Fault reactivation and strain partitioning across the brittle-

2 ductile transition

- 3 Gabriel G. Meyer, Nicolas Brantut, Thomas M. Mitchell, and Philip G. Meredith
- 4 Department of Earth Sciences, University College London, London, UK[[Postal code?]]

5 ABSTRACT

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

The so-called "brittle-ductile transition" is thought to be the strongest part of the lithosphere, and defines the lower limit of the seismogenic zone. It is characterized not only by a transition from localized to distributed (ductile) deformation, but also by a gradual change in microscale deformation mechanism, from microcracking to crystal plasticity. These two transitions can occur separately under different conditions. The threshold conditions bounding the transitions are expected to control how deformation is partitioned between localized fault slip and bulk ductile deformation. Here, we report results from triaxial deformation experiments on pre-faulted cores of Carrara marble over a range of confining pressures, and determine the relative partitioning of the total deformation between bulk strain and on-fault slip. We find that the transition initiates when fault strength (σ_f) exceeds the yield stress (σ_v) of the bulk rock, and terminates when it exceeds its ductile flow stress (σ_{flow}). In this domain, yield in the bulk [[bulk] rock?]] occurs first, and fault slip is reactivated as a result of bulk strain hardening. The contribution of fault slip to the total deformation is proportional to the ratio (σ_f $-\sigma_{\rm v}$)/($\sigma_{\rm flow}$ – $\sigma_{\rm v}$). We propose an updated crustal strength profile extending the localizedductile transition toward shallower regions where the strength of the crust would be

DOI:10.1130/G46516.1

limited by fault friction, but significant proportions of tectonic deformation could be accommodated simultaneously by distributed ductile flow.

INTRODUCTION AND METHODOLOGY

Under the low pressure and temperature conditions of the upper crust, rocks
generally deform by grain-scale microcracking, and crustal-scale deformation is
accommodated by slip on discrete fault planes. In this regime, the overall strength of the
crust is limited by fault friction (Scholz, 2002; Paterson and Wong, 2005). Deeper in the
crust, at higher pressure and temperature, rock deformation becomes more diffuse, and
may be driven by crystal plastic phenomena such as dislocation creep. Here, the overall
strength of rocks can generally be described by a steady-state flow law sensitive
primarily to temperature and strain rate (e.g., Goetze and Brace, 1972; Evans and
Kohlstedt, 1995). The transition between these two rheological domains, the so-called
"brittle-ductile transition", occurs over a pressure and temperature range where rocks
deform by an interplay of cracking and crystal plasticity. The brittle-ductile transition
commonly loosely refers to the progressive change in crustal rheology with increasing
depth; here we will use the term "ductile" in the sense described by Rutter (1986),
whereby it refers to macroscale distributed flow, regardless of the nature of the
deformation mechanism, and will use "brittle" to describe fracturing processes at all
scales.
In nature, the brittle-ductile transition zone has been identified in exhumed shear
zones showing markers of crystal plasticity (e.g., mylonites) overprinted by slip planes
and pseudotachylytes that are inherent to the brittle regime (e.g., Sibson, 1980; Passchier,
1982; Hobbs et al., 1986). Such field evidence suggests that the transition in deformation

Publisher: GSA

Journal: GEOL: Geology DOI:10.1130/G46516.1 mechanism is associated with a change in the degree of strain localization, from narrow

46	frictional slip zones to wider plastic shear zones.
47	Laboratory experiments have shown that the transition from localized fracture to
48	ductile flow generally occurs when the frictional strength of the fault, $\sigma_{\rm f}$, equals [[or
49	exceeds?]] the bulk flow stress of the rock, σ_{flow} (Byerlee, 1968; Kohlstedt et al., 1995).
50	However, distributed deformation at the macroscopic scale may still be dominated by
51	brittle microscale processes, and only further increases in pressure and temperature lead
52	to fully crystal-plastic flow. This shows that the macroscale transition in strain
53	localization (localized-ductile transition) is not necessarily the same as the microscale
54	transition in deformation mechanism (brittle-plastic transition) and that the two
55	transitions can occur under different pressure and temperature conditions. The resulting
56	complex interplay between brittle and plastic mechanisms makes the flow stress $\sigma_{\rm flow}$
57	sensitive to a large number of parameters in the ductile regime (see Evans et al.,
58	1995[[Evans et al., 1995 is not in the reference list]], and references therein), notably
59	the imposed strain rate and the accumulated strain.
60	Furthermore, the criterion $\sigma_{flow}\!>\!\sigma_f$ for the onset of ductile deformation was
61	originally established from studies on initially intact materials undergoing a simple
62	monotonic loading history, and describes deformation regimes in a binary manner
63	(localized or distributed) without emphasizing the potential for coexistence of both fault
64	slip and bulk ductile flow. The applicability of this criterion to the crust might therefore
65	be limited, because crustal-scale deformation is controlled by preexisting structures
66	(faults and shear zones; see, e.g., Goetze and Evans, 1979; Brace and Kohlstedt, 1980).
67	Thus, it remains unclear if and how faults are reactivated across the brittle-ductile

68 transition. Previous experimental studies have commonly used sample geometries that 69 enforce sliding on narrow shear zones between essentially rigid blocks under increasing 70 pressure and temperature conditions (e.g., Shimamoto, 1986; Pec et al., 2016), which do 71 not allow for quantification of partitioning between fault slip and bulk strain. 72 Here, we conducted rock deformation experiments on pre-faulted samples of 73 Carrara marble and monitored strain partitioning and fault reactivation across the 74 localized-ductile transition. Our experiments were performed at room temperature and 75 confining pressures (P_c) from 5 to 80 MPa. We determined partitioning of the total 76 shortening between fault slip and off-fault matrix strain by subtracting the matrix strain 77 (measured with strain gauges) from the total shortening (measured with external 78 displacement transducers). 79 Experiments were conducted in two stages. During the first stage, samples were 80 pre-faulted by loading at $P_c = 5$ MPa until localized brittle failure occurred. Following 81 failure, an additional increment of shortening $\Delta L/L$ (L—length) of either 0.1% or 1% was 82 allowed to accumulate before proceeding to the second stage, in order to test any effect of 83 accumulated fault slip on the transition. In the second stage, P_c was increased stepwise 84 from 5 to 80 MPa in 5 or 10 MPa increments. At each pressure step, the samples were reloaded at an axial shortening rate of $\varepsilon = 10^{-5} \, \text{s}^{-1}$ [[Should the units for shortening rate 85 86 include a length unit (all instances)? If not, briefly explain how this is normalized]] 87 unshortil 0.1% of irrecoverable axial shortening was accumulated, and then unloaded 88 before proceeding to the next pressure step (see Section DR1 and Fig. DR2 in the GSA) Data Repository¹ for an extended methodology, and Table DR3 for a summary of 89 90 experimental conditions).

RESULTS

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

During the first stage (Fig. 1), the sample behaves in a manner typical of the brittle regime, and the stress drop (accompanied by partial relaxation of the off-fault elastic strain) marks the formation of the macroscopic shear fault. During the second stage, at each confining pressure step, the stress-shortening relationship is initially linear, but deviates from linearity at some threshold stress σ_{v_2} and then tends to plateau (Fig. 1A). This "plateau" stress increases significantly with increasing $P_{\rm c}$. At low $P_{\rm c}$ (10 and 20 MPa), the matrix strain ($\varepsilon_{\text{matrix}}$) initially increases at the same rate as the total shortening $(\Delta L/L)$, then deviates toward a constant value. The deviation point occurs at a stress denoted σ_f , and marks the onset of fault slip (triangles in Fig. 1B). At intermediate P_c (30–60 MPa), the same deviation is observed to occur, but $\varepsilon_{\text{matrix}}$ continues to increase beyond this point, albeit at a lower rate, indicating contributions from both matrix strain and fault slip to the total shortening. This observation appears to be independent of shortening, as demonstrated in an additional experiment where a single, second-stage deformation cycle was performed at $P_c = 35$ MPa, which shows no further deviation in matrix strain for a total shortening of up to a further 2% (Fig. DR4). Finally, at the highest P_c (70 MPa and above), $\varepsilon_{\text{matrix}}$ remains equal to $\Delta L/L$ throughout the deformation cycle, which implies that the fault is fully locked. To assess the extent of microcracking in the matrix, we measured the horizontal P-wave speed across the fault during each deformation cycle (Fig. DR5). The wave speed at the start of each cycle increased with confining pressure. During deformation, the wave speed changed very little for cycles at $P_c < 30$ MPa, but decreased progressively for all

113	cycles at higher pressures. The magnitude of the decrease in P-wave speed increased with
114	increasing $P_{\rm c}$ from 30 to 60 MPa but then decreased at higher confinement.
115	At $P_c = 10$ and 20 MPa, the yield stress and the fault strength are equal, and the
116	calculated slip contributes close to 100% of the total shortening (Figs. 2A and 2D).
117	Between $P_c = 30$ MPa and $P_c = 60$ MPa, σ_f increases linearly with P_c , whereas σ_y
118	remains approximately constant at ~115 MPa. Over this pressure range, the slip
119	contribution progressively decreases from \sim 80% at $P_{\rm c}$ = 30 MPa down to \sim 15% at $P_{\rm c}$ =
120	60 MPa. At P_c = 70 MPa and above, the fault is fully locked, σ_f becomes inaccessible,
121	and the slip contribution drops to zero. During the experiment where more slip is
122	accumulated on the fault (1% rather than 0.1%) prior to stage 2 (Figs. 2B and 2E), $\sigma_{\rm f}$ and
123	σ_y behave in a comparable manner to that described above, but σ_f increases with
124	increasing P_c at a slightly higher rate. As a result, the deviation between the two initiates
125	at $P_c = 20$ MPa and the fault becomes fully locked around $P_c = 55$ MPa. Similarly, the
126	slip contribution decreases from >60% at P_c = 20 MPa to 20% at P_c = 45 MPa. During
127	the experiment at the higher shortening rate of 10^{-4} s ⁻¹ (Figs. 2C and 2F), the trend
128	remains the same, but the P_c domain over which $\sigma_f = \sigma_y$ extends up to 35 MPa. From P_c
129	= 40 MPa to P_c = 60 MPa, σ_f continues to increase linearly with increasing P_c , and σ_y
130	remains approximately constant at 135 MPa. The slip contribution decreases from ~80%
131	at $P_c = 40$ MPa to 0% at $P_c = 60$ MPa. At the lower shortening rate of 10^{-6} s ⁻¹ , the stress
132	at the onset of fault slip σ_f does not differ significantly from that at higher shortening
133	rates. By contrast with the test performed at 10^{-4} s ⁻¹ , where the decrease in slip
134	contribution initiates at $P_c \approx 40$ MPa, at the lower rate of 10^{-6} s ⁻¹ , that decrease initiates
135	at $P_c \approx 15$ MPa.

DISCUSSION AND CONCLUSION

Our results show that with increasing confining pressure, faulted Carrara marble
samples gradually shift from purely localized behavior where most of the deformation is
accommodated by slip on the fault, to ductile behavior where strain is homogeneously
distributed throughout the sample and the fault is locked. The transition commences at
the confining pressure where fault strength becomes larger than matrix yield stress (σ_f >
σ_y), and terminates when fault strength becomes equal to matrix flow stress ($\sigma_f = \sigma_{flow}$)
(Figs. 1A, 1B, and 1C[[Fig. 1 does not have a panel C – should this be Fig. 2?]]). Thus,
a transitional behavior where both fault slip and matrix deformation coexist occurs over a
range of conditions delimited by $\sigma_y < \sigma_f < \sigma_{flow}$.
When $\sigma_f = \sigma_y$, no matrix strain is recorded (confirmed by the absence of
significant variations in P-wave speed), and the yield stress of the rock is controlled by
fault friction alone. This can be explained by the fact that, at low P_c , the fault frictional
strength is likely lower than the yield stress of the off-fault matrix material (Fredrich et
al., 1989). However, when $\sigma_f > \sigma_y$, the rock initially yields in the matrix and deformation
is entirely ductile. The associated decrease in P-wave speed indicates that this ductility is
driven mostly by diffuse microcracking. However, upon further loading, strain hardening
eventually leads to reactivation of the fault when the applied stress reaches $\sigma_{\rm f}$ (confirmed
by the existence of a single fault plane in post-mortem samples; Figs. DR6 and DR7).
After reactivation, both ductile matrix strain and fault slip operate simultaneously, and
partitioning of the total shortening between them is proportional to the ratio ($\sigma_{\!f}-$
σ_y)/($\sigma_{flow} - \sigma_y$), regardless of shortening rate and initial fault slip (Fig. 3). When $\sigma_f \ge$
σ_{flow} , the fault is locked and the deformation is fully ductile. The decrease in magnitude

DOI:10.1130/G46516.1

159 of the drop in P-wave speed under these conditions suggests that the contribution of 160 microcracking to the overall deformation decreases with respect to that of crystal 161 plasticity (Fredrich et al., 1989). 162 Our observations highlight the key role of the yield stress in the partitioning 163 between localized fault slip and bulk deformation of the matrix. In Carrara marble, the 164 control on yield stress switches from microcracking to crystal plasticity at low P_c (~50 MPa; Fredrich et al., 1989; Fig. 4). This is corroborated by the pressure-insensitive 165 166 behavior exhibited by our yield stress data at $P_c > 40$ MPa (Figs. 2A–2C). Remarkably, 167 the impact of rate [[Rate of what?]] on the partitioning of deformation is well captured, 168 to first order, by the rate dependency of yield stress only (Fig. 3). 169 Our results are compatible with those of previous studies on silicate rocks using 170 initially intact samples, where a similar progression from initial ductile yielding to strain 171 localization and faulting with increasing deformation has been reported for conditions 172 approaching the brittle-ductile transition (Hirth and Tullis, 1994). Additionally, the 173 coexistence of ductile flow and localized shear zones has been observed in granite and 174 feldspar aggregates (Tullis and Yund, 1977, 1992). 175 The existence of a zone of transitional behavior delimited by the yield stress can 176 be integrated into a crustal-strength profile model (e.g., Kirby, 1980; Brace and 177 Kohlstedt, 1980; Sibson, 1983; Fig. 4). Because yield stress is systematically lower than 178 the flow stress, it appears that the transitional regime where ductile and localized strain 179 coexist extends toward shallower depths compared to previous models of the brittle-180 ductile transition, into a depth range usually considered to be fully localized. In this zone, 181 crustal strength is still controlled by fault friction, but with increasing depth, a growing

DOI:10.1130/G46516.1

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

proportion of the strain can be accommodated off-fault as the yield stress diverges from the frictional strength. This would suggest an overall widening of the shear zone, which is consistent with geological (e.g., Sibson, 1977; Scholz, 1988; Shimamoto, 1989; Cooper et al., 2010, 2017) and geophysical (e.g., Cowie et al., 2013) observations. Furthermore, high strain rates during seismic and post-seismic slip would increase both yield and flow stresses, therefore shifting the transition zone to greater depth. This is consistent with the existence of a zone of alternating behavior as discussed by Scholz (1988) and the formation of complex overprinted brittle and ductile structures observed in nature (e.g., Sibson, 1980; Melosh et al., 2014). Conversely, lower strain rates during the interseismic period (10⁻¹² s⁻¹ to 10⁻¹⁵ s⁻¹) would reduce yield and flow stresses, which would in turn promote ductile deformation by shifting the transition zone to shallower depths. In this region of the crust, fault reactivation is dependent on the ability of the crust to harden with increasing strain. If recovery mechanisms are active, it is possible that large amounts of tectonic strain can be accommodated off-fault during transient deformation episodes, and if recovery is predominant, fault reactivation never occurs. Therefore, the gray area in Figure 4 represents all possible stress states in the crust. This rheology could explain the abnormally low stresses recorded around major faults (e.g., Behr and Platt, 2014), but the mechanisms responsible for low-temperature strain hardening and recovery are, to date, mostly unknown. Unfortunately, there is a paucity of systematic data on low-temperature yield stress in crustal rocks. However, laboratory studies on wet quartz single crystals (e.g., Balderman, 1974; Doukhan and Trépied, 1985) suggest low-temperature yield stresses on

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G46516.1 the order of 50-100 MPa, which would imply a transition zone depth of only a few

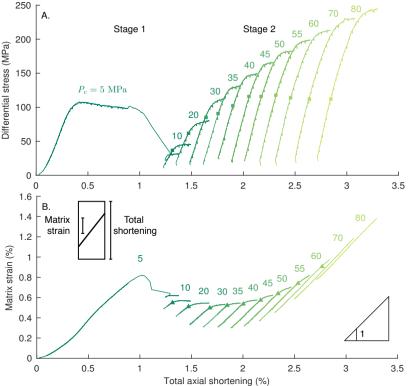
205	kilometers in continental crust.
206	ACKNOWLEDGMENTS
207	We thank Whitney Behr, Matej Pec, and Nicola De Paola for their constructive
208	reviews. This project received funding from the European Union's Horizon 2020 research
209	and innovation program under the Marie Sklodowska-Curie grant agreement 642029-
210	ITN CREEP, and under the European Research Council grant agreement 804685-
211	RockDEaF.
212	REFERENCES CITED
213	Balderman, M.A., 1974, The effect of strain rate and temperature on the yield point of
214	hydrolytically weakened synthetic quartz: Journal of Geophysical Research, v. 79,
215	p. 1647–1652, https://doi.org/10.1029/JB079i011p01647.
216	Behr, W.M., and Platt, J.P., 2014, Brittle faults are weak, yet the ductile middle crust is
217	strong: Implications for lithospheric mechanics: Geophysical Research Letters, v. 41,
218	p. 8067–8075, https://doi.org/10.1002/2014GL061349.
219	Brace, W.F., and Kohlstedt, D.L., 1980, Limits on lithospheric stress imposed by
220	laboratory experiments: Journal of Geophysical Research, v. 85, p. 6248-6252,
221	https://doi.org/10.1029/JB085iB11p06248.
222	Byerlee, J.D., 1968, Brittle-ductile transition in rocks: Journal of Geophysical Research,
223	v. 73, p. 4741–4750, https://doi.org/10.1029/JB073i014p04741.
224	Cooper, F.J., Platt, J.P., Platzman, E.S., Grove, M.J., and Seward, G., 2010, Opposing
225	shear senses in a subdetachment mylonite zone: Implications for core complex
226	mechanics: Tectonics, v. 29, TC4019, https://doi.org/10.1029/2009TC002632.

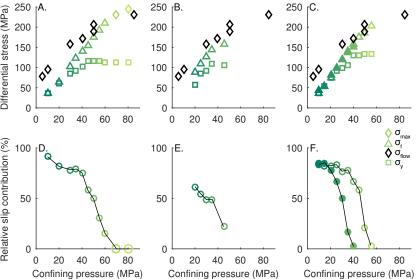
Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G46516.1 hr, W.M., 2017, Rheological transitions in the middle

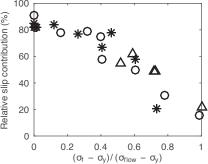
227	Cooper, F.J., Platt, J.P., and Behr, W.M., 2017, Rheological transitions in the middle
228	crust: Insights from Cordilleran metamorphic core complexes: Solid Earth, v. 8,
229	p. 199–215, https://doi.org/10.5194/se-8-199-2017.
230	Cowie, P.A., Scholz, C.H., Roberts, G.P., Faure Walker, J.P., and Steer, P., 2013,
231	Viscous roots of active seismogenic faults revealed by geologic slip rate variations:
232	Nature Geoscience, v. 6, p. 1036–1040, https://doi.org/10.1038/ngeo1991.
233	Doukhan, JC., and Trépied, L., 1985, Plastic deformation of quartz single crystals:
234	Bulletin de Minéralogie, v. 108, p. 97–123, https://doi.org/10.3406/bulmi.1985.7860.
235	Evans, B., and Kohlstedt, D.L., 1995, Rheology of rocks, in Ahrens, T.J., ed., Rock
236	Physics and Phase Relations: A Handbook of Physical Constants: American
237	Geophysical Union Reference Shelf 3, p. 148–165.
238	Fredrich, J.T., Evans, B., and Wong, TF., 1989, Micromechanics of the brittle to plastic
239	transition in Carrara marble: Journal of Geophysical Research, v. 94, p. 4129–4145,
240	https://doi.org/10.1029/JB094iB04p04129.
241	Goetze, C., and Brace, W.F., 1972, Laboratory observations of high-temperature
242	rheology of rocks: Tectonophysics, v. 13, p. 583-600, https://doi.org/10.1016/0040-
243	1951(72)90039-X.
244	Goetze, C., and Evans, B., 1979, Stress and temperature in the bending lithosphere as
245	constrained by experimental rock mechanics: Geophysical Journal International,
246	v. 59, p. 463–478, https://doi.org/10.1111/j.1365-246X.1979.tb02567.x.
247	Hirth, G., and Tullis, J., 1994, The brittle-plastic transition in experimentally deformed
248	quartz aggregates: Journal of Geophysical Research, v. 99, p. 11,731–11,747,
249	https://doi.org/10.1029/93JB02873.

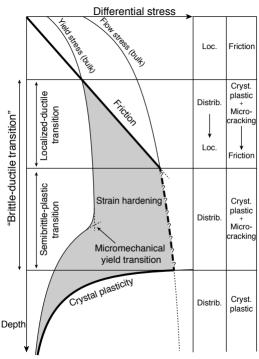
DOI:10.1130/G46516.1

230	Hobbs, B.E., Old, A., and Teyssler, C., 1986, Earthquakes in the ducthe regime?. Pure
251	and Applied Geophysics, v. 124, p. 309–336, https://doi.org/10.1007/BF00875730.
252	Kirby, S.H., 1980, Tectonic stresses in the lithosphere: Constraints provided by the
253	experimental deformation of rocks: Journal of Geophysical Research, v. 85, p. 6353-
254	6363, https://doi.org/10.1029/JB085iB11p06353.
255	Kohlstedt, D.L., Evans, B., and Mackwell, S.J., 1995, Strength of the lithosphere:
256	Constraints imposed by laboratory experiments: Journal of Geophysical Research,
257	v. 100, p. 17,587–17,602, https://doi.org/10.1029/95JB01460.
258	Melosh, B.L., Rowe, C.D., Smit, L., Groenewald, C., Lambert, C.W., and Macey, P.,
259	2014, Snap, Crackle, Pop: Dilational fault breccias record seismic slip below the
260	brittle-plastic transition: Earth and Planetary Science Letters, v. 403, p. 432–445,
261	https://doi.org/10.1016/j.epsl.2014.07.002.
262	Passchier, C.W., 1982, Pseudotachylyte and the development of ultramylonite bands in
263	the Saint-Barthélemy Massif, French Pyrenees: Journal of Structural Geology, v. 4,
264	p. 69–79, https://doi.org/10.1016/0191-8141(82)90008-6.
265	[[City of publication?]]Paterson, M.S., and Wong, TF., 2005, Experimental Rock
266	Deformation—The Brittle Field: Springer Science & Business Media, 348 p.
267	Pec, M., Stünitz, H., Heilbronner, R., and Drury, M., 2016, Semi-brittle flow of granitoid
268	fault rocks in experiments: Journal of Geophysical Research: Solid Earth, v. 121,
269	p. 1677–1705, https://doi.org/10.1002/2015JB012513.
270	Rutter, E.H., 1986, On the nomenclature of mode of failure transitions in rocks:
271	Tectonophysics, v. 122, p. 381–387, https://doi.org/10.1016/0040-1951(86)90153-8.


DOI:10.1130/G46516.1
Scholz C.H. 1988 The brittle-plastic transition and the depth of seismic faulting:


272	Scholz, C.H., 1988, The brittle-plastic transition and the depth of seismic faulting:
273	Geologische Rundschau, v. 77, p. 319–328, https://doi.org/10.1007/BF01848693.
274	Scholz, C.H., 2002, The Mechanics of Earthquakes and Faulting (second edition):
275	Cambridge, UK, Cambridge University Press, 471 p.,
276	https://doi.org/10.1017/CBO9780511818516.
277	Shimamoto, T., 1986, Transition between frictional slip and ductile flow for halite shear
278	zones at room temperature: Science, v. 231, p. 711-714,
279	https://doi.org/10.1126/science.231.4739.711.
280	Shimamoto, T., 1989, The origin of S-C mylonites and a new fault-zone model: Journal
281	of Structural Geology, v. 11, p. 51-64, https://doi.org/10.1016/0191-8141(89)90035-
282	7.
283	Sibson, R.H., 1977, Fault rocks and fault mechanisms: Journal of the Geological Society,
284	v. 133, p. 191–213, https://doi.org/10.1144/gsjgs.133.3.0191.
285	Sibson, R.H., 1980, Transient discontinuities in ductile shear zones: Journal of Structural
286	Geology, v. 2, p. 165–171, https://doi.org/10.1016/0191-8141(80)90047-4.
287	Sibson, R.H., 1983, Continental fault structure and the shallow earthquake source:
288	Journal of the Geological Society, v. 140, p. 741–767,
289	https://doi.org/10.1144/gsjgs.140.5.0741.
290	Tullis, J., and Yund, R.A., 1977, Experimental deformation of dry Westerly granite:
291	Journal of Geophysical Research, v. 82, p. 5705-5718,
292	https://doi.org/10.1029/JB082i036p05705.
293	Tullis, J., and Yund, R., 1992, The brittle-ductile transition in feldspar aggregates: An
294	experimental study, in Evans, B. and Wong, TF., eds., Fault Mechanics and


295	Transport Properties of Rocks: A Festschrift in Honor of W. F. Brace: New York,
296	Academic Press, International Geophysics, v. 51, p. 89–117,
297	https://doi.org/10.1016/S0074-6142(08)62816-8.
298	FIGURE CAPTIONS
299	Figure 1. Mechanical data for full fault reactivation experiment (1% accumulated slip,
300	axial shortening rate $\varepsilon = 10^{-5} \text{ s}^{-1}$). A: Differential stress against total axial shortening. B:
301	Matrix strain against total axial shortening. Unloading phases of each cycle have been
302	removed to aid clarity. Squares represent point at which sample yields, and triangles
303	represent point at which the fault in the sample is reactivated (i.e., begins to slip).
304	Numbers above curves represent confining pressure (P_c , in MPa). Inset in B shows the
305	two different recorded deformations. [[Clarify what is shown in the panel B inset – is
306	this a diagram of the experiment setup? Cross-sectional or plan view? What is the
307	diagonal line? Also explain the triangular diagram at the lower-right corner of
308	panel B]]
309	[[In the figure, in axis descriptions, enclose units in parentheses rather than square
310	brackets; italicize "P" in "Pc"]]
311	
312	Figure 2. A–C: Flow stress (σ_{flow}), maximum stress (σ_{max}), fault strength (σ_f), and yield
313	stress (σ_y) for experiments at varying confining pressure. D–F: Slip contribution to the
314	total shortening during each deformation cycle for experiments at varying confining
315	pressure. Data represent three different scenarios: panels A and D, 0.1% imposed
316	accumulated fault slip and axial shortening rate $\varepsilon = 10^{-5} \text{ s}^{-1}$; panels B and E, 1% imposed


317	accumulated fault slip and $\varepsilon = 10^{-5} \text{ s}^{-1}$; and panels C and F, 0.1% imposed accumulated
318	fault slip and $\varepsilon = 10^{-4} \text{ s}^{-1}$ (open symbols) and 10^{-6} s^{-1} (solid symbols).
319	[[In the figure, in axis descriptions, enclose units in parentheses rather than square
320	brackets]]
321	
322	Figure 3. Slip contribution to total shortening as function of the ratio $(\sigma_f - \sigma_y)/(\sigma_{flow} -$
323	σ_y). Each set of symbols represents different experimental conditions: circles, 0.1%
324	accumulated slip and axial shortening rate $\varepsilon = 10^{-5} \text{ s}^{-1}$; triangles, 1% accumulated slip
325	and $\varepsilon = 10^{-5} \text{ s}^{-1}$; and stars, 0.1% accumulated slip and $\varepsilon = 10^{-4} \text{ s}^{-1}$.
326	[[In the figure, in axis descriptions, enclose units in parentheses rather than square
327	brackets; remove italics from all instances of "σ"]]
328	
329	Figure 4. Conceptual model of crustal strength. Bold line represents strength profile, and
330	gray area, possible stress states in crust. [[Explain what the last column describes, and
331	what the downward-pointing arrows indicate in the rightmost two columns]] Loc.—
332	localized deformation; Distrib.—distributed (ductile) deformation; Crys.—crystal.
333	[[In the figure, delete the spaces surrounding the hyphens in "Semibrittle-plastic"
334	and "Localized-ductile"]]
335	
336	¹ GSA Data Repository item 2019xxx, extended methodology (Section DR1), sample
337	pictures (Fig. DR2), summary of the experimental conditions (Table DR3), mechanical
338	data for single-cycle experiment (Fig. DR4), P-wave speed data (Fig. DR5), post-mortem
339	sample picture (Fig. DR6), and slip proportion measurements (Fig. DR7), is available

- online at http://www.geosociety.org/datarepository/2019/, or on request from
- editing@geosociety.org.

