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Abstract—Low resolution analog-to-digital converters (ADCs)
can be employed to improve the energy efficiency (EE) of a
wireless receiver since the power consumption of each ADC is
exponentially related to its sampling resolution and the hardware
complexity. In this paper, we aim to jointly optimize the sampling
resolution, i.e., the number of ADC bits, and analog/digital
hybrid combiner matrices which provides highly energy efficient
solutions for millimeter wave multiple-input multiple-output
systems. A novel decomposition of the hybrid combiner to
three parts is introduced: the analog combiner matrix, the
bit resolution matrix and the baseband combiner matrix. The
unknown matrices are computed as the solution to a matrix
factorization problem where the optimal, fully digital combiner
is approximated by the product of these matrices. An efficient
solution based on the alternating direction method of multipliers
is proposed to solve this problem. The simulation results show
that the proposed solution achieves high EE performance when
compared with existing benchmark techniques that use fixed
ADC resolutions.

Index Terms—energy efficient design, optimal bit resolution
and hybrid combining, mmWave MIMO.

I. INTRODUCTION

The analog/digital (A/D) hybrid beamforming architec-

tures for millimeter wave (mmWave) multiple-input multiple-

output (MIMO) systems reduce the hardware complexity and

the power consumption through fewer radio frequency (RF)

chains and support multi-stream communication with good

capacity performance [1]–[3]. Designing such systems for

high energy efficiency (EE) gains would leverage their sig-

nificance [4], [5]. An alternative solution to reduce the power

consumption and hardware complexity is by reducing the

resolution sampling [6]. Some approaches have been applied

in hybrid mmWave MIMO systems for EE maximization and

low complexity with full resolution [7] and low resolution [8].

The existing literature mostly discusses full or high resolu-

tion analog-to-digital converters (ADCs) with a small number

of RF chains or low resolution ADCs with a large number

of RF chains: either way only the fixed resolution ADCs are

taken into account. References [4], [5] consider EE optimiza-

tion problems for A/D hybrid transceivers but with fixed and

high resolution digital-to-analog converters (DACs)/ADCs.

Reference [8] proposes a novel EE maximization transmission

technique with subset selection optimization to find the best

subset of the active RF chains and DAC resolution, which

can be extended to low resolution ADCs at the receiver (RX).

Reference [9] suggests implementing fixed and low resolution

ADCs with few RF chains. Reference [10] studies the idea of a

mixed-ADC architecture where a better energy-rate trade off is

achieved by using mixed resolution ADCs but still with a fixed

resolution for each ADC and it does not consider A/D hybrid

beamforming. A hybrid beamforming system with fixed and

low resolution ADCs has been analyzed for channel estimation

in [11]. Varying resolution ADCs can be implemented at the

RX [12] which may provide a better solution than fixed and

low resolution ADCs. Extra care is needed when deciding

the range of number of ADC bits as the total ADC power

consumption can be dominated by only a few high resolution

ADCs. Thus, a good trade-off between power consumption

and performance is to consider the range of 1-8 bits for the

varying number of ADC bits.

Contributions: This paper designs an optimal EE solution

for a mmWave A/D hybrid receiver MIMO system by intro-

ducing the novel decomposition of the A/D hybrid combiner

to three parts representing the analog combiner matrix, the bit

resolution matrix and baseband combiner matrix. Our aim is

to minimize the distance between this decomposition, which

is expressed as the product of three matrices, and the fully

digital combiner matrix. The joint problem is decomposed

into a series of sub-problems which are solved using an

alternating optimization framework, i.e., alternating direction

method of multipliers (ADMM) is developed to obtain the

unknown matrices. The proposed design has high flexibility,

given that the analog combiner is codebook-free, thus there

is no restriction on the angular vectors and different bit

resolutions can be assigned to each ADC. Our proposed

solution optimizes the resolution on a packet-by-packet basis

for each one of the ADCs unlike existing approaches that are

based on fixed resolution sampling. We also implement an

exhaustive search approach [4] for comparison which provides

the upper bound for EE maximization.

Notation: A, a and a denote a matrix, a vector and a scalar,

respectively. The complex conjugate transpose and transpose

of A are denoted as AH and AT ; |a| represents the determinant

of a; IN represents N × N identity matrix; X ∈ C
A×B and

X ∈ RA×B denote A×B size X matrix with complex and real

entries, respectively; CN (a,A) denotes a complex Gaussian

vector having mean a and covariance matrix A; [A]kl is the

matrix entry at the k-th row and l-th column. The indicator

function 1S {A} of a set S that acts over a matrix A is defined

as 0 ∀ A ∈ S and ∞ ∀ A /∈ S.

http://arxiv.org/abs/1909.12170v1


II. A/D HYBRID MMWAVE MIMO SYSTEM

A. MmWave Channel Model

MmWave channels can be modeled by a narrowband clus-

tered channel model due to different channel settings such

as number of multipaths, amplitudes, etc., with Ncl clusters

and Nray propagation paths in each cluster [1]. Considering

a single user mmWave system with NT antennas at the

transmitter (TX), transmitting Ns data streams to NR antennas

at the RX, the mmWave channel matrix can be written as

follows:

H =

√

NTNR

NclNray

Ncl∑

i=1

Nray∑

l=1

αilaR(φ
r
il)aT(φ

t
il)

H , (1)

where αil ∈ CN (0, σ2
α,i) is the gain term with σ2

α,i being the

average power of the ith cluster. Furthermore, aT(φ
t
il) and

aR(φ
r
il) represent the normalized transmit and receive array

response vectors [1], where φt
il and φr

il denote the azimuth

angles of departure and arrival, respectively. We use uniform

linear array (ULA) antennas for simplicity and model the

antenna elements at the RX as ideal sectored elements [13].

However, the proposed technique is not limited to this setup

and can be easily extended to the case of wideband channels

and uniform planar/circular arrays.

B. A/D Hybrid MIMO System Model

Based on the A/D hybrid beamforming scheme in the large-

scale mmWave MIMO communication systems, the number

of RX RF chains LR follows the limitation Ns ≤ LR ≤ NR

[1], [2]. The matrices WRF ∈ CNR×LR and WBB ∈ CLR×Ns

denote the analog combiner and baseband (or digital) com-

biner matrices, respectively. The analog combiner matrix WRF

is based on phase shifters, i.e., the elements that have unit

modulus and continuous phase. Thus, WRF ∈ WNR×LR where

the set W represents the set of possible phase shifts in WRF

and for a variable a, is defined as, W = {a ∈ C | |a| = 1}.
At the TX, with LT RF chains, the analog precoder matrix is

denoted as FRF ∈ CNT×LT and the baseband precoder matrix

is denoted as FBB ∈ CLT×Ns . The received signal y ∈ CNR×1

can be expressed as:

y = HFRFFBBx+ n, (2)

where x ∈ CNs×1 is the transmit symbol vector and n ∈
CNR×1 is a noise vector with independent and identically dis-

tributed entries and follow the complex Gaussian distribution

with zero mean and σ2
n variance, i.e., n ∼ CN (0, σ2

n INR
).

As widely used in the existing literature, we consider the

linear additive quantization noise model (AQNM) to represent

the distortion of quantization [14]. Given that Q(·) denotes a

uniform scalar quantizer then for the scalar complex input

x ∈ C that is applied to both the real and imaginary parts, we

have that,

Q(x) ≈ δx+ ǫ, (3)

where δ =

√

1− π
√
3

2 2−2b ∈ [m,M ] is the multiplicative

distortion parameter for a bit resolution equal to b [15]

Fig. 1. A mmWave A/D hybrid MIMO system with low resolution ADCs.

where m and M denote the minimum and maximum value

of the range. Note that the introduced error in the linear

approximation in (3) decreases for larger resolutions. How-

ever, our proposed solution focuses on EE maximization and

this linear approximation does not impact the performance

significantly as observed from the simulation results in Section

IV. The parameter ǫ is the additive quantization noise with

ǫ ∼ CN (0, σ2
ǫ ) , where σǫ =

√

1− π
√
3

2 2−2b

√

π
√
3

2 2−2b.

Based on AQNM, the vector containing the complex output

of all the ADCs can be expressed as follows:

Q(WH
RFy) ≈∆HWH

RFy + ǫ, (4)

where Q(WH
RFy) ∈ CLR×1 and ∆ = ∆H ∈ CLR×LR is a

diagonal matrix with values depending on the ADC resolution

bi of each ADC. Specifically, each diagonal entry of ∆ is

given by:

[∆]ii =

√

1− π
√
3

2
2−2bi ∈ [m,M ] ∀ i = 1, . . . , LR, (5)

where, for simplicity, we assume that the range [m,M ] is

the same for each one of the ADCs. The second term of (4)

expresses the additive quantization noise for all RF chains,

with ǫ ∈ CN (0,Cǫ) [8] where Cǫ is a diagonal covariance

matrix with entries as follows:

[Cǫ]ii =

(

1− π
√
3

2
2−2bi

)(

π
√
3

2
2−2bi

)

∀ i = 1, . . . , LR.

(6)

After the effect of the quantization and application of the

baseband combining matrix, the output r ∈ CNs×1 at the RX

can be expressed as:

r = WH
BB∆

HWH
RFy +WH

BBǫ. (7)

Based on the received signal expression in (2), we can express

(7) as follows:

r = WH
BB∆

HWH
RFHFRFFBBx+WH

BB∆
HWH

RFn+WH
BBǫ

︸ ︷︷ ︸

η

,

(8)

where η is the combined effect of the Gaussian and the

quantization noise with η ∼ CN (0,Rη). Here Rη ∈ CLR×LR

is the combined noise covariance matrix with,

Rη = σ2
nW

H
BB∆

HWH
RFWRF∆WBB +WH

BBCǫWBB. (9)



III. BIT ALLOCATION AND HYBRID COMBINER DESIGN

A. Problem Formulation

Let us consider a point-to-point MIMO system with the

linear quantization model. We define the EE as the ratio of

the information rate and the total consumed power as,

EE(WRF,∆,WBB) ,
R(WRF,∆,WBB)

P (∆)
(bits/Joule),

(10)

where the information rate is defined as,

R(WRF,∆,WBB) , log2 |ILR
+

R−1
η

Ns

WH
BB∆

HWH
RFHF×

FHHHWRF∆WBB| (bits/s),
(11)

where the A/D hybrid precoder F = FRFFBB ∈ CNT×Ns .

Similar to the power model at the TX in [8], the total

consumed power at the RX is expressed as:

P (∆) = PD +NRPR +NRLRPPS + PCP (W), (12)

where PPS is the power per phase shifter, PR is the power per

antenna, PD is the power associated with the total quantization

operation, and following (5) and [14], we have

PD =PADC

LR∑

i=1

2bi =PADC

LR∑

i=1

(

π
√
3

2(1− [∆]2ii)

) 1

2

(W), (13)

where PADC is the power consumed per bit in the ADC and

PCP is the power required by all circuit components.

Considering the rate and power model in (11) and (12),

respectively, we can express the following fractional problem:

(P1) : max
WRF,∆,WBB

R(WRF,∆,WBB)

P (∆)

subject to WRF ∈ WNR×LR ,∆ ∈ DLR×LR ,

where the set D represents the finite states of the quantizer

and is defined as,

D =
{
∆ ∈ R

LR×LR
∣
∣m ≤ [∆]ii ≤M ∀ i = 1, ..., LR

}
.

The channel’s singular value decomposition (SVD) is written

as H = UHΣHV
H
H , where UH ∈ CNR×NR and VH ∈ CNT×NT

are unitary matrices, and ΣH ∈ R
NR×NT is a rectangular

matrix of singular values in decreasing order whose di-

agonal elements are non-negative real numbers and whose

non-diagonal elements are zero. The optimal, fully digital

combiner matrix Wopt consists of the Ns columns of the

left singular matrix UH. Our goal, by solving (P1), is to

obtain the combiner matrices and the bit resolution matrix

in an optimal manner. We introduce the novel decomposition

of the A/D hybrid combiner to three parts representing the

analog combiner matrix, the bit resolution matrix and digital

combiner matrix, i.e., WRF∆WBB. So the Euclidean distance

‖Wopt −WRF∆WBB‖2F should be as small as possible for a

maximum throughput combiner design. Note that we optimize

over the bit resolution matrix with varying resolutions and the

choice of combiner matrices at the RX.

Proposition 1. The maximization of the fractional problem

(P1) is equivalent with the solution of the following problem:

(P2) : min
WRF,∆,WBB

1

2
‖Wopt −WRF∆WBB‖2F + γP (∆),

subject to WRF ∈ WNR×LR ,∆ ∈ DLR×LR ,

where the parameter γ ∈ R+ denotes the trade-off between

the rate and the power consumption.

Proof. The main idea to prove the equivalence is first to apply

the Dinkelbach approach to transform the fractional problem

into an affine one [16]. Afterwards, based on [1], [2], the

maximization of the rate R can be expressed as minimization

of the Euclidean distance between the computed A/D hybrid

combiner and the optimal, fully digital combiner Wopt. The

details of this proof are omitted due to space limitations.

Parameter γ also determines how close is the solution of

(P2) to (P1). In this work, γ is selected after an exhaustive

search over all the possible values in the range of [0.001,

0.1] and the value which gives the best result for (P2) is

selected. Problem (P2) is non-convex due to the constraints

on the structure of matrix WRF. Similar non-convex problems

have been recently addressed in the literature via alternating

direction method of multipliers (ADMM) based solutions

[17]–[19].

B. Proposed ADMM Solution

In the following we develop an iterative procedure for solv-

ing (P2) based on the ADMM approach [17]. This method,

is a variant of the standard augmented Lagrangian method

that uses partial updates (similar to the Gauss-Seidel method

for the solution of linear equations) to solve constrained

optimization problems. This method replaces a constrained

minimization problem by a series of unconstrained problems

and add a penalty term to the objective function. This penalty

improves robustness compared to other optimization meth-

ods for constrained problems (for example, the dual ascent

method) and in particular achieves convergence without the

need of specific assumptions for the objective function, i.e.,

strict convexity and finiteness. The interested reader may refer

to [17] for further information.

We first transform (P2) into a form that can be addressed

via ADMM. By using the auxiliary variable Z, (P2) can be

written in the following form:

(P3) : min
Z,WRF,∆,WBB

1

2
‖Wopt − Z‖2F + 1WNR×LR{WRF}

+ 1DLR×LR{∆}+ γP (∆),

subject to Z = WRF∆WBB.

Problem (P3) formulates the A/D hybrid combiner matrix

design as a matrix factorization problem. That is, the overall

combiner Z is sought so that it minimizes the Euclidean

distance to the optimal, fully digital combiner Wopt while sup-

porting decomposition into three factors: the analog combiner

matrix WRF, the matrix ∆ which is related to the resolution

of each ADC and the digital combiner matrix WBB.



The augmented Lagrangian function of (P3) is given by,

L(Z,WRF,∆,WBB,Λ)=
1

2
‖Wopt−Z‖2F+1WNR×LR{WRF}

+1DLR×LR{∆}+
α

2
‖Z+Λ/α−WRF∆WBB‖2F+γP (∆),

(14)

where α is a scalar penalty parameter and Λ ∈ CNR×LR is the

Lagrange Multiplier matrix. According to ADMM [17], the

solution to (P3) is derived by the following iterative steps:

(P3A) : Z(n) = argmin
Z

1

2
‖(1 + α)Z −Wopt +Λ(n−1)

− αWRF(n−1)∆(n−1)WBB(n−1)‖2F ,
(P3B) : WRF(n) = argmin

WRF

1WNR×LR{WRF}+
α

2
×

∥
∥Z(n) +Λ(n−1)/α−WRF∆(n−1)WBB(n−1)

∥
∥
2

F
,

(P3C) : ∆(n) = argmin
∆

‖yc −Ψvec(∆)‖22 + γP (∆),

subject to ∆ ∈ D,
(P3D) : WBB(n) = argmin

WBB

α

2
‖Z(n) +Λ(n−1)/α

−WRF(n)∆(n)WBB‖2F ,
Λ(n) = Λ(n−1) + α

(
Z(n) −WRF(n)∆(n)WBB(n)

)
, (15)

where n denotes the iteration index, yc=vec(Z(n)+Λ(n−1)/α)
and Ψ=WBB(n−1)⊗WRF(n) (⊗ is the Khatri-Rao product).

We solve the optimization problems (P3A)-(P3D) and the

solutions are provided in Algorithm 1. The algorithm provides

the complete procedure to obtain the optimal analog combiner

matrix WRF, the optimal bit resolution matrix ∆ and the

optimal baseband (or digital) combiner matrix WBB. It starts

by initializing the entries of the matrices Z, WRF, ∆, WBB

with random values and the entries of the Lagrange multiplier

matrix Λ with zeros. For iteration index n, Z(n), WRF(n),

∆(n) and WBB(n) are updated at each iteration step using the

solutions provided in Steps 4, 7, 8, 10 and 11 of Algorithm

1. In Step 7, ΠW is the operator that projects the solution

onto the set W . This is computed by solving the following

optimization problem [20]:

(P4) : min
AW

‖AW −A‖2F , subject to AW ∈ W ,

where A is an arbitrary matrix and AW is its projection onto

the set W . The solution to (P4) is given by the phase of the

complex elements of A. Thus, for AW = ΠW{A} we have

AW(x, y) =

{

0, A(x, y) = 0
A(x,y)
|A(x,y)| , A(x, y) 6= 0

, (16)

where AW (x, y) and A(x, y) are the elements at the xth row-

yth column of matrices AW and A, respectively. Furthermore,

as shown in Step 8, the minimization problem in (P3C) is

solved by implementing CVX [21]. A termination criterion

related to the maximum permitted number of iterations of the

ADMM sequence (Nmax) is considered. Upon convergence,

the number of bits for each ADC is obtained by using (5) and

quantized to the nearest integer value.

Algorithm 1 Proposed ADMM Solution for the A/D Hybrid

Combiner Design

1: Initialize: Z, WRF, ∆, WBB with random values, Λ with

zeros, α = 1 and n = 1
2: while n ≤ Nmax do

3: A = αWRF(n−1)∆(n−1)WBB(n−1).

4: Z(n) =
1

α+1

(
Wopt −Λ(n−1) +A

)
.

5: B = Λ(n−1) + αZ(n).

6: C = α∆(n−1)WBB(n−1)WBB
H
(n−1)∆

H
(n−1).

7: WRF(n) = ΠW{BWBB
H
(n−1)∆

H
(n−1)C

−1}.
8: Update ∆(n) by solving (P3C) using CVX [21].

9: D = α∆H
(n)WRF

H
(n)WRF(n)∆(n).

10: WBB(n) = D−1∆H
(n)WRF

H
(n)B.

11: Λ(n) = Λ(n−1) + α
(
Z(n) −WRF(n)∆(n)WBB(n)

)
.

12: n← n+ 1
13: end while

14: return WRF(Nmax), ∆(Nmax), WBB(Nmax)

Computational complexity analysis of Algorithm 1: In

Algorithm 1, mainly Step 8 involves multiplication by Ψ

whose dimensions are LRNR×NsLR. In general, the solution

of (P3C) can be upper-bounded by O((L2
RNRNs)

3) which can

be improved significantly by exploiting the structure of Ψ.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

ADMM technique using computer simulation results. The re-

sults have been averaged over 1,000 Monte-Carlo realizations.

System setup: We set the following parameters, unless

specified otherwise, to obtain the desired results: NT = 32,

NR = 16, LR = 4, Ns = 4, Ncl = 2, Nray = 4, Nmax = 40,

m = 1, M = 8, α = 1 and σ2
α,i = 1. The azimuth angles of

departure and arrival are computed with uniformly distributed

mean angles; each cluster follows a Laplacian distribution

about the mean angle. The antenna elements in the ULA

are spaced by distance d = λ/2. The signal-to-noise ratio

(SNR) is given by the inverse of the noise variance, i.e.,

1/σ2
n . The transmit vector x is composed of the normalized

i.i.d. Gaussian symbols. The values used for the terms in the

power model in (12) of Section III are PADC = 100 mW,

PCP = 10 W, PR = 100 mW and PPS = 10 mW. Note that to

measure the spectral efficiency (SE) performance, we compute

the ratio R/B bits/s/Hz where B represents the bandwidth,

and for the simulations we set B = 1 Hz. For simulations,

the precoder matrix F is considered equal to the optimal fully

digital precoder matrix [1], [2], i.e., the product of 1/
√
Ns and

first Ns columns of the right singular matrix VH.

Convergence of the proposed ADMM solution: Fig. 2 shows

the convergence of the ADMM solution as proposed in Algo-

rithm 1 to obtain the optimal bit resolution at each ADC and

corresponding optimal combiner matrices. The proposed solu-

tion converges rapidly at around 20 iterations and mean square

error (MSE),
∥
∥Wopt −WRF(Nmax)∆(Nmax)WBB(Nmax)

∥
∥
2

F
, goes

as low as -20 dB. A lower number of RX antennas shows
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Fig. 2. Convergence of the ADMM solution for different NR at γ = 0.01.
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Fig. 3. EE and SE performance w.r.t. SNR at NR = 16 and γ = 0.01.

lower MSE as expected, since fewer parameters are required

to be estimated.

Benchmark techniques:

1) Digital combining with full-bit resolution: We consider

the conventional fully digital beamforming architecture, where

the number of RF chains at the RX is equal to the number

of RX antennas, i.e., LR = NR. The fully digital combining

solution may be provided by SVD and waterfilling [22].

In terms of the resolution sampling, we consider full-bit

resolution, i.e., M = 8-bit, which represents the optimum

from the achievable SE perspective.

2) A/D Hybrid combining with 1-bit and 8-bit resolutions:

We also consider a A/D hybrid combining architecture with

LR < NR, for two cases of bit resolution: a) 1-bit resolution

which usually shows reasonable EE performance, and b) 8-bit

resolution which usually shows high SE results.

3) Brute force with A/D hybrid combining: We also im-

plement an exhaustive search approach as an upper bound for

EE maximization called brute force (BF), based on [4], which

clearly shows the energy-rate performance trade-offs in the

simulations. It makes a search over the number of RF chains

LR and all the available bit resolutions, i.e., b = 1, ...,M .

It then finds the best EE out of all the possible cases and

chooses the corresponding optimal resolution for each ADC.

This method provides the best possible EE performance, but

it is computationally intractable for LR > 4.

Fig. 3 shows the performance of the proposed ADMM

solution compared with existing benchmark techniques with

respect to (w.r.t.) SNR at NR = 16. The proposed ADMM

solution achieves high EE which has performance close to

the BF approach and better than the 8-bit hybrid, 1-bit

hybrid and full-bit digital baselines. For example, at SNR
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Fig. 4. EE and SE performance w.r.t. NR at SNR = 30 dB and γ = 0.01.
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Fig. 5. EE and SE performance w.r.t. NT at SNR = 30 dB and γ = 0.01.

= 20 dB, the proposed ADMM solution outperforms 1-bit

hybrid, 8-bit hybrid and full-bit digital baselines by about 0.45

bits/Joule, 1.375 bits/Joule and 1.44 bits/Joule, respectively.

It also exhibits better SE than 1-bit hybrid and has similar

performance to the 8-bit hybrid baseline.

There is an energy-rate trade-off between the proposed

solution and the BF approach as we can achieve better

rate with lower EE and vice-versa. Moreover, the proposed

solution has lower complexity than the BF approach because

the BF involves a search over all the possible bit resolutions

while the proposed solution directly optimizes the number

of bits to obtain an optimal number of bits at each ADC.

We constrain the number of RF chains LR = 4 for the BF

approach due to the high complexity order which is O(MLR).
Also note that the proposed approach enables the selection of

different resolutions for different ADCs and thus, it offers a

better trade-off for EE versus SE than existing approaches

which are based on a fixed ADC resolution.

Figs. 4 and 5 show the performance results w.r.t. the number

of RX and TX antennas at 30 dB SNR. The proposed ADMM

solution again achieves high EE and performs close to the

BF approach and better than the 8-bit hybrid, 1-bit hybrid

and full-bit digital baselines. For example, at NR = 20,

the proposed ADMM solution outperforms 1-bit hybrid, 8-bit

hybrid and full-bit digital baselines by about 0.85 bits/Joule,

1.75 bits/Joule and 1.875 bits/Joule, respectively. Also, for

NT = 20, the proposed solution outperforms 1-bit hybrid, 8-

bit hybrid and full-bit digital baselines by about 1.0 bits/Joule,

1.5 bits/Joule and 1.625 bits/Joule, respectively. The proposed

solution also exhibits better SE than 1-bit hybrid and has

similar performance to the 8-bit hybrid baseline. Both the
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Fig. 7. EE and SE performance w.r.t. γ at SNR = 30 dB.

figures follow the energy-rate trade-off with the BF approach.

Furthermore, we investigate the performance over the trade-

off parameter γ introduced in (P2). Fig. 6 shows the bar plot of

average of the optimal number of bits selected by the proposed

solution for each ADC versus γ. The average optimal number

decreases with the increase in γ, for example, it is 4 for γ =
0.001, 3 for γ = 0.01 and 2 for γ = 0.1. Fig. 6 also shows that

the power consumption in the proposed case is considerably

low and decreases with the increase in the trade-off parameter

γ unlike digital 8-bit, several fixed bit hybrid baselines and

the BF approach. Fig. 7 shows the EE and SE plots for several

solutions w.r.t. γ. It can be observed that the proposed solution

achieves higher EE than the fixed bit allocation solutions and

achieves comparable EE and SE results to the BF approach.

These curves also show that adjusting γ allows the system to

vary the energy-rate trade-off.

V. CONCLUSION

This paper proposes an energy efficient mmWave A/D

hybrid MIMO system which can vary the ADC bit resolution

at the RX. This method uses the decomposition of the A/D

hybrid combiner matrix into three parts representing the ana-

log combiner matrix, the bit resolution matrix and the digital

combiner matrix. These three matrices are optimized by the

novel ADMM solution which outperforms the EE of the full-

bit digital, 1-bit hybrid combining and 8-bit hybrid combining

baselines. There is an energy-rate trade-off with the BF

approach which yields the upper bound for EE maximization.

The proposed approach enables the selection of the optimal

resolution for each ADC and thus, it offers better trade-off

for data rate versus EE than existing approaches based on

fixed ADC resolution. In future work, we will jointly optimize

the DAC and ADC bit resolution and hybrid precoder and

combiner matrices at the TX and the RX.
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