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Cardiomyopathies represent a heterogeneous group of cardiac disorders that perturb cardiac 
contraction and/or relaxation, and can result in arrhythmias, heart failure, and sudden cardiac death. 
Based on morphological and functional differences, cardiomyopathies have been classified into 
hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy 
(RCM). It has been well documented that mutations in genes encoding sarcomeric proteins are 
associated with the onset of inherited cardiomyopathies. However, correlating patient genotype to the 
clinical phenotype has been challenging because of the complex genetic backgrounds, environmental 
influences, and lifestyles of individuals. Thus, “scaling down” the focus to the basic contractile unit of 
heart muscle using isolated single myofibril function techniques is of great importance and may be used 
to understand the molecular basis of disease-causing sarcomeric mutations. Single myofibril bundles 
harvested from diseased human or experimental animal hearts, as well as cultured adult cardiomyocytes 
or human cardiomyocytes derived from induced pluripotent stem cells, can be used, thereby providing 
an ideal multi-level, cross-species platform to dissect sarcomeric function in cardiomyopathies. Here, we 
will review the myofibril function technique, and discuss alterations in myofibril mechanics, which are 
known to occur in sarcomeric genetic mutations linked to inherited HCM, DCM, and RCM, and describe 
the therapeutic potential for future target identification.
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Overview
Heart failure (HF) is one of the leading causes of death and 
disability worldwide (Mozaffarian et al., 2016), with over 
37.7 million individuals suffering from HF globally, and 
50% mortality at 5 years (Levy et al. 2002; Bluemink et 
al. 2004; Vos et al., 2010; Ziaeian et al., 2016; Shah et al. 
2017). The estimated cost for HF reached $108 billion in 
2012 globally (Cook et al, 2014), and is projected to double 
by 2030 (Heidenreich et al., 2013).  In most cases, the 
cardiomyopathies responsible for causing HF are chronic and 
progressive conditions with diverse etiologies. They have been 
classified as follows (Elliott et al., 2008): (1) hypertrophic 
cardiomyopathy (HCM), characterized by unexplained left 
ventricular (LV) hypertrophy, diastolic dysfunction, and normal 
or increased ejection fraction; (2) dilated cardiomyopathy 
(DCM), characterized by LV dilatation and reduced LV systolic 
function; (3) restrictive cardiomyopathy (RCM), characterized 
by impaired LV filling due to increased myocardial stiffness, 
and diastolic dysfunction; (4) arrhythmogenic right ventricular 
dysplasia (ARVD), characterized by progressive replacement of 
the right ventricle with fibrofatty infiltration and scar tissue; and 
(5) those which are unclassifiable. In this article we will focus 
on those inherited cardiomyopathies, HCM, DCM, and RCM, 
which primarily affect left ventricular function. 

Cardiomyopathies can be inherited (familial) or acquired 
(non-familial). The first familial β-myosin heavy chain 
mutation (R403Q) associated with HCM was described in 
the early 1990s by the Seidman group (Geisterfer-Lowrance 
et al., 1990), and since then more than 1000 sarcomeric gene 
mutations have been identified to be pathologic variants of 
inherited cardiomyopathies (Yotti et al., 2019). However, 
despite nearly three decades of research, it has been challenging 
to correlate patient genotype with clinical phenotype and guide 
management of the cardiomyopathy. This can be explained 
by the complexity of the pathophysiology of inherited 
cardiomyopathies, which for the most part, is incompletely 
understood. The majority of carriers of disease-causing 
sarcomeric mutations do not have symptoms (genotype+/ 
phenotype-) in their younger ages, and the abnormal sarcomeric 
function results in decades of cardiac remodeling before clinical 
manifestations later in age (genotype+/ phenotype+) (Deranek 

et al., 2019). The phenotype can be affected by genetic 
variation, ethnic background, environmental/cultural exposure, 
and even the lifestyle of each individual (Garfinkel et al., 2019). 
Therefore, in order to better identify and prevent the onset and 
progression of cardiomyopathies, it is necessary to elucidate 
the molecular basis of these sarcomeric pathologic variants. 
In this review article, we discuss how research focused on 
investigating the basic contractile units of the heart muscle, the 
myofibrils, can shed light on the pathophysiology of inherited 
cardiomyopathies, and therefore aid the discovery of novel 
therapeutic targets for these conditions.

Sarcomere structure
The sarcomere is the basic functional unit of the cardiomyocyte 
myofibril. The word “sarcomere” is composed of two Greek 
words “sarc (flesh)” and “meros (part),” meaning “the basic unit 
of meat (muscle).” The earliest observation of the sarcomere 
came from the striations observed under light microscopy in 
which there is a repeating structure limited by two dark Z-lines, 
between which are the I-band, A-band, and H-zone (Hanson 
et al., 1954; Eisenberg et al., 1983). The distances between the 
two Z-lines along with the width of the I-Band and H-zone 
oscillate throughout the cardiac cycle of muscle contraction and 
relaxation. It was later shown by electronic microscopy that the 
A-band corresponds to the full length of thick filaments, and 
the I-band corresponds to the thin filaments interdigitating with 
the thick filaments. In 1957, Sir Andrew F. Huxley established 
the sliding filament model, noting that muscle contraction and 
relaxation are achieved by alternating sliding action between 
the thin and thick filaments toward or away from the center of 
the sarcomere (Huxley et al., 1957) (Fig. 1A). 

The thin and thick filaments contain a specific set of proteins, 
which make up the contractile apparatus of the sarcomere. 
The thin filament is mainly composed of the filament form of 
sarcomeric α-actin with regulatory proteins such as troponin 
complex (Tn) and tropomyosin. The thick filament consists 
of myosin heavy chains, regulatory myosin light chains, and 
myosin binding protein C. The protruding globular region of 
myosin heavy chains, namely myosin heads or cross-bridges, 
can interact with actin using adenosine triphosphate (ATP) to 
provide the force to pull the thin filament towards the center 

Figure 1. Sliding filament model of muscle 
contraction and the cross-bridge cycle. (A) 
During muscle contraction, the thick (myosin) 
filaments pull the thin filaments toward 
the center of the sarcomere. When the thin 
filaments slide over the thick filaments, 
the I-bands and H-zones become shorter 
and eventually disappear. During muscle 
relaxation, the thick filaments release the 
interaction with thin filaments, and slide 
back to their relaxed positions. I-bands 
and H-zones are widened again. (B) Cross-
bridge cycle. 1: Previous cross-bridge cycle 
ends with the binding of ATP to the myosin 
head. 2. Weakening actin-myosin interaction 
leads to releasing of the cross-bridge; 3: ATP 
is hydrolyzed to ADP and Pi, leading to the 
“cocking” of the myosin head and ready to 
bind to actin. The accessibility of AM.ADP.
Pi is regulated by troponin complex. 4: Pi is 
released. The myosin head twists and bends, 
generating force and pulling the attached 
actin myofilament ahead. 5. ADP is released. 
Ready for ATP binding and next cycle. 
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of the sarcomere (Weber et al., 1973) (Fig. 1B). Cross-bridge 
cycling is highly regulated by calcium (Ca2+) levels. Indeed, 
the terms “contraction” and “relaxation” refer to the “on” and 
“off” of force-generation mediated by the cytosolic calcium 
concentration ([Ca2+]). During muscle contraction, elevated 
[Ca2+] stimulated by the action potential propels Ca2+ to bind 
to troponin C (TnC), resulting in conformational changes in 
the troponin complex. This releases the allosteric inhibitory 
action of tropomyosin, allowing the cross-bridges to interact 
with actin and enter cross-bridge cycling for force generation 
and contraction (Ebashi et al., 1974; Gordon et al., 2000; Solaro 
et al., 2013) (Fig. 2). During relaxation, Ca2+ dissociates from 
TnI, arresting the interaction of cross-bridges to actin, thereby 
allowing the sarcomere to slide back into the relaxed position. 

The myofibril function rig: an experimental model to dissect 
the molecular basis of sarcomere function
The inherited cardiomyopathies, HCM, DCM, and RCM 
display distinct spectrums of pathologic variants in the 
sarcomere (Garfinkel et. al., 2018; Yotti et. al., 2019). Studying 
alterations in sarcomeric function of these variants from heart 
tissue collected from cardiomyopathy patients or currently 
available transgenic animal models is challenging. Muscle 
function is regulated on many different levels: from the 
action potential stimulated by the neurohormonal system or 
pacemakers, to intracellular signaling with Ca2+ influx/uptake 
via the sarcoplasmic reticulum (SR), and through cross-bridge 
cycling between thin and thick filaments. 

The traditional experimental setup to investigate “pure” 
muscle function is the skinned muscle fiber preparation, 
in which cell membrane and SR are replaced by activating 
solutions containing Ca2+ to exclude the effects of intracellular 
regulation and the calcium handling system on sarcomere 
activation (Wankerl et al . ,  1990; James et al. ,  2000; 
Montgomery et al., 2001). The limitation of this technique is 
that the amount of time that it takes for Ca2+ to diffuse into thick 
muscle fibers is too long to detect the fast kinetics of sarcomere 
contraction and relaxation. This issue can be circumvented by 
applying photosensitive caged compounds such as Nitr-7 to 
rapidly release Ca2+ by strong light (Ashley et al., 1991; Araujo 
et al., 1994). However, this approach also has its drawbacks, 
including the inability to assess detailed relaxation kinetics 
(Poggesi et al., 2005; Stehle et al., 2009).

The isolated myofibril and fast solution switching technique, 
or the “isolated myofibril function rig”, is a mechanical 

system that has the capability to accurately measure detailed 
parameters of contraction and relaxation of the most basic 
subcellular unit of the cardiomyocyte, the myofibril (Colomo 
et al., 1998). Isolated myofibrils are mounted on a force 
transducer and rapidly shifted between a solution with a high 
Ca2+ concentration and a solution free of Ca2+, and activation/
relaxation kinetics are then quantified (Fig. 3A). The unique 
aspects of this system, such as the rapid solution switch 
technique combined with the physical characteristics of the 
small myofibril bundles (diameter < 2μm), enables attainment 
of equilibrium from the bathing solution within one millisecond. 
Therefore, the measurements for force generation following 
rapid Ca2+ delivery and relaxation following sudden Ca2+ 
reduction accurately reflects the kinetics of interaction between 
contractile proteins. 

While the myofibril rig system is capable of measuring 
fundamental sarcomere function such as force capacity (or 
maximal force, Fmax), Ca2+ sensitivity (EC50), and resting 
tension (RT, relevant to stiffness) of myofibrils in a similar 
manner to the traditional skinned muscle fiber technique, 
the major advantage of the myofibril rig system is the 
accurate measurement of activation and relaxation kinetics 
of single myofibrils with Ca2+ delivery/removal, allowing the 
interpretation of detailed cross-bridge kinetics. 

Activation Kinetics
When Ca2+ is delivered to myofibrils, there is an extremely fast 
process of Ca2+ binding to TnC and subsequent thin filament 
activation with conformation changes of Tn to the “switch-on” 
state. Switch-on of Tn greatly increases the probability of actin-
myosin interaction, propelling cross-bridge cycling toward 
force development until the myofibril reaches its maximal 
isometric tension (Fmax). This time course of force development 
following activation is roughly mono-exponential with a rate 
constant of kACT (Fig 3B). This process is almost superimposed 
with the force re-development after a fast re-stretch-release 
(kTR), suggesting that kACT is independent of Ca2+ binding and 
thin filament activation, and essentially represents the action of 
cross-bridge cycling (Colomo et al., 1998). Force generation 
is achieved by the combination of two cross-bridge states: 
(1) force-generating cross-bridge state, with the apparent rate 
constant of fapp defined by Brenner et al. (1988); and (2) non-
force-generating state, with the apparent rate constant of gapp 
(Brenner et al., 1988). The activation constants kACT and kTR 
observed during contraction is the composition of these two 
states: 

fapp + gapp = kACT = kTR

The value of fapp is much higher than gapp during contraction 
with the activated thin filament, leading to net force generation 
shown in Fig. 3B. For a more detailed and comprehensive 
review on myofibril cross-bridge kinetics we would like to 
direct the reader to two excellent review articles (Poggesi et al., 
2005; Stehle et al., 2009).

kACT and kTR are mediated by : (1) The nature of the cross-
bridges, such as myosin isoform composition - Myofibrils 
isolated from human ventricles have much lower kACT than that 
from rodents, correlating with the predominant β-myosin heavy 
chain (slow form) expression in human heart (Stehle et al., 
2002; Krüger et al., 2003); (2) the equilibrium of cross-bridge 
cycling - Force development rate can be modulated by the 
substrates of cross-bridge cycles seen in Fig. 1B. For example, 
addition of inorganic phosphate (Pi) can return the cross-
bridge cycle back to the non-force generation state, leading 
to decreased activation kinetics (Tesi et al., 2000); (3) steric 
hindrance of regulatory proteins - Despite the fact that kACT has 
been shown to be unaffected by thin filament regulation (de 

Figure 2. Scheme illustration of troponin complex structural 
changes in the transition from a relaxation to an active state. Left: 
In relaxation, troponin complex is in the “switch-off state” when 
tropomyosin (Tm) blocks the accessibility of the myosin head to 
the binding regions on the actin filament. Middle: During myofibril 
activation, Ca2+ binds to TnC N-terminal lobe (NT lobe), promoting 
the interaction between this region and the switch peptide (SwP) of 
TnI. Right: Movement of the SwP triggers a series of conformational 
changes including movement of the actin-binding peptides of TnI, 
intertwined regions of TnT and TnI, along with the C-terminal lobe 
of TnC. Troponin complex is “switched on”, which releases Tm and 
exposes binding sites for myosin cross-bridges on actin. 
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Tombe et al., 2007), mutations of the inhibitory peptides on 
cTnI (R145G) can lead to weakened Ca2+-dependent cTnI–cTnC 
interaction, slowing down the release of allosteric inhibition, 
which allows force generation (Krüger 2005 et al., 2005).  

Relaxation Kinetics
Compared to contraction, muscle relaxation is less understood. 
During relaxation, Ca2+ is taken up from the cytosol by the 
sarcoplasmic reticulum (SR) through the pumping action of 
sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). 
With the fall of cytosolic [Ca2+], Ca2+ dissociates from TnC, 
leading to the prompt switch-off of Tn back to its inactive 
form. Thin filament inactivation then stops force generation 
of the cross-bridges and initiates myofibril relaxation. These 
processes, however, are not as straightforward as Ca2+-
activated force generation. First, unlike the rapid rise of Ca2+ 
transiently stimulated by action potential during activation, 
the fall of cytosolic [Ca2+] during relaxation is a much more 
gradual process (Blinks et al., 1978; Backx et al., 1995) where 
dissociation of Ca2+ from TnC and thin filament inactivation 
happen concurrently. Second, relaxation kinetics of myofibrils 
after Ca2+ removal is more complex with a unique “bi-phasic” 
pattern, which was not possible to resolve with the gradual [Ca2+] 
changes. With the fast switch perfusion system, another key 
feature of the isolated myofibril function technique is sufficient 
sensitivity to resolve the slow (linear) and the fast (exponential) 
relaxation phases (Fig. 3C) (Stehle et al., 2002; Tesi et al., 
2002). 

This force decay process after Ca2+ removal highlights 
the fundamental differences of cross-bridge cycling between 
contraction and relaxation. During relaxation, after Ca2+ 
dissociation from TnC, inactivation of the thin filament stops 

cross-bridges from entering the force generating state (fapp ≈ 
zero). However, the non-force-generating state still continues. 
The rate constant kREL = fapp + gapp is therefore close to gapp since 
fapp is negligible. This force decay based on gapp is a very slow, 
almost isometric process, which can be fitted with a linear 
function with the slope defined as the rate constant “slow kREL“ 
and the duration “slow tREL“ by Tesi et al. (2002). Although the 
cross-bridge cycling rate gapp is the rate-limiting factor of the 
slow relaxation phase (Stehle et al., 2002), its duration is “thin 
filament inactivation-related”. Slow tLIN was reported to vary 
with the amount of time TnC needs to be switched off (Stehle et 
al., 2006) and TnI isoform exchange (Kreutziger et al., 2008). 

Around 50-150 ms after Ca2+ removal, slow phase relaxation 
is followed by a sudden and very fast exponential force decay. 
The rate constant (fast kREL) of this “fast relaxation phase” is 
roughly 10-20 times faster than the slow kREL. Interestingly, 
fast kREL is usually even faster than kACT and kTR, (Poggesi et al., 
2005), suggesting the original cross-bridge cycling equation 
kREL = fapp + gapp based on chemical reaction is not enough to 
explain this rate of force decay. Stehle et al. (2002) found that 
the fast relaxation phase starts from a sudden lengthening 
of the “structurally weakest” sarcomere, and propagates to 
the adjacent sarcomeres. This phenomenon can be explained 
by a “two detachment model” (Stehle et al., 2009). During 
contraction, the power-strokes generated by cross-bridges 
cause the distortion of the elastic elements (e.g. titin) of the 
myofibrils. After Ca2+ is removed, cross-bridges cycling is 
blocked (step 3 of Fig. 1B), leading to slow force decay without 
recruiting new force-generating cross-bridges. This can reach 
a point where the load released from detached cross-bridges 
exerts exceeding strain on other cross-bridges and forces their 
detachment in a “backward” path along with Pi rebinding 

Figure 3. Myofibril mechanics rig and representative activation-relaxation cycle. (A) Left: Myofibril mechanical rig set-up. Right: Scheme 
illustration of double barrel perfusion pipette delivering different concentrations of calcium (pCa 4.5 and pCa 9.0). Myofibrils are mounted 
between a force probe (calibrated to detect force in μN/μm) and a supporting stretcher. (B) Recording chart of one myofibril activation.  
Resting Tension (RT), force generation (FMAX), and activation kinetics (kACT and kTR) were measured. Relaxation is highlighted with the white box. (C) 
Representative trace of myofibril relaxation showing linear and exponential phases of relaxation.
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(the reverse of the “step 4” in Fig. 1B) - and therefore the 
half-sarcomere is lengthened. Meanwhile, the adjacent half-
sarcomere is shortened, facilitating the “forward detachment” 
by transferring mechanical energy into adenosine diphosphate 
(ADP) release and ADP.Pi (ATP) binding (“step 5” of Fig. 1B). 
This model of rapid relaxation propagation with mechanical-
chemical energy coupling fits well with the experimental 
observation where the addition of ADP significantly slows 
down sarcomere relaxation in myofibrils and skinned muscle 
fibers (Lipscomb et al., 1999; Tesi et al., 2002). The fast phase 
of relaxation occurs independent of thin filament inactivation. 
Instead, it is more relevant to cross-bridge cycling, the affinity 
between myosin heads and actin, and the physical properties 
of the myofibrils such as the elasticity provided by titin. Thus, 
observing the alterations in fast and slow relaxation phases may 
provide insights into the molecular basis of a certain disease 
state, and provide potential target proteins for investigation. 

Advantages
Working on the isolated myofibril function rig has several 
advantages for the study of cardiomyopathies. First, the 
mechanical parameters measured from myofibrils of diseased 
heart tissue provide a complementary approach to validate 
cross-bridge kinetics previously only obtainable from ex vitro 
preparations, such as reconstituted troponin complex (Dong et 
al., 1997), reconstituted thin filaments (Tn·Tm·actin, Kobayashi 
et al., 2006), and actin-myosin interactions (Rosenfeld et 
al., 1987). Second, resolution of the slow and fast phases of 
relaxation is crucial to dissect the molecular basis of relaxation 
impairment in diastolic heart failure (Bhatia et al., 2006; Massie 
et al., 2008; Shah et al., 2008). Furthermore, the readout from 
this technique allows investigators to focus on pure sarcomere 
function independent of intracellular regulation distinguishing it 
from whole cell/tissue systems such as Ion-Optix or engineered 
heart tissue. Experimentally, the myofibril rig can be employed 
on both fresh and frozen tissues with a minimal quantity of 
tissue (down to ~ 5μg), such as small pieces of bioptomes. 
Also, the fast equilibration with the bathing solution allows 
the analysis of the functional response of sarcomeric proteins 
to defined concentrations of cross-bridge substrates, as well 
as specific enzymes such as kinases and deacetylases (Cheng 
et al., 2014; Dvornikov et al., 2016; Jeong et al., 2018).  More 
importantly, recent reports have shown that the myofibril rig 
can analyze myofibrils from cultured adult myocytes (Woulfe 
et al., 2019) and cardiomyocytes derived from human induced 
pluripotential stems cells (hiPSCs) (Pioner et al., 2016; Iorga 
et al., 2018; Pioner et al., 2019). Thus, this multi-level, cross-
species platform makes it stand out from current techniques in 
the study of sarcomere function. 

Given that many different and complex pathways regulate 
whole heart function, the myofibril function rig provides crucial 
insights about whether specific mutations cause inherited 
cardiomyopathies directly through impacting pure sarcomere 
function. In the cases of inherited HCM, many HCM-linked 
sarcomeric mutations lead to relaxation impairment (prolonged 
slow tREL, lower slow tREL and fast kREL) of the myofibrils 
(Table 1), corresponding to the whole heart function of this 
disease, details of which will be elucidated in the next section. 
Furthermore, the majority of myofibrils of HCM hearts have 
elevated Ca2+ sensitivity, which might explain their hyper-
contractile features.  In contrast, the alterations of myofibril 
mechanics in some mutations are not necessarily seen at the 
level of whole hearts, suggesting the phenotypes might have 
resulted from compensatory effects or other mechanisms. In the 
following sections, we discuss the mechanical changes and the 
possible mechanisms underlying sarcomeric genetic mutations 
associated with the inherited cardiomyopathies at the myofibril 
level in HCM, DCM, and RCM.

Hypertrophic cardiomyopathy
HCM is a common inherited cardiomyopathy affecting 1 in 500 
people (Maron et al., 1995), and is distributed fairly equally in 
different countries and ethnicities (Hada et al., 1987; Zou et al., 
2004; Maron et al., 2004). Clinically, adults with non-dilated 
left ventricle chamber size, with ≥ 13 mm end-diastolic wall 
thickness are recognized as having HCM (Maron et al., 1999; 
Marian et al., 2017). Thirty to sixty percent of HCM probands 
are found to carry disease-causing mutations (Burke et al., 
2016). Patients rarely have symptoms at very young ages, but 
manifestations start to occur after adolescence (Maron et al., 
2003; Masarone et al., 2018). HCM is known to be the leading 
cause of sudden cardiac death (SCD) of young adults and 
athletes (Elliott et al., 2006). Thus, it is crucial to understand 
the molecular basis of how these mutations cause their clinical 
phenotype for better prediction and prognosis of HCM. 
Echocardiographic analyses of individuals carrying HCM 
pathological variants without overt clinical manifestations have 
shown that the majority have hyper-contractility with diastolic 
dysfunction before developing heart failure (Ho et al., 2002). 

Myofibril mechanics in HCM with thick filament mutations
The majority of HCM-linked mutations (~75%), including 
the earliest identified β-MHC R403Q, were found in the thick 
filament, either in the β-MHC or myosin binding protein C3 
(MyBP-C3) (Burke et al., 2016). Interestingly, despite being the 
main pathologic variants for HCM, research on the myofibril 
mechanics on MYH7 (gene for β-MHC) mutations are very 
limited. One reason for this is that the transgenic murine model 
is a mutation in α-MHC, which does not replicate the human 
β-MHC mutation (Lowey et al., 2002; 2008). 

It was not until 2008 that Belus et al. (2008) directly 
obtained heart tissues from patients with β-MHC R403Q 
mutation and performed the first myofibril mechanics analysis 
on pathologic variants of the thick filament. In contrast to the 
hyper-contractility with relaxation impairment observed at 
the whole heart level, myofibrils with β-MHC R403Q were 
shown to contract with less force (Fmax) with significantly faster 
kACT and slow kREL (Belus et al., 2008; Witjas-Paalberends et 
al., 2014). Garfinkel et al. (2019) proposed that thick filament 
mutations cause HCM based on the ratio of two groups of 
myosin heads during relaxation: disordered relaxation (DRX, 
half-activated) and super relaxation (SRX, complete relaxed), 
noting that HCM variants have myosin heads toward the DRX 
state, leading to relaxation impairment (Alamo et al., 2017; 
Garfinkel et al., 2019). Interestingly, the finding from Belus et 
al (2008) did not fit the general features of HCM described by 
Garfinkel as R403Q was shown to be one of the MYH7 variants 
to be in favor of DRX states (Anderson et al., 2018). However, 
the myofibrils had significantly increased energy costs despite 
having faster cross-bridge kinetics, which may explain the 
phenotype of energy depletion in some HCM cases (Ashrafian 
et al., 2003). Unfortunately, apart from the report of Belus et al. 
(2008), myofibril mechanics of most HCM-linked variants on 
β-MHC and MYBP-C3, especially the latter, are still unknown, 
and more studies are needed.

Myofibril mechanics in HCM with thin filament mutations
In contrast to pathologic variants in the thick filament, mutations 
in the thin filament (TPM1, TNNT2, TNNI3, and ACTC1, 
which encode cardiac tropomyosin alpha-1 chain, troponin T, 
troponin I, and sarcomeric α-actin, respectively) are rarer than 
thick filament variants (< 10%) but are more well-studied at 
the myofibril level, especially those in Tn. Reconstituted Tn 
with disease-causing mutations on one of its subunits can be 
substituted into myofibrils in the ex vivo environment, replacing 
endogenous Tn for myofibril function analysis (Brenner et al., 
1999). In an alternative approach, Westfall et al. (1998) reported 
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that infecting adult cardiomyocytes with adenovirus expressing 
troponin subunits can also achieve up to 70-80% of exchange 
rate at the cellular level, comparable to the ex vivo exchange 
protocol. 

Troponin I
Cardiac troponin I (cTnI) is the inhibitory subunit of Tn. The 
major difference between cTnI and skeletal muscle TnI is that 
the former has additional phosphorylation sites (Solaro et al., 
2013). The most well-known is the phosphorylation of S22/23 
(in human) and S23/24 (in rodents) by protein kinase A (PKA), 
which can reduce Ca2+ sensitivity of the myofibrils, thereby 
accelerating force decay, the result of which is beneficial for 
relaxation (Zhang et al., 1995). This highly modifiable feature 
makes cTnI a central regulator in myocardial contraction and 
relaxation. Using a reconstituted Tn exchange technique and 
a transgenic mouse model, the R145G (or R146 in mouse), 
cTnI mutation was the first HCM variant to be tested for 
myofibril mechanics (Krüger et al., 2005). In this study, 
Fmax, kACT, and slow tREL were all reduced in wild type mouse 
myofibrils exchanged with human cTnI R145G. In transgenic 
mice, there was a similar trend but the changes were less 
pronounced probably because of the low replacement rate 
(40%) of the mutated cTnI (James et al., 2000). These findings 
were recapitulated by Cheng et al. (2015) with rat cardiac 
myofibrils exchanged with rat cTnI R146G except there was 
also increased Ca2+ sensitivity, a finding that has been supported 
by multiple reports using skinned muscle fibers (James et al., 
2000; Takahashi-Yanaga et al., 2001; Lang et al., 2002). In 
the same report, cTnI R146G and another HCM-linked cTnI 
(R21C) mutation were found to antagonize the effect of PKA 
phosphorylation on Ca2+ sensitivity and relaxation. By using 
computational simulation, Cheng et al. (2015) reported that 
these two mutations caused reduced intramolecular interaction 
between the N-terminus and the inhibitory peptides of cTnI, 
which is the mechanism through which PKA regulates TnI 
function based on their earlier report (Lindert et al., 2015; Rao 
et al., 2014). Other HCM-linked variants on cTnI that have 
been analyzed at the myofibril level include K183 deletion and 

P82S (Iorga et al., 2008; Cheng et al., 2016). Interestingly, like 
the other cTnI variants, mutations of these two sites resulted in 
blunted relaxation function or insensitivity to PKA signaling. 
Thus, HCM-linked variants on cTnI seem to share a similar 
feature with impaired relaxation of the myofibrils possibly by 
impeding cTn’s capacity to be switched off, which reflects the 
diastolic dysfunction observed in HCM.

Troponin T
Troponin T (TnT) is the longest and largest subunit of Tn, and 
is known to be the “molecular linker” of the whole regulatory 
machinery (Tobacman et al., 1996; Takeda et al., 2003). 
Because of its two large binding areas to tropomyosin (Jin 
et al., 2010), TnT is the key subunit of Tn for regulating the 
position of tropomyosin during muscle contraction (Kobayashi 
et al., 2005). Although HCM-linked mutations of cardiac TnT 
(cTnT) is the largest class among the 3 subunits of Tn (5-10% 
of all familial HCM), studies on myofibril mechanics of HCM-
causing cTnT mutations are less advanced than those on cTnI. 
In 2017, Ferrantini et al. (2017) first analyzed the detailed 
kinetic parameters of myofibrils from two mouse models with 
HCM-causing mutations cTnT R93Q and E163R. Interestingly, 
despite the fact that both mouse models developed similar 
HCM-like heart function and contractile properties of the intact 
muscle fibers, their myofibril mechanics were substantially 
different. The myofibrils from cTnT E163R transgenic mice 
had faster kACT and slow kREL, but significantly prolonged slow 
tREL and increased passive stiffness. In contrast, in cTnT R93Q 
transgenic mice the kinetic properties of myofibrils were not 
much different except for a drastic increase in Ca2+ sensitivity. 
The authors concluded that similar HCM phenotypes can be 
generated through different pathways: (1) impaired myofibril 
relaxation and tension cost (E163R), or (2) delayed intact 
muscle fiber relaxation with higher Ca2+ sensitivity because of 
Ca2+ mishandling (Coppini et al., 2017). Recently, the same 
group analyzed the myofibrils from HCM human patients with 
homozygous cTnT K280N, another HCM-causing mutation 
(Piroddi et al., 2019). They found this mutation at the C-terminus 
of cTnT led to yet another myofibril phenotype: impaired 

Table 1. Comparison of mechanical parameters from myofibrils isolated from inherited cardiomyopathy models. RT: resting tension; ex-
HcTnI: ex vivo myofibrils exchanged with human cardiac troponin complex; ex-RcTnI: ex vivo myofibrils exchanged with exogenous rat cardiac 
troponin complex; Δ: uncoupled from PKA regulation; * - (red): non-significant increase; * - (blue): non-significantly increase.
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efficient energy usage, increased kACT and slow kREL but 
unchanged slow tREL. All of these reports emphasize the need 
for a precision medicine approach to treatment of HCM, given 
the different observed phenotypes with mutations in the same 
protein.

Tropomyosin and actin
Tropomyosin is an α-helical coiled dimer, which is positioned 
along the length of actin filament and plays a crucial role in 
providing steric hindrance of the cross-bridge actin-myosin 
interaction regulated by troponin complex (Tobacman et al., 
1996; Kobayashi et al., 2005) (Fig. 2). Mutations in TPM1, 
the gene encoding α-tropomyosin, are another major group of 
HCM-causing variants. Not much is known regarding myofibril 
mechanics in TPM1 mutations. However, it is well documented 
that HCM-causing TPM1 variants mainly cause increased 
Ca2+ sensitivity (Robinson et al., 2008), a feature that is also 
observed at the myofibril level in two HCM-linked variants, 
D175N and E180G (Janco et al., 2012). Furthermore, S283 
pseudo-phosphorylation of α-tropomyosin has been shown to 
impair myofibril relaxation (Nixon et al., 2013). It has been 
shown that the S283 phosphorylation level is elevated in E180G 
transgenic HCM mice, and the impaired cardiac function is 
rescued by phosphorylation-null mutation S283A (Schutz et al., 
2013). Whether enhanced S283 phosphorylation levels in HCM 
hearts could causes the relaxation impairment of the myofibrils 
is still unknown. Another HCM-linked mutation being studied 
at the myofibril level is ACTC1, the gene encoding sarcomeric 
α-actin. A mouse model for HCM-linked ACTC1 E99K 
mutation has demonstrated that myofibrils from these animals 
had increased Ca2+ sensitivity with impairment of all relaxation 
kinetics, slow tREL, slow kREL, and fast kREL, which reflects the 
phenotypes of HCM (Song et al., 2013). Further investigation 
is required to understand whether this finding can be applied 
to other mutations in ACTC1. For a more comprehensive 
comparison of myofibril mechanics alterations among all HCM 
variants please see Table 1.

Dilated cardiomyopathy
Dilated cardiomyopathy (DCM) is defined by the presence 
of left ventricular or biventricular dilatation and systolic 
dysfunction in the absence of abnormal loading conditions 
(hypertension, valve disease) or coronary artery disease 
sufficient to cause global systolic impairment. The causes 
of DCM can be classified as genetic or acquired (please see 
review for more information, Pinto et al., 2016). DCM was 
originally estimated to be present 1 in 2,500 individuals (Codd 
et al., 1989), but recent reports have suggested a much higher 
prevalence (≥ 1 in 250 individuals) (Hershberger et al., 2013; 
McNally et al., 2017). Clinical manifestations of DCM usually 
begin at 30 to 40 years old, although it can present at all ages 
(Bozhurt et al., 2016), and it is the predominant cardiomyopathy 
in children (Towbin et al., 2006). It often leads to progressive 
heart failure, and is the leading cause of heart transplantation 
among all the cardiomyopathies (Kurt et al., 2009). About 20-
50% of DCM patients are found to be familial, and ~40% of 
familial DCM have identifiable genetic mutations (Ganesh 
et al., 2013; Sweet et al., 2015). Genetic carriers without 
phenotypic clinical manifestation were found to have reduced 
longitudinal left ventricular strain, an indicator of abnormal 
systolic function (Lakdawala et al., 2012; Japp et al. 2016). 

Myofibril mechanics in DCM with titin-truncating variants
Titin is the largest human protein, being 35,000 amino acids in 
length, with one single titin molecule spanning from the Z disc 
to the central M line. Titin not only provides structural support 
and elasticity of the myofibrils, but it also plays a crucial 
role in sarcomere assembly (Ehler and Gautel, 2008). Titin-

truncating variants (TTNtvs) are the most common sarcomeric 
mutations causing DCM, accounting for up to 25% of familial 
DCM (Herman et al., 2012). Since titin is such a large protein 
with a large number of variants, TTNtvs are also present 
in 2% of normal individuals (a prevalence which is much 
higher than that of DCM), making it challenging to correlate 
genotype with clinical manifestations. In 2015, Hinson et al. 
(2015) first generated hiPSCs-derived cardiomyocytes from 
patients carrying TTNtvs, and found that heterozygous TTNtv 
cells had titin “haplo-insufficiency”, substantially reduced 
sarcomere content and impaired force generation, indicating the 
importance of titin in sarcomerogenesis. In an animal model 
of DCM-causing TTNtvs, truncated titin isoforms could not be 
identified, suggesting a rapid turnover of the “malfunctioned 
titin” (Schafer et al., 2016). Vikhorev et al (2017) have studied 
myofibril mechanics in 3 DCM patients with TTNtvs. They 
found that mechanical kinetics including Fmax, activation and 
relaxation were mostly unchanged. Interestingly, the stiffness 
of TTNtv myofibrils was reduced by about 40% among all 
three samples tested. Therefore, the compliant myofibril might 
be a feature of DCM TTNtvs, and indirectly cause impaired 
contractility of the heart by over-stretching the myocardium and 
decreasing systolic capacity (Vikhorev et al., 2018; Garfinkel et 
al., 2018). The underlying mechanism of the stiffness alteration 
needs to be investigated in future studies. Also, this feature may 
not be present in all DCM patients with TTNtvs, as the latter 
may involve different functional domains and result in different 
myofibril mechanics. 

Myofibril mechanics in DCM with mutations on contractile 
proteins
DCM due to mutations in sarcomeric proteins is relatively rare 
but include MYH7 (β-cardiac myosin heavy chain), TPM1 
(tropomyosin alpha-1 chain), and cardiac TNNT2 (troponin T), 
TNNI3 (troponin I), and TNNC1 (troponin C) (Burke et al., 
2016). Despite overlapping with sarcomeric proteins responsible 
for HCM (Marian et al., 2016), the disease phenotype is very 
different. Vikhorev et al (2017) investigated DCM-causing 
sarcomeric mutations in thin filament proteins (cTnI K36Q and 
cTnC G159D), and the thick filament (β-MHC E1426K), and 
found that Fmax was unchanged, but myofibril relaxation kinetics 
(tREL and slow kREL) were significantly shortened, suggesting 
decreased Ca2+ sensitivity. These might be relevant to the 
reduced systolic function observed with DCM. Similar results 
were found in an inbred canine model of DCM (Cheng et al. 
2016). In contrast, an earlier study in mice with DCM due to 
ACTC1 E361G mutation found that myofibrils had unchanged 
activation kinetics (kACT), but slower relaxation kinetics (slow 
tREL and slow kREL) with higher Ca2+ sensitivity (Vikhorev et al., 
2014), a phenotype more suggestive of HCM. Interestingly, 
a recent longitudinal clinical follow-up of DCM genotyped 
patients found that in some patients who developed end-stage 
DCM, they had originally presented as having transitory HCM 
(Ho et al., 2017), suggesting perhaps an overlap between HCM 
and DCM in some patients. 

In summary, current knowledge of myofibril mechanics 
alterations in DCM is much less advanced than that in HCM, 
and has only been investigated by a few groups. Given its 
comparable prevalence with HCM, further research effort 
is required to understand a more generalized nature of the 
myofibril mechanics in inherited DCM hearts. For a more 
comprehensive comparison of myofibril mechanics alterations 
among all DCM variants please see Table 1.

Restrictive cardiomyopathy
Restrictive cardiomyopathy (RCM) is the least common 
cause of cardiomyopathy, accounting for less than 5% of all 
cardiomyopathies (Muchtar et al., 2017). RCM is characterized 
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by impaired diastolic function due to increased myocardial 
stiffness in the presence of normal wall thickness and systolic 
function (Elliott et al., 2008). It is associated with a variety of 
pathologic conditions, and is therefore very heterogeneous, and 
can be difficult to diagnose (Kushwaha et al., 1997; Muchtar 
et al., 2017). RCM was mostly regarded as an acquired (non-
familial) cardiomyopathy until a mutation in cardiac troponin 
I (TNNI3 D190H) was identified as causing RCM (Morgensen 
et al., 2013). Since then, RCM-causing variants have also been 
found in most major sarcomeric genes such as TNNT2, MYH7, 
TPM1, MYL3, MYL2, TTN and DES (Peddy et al., 2006; 
Arbustini et al., 2006; Kubo et al. 2007; Monserrat et al, 2007; 
Caleshu et al., 2011; Peled et al., 2014), but it has been difficult 
to correlate them with specific RCM phenotypes (Gigli et al., 
2016). 

Myofibril mechanics in RCM
The only published myofibril study in inherited RCM was 
performed by Dvornikov et al (2016), who reconstituted 
cardiac troponin complex containing RCM-linked cTnI 
R145W mutation into myofibrils from normal human heart 
tissue. Similar to previous work on HCM-linked cTnI R146G 
mutation in rat cardiac myofibrils (Cheng et al., 2015), R145W 
mutation in cTnI resulted in increased Ca2+ sensitivity and 
uncoupled myofibrils from PKA regulation, and relaxation 
was non-significantly prolonged. Recently, Jeong et al (2018) 
investigated myofibril mechanics of explanted LV tissue from 
two patients diagnosed as idiopathic RCM who underwent 
cardiac transplantation. They found slow tREL and slow kREL of 
the RCM patients suggesting delayed relaxation when compared 
to control donors, and went on to to show that the diastolic 
dysfunction was corrected using pharmacological HDAC 
inhibition in two different small animal models of diastolic 
dysfunction and preserved left ventricular ejection fraction. 
Whether human myofibrils with relaxation impairment can be 
corrected by HDAC inhibition remains to be determined. 

Conclusions
New treatments are needed to treat inherited cardiomyopathies 
such as HCM, DCM, and RCM, in order to correct the 
contractile/relaxation impairment and prevent the onset of 
heart failure. Investigations of myofibril mechanics have 
provided important insight into the pathophysiology underlying 
these different cardiomyopathies that appear to correlate 
with the clinical phenotype. These studies should lead to the 
identification of novel therapeutic targets for improving systolic 
function for DCM, and improving diastolic function in HCM 
and RCM. The myofibril function rig allows the detailed 
assessment of both contractile and relaxation of myofibrils form 
a variety of sources including: cardiac cell lines, primary atrial 
and ventricular cardiomyocytes, cardiomyocytes derived from 
hiPSCs, animal heart tissue (both fresh and frozen), and human 
heart tissue (both fresh and frozen), and can therefore be used 
to discover novel targets for treating cardiomyopathies. 
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