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Polymorphisms associated with BIN1 (bridging integrator 1) confer the second greatest risk for developing late-onset Alzheimer’s

disease. The biological consequences of this genetic variation are not fully understood; however, BIN1 is a binding partner for tau.

Tau is normally a highly soluble cytoplasmic protein, but in Alzheimer’s disease, tau is abnormally phosphorylated and accumu-

lates at synapses to exert synaptotoxicity. The purpose of this study was to determine whether alterations in BIN1 and tau in

Alzheimer’s disease promote the damaging redistribution of tau to synapses, as a mechanism by which BIN1 polymorphisms may

increase the risk of developing Alzheimer’s disease. We show that BIN1 is lost from the cytoplasmic fraction of Alzheimer’s disease

cortex, and this is accompanied by the progressive mislocalization of phosphorylated tau to synapses. We confirmed proline 216 in

tau as critical for tau interaction with the BIN1-SH3 domain and showed that the phosphorylation of tau disrupts this binding,

suggesting that tau phosphorylation in Alzheimer’s disease disrupts tau–BIN1 associations. Moreover, we show that BIN1 knock-

down in rat primary neurons to mimic BIN1 loss in Alzheimer’s disease brain causes the damaging accumulation of phosphory-

lated tau at synapses and alterations in dendritic spine morphology. We also observed reduced release of tau from neurons

upon BIN1 silencing, suggesting that BIN1 loss disrupts the function of extracellular tau. Together, these data indicate that

polymorphisms associated with BIN1 that reduce BIN1 protein levels in the brain likely act synergistically with increased tau

phosphorylation to increase the risk of Alzheimer’s disease by disrupting cytoplasmic tau–BIN1 interactions, promoting the

damaging mis-sorting of phosphorylated tau to synapses to alter synapse structure and reducing the release of physiological forms

of tau to disrupt tau function.
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Introduction
Tauopathies including Alzheimer’s disease are character-

ized by tau protein modifications that affect normal tau

interactions and localization and lead to the develop-

ment of neurofibrillary pathology (Guo et al., 2017).

The redistribution of highly phosphorylated and/or oli-

gomeric tau species to pre- and post-synapses causes the

disruption of synaptic vesicle mobility and neurotrans-

mitter release (Zhou et al., 2017; McInnes et al., 2018)

and excitotoxicity (Ittner et al., 2010; Li and Gotz,

2017), respectively. As a result, the accumulation of

phosphorylated tau at synapses is closely linked with

synapse loss and dementia in Alzheimer’s disease (Perez-

Nievas et al., 2013; Hanseeuw et al., 2019). Developing

a better understanding of the causes of tau protein re-

distribution to synapses may elucidate potential new

treatment strategies for Alzheimer’s disease and related

tauopathies.

Recent genome-wide association studies have identified

several gene variants that increase the risk of developing

Alzheimer’s disease. Of those identified to date, poly-

morphisms associated with bridging integrator 1 (BIN1)

confer the second largest genetic risk factor for develop-

ing sporadic Alzheimer’s disease, after the apolipopro-

tein E4 allele (APOE4) (Seshadri et al., 2010; Hu et al.,

2011; Wijsman et al., 2011; Lambert et al., 2013; Naj

et al., 2014; Vardarajan et al., 2015). Rare variants in

coding regions of BIN1 have been identified

(Vardarajan et al., 2015); however, the more common

BIN1 variants are upstream of the gene and do not af-

fect protein structure. However, these may affect the tis-

sue-specific splicing or expression of the cytoplasmic

membrane-binding BIN1 protein, which is known to

play important roles in endocytosis and subcellular traf-

ficking (Prokic et al., 2014). In support of this, the ex-

pression of the longer neuronal isoform of BIN1 is

decreased and the shorter glial isoforms are increased in

Alzheimer’s disease brain (Glennon et al., 2013; Holler

et al., 2014; De Rossi et al., 2016).

While most genetic variants that increase the risk of

Alzheimer’s disease affect b-amyloid generation and/or

clearance, BIN1 is relatively unusual in that its effects in

Alzheimer’s disease appear to be mediated by tau

(Chapuis et al., 2013; Wang et al., 2016). In Alzheimer’s

disease brain, BIN1 may colocalize with neurofibrillary

tangle-containing neurons (Holler et al., 2014) and is

associated with elevated tau phosphorylation (Wang

et al., 2016). Expression of BIN1 in a Drosophila model

of Alzheimer’s disease was shown to modulate the tox-

icity of tau (Chapuis et al., 2013) and the knockdown of

BIN1 promotes tau propagation between neurons

(Calafate et al., 2016). Others have shown that BIN1

over-expression in mice causes microstructural changes in

hippocampal circuits (Daudin et al., 2018) that are

among the first to show tau pathology in Alzheimer’s
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disease (Daudin et al., 2018), suggesting that BIN1 may

affect the development of Alzheimer’s disease by modulat-

ing tau effects at synapses, and possibly also synaptic

activity-dependent tau release (Pooler et al., 2013).

The effects of BIN1 on tau appear to be mediated by

direct association between the two proteins. Interactions

between BIN1 and tau have been demonstrated in cell

models, Drosophila and mice (Chapuis et al., 2013;

Sottejeau et al., 2015; Malki et al., 2017; Sartori et al.,

2019). BIN1 contains a src homology 3 (SH3) domain

through which it interacts with prolines within PXXP

motifs (Prokic et al., 2014). Tau contains seven PXXP

motifs in its proline-rich domain (Usardi et al., 2011),

and the SH3 domain of BIN1 interacts with the proline-

rich region of tau in a phosphorylation-dependent man-

ner (Chapuis et al., 2013; Sottejeau et al., 2015; Malki

et al., 2017; Sartori et al., 2019). However, the mecha-

nisms by which BIN1 affects tau to mediate pathological

changes in tau proteins are not fully understood. The

purpose of this study was to determine whether altera-

tions in BIN1 and tau in Alzheimer’s disease promote the

damaging redistribution of tau to synapses, as a mechan-

ism by which BIN1 polymorphisms may increase the risk

of developing Alzheimer’s disease.

Materials and methods

Human brain

Braak-staged post-mortem human temporal cortex was

obtained from the Medical Research Council London

Neurodegenerative Diseases Brain Bank at King’s College

London following ethical approval (Research Ethics

Committee reference: 08/MRE09/38þ 5). Neuropathological

assessment was performed according to standard criteria.

Samples were classified as control (no history of neurode-

generative or psychiatric disease and age-related path-

ology only), moderate Alzheimer’s disease (clinical

diagnosis of Alzheimer’s disease and Braak stage III–IV

pathology) and severe Alzheimer’s disease (clinical diag-

nosis of Alzheimer’s disease and Braak stage V–VI path-

ology). Characteristics of these samples are summarized

in Tables 1 and 2.

Modification of BIN1 expression in
primary neurons

All animal work was conducted in accordance with the

UK Animals (Scientific Procedures) Act 1986 and the

European Directive 2010/63/EU under UK Home Office

Personal and Project Licenses and with agreement from

the King’s College London (Denmark Hill) Animal

Welfare and Ethical Review Board.

Pregnant female Sprague-Dawley rats were purchased

from Charles River and were used within 1 day of deliv-

ery. Water and food were available (Picolab rodent diet

20; # 5053; Lab Diet, St Louis, MO, USA) ad libitum.

Animals were housed at 19–22�C, humidity 55%, 12-

h:12-h light:dark cycle with lights on at 07:30. Primary

cortical neurons were dissected from embryonic day (E)

18 male and female rats and were cultured as previously

described (Pooler et al., 2012) on poly-D-lysine-coated

plates or glass coverslips. Rat neurons were used since

these provide a readily tractable cell model in which we

can mimic findings from post-mortem human brain and

they are a model in which ‘tau biology’ has been

Table 1 Summary of temporal cortex tissue used in

this study

Sex Age

(years)

Post-

mortem

delay (h)

Braak

stage

Diagnosis

F 74 64 II Control

F 90 44 II Control

F 73 27 I Control

F 77 21 0 Control

F 80 22 II Control

M 68 60 II Control

M 80 55 II–III Control

M 90 45 – Control

M 78 24 III Control

F 92 9 II Control

M 82 47 I Control

F 84 34 I–II Control

F 90 50 II Control

M 66 52 – Control

M 82 18 I/II Control

M 91 48 IV Moderate Alzheimer’s disease

M 88 79 III–IV Moderate Alzheimer’s disease

F 95 47 IV Moderate Alzheimer’s disease

M 84 86 IV Moderate Alzheimer’s disease

M 98 53 IV Moderate Alzheimer’s disease

F 86 55.5 IV Moderate Alzheimer’s disease

M 82 28 IV Moderate Alzheimer’s disease

M 86 52.5 IV Moderate Alzheimer’s disease

F 83 22 IV Moderate Alzheimer’s disease

M 93 13.5 IV Moderate Alzheimer’s disease

F 83 41.5 IV Moderate Alzheimer’s disease

F 97 67.5 III–IV Moderate Alzheimer’s disease

F 96 39 IV Moderate Alzheimer’s disease

F 92 19.5 III Moderate Alzheimer’s disease

F 92 29.5 IV Moderate Alzheimer’s disease

F 73 30 VI Severe Alzheimer’s disease

F 84 27 VI Severe Alzheimer’s disease

F 79 31 VI Severe Alzheimer’s disease

M 86 38 VI Severe Alzheimer’s disease

F 85 79 VI Severe Alzheimer’s disease

M 67 39.5 VI Severe Alzheimer’s disease

F 69 73 VI Severe Alzheimer’s disease

F 89 38.5 VI Severe Alzheimer’s disease

F 93 49 VI Severe Alzheimer’s disease

M 84 67 VI Severe Alzheimer’s disease

F 81 20 VI Severe Alzheimer’s disease

M 83 22 VI Severe Alzheimer’s disease

F 81 17.5 VI Severe Alzheimer’s disease

F 86 25 VI Severe Alzheimer’s disease

M 66 41 VI Severe Alzheimer’s disease

Table shows details of sex, age, post-mortem delay, Braak stage and Alzheimer’s dis-

ease diagnosis for cases from which frozen temporal cortex sections was obtained.

Tau-directed effects of BIN1 loss in Alzheimer’s disease BRAIN COMMUNICATIONS 2020: Page 3 of 16 | 3

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article-abstract/2/1/fcaa011/5736128 by U

niversity C
ollege London user on 10 April 2020



extensively studied. Lentivirus short hairpin RNA

(shRNA) targeting BIN1 from the RNA interference con-

sortium (TRCN0000088188) and a scrambled control se-

quence in the pLKO.1 vector were purchased from

Dharmacon Horizon (CO, USA). PAX2 and pMG.2 lenti-

viral packaging vectors were kind gifts from Dr Maria

Jimenez-Sanchez (King’s College London). Human embry-

onic kidney (HEK293) cells cultured in Dulbecco’s

Modified Eagle’s Medium plus GlutaMAX (Thermo

Fisher Scientific, MA, USA) supplemented with 10% (v/v)

foetal bovine serum (Thermo Fisher Scientific) were trans-

fected with PAX2, pMG.2 and shRNA lentivirus using

Lipofectamine 2000 (Invitrogen, CA, USA). After 24 h,

lentiviral particles were collected from culture medium,

isolated and concentrated according to the manufacturer’s

instructions. For lentiviral knockdown, neurons were cul-

tured for 5 days in vitro (DIV) and then treated with ei-

ther BIN1 targeting shRNA, scrambled or control shRNA

lentiviral particles for 24 hours, after which time the virus

was removed and neurons further cultured until 21–23

DIV prior to use. Alternatively, BIN1 was knocked down

in primary neurons using Accell BIN1 small interfering

RNA smart pool (E-095528) purchased from Dharmacon

Horizon Discovery (UK). For these experiments, 19 DIV

rat primary cortical neurons were transfected with 50 nM

BIN1 or non-targeting control small interfering RNA

(Dharmacon Horizon Discovery) using Lipofectamine

2000 for 96 h at 37�C, after which time neurons were

imaged or harvested.

Tau enzyme-linked immunosorbent

assay and cell viability assays

Tau enzyme-linked immunosorbent assays were per-

formed on Hank’s balanced salt solution with Ca2þ and

Mg2þ medium that had been incubated for 4 h with 22–

23 DIV primary neurons as we described previously

(Croft et al., 2017). The amount of lactate dehydrogenase

in the media of cultured neurons was determined as a

measure of neuron heath, using an LDH Cytotoxicity Kit

from Thermo Fischer Scientific according to the manufac-

turer’s instructions.

Immunofluorescence

Immunofluorescence was performed as described previ-

ously (Schurmann et al., 2019), using 2% (v/v) foetal bo-

vine serum (Life Technologies) in place of normal goat

serum. Cells were incubated with primary antibodies

against BIN1 (ab54764; Abcam), post-synaptic density 95

(PSD95, D74D3; Cell Signaling), synaptophysin (sc7568;

Santa Cruz, TX, USA), glial fibrillary acidic protein

(Agilent, ZO334) and microtubule-associated protein 2

(GTX82661; GeneTex) and the appropriate species of

AlexaFluor-conjugated secondary antibodies (Life

Technologies). Coverslips were mounted onto glass slides

using the ProLong Diamond mounting media (Life

Technologies). The labelled proteins were imaged under

an Eclipse Ti2 inverted Nikon 3D structured illumination

microscope, and images were reconstructed using Nikon

Imaging Systems Elements software, or a Nikon Eclipse

Ti2 inverted microscope with Vt-iSIM scan head and

deconvolved using Nikon Imaging Systems Elements

software.

Analysis of synapses

Primary neurons were fractionated to generate cytosol-

and synapse-enriched fractions using a protocol modified

from Frandemiche et al. (2014). Total, cytosolic and syn-

aptoneurosome fractions were isolated from post-mortem

temporal cortex as we described previously (Perez-Nievas

et al., 2013). Equal protein amounts of total, synaptic

and cytoplasmic fractions were immunoblotted.

For the analysis of dendritic spine structure, neurons at

22 DIV were transfected with an enhanced green fluores-

cent protein-N2 plasmid (Clontech, Kyoto, Japan) using

Lipofectamine 2000, fixed 24 hours post-transfection,

and the GFP-expressing cells were imaged using a Nikon

Eclipse Ti2 inverted microscope with Vt-iSIM scan head.

The 3 � 3 large image stacks were acquired covering the

entire volume of the neuron, with 0.2 lm between each

image in the Z plane. NeurolucidaTM software (MBF

Bioscience, VT, USA) was used to trace neurons and de-

tect, classify and quantify dendritic spines and perform

the Scholl analysis. Neuronal complexity was determined

by (sum of the terminal orders þ number of terminals) �
(total dendritic length/number of primary dendrites),

where terminals are the number of branch endings and

terminal orders are the number of branches between the

terminal and the cell body.

Glutathione-S-transferase binding
assays

BIN1-SH3 cDNA generously provided by Isabelle

Landrieu (University of Lille Nord de France) was cloned

into pGEX5X1 vectors using sequence- and ligation-inde-

pendent cloning (Hill and Eaton-Rye, 2014). The BIN1-

SH3 domain was amplified from the original vector using

Table 2 Summary of temporal cortex cases and con-

trols used in this study

Disease

stage

Female

(%)

Age (years),

mean 6 SEM

Post-mortem

delay (h), mean 6

SEM

Control 53.3 80.4 6 2.07 38.1 6 4.40

Moderate 57.1 89.6 6 1.42 45.3 6 5.50

Severe 64.2 80.9 6 2.10 39.8 6 5.00

Table shows the percentage of control, moderate Alzheimer’s disease and severe

Alzheimer’s disease cases that were female, the mean age at death (6 SEM) and the

mean post-mortem delay (6 SEM).
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primers 50-TCG AGC GGC CGC ATC GTG ACA TGG

GTC GTC TGG ATC TG-30 and 50-AAA CGC GCG

AGG CAG ATC GTC AGT TAC GGC ACA CGC TCA

GTA AAA TTC-30, and pGEX5X1 was linearized using

primers 50-CTG ACG ATC TGC CTC GCG-30 and 50-

GTC ACG ATG CGG CCG CTC-30. Sequence- and liga-

tion-independent cloning products were used to transform

BL21 E. coli (New England Biolabs, MA, USA) by heat

shock. DNA was purified using the QIAgen Spin

Miniprep Kit (QIAgen, Hilden, Germany), and the clon-

ing was confirmed by sequencing (Source Bioscience,

Nottingham, UK), using stock primers to the glutathione-

S-transferase (GST) plasmid. BL21 E. coli containing ei-

ther BIN1-SH3-pGEX5X1 or empty vector pGEX5X1

was used to produce GST fusion proteins. Wild-type

human 2N4R tau and PXXP mutant tau plasmids have

been described previously (Lau et al., 2016). These were

expressed in HEK293 cells for 24 h after which time cells

were lysed and the lysates used for GST pull-downs,

which were performed as we described previously (Lau

et al., 2016).

Sodium Dodecyl Sulfate–

Polyacrylamide Gel Electroresis and

western blotting

Protein concentrations of samples were determined using

a BCA protein assay kit (Thermo Fisher Scientific) and

Ponceau Red staining of membranes. Equal protein

amounts were electophoresed on 10% tris-glycine SDS-

polyacrylamide gels, Nu-Page 4–12% or 10% bis–tris

gels (Invitrogen), transferred to 0.45-lm nitrocellulose

membrane (Millipore, MA, USA) and immunoblotted

using standard methods. Primary antibodies were BIN1

(99D; Millipore), GST (GE Healthcare, IL, USA), total

tau (total human tau; Agilent), Tau-1 (Millipore), PHF1

(Peter Davies, Donald and Barbara Zucker School of

Medicine at Hofstra, Northwell), N-methyl-D-aspartate

subunit 2B (06-600; Millipore), b-actin (ac15; Abcam),

synaptophysin (sc17750; Santa Cruz), PSD95 (MAB

1596; Millipore) and Fyn (HPA023887; Sigma). The

bound horseradish peroxidase-conjugated secondary anti-

bodies (GE Healthcare) were detected using enhanced

chemiluminesence solutions (Thermo Fisher Scientific) and

visualized using a ChemiDoc imager (Bio-Rad, CA, USA).

Densitometric analysis was performed using FIJI.

Data analysis and statistics

Statistical tests were performed using GraphPad Prism

7.0 (CA, USA) or RStudio. Normality tests were per-

formed on all data, and the appropriate statistical tests

were then used to determine differences between experi-

mental groups. Tests used and sample size (n) numbers

are provided for each experiment in the figure legends.

Data availability

The data supporting this study are available in the manu-

script and Supplementary Material, and raw data will be

made available on reasonable request following publica-

tion. Summary statistics including exact P-values, F-values

and degrees of freedom are included in the

Supplementary Material.

Results

BIN1 loss in cytoplasmic fractions
correlates with increased synaptic
tau in Alzheimer’s disease brain

In Alzheimer’s disease, highly phosphorylated tau is mis-

localized to synaptic compartments (Perez-Nievas et al.,

2013) where tau disrupts synapse function and mediates

synaptotoxicity (Ittner et al., 2010; Li and Gotz, 2017;

Zhou et al., 2017; McInnes et al., 2018). The longest

neuronal isoform of BIN1 protein is reduced in end-stage

Alzheimer’s disease brain (Glennon et al., 2013; De Rossi

et al., 2017). To determine whether BIN1 is lost at the

earlier stages of Alzheimer’s disease, and whether its loss

is associated with changes in the distribution of tau, we

isolated synaptoneurosomes (Perez-Nievas et al., 2013)

from control (Braak stage 0–III), moderate (Braak stage

III–IV) and severe (Braak stage V–VI) post-mortem

Alzheimer’s disease temporal cortex and examined total,

cytosolic and synaptic fractions on western blots (Fig. 1).

The integrity of synaptic proteins in these samples was

first confirmed, as described previously (Bayes et al.,

2014), by western blotting a subset of samples with an

antibody against N-methyl-D-aspartate subunit 2B

(Supplementary Fig. 1B and C). Relatively little degener-

ation of synaptic proteins indicating that acceptable levels

of synaptic integrity is maintained in these tissues (Bayes

et al., 2014), and showed no differences in synaptic integ-

rity between groups.

In total brain homogenates, we confirmed a trend to-

wards reduction in BIN1 in severe relative to moderate

stage Alzheimer’s disease and control tissues (Fig. 1A and

B) and significant increases in total and phosphorylated

tau amounts with increasing disease severity (Fig. 1A, C

and D), as previously reported (Kurbatskaya et al.,

2016). Protein amounts were normalized to neuron-spe-

cific enolase in the same sample prior to quantification to

control for any effects of neuronal loss and/or gliosis

(Kurbatskaya et al., 2016). Tau phosphorylation was

detected using an antibody against tau phosphorylated at

S396/404 (PHF1). The cytoplasmic and synaptoneuro-

some fractions isolated from the same brain samples were

characterized to confirm their relative purity

(Supplementary Fig. 1A). Blotting of these samples

showed a significant accumulation of tau and phosphory-

lated tau in the synaptic compartment in severe
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Figure 1 BIN1 and tau are lost from the cytoplasm, and this is associated with the accumulation of phosphorylated tau at

synapses in Alzheimer’s disease temporal cortex. (A) Total homogenates from temporal cortex of control (Braak stage 0–III), moderate

(Braak stage III–IV) and severe (Braak stage V–VI) Alzheimer’s disease brain were western blotted using antibodies against BIN1, total tau,

phosphorylated tau (PHF1, pSer396/404) and neuron-specific enolase (NSE) as a loading control. Bar charts show the quantification of (B) BIN1,
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Alzheimer’s disease brain, relative to moderate staged

samples and controls (Fig. 1E, G and H). Tau phos-

phorylated at S396/S404 was found to accumulate at syn-

apses in both moderate and severe stage Alzheimer’s

disease relative to controls (Fig. 1E and H). The accumu-

lation of synaptic tau paralleled the loss of cytoplasmic

tau (Fig. 1I, K and L), suggesting that these results reflect

tau mis-sorting from the cytoplasm to synapses. There

were no differences in BIN1 levels in synaptoneurosomes

between groups (Fig. 1E and F). However, we found

marked and significant losses of cytoplasmic BIN1 in

both moderate and severe Alzheimer’s disease tissues

(Fig. 1I and J) that correlated positively with reductions

in cytoplasmic tau (Fig. 2A) and inversely with increased

synaptic tau (Fig. 2C and D). We also found negative

correlations between levels of phosphorylated (pSer396/

404, PHF1) tau and BIN1 in the cytoplasmic fraction

(Fig. 2B). There were also no significant correlations be-

tween total tau or phosphorylated tau and BIN1 amounts

in either the total or synaptoneurosome fractions

(Supplementary Fig. 1G–J). Taken together, these data

suggest that loss of cytoplasmic BIN1 may facilitate the

mis-sorting of phosphorylated tau to the synapse.

BIN1 knockdown causes synaptic
accumulation of phosphorylated tau
in neurons

To model BIN1 loss and tau mislocalization to synapses

in vitro, we silenced BIN1 in rat primary cortical neurons

using lentivirus. We confirmed the efficiency of BIN1

knockdown by western blotting and proximity ligation

assay (Supplementary Fig. 2). In control neurons, BIN1

and tau are found in fractions enriched in cytoplasmic

and synaptic proteins (Fig. 3A). Nikon 3D structured illu-

mination microscope imaging of neuronal processes

showed that BIN1 decorates microtubule-associated pro-

tein 2-positive and microtubule-associated protein 2-nega-

tive fibres (Fig. 3B) and localizes in close proximity to

pre-synaptic (synaptophysin) and post-synaptic (PSD95)

markers, with a portion of BIN1 co-localizing with

PSD95 (Fig. 3C). Cultures were also immunolabelled

with an antibody against glial fibrillary acidic protein,

which suggests that a small proportion of BIN1 is astro-

cytic (Supplementary Fig. 2I and J), in agreement with re-

cent reports (Taga et al., 2019).

We found that knockdown of BIN1 did not alter the

total amount of tau or its phosphorylation in total cell

lysates (Supplementary Fig. 2A–D). However, following

BIN1 knockdown, there was a significant increase in the

amounts of phosphorylated, but not total or dephos-

phorylated, tau in synapse-enriched fractions relative to

controls (Fig. 3D–G). These data show that reducing

BIN1 in neurons causes the accumulation of

Figure 1 Continued

(C) tau and (D) tau phosphorylated at Ser396/404 (PHF1). Data shown are mean 6 SEM expressed as fold average control. n¼ 13 per group

(BIN1), n¼ 14 per group (tau) or n¼ 12 per group (PHF1). Following D’Agostino and Pearson normality testing, data were analysed using a one-

way ANOVA with Holm–Sidak’s multiple comparisons test. (E) Synaptoneurosomes isolated from the same temporal cortex samples were

immunoblotted with the same antibodies. Bar charts show the quantification of (F) BIN1, (G) tau and (H) PHF1 in synaptoneurosome fractions

following normalization. Data are mean 6 SEM expressed as fold average control. n¼ 15 per group (BIN1 and tau) or n¼ 12 per group (PHF1).

Following D’Agostino and Pearson normality testing, data were analysed using non-parametric Kruskal–Wallis test with Dunn’s multiple

comparison test. (I) The cytoplasmic fraction was blotted as above with antibodies against BIN1, tau, PHF1 and NSE. Bar charts show the

quantification of (J) BIN1, (K) tau and (L) tau phosphorylated at Ser396/404 (PHF1) in the cytoplasmic fraction following normalization to NSE in

the same sample. Data are mean 6 SEM expressed as fold mean control. n¼ 11 per group (BIN1) or n¼ 12 per group (tau and PHF1). Following

D’Agostino and Pearson normality testing, BIN1 data were analysed using non-parametric Kruskal–Wallis test with Dunn’s multiple comparison

test and tau data using a one-way ANOVA with Holm–Sidak’s multiple comparisons test. *P< 0.05, **P< 0.01, ***P< 0.001 and ****P< 0.0001.

Full uncut western blots are found in the Supplementary Material.

Figure 2 Loss of BIN1 correlates with the loss of

cytoplasmic tau and increased synaptic tau in Alzheimer’s

disease temporal cortex. Correlation analysis of (A) BIN1 and

tau amounts and (B) BIN1 and phosphorylated (pSer396/404,

PHF1) tau amounts in the cytoplasmic fractions showing a strong

positive correlation between BIN1 and total tau, a negative

correlation between BIN1 and phosphorylated tau (n¼ 38) and

strong negative correlations between (C) cytoplasmic BIN1 and

synaptic tau (n¼ 38) and (D) cytoplasmic BIN1 and synaptic tau

phosphorylated at Ser396/404 (PHF1) (n¼ 36). Colours represent

control (green), moderate (blue) and severe (purple) Alzheimer’s

disease samples.
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Figure 3 BIN1 knockdown in neurons increases the abundance of phosphorylated tau at synapses. (A) Proteins from 22 DIV

primary cortical neurons were biochemically fractionated using a synaptosome fractionation protocol into total, synaptic protein- (syn) and

cytoplasmic (cyto) protein-enriched fractions, which were western blotted with antibodies against PSD95, tubulin, tau and BIN1. Blots show the

presence of BIN1 and tau in all fractions and an enrichment of PSD95 in the synaptic relative to the cytosolic fraction. (B) N-SIM super-

resolution images of primary cortical neurons immunolabelled with antibodies against BIN1 (ab54764, pink) and the dendritic marker MAP2

(blue) showing that BIN1 is present within dendrites and axons in cultured neurons. (C) N-SIM super-resolution images show close associations

and some colocalization of BIN1 (ab54764, blue) with the pre-synaptic marker synaptophysin (green) and the post-synaptic marker PSD95 (pink).

(D) Lysates from primary cortical neurons transduced with scrambled control shRNA (Scr) lentivirus or BIN1 shRNA (BIN1) lentivirus at 5 DIV

and biochemically fractionated at 22 DIV as above were immunoblotted with antibodies against BIN1, total tau, tau phosphorylated at Ser396/

404 (PHF1), tau dephosphorylated at Ser199/202/Thr205 (Tau-1), Fyn kinase and PSD95. Bar charts show the quantification of synaptic (E) total

tau, (F) tau phosphorylated at Ser396/404 (PHF1), (G) dephosphorylated tau (Tau-1) and (H) Fyn protein amounts. Data were normalized to the

synaptic marker PSD95 in the same sample and are expressed as percentage mean control (scrambled shRNA). Data are mean 6 SEM and were

analysed using Mann–Whitney test. n¼ 4-5, **P< 0.01. Full uncut western blots are found in the Supplementary Material. MAP2 ¼ microtubule-

associated protein 2; N-SIM ¼ Nikon 3D structured illumination microscope.
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phosphorylated tau at synapses and suggest that the

increased synaptic phospho-tau that we observe in post-

mortem Alzheimer’s disease brain may result from tau

mislocalization from the cytoplasm upon the loss of cyto-

plasmic BIN1.

When bound to tau, the non-receptor tyrosine kinase,

Fyn, is trafficked to the post-synapses where it is believed

to mediate b-amyloid toxicity in Alzheimer’s disease

(Ittner et al., 2010). We previously showed that the Fyn-

SH3 domain also binds preferentially to proline 216 in

tau (Usardi et al., 2011; Pooler et al., 2012). We there-

fore examined the localization of Fyn in synaptic frac-

tions following BIN1 knockdown. Our data suggest that

there is no competition between BIN1 and Fyn for bind-

ing to tau since we found no alterations in synaptic Fyn

amounts in neurons treated with BIN1 shRNA (Fig. 3H).

The interaction of BIN1 with tau is reported to be

regulated by tau phosphorylation and via direct associ-

ation of the BIN1-SH3 domain and the proline-rich re-

gion of tau (Sottejeau et al., 2015; Lasorsa et al., 2018).

To confirm this, we generated GST-BIN1-SH3 constructs

(Supplementary Fig. 3A) and we used these and GST-

only constructs in binding assays using lysates from

HEK293 cells transfected with wild-type human 2N4R

tau, mutant tau constructs or empty vector. The mutant

tau constructs are human 2N4R tau in which a single

proline in each PXXP motif is mutated to alanine

(Supplementary Fig. 3B), as we reported previously (Lau

et al., 2016). Immunoblotting of BIN1-SH3-GST pull-

downs with an antibody against tau confirmed that the

BIN1-SH3 domain binds human 2N4R tau

(Supplementary Fig. 3A and Fig. 4A and B). The analysis

of BIN1-SH3 binding to mutant relative to wild-type

human tau showed that P216 is important for the tau–

BIN1 interaction. The amount of P216A tau bound to

BIN1-SH3 was significantly decreased relative to wild-

type tau. There were no significant differences relative to

wild type in tau binding to BIN1-SH3 when any other

proline residue was mutated to alanine (Fig. 4A and B).

We next confirmed that increasing tau phosphorylation,

to mimic tau modifications in Alzheimer’s disease, affects

the interaction of tau with BIN1 in cultured primary rat

neurons. Cells were treated for 4 h with 50 nM okadaic

acid, a protein phosphatase inhibitor that prevents the re-

moval of phosphate from residues throughout the tau

molecule to allow efficient tau phosphorylation (Van

Dolah and Ramsdell, 1992; Pooler et al., 2012)

(Fig. 4C). GST pull-downs with lysates from these cells

confirmed that phosphorylated tau shows only trace

amounts of binding to BIN1-SH3-GST when compared

with lysates from vehicle-treated cells (Fig. 4D). When

tau was dephosphorylated upon application of 25 mM of

the glycogen synthase kinase-3 inhibitor lithium chloride

(Stambolic et al., 1996; Pooler et al., 2012) (Fig. 4E and

F), or 20 lM of the casein kinase-1 inhibitor IC261

(Pooler et al., 2012) (Supplementary Fig. 4), the amount

of tau pulled down by BIN1-SH3 was similar to controls.

Glycogen synthase kinase-3 and casein kinase-1 inhibitors

were used to modulate tau phosphorylation since these

kinases phosphorylate tau throughout the protein (Guo

et al., 2017), and phosphorylation of tau sites distal and

proximal to P216 mediates tau interactions with BIN1-

SH3 (Sottejeau et al., 2015; Lasorsa et al., 2018). These

data confirm and extend previous findings to show that

BIN1-SH3 interacts with P216 in tau, predominantly

when tau is dephosphorylated. Taken together, our data

suggest that tau phosphorylation in Alzheimer’s disease

may disrupt cytoplasmic BIN1–tau interactions and allow

unbound tau to mislocalize to synapses.

Loss of BIN1 alters spine
morphology and reduces tau
release from neurons

Synaptic tau is closely linked with the release and propa-

gation of modified tau proteins in Alzheimer’s disease

and related tauopathies (Guo et al., 2017; Yamada,

2017). However, the release of soluble tau species in

physiological conditions allows important signalling roles

of extracellular tau (Gomez-Ramos et al., 2008; Pooler

et al., 2013) and this tau function may be lost in

Alzheimer’s disease (Croft et al., 2017).

Tau release is predominantly mediated by synaptic ac-

tivity, and modulating BIN1 expression affects dendritic

spine morphology and a-amino-3-hydroxy-5-methyl-4-iso-

xazolepropionic acid (AMPA) receptor-mediated synaptic

transmission via changes in AMPA receptor surface ex-

pression and trafficking (Daudin et al., 2018; Schurmann

et al., 2019). Since we and others have previously shown

that neuronal depolarization and stimulation of AMPA

receptors mediate endogenous tau release (Pooler et al.,

2013; Croft et al., 2017), we examined the effects of

BIN1 knockdown by shRNA on synapse morphology

and tau release. Examination of neurons by iSIM showed

that BIN1 knockdown affects synaptic morphology in 23

DIV primary neurons exogenously expressing enhanced

green fluorescent protein. BIN1 knockdown did not cause

any alterations in dendritic spine length, volume or dens-

ity (Fig. 5A–D) but resulted in significant increases in the

diameter of spine heads and necks (Fig. 5E and F) and a

reduced head:neck diameter ratio (Fig. 5G). When spine

morphologies were examined, BIN1 knockdown had no

effect on the proportion of immature stubby or thin

spines (Fig. 5H and I) but significantly reduced the pro-

portion of filopodia (Fig. 5K) and increased the propor-

tion of mature mushroom spines (Fig. 5J), which are

relatively stable and have a high density of AMPA recep-

tors (Hanley, 2008; Lee et al., 2012; Woolfrey and

Srivastava, 2016). The structure and density of dendritic

spines varies according to the branch order of the neu-

rite, and Scholl analysis (Supplementary Fig. 5) showed

that BIN1 knockdown increases the branching of den-

drites and increases neuronal complexity, which may
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Figure 4 BIN1 and tau interact via BIN1-SH3 and P216 in tau in a phosphorylation-dependent manner. (A) HEK293 cells were

transfected with WT 2N4R tau or PXXP mutant tau constructs in which a single proline residue at sites 176, 182, 200, 206, 213, 216, 219 or 223

was mutated to alanine to disrupt the PXXP sequence. Proteins in lysates from HEK293 cells (input) were pulled down with BIN1-SH3-GST

beads and western blotted with antibodies against total tau or GST. (B) The amount of WTor PXXP mutant tau pulled down by BIN1-SH3-GST

was quantified, and the bar chart shows this data relative to WT 2N4R tau (control). When P216 was mutated to alanine, tau binding to BIN1-

SH3 was significantly reduced (**P< 0.001). Following D’Agostino and Pearson normality testing, data were analysed using non-parametric

Kruskal–Wallis test and Dunn’s multiple comparisons test. Data shown are mean 6 SEM, n¼ 9. (C) Primary cortical neurons were treated with

either vehicle (�) or 50 nM OA (þ) for 4 h. Proteins were pulled down from primary neuron lysates with BIN1-SH3-GST. Western blots of
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contribute to the difference in spine structure that we ob-

serve since spines on all branches of neurites were

quantified.

To determine whether BIN1 knockdown affects tau re-

lease, tau content in culture medium from 21 DIV neu-

rons treated with BIN1 and control shRNA was

measured by enzyme-linked immunosorbent assay and

normalized to the total amount of tau in neurons from

the same culture well, as we reported previously (Croft

et al., 2017). BIN1 knockdown caused a significant re-

duction in basal tau release without affecting the amount

of intracellular tau (Fig. 6A–C). BIN1 knockdown fol-

lowed by the depolarization of neurons with potassium

chloride to stimulate tau release (Pooler et al., 2013;

Croft et al., 2017) also significantly reduced tau release

relative to controls (Fig. 6D–F). The observed changes in

tau release were not due to cell toxicity since there were

no alterations in lactate dehydrogenase content in me-

dium between conditions (Fig. 6G). Thus, BIN1 knock-

down results in alterations in synapse morphology and

reduces basal and stimulated tau release. Our findings,

therefore, suggest that since BIN1 knockdown affects tau

release, loss of BIN1 in Alzheimer’s disease will disrupt

the functions of extracellular tau in addition to allowing

phosphorylated tau to mislocalize to synapses and exert

toxicity. Our data provide novel insights into the mecha-

nisms by which BIN1 polymorphisms may increase the

risk of Alzheimer’s disease.

Discussion
BIN1 is closely linked with tau abnormalities that under-

lie the progression of sporadic Alzheimer’s disease

(Chapuis et al., 2013; Calafate et al., 2016; Dourlen

et al., 2019; Sartori et al., 2019). Our results suggest that

BIN1 and tau interact predominantly when tau is dephos-

phorylated in the cytoplasm and that altered tau phos-

phorylation, together with BIN1 loss in Alzheimer’s

disease, allows tau to be mislocalized to synapses where

it is detrimental to synapse health. In support of this, we

found that P216 of tau interacts with the BIN1-SH3 and

that interactions between these two proteins are disrupted

when tau phosphorylation is increased in primary neu-

rons. Our results also indicated that there may be some

loss of tau interactions with BIN1-SH3 when tau proline

219 was mutated to alanine. Notably, even when an ap-

parent (but not statistically validated) outlier was

removed from this analysis, binding of BIN1-SH3 with

P219A mutant tau was not significantly reduced.

However, others have reported that proline residues 216

and 219 of tau are in direct contact with BIN1 (Lasorsa

et al., 2018). Our findings also showed that treatment

with OA to increase tau phosphorylation effectively abol-

ished tau interactions with BIN1. This is in keeping with

observations of tau interactions with other SH3 domain-

containing proteins such as Fyn (Reynolds et al., 2008;

Usardi et al., 2011; Pooler et al., 2012). Nevertheless, it

is somewhat surprising that the binding of tau with BIN1

is not increased from baseline when tau is dephosphory-

lated since a degree of tau phosphorylation is expected in

basal cell culture conditions. Future experiments using

tau phosphomimics in which tau residues are mutated to

mimic permanent phosphorylation or dephosphorylation,

or conducting dose response experiments with tau phos-

phorylation modulators, will be useful to fully examine

the effects of tau phosphorylation on its interactions with

BIN1.

Loss of BIN1 from Alzheimer’s disease cytoplasm at

moderate and severe stages of disease was accompanied

by the accumulation of phosphorylated tau in synaptic

compartments. The average age of patients classified as

‘moderate’ Alzheimer’s disease on the basis of Braak

stage was found to be significantly higher than those

with severe Alzheimer’s disease, and this may indicate

that our ‘severe’ Alzheimer’s disease group consisted of

cases with increased resilience to the accumulation of

Alzheimer’s disease pathology. Our analysis of the rela-

tionship between phosphorylated tau and BIN1 subcellu-

lar distributions was conducted independently of Braak

stage and, therefore, we do not consider this to confound

our findings. However, it could be of interest to examine

the relationship between tau and BIN1 further in well-

matched resilient and susceptible populations in future

studies.

Figure 4 Continued

neuronal lysates (input) with antibodies against total tau, tau phosphorylated at Ser394/404 (PHF1) and tau dephosphorylated at Ser199/202/Thr

205 (Tau-1) show increased tau phosphorylation following OA treatment. (D) Quantification shows that the amount of tau pulled down by

BIN1-SH3-GST is reduced following OA treatment of primary neurons. Data are shown as percentage relative to the mean of controls (vehicle).

Following Shapiro–Wilk normality testing, the data were analysed using an unpaired T-test. Data shown are mean 6 SEM, n¼ 4. ****P< 0.0001.

(E) Lysates from primary cortical neurons show reduced tau phosphorylation following treatment with 25 mM LiCl (þ) for 4 h relative to

vehicle-treated neurons (�). BIN1-SH3-GST pull-downs show that there was no difference in the amount of tau pulled down by BIN1-SH3-GST

following LiCl treatment relative to vehicle-treated conditions. (F) Quantification shows no difference in the amount of tau from vehicle- or

LiCl-treated neurons pulled down by BIN1-SH3-GST. Following Shapiro–Wilk normality testing, data were analysed using a non-parametric

Mann–Whitney test. Data shown are mean 6 SEM, n¼ 3. Full uncut western blots are found in the Supplementary Material. LiCl ¼ lithium

chloride; OA ¼ okadaic acid; WT ¼wild type.
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Figure 5 BIN1 knockdown alters dendritic spine morphology. (A) Primary cortical neurons transduced with BIN1 shRNA (BIN1)

lentivirus or scrambled control shRNA (Scr) lentivirus at 5 DIV were transfected with a plasmid expressing eGFP and fixed at 23 DIV. Maximum

intensity projections were generated from Z-stacks acquired using I-SIM super-resolution imaging. Five to ten different neurons per condition

were analysed in each of three separate experiments, one dendrite from each cell was selected randomly for spine quantification and all branches

of that dendrite were analysed. Dendritic spines were classified as either filopodia, stubby, thin or mushroom spines (right). Bar charts show the

quantification of spine (B) length, (C) volume, (D) density, (E) head diameter, (F) neck diameter, (G) ratio of spine head to neck diameter and

percentage of (H) stubby, (I) thin, (J) mushroom spines and (K) filopodia. Data are mean 6 SEM and were analysed using a randomized block 2-

way ANOVA. n¼ 3. *P< 0.05 and **P< 0.01. eGFP ¼ enhanced green fluorescent protein.
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To directly ascertain the effects of BIN1 loss on tau lo-

calization, we knocked down BIN1 in rat primary neu-

rons and showed that this caused an accumulation of

phosphorylated tau at synapses. This finding is in

agreement with previous reports that over-expression of

BIN1 in mice expressing human tau leads to a reduced

number of somatodendritic tau inclusions (Sartori et al.,

2019). This is an important concept since alterations in

Figure 6 BIN1 knockdown reduces basal and stimulated tau release. (A) Cell lysates from 21 DIV primary cortical neurons

transduced with scrambled control shRNA (Scr) lentivirus or BIN1 shRNA (BIN1) lentivirus at 5 DIV were western blotted with antibodies

against BIN1 and total tau. (B) Quantification shows no effect of BIN1 knockdown on intracellular tau amount. Shapiro–Wilk normality test

demonstrated that the data were normally distributed, and so data were analysed using an unpaired T-test. (C) Tau content in conditioned media

from the same neurons was determined by ELISA. Extracellular tau amounts were quantified relative to intracellular tau from the same well, and

the data show reduced tau release upon BIN1 knockdown. Shapiro–Wilk normality test demonstrated that the data were normally distributed,

so data were analysed using an unpaired T-test. (D) Cells transduced as above were depolarized with 50 nM KCl (þ) for 30 min, and the lysates

were western blotted with antibodies against BIN1 and total tau. (E) KCl treatment had no effect on intracellular tau amounts. Shapiro–Wilk

normality test demonstrated that the data were normally distributed, so data were analysed using an unpaired T-test. (F) Tau in conditioned

media from KCl-stimulated cells was measured as described for basal conditions. Tau release from neurons in which BIN1 was knocked down

was reduced upon neuron depolarization with KCl. Shapiro–Wilk normality test demonstrated that the data were not normally distributed, so

data were analysed using a Mann–Whitney test. (G) Lactate dehydrogenase amounts were measured in medium from unstimulated (�) or KCl-

stimulated (þ) primary cortical neurons transduced with scrambled control shRNA (Scr) lentivirus or BIN1 shRNA (BIN1) lentivirus as above

and show no effect of treatment on cell viability. Shapiro–Wilk normality test demonstrated that the data were not normally distributed, so data

were analysed using a Kruskal–Wallis test with Dunn’s multiple comparison test. All graphs show mean 6 SEM, n¼ 7 (intracellular tau), n¼ 6

(tau release/intracellular tau and lactate dehydrogenase assay). *P< 0.05. Full uncut western blots are found in the Supplementary Material. ELISA

¼ enzyme-linked immunosorbent assay; KCl ¼ potassium chloride.
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the trafficking and normal positioning of tau are consid-

ered to be early pathogenic changes in Alzheimer’s dis-

ease (Zempel and Mandelkow, 2014; Zempel and

Mandelkow, 2015; Guo et al., 2017). We also investi-

gated the effects of BIN1 knockdown on synapse struc-

ture and tau release, since in addition to promoting the

spread of tau pathology (Yamada, 2017), synapse func-

tion is important for the release of physiological forms of

tau and, therefore, the signalling functions of extracellular

tau (Gomez-Ramos et al., 2008). We show here that

BIN1 knockdown affects the morphology of dendritic

spines, a feature closely linked with synapse function

(Chidambaram et al., 2019). BIN1 knockdown caused an

increased abundance of spines with a larger head and

neck diameter and a higher ratio of mature mushroom

spines to immature filopodia. Although, in these experi-

ments, we transduced cells with BIN1 shRNA at DIV5, a

time at which neurons and synapses are still developing,

Sartori et al. (2019) have reported that BIN1 is not

expressed in vitro until DIV14. Therefore, the alterations

we observe in synapse morphology are not expected to

have occurred as a result of any developmental roles of

BIN1. In support of this, BIN1 over-expression in mice

results in the opposite changes to spines, leading to struc-

tural alterations in the hippocampus and memory deficits

(Daudin et al., 2018). Mushroom spines are considered

to be more stable and in general, as spine size increases

the number of AMPA receptors on the spine increases,

promoting synaptic strength (Hanley, 2008; Lee et al.,
2012; Woolfrey and Srivastava, 2016). This may appear

to be in contrast with our assertion that BIN1 knock-

down promotes synapse damage by directing phosphory-

lated tau into synapses. However, synapse enlargement is

reported to occur in the early stages of neurodegeneration

in Alzheimer’s disease (DeKosky and Scheff, 1990) as a

compensatory mechanism for the pre-synapse loss occur-

ring early in the disease process. A similar mechanism at

the post-synapse could explain the increased spine diam-

eter we report here. It is also possible that the effect of

altering BIN1 expression on dendritic spines is independ-

ent of its binding to tau. Schurmann et al. (2019) report

that BIN1 modulates vesicle trafficking from recycling

endosomes to the cell surface, thereby altering the surface

localization of AMPA receptors at the post-synapse.

Hence, alterations in vesicle trafficking may be another

mechanism by which BIN1 alters the structure of dendrit-

ic spines.

Finally, we demonstrate that reducing BIN1 expression

reduced tau secretion from neurons, both in basal condi-

tions and following neuronal depolarization. We previ-

ously showed that tau released from primary neurons is

largely intact, dephosphorylated (Pooler et al., 2012), and

others have shown that this form of extracellular tau has

important trans-cellular signalling functions (Gomez-

Ramos et al., 2008) distinguishing it from the aggregated,

cleaved and highly phosphorylated tau species implicated

in trans-synaptic tau spread/propagation (Wu et al.,

2016). Our results therefore suggest that BIN1 loss in

Alzheimer’s disease could reduce the availability of extra-

cellular tau, resulting in a loss of extracellular tau

function.

In conclusion, our data demonstrate that BIN1 binds in

a tau phosphorylation-dependent manner to P216 of tau.

We find that BIN1 is lost in Alzheimer’s disease cyto-

plasm and that this correlates with tau accumulation in

synapses and its loss from the cytoplasm. Modelling the

loss of BIN1 in Alzheimer’s disease in primary neurons

showed that when BIN1 is knocked down, phosphory-

lated tau accumulates at synapses. We also see that BIN1

loss causes alterations to synapse structure and disrupts

tau release. We hypothesize that disruptions to BIN1 pro-

teins in Alzheimer’s disease affect normal tau functions in

the extracellular space and promote phosphorylated tau-

mediated synaptotoxicity. These data provide a potential

mechanism by which polymorphisms near BIN1 may in-

crease Alzheimer’s disease risk.

Supplementary material
Supplementary material is available at Brain

Communications online.

Acknowledgements
We are grateful to Professor Isabelle Landrieu (University of

Lille Nord de France) for her generous gift of BIN1-SH3 do-

main plasmid and Professor Peter Davies (Feinstein Institute

of Medical Research, NY, USA) for his kind gift of tau anti-

bodies. PAX2 and pMG.2 lentiviral packaging vectors were

kind gifts from Dr Maria Jimenez-Sanchez (King’s College

London, London, UK).

Funding
This work was supported by Alzheimer’s Research UK

(ARUK-RF2015-5 and ARUK-PhD2017-4 to E.B.G.,

ARUK-RF2014-2 to B.G.P.-N. and ARUK-EG2013-B1 to

W.N.).

Competing interests
The authors report no competing interests.

References
Bayes A, Collins MO, Galtrey CM, Simonnet C, Roy M, Croning

MD, et al. Human post-mortem synapse proteome integrity screen-

ing for proteomic studies of postsynaptic complexes. Mol Brain

2014; 7: 88.

14 | BRAIN COMMUNICATIONS 2020: Page 14 of 16 E. B. Glennon et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article-abstract/2/1/fcaa011/5736128 by U

niversity C
ollege London user on 10 April 2020

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa011#supplementary-data


Calafate S, Flavin W, Verstreken P, Moechars D. Loss of Bin1 pro-

motes the propagation of tau pathology. Cell Rep 2016; 17:

931–40.
Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van

Cauwenberghe C, Kolen KV, et al.; GERAD consortium. Increased

expression of BIN1 mediates Alzheimer genetic risk by modulating

tau pathology. Mol Psychiatry 2013; 18: 1225–34.
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B,

Mahalakshmi AM, et al. Dendritic spines: revisiting the physiologic-

al role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:

161–93.

Croft CL, Wade MA, Kurbatskaya K, Mastrandreas P, Hughes MM,

Phillips EC, et al. Membrane association and release of wild-type

and pathological tau from organotypic brain slice cultures. Cell

Death Dis 2017; 8: e2671–e2671.

Daudin R, Marechal D, Wang Q, Abe Y, Bourg N, Sartori M, et al.

BIN1 genetic risk factor for Alzheimer is sufficient to induce early

structural tract alterations in entorhinal cortex-dentate gyrus path-

way and related hippocampal multi-scale impairments. bioRxiv

2018; 437228.
De Rossi P, Buggia-Prevot V, Andrew RJ, Krause SV, Woo E, Nelson

PT, et al. BIN1 localization is distinct from Tau tangles in

Alzheimer’s disease. Matters (Zur) 2017. doi:

10.19185/matters.201611000018.

De Rossi P, Buggia-Prevot V, Clayton BL, Vasquez JB, van Sanford C,

Andrew RJ, et al. Predominant expression of Alzheimer’s disease-

associated BIN1 in mature oligodendrocytes and localization to

white matter tracts. Mol Neurodegener 2016; 11: 59.

DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in

Alzheimer’s disease: correlation with cognitive severity. Ann Neurol

1990; 27: 457–64.

Dourlen P, Kilinc D, Malmanche N, Chapuis J, Lambert JC. The new

genetic landscape of Alzheimer’s disease: from amyloid cascade to

genetically driven synaptic failure hypothesis? Acta Neuropathol

2019; 138: 221–36.
Frandemiche ML, De Seranno S, Rush T, Borel E, Elie A, Arnal I,

et al. Activity-dependent tau protein translocation to excitatory syn-

apse is disrupted by exposure to amyloid-beta oligomers. J Neurosci

2014; 34: 6084–97.
Glennon EB, Whitehouse IJ, Miners JS, Kehoe PG, Love S, Kellett KA,

et al. BIN1 is decreased in sporadic but not familial Alzheimer’s dis-

ease or in aging. PLoS One 2013; 8: e78806.
Gomez-Ramos A, Diaz-Hernandez M, Rubio A, Miras-Portugal MT,

Avila J. Extracellular tau promotes intracellular calcium increase

through M1 and M3 muscarinic receptors in neuronal cells. Mol

Cell Neurosci 2008; 37: 673–81.
Guo T, Noble W, Hanger DP. Roles of tau protein in health and dis-

ease. Acta Neuropathol 2017; 133: 665–704.
Hanley JG. AMPA receptor trafficking pathways and links to dendritic

spine morphogenesis. Cell Adh Migr 2008; 2: 276–82.

Hanseeuw BJ, Betensky RA, Jacobs HIL, Schultz AP, Sepulcre J,

Becker JA, et al. Association of amyloid and tau with cognition in

preclinical Alzheimer disease: a longitudinal study. JAMA Neurol

2019; 76: 915.
Hill RE, Eaton-Rye JJ. Plasmid construction by SLIC or sequence and

ligation-independent cloning. Methods Mol Biol 2014; 1116: 25–36.

Holler CJ, Davis PR, Beckett TL, Platt TL, Webb RL, Head E, et al.

Bridging integrator 1 (BIN1) protein expression increases in the

Alzheimer’s disease brain and correlates with neurofibrillary tangle

pathology. J Alzheimers Dis 2014; 42: 1221–7.

Hu X, Pickering E, Liu YC, Hall S, Fournier H, Katz E, et al.;

Alzheimer’s Disease Neuroimaging Initiative. Meta-analysis for gen-

ome-wide association study identifies multiple variants at the BIN1

locus associated with late-onset Alzheimer’s disease. PLoS One

2011; 6: e16616.

Ittner L, Ke MYD, Delerue F, Bi M, Gladbach A, van Eersel J, et al.

Dendritic function of tau mediates amyloid-beta toxicity in

Alzheimer’s disease mouse models. Cell 2010; 142: 387–97.

Kurbatskaya K, Phillips EC, Croft CL, Dentoni G, Hughes MM,

Wade MA, et al. Upregulation of calpain activity precedes tau phos-

phorylation and loss of synaptic proteins in Alzheimer’s disease

brain. Acta Neuropathol Commun 2016; 4: 34.

Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R,

Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11

new susceptibility loci for Alzheimer’s disease. Nat Genet 2013; 45:

1452–8.

Lasorsa A, Malki I, Cantrelle FX, Merzougui H, Boll E, Lambert JC,

et al. Structural basis of tau interaction with BIN1 and regulation by

tau phosphorylation. Front Mol Neurosci 2018; 11: 421.
Lau DH, Hogseth M, Phillips EC, O’Neill MJ, Pooler AM, Noble W,

et al. Critical residues involved in tau binding to fyn: implications

for tau phosphorylation in Alzheimer’s disease. Acta Neuropathol

Commun 2016; 4: 49.
Lee KF, Soares C, Beique JC. Examining form and function of dendrit-

ic spines. Neural Plast 2012; 2012: 1–9.

Li C, Gotz J. Somatodendritic accumulation of tau in Alzheimer’s dis-

ease is promoted by Fyn-mediated local protein translation. EMBO J

2017; 36: 3120–38.
Malki I, Cantrelle FX, Sottejeau Y, Lippens G, Lambert JC, Landrieu

I. Regulation of the interaction between the neuronal BIN1 isoform

1 and Tau proteins—role of the SH3 domain. FEBS J 2017; 284:

3218–29.
McInnes J, Wierda K, Snellinx A, Bounti L, Wang YC, Stancu IC,

et al. Synaptogyrin-3 mediates presynaptic dysfunction induced by

tau. Neuron 2018; 97: 823–35.e8.

Naj AC, Jun G, Reitz C, Kunkle BW, Perry W, Park YS, et al. Effects

of multiple genetic loci on age at onset in late-onset Alzheimer dis-

ease: a genome-wide association study. JAMA Neurol 2014; 71:

1394–404.

Perez-Nievas BG, Stein TD, Tai HC, Dols-Icardo O, Scotton TC,

Barroeta-Espar I, et al. Dissecting phenotypic traits linked to

human resilience to Alzheimer’s pathology. Brain 2013; 136:

2510–26.

Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. Physiological

release of endogenous tau is stimulated by neuronal activity. EMBO

Rep 2013; 14: 389–94.
Pooler AM, Usardi A, Evans CJ, Philpott KL, Noble W, Hanger DP.

Dynamic association of tau with neuronal membranes is regulated

by phosphorylation. Neurobiol Aging 2012; 33: 431.e27–38.

Prokic I, Cowling BS, Laporte J. Amphiphysin 2 (BIN1) in physiology

and diseases. J Mol Med 2014; 92: 453–63.
Reynolds CH, Garwood CJ, Wray S, Price C, Kellie S, Perera T, et al.

Phosphorylation regulates tau interactions with Src homology 3

domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1,

Grb2, and Src family kinases. J Biol Chem 2008; 283: 18177–86.
Sartori M, Mendes T, Desai S, Lasorsa A, Herledan A, Malmanche N,

et al. BIN1 recovers tauopathy-induced long-term memory deficits in

mice and interacts with Tau through Thr(348) phosphorylation.

Acta Neuropathol 2019; 138: 631–52.
Schurmann B, Bermingham DP, Kopeikina KJ, Myczek K, Yoon S,

Horan KE, et al. A novel role for the late-onset Alzheimer’s disease

(LOAD)-associated protein Bin1 in regulating postsynaptic traffick-

ing and glutamatergic signaling. Mol Psychiatry 2019. doi:

10.1038/s41380-019-0407-3.

Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V,

Boada M, et al. Genome-wide analysis of genetic loci associated

with Alzheimer disease. JAMA 2010; 303: 1832–40.
Sottejeau Y, Bretteville A, Cantrelle FX, Malmanche N, Demiaute F,

Mendes T, et al. Tau phosphorylation regulates the interaction be-

tween BIN1’s SH3 domain and tau’s proline-rich domain. Acta

Neuropathol Commun 2015; 3: 58.

Tau-directed effects of BIN1 loss in Alzheimer’s disease BRAIN COMMUNICATIONS 2020: Page 15 of 16 | 15

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article-abstract/2/1/fcaa011/5736128 by U

niversity C
ollege London user on 10 April 2020



Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase

kinase-3 activity and mimics wingless signalling in intact cells. Curr
Biol 1996; 6: 1664–8.

Taga M, Petyuk VA, White C, Marsh G, Ma Y, Klein H-U, et al.

BIN1 protein isoforms are differentially expressed in astrocytes, neu-
rons, and microglia: neuronal and astrocyte BIN1 implicated in Tau

pathology. bioRxiv 2019; 535682.
Usardi A, Pooler AM, Seereeram A, Reynolds CH, Derkinderen P,

Anderton B, et al. Tyrosine phosphorylation of tau regulates

its interactions with Fyn SH2 domains, but not SH3 domains,
altering the cellular localization of tau. FEBS J 2011; 278:
2927–37.

Van Dolah FM, Ramsdell SM. Okadaic acid inhibits a protein phos-
phatase activity involved in formation of the mitotic spindle of GH4

rat pituitary cells. J Cell Physiol 1992; 152: 190–8.
Vardarajan BN, Ghani M, Kahn A, Sheikh S, Sato C, Barral S, et al.

Rare coding mutations identified by sequencing of Alzheimer disease

genome-wide association studies loci. Ann Neurol 2015; 78: 487–98.
Wang HF, Wan Y, Hao XK, Cao L, Zhu XC, Jiang T, et al.; Disease

Neuroimaging Initiative Alzheimer’s. Bridging integrator 1 (BIN1)
genotypes mediate Alzheimer’s disease risk by altering neuronal de-
generation. J Alzheimers Dis 2016; 52: 179–90.

Wijsman EM, Pankratz ND, Choi Y, Rothstein JH, Faber KM, Cheng

R, et al.; NIA-LOAD/NCRAD Family Study Group. Genome-wide
association of familial late-onset Alzheimer’s disease replicates BIN1
and CLU and nominates CUGBP2 in interaction with APOE. PLoS

Genet 2011; 7: e1001308.
Woolfrey KM, Srivastava DP. Control of dendritic spine morphologic-

al and functional plasticity by small GTPases. Neural Plast 2016;
2016: 1–12.

Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K,

et al. Neuronal activity enhances tau propagation and tau pathology
in vivo. Nat Neurosci 2016; 19: 1085–92.

Yamada K. Extracellular tau and its potential role in the propagation

of tau pathology. Front Neurosci 2017; 11: 667.
Zempel H, Mandelkow E. Lost after translation: missorting of tau pro-

tein and consequences for Alzheimer disease. Trends Neurosci 2014;
37: 721–32.

Zempel H, Mandelkow EM. Tau missorting and spastin-induced

microtubule disruption in neurodegeneration: Alzheimer disease and
hereditary spastic paraplegia. Mol Neurodegener 2015; 10: 68.

Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ,
et al. Tau association with synaptic vesicles causes presynaptic dys-
function. Nat Commun 2017; 8: 15295.

16 | BRAIN COMMUNICATIONS 2020: Page 16 of 16 E. B. Glennon et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article-abstract/2/1/fcaa011/5736128 by U

niversity C
ollege London user on 10 April 2020


	fcaa011-TF1
	fcaa011-TF2

