrus Left middle frontal gyrus Left middle frontal gyrus

Parietal lobe

Right postcentral gyrus Right postcentral gyrus Right postcentral gyrus Right postcentral gyrus

Left postcentral gyrus Left postcentral gyrus Left postcentral gyrus Left postcentral gyrus

Subcortical grey matter

Right Thalamus Proper Right Thalamus Proper Right Thalamus Proper

Right Putamen

Table 4.  Second Principal Network Nodes In Healthy Controls And Multiple Sclerosis Subtypes. Abbreviations: 
HCs = Healthy controls; RRMS = relapsing-remitting MS; PPMS = primary progressive MS; SPMS = secondary 
progressive MS; Reproduced from Charalambous44 with permission.

PN1 nodal strength
Regression 
coefficient

Confidence 
intervals P value

PN2 nodal 
strength Regression coefficient

Confidence 
intervals P value

EDSS

Right Thalamus −2.92 × 10−5 −5.25 × 10−5 to 
−0.59 × 10−5 0.014

Right Thalamus −2.76 × 10−5 −4.77 × 10−5 to 
−0.74×10−5 0.007

Right Putamen −4.68 × 10−5 −8.02 × 10−5 to 
−1.35 × 10−5 0.006

SDMT

Right Thalamus 1.78 × 10−3 −2.27 × 10−5 to 
3.79 × 10−3 0.081

Right Thalamus 2.88 × 10−4 1.12 × 10−4 to 
4.64 × 10−4 0.002

Right Putamen 5.05 × 10−4 1.92 × 10−4 to 
8.19 × 10−4 0.002

Table 5.  Multiple Regression Analysis Between Nodal Strengths And Clinical Scores in Multiple Sclerosis 
patients. P values denote statistical significance at p < 0.05. PN = principal network; EDSS = Expanded 
Disability Status Scale; SDMT = Symbol Digit Modalities Test.
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manifestation or even years before and it correlates with EDSS39. In our study, we extended these findings showing 
that subnetwork putamen strength is associated with motor disability beyond deep grey matter volume measures. 
Thus, our results highlight the importance of connection integrity of specific deep nuclei in physical disability 
independently of tissue loss.

The PNs are also relevant to information processing speed performance. The importance of deep grey matter 
volume in cognition is shown elsewhere8,40. The findings presented here highlight that intact connections of 
the second PN thalamus and putamen are important in maintaining information processing speed functioning 
beyond participant’s tissue volume. Pathological features of impaired connections include neuroaxonal damage, 
inflammation and neurodegeneration41. The association between thalamus strength of PN1 was only marginally 
associated with SDMT suggesting that maybe for cognition the PN2 is more sensitive in capturing such changes. 
Future studies could address this.

Limitations and future direction.  There is no consensus as to how network hubs are defined23. Here, we 
used strength which has been used before in MS4. Additionally, the derived PNs do not correspond to previous 
work13. However, this could be due to differences in the tractogram reconstruction in which we used CSD, ACT 
and SIFT2 which alter internal connectivity and hence influence the derived subnetworks which are heavily 
dependent on the underlying connectivity. The effect of tractogram reconstruction techniques and PN analysis 
is beyond the scope of this study. Moreover, in this study we used the latest techniques to address reconstruction 
biases as shown previously8. However, histological validations are imperative to make direct links between imag-
ing and pathology. The reduced number of participants with SDMT scores is discussed elsewhere8. Finally, we 
did not perform multiple comparisons correction. However, this is an exploratory study and we therefore believe 
that it is not appropriate to risk missing any significant associations due to conservative post-hoc analyses. Future 
studies could confirm the findings presented here.

Future studies could also assess if hubs are still connected to the same nodes in MS or if their connectivity 
changes. Additionally, hubs and their connections might be particularly vulnerable to pathogenic factors due 
their central role in the network42, therefore future work could study whether there is a higher probability of 
lesions being present in PNs and/or whether the presence of lesions in the PNs is more detrimental for accumula-
tion of disability. Additionally, both putamen and thalamus have shown the strongest volume changes upon treat-
ment43 and hence it will be interesting to investigate how treatment affects PNs and if such changes are clinically 
relevant. Previous studies have suggested that the first two PNs typically capture the major connectivity features 
of the network, but the threshold is ultimately arbitrary. Investigation of more PNs could be addressed in future 
studies. Finally, longitudinal studies could investigate how the patterns of connectivity change over time and if 
they change in the same way in all MS subtypes.

Conclusion
In conclusion, we report that network hubs are relatively consistent across the various MS subtypes and in HCs. 
Additionally, a subset of network hubs forms specific PNs and specific nodal strengths within these subnetworks 
are associated with clinical disability and information processing speed dysfunction. These results highlight the 
potential utility of subnetwork-based approaches as imaging biomarkers for disease progression and for assessing 
treatment effects.
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