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Abstract

The Internet of Things (IoT) brings internet connectivity to everyday electronic devices (e.g.

security cameras and smart TVs) to improve their functionality and efficiency. However,

serious security and privacy concerns have been raised about the IoT which impact upon

consumer trust and purchasing. Moreover, devices vary considerably in terms of the secu-

rity they provide, and it is difficult for consumers to differentiate between more and less

secure devices. One proposal to address this is for devices to carry a security label to help

consumers navigate the market and know which devices to trust, and to encourage manu-

facturers to improve security. Using a discrete choice experiment, we estimate the potential

impact of such labels on participant’s purchase decision making, along with device function-

ality and price. With the exception of a label that implied weak security, participants were sig-

nificantly more likely to select a device that carried a label than one that did not. While they

were generally willing to pay the most for premium functionality, for two of the labels tested,

they were prepared to pay the same for security and functionality. Qualitative responses

suggested that participants would use a label to inform purchasing decisions, and that the

labels did not generate a false sense of security. Our findings suggest that the use of a secu-

rity label represents a policy option that could influence behaviour and that should be seri-

ously considered.

Introduction

The Internet of Things (IoT) brings internet connectivity to everyday electronic devices, allow-

ing them to collect and share data over networks. In doing so, it promises to improve their

functionality, efficiency, and our interaction with them. IoT devices can range from speakers,

to app-controlled burglar alarms to wearable health monitors to connected cars, and they have

the potential to come together to form smart homes, smart offices and, ultimately, smart cities

[1]. Currently, there is an estimated 6.4 billion connected things online which is expected to

reach 20.8 billion by 2020 [2].
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However, the IoT brings unique challenges with respect to cyber security. This is in part

due to the fact that many are low powered devices with limited processing capacity [3] that are

deployed in uncontrolled environments [4]. Moreover, securing the IoT is a non-trivial task,

given the heterogeneity of devices [1]. However, it is also fair to say that the security of IoT

devices has been a low priority for manufacturers, with the lack of even basic in-built security

features (such as software updates and the use of unique passwords) being well-documented

[5,6]. For example, research has shown that—by taking advantage of hardware or protocol

flaws—attackers can exploit man-in-the-middle attacks to intercept communications from

and to wearable devices to steal personal information, invading user’s privacy and exposing

them to the risk of identity theft [7]. Attackers can also take advantage of the weak authentica-

tion and encryption protocols used in many cameras enabling them to eavesdrop on camera

streams [8], again raising privacy concerns and creating opportunities for crime [9]. Such con-

cerns may impede consumer confidence in, and the uptake of, the benefits the IoT promises to

deliver [4]. Consequently, addressing these concerns is of paramount importance.

While there are many applications of the IoT, in this article, we focus on the consumer IoT.

That is, devices that may be found around the home and purchased and owned by regular citi-

zens. Security and privacy concerns have led to low consumer trust in the IoT with only 9% of

consumers trusting IoT products, although 42% continue to use and recognise the value the

IoT brings [10]. To build consumer trust in the IoT effectively requires the security and privacy

concerns discussed to be addressed, and for consumers to perceive this to be the case [4]. In

this paper, we focus on the use of labelling schemes as a mechanism for encouraging manufac-

turers to improve the security and privacy features of devices and to enhance consumer trust

in the IoT.

Presently, there is little incentive for manufacturers to produce secure products and there

are “information asymmetries” between producers and consumers. These asymmetries are

due to a lack of accessible information about a product’s security which makes it difficult for

consumers and retailers to assess the security of products. For example, recent research

involved a review of the online materials associated with 270 IoT devices to see what consum-

ers could find out about the security of devices prior to their purchase. The authors found that

little information was available to consumers [11]. These asymmetries manifest as risky pur-

chasing decisions that cannot be informed by a consideration of device security. Offenders

can, of course, benefit from this due to the increase in crime opportunities associated with the

proliferation of insecure internet connected devices, and the fact that details of insecure

devices can be found on the dark web. One route to reducing these asymmetries and to

enhance consumer trust is to develop a labelling scheme to inform consumers and retailers

about the security afforded by a device, which can be displayed on the front of packaging, on a

retailers’ website, or communicated through other means.

Policymakers have expressed an interest in the role of labelling schemes to provide consum-

ers with the information necessary to make more informed choices about the security of a

device [12]. Calls for labelling schemes have also been proposed by industry [13] and certifica-

tion bodies [14]. However, the format of these labelling schemes differs across proposals and

fall into three broad types: binary “seals of approval” where products are certified to a security

standard; “informational” labels that would communicate important information around

security/privacy across a series of dimensions; and, graded schemes that would measure the

security of a device across a continuum–graded schemes are often colour, letter or star coded

to further aid their interpretation. However, what is not understood is what type of labelling

scheme may have the biggest impact on consumer behaviour in the context of IoT security.

Another identified gap is that we lack an understanding of how consumers value security

alongside other attributes of IoT products (such as their functionality) and how much they
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would be willing to pay for a secure product. We aim to address these research gaps in the cur-

rent study by examining how labels that demonstrate a device’s security posture might affect

choice and willingness to pay for a range of internet connected devices.

Labelling schemes are a popular policy choice for informing consumer decision making.

However, their shaping of consumer behaviour at the point of sale is limited by a number of

factors including time pressure, comprehension difficulties and competing priorities (such as

functionality, price and promotions) [15]. As consumers have a limited cognitive budget to

expend at the point of purchase, choosing the most optimal design of a labelling scheme is nec-

essary to nudge consumers effectively. Research has evaluated the effectiveness of existing

labelling schemes in food and energy sectors to evaluate the three types of label [16]. This sug-

gests that informational labels are the least understood, particularly for individuals of lower

socio-economic status. Seal of approval labels, although preferred by consumers for their sim-

plicity, are associated with unintended consequences such as dichotomous thinking (e.g.

wrongly assuming that a product with a label is better than one without) and halo effects (e.g. a

false sense of security). Finally, graded schemes have been shown to have a greater impact on

consumer behaviour because they invoke the affect heuristic, a mental shortcut people often

use when making decisions. For example, the green to red colours, or A to F grades that are

commonly used for such labels are scales that people are regularly exposed to, and their famil-

iarity strongly influences people’s behaviour in the presence of lots of information. Although

the effectiveness of a labelling schemes is dependent upon its regulatory underpinnings and

whether its presence is mandatory, there is currently no published research that assesses the

impact of a security label for internet connected products. The current study seeks to explore

labelling formats within this context. Ultimately, an effective label is one that helps consumers

distinguish between a secure and less secure product, instils feelings of trust, and does not

cause comprehension difficulties for different demographics and is easy to understand.

Willingness to pay (WTP) is the maximum amount a consumer will pay for a product [17].

WTP is useful for understanding consumer demand and can be used to inform tactical pricing

and the development of new products (and services). Presently, not all manufacturers ship IoT

products with security built-in, and those that do often leave security concerns until the final

stages of product development [18]. Although not explicitly tested, there is an assumption that

consumers are not willing to pay for greater security in IoT products [19]. Assessing WTP

would thus allow us to estimate the highest price a consumer would pay for a product with

greater inbuilt security. Previous research has shown that consumers are willing to pay for

more online security measures to protect their home computers [20,21]. However, in the IoT

context, consumers’ mental models of risk and IoT devices may differ as these once everyday

objects, such as thermostats and watches, were not conventionally susceptible to online risks.

Moreover, research has shown that WTP judgements are context sensitive [22]. As such,

consumers may be willing to pay more for certain classes of devices, such as those that are

linked to physical security (such as security cameras) or to safety critical services (such as

thermostats).

It is possible that cybersecurity concerns and behaviours vary with age. However, previous

research paints a contradictory picture of the link between age and cybersecurity. Some studies

suggest that young people are more vulnerable to cyber threats [23,24] and disclose more per-

sonal information online than others [25,26]. Other work suggests that while children engage

more online, they have greater security concerns than older people [27,28] and balance their

personal disclosure on social media with their privacy needs [29].

Older adults, on the other hand, have been found to be more privacy-aware [30] but less

willing to adopt some cybersecurity practices such as the use of PINs or biometric authentica-

tion [31], and also engage in less privacy protective behaviours on social media sites [32]. In
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the context of the purchasing of secure computing products, there is no research on the effects

of age but research on consumer buying behaviour suggests that, due to reduced cognitive abil-

ity, older adults may rely more on heuristics in their purchasing decision making [33]. Work

on food labels has found that older adults struggle to interpret information accurately [34] but

other studies have found no effect of age on labelling interpretation [35]. As such, it is unclear

whether age can be expected to play a role in the degree to which a person responds to the

presence of a label.

When consumers are asked about the IoT, security and privacy concerns are repeatedly ref-

erenced as a key barrier to adoption [10,36] yet many consumers will not disconnect due to

the affordances the technology brings [10]. This is the classic “privacy paradox” in which peo-

ple report having privacy concerns but often do little to protect their privacy [37]. With the

IoT, this is in part due to these protective actions being unachievable for the majority of con-

sumers [38] and there being no clear mechanism for them to protect themselves at the point of

purchase (e.g. a labelling scheme that would assist in purchasing decisions [39]). Another issue

is that intention only accounts for 1/3 of actual behaviour [40]. People who have greater con-

cerns may be more susceptible to the influence of a labelling scheme than those who have

lesser concerns. However, this paradox makes testing this relationship difficult [37]. Whilst

concerns are important, behaviours are the actions that consumers engage in to protect them-

selves from cyber threats. A more effective alternative is to therefore use a behavioural measure

[41] and to explore whether those who engage in more protective cybersecurity behaviours are

influenced more by a labelling scheme than those who do not. Consequently, we seek to

explore whether those who engage in greater cybersecurity behaviours are influenced more by

an IoT security label.

The overall aim of the current study is to assess the effectiveness of three different labelling

schemes (Graded, “Seal of approval” and informational) in nudging consumers towards

“secure” products and away from products that offer no assurances around security. The

extent to which WTP is influenced by current security behaviour, as well as the age and gender

of participants, and their self-reported security behaviour is also investigated. The study thus

addresses the following two main research questions:

1. What (if any) labelling scheme has the biggest impact on consumers purchasing decisions?

2. How much are consumers WTP for the security of domestic IoT devices?

To address the research questions, we use a discrete-choice experiment (DCE). DCEs are a

systematic method for eliciting trade-offs to quantify the relative importance that consumers

assign to various product attributes (such as functionality and price). Currently, we cannot

estimate consumer’s actual preferences around IoT purchasing as these data do not exist. Fur-

thermore, there is no current implementation of an IoT labelling scheme on the market and so

we need to assess their utility in a hypothetical situation by exploring consumers stated pur-

chasing preferences. In a DCE study, participants are provided with purchasing options for

which product attributes vary and asked to choose their preferred option from two or more

alternatives. In the current study, these attributes were the functionality of the product, prod-

uct price and the presence or absence of an IoT security label. The premise is that with each

choice people make, they will seek to maximise their utility (i.e. pick choices that yield the

greatest satisfaction for them). Alternatives are described by varying levels of key product attri-

butes which represent factors included in a “utility function”. For example, in a hypothetical

DCE examining two levels of both functionality (standard or premium) and price (£100 or

£130), a potential choice set presented might be a standard product priced at £100 versus a pre-

mium product priced at £130. Participant’s choices are assumed to be dependent on the levels

IoT and security labelling
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of the attributes and the relative value that they place on each one. By presenting participants

with multiple scenarios with differing levels of attributes, and asking them to choose one,

DCEs are used to generate data that–through statistical analysis–are used to estimate which

attributes drive consumer preferences and the trade-offs they make between attributes.

What consumers are willing to pay for a particular good or service can also be estimated

using a DCE design when price is included as an attribute. In doing so, one can estimate the

marginal WTP for the tested attributes, as well as a total WTP for all attribute levels [42]. A

DCE design provides richer information than other methods for eliciting WTP as it accounts

for how individual attributes affect utility [43]. In assessing WTP, we can estimate (for exam-

ple) how much people are willing to pay for a product that provides security assurances via a

labelling scheme, and do so without asking them about this directly.

In addition to the above research questions, a potential concern with the use of a labelling

scheme is that consumers may develop a false sense of security, believing that a device that car-

ries it is immune from hacking. Since no device can be immune from attack, a potential unin-

tended consequence of such a label is that consumers will not take relevant precautions to

protect themselves from online risks or will not trust the label if they discover that devices

which carry it have been compromised. The third research question addressed here is thus:

3. To what extent do consumers perceive that a device that carries a security label would be
resistant to hacking?

We examine this question, and gauge participant’s perceptions of the different labels, using

a simple survey administered alongside the DCE. As such, in this paper, we make the following

contributions:

• (Alongside functionality and price) we examine the effect of three different labelling schemes

(informational, binary and graded) on consumer (hypothetical) purchasing decisions, test-

ing variations of two of them.

• We test the hypothesis that those who already engage in more online security behaviours

(estimated using a behavioural measure) will be more influenced by security labels.

• We test whether the effect of the labels interacts with age or gender.

• We estimate consumer WTP for products that provide assurances about security.

• We explore consumer perceptions of the labelling schemes, including their ease of interpre-

tation, whether consumers would use them to guide purchasing decisions, and if they gener-

ate a false sense of security.

Materials and methods

Design

This study adopts a stated preference approach to understand consumer purchasing behaviour

to estimate the influence of three attributes: labelling, functionality and price. This design was

replicated across four types of devices (security camera, Smart TV, smart thermostat, and a

wearable)—chosen to represent a mixture of high and low-cost devices that have differing lev-

els of safety criticalness -, and seven labelling conditions (discussed below).

Table 1 provides a summary of the devices and their characteristics. The first two factors

had two levels–presence or absence in the case of the label (for more detail, see below), and

standard or premium in the case of functionality. Product functionality was based on a qualita-

tive analysis of IoT devices sold on the websites of three UK retailers (Amazon, PC World and

IoT and security labelling
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John Lewis). For each of the four devices, the most frequently mentioned functions were iden-

tified and those that commonly recurred were defined as “standard”, while those that differen-

tiated products were classified as premium (see Table 1). For price, there were five levels:

baseline, 10%, 20%, 30% and 40% more expensive. The baseline price was equal to the average

of the sampled devices from the retailers described above.

Types of labelling. The labelling formats were chosen based on three general types that

have been proposed by industry, government and academia, as follows:

1) A graded label: This was based on the labeling scheme used to convey information

about energy consumption for electronic goods. This scheme rates the energy efficiency of a

product from A to G, with A being most and G being the least efficient. These markers are

paired with a colour cue to indicate performance, with greener products (e.g. A) indicative of

greater performance than red (e.g. F). Here, we used an A-G grading and green to red colour

coding—to indicate more or less “secure” devices—as these are known to influence consumer

behaviour through the affect heuristic (for a recent review, see [16]. As shown in Fig 1, in the

current study, we assessed three implementations of this label (Grade A, Grade D and Grade

G).

Table 1. Study attributes in choice sets and levels.

Attribute Level Security Camera Smart TV Smart Thermostat Wearable

Functionality Standard Recording Quality: 1080p

HD,

Night vision: Yes,

Sound/movement

detection: No

Display resolution: Full HD

1080p,

Freeview HD: Yes,

Streaming: No

Touch screen

interface: No,

Auto-schedule: Yes,

Hot water tank

control: No

Smartphone notifications: No,

Health and fitness tracking with heart rate

monitor and GPS: Yes,

Battery life: 3 days

Premium Recording Quality: 4k,

Night vision: Yes,

Sound/movement

detection: Yes

Display resolution: 4K Ultra

HD,

Freeview HD: Yes

Streaming: Yes (Inc. Netflix,

YouTube)

Touch screen

interface: Yes,

Auto-schedule: Yes,

Hot water tank

control: Yes

Smartphone notifications: Yes,

Health and fitness tracking with heart rate

monitor and GPS: Yes,

Battery life: 7 days

Label Present - - - -

No label

present

- - - -

Price 1 £99.99 £350.99 £159.99 £69.99

2 £109.99 £385.99 £175.99 £76.99

3 £119.99 £420.99 £191.99 £83.99

4 £129.99 £455.99 £207.99 £90.99

5 £139.99 £490.00 £223.99 £97.99

https://doi.org/10.1371/journal.pone.0227800.t001

Fig 1. Graded label.

https://doi.org/10.1371/journal.pone.0227800.g001
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2) “Seal of approval” label: To examine the effect of a binary “seal of approval” label, we

chose to use an existing labelling scheme (see, https://www.securedbydesign.com) that has

been used for physical security and has been shown to be effective in driving market changes

in the physical security arena. As the label is binary, we needed to only assess one implementa-

tion of this label.

3) Informational label: We chose to emphasise three key dimensions of this type of label

(see Fig 2). These were the device’s internet connectedness, security support period and

whether information is shared with third parties. The first two dimensions were based on label

content as outlined by the UK Government Department for Digital, Culture, Media and Sport

[5]. The third dimension was rated as a priority by participants in a previous study and is a

consistent privacy concern for consumers [44]. Given the interpretive nature of the dimen-

sions, we chose to assess three implementations of this label. An “information label for a device
with good features” which had a long support period (until December 2022) and did not share

personal information with third parties. An “information label for a device with bad features”
which had a shorter support period (until December 2019) and did share personal information

with third parties. As these are proximate indicators of security, as a third implementation, we

also explored an information label with a security icon–“information label for a device with
good features and security icon”.

In total, then, there were seven labelling conditions, and the labelling condition was a

between-subjects factor.

Choice sets. For every device type, we constructed choice sets for each participant. For

each choice, which was intended to represent a purchasing decision, participants were asked

to select from one of four options. Three of these described the features of a device (i.e.

whether it had a label, the level of functionality and its price) while the fourth was an “opt out”

that allowed participants to choose none of the options. For each option, there were 20 possible

combinations of the three factors—2 (label or not) x 2 (standard or premium functionality) x 5

(price levels). As there were three options for each choice, this produces a total of (20x19x18/6

=) 1,140 possible (device) combinations for consumers to contrast, which is clearly too many.

To make the number of combinations tested feasible, we sample from all those possible using

the D-efficient design algorithm in STATA13SE, and generated 10 choice sets per device. Par-

ticipants were asked to complete the choice sets for two devices and were always allocated to

the same labelling condition.

Sample size estimation. The minimum sample size required to minimise the risk of Type

II statistical error (not detecting an effect where one exists) was computed using the equation

Fig 2. Informational labels (images are similar but not identical to those used in the study and are therefore for

illustrative purposes only).

https://doi.org/10.1371/journal.pone.0227800.g002
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presented in [45]. According to these calculations, a minimum of 83 participants were

required per condition. However, a review of the literature revealed that most DCEs employ

sample sizes in the range of 100–300 [46] and, prior to testing it is difficult to estimate how

many participants will select the “opt out” choice—which reduces statistical power. Rather

than risk having an underpowered design, we aimed for a sample size of around 200 per condi-

tion. As a further precaution, we ran Monte Carlo simulations to generate synthetic data to

confirm that coefficients could be correctly estimated using the D-efficient design and a range

of sample sizes, including that selected.

Pilot study. Prior to conducting the main study, a pilot study was completed and the

design adjusted in the following ways: 1) In the pilot study, participants were provided with

two alternatives for each choice set (plus the “opt out” option). As discussed above, we

increased this to three choices (plus the “opt out”) in the final study. This was to make the task

more realistic and to make it less obvious that the study concerned the impact of the security

label on consumer choice. That is, with three options, for some choice sets, participants would

see two products with a label (and one without), but for others they would see only one with a

label (and two without). This contrasts with the pilot study design for which participants were

always asked to choose between one device with and one without a security label; 2) In the

pilot study the four products tested included a baby monitor. However, because not all those

who participated in the study would be parents, we decided that it would be sensible to exclude

this device from the main study (and replace it with a Smart TV); and, 3) As stated preference

studies ask participants about hypothetical scenarios, there is a risk that those who participate

will overstate their willingness to pay for a particular good or service (Loomis, 2014). This risk

is of particular concern for contingent valuation studies—for which participants are directly

asked how much they would be willing to pay for a good or service—but we wanted to mini-

mize this risk here too. To do so, we employed a cheap talk intervention, which is used to

explicitly advise participants of the potential for this type of hypothetical bias with the aim of

reducing it [47].

Security behaviour. To estimate participant’s existing security behaviour we used the

16-item Security Behaviour Intentions Scale (SeBIS) [48], which consists of four subscales

(attitudes towards choosing passwords, device securement, staying up-to-date, and proactive

awareness). Items were measured on a five-point scale of 1 (never) to 5 (always), and the full

scale had a reliability of α = 0.79 and its sub-scales: attitudes towards choosing passwords α =

0.71, device securement α = 0.65, staying up-to-date α = 0.68, and proactive awareness α =

0.63.

Participants. In total, 3000 UK adults, recruited through the online panel prolific.ac, took

part in the study. Eighty-two participants were removed for failing attention checks (see

below). Participants were paid £1.00 to take part and to be eligible for participation, they had

to be aged 18 or above and live in the UK. Table 2 provides descriptive statistics for the sample.

Procedure. The study received ethical approval from the Department of Security and

Crime science at University College London. The study was hosted online at Qualtrics.com

which was accessible via the recruitment platform. Participants were instructed to complete

the survey via a desktop or laptop computer to allow the choice sets to display correctly across

the screen. Participants were told that the study was about people’s decision making during

the purchasing of internet connected products, what the study involved, that their data would

be stored confidentially and that they had a right to withdraw at any time. Subsequently, they

were asked to tick a box to indicate their consent to take part in the study. Participants were

then randomly allocated to one of the seven labelling conditions and to two of the four IoT

products. They were instructed to act as though they were thinking of purchasing the product

and to make choices that they would in real life. They were provided with a brief explanation

IoT and security labelling
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of the labelling condition they were allocated to but were not informed that the study was

explicitly intended to assess the impact of it. They were also presented with a “cheap talk”

script in which we explained the hypothetical bias to participants so as to reduce the probabil-

ity that it would influence their choices [49]. Participants were presented with 20 choice sets in

total (10 per product) and asked to choose between three product alternatives, or an opt out

[50].

Upon completion of the choice sets, participants answered questions about their percep-

tions of the labelling scheme. First, using a seven-point rating scale (strongly agree to strongly

disagree), they were asked to indicate whether they agreed or disagreed with the following

statements: 1) that products which displayed the label used would protect them from online

threats (such as hacking); 2) that the security label was appealing; 3) that the label was easy to

understand; 4) that there was too much content to the label; 5) that they would use that type of

Table 2. Participant demographics.

Participant characteristic

Gender Total (%)

Male 1007 (35%)

Female 1898 (65%)

Prefer not to say 13 (.4%)

Age Mean = 37.15 (SD = 12.68)

18–24 491 (17%)

25–34 946 (32%)

35–44 665 (23%)

45–54 491 (17%)

55–64 247 (8%)

65+ 78 (3%)

Education

No formal qualifications 20 (1%)

Secondary Education (GCSE/O-Levels) 358 (12%)

Post-Secondary Education (College, A-Levels, NVQ3 or below, or similar) 638 (22%)

Vocational Qualification (Diploma, Certificate, BTEC, NVQ 4 and above, or similar) 318 (11%)

Undergraduate Degree (BA, BSc etc.) 1068 (37%)

Post-graduate Degree (MA, MSc etc.) 448 (15%)

Doctorate (PhD, MD) 68 (2%)

Household income

Less than £10,000 216 (7%)

£10,000 - £15,999 265 (9%)

£16,000 - £19,999 224 (8%)

£20,000 - £29,999 526 (18%)

£30,000 - £39,999 467 (16%)

£40,000 - £49,999 360 (12%)

£50,000 - £59,999 214 (7%)

£60,000 - £69,999 145 (5%)

£70,000 - £79,999 100 (3%)

£80,000 - £89,999 49 (2%)

£90,000 - £99,999 36 (1%)

£100,000 - £149,999 46 (2%)

More than £150,000 22 (1%)

Rather not say 247 (8%)

https://doi.org/10.1371/journal.pone.0227800.t002
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label to help them when buying a product; and, 6) that the label would make it easy to compare

products. Second, they were asked an open question about whether there was anything that

they would change about the label. And, third, as we were interested in whether particular

label designs might convey a false sense of security, we asked participants to indicate (on an

eleven-point scale with 10% increments from 0–100%) the likelihood that a device carrying the

label concerned would be vulnerable to hacking.

Finally, participants completed the SeBIS scale, a series of questions about themselves

(demographics and whether they already owned IoT devices) and were debriefed about the

study. In addition to the above, we included four attention checks to ensure that participants

were adequately paying attention throughout the study. Two of these were presented after the

instructions regarding the labelling content, and asked participants to select a correct explana-

tion of what the label meant. The final two checks were presented in the final section of the

study.

Before presenting the results, for the benefit of the reader, Table 3 provides a list of acro-

nyms and terms used throughout the paper, along with a brief description of what they mean.

Results

Effect of labels on stated preferences

To examine the influence of the labelling schemes on choice, the data were analysed using a

mixed logit model. Similar to the conditional logit model commonly used in DCEs, the aim is

to simultaneously estimate the influence of a range of factors (here, functionality, the presence

and absence of a label, and price) on participant’s decision making. For both models it is

assumed that a decision maker will select from a set of alternatives that for which they derive

the most utility. That is, for a decision maker n who must make a choice i from j alternatives

on t occasions, we assume that the utility Unit > Unjt for all i 6¼ j. For both models, utility is

modelled as in Eq 1:

Unit ¼ Vnit þ εnit ð1Þ

Where Vnit is the utility associated with a systematic set of preferences (to be estimated), and

εnit is the utility gained from unobserved personal preferences and the idiosyncrasies of each

participant.

While the conditional and mixed logit models are theoretically similar, they differ in (at

least) three important ways. First, while the conditional logit model assumes that there is a sin-

gle “fixed” effect for each variable, the mixed logit model assumes that there will be variability

Table 3. Table of acronyms and terms.

Term Definition

IoT Internet of Things: Internet connected devices that can collect and share data over networks

WTP Willingness to Pay: Maximum amount consumers are willing to pay for a product

DCE Discrete Choice Experiment: method for estimating people’s preferences for particular

attributes of a product experimentally

DCMS UK Government Department for Digital, Culture, Media and Sport

SeBIS scale Security Behaviour Intentions Scale used to measure participants existing security behaviour

SbD Secure by Design (binary) seal of approval label

Graded label Security is measured across a continuum but the result is simplified using a small number of

“grades” (e.g. A to F)

Informational

label

Communicates important information about a number of dimensions of security (e.g. for how

long security updates will be provided)

https://doi.org/10.1371/journal.pone.0227800.t003
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in the extent to which factors matter across participants and models this explicitly. Second, for

the conditional logit to be valid, a number of assumptions—such as the independence of irrele-

vant alternatives (IIA, [51])—must be met. Such assumptions are commonly violated but the

mixed logit relaxes these requirements, making it a more robust approach. And, third, unlike

other logit models, the mixed logit cannot be solved analytically and must instead be estimated

using maximum simulated likelihood (MSL) or other methods [52].

For the models tested, we estimate the effects of the presence or absence of a label, and vari-

ation in functionality and price. Price was modelled as a continuous linear function, while the

label and functionality variables were modelled as binary variables (see Table 1).

WTP estimates were derived from the output of this model, and the approach taken to do

this is discussed below. It is important to note that with the mixed logit model it is necessary to

specify for which variables preferences might be expected to vary across participants. One

approach is to assume that preferences will differ across participants for all variables. However,

as part of our aim was to estimate WTP, it was necessary to estimate only a fixed effect for the

price variable for that analysis, and hence for consistency we model price as a fixed effect in all

analyses. We note, however, that doing so does not materially affect the results. A final point to

note is that for MSL methods it is necessary to specify the number of Halton draws used for

the simulation. Here, we use 500 Halton draws for all models as a sample of analyses suggested

that the parameter estimates remained stable for 500 or more Halton draws. All analyses were

conducted in STATA13SE.

In terms of presentation, we report the model (partial) coefficients—which estimate the rel-

ative importance of each factor—as odds ratios (ORs). These are multiplicative and show how

much more likely a participant was to select a device in the presence of a label, or if a device

had premium functionality, or for a one-unit change in price. With the exception of price,

these effects are, of course, measured relative to a reference group. In the case of the security

label, the reference group would be the same device without a label, while for premium func-

tionality, the reference group would be the same device with standard functionality (see

Table 1). In terms of interpretation, an OR of one indicates that a participant was no more

likely to select a device with or without the feature of interest. ORs above one indicate that a

participant would be that much more likely to select the device with the feature of interest,

while those below one show how less likely a participant would be to select a device with a par-

ticular feature.

Analyses were conducted separately for each device and all label conditions. For parsimony,

and to aid interpretation, we present the findings as a forest plot. Fig 3 shows the main effects

of the variables discussed above. In each case, it is apparent that—all else equal—participants

preferred devices that cost less. That is, the odds ratio for the price variable was always below

one and always statistically significant (Mean OR = 0.95). However, as we will see below, par-

ticipants were prepared to pay more for improved functionality and security.

Functionality clearly had a large influence on consumer choice. The unweighted mean OR

of 11.8 (computed across all devices and all conditions), for example, suggests that relative to a

device with basic functionality, participants were (on average) about 12 times more likely to

select a device with a premium specification. The influence of functionality was significant for

all devices but lower for thermostats than the other devices. The effect of functionality was also

relatively stable across labelling conditions.

With respect to the effect of labels, this varied across conditions. With respect to the Graded

labels, it is clear that participants were, on average, more likely to select a device with a graded

A label (unweighted mean OR = 3.56), or one with a graded D label (unweighted mean

OR = 2.22). However, they were less likely to select a device with a graded G label (unweighted

mean OR = 0.84) than they were one without it—though this effect was only statistically
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significant for security cameras (p<0.01) and marginally so for wearables (p<0.10). In terms

of the informational labels, participants were, on average, more likely to select a device that

carried such a label than one that did not. Of the three labels, they were least likely to select a

device with a short support period and that shared data with third parties (labelled info label-,
unweighted mean OR = 2.09). Relative to the latter, they were, on average, just under two-and-

a-half times as likely to select devices for which there was a long support period and data was

not shared with third parties (labelled info label+, unweighted mean OR = 5.21), and were (on

average) slightly more likely to select a device that additionally included a security icon

(labelled info label++, unweighted mean OR = 5.46). The binary Secure by Design label also

had a positive effect for all devices (unweighted mean OR = 3.09), but the effect was weaker

than that for the information labels. On the basis of these results, the informational label for

devices with the best security and privacy features (Info Label++) had the greatest effect on

participants stated preferences. This was followed by the Info Label+, and then the Graded A

and SbD labels.

Interestingly, while the effect of functionality was generally larger than that of the security

labels, for the informational labels, the confidence intervals for these two variables generally

overlapped, suggesting that the influence of these two factors were approximately equal. The

Fig 3. Odds ratios of the effects of labels, functionality and price on participant choice. NOTE: vertical bars show

the 95% confidence intervals. Data are presented on a logarithmic scale for presentational purposes.

https://doi.org/10.1371/journal.pone.0227800.g003
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exception was for Smart TVs, for which functionality appeared to have a consistently larger

influence.

In addition to computing models to estimate the main effects of the variables we manipu-

lated experimentally (price, label, and functionality), we examined the statistical interaction

between our main variable of interest—the security label—and age, gender and self-reported

security behaviour (measured using the mean score on the SeBIS scale). Across the 28 models

(4 devices x 7 label conditions), almost all of the interaction terms were non-significant and

there was no systematic pattern to the results (see S1–S4 Tables). As such, we discuss these

analyses no further and estimate WTP using the model of main effects.

Willingness to pay

It is well established that WTP can be estimated using results derived from a discrete choice

modelling framework [53]. In this context, WTP for improvement in a certain attribute (e.g.

functionality, security of IoT product) can be obtained as the ratio of the coefficient for that

attribute and the overall cost coefficient. However, different approaches can be taken to esti-

mate the standard error of the estimates. Here, we use the Delta method—implemented in

STATA13SE—which is known [53] to produce precise estimates when the model is computed

using a large sample, as is the case in this study.

Fig 4 shows participants’ WTP for the IoT devices tested for each labelling scheme and for

premium functionality. As expected, respondents were willing to pay more for devices with

higher specifications. Specifically, they were willing to pay, on average, an additional £48

(SD = 6.5), £148 (SD = 8.0), £34 (SD = 6.0) and £57 (SD = 6.3) for better functioning security

cameras, Smart TVs, wearables and thermostats, respectively. This is between 29–40% of the

average cost of the devices tested.

With the exception of the Graded G label, participants were also willing to pay more for

devices that carried a security label. Relative to a device without a label, participants expected

to pay between £3-£12 less for devices that carried the Graded G label. For two of the informa-

tional labels, and with the exception of Smart TVs, participants choices suggested that they

would be willing to pay approximately the same additional cost for a device that carried a secu-

rity label as they would for a premium device. In all other cases, participants were willing to

pay between 27–63% (mean 40%) of what they were willing to pay for additional functionality.

Consumer preferences towards labelling options. After participants had completed the

discrete choice experiment, they were asked a series of questions about the labelling option

they were exposed to. For each item (with the exception of question 7), they were asked to rate

the extent to which they agreed with the statement on a scale from 1 (strongly disagree) to 7

(strongly agree).

As shown in Table 4, perceptions of how the label would protect consumers was higher for

the Graded A, followed by the SbD and Informational label with security assurances. For the

Graded and Informational labels, the trends for the degree to which participants perceived

that a device would protect them were in the expected directions (i.e. highest for Graded A

and lowest for Graded G).

Most of the labels were considered fairly easy to understand, most were perceived to be at

least somewhat appealing, and none were considered to contain too much information. Any

differences observed were small. Participants generally thought that each of the labels would

assist their purchasing decisions and make it easy to compare products, although the binary

(SbD) label seemed to be perceived as slightly less useful in these respects.

In terms of the risk of hacking, participant’s expectations of risk were clearly correlated

with the type of label. For example, participants estimated that a device carrying a Grade A
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Fig 4. Participants willingness to pay (WTP) for different IoT labelling schemes and functionality. NOTE: vertical

bars show the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0227800.g004

Table 4. Mean scores (and standard deviations) for participant’s preferences around labelling.

Graded A label

(n = 387)

Graded D Label

(n = 389)

Graded G label

(n = 426)

SbD

(n = 437)

Info Label

++

(n = 465)

Info Label

+

(n = 428)

Info Label-

(N = 386)

Protect me from online threats (such as hacking) 5.21 (1.36) 4.54 (1.40) 4.11 (1.81) 5.18 (1.32) 5.00 (1.49) 4.38 (1.59) 3.91 (1.69)

This label is appealing 5.55 (1.19) 5.02 (1.26) 4.96 (1.48) 4.78 (1.41) 5.46 (1.25) 5.28 (1.17) 5.19 (1.34)

This label is easy to understand 6.33 (.99) 5.96 (1.15) 6.04 (1.20) 5.61 (1.19) 6.33 (.83) 6.22 (.90) 6.24 (.86)

There is too much content on this label 2.10 (1.09) 2.22 (1.04) 2.18 (1.15) 2.75 (1.25) 2.40 (1.22) 2.31 (1.07) 2.35 (1.20)

I would use this type of label to help me when

buying a product

5.60 (1.25) 5.21 (1.38) 5.43 (1.41) 5.09 (1.36) 5.90 (1.13) 5.74 (1.13) 5.65 (1.14)

This label would make it easy to compare products 5.88 (1.13) 5.50 (1.31) 5.65 (1.28) 5.01 (1.34) 5.92 (1.78) 5.78 (1.04) 5.77 (1.14)

On a scale of 0–100%, how likely do you think it is

that a product that displays this label can be hacked

42.55 (28.33) 57.51 (24.40) 62.83 (26.98) 43.74

(26.40)

48.81

(27.68)

51.08

(25.96)

54.56 (25.87)

https://doi.org/10.1371/journal.pone.0227800.t004
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label (43%) would be less susceptible to hacking than one that carried a Grade G label (63%).

However, overall, participants tended not to think that any of the labels suggested a device was

immune from hacking. In fact, for the labels perceived to convey the most security, partici-

pants thought there was more than a 40% chance that a device carrying that label could be

hacked.

Participants thoughts on label content

In addition to asking participants the closed questions discussed above, we invited them to

provide qualitative comments about how they would improve the comprehension and clarity

of the labelling options they were exposed to. To avoid attrition, participants were not required

to answer these questions. Comments from those that did respond and that recurred are sum-

marised below.

Graded label

For the graded labelling conditions, 250 participants provided a response. Forty-eight percent

of these concerned the need for further explanation of what the different grades meant, how

the level of security was measured and what risks a device with this label would reduce. Three

percent felt this information could be presented elsewhere, such as in a manual or on a website.

Four percent of respondents wanted information about how the label was accredited (e.g.

whether it was self-declared or independently verified). In terms of the design, 16% felt it was

too similar to the energy label and that this may confuse consumers. Four percent thought the

bands might be confusing as they get longer as the grading decreases and another 4% thought

that less bands might be more helpful. Finally, 4% felt that the label would have to be manda-

tory to be effective.

Secure by Design (SbD)

Seventy-two participants provided a response of which 29% wanted more explanation about

the label and what risks it secures the consumer from. Seven percent felt that the label should

refer to digital or cyber in order to avoid confusion with physical security. The remaining com-

ments referred to the design of the label with 28% feeling that the design was slightly outdated

and should be redesigned to give it a modern look. Like the graded label, 3% felt that the label

should be mandatory.

Information labels

Across the information label conditions, 111 participants provided a response. Twenty-one

percent wanted further explanation of the label content, such as what information is shared

with third parties and who these third parties are. Six percent felt that the security features

needed better explanation. Other comments referred to the design with 14% wanting the use

of more colour. Five percent felt the label could also provide details of the device’s specification

and another 5% felt the warranty could be disclosed here. Finally, 5% thought that the label

should be mandatory.

To get a general understanding of participants’ overall perceptions of the labelling options,

we showed them generic versions of the three labels (Graded, Informational and SbD) and

asked them “Of the three labels, which do you think would be most helpful to you to buy a

secure product?”. We found that 46.5% preferred the informational label, 40.8% preferred the

graded scheme, and 12.6% preferred the SbD label.
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Discussion

IoT devices vary considerably in the extent to which they provide security features to protect

users from online threats. Furthermore, it is currently difficult (if possible) for consumers to

differentiate devices that do and do not provide adequate levels of security at the point of pur-

chase [11]. This creates a barrier to consumers adopting purchasing behaviours that would

help increase their trust and protect them from cybercrime. One proposal to address this issue

is for IoT devices to carry a security label to help consumers navigate the market and select

devices that are most likely to protect them online. Using a discrete choice experiment, the

aim of the present study was to estimate the potential impact of such labels on participant’s

decision making, after controlling for the influence of device functionality and price. The use

of such a study design also allowed us to estimate participant’s willingness to pay for devices

that carry a security label without asking them this question directly, reducing the types of bias

that plague other stated preference approaches to estimating WTP.

After controlling for the influence of price and functionality, with one (expected) exception,

all of the security labels tested had a positive effect on participant’s choices. Neither age, gender

or self-reported security behaviour seemed to affect whether participants were influenced by

the security label or not. The most effective label tested was the informational label, for which

two variants of this had the same influence on participant’s choices as the level of functionality

of the product. In terms of these two versions of the label, the difference in the size of the effect

each label had on participant’s choices was small. One reason for this may be that the differ-

ence between the two labels was too subtle. Specifically, while the most positive label indicated

that the device had important security features, both labels had icons to indicate that security

updates would be provided for a long period. It may be that participants believed the latter to

indicate that devices carrying either label had good security features and as a result may not

have perceived that the additional security icon conveyed much new information. Future

research might explore this further and experiment with different icons.

This latter issue is also relevant to packaging design, since one of the places that such labels

might appear is on the boxes that devices are shipped in. As boxes already carry a number of

labels (e.g. CE and recycling labels), in order for a security label to influence consumer pur-

chasing decisions, it will be important for the label to be designed and positioned in such a

way that consumers can and will attend to it. Further research might usefully examine this

issue, along with the other potential places such a label might appear. These might include

websites, a removable sticker on the device itself, or shop pricing labels. If a label were imple-

mented, it would also be important to ensure that sales staff understand what it conveys and

can articulate this to consumers.

Considering participants willingness to pay, our estimates suggest that consumers are will-

ing to pay more for IoT devices with premium functionality and those that carry a security

label. Considering the amount that they would be willing to pay for increased security—the

focus of this study—for the four labels that had the most positive effects on participant decision

making (Graded A, Info Label+, Info Label++, and SbD), the average WTP estimates were

£33.60, £65.71, £19.03 and £35.76 for security cameras, Smart TVs, Wearables, and Thermo-

stats, respectively. For the label that had the largest effect on participant’s decision making—

the informational label with an additional security icon—the same figures were £42.23, £90.95,

£25.01 and £48.91, respectively. To put these figures into perspective, the mean price of these

devices were £99.99, £350.99, £69.99 and £159.99 (see Table 1), respectively. As such, partici-

pants responses suggest that they would be willing to pay a non-trivial additional amount

(both in terms of an absolute cost and a proportional increase) for devices that carried a secu-

rity label. Moreover, for two of the informational labels, our estimates suggest that, with the
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exception of Smart TVs, participants would be willing to pay a very similar additional amount

for a device that carried a security label as they would for one that had improved functionality.

This suggests that cost is not necessarily a barrier to improving security in consumer IoT, at

least in the proportions discussed above.

In terms of their responses to our open questions about the labels tested, participants

reported that they would use them to inform purchasing decisions, and that they did not per-

ceive them to be complicated. They did, however, report that they would like more explanation

of the information the labels conveyed, with this perhaps being communicated in the device

manuals or other materials. In terms of implementation, several participants noted that for a

labelling scheme to work, it would need to be mandatory. This is an important issue. Even if a

labelling scheme were not mandatory, consumers would need to be very much aware of it for

it to have the potential to influence their behaviour (see [16]). Equally important was the find-

ing that participants did not think that the security label implied that a device would be

immune from hacking. If it did, this may have the unintended consequence of discouraging

users from engaging in appropriate cyberhygiene.

Of course, our study is not without limitations. The most obvious is the fact that studies of

this kind examine stated preferences by asking participants to say how they would act in a

given scenario, and it is well known that stated preferences may differ to actual behaviours

(e.g. [54]). To address this issue, researchers also study revealed preferences by analysing data

on real purchases. While this approach enables the direct analysis of purchasing behaviour, it

too is not without limitations. In the current context in particular, our aim was to estimate the

potential effect of a labelling scheme that does not yet exist. For such research questions, there

are no purchasing data and hence the analysis of revealed preferences is simply not possible.

Should a label be implemented, then a study of revealed preferences would, of course, be the

logical next step in research such as that reported here. While revealed preference studies offer

greater ecological validity, it is, however, worth noting that they offer less control in terms of

experimentation and implementation fidelity.

As discussed in the introduction, enhancing trust in the IoT is key to its adoption. Here, we

explored labelling schemes as a means to indicate the trustworthiness of a product as it per-

tains to how the security requirements of the IoT product align with consumer need [4]. We

did not, however, assess consumers’ perceived psychological trust in the type of consumer

product, or factors that may influence this. That said, participants were given the option to

choose between three products or to “opt out”—a task which represents a behavioural measure

of consumer trust. Research on trust [55] indicates that there are three key factors that influ-

ence trust in IoT products: social-related factors, such as the extent to which the device aligns

with their cultural values (e.g. a reserved culture may be less likely to adopt devices with video

cameras than open cultures), and how a person’s social network perceives the device; security-

related factors (such as risk and product security); and, product-related factors, such as usabil-

ity. In our study, we explored the role of labelling to inform consumers security awareness of

the product. Consequently, future research could usefully explore how social and product-

related factors might mediate the impact of the labelling schemes on consumer choice and

their willingness to pay. This would provide a greater understanding of the contextual factors

that may impact on the efficacy of a security labelling scheme to enhance trust and aid con-

sumer choice.

What the current study clearly suggests is that security labels have the potential to impact

upon consumer choice and their willingness to pay for IoT devices. As such, the use of a secu-

rity label to help consumers purchase more secure products appears to be a sensible policy

option that should be tested further. In addition to impacting upon consumer behaviour

directly, a labelling scheme also has the potential to incentivise industry to compete. For
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example, in the case of the energy label for white goods, due to market improvements in the

energy efficiency of products since its introduction, this label has had to be updated to allow

consumers to differentiate between goods with the highest levels of energy efficiency. In this

way, the use of a label has the potential to act as a market lever that may encourage the manu-

facture of increasingly secure devices over time. At worst, it would explicitly draw industry

and consumer attention to the issue.
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