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Abstract 13 

A principle of demographic uniformitarianism underpins all research into prehistoric demography 14 

(palaeodemography). This principle—which argues for continuity in the evolved mechanisms 15 

underlying modern human demographic processes and their response to environmental stimuli 16 

between past and present— provides the cross-disciplinary basis for palaeodemographic 17 

reconstruction and analysis. Prompted by the recent growth and interest in the field of prehistoric 18 

demography, this paper reviews the principle of demographic uniformitarianism, evaluates how it 19 

relates to two key debates in palaeodemographic research and seeks to delimit its range of 20 

applicability to past human and hominin populations.  21 
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1. Introduction 25 

Like many historical sciences, prehistoric demography relies on a doctrine of uniformitarianism for 26 

some of its foundational principles. Uniformitarianism is the adherence to the axiom that processes 27 

that occurred in the past (and so cannot be directly experienced) were nonetheless likely to 28 

resemble those that are observable in the present day. The utility of a principle of uniformitarianism 29 

in prehistoric demography is clear when one considers the database available from which to study 30 

the demography of past non-literate societies (palaeodemography). Data derive from a wide range 31 

of disciplines but are frequently sparse and inform on a limited selection of demographic parameters 32 

[1-5]. Furthermore, these data provide only proxy measures of the demographic variables of 33 

interest. Multiple inferential stages are required to turn the data into meaningful statements about 34 

prehistoric demography and issues of equifinality abound.  A clear underlying theoretical framework, 35 

such as that provided by a uniformitarian principle, aids in the reconstruction of prehistoric 36 
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demographic patterns, providing clear constraints on interpretations of past demographic trends 37 

and processes, and justifying the use of estimates for population characteristics and model 38 

parameters derived from recent populations to supplement the sparse prehistoric demographic 39 

database.  40 

Despite providing the basis for all prehistoric demographic research, sustained discussion of 41 

demographic uniformitarianism is rare outside of the sub-field of skeletal palaeodemography. As the 42 

field of prehistoric demography grows, so does the necessity to ensure that the field’s underpinning 43 

theoretical basis—and the impact this has on the generation, analysis, and interpretation of 44 

prehistoric demographic data—is clear and secure.  45 

 46 

2. Defining demographic uniformitarianism  47 

The uniformitarian principle was first articulated by geologists in their efforts to understand the 48 

mechanisms responsible for the formation of the Earth. As utilised in the historical sciences, the 49 

principle argues that there is continuity between processes and causative mechanisms that occurred 50 

in the past and those that are observable in the present.  There are clear links between 51 

uniformitarianism and other heuristic principles of philosophical and scientific argument, such as 52 

Occam’s razor (the law of parsimony) and analogical reasoning (comparisons that use similarities 53 

between independent systems as evidence for the existence of hidden causative commonalities: 54 

Figure 1). Uniformitarian principles were utilised during the development of demography as a 55 

science during the 19th century, underpinning theories of the drivers of, and constraints on, 56 

population growth rates [7] and large-scale patterns of migration [8]. More recently, the argument 57 

that demographic parameters derived from historical records of human populations can be used as 58 

guidelines for constraining demographic models of prehistoric communities was expressed forcefully 59 

by Howell [9]. 60 

[Figure 1 near here] 61 

Howell argued that model life tables and fertility schedules ―which are constructed on the principle 62 

that patterns of age-specific variation in mortality and fertility vary in biologically constrained ways 63 

across different populations ―could be used to interpolate and smooth fertility and mortality data 64 

obtained for prehistoric populations. Howell’s uniformitarian assumption was that prehistoric 65 

populations occupied essentially the same demographic parameter space observed amongst 66 

historically documented populations. She cited Simpson [10] and other authorities in support of the 67 

argument that demographic aspects of human life histories, including fertility span and longevity, 68 

were evolved species-wide attributes.  Howell also pointed out that the application of 69 
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uniformitarianism enables the prediction of otherwise unobservable population characteristics, such 70 

as family size and kinship structure, with implications for the role of cultural transmission. 71 

Accordingly, the principle of uniformitarianism may also inform on the social, as well as the 72 

biological, elements of past demography. However, as Howell makes clear, demographic 73 

uniformitarianism does not assume that demographic behaviours have remained the same 74 

throughout history but that the basic biological processes relating to fertility and mortality are 75 

similar, that they respond to variations in the social and natural environment in the same way, and 76 

that these similarities act as constraints and impose limits on demographic behaviours. 77 

3. Uniformitarianism in prehistoric demographic research: two key debates 78 

The implications of the uniformitarian assumption vary depending on the demographic parameter 79 

addressed and the palaeodemographic proxy used. Below, we discuss the implications of the 80 

uniformitarian principle for two key debates in palaeodemographic research.  81 

a. Population dynamics and the “Forager Population Paradox”  82 

It has long been recognised that there is a stark contrast between the observed population growth 83 

rates of recent hunter-gatherers (mean of ~1% per annum [11]) and long-term prehistoric growth 84 

rates estimated via palaeodemographic methods which are typically close to zero for foraging 85 

populations [12-13]. Explaining this discrepancy (the “forager population paradox” [14]) by 86 

presuming that current hunter-gatherer population growth rates are unrepresentative of the past 87 

violates the uniformitarian assumption, as long-term population stationarity is only possible via a 88 

combined fertility and mortality schedule outside of, or at the extreme limit of, the known range of 89 

human variation [12-14]. A more convincing solution is that long term population growth followed a 90 

‘saw-tooth’ pattern, with brief crashes followed by longer periods of recovery [15-16]; a pattern 91 

supported by genetic data indicating multiple instances of sharp reductions in prehistoric population 92 

sizes (e.g. [17]). In a foraging population with a typical 1% per annum growth rate, the time for 93 

recovery from a catastrophic episode causing 50% mortality is only 70 years. Even higher growth 94 

rates of up to 3% per annum, and consequent shorter recovery times, have been reported for post-95 

catastrophe indigenous populations in South America, although these high growth rates may be 96 

partially accounted for by immigration and group fusion [18]. Such rapid recovery times are too 97 

short to be visible by any palaeodemographic method, including the comparatively high-resolution 98 

method of summed posterior probability distributions of sets of radiocarbon dates (SPDs) [19, 20]. A 99 

difference in scale, rather than in demographic regimes, best explains the discrepancy between past 100 

and present embodied in the forager population paradox.  101 
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What are the implications of this for the reconstruction of prehistoric population growth rates? The 102 

uniformitarian assumption relates primarily to underlying mechanisms, not specific parameter 103 

values derived from recently observed populations (although the former heavily constrains the 104 

latter).Due to the imprecision of radiometric dating, growth rates calculated from 105 

palaeodemographic data record only the longer term and slower time-averaged rate across crash 106 

and recovery cycles. They are therefore not directly comparable to growth rates recorded in 107 

ethnographic and historical contexts which represent ‘instantaneous’ per annum measures along 108 

this continuum of growth and decline. While the uniformitarian assumption likely holds in most 109 

prehistoric contexts, this difference in scale means that caution is required when using ethnographic 110 

data to interpret models of prehistoric demography, and does not support the simple transference 111 

of growth rates from ethnographic to prehistoric contexts; growth rates recorded for recent foragers 112 

are not realistic long-term estimates for either the population from which they derive or past 113 

hunter-gatherers. Tallavaara [21] further argues that population dynamics derived from 114 

palaeodemographic proxies can only be directly interpreted in terms of what controls the long-term 115 

mean population size. In the case of prehistoric hunter-gatherers, the primary population limiting 116 

factor would be the density-independent variable of environmental productivity [21] leading to 117 

debate as to how to combine palaeodemographic results with shorter-term density-dependent 118 

growth models derived from population ecology [22], as well as how to infer underlying fertility and 119 

mortality rates [23]. 120 

b. Age structure of mortality and fertility and longevity in prehistory 121 

Under natural living conditions human populations exhibit regular patterns of age-specific fertility 122 

and mortality rates that are strongly age-structured and are likely to be evolved versions of patterns 123 

that are common to the great apes [24, 25]. Female age-specific fertility rates follow a unimodal 124 

peaked distribution between maternal ages of 15 and 50 years, with peak fertility rates being higher 125 

and occurring earlier in farming populations than in foraging populations [26]. The distribution of 126 

the risk of death in human populations is bimodal with peak mortality rates in the first year of life, 127 

declining to a minimum in adolescence and early adulthood before rising exponentially in later 128 

adulthood. These three additive components of human age-specific mortality rates (i.e. juvenile, 129 

adult and an age-independent constant risk of death) are represented well by the Siler model [27]. 130 

Variation in the overall risk of mortality, together with variation in the relative contributions of 131 

juvenile versus adult mortality risks, underlie much of the populational variation in attritional 132 

mortality that is captured by model life tables.  133 
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The reconstruction of patterns of mortality and fertility for prehistoric populations is challenging. 134 

Fertility leaves few visible traces on the skeleton but can be measured indirectly through its effects 135 

on the age distribution of mortality: the latter is constrained by the age distribution of the living 136 

population, which in turn is highly sensitive to changes in fertility [28-30]. The variation of mortality 137 

risk with age can be inferred from representative samples of human skeletal remains, subject to 138 

assumptions about the stability of the age structure of the living population and its average rate of 139 

growth.  Although survivorship declines with age, the exponential rise in the risk of death at older 140 

ages should result in the elderly being well represented in skeletal assemblages.  However, when 141 

ages at death are estimated for samples of skeletal remains using traditional osteological age 142 

indicators, the resulting distribution of age often appears to show an excess of individuals in the 143 

young and middle age categories and a corresponding marked deficit of individuals aged above 60 144 

years. This abnormal pattern deviates from the strongly age-structured pattern of human mortality 145 

described above; it is neither observed in data from model life tables, nor apparent in demographic 146 

data from extant foraging and subsistence farming populations, and at face-value implies the 147 

inapplicability of the uniformitarian assumption to all prehistoric contexts [31]. 148 

This common deviation of prehistoric age-at-death distributions from uniformitarian expectations 149 

has long been recognised as the likely result of unrepresentative skeletal samples (the result of 150 

selective burial and/or differential preservation) and biases in many osteological age estimation 151 

methods that affect particularly the oldest age categories [26, 32-34]. Some of these biases stem 152 

from identified methodological problems, for example the prediction of age from calibrations 153 

against biased reference samples or the use of point age estimates rather than posterior probability 154 

distributions. Another potential source of departure from the age distributions predicted by model 155 

life tables could arise from the contribution of catastrophic mortality, which elevates the risk of 156 

death across all age categories: as young adults comprise a large segment of the living population, 157 

they tend to be over-represented in catastrophic death assemblages. For these reasons, 158 

considerable caution needs to be exercised when interpreting age distributions estimated from 159 

human skeletal remains. 160 

Furthermore, regardless of overall levels of mortality, all censused human populations contain a 161 

proportion of individuals who live to advanced ages, providing evidence for the evolution of delayed 162 

senescence and hence increased longevity in humans as part of the distinctive slow Homo sapiens 163 

life history pattern. Thus, the underrepresentation of older people in prehistoric skeletal 164 

assemblages is problematic not only for accurate reconstruction of the age-specific risk of death, but 165 

also for understanding longevity in past populations. Above, we argued that the apparent deficit of 166 
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older people in the skeletal populations of prehistoric Homo sapiens is best explained by biases in 167 

preservation and methodological limitations of palaeodemographic analysis. We now return to the 168 

key point that demographic uniformitarianism argues for continuity in the evolved mechanisms 169 

underlying human demographic processes and pose the question as to why a longer life span was 170 

selected for among Homo sapiens. 171 

Importantly, selection for a longer lifespan has implications for fertility as well as mortality. 172 

Cessation of reproduction in females long before the end of life is highly unusual in mammals [35], 173 

and a long post-reproductive lifespan is one of the life history traits that distinguishes modern 174 

humans from all other primate species. In non-human primates, as is the case in nearly all 175 

mammalian species, the approach to maximal lifespan and an irreversible decline in female fertility 176 

occur in tandem. In humans, the relative invariance in the timing of menopause, observed both 177 

across living human populations and throughout the historical record, together with the lack of 178 

evidence for recent secular trends in age at menopause, suggest that humans have retained a 179 

hominoid pattern of fertility. The menopause is therefore more likely to be a consequence of 180 

selection for longer lifespan, rather than of selection for a shorter reproductive span [36]. Due to 181 

their later physiological maturation, human females start giving birth about 5 years later than great 182 

apes [37] although with shorter birth intervals in humans even foraging populations achieve higher 183 

total fertility than do great apes.  184 

One argument is that selection for a longer lifespan enabled older generations, especially post-185 

reproductive females, to enhance the survival chances of their offspring and descendants. This 186 

“grandmother hypothesis” is shorthand for a range of evolutionary scenarios that explain the 187 

evolution of long post-reproductive lifespans through the selective advantage conferred by 188 

grandmothers to their kin - essentially by providing surplus resources to daughters of reproductive 189 

age [38, 39]. The extension of post-reproductive female lifespan predicted by the grandmother 190 

hypothesis is effectively equivalent to the length of a generation (around 25 years in modern 191 

humans) because the fitness benefits conferred by the grandmother diminish sharply when the 192 

grandmother’s own offspring terminate their reproduction [40]. When in human evolution did this 193 

occur? The pattern of female fertility in modern humans described above appears remarkably 194 

plesiomorphic, broadly resembling the ancestral hominoid condition in its age distribution, though 195 

with the ability to achieve higher total fertility through maintaining shorter inter-birth intervals. We 196 

infer that the modern human pattern of female fertility may also have characterised earlier species 197 

in the Homo lineage. O’Connell et al. [38] associated the extension of lifespan required by the 198 

grandmother hypothesis with the evolution of H. erectus/ H. ergaster, in particular correlating 199 
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extended longevity with this species’ larger brain and body size, and its delayed maturity compared 200 

to Australopithecus. One prediction from this hypothesis is that the abbreviated hominin lifespans 201 

calculated from skeletal data for Middle Pleistocene hominins (H. heidelbergensis and H. 202 

neanderthalensis – see below) are likely to be incorrect. 203 

4.  Prehistoric demography in the absence of the uniformitarian assumption: the 204 

palaeodemography of archaic hominins 205 

Howell [9] explicitly excluded non-Homo sapiens in her argument for human demographic 206 

uniformitarianism. However, the archaeological and palaeoanthropological records of the genus 207 

Homo extend millennia beyond the initial appearance of Homo sapiens in most regions of Africa, 208 

Europe, and Asia, and these populations are the subject of a growing body of cross-disciplinary 209 

palaeodemographic research [41-47]. The anatomical and behavioural contrasts between all archaic 210 

forms of Homo on the one hand, and Homo sapiens on the other, indicate wider biological 211 

differences which render the assumption of demographic uniformitarianism in its strictest form 212 

problematic for these populations. This conclusion leads to two further questions which lack easy 213 

answers: 1) what is the extent of these biological differences, and how do they relate to the key 214 

demographic variables of fertility and mortality? 2) what are the implications of these biological and 215 

demographic differences for cross-disciplinary research into the palaeodemography of archaic 216 

hominins?  217 

The answer to the first question usually begins by seeking to establish when the ‘modern human’ 218 

(i.e. Homo sapiens) life history pattern emerged. The life history of extinct hominins is inferred from 219 

indirect proxies related to rates of maturation and longevity (body mass, brain size, and dental 220 

development) [48-49]. At a minimum, we can state that the modern human life history pattern 221 

emerged within the Homo clade [50]. However, accurate measurement of archaic hominin life 222 

history variables is complicated by fragmentary and small fossil sample(s) and the evidence is often 223 

conflicting [51-52]. This is the case even for the archaic hominins of the Middle and Late Pleistocene 224 

for whom comparatively large and well-preserved fossil collections exist. For example, comparative 225 

analysis of body size, brain size, and dental development indicates that the life history of 226 

Neanderthals (Homo neanderthalensis) was consistent with that of Homo sapiens [49]; a finding 227 

supported by a recent study of the growth pattern of the El Sidrón Neanderthal child [53]. However, 228 

other studies have suggested a Neanderthal developmental rate both faster [54-56] and potentially 229 

slower [57] than those of Homo sapiens. While on balance, the data suggest that later archaic 230 

hominins (H. heidelbergensis, H. neanderthalensis) probably had a pace of development within the 231 

Homo sapiens range, there were likely nonetheless subtle differences related to other aspects of 232 

their physiology [53, 58-59]. 233 
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The implications of these biological and life history differences for method and theory in prehistoric 234 

demography have been most firmly addressed by practitioners of the skeletal palaeodemography of 235 

archaic hominins. As is the case in later prehistory, age-at-death distributions of site-specific and 236 

pooled skeletal samples typically do not conform to expectations of age-specific attritional mortality 237 

distributions derived from recent populations [42, 46, 60-62]. As shown in section 3b, where the 238 

demographic uniformitarian assumption holds we can, with reasonable confidence, interpret this 239 

pattern in terms of unrepresentative sampling and inaccuracies in age estimation. However, in the 240 

absence of the uniformitarian assumption, no such cross-checks hold, leading to some fierce debates 241 

as how to interpret these palaeodemographic profiles.  242 

The age-at-death distribution of the Middle Pleistocene pre-Neanderthal hominin fossils from the 243 

site of Sima de los Huesos (SH) (Burgos, Spain) is an excellent case in point. These SH hominins all 244 

derive from the same lithostratigraphic unit at the site and their taphonomic condition is relatively 245 

homogenous, suggesting that they belong to the same biological population [63]. However, the 246 

assemblage produces a mortality profile with almost no infants and children, a preponderance of 247 

adolescents and young adults, and very few older adults (35 years +) (Figure 2). Wolpoff and Caspari 248 

[62] propose that this distribution reflects an attritional profile consistent with the life history and 249 

survivorship rates of Middle Pleistocene hominins; an interpretation that they also apply to the age-250 

at-death distribution of the later Krapina Neanderthals from Croatia. Life history data from the SH 251 

hominins provides mixed support for this scenario. The pattern and timing of dental development of 252 

the SH hominins falls within the range of variation of Homo sapiens [64]. On the other hand, 253 

calculations of the rate of wear of the anterior teeth (incisors and canines) indicate that these would 254 

have been completely worn down by the age of 50 and may have been an important limiting factor 255 

on their potential longevity (maximum life expectancy) [65].  256 

[Figure 2 near here] 257 

Nonetheless, as is the case with the age-at-death distributions of prehistoric Homo sapiens, the Sima 258 

de los Huesos profile is unlikely to be an accurate reflection of demographic reality. Ages of the 259 

juvenile hominins in the SH assemblage were undertaken using modern human standards for dental 260 

development, which as previously mentioned, probably overlap with dental development schedules 261 

for H. neanderthalensis and H. heidelbergensis.  However, the ages of the adult individuals were 262 

estimated using the Miles method, which produces a calibration of the amount of dental wear in 263 

adults based on the wear rates observed in the juvenile component of the assemblage.  As with 264 

other skeletal age estimation methods, the Miles method requires adjustment to avoid the under-265 

estimation of age at death in older adults [66], so the estimated ages of some of the adult SH 266 
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individuals may be too low.  The likely presence of much older adults in the SH assemblage is further 267 

suggested by the state of the articular surfaces on the SH pelvis 1 specimen [67]. Although the age at 268 

death of the SH1 specimen was estimated to fall in the open-ended age category of >45 years, 269 

unbiased age estimations based on uniform priors developed for modern human populations (e.g. 270 

[68] would suggest a median estimated age for this specimen of between 60 and 70 years. It is 271 

furthermore highly likely that the potential for a longer life span was present before many 272 

individuals regularly reached it [48], and small skeletal samples are unlikely to include the 273 

necessarily outlying individuals who died at extremely old ages [69]. In the case of the SH hominins, 274 

arguments for a maximum life span of ~50 years are further weakened by the predicted life spans of 275 

H. habilis (52-56 years) and H. erectus (60-63 years) [70], derived from the allometric relationship 276 

between body size, brain size, and longevity among mammals [71].  277 

Sampling may also be an important factor in the age-at-death distribution of the SH hominins. The 278 

assemblage does not neatly correspond to either an attritional or a catastrophic profile ([61 cf. 62]), 279 

but a scenario whereby a catastrophic event impacted a subset of the population is plausible (an 280 

exploratory hunting party of young, mobile individuals separated from their larger group; [60, 72]), 281 

and instances of catastrophic mortality may have been more common in early population history 282 

than usually suspected [26]. The role of biological differences between the early members of the 283 

Neanderthal clade at Sima de los Huesos and the modern-day Homo sapiens from whom our 284 

palaeodemographic models and methods derive should not, however, be excluded from 285 

interpretation. Even minor differences in rates of development between archaic hominins and Homo 286 

sapiens —compounded by differences in diet, health and economic conditions [73] —could impact 287 

estimates of age-at-death (albeit not the relative distribution of individuals across categories). 288 

In other branches of the palaeodemography of archaic hominins, the methodological and theoretical 289 

implications of the absence of the uniformitarian principle are less keenly felt but are nonetheless 290 

highly relevant. In archaeological demography, the applicability of methods and standards 291 

developed from the study of ethnographic and historical populations to pre-modern (i.e. pre-Homo 292 

sapiens) hominins has long been questioned (e.g. [74]). The impact of life history differences on 293 

demographic reconstructions and interpretations based on these data —which are primarily used to 294 

study changes in relative population size and growth [3-5]—are, however, indirect and hard to take 295 

into account, despite both these variables being determined by underlying fertility and mortality 296 

rates. Within this branch of prehistoric demographic research, other biological differences between 297 

archaic hominins and Homo sapiens have a greater impact. The large body mass, and resultant high 298 

energy demands of Neanderthals, for example, is a particularly important biological difference 299 
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between them and Homo sapiens [75-76]. High energy requirements and the challenges of obtaining 300 

enough food to meet these, particularly in the lack of evidence for food storage, are often cited as 301 

potential restrictions on the maximum size of Neanderthal living-groups [77-78], fertility rates, and 302 

local population densities [79], and would need to be taken into account in palaeoecological 303 

estimates of potential environmental carrying capacity. Within environmental carrying capacity 304 

models, the key implication of the higher energetic requirements of Neanderthals is that if foraging 305 

from a central place, the effective foraging radius (the area at a distance from camp at which the 306 

required amount of energy is equal or more than the net return) would have been smaller than for 307 

Homo sapiens, meaning that Neanderthal groups would have depleted local resources more quickly 308 

and needed to move camp more frequently [78]. This higher mobility—which has a key biological 309 

component— also complicates estimates of relative change in population size based on 310 

archaeological site counts (e.g. [80]) raising questions about the exact relationship between site 311 

quantities and population size (a relationship that is often assumed to be linear, but is in reality 312 

unknown), and the possible differences in this relationship between different hominins. More 313 

broadly, life history differences, combined with other wider biological and cognitive differences 314 

(such as body size, energy expenditure, and brain size) would also have had important implications 315 

for population structure, living group size and composition, with attendant repercussions for the 316 

emergence of key human social behaviours such as alloparenting, division of labour, and 317 

intergenerational cooperation [81]. Dennell [82] posits an important role of these biological 318 

differences in the pattern and speed of migration and colonisation of new environments of Homo 319 

erectus and Homo sapiens during the Out of Africa 1 and 2 events respectively.  320 

5. Conclusion: challenges and lessons for the use of the uniformitarian principle in cross-321 

disciplinary prehistoric demography 322 

The assumption of demographic uniformitarianism is a core principle in palaeodemography. This 323 

assumption provides the basic framework for palaeodemographic research across a range of 324 

disciplines, allowing for the construction of theoretically plausible models and parameters against 325 

which to test and examine palaeodemographic data, and providing the justification for the use of 326 

data from ethnographic and historical populations to supplement sparse prehistoric records. 327 

The principle of demographic uniformitarianism is well-accepted. Critics have questioned whether 328 

the use of the uniformitarian assumption is a form of “self-fulfilling prophecy” [83] that prevents the 329 

possibility of identifying unusual or unrecorded demographic behaviour in the past, either because 330 

prehistoric populations lived in environments that have no modern analogue, or because there is 331 

greater variation across human biological and life history parameters than is frequently supposed, 332 
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particularly between Pleistocene and Holocene populations [84-85]. While this possibility cannot be 333 

rejected outright, the null hypothesis should be that reconstructions of population dynamics and 334 

structures should fall within the known envelope of human responses, at least when analysing Homo 335 

sapiens populations. As life history parameters are subject to strong evolutionary constraints, 336 

patterns of age-specific fertility and mortality, and their subsequent effects on population size and 337 

dynamics, should vary in predictable, easily modelled, and fairly constrained ways [26]. 338 

Debate continues as to how far back in evolutionary and prehistoric time we can extrapolate human 339 

demographic and life history parameters comparable to those of recent historical and contemporary 340 

populations. The inapplicability of the assumption of demographic uniformitarianism in its strictest 341 

form complicates palaeodemographic research into archaic hominin populations, even for the more 342 

recent hominin species. Conversely, contradictions between expectations based on the 343 

uniformitarian assumption and palaeodemographic data do not automatically mean that the 344 

palaeodemographic data is best interpreted as representative of vastly different demographic 345 

regimes; issues of sampling and poor preservation are even more pertinent in these stages of early 346 

prehistory. The non-applicability of a strict principle of demographic uniformitarianism has far-347 

reaching implications for the study of the demography of archaic hominins across multiple 348 

disciplines. It reduces the comparability of palaeodemographic data from archaic hominins—both in 349 

terms of comparison with each other, and with Homo sapiens— even if derived using the same 350 

method.  It also means that greater caution must be taken in the use of values for absolute 351 

population estimates and model parameters derived from recent populations to supplement the 352 

prehistoric database, as the baseline justification for the use of these values is undermined. 353 

Understanding the evolution of human life history traits, and their impact on the demography of 354 

archaic hominins is one of the most important challenges of palaeodemography [26].  355 

The principle of uniformitarianism features less heavily in areas of prehistoric demographic research 356 

which focus on variables (such as population size and density) that are not directly subject to 357 

uniformitarian principles, and which are usually interpreted in relative, rather than absolute, terms. 358 

Nonetheless, as discussed in section 4, many palaeodemographic proxies contain assumptions about 359 

factors such as mobility and social structure that are, in part, influenced by biology, life history, and 360 

demographic parameters. In genetics, the estimation of effective or breeding population size from 361 

patterns of genetic variation [86] requires an assumption of average generation length- an attribute 362 

that likely varies between hominin species due to its relationship with life history parameters such as 363 

age at first birth and rate of senescence. Although containing a cultural component, demography is, 364 

at its core, the product of biological processes. The principle of biological and demographic 365 
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uniformitarianism that provides the theoretical scaffolding for palaeodemography should be borne 366 

in mind by all who work in cross-disciplinary prehistoric demographic research.  367 
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Figures 683 

684 
Figure 1. Role of uniformitarianism in simple analogical reasoning. The uniformitarian principle 685 

underpins the argument that similarities between modern and ancient materials can be explained by 686 

inferring that unobservable past processes and their effects would have resembled processes 687 

observable in the present day (after [6]) 688 
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699 
Figure 2. The age-at-death distribution of the 28 Middle Pleistocene hominins from the site of Sima 700 
de los Huesos, Spain. Redrawn from [61] 701 
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