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Raman spectroscopy, Raman mapping and Fourier-Transform Infrared 

Spectroscopy (FT-IR). SEM showed the fibres to have an average diameter 

increasing from ~ 1 - 4 µm as the GO loading increased. FT-IR and Raman 

spectroscopy confirmed the inclusion of GO nanosheets on the fibre 

surface. The antibacterial potential of GO nanocomposite fibres were 

investigated using Escherichia coli K12. Average bacterial reduction 

ranged from 46 - 85 % with results favouring the strongest bioactivities 

of the nanocomposite containing 8 wt% of GO. Finally, bacterial toxicity 

of the nanocomposites was evaluated by reactive oxygen species (ROS) 

formation. A mechanism for the antibacterial behaviour of the 

nanocomposite fibres is presented. Stimulated Raman scattering imaging 

and spectra of the fibres post antibacterial studies showed flakes of GO 

distributed across the surface of the poly(methyl 2-methylpropenoate) 

(PMMA) fibres, which contribute to the high killing efficacy of the 

composites towards E. coli. GO nanosheets embedded in a polymer matrix 

have demonstrated the ability to retain their antibacterial properties, 

thus offering themselves as a promising antibacterial agent. 

 

 

 

 



*3: Graphical Abstract
Click here to download high resolution image

http://ees.elsevier.com/jcis/download.aspx?id=2210549&guid=91f9105e-77bb-43e7-84ed-6e5e46e41eef&scheme=1


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 1 

Microstructure and Antibacterial Efficacy of Graphene Oxide Nanocomposite 1 

Fibres 2 

Rupy Kaur Matharua,b, Tanveer A. Tabishc, Thithawat Trakoolwilaiwana, Jessica 3 

Mansfieldc, Julian Mogerc, Tongfei Wud, Cláudio Lourençoe, Biqiong Chenf, Lena 4 

Ciricb, Ivan P. Parkine, Mohan Edirisinghea* 
5 

a Department of Mechanical Engineering, University College London, Torrington 6 

Place, London, WC1E 7JE, UK. 7 

b Department of Civil, Environmental and Geomatic Engineering, University 8 

College London, London, WC1E 7JE, UK. 9 

c School of Physics and Astronomy, University of Exeter, North Park Road, Exeter, 10 

EX4 4QL, UK. 11 

d Department of Materials Science and Engineering, University of Sheffield, 12 

Mappin Street, Sheffield, S1 3JD, UK. 13 

e Department of Chemistry, University College London, Gordon Street, London, 14 

WC1H 0AJ, UK. 15 

f School of Mechanical and Aerospace Engineering, Queen’s University Belfast, 16 

Stranmillis Road, Belfast, BT9 5AH, UK. 17 

* Corresponding author email: m.edirisinghe@ucl.ac.uk 18 

 19 

  20 

*4a: Marked highlighted manuscript

mailto:m.edirisinghe@ucl.ac.uk


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 2 

Abstract 21 

Antibacterial polymer nanocomposite fibre meshes containing graphene oxide 22 

(GO) nanosheets were successfully prepared by pressurised gyration. The 23 

morphological and chemical composition of the resulting fibre meshes were 24 

determined using Scanning Electron Microscopy (SEM), Raman spectroscopy, 25 

Raman mapping and Fourier-Transform Infrared Spectroscopy (FT-IR). SEM 26 

showed the fibres to have an average diameter increasing from  1 – 4 µm as 27 

the GO loading increased. FT-IR and Raman spectroscopy confirmed the 28 

inclusion of GO nanosheets on the fibre surface. The antibacterial potential of 29 

GO nanocomposite fibres were investigated using Escherichia coli K12. Average 30 

bacterial reduction ranged from 46 – 85 % with results favouring the strongest 31 

bioactivities of the nanocomposite containing 8 wt% of GO. Finally, bacterial 32 

toxicity of the nanocomposites was evaluated by reactive oxygen species (ROS) 33 

formation. A mechanism for the antibacterial behaviour of the nanocomposite 34 

fibres is presented. Stimulated Raman scattering imaging and spectra of the 35 

fibres post antibacterial studies showed flakes of GO distributed across the 36 

surface of the poly(methyl 2-methylpropenoate) (PMMA) fibres, which 37 

contribute to the high killing efficacy of the composites towards E. coli. GO 38 

nanosheets embedded in a polymer matrix have demonstrated the ability to 39 

retain their antibacterial properties, thus offering themselves as a promising 40 

antibacterial agent. 41 
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1. Introduction  50 

Airborne and waterborne pathogens are responsible for causing numerous 51 

diseases, infections, allergies and toxic reactions[1-5]. These microorganisms are 52 

easily spread in a non-uniform manner with air and water currents[1-5]. The 53 

concentration of these biological threats in the environment and water supplies 54 

greatly fluctuate depending on numerous factors including human activity and 55 

environmental exposure [6-10]. Their existence in high concentrations serves as 56 

an indication of contamination, thus the implementation of regulators in the 57 

industrial, commercial and consumer markets, to reduce, or ideally prevent 58 

microbial colonisation and proliferation has become increasingly vital to human 59 

health[11]. Sterilisation methods utilising ultraviolet radiation, ions and high 60 

pressure and temperature treatments have been used as a means of reducing 61 

the number of pathogenic microorganisms[12-16]. However, these techniques 62 

have been deemed inefficient and potentially toxic to human health. 63 

 64 

Mechanical filtration technologies have emerged as a viable means of 65 

controlling aerosols and hydrosols. In particular, micro- and nano- fibres 66 

provide chemical-free, cost-effective and environmentally friendly approach for 67 

enhancing filtration efficiency and performance[17-22]. Fibrous filtration 68 

systems consist of a layer of randomly aligned fibres oriented across the 69 

direction of flow[23]. These membranes have an interconnected pores and/or 70 
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finer pore structure that allows an effective permeability resulting a higher 71 

throughput in comparison to conventional filters[24]. The individual fibres in the 72 

mesh typically have a circular or rectangular cross-section, with a small fibre 73 

diameter distribution and are ideally porous[23]. The exploitation of fibrous 74 

filtration systems has increased over the last 20 years due to their ability to 75 

capture particles and microorganisms proficiently via factors including direct 76 

interception by fibres, inertial impaction, Brownian movement, convection, 77 

gravitational settling and electrostatic effects. One of the challenges in currently 78 

used fibre-based filtration systems is that the microorganisms trapped within 79 

the fibre meshes are able to survive and proliferate, consequently leading to 80 

contamination of air-handling systems, ventilation and air conditioning units 81 

and water supply systems [1, 25-32]. This ultimately diminishes filter efficiency 82 

and consequently leads to the release of pathogenic microorganisms both 83 

dormant and germinating, into the environment and water supplies[1]. 84 

Therefore, various antimicrobial treatments, such as antibiotics and antivirals, 85 

have been incorporated into filter media to bestow antimicrobial activities[33-86 

37]. However, microorganisms have the ability to resist such treatments from 87 

working against it (antimicrobial resistance) and rendering them ineffective. For 88 

this reason, the use of alternative antimicrobial agents has been extensively 89 

explored. 90 

 91 
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Graphene-based 2D nanomaterials, such as graphene oxide (GO), porous 92 

graphene nanosheets and reduced GO, have demonstrated effective 93 

antibacterial properties[38-42]. These carbon-based materials having a higher 94 

surface area to volume ratio results in a stronger potency toward bacteria[43-95 

45]. In particular, studies have shown GO to possess the highest antibacterial 96 

activity among its counterparts[38]. GO is one of the most extensively explored 97 

materials for a wide range of applications. GO is the product formed from the 98 

chemical exfoliation of graphite oxide into mono-sheets and is composed of a 99 

single atomic plane of carbon molecules arranged in a honeycomb structure 100 

with carboxylic groups at its edges and hydroxyl groups in its basal plane[46, 101 

47]. As a result, GO is hydrophilic making it ideal for filtration applications. 102 

Recent studies have revealed that a multitude of microorganisms can be 103 

inactivated by GO, such as Escherichia coli, Staphylococcus aureus, 104 

Xanthomonas oryzae pv. Oryzae, Pseudomonas aeruginosa, Streptococcus 105 

faecalis and Candida albicans[38, 48-54].  106 

 107 

The purpose of this study is to fabricate novel antibacterial fibre meshes loaded 108 

with GO nanosheets were fabricated using pressurised gyration. In this work, GO 109 

nanosheets were synthesised, characterised and the minimum concentration 110 

required to inhibit bacterial growth was investigated. The as-prepared 111 

nanosheets were incorporated into polymeric fibres using pressurised gyration. 112 
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The physical and chemical structure of the nanocomposite fibres were analysed 113 

in detail. The antibacterial performance of the fibrous meshes were measured 114 

against E. coli. The resulting meshes demonstrate a promising scope to inhibit 115 

microbial colonisation and proliferation.  116 

 117 

2. Experimental Procedures 118 

2.1 Materials 119 

Graphite powder (<20 µm), poly(methyl 2-methylpropenoate) (PMMA) (Mw ~ 120 

120,000 g/mol), chloroform, concentrated sulfuric acid (98%), sodium nitrate, 121 

potassium permanganate, hydrogen peroxide (30 wt% in water), ethanol, 122 

hydrochloric acid (37%), Luria Bertani (LB) broth, phosphate buffered saline 123 

(PBS), glutaraldehyde, 1% osmium tetroxide and hexamethyldisilazane were 124 

purchased from Sigma-Aldrich (Gillingham, UK). LB agar was purchased from 125 

Invitrogen (Paisley, UK). LIVE/DEAD BacLight Bacterial Viability and Counting Kit 126 

was purchased from ThermoFisher Scientific (Paisley, UK). 2-(3,6-diacetyloxy-2,7-127 

dichloro-9H-xanthen-9-yl)benzoic acid (DCFH) was purchased from Cayman 128 

Chemicals (Michigan, US). All solvents and chemicals were of analytical grade 129 

and used as received or as instructed by the supplier.  130 

 131 

2.2 Synthesis of Graphene Oxide Nanosheets 132 
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GO nanosheets were prepared by following a modified Hummers’ method[55]. 133 

Concentrated sulfuric acid (69 mL) was added to graphite flakes (3.0 g) and 134 

sodium nitrate (1.5 g), followed by slowly adding potassium permanganate (9.0 135 

g). The reaction temperature was maintained below 20 °C. The initial reactants 136 

were heated to 35 °C and stirred for 12 hours. Potassium permanganate (9.0 g) 137 

was again added, and was stirred for 8 hours which was maintained at a 138 

temperature of 35 °C. The reaction was then cooled to room temperature (25oC) 139 

and put into an ice bath (∼400 mL) with 30% hydrogen peroxide (3 mL).  140 

 141 

The mixture was filtered through filter paper with a particle retention of 12-15 142 

μm. The extracts were washed in succession with distilled water (200 mL), 30% 143 

hydrochloric acid (200 mL), and distilled water (200 mL). The remaining solid 144 

material was then washed twice with ethanol (200 mL) by centrifugation (9000 145 

rpm for 4 hours, Eppendorf Centrifuge 5804). The purified product was 146 

dispersed in distilled water and sifted through a metal U.S. Standard testing 147 

sieve (161 μm) after sonication for 1 hour. The GO aqueous suspension was 148 

freeze-dried to obtain GO powder. 149 

 150 

2.3 Fabrication of Graphene Oxide/ Poly(methyl 2-methylpropenoate) Fibres 151 

Polymer solutions containing varying concentrations of GO nanosheets (0, 2, 4 152 

and 8 wt%) were prepared in a three-step process for fibre forming using 153 
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pressurised gyration. (i) GO was added to chloroform as described in Table 1 154 

and sonicated (Branson Ultrasonics Sonifier S-250A) for 24 hours in an ice bath 155 

to homogenously disperse GO nanosheets. Then, PMMA was dissolved in 156 

chloroform and mixed with the GO dispersion under magnetic stirring for 1 157 

hour. 8 wt% was easily processed by pressurised gyration[56]. 158 

 159 

The as-prepared GO/PMMA suspensions were processed using pressurized 160 

gyration. The experimental setup was made up of a rotating aluminium 161 

cylindrical pot (6 cm diameter, 3.5 cm height) with 24 circular orifices (0.5 mm in 162 

diameter) along its central horizontal axis. The bottom of the pot was attached 163 

to a high-speed rotary motor, whilst the top was connected to a nitrogen gas 164 

supply. 5 mL aliquots of the GO/PMMA suspension were loaded into the pot. 165 

The system was immediately switched on and allowed to reach the apparent 166 

maximum speed of 36000 rpm before applying 0.1 MPa of pressure (nitrogen 167 

gas) to the rotating pot. The system was spun until all the suspension had been 168 

ejected from the pot. Pressurised gyration experiments were performed at 169 

controlled temperature (21±2 °C) and relative humidity (55 ± 3.5%). All fibre 170 

samples were prepared in triplicate. 171 

 172 

2.4 Characterisation 173 
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GO was flushed onto fresh-cleaved mica discs and analysed using Atomic Force 174 

Microscopy (AFM) (Veeco) imaging in a tapping mode with a scan rate of 0.5 Hz. 175 

Image analysis was carried out using XEI software. Surface tension of the 176 

GO/PMMA suspensions were measured using the Du Nouy (Ring) Tensiometry 177 

Method and a KRUSS K9 Tensiometer. The surface tension of water was also 178 

calculated against a reference value of 73 mN/m. Four measurements were 179 

repeated for each suspension to calculate an average. Solvent evaporation 180 

during the spinning process induces changes in the viscosity of the plyometric 181 

suspensions. Viscosity was calculated using a Brookfield digital rheometer 182 

(model DV – III). Morphology of the resulting GO/PMMA hybrid fibres were 183 

analysed using a Scanning Electron Microscope (SEM) (JEOLJSM-6301F). The 184 

accelerating voltage was kept at 5 kV. Nanocomposites were gold-coated for 90 185 

seconds using a Quoram Q150R ES sputter coater. The average size of fibres 186 

was calculated the diameter of 100 fibres using SEM micrographs at low 187 

magnifications and ImageJ software (National Institutes of Health, Bethesda, 188 

MD, USA). SEM imaging was also performed on fixed fibres post incubation with 189 

bacterial cells. Fibres were fixed using glutaraldehyde and 1% osmium tetroxide. 190 

The samples were then dried using a series of ethanol and hexamethyldisilazane 191 

solutions. 192 

 193 
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Raman mapping was performed using an inVia Raman microscope. The spectra 194 

of samples excited at the wavelength of 514.5 nm with the power of less than 1 195 

mW, spot size of ∼1 μm (with a ×50 objective lens (numerical aperture = 0.55)), 196 

pixel size of 1 μm (for both x and y directions) and spectral resolution of 2.5 197 

cm−1. The low power was used to avoid heating. The final spectrum of each 198 

sample was the average result of three acquisitions. The intensity of the peak 199 

was determined from the value of D and G peaks. FT-IR spectra of GO, PMMA 200 

and the 8 wt% GO/PMMA fibre samples were determined using a Bruker Optics 201 

Tensor-27 FT-IR spectrometer. The spectra were recorded in the wavenumber 202 

range of 4,000–500 cm−1. The samples were pressed into pellets by mixing with 203 

KBr. Detailed Raman spectra of the 8 wt% GO/PMMA fibres were measured 204 

using laser excited 532 nm and at the power of 6 mW.  205 

 206 

2.5 Antibacterial Activity of Graphene Oxide Nanosheets and Graphene Oxide in 207 

Polymeric Fibres 208 

Escherichia coli K12 was chosen as the model microorganism to assess the 209 

antibacterial properties of the synthesised GO and the GO loaded polymeric 210 

fibres.  211 

 212 

For GO, a single colony of E. coli was suspended in 30 mL of sterile LB broth and 213 

incubated at 37oC and 150 rpm for approximately 4 hours. 3 mL of this 214 
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suspension was then added to GO suspensions, containing 0.5, 1.0 and 2.0 w/v% 215 

of GO in 27 mL of sterile LB broth. The suspensions were incubated for 24 hours 216 

at 37oC and 150 rpm (Orbital Shaker S150, Stuart). 217 

 218 

Flow cytometry (Guava easyCyte®, Merck, UK) was used to determine the viable 219 

cell counts with a LIVE/DEAD BacLight bacterial viability kit and InCyte software 220 

(Merck, UK). A stock solution containing both dyes (propidium iodide and 221 

SYTO®9) was prepared according to manufacturers’ recommended protocol. 222 

The staining solution was added to the suspensions and incubated in the 223 

absence of light at room temperature (22oC) for 15 minutes[57]. Cells were then 224 

acquired using a calibrated Guava easyCyte® flow cytometer (Merck, UK) and 225 

InCyte software (Merck, UK)[57]. Acquisition gates/regions were outlined using 226 

positive (E. coli only), negative (media and GO only), fluorescence minus one 227 

and compensation controls. E. coli populations were identified and gated using 228 

forward and side scatter channels. The gated E. coli population was then 229 

analysed using green and red fluorescent channels (live populations - SYTO®9, 230 

and dead populations - propidium iodide). 50,000 events were collected overall. 231 

FlowJo (V10, TreeStar, USA) was used to enumerate the number of cells in both 232 

live and dead populations. 233 

 234 
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For GO/PMMA fibres, 0.02 g of each GO/PMMA sample and LB agar plates were 235 

sterilised using UV light for 1 hour. A single colony of E. coli was harvested using 236 

a sterile plastic inoculating loop and suspended in sterile LB broth. The 237 

suspension was incubated at 37oC and 150 rpm until the culture reached its 238 

mid-exponential phase (at approximately 4 hours, and OD600 of 0.035). The 239 

culture was then centrifuged at 4600 rpm for 15 minutes (accuSpin 3R, Fisher 240 

Scientific). The supernatant was removed. The cells were then pelleted by 241 

centrifuging (4600 rpm for 15 minutes) the suspensions.  The cells were 242 

collected and washed with PBS, before being re-suspended in PBS. The number 243 

of live cells present in each suspension was counted using the colony counting 244 

method.  245 

 246 

The GO/PMMA fibres were incubated with the E. coli suspensions for 24 hours 247 

at 37oC and 150 rpm. Pure PMMA fibres with no GO nanosheets were used as 248 

the control group. The number of live cells remaining in the suspension was 249 

estimated using the colony counting method. The number of cells before and 250 

after incubation were compared and the bacteria cell reduction was calculated. 251 

Experiments were repeated on three separate occasions. 252 

 253 

2.6 Reactive Oxygen Species Generation 254 
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Reactive oxygen species (ROS) production was measured using the peroxide 255 

dependent oxidation of DCFH to form the fluorescent compound 2',7'-dichloro-256 

3',6'-dihydroxy-3H-spiro[2-benzofuran-1,9'-xanthen]-3-one (DCF)[58]. 0.01g of 8 257 

wt% GO/PMMA fibres were incubated in 1.5 mL of PBS, alongside 1.5 mL of a 258 

1:1 dilution of 30% hydrogen peroxide in PBS (positive control) and PBS only 259 

(negative control). Then 10 µM of DCFH were added to each well (in the 24 well 260 

plate) incubated at 37oC and 150 rpm using a fluorimeter with incubation 261 

capacity, the Fluoroskan Ascent - Labsystems. The fluorescent intensity of DCF 262 

was measured every 10 minutes for 12 hours using the aforementioned 263 

instrument with excitation at 485 nm and emission at 535 nm. The experiment 264 

was completed in triplicate and each sample was measured 37 times.  265 

 266 

2.7 Imaging Using Stimulated Raman Scattering 267 

Stimulated Raman scattering (SRS) imaging was performed using an InsightX3 fs 268 

laser (Newport SpectraPhysics), 1045 nm (as the Stokes beam) and 800 nm (as 269 

the pump and probe beam) output. The powers at the sample were 2 mW for 270 

the 1045 nm beam and 4 mW for the 800 nm beam. The beams were chipped to 271 

generate pulses (ps) and spatially covered in the spectral converging unit 272 

(Newport SpectraPhysics)[59]. The temporal overlay was scanned via the 273 

Spectral Focusing Timing and Recombination Unit (SF-TRU) to produce 274 

Coherent Raman Scattering (CRS) spectra of the samples. Imaging was achieved 275 
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on a modified confocal microscope (Olympus FV3000), using a 1.2 NA water 276 

immersion objective (Olumpus UPlanSApo 60x). SRS was recorded in the 277 

forward direction, with a 1.4NA oil immersion condenser (Nikon D CUO DIC). 278 

SRS signals were detected using a photodiode and LockIn amplifier (APE SRS 279 

detection set) and the 1045 nm stokes beam was blocked from the photodiode 280 

using the following filters (Chroma CARS 890-210 and 950 nm 4OD short pass 281 

filter Edmund Optics). The samples were mounted between 2 coverslips.  282 

 283 

3.Results and Discussion 284 

3.1 Morphologies of Graphene Oxide 285 

The morphology of as-prepared GO aqueous suspension deposited on mica was 286 

examined using AFM (Figure 1). The thickness of single GO sheets was ∼0.72 nm 287 

according to the literature [60]. The AFM height profile of GO prepared in this 288 

study illustrates a thickness of 0.85 ± 0.12 nm for most of the GO single sheets, 289 

confirming their monolayer nature. The AFM image shows irregular shapes of 290 

GO nanosheets with a typical lateral dimension in the range of 1 – 4 µm.  291 

 292 

3.2 Antibacterial Effect of Graphene Oxide Suspensions 293 

E. coli K12 was chosen as a model bacterium to assess the antibacterial 294 

properties of GO. The proportion of live and dead cells after seeding with GO 295 

was determined using flow cytometry. LB broth without GO particles was used 296 
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as a control. The fundamental principle of the use of flow cytometry to 297 

determine antibacterial activity relies on the use of fluorescent dyes, Propidium 298 

Iodide (PI) and SYTO®9, to allow a clear discrimination between dead and 299 

viable cells to be made. SYTO®9 is a green nucleic acid stain that stains both 300 

live and dead bacteria in a population, whilst PI is a red nuclear and 301 

chromosome counterstain that only penetrates bacteria with damaged 302 

membranes. 303 

 304 

As shown in Figure 2, the 2 wt% GO dispersion suppressed the growth of E. coli 305 

the strongest, leading to a bacterial reduction of 96%. Exposure to 1 wt% GO 306 

resulted in the death of 91% of the bacterial population, whilst exposure to 0.5 307 

wt% GO caused the death of 53% of the bacterial population (2% cell death 308 

detected in the control population). 309 

 310 

A number of physical and chemical mechanisms have been proposed which may 311 

contribute to the antibacterial activity of GO. Akhavan et al. have suggested that 312 

antimicrobial actions of GO are typically induced by the physical interaction of 313 

the sharp edges of GO with the microbial membrane[61, 62]. During this 314 

interaction the GO particles pierce the cell membrane, thus disrupting plasma 315 

membrane integrity which outcomes in the release of intra- and sub-cellular 316 

contents. This phenomenon was further confirmed by other studies[63-66]. In 317 
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addition to membrane disruption, GO particles can wrap around and trap 318 

microbial cells in agglomerates, thus isolating them from their neighbouring 319 

environment[64, 67, 68]. This also indicate that the essential nutrients in starving 320 

cells is important for cell survival. 321 

 322 

Researchers have also argued that GOs toxicity is indeed not attributed to its 323 

physical interaction with bacterial cells but instead a chemical reaction. Several 324 

studies have demonstrated that GO may inactivate bacterial cells without having 325 

any direct contact with the particles, therefore suggesting the physical 326 

interaction is not a major part of the toxicity mechanism[69, 70]. Few other 327 

research work has shown that the antibacterial activity of GO is mainly induced 328 

by oxidative stress. During this cascade GO triggers either the ROS-dependent 329 

or ROS-independent pathway. Activation of these pathways inhibits bacterial 330 

metabolism, disturbs important functions at cellular or sub-cellular, causes intra- 331 

and sub-cellular protein inactivation and induces lipid peroxidation, 332 

consequently leading to cellular inactivation, programmed cell death (necrosis 333 

or apoptosis)[38, 51]. 334 

 335 

It has evidently been explored that the antibacterial actions of GO are the result 336 

of physical-chemical interactions between microbiota and GO, and thus, all 337 
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three mechanisms suggested could be responsible for the results observed in 338 

this experiment.   339 

 340 

3.3 Characterisation of Graphene Oxide/Polymer Suspensions 341 

3.3.1 Surface Tension 342 

GO/PMMA nanocomposite fibres were prepared by pressurised gyration of 343 

PMMA and GO chloroform suspensions. The surface tension of PMMA solutions 344 

containing various concentrations of GO are shown in Figure 3(a). As can be 345 

seen, the surface tension of the nanofluids decrease with increasing GO 346 

concentration. However, the range of decrease is not large, as only a 2.4% 347 

reduction was observed. The pure PMMA solution had an average surface 348 

tension of 28.5 1.2 mN/m, this dropped to 28.1 0.8 mN/m upon the addition 349 

of 2 wt% GO. In this instance GO behaves as a surfactant and increases the 350 

electrostatic forces between particles and consequently reduces surface energy 351 

and surface tension[71]. Both 4 and 8 wt% GO reduced the average surface 352 

tension to 27.8 1.1 mN/m. 353 

 354 

3.3.2 Viscosity 355 

Figure 3(b) demonstrates the effect GO concentration has on the viscosity of 356 

PMMA chloroform solution. It can be seen that the introduction of a small 357 

quantity of GO initially reduces the average viscosity from 49.3 0.2 mPa.s to 358 
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47.7 0.6 mPa.s. After which, the increase in GO concentration results in an 359 

increase in average viscosity, with 4 wt% GO leading to an average viscosity of 360 

48.9 0.3 mPa.s and 8 wt% GO resulting in 48.6 0.6 mPa.s. The introduction of a 361 

small quantity of GO nanosheets was found to initially decrease viscosity as GO 362 

behaved as a surfactant[72, 73]. Thereafter, the viscosity of the solution was 363 

found to increase with the volumetric loading of GO nanosheets. When in 364 

chloroform suspension, GO nanosheets can easily form clusters and aggregates 365 

due to its poor compatibility with chloroform. Clustering and aggregation 366 

increase the hydrodynamic diameter of nanosheets leading to the increase in 367 

viscosity[74]. 368 

 369 

3.4 Graphene Oxide/Polymer Fibres 370 

3.4.1 Characterisation of Nanocomposite Fibres 371 

A PMMA-chloroform system was selected for this work as previous work has 372 

considered this combination highly suitable for composite fibre fabrication and 373 

filtration applications[75-77]. 374 

 375 

SEM micrographs of the GO/PMMA fibres prepared from the suspension 376 

systems showed the fibres formed were generally continuous, porous and had a 377 

circular cross section. The successful formation of fibres suggests that for all 378 

four GO/PMMA suspensions the intermolecular entanglement and chain overlap 379 
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was appropriate to stabilise the polymer jet emitting from the orifices on the 380 

pressurised gyration vessel, despite the increasing GO load. The formation of 381 

non-beaded fibres also indicates the homogenous dispersion of GO nanosheets 382 

in the polymer solution.  383 

 384 

From Figure 4 it can be said that the concentration of GO greatly dictates fibre 385 

morphology. The introduction of a small quantity of GO drastically decreased 386 

the average fibre diameter from 3.9 ±2.0 µm to 1.4 ±0.9 µm. A positive 387 

correlation can then be observed between the concentration of GO and the 388 

average fibre diameter; as the GO concentration increases within the polymer 389 

matrix, the fibres become larger in diameter with a wider fibre diameter 390 

distribution. This observation can be related to the viscosity measurements 391 

recorded for the corresponding polymer solutions. Previous literature has 392 

proven that the solution parameters and processing conditions are responsible 393 

for changes in fibre morphology during pressurised gyration[78]. However, as 394 

the processing parameters were consistent in this work it can be theorised that 395 

the GO incorporation is the sole factor influencing fibre morphology.  396 

 397 

The trend seen in the fibre diameters can be attributed to the rheological 398 

properties of the GO/PMMA suspension. In this instance GO acted as a 399 

surfactant at low concentrations (2 wt%), thus prevented the formation of a 400 
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strong polymer network and consequently lowered viscosity and surface 401 

tension. This gave rise to thin fibres. At higher GO concentrations (4 and 8 wt%), 402 

the solution viscosity of the suspensions slightly increased, and though the 403 

applied centrifugal force and pressure difference was sufficiently high to modify 404 

the surface tension in supporting the fibre preparation, it was not strong 405 

enough to give rise to thin fibres. In addition, the dispersion of GO in the PMMA 406 

had a significant impact on fibre morphology. At low GO content, the 407 

nanosheets were dispersed relatively well in the polymer, hence the fibre 408 

diameter and distribution rates are reduced when compared to the others. High 409 

concentration of GO content resulted in improved Van der Waals forces 410 

between the GO nanosheets and the PMMA, therefore resulting in the 411 

agglomeration of GO and non-uniform dispersion of GO thus leading to a 412 

broad fibre diameter distribution [79-82]. 413 

 414 

Fibre topography included spherical surface pore structures, and its formation 415 

has been illustrated using the breath figures model (Figure 4(g)[77, 83]. Such 416 

surface features are ideal for filtration applications, as not only do they increase 417 

the surface area for bacteria to interact with, but they also work to physically 418 

trap the bacteria within their pits. 419 

 420 
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Raman mapping was used to identify GO in GO-loaded PMMA fibres, as shown 421 

in Figure 5. The dark areas in Figure 5(a) is GO, confirmed by Raman 422 

spectroscopy in Figure 5(b). The D peak (at 1350 cm−1) arises from the breathing 423 

mode of the sp2 hybridized carbon and induces the disorders including edges, 424 

functional groups, and structural defects[84]. The intensity ratio of D and G 425 

peaks (ID/IG) for GO was 0.88. The sharp peak seen at 2800 cm-1 is due to the 426 

single layer of GO in the fibre. It also indicates that the GO may have some 427 

defects as a result of fibre formation during pressurised gyration. This peak can 428 

also be attributed to the overtone of the D’ peak and is called a 2D’ peak.  429 

Figure 5(c, d) show individual Raman mapping images of D peak and G peak 430 

within the surface of the PMMA fibre. 431 

 432 

The FT-IR spectra of GO, PMMA and GO/PMMA fibres (Figure 6) showed the 433 

specific functional groups of C−O−C (~1000 cm−1), C−O (1230 cm−1), C=C 434 

(~1620 cm−1) and C=O (1740–1720 cm−1) bonds. The band in the region of 435 

3600–3300 cm−1 corresponds to O−H stretching vibrations of hydroxyl and 436 

carboxyl functional groups of GO[85, 86]. The spectrum of PMMA showed a 437 

peak around 3500 cm−1 and a very sharp signal at 1732 cm−1, corresponding to 438 

the stretching of hydroxyl and ester groups present in PMMA, respectively[87]. 439 

Typical bands at 987 and 1453 cm−1 correspond to O–CH3 bending and 440 

stretching deformation of PMMA, respectively, while bands at 1730 and 1250 441 
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cm−1 belong to stretching of C=O groups[87]. Bands at 1065 and 1197 cm−1 442 

represent C–O stretching vibration and chain vibration, respectively. The other 443 

bands in the 3000–2800 cm−1, 1490–1275 cm−1 and 900–750 cm−1 spectral 444 

regions belong to CH3 and CH2 vibrational modes[88, 89]. The typical 445 

characteristics of GO in the FT-IR spectrum (Figure 6) are peaks conforming to 446 

the C=O stretching vibrations from carbonyl and carboxylic groups at 1735 cm-1, 447 

C-C in aromatic ring at 1639 cm-1 and C–O–C stretching from epoxy groups at 448 

1072 cm-1, which confirms the existence of oxygen-related functional groups. 449 

Furthermore, a peak at 1382 cm-1 and a wide-ranging band at 3400 cm-1 are 450 

attributed to the stretching vibration of O–H groups[86, 90]. 451 

 452 

After pressurised gyration, the FT-IR spectra of GO-covered PMMA reveal typical 453 

peaks corresponding to PMMA (3001 and 2954 cm-1 for C–H stretching, 1735 454 

cm-1 for C=O stretching, 1200 and 1148 cm-1 for C–O stretching) as well as O–H 455 

stretching peak at 3500 cm-1, which is due to oxygen functional groups of 456 

GO[91]. These spectra clearly represent the chemical interaction between GO 457 

and PMMA. Previously reported work on CNT-PMMA nanocomposites showed 458 

the unpaired electrons associated with CNT activates the p-bond of CNT, which 459 

binds CNT with polymer chain[92]. GO has comparable physio-chemical 460 

characteristics and high specific surface area (in comparison to CNTs). Both 461 
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compounds show similar bands in their FT-IR spectra, suggesting that the GO 462 

nanosheets are successfully grafted onto the surface of PMMA. 463 

 464 

Detailed Raman spectroscopy of the GO/PMMA fibres was performed. The 465 

Raman spectrum was compared with those of ‘free’ GO to investigate the effect 466 

of GO on the surface of PMMA. The Raman spectrum of GO/PMMA fibres is 467 

presented in Figure 7. The typical Raman peak of GO was characterized by a G 468 

band (at ca. 1604 cm-1) and D (1354 cm-1) bands which represent the sp2 469 

hybridisation of carbon atoms and the breathing mode of k-point phonons of 470 

A1g symmetry respectively[86, 90]. The six characteristic bands of GO-covered 471 

PMMA observed at 2953, 2848, 1739, 1605, 1453, 1348 cm-1. Raman band 2953 472 

represents the C-H stretching vibration[93]. The band at 1739 cm-1 is ascribed to 473 

the combination band arising out of ν(C=C) and ν(C–COO) modes[93].  474 

 475 

PMMA triggers slight hardening and wide-ranging of the G and 2D peaks. Both 476 

G and D peaks are slightly shifted from 1604 and 1354 to 1605 and 1348 cm-1 477 

respectively owing to the residual compression strain persuaded by the 478 

temperature involved in fibre preparation. The D band indicates defects 479 

including vacancies, grain boundaries, and amorphous carbon species[90, 94]. In 480 

the GO-covered PMMA fibres, a small change in the D peak is observed, 481 

resulting in a slight increase in the ID/IG, undoubtedly demonstrating that sp3 482 
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grafting sites are being introduced onto the carbon lattice. The ID/IG ration can 483 

be used to calculate the interdefect distance and number density of grafted 484 

sites per unit area[95, 96]. The spectra for graphene related materials show D, G 485 

and 2D peaks, allowing the classification of these materials in different 486 

hybridisation profiles[97], where the defect density does not exceed the 487 

Tunstra-Koenig limit[95]. It has been evidently proved that this peak arises from 488 

double resonance in addition to phonon confinement[98]. The decrease in 489 

intensities of both peaks (D and G) also indicates improved graphitization. For 490 

monolayer graphene, there is a sharp peak at ca. 2848 cm-1 which typically 491 

represent of the number of layers of graphene. In the current work, the band is 492 

observed to be sharp, indicating that as-prepared GO comprises single layer 493 

with defects. These defects are also an indication of processing of fibre 494 

preparation[99].  495 

 496 

Both FT-IR and Raman spectroscopy of the GO/PMMA nanocomposite fibres 497 

confirmed the presence of GO on the fibre surface. This fibre characteristic plays 498 

a vital role in the antimicrobial mechanism of action of the fibres. 499 

 500 

3.4.2 Antibacterial Activity of Graphene Oxide in Polymeric Fibres 501 

The antibacterial activity of GO in PMMA fibres was investigated using E. coli 502 

K12. As discussed above, antibacterial activity of pure GO nanosheets was 503 
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observed at a concentration of 2 wt%, therefore the fibres investigated had GO 504 

concentrations of 0, 2, 4 and 8 wt%. In comparison to pure PMMA fibres, the 505 

results confirmed that GO-covered PMMA fibres proficiently reduced the 506 

number of E. coli K-12 cells. The percentage bacterial reductions are shown in 507 

Figure 8. The PMMA fibres (negative control) exhibited no antimicrobial activity, 508 

as a bacterial increase of 25 7.9% was observed. In contrast, all the GO/PMMA 509 

fibre meshes displayed antibacterial behaviour. At the lowest GO-covered 510 

PMMA concentration, 45 2.2% of the total E. coli K-12 viability was significantly 511 

reduced, while 70 2.4% of the total bacteria was reduced after incubation with 512 

PMMA with 4 wt% GO. The maximum antibacterial activity was noticed in the 513 

case of 8 wt% GO loaded-PMMA, with an 85 1.4% reduction in cell numbers 514 

being observed. The results showed that the antibacterial activity of the 515 

GO/PMMA fibre meshes are a function of GO concentration. The bacterial 516 

reduction observed with 8 wt% GO loaded-PMMA is comparable to 8 wt% 517 

graphene nanoplatelet loaded-PMMA fibres, where a reduction of 85 ±5% was 518 

noted[100]. GO loaded-PMMA fibres present themselves as a favourable 519 

alternative, as GO is more easily accessible when compared to pure graphene. 520 

The antimicrobial properties of GO loaded-PMMA fibres were less potent than 521 

free GO, however incorporating GO into fibres broadens the number of 522 

applications GO can be used in. Also, increasing the quantity of GO in PMMA 523 

provide evidences for bacteria to interact with GO, therefore causing the 524 
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decreased levels of E. coli. Our results are consistent with other previously 525 

reported work revealing the concentration-dependent GO toxicity[38, 100, 101]. 526 

 527 

Pure PMMA fibres proved to have little interference with normal bacterial 528 

growth and proliferation as a percentage increase in bacterial numbers was 529 

observed, despite previous studies showing the contrary[100]. This suggests that 530 

the PMMA had no antibacterial properties, and the antibacterial activities seen 531 

with the GO/PMMA fibre meshes are solely due to the presence of GO. 532 

 533 

The antibacterial activity of PMMA fibres containing 2 wt% of GO were initially 534 

tested. These fibres exhibited antibacterial properties with an average bacterial 535 

reduction of 45 2.2%. This percentage reduction is significantly lower than the 536 

observed reduction of pure GO nanosheets. This is due to the GO nanosheets 537 

being embedded within the PMMA fibres and not just on the surface. Increasing 538 

the GO concentration to 4 wt% increased the antibacterial action of the fibres, 539 

showing bacterial reduction at 70%. This indicates a higher concentration of GO 540 

nanosheets on the fibre surface, therefore there is more GO for the bacteria to 541 

interact with. Increasing the GO concentration further to 8 wt% significantly 542 

enhanced the antibacterial action of the fibre, as these fibres showed the 543 

strongest antibacterial activity with a cell inactivation percentage of 85 1.4% 544 

being achieved. Previous literature has reported different minimum inhibition 545 
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concentrations (MICs) for GO. Nanda et al., have reported the MIC to be 1 546 

µg/mL[102]. Liu et al., reported the MIC to be 80 µg/mL, with a 91.6% 547 

inhibition[38]. Whilst Shubha et al., have reported a MIC of 50000 µg/mL[103]. 548 

In this research, when 8 wt% fibres were used, the GO concentration was 530 549 

µg/mL. 550 

 551 

A multitude of GO-based antibacterial mechanisms has been explained in 552 

literature. However, as the GO nanosheets are not floating free in the bacterial 553 

suspension, but instead they are trapped within PMMA fibres and not 554 

protruding from the fibre surface, it can be presumed that in this instance the 555 

antibacterial mechanism of action involves a chemical reaction, such as oxidative 556 

stress. 557 

 558 

3.4.3 Reactive Oxygen Species Generation 559 

The oxidative stress caused by GO has been reported as a main toxicity 560 

mechanism[104]. In this work, the prepared GO/PMMA nanocomposite fibres 561 

were studied to see if they produce ROS. From Figure 9 it is evident that ROS 562 

production began at approximately 70 minutes and steadily increased over the 563 

400-minute incubation period. DCFH can react with different ROS such as 564 

hydrogen peroxide, HO and other free radicals therefore the delay in the signal 565 

may be explained by the participation of other ROS than the hydrogen peroxide 566 
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used in the control. Also while the hydrogen peroxide present in the control is 567 

readily available to reduce the probe while the GO fibres ROS generation may 568 

depend on the generation of an intermediary[105]. Overproduction of ROS is a 569 

principal representative of oxidative stress, hence the measurement of ROS 570 

indicates ROS-mediated oxidative stress is the likely antibacterial mode of 571 

action[104, 106]. It is thought that the GO present on the surface of the fibre 572 

produces ROS via the singlet oxygen-superoxide anion radical pathway, which 573 

plays a significant role in release of cytochrome c and other pro-apoptotic 574 

proteins, which in turn mediate caspase activation and apoptosis through the 575 

generation of protein radicals, activation of lipid peroxidation, DNA-strand 576 

breakage, modification to nucleic acids, gene expression through activation of 577 

redox-sensitive transcription factors and modulation of inflammatory responses 578 

through signal transduction[107-114]. 579 

 580 

3.4.4 Post Treatment Characterisation 581 

3.4.4.1 Imaging Using Stimulated Raman Spectroscopy 582 

GO revealed a strong signal within the SRS channel, this signal has a broad 583 

spectral profile which can be attributed to pump-probe interactions within the 584 

GO, rather than more chemically specific Raman vibrations[115]. PMMA is also 585 

visualised in the SRS channel, the signal from the PMMA shows a strong peak at 586 

2940cm-1 which can be attributed to the CH3 Raman vibrations. Figure 10 a) 587 
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compares the spectra of the PMMA and GO-PMMA-bacteria. The intensity of 588 

the SRS signal in GO-PMMA is much higher than PMMA alone. Figure 10 b 589 

shows the results of Multi Curve Regression (MCR) analysis[116] performed on a 590 

hyperspectral data stack of the sample containing PMMA, GO and bacteria. The 591 

analysis enabled the signal from the PMMA shown in red from the GO shown in 592 

green to be separated based on their spectral properties. The images show 593 

flakes of GO distributed across the surface of the PMMA fibres, which contribute 594 

to the high killing efficacy of composites towards E. coli (which is also 595 

demonstrated from antibacterial activities of composites towards programmed 596 

cell death of bacteria). 597 

 598 

3.4.4.2 Scanning Electron Microscopy 599 

SEM analysis was used to examine the interaction between the microbes and 600 

the 8 wt% GO/PMMA fibres and to assess any changes in cell morphology. 601 

Figure 11 shows the bacterial cells, E. coli, on the 8 wt% GO/PMMA fibres. 602 

 603 

In the presence of 8 wt% GO/PMMA fibres the bacteria showed changes in cell 604 

morphology. Healthy prokaryotic cells form a capsule, a protective layer rich in 605 

sugars, proteins and alcohol, and/or lipids that help stick bacteria to each other 606 

as well as onto the substrate [117, 118]. In addition to this layer, Gram-negative 607 

bacteria (E. coli) also contain an asymmetric outer membrane whose inner 608 
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leaflet is composed largely of glycerophospholipids and an outer leaflet 609 

composed of lipopolysaccharides. These capsules cover the entire bacteria as 610 

well as the whole space between bacteria. As shown in Figure 11, exposure of 611 

the bacterial cells to 8 wt% GO/PMMA fibres caused capsule degradation, as the 612 

capsule is removed from the exposed parts of bacteria. In addition, visible 613 

damage on the E. coli cell surface can be seen as the cells have a distorted 614 

structure. This characteristic is symptomatic of ROS degradation[119, 120].  615 

 616 

The toxic effect of the 8 wt% GO/PMMA on bacterial cells is evident from this 617 

research, however their effect on human cells needs to be further investigated. 618 

Existing literature gives conflicting opinions, some articles state that GO is 619 

cytotoxic, whilst others state that composited GO is not cytotoxic to mammalian 620 

cells and can be used in various biomedical constructs [121-124].  621 

 622 

4.0 Conclusions 623 

This research showcases the antibacterial activity of prepared GO nanosheets 624 

and GO/PMMA nanocomposite fibres for filtration applications. The results 625 

collected in this study support the hypothesis that as-prepared GO nanosheets 626 

are able to retain their antibacterial properties when processed into composite 627 

fibres, therefore demonstrating their effectiveness in the real world. 628 

 629 
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GO/PMMA nanocomposite fibre meshes were successfully prepared using 630 

pressurised gyration and characterised by SEM, FT-IR, Raman mapping, Raman 631 

spectroscopy and stimulated Raman mapping. Average fibre diameters ranged 632 

between 1.4 µm and 3.9 µm. FT-IR and Raman analysis confirmed the presence 633 

of GO nanosheets on the surface of the polymeric fibres. The interaction 634 

between bacterial cells and GO/PMMA fibres, demonstrated the fibres 635 

antibacterial properties. Colony counting method results showed 8 wt% 636 

GO/PMMA fibre meshes to have the strongest antibacterial activity, as a 637 

bacterial reduction of 85 1.4% was observed, which is stronger to what was 638 

observed with GO/poly (vinyl alcohol) fibres when considering poly (vinyl 639 

alcohol) is water soluble[125]. These studies showed the biocidal activities of GO 640 

to be retained when processed using pressurised gyration. The antibacterial 641 

properties of the nanocomposite fibres were dose-dependent, as average 642 

bacterial reductions steadily rose from 45 2.2% to 85 1.4%. The cytotoxicity 643 

properties of the nanocomposite fibres are attributed to the production of 644 

oxidative stress. Increasing the concentration of GO in the fibres, the bacteria 645 

have a higher chance to interact with the toxic GO nanoparticles on the surface 646 

of the fibres (as confirmed by post-treatment SEM and stimulated Raman 647 

spectroscopy). Compared with previous reports of antimicrobial GO, this work 648 

demonstrates the translation of lab-based science to real life application. With 649 

the knowledge obtained in this study it can be concluded that GO nanosheets 650 
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retain their antibacterial properties when composited in non-water-soluble 651 

polymeric fibres, thus providing insight of their potential in a number of 652 

applications including filtration.  653 
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 1000 

 

Figure 1: (A) AFM micrograph and (B) height profile of synthesised GO 1001 

nanosheets showing its thickness. 1002 
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Figure 2: Flow cytometry results obtained by exposing E. coli to GO at various 1005 

concentrations for 24 hours at 37oC and 150 rpm. (a) gating strategy example of 1006 

E. coli bacterial cells after exposure to 1 wt% of GO, (b) gating strategy example 1007 

of E. coli bacterial cells after exposure to 2 wt% of GO, (c) percentage of dead 1008 

cells after exposure of E. coli to various concentrations of GO. Error bars 1009 

represent standard deviation, (n = 3). 1010 
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(a) 

 

(b) 

Figure 3: plot of the (a) average surface tension against GO concentration (n=4); 1011 

(b) average viscosity against GO concentration (n=3). Error bars represent 1012 

standard deviation. 1013 
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(g) (h) 

Figure 4: SEM images and fibre diameter distribution of graphene oxide loaded 1016 

PMMA fibres. (a) and (b) pure PMMA fibres, (c) and (d) 2wt% GO fibres, (e) and 1017 

(f) 4wt% GO fibres, (g) and (h) 8wt% GO fibres. In (g) the inset micrograph 1018 

shows the fibres to have smooth surfaces. Polydispersity index (PDI) values are 1019 

also displayed on the graphs.  1020 
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(a)                                                                                               1023 

(b) 1024 

  

ID  (X,Y) IG  (X,Y) 

(c) (d) 

Figure 5: Raman microscopic image of 4wt% GO loaded PMMA fibres: 1025 

microscopic image (a), Raman spectrum (b), and Raman mapping of D (c) and G 1026 

(d) peaks. 1027 
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 1029 

 1030 

Figure 6: FT-IR spectra of GO, PMMA and 8 wt% GO/PMMA nanocomposite 1031 

fibres.   1032 
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 1034 

Figure 7: Raman spectrum of 8 wt% GO/PMMA fibres.  1035 
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 1037 

 1038 

Figure 8: Bacterial reductions observed after incubation of 0, 2, 4 and 8 wt% 1039 

GO/PMMA fibres with E. coli K12 for 24 hours at 150 rpm and 37oC. Pure PMMA 1040 

fibres with no GO were used as a control group. Error bars represent standard 1041 

deviation (n = 3). 1042 
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 1044 

 1045 

Figure 9: Generation of ROS from 8 wt% GO/PMMA fibres. The fluoresce of DCF 1046 

was measured using a fluorimeter with excitation at 485 nm and emission at 530 1047 

nm. Positive control represents a 1:1 dilution of 30% hydrogen peroxide in PBS, 1048 

whilst the negative control represents PBS only. 1049 
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 1051 

Figure 10: a) Stimulated Raman scattering (SRS) spectra from PMMA and GO in 1052 

the 8 wt% GO-PMMA E coli treated samples. b) The results of Multi-Curve 1053 

Regression (MCR) analysis performed on a hyperspectral stack of SRS images 1054 

from bacteria and GO-PMMA. Here the PMMA (red) and GO (green) signals can 1055 

be separated by the different spectral profiles as shown in (a). Gold colour 1056 

indicates a mixture of GO and PMMA. 1057 
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 1059 

 1060 

Figure 11: SEM micrograph of the 8 wt% GO/PMMA post incubation with E. coli. 1061 

 1062 

  1063 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 54 

Table 1: GO/PMMA solution composition. 1064 

 

GO Suspension Polymer Solution Final 

Concentration 

of GO in the 

Resulting Fibre 

(wt%) 

GO 

Particles 

(g) 

Chloroform 

(mL) 

PMMA 

(g) 

Chloroform 

(mL) 

GO/PMMA0 0.00 10 4 10 0 

GO/PMMA2 0.08 10 4 10 2 

GO/PMMA4 0.16 10 4 10 4 

GO/PMMA8 0.32 10 4 10 8 

 1065 
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Abstract 21 

Antibacterial polymer nanocomposite fibre meshes containing graphene oxide 22 

(GO) nanosheets were successfully prepared by pressurised gyration. The 23 

morphological and chemical composition of the resulting fibre meshes were 24 

determined using Scanning Electron Microscopy (SEM), Raman spectroscopy, 25 

Raman mapping and Fourier-Transform Infrared Spectroscopy (FT-IR). SEM 26 

showed the fibres to have an average diameter increasing from  1 – 4 µm as 27 

the GO loading increased. FT-IR and Raman spectroscopy confirmed the 28 

inclusion of GO nanosheets on the fibre surface. The antibacterial potential of 29 

GO nanocomposite fibres were investigated using Escherichia coli K12. Average 30 

bacterial reduction ranged from 46 – 85 % with results favouring the strongest 31 

bioactivities of the nanocomposite containing 8 wt% of GO. Finally, bacterial 32 

toxicity of the nanocomposites was evaluated by reactive oxygen species (ROS) 33 

formation. A mechanism for the antibacterial behaviour of the nanocomposite 34 

fibres is presented. Stimulated Raman scattering imaging and spectra of the 35 

fibres post antibacterial studies showed flakes of GO distributed across the 36 

surface of the poly(methyl 2-methylpropenoate) (PMMA) fibres, which 37 

contribute to the high killing efficacy of the composites towards E. coli. GO 38 

nanosheets embedded in a polymer matrix have demonstrated the ability to 39 

retain their antibacterial properties, thus offering themselves as a promising 40 

antibacterial agent. 41 
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 43 

Graphical Abstract 44 

 45 

Keywords: 46 

Antibacterial; Graphene Oxide; Nanocomposite; Fibers; Reactive Oxygen Species; 47 

Raman Scattering; Nanosheets. 48 
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1. Introduction  50 

Airborne and waterborne pathogens are responsible for causing numerous 51 

diseases, infections, allergies and toxic reactions[1-5]. These microorganisms are 52 

easily spread in a non-uniform manner with air and water currents[1-5]. The 53 

concentration of these biological threats in the environment and water supplies 54 

greatly fluctuate depending on numerous factors including human activity and 55 

environmental exposure [6-10]. Their existence in high concentrations serves as 56 

an indication of contamination, thus the implementation of regulators in the 57 

industrial, commercial and consumer markets, to reduce, or ideally prevent 58 

microbial colonisation and proliferation has become increasingly vital to human 59 

health[11]. Sterilisation methods utilising ultraviolet radiation, ions and high 60 

pressure and temperature treatments have been used as a means of reducing 61 

the number of pathogenic microorganisms[12-16]. However, these techniques 62 

have been deemed inefficient and potentially toxic to human health. 63 

 64 

Mechanical filtration technologies have emerged as a viable means of 65 

controlling aerosols and hydrosols. In particular, micro- and nano- fibres 66 

provide chemical-free, cost-effective and environmentally friendly approach for 67 

enhancing filtration efficiency and performance[17-22]. Fibrous filtration 68 

systems consist of a layer of randomly aligned fibres oriented across the 69 

direction of flow[23]. These membranes have an interconnected pores and/or 70 
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finer pore structure that allows an effective permeability resulting a higher 71 

throughput in comparison to conventional filters[24]. The individual fibres in the 72 

mesh typically have a circular or rectangular cross-section, with a small fibre 73 

diameter distribution and are ideally porous[23]. The exploitation of fibrous 74 

filtration systems has increased over the last 20 years due to their ability to 75 

capture particles and microorganisms proficiently via factors including direct 76 

interception by fibres, inertial impaction, Brownian movement, convection, 77 

gravitational settling and electrostatic effects. One of the challenges in currently 78 

used fibre-based filtration systems is that the microorganisms trapped within 79 

the fibre meshes are able to survive and proliferate, consequently leading to 80 

contamination of air-handling systems, ventilation and air conditioning units 81 

and water supply systems [1, 25-32]. This ultimately diminishes filter efficiency 82 

and consequently leads to the release of pathogenic microorganisms both 83 

dormant and germinating, into the environment and water supplies[1]. 84 

Therefore, various antimicrobial treatments, such as antibiotics and antivirals, 85 

have been incorporated into filter media to bestow antimicrobial activities[33-86 

37]. However, microorganisms have the ability to resist such treatments from 87 

working against it (antimicrobial resistance) and rendering them ineffective. For 88 

this reason, the use of alternative antimicrobial agents has been extensively 89 

explored. 90 

 91 
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Graphene-based 2D nanomaterials, such as graphene oxide (GO), porous 92 

graphene nanosheets and reduced GO, have demonstrated effective 93 

antibacterial properties[38-42]. These carbon-based materials having a higher 94 

surface area to volume ratio results in a stronger potency toward bacteria[43-95 

45]. In particular, studies have shown GO to possess the highest antibacterial 96 

activity among its counterparts[38]. GO is one of the most extensively explored 97 

materials for a wide range of applications. GO is the product formed from the 98 

chemical exfoliation of graphite oxide into mono-sheets and is composed of a 99 

single atomic plane of carbon molecules arranged in a honeycomb structure 100 

with carboxylic groups at its edges and hydroxyl groups in its basal plane[46, 101 

47]. As a result, GO is hydrophilic making it ideal for filtration applications. 102 

Recent studies have revealed that a multitude of microorganisms can be 103 

inactivated by GO, such as Escherichia coli, Staphylococcus aureus, 104 

Xanthomonas oryzae pv. Oryzae, Pseudomonas aeruginosa, Streptococcus 105 

faecalis and Candida albicans[38, 48-54].  106 

 107 

The purpose of this study is to fabricate novel antibacterial fibre meshes loaded 108 

with GO nanosheets were fabricated using pressurised gyration. In this work, GO 109 

nanosheets were synthesised, characterised and the minimum concentration 110 

required to inhibit bacterial growth was investigated. The as-prepared 111 

nanosheets were incorporated into polymeric fibres using pressurised gyration. 112 
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The physical and chemical structure of the nanocomposite fibres were analysed 113 

in detail. The antibacterial performance of the fibrous meshes were measured 114 

against E. coli. The resulting meshes demonstrate a promising scope to inhibit 115 

microbial colonisation and proliferation.  116 

 117 

2. Experimental Procedures 118 

2.1 Materials 119 

Graphite powder (<20 µm), poly(methyl 2-methylpropenoate) (PMMA) (Mw ~ 120 

120,000 g/mol), chloroform, concentrated sulfuric acid (98%), sodium nitrate, 121 

potassium permanganate, hydrogen peroxide (30 wt% in water), ethanol, 122 

hydrochloric acid (37%), Luria Bertani (LB) broth, phosphate buffered saline 123 

(PBS), glutaraldehyde, 1% osmium tetroxide and hexamethyldisilazane were 124 

purchased from Sigma-Aldrich (Gillingham, UK). LB agar was purchased from 125 

Invitrogen (Paisley, UK). LIVE/DEAD BacLight Bacterial Viability and Counting Kit 126 

was purchased from ThermoFisher Scientific (Paisley, UK). 2-(3,6-diacetyloxy-2,7-127 

dichloro-9H-xanthen-9-yl)benzoic acid (DCFH) was purchased from Cayman 128 

Chemicals (Michigan, US). All solvents and chemicals were of analytical grade 129 

and used as received or as instructed by the supplier.  130 

 131 

2.2 Synthesis of Graphene Oxide Nanosheets 132 
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GO nanosheets were prepared by following a modified Hummers’ method[55]. 133 

Concentrated sulfuric acid (69 mL) was added to graphite flakes (3.0 g) and 134 

sodium nitrate (1.5 g), followed by slowly adding potassium permanganate (9.0 135 

g). The reaction temperature was maintained below 20 °C. The initial reactants 136 

were heated to 35 °C and stirred for 12 hours. Potassium permanganate (9.0 g) 137 

was again added, and was stirred for 8 hours which was maintained at a 138 

temperature of 35 °C. The reaction was then cooled to room temperature (25oC) 139 

and put into an ice bath (∼400 mL) with 30% hydrogen peroxide (3 mL).  140 

 141 

The mixture was filtered through filter paper with a particle retention of 12-15 142 

μm. The extracts were washed in succession with distilled water (200 mL), 30% 143 

hydrochloric acid (200 mL), and distilled water (200 mL). The remaining solid 144 

material was then washed twice with ethanol (200 mL) by centrifugation (9000 145 

rpm for 4 hours, Eppendorf Centrifuge 5804). The purified product was 146 

dispersed in distilled water and sifted through a metal U.S. Standard testing 147 

sieve (161 μm) after sonication for 1 hour. The GO aqueous suspension was 148 

freeze-dried to obtain GO powder. 149 

 150 

2.3 Fabrication of Graphene Oxide/ Poly(methyl 2-methylpropenoate) Fibres 151 

Polymer solutions containing varying concentrations of GO nanosheets (0, 2, 4 152 

and 8 wt%) were prepared in a three-step process for fibre forming using 153 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 9 

pressurised gyration. (i) GO was added to chloroform as described in Table 1 154 

and sonicated (Branson Ultrasonics Sonifier S-250A) for 24 hours in an ice bath 155 

to homogenously disperse GO nanosheets. Then, PMMA was dissolved in 156 

chloroform and mixed with the GO dispersion under magnetic stirring for 1 157 

hour. 8 wt% was easily processed by pressurised gyration[56]. 158 

 159 

The as-prepared GO/PMMA suspensions were processed using pressurized 160 

gyration. The experimental setup was made up of a rotating aluminium 161 

cylindrical pot (6 cm diameter, 3.5 cm height) with 24 circular orifices (0.5 mm in 162 

diameter) along its central horizontal axis. The bottom of the pot was attached 163 

to a high-speed rotary motor, whilst the top was connected to a nitrogen gas 164 

supply. 5 mL aliquots of the GO/PMMA suspension were loaded into the pot. 165 

The system was immediately switched on and allowed to reach the apparent 166 

maximum speed of 36000 rpm before applying 0.1 MPa of pressure (nitrogen 167 

gas) to the rotating pot. The system was spun until all the suspension had been 168 

ejected from the pot. Pressurised gyration experiments were performed at 169 

controlled temperature (21±2 °C) and relative humidity (55 ± 3.5%). All fibre 170 

samples were prepared in triplicate. 171 

 172 

2.4 Characterisation 173 
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GO was flushed onto fresh-cleaved mica discs and analysed using Atomic Force 174 

Microscopy (AFM) (Veeco) imaging in a tapping mode with a scan rate of 0.5 Hz. 175 

Image analysis was carried out using XEI software. Surface tension of the 176 

GO/PMMA suspensions were measured using the Du Nouy (Ring) Tensiometry 177 

Method and a KRUSS K9 Tensiometer. The surface tension of water was also 178 

calculated against a reference value of 73 mN/m. Four measurements were 179 

repeated for each suspension to calculate an average. Solvent evaporation 180 

during the spinning process induces changes in the viscosity of the plyometric 181 

suspensions. Viscosity was calculated using a Brookfield digital rheometer 182 

(model DV – III). Morphology of the resulting GO/PMMA hybrid fibres were 183 

analysed using a Scanning Electron Microscope (SEM) (JEOLJSM-6301F). The 184 

accelerating voltage was kept at 5 kV. Nanocomposites were gold-coated for 90 185 

seconds using a Quoram Q150R ES sputter coater. The average size of fibres 186 

was calculated the diameter of 100 fibres using SEM micrographs at low 187 

magnifications and ImageJ software (National Institutes of Health, Bethesda, 188 

MD, USA). SEM imaging was also performed on fixed fibres post incubation with 189 

bacterial cells. Fibres were fixed using glutaraldehyde and 1% osmium tetroxide. 190 

The samples were then dried using a series of ethanol and hexamethyldisilazane 191 

solutions. 192 

 193 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 11 

Raman mapping was performed using an inVia Raman microscope. The spectra 194 

of samples excited at the wavelength of 514.5 nm with the power of less than 1 195 

mW, spot size of ∼1 μm (with a ×50 objective lens (numerical aperture = 0.55)), 196 

pixel size of 1 μm (for both x and y directions) and spectral resolution of 2.5 197 

cm−1. The low power was used to avoid heating. The final spectrum of each 198 

sample was the average result of three acquisitions. The intensity of the peak 199 

was determined from the value of D and G peaks. FT-IR spectra of GO, PMMA 200 

and the 8 wt% GO/PMMA fibre samples were determined using a Bruker Optics 201 

Tensor-27 FT-IR spectrometer. The spectra were recorded in the wavenumber 202 

range of 4,000–500 cm−1. The samples were pressed into pellets by mixing with 203 

KBr. Detailed Raman spectra of the 8 wt% GO/PMMA fibres were measured 204 

using laser excited 532 nm and at the power of 6 mW.  205 

 206 

2.5 Antibacterial Activity of Graphene Oxide Nanosheets and Graphene Oxide in 207 

Polymeric Fibres 208 

Escherichia coli K12 was chosen as the model microorganism to assess the 209 

antibacterial properties of the synthesised GO and the GO loaded polymeric 210 

fibres.  211 

 212 

For GO, a single colony of E. coli was suspended in 30 mL of sterile LB broth and 213 

incubated at 37oC and 150 rpm for approximately 4 hours. 3 mL of this 214 
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suspension was then added to GO suspensions, containing 0.5, 1.0 and 2.0 w/v% 215 

of GO in 27 mL of sterile LB broth. The suspensions were incubated for 24 hours 216 

at 37oC and 150 rpm (Orbital Shaker S150, Stuart). 217 

 218 

Flow cytometry (Guava easyCyte®, Merck, UK) was used to determine the viable 219 

cell counts with a LIVE/DEAD BacLight bacterial viability kit and InCyte software 220 

(Merck, UK). A stock solution containing both dyes (propidium iodide and 221 

SYTO®9) was prepared according to manufacturers’ recommended protocol. 222 

The staining solution was added to the suspensions and incubated in the 223 

absence of light at room temperature (22oC) for 15 minutes[57]. Cells were then 224 

acquired using a calibrated Guava easyCyte® flow cytometer (Merck, UK) and 225 

InCyte software (Merck, UK)[57]. Acquisition gates/regions were outlined using 226 

positive (E. coli only), negative (media and GO only), fluorescence minus one 227 

and compensation controls. E. coli populations were identified and gated using 228 

forward and side scatter channels. The gated E. coli population was then 229 

analysed using green and red fluorescent channels (live populations - SYTO®9, 230 

and dead populations - propidium iodide). 50,000 events were collected overall. 231 

FlowJo (V10, TreeStar, USA) was used to enumerate the number of cells in both 232 

live and dead populations. 233 

 234 
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For GO/PMMA fibres, 0.02 g of each GO/PMMA sample and LB agar plates were 235 

sterilised using UV light for 1 hour. A single colony of E. coli was harvested using 236 

a sterile plastic inoculating loop and suspended in sterile LB broth. The 237 

suspension was incubated at 37oC and 150 rpm until the culture reached its 238 

mid-exponential phase (at approximately 4 hours, and OD600 of 0.035). The 239 

culture was then centrifuged at 4600 rpm for 15 minutes (accuSpin 3R, Fisher 240 

Scientific). The supernatant was removed. The cells were then pelleted by 241 

centrifuging (4600 rpm for 15 minutes) the suspensions.  The cells were 242 

collected and washed with PBS, before being re-suspended in PBS. The number 243 

of live cells present in each suspension was counted using the colony counting 244 

method.  245 

 246 

The GO/PMMA fibres were incubated with the E. coli suspensions for 24 hours 247 

at 37oC and 150 rpm. Pure PMMA fibres with no GO nanosheets were used as 248 

the control group. The number of live cells remaining in the suspension was 249 

estimated using the colony counting method. The number of cells before and 250 

after incubation were compared and the bacteria cell reduction was calculated. 251 

Experiments were repeated on three separate occasions. 252 

 253 

2.6 Reactive Oxygen Species Generation 254 
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Reactive oxygen species (ROS) production was measured using the peroxide 255 

dependent oxidation of DCFH to form the fluorescent compound 2',7'-dichloro-256 

3',6'-dihydroxy-3H-spiro[2-benzofuran-1,9'-xanthen]-3-one (DCF)[58]. 0.01g of 8 257 

wt% GO/PMMA fibres were incubated in 1.5 mL of PBS, alongside 1.5 mL of a 258 

1:1 dilution of 30% hydrogen peroxide in PBS (positive control) and PBS only 259 

(negative control). Then 10 µM of DCFH were added to each well (in the 24 well 260 

plate) incubated at 37oC and 150 rpm using a fluorimeter with incubation 261 

capacity, the Fluoroskan Ascent - Labsystems. The fluorescent intensity of DCF 262 

was measured every 10 minutes for 12 hours using the aforementioned 263 

instrument with excitation at 485 nm and emission at 535 nm. The experiment 264 

was completed in triplicate and each sample was measured 37 times.  265 

 266 

2.7 Imaging Using Stimulated Raman Scattering 267 

Stimulated Raman scattering (SRS) imaging was performed using an InsightX3 fs 268 

laser (Newport SpectraPhysics), 1045 nm (as the Stokes beam) and 800 nm (as 269 

the pump and probe beam) output. The powers at the sample were 2 mW for 270 

the 1045 nm beam and 4 mW for the 800 nm beam. The beams were chipped to 271 

generate pulses (ps) and spatially covered in the spectral converging unit 272 

(Newport SpectraPhysics)[59]. The temporal overlay was scanned via the 273 

Spectral Focusing Timing and Recombination Unit (SF-TRU) to produce 274 

Coherent Raman Scattering (CRS) spectra of the samples. Imaging was achieved 275 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 15 

on a modified confocal microscope (Olympus FV3000), using a 1.2 NA water 276 

immersion objective (Olumpus UPlanSApo 60x). SRS was recorded in the 277 

forward direction, with a 1.4NA oil immersion condenser (Nikon D CUO DIC). 278 

SRS signals were detected using a photodiode and LockIn amplifier (APE SRS 279 

detection set) and the 1045 nm stokes beam was blocked from the photodiode 280 

using the following filters (Chroma CARS 890-210 and 950 nm 4OD short pass 281 

filter Edmund Optics). The samples were mounted between 2 coverslips.  282 

 283 

3.Results and Discussion 284 

3.1 Morphologies of Graphene Oxide 285 

The morphology of as-prepared GO aqueous suspension deposited on mica was 286 

examined using AFM (Figure 1). The thickness of single GO sheets was ∼0.72 nm 287 

according to the literature [60]. The AFM height profile of GO prepared in this 288 

study illustrates a thickness of 0.85 ± 0.12 nm for most of the GO single sheets, 289 

confirming their monolayer nature. The AFM image shows irregular shapes of 290 

GO nanosheets with a typical lateral dimension in the range of 1 – 4 µm.  291 

 292 

3.2 Antibacterial Effect of Graphene Oxide Suspensions 293 

E. coli K12 was chosen as a model bacterium to assess the antibacterial 294 

properties of GO. The proportion of live and dead cells after seeding with GO 295 

was determined using flow cytometry. LB broth without GO particles was used 296 
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as a control. The fundamental principle of the use of flow cytometry to 297 

determine antibacterial activity relies on the use of fluorescent dyes, Propidium 298 

Iodide (PI) and SYTO®9, to allow a clear discrimination between dead and 299 

viable cells to be made. SYTO®9 is a green nucleic acid stain that stains both 300 

live and dead bacteria in a population, whilst PI is a red nuclear and 301 

chromosome counterstain that only penetrates bacteria with damaged 302 

membranes. 303 

 304 

As shown in Figure 2, the 2 wt% GO dispersion suppressed the growth of E. coli 305 

the strongest, leading to a bacterial reduction of 96%. Exposure to 1 wt% GO 306 

resulted in the death of 91% of the bacterial population, whilst exposure to 0.5 307 

wt% GO caused the death of 53% of the bacterial population (2% cell death 308 

detected in the control population). 309 

 310 

A number of physical and chemical mechanisms have been proposed which may 311 

contribute to the antibacterial activity of GO. Akhavan et al. have suggested that 312 

antimicrobial actions of GO are typically induced by the physical interaction of 313 

the sharp edges of GO with the microbial membrane[61, 62]. During this 314 

interaction the GO particles pierce the cell membrane, thus disrupting plasma 315 

membrane integrity which outcomes in the release of intra- and sub-cellular 316 

contents. This phenomenon was further confirmed by other studies[63-66]. In 317 
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addition to membrane disruption, GO particles can wrap around and trap 318 

microbial cells in agglomerates, thus isolating them from their neighbouring 319 

environment[64, 67, 68]. This also indicate that the essential nutrients in starving 320 

cells is important for cell survival. 321 

 322 

Researchers have also argued that GOs toxicity is indeed not attributed to its 323 

physical interaction with bacterial cells but instead a chemical reaction. Several 324 

studies have demonstrated that GO may inactivate bacterial cells without having 325 

any direct contact with the particles, therefore suggesting the physical 326 

interaction is not a major part of the toxicity mechanism[69, 70]. Few other 327 

research work has shown that the antibacterial activity of GO is mainly induced 328 

by oxidative stress. During this cascade GO triggers either the ROS-dependent 329 

or ROS-independent pathway. Activation of these pathways inhibits bacterial 330 

metabolism, disturbs important functions at cellular or sub-cellular, causes intra- 331 

and sub-cellular protein inactivation and induces lipid peroxidation, 332 

consequently leading to cellular inactivation, programmed cell death (necrosis 333 

or apoptosis)[38, 51]. 334 

 335 

It has evidently been explored that the antibacterial actions of GO are the result 336 

of physical-chemical interactions between microbiota and GO, and thus, all 337 
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three mechanisms suggested could be responsible for the results observed in 338 

this experiment.   339 

 340 

3.3 Characterisation of Graphene Oxide/Polymer Suspensions 341 

3.3.1 Surface Tension 342 

GO/PMMA nanocomposite fibres were prepared by pressurised gyration of 343 

PMMA and GO chloroform suspensions. The surface tension of PMMA solutions 344 

containing various concentrations of GO are shown in Figure 3(a). As can be 345 

seen, the surface tension of the nanofluids decrease with increasing GO 346 

concentration. However, the range of decrease is not large, as only a 2.4% 347 

reduction was observed. The pure PMMA solution had an average surface 348 

tension of 28.5 1.2 mN/m, this dropped to 28.1 0.8 mN/m upon the addition 349 

of 2 wt% GO. In this instance GO behaves as a surfactant and increases the 350 

electrostatic forces between particles and consequently reduces surface energy 351 

and surface tension[71]. Both 4 and 8 wt% GO reduced the average surface 352 

tension to 27.8 1.1 mN/m. 353 

 354 

3.3.2 Viscosity 355 

Figure 3(b) demonstrates the effect GO concentration has on the viscosity of 356 

PMMA chloroform solution. It can be seen that the introduction of a small 357 

quantity of GO initially reduces the average viscosity from 49.3 0.2 mPa.s to 358 
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47.7 0.6 mPa.s. After which, the increase in GO concentration results in an 359 

increase in average viscosity, with 4 wt% GO leading to an average viscosity of 360 

48.9 0.3 mPa.s and 8 wt% GO resulting in 48.6 0.6 mPa.s. The introduction of a 361 

small quantity of GO nanosheets was found to initially decrease viscosity as GO 362 

behaved as a surfactant[72, 73]. Thereafter, the viscosity of the solution was 363 

found to increase with the volumetric loading of GO nanosheets. When in 364 

chloroform suspension, GO nanosheets can easily form clusters and aggregates 365 

due to its poor compatibility with chloroform. Clustering and aggregation 366 

increase the hydrodynamic diameter of nanosheets leading to the increase in 367 

viscosity[74]. 368 

 369 

3.4 Graphene Oxide/Polymer Fibres 370 

3.4.1 Characterisation of Nanocomposite Fibres 371 

A PMMA-chloroform system was selected for this work as previous work has 372 

considered this combination highly suitable for composite fibre fabrication and 373 

filtration applications[75-77]. 374 

 375 

SEM micrographs of the GO/PMMA fibres prepared from the suspension 376 

systems showed the fibres formed were generally continuous, porous and had a 377 

circular cross section. The successful formation of fibres suggests that for all 378 

four GO/PMMA suspensions the intermolecular entanglement and chain overlap 379 
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was appropriate to stabilise the polymer jet emitting from the orifices on the 380 

pressurised gyration vessel, despite the increasing GO load. The formation of 381 

non-beaded fibres also indicates the homogenous dispersion of GO nanosheets 382 

in the polymer solution.  383 

 384 

From Figure 4 it can be said that the concentration of GO greatly dictates fibre 385 

morphology. The introduction of a small quantity of GO drastically decreased 386 

the average fibre diameter from 3.9 ±2.0 µm to 1.4 ±0.9 µm. A positive 387 

correlation can then be observed between the concentration of GO and the 388 

average fibre diameter; as the GO concentration increases within the polymer 389 

matrix, the fibres become larger in diameter with a wider fibre diameter 390 

distribution. This observation can be related to the viscosity measurements 391 

recorded for the corresponding polymer solutions. Previous literature has 392 

proven that the solution parameters and processing conditions are responsible 393 

for changes in fibre morphology during pressurised gyration[78]. However, as 394 

the processing parameters were consistent in this work it can be theorised that 395 

the GO incorporation is the sole factor influencing fibre morphology.  396 

 397 

The trend seen in the fibre diameters can be attributed to the rheological 398 

properties of the GO/PMMA suspension. In this instance GO acted as a 399 

surfactant at low concentrations (2 wt%), thus prevented the formation of a 400 
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strong polymer network and consequently lowered viscosity and surface 401 

tension. This gave rise to thin fibres. At higher GO concentrations (4 and 8 wt%), 402 

the solution viscosity of the suspensions slightly increased, and though the 403 

applied centrifugal force and pressure difference was sufficiently high to modify 404 

the surface tension in supporting the fibre preparation, it was not strong 405 

enough to give rise to thin fibres. In addition, the dispersion of GO in the PMMA 406 

had a significant impact on fibre morphology. At low GO content, the 407 

nanosheets were dispersed relatively well in the polymer, hence the fibre 408 

diameter and distribution rates are reduced when compared to the others. High 409 

concentration of GO content resulted in improved Van der Waals forces 410 

between the GO nanosheets and the PMMA, therefore resulting in the 411 

agglomeration of GO and non-uniform dispersion of GO thus leading to a 412 

broad fibre diameter distribution [79-82]. 413 

 414 

Fibre topography included spherical surface pore structures, and its formation 415 

has been illustrated using the breath figures model (Figure 4(g)[77, 83]. Such 416 

surface features are ideal for filtration applications, as not only do they increase 417 

the surface area for bacteria to interact with, but they also work to physically 418 

trap the bacteria within their pits. 419 

 420 
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Raman mapping was used to identify GO in GO-loaded PMMA fibres, as shown 421 

in Figure 5. The dark areas in Figure 5(a) is GO, confirmed by Raman 422 

spectroscopy in Figure 5(b). The D peak (at 1350 cm−1) arises from the breathing 423 

mode of the sp2 hybridized carbon and induces the disorders including edges, 424 

functional groups, and structural defects[84]. The intensity ratio of D and G 425 

peaks (ID/IG) for GO was 0.88. The sharp peak seen at 2800 cm-1 is due to the 426 

single layer of GO in the fibre. It also indicates that the GO may have some 427 

defects as a result of fibre formation during pressurised gyration. This peak can 428 

also be attributed to the overtone of the D’ peak and is called a 2D’ peak.  429 

Figure 5(c, d) show individual Raman mapping images of D peak and G peak 430 

within the surface of the PMMA fibre. 431 

 432 

The FT-IR spectra of GO, PMMA and GO/PMMA fibres (Figure 6) showed the 433 

specific functional groups of C−O−C (~1000 cm−1), C−O (1230 cm−1), C=C 434 

(~1620 cm−1) and C=O (1740–1720 cm−1) bonds. The band in the region of 435 

3600–3300 cm−1 corresponds to O−H stretching vibrations of hydroxyl and 436 

carboxyl functional groups of GO[85, 86]. The spectrum of PMMA showed a 437 

peak around 3500 cm−1 and a very sharp signal at 1732 cm−1, corresponding to 438 

the stretching of hydroxyl and ester groups present in PMMA, respectively[87]. 439 

Typical bands at 987 and 1453 cm−1 correspond to O–CH3 bending and 440 

stretching deformation of PMMA, respectively, while bands at 1730 and 1250 441 
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cm−1 belong to stretching of C=O groups[87]. Bands at 1065 and 1197 cm−1 442 

represent C–O stretching vibration and chain vibration, respectively. The other 443 

bands in the 3000–2800 cm−1, 1490–1275 cm−1 and 900–750 cm−1 spectral 444 

regions belong to CH3 and CH2 vibrational modes[88, 89]. The typical 445 

characteristics of GO in the FT-IR spectrum (Figure 6) are peaks conforming to 446 

the C=O stretching vibrations from carbonyl and carboxylic groups at 1735 cm-1, 447 

C-C in aromatic ring at 1639 cm-1 and C–O–C stretching from epoxy groups at 448 

1072 cm-1, which confirms the existence of oxygen-related functional groups. 449 

Furthermore, a peak at 1382 cm-1 and a wide-ranging band at 3400 cm-1 are 450 

attributed to the stretching vibration of O–H groups[86, 90]. 451 

 452 

After pressurised gyration, the FT-IR spectra of GO-covered PMMA reveal typical 453 

peaks corresponding to PMMA (3001 and 2954 cm-1 for C–H stretching, 1735 454 

cm-1 for C=O stretching, 1200 and 1148 cm-1 for C–O stretching) as well as O–H 455 

stretching peak at 3500 cm-1, which is due to oxygen functional groups of 456 

GO[91]. These spectra clearly represent the chemical interaction between GO 457 

and PMMA. Previously reported work on CNT-PMMA nanocomposites showed 458 

the unpaired electrons associated with CNT activates the p-bond of CNT, which 459 

binds CNT with polymer chain[92]. GO has comparable physio-chemical 460 

characteristics and high specific surface area (in comparison to CNTs). Both 461 
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compounds show similar bands in their FT-IR spectra, suggesting that the GO 462 

nanosheets are successfully grafted onto the surface of PMMA. 463 

 464 

Detailed Raman spectroscopy of the GO/PMMA fibres was performed. The 465 

Raman spectrum was compared with those of ‘free’ GO to investigate the effect 466 

of GO on the surface of PMMA. The Raman spectrum of GO/PMMA fibres is 467 

presented in Figure 7. The typical Raman peak of GO was characterized by a G 468 

band (at ca. 1604 cm-1) and D (1354 cm-1) bands which represent the sp2 469 

hybridisation of carbon atoms and the breathing mode of k-point phonons of 470 

A1g symmetry respectively[86, 90]. The six characteristic bands of GO-covered 471 

PMMA observed at 2953, 2848, 1739, 1605, 1453, 1348 cm-1. Raman band 2953 472 

represents the C-H stretching vibration[93]. The band at 1739 cm-1 is ascribed to 473 

the combination band arising out of ν(C=C) and ν(C–COO) modes[93].  474 

 475 

PMMA triggers slight hardening and wide-ranging of the G and 2D peaks. Both 476 

G and D peaks are slightly shifted from 1604 and 1354 to 1605 and 1348 cm-1 477 

respectively owing to the residual compression strain persuaded by the 478 

temperature involved in fibre preparation. The D band indicates defects 479 

including vacancies, grain boundaries, and amorphous carbon species[90, 94]. In 480 

the GO-covered PMMA fibres, a small change in the D peak is observed, 481 

resulting in a slight increase in the ID/IG, undoubtedly demonstrating that sp3 482 
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grafting sites are being introduced onto the carbon lattice. The ID/IG ration can 483 

be used to calculate the interdefect distance and number density of grafted 484 

sites per unit area[95, 96]. The spectra for graphene related materials show D, G 485 

and 2D peaks, allowing the classification of these materials in different 486 

hybridisation profiles[97], where the defect density does not exceed the 487 

Tunstra-Koenig limit[95]. It has been evidently proved that this peak arises from 488 

double resonance in addition to phonon confinement[98]. The decrease in 489 

intensities of both peaks (D and G) also indicates improved graphitization. For 490 

monolayer graphene, there is a sharp peak at ca. 2848 cm-1 which typically 491 

represent of the number of layers of graphene. In the current work, the band is 492 

observed to be sharp, indicating that as-prepared GO comprises single layer 493 

with defects. These defects are also an indication of processing of fibre 494 

preparation[99].  495 

 496 

Both FT-IR and Raman spectroscopy of the GO/PMMA nanocomposite fibres 497 

confirmed the presence of GO on the fibre surface. This fibre characteristic plays 498 

a vital role in the antimicrobial mechanism of action of the fibres. 499 

 500 

3.4.2 Antibacterial Activity of Graphene Oxide in Polymeric Fibres 501 

The antibacterial activity of GO in PMMA fibres was investigated using E. coli 502 

K12. As discussed above, antibacterial activity of pure GO nanosheets was 503 
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observed at a concentration of 2 wt%, therefore the fibres investigated had GO 504 

concentrations of 0, 2, 4 and 8 wt%. In comparison to pure PMMA fibres, the 505 

results confirmed that GO-covered PMMA fibres proficiently reduced the 506 

number of E. coli K-12 cells. The percentage bacterial reductions are shown in 507 

Figure 8. The PMMA fibres (negative control) exhibited no antimicrobial activity, 508 

as a bacterial increase of 25 7.9% was observed. In contrast, all the GO/PMMA 509 

fibre meshes displayed antibacterial behaviour. At the lowest GO-covered 510 

PMMA concentration, 45 2.2% of the total E. coli K-12 viability was significantly 511 

reduced, while 70 2.4% of the total bacteria was reduced after incubation with 512 

PMMA with 4 wt% GO. The maximum antibacterial activity was noticed in the 513 

case of 8 wt% GO loaded-PMMA, with an 85 1.4% reduction in cell numbers 514 

being observed. The results showed that the antibacterial activity of the 515 

GO/PMMA fibre meshes are a function of GO concentration. The bacterial 516 

reduction observed with 8 wt% GO loaded-PMMA is comparable to 8 wt% 517 

graphene nanoplatelet loaded-PMMA fibres, where a reduction of 85 ±5% was 518 

noted[100]. GO loaded-PMMA fibres present themselves as a favourable 519 

alternative, as GO is more easily accessible when compared to pure graphene. 520 

The antimicrobial properties of GO loaded-PMMA fibres were less potent than 521 

free GO, however incorporating GO into fibres broadens the number of 522 

applications GO can be used in. Also, increasing the quantity of GO in PMMA 523 

provide evidences for bacteria to interact with GO, therefore causing the 524 
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decreased levels of E. coli. Our results are consistent with other previously 525 

reported work revealing the concentration-dependent GO toxicity[38, 100, 101]. 526 

 527 

Pure PMMA fibres proved to have little interference with normal bacterial 528 

growth and proliferation as a percentage increase in bacterial numbers was 529 

observed, despite previous studies showing the contrary[100]. This suggests that 530 

the PMMA had no antibacterial properties, and the antibacterial activities seen 531 

with the GO/PMMA fibre meshes are solely due to the presence of GO. 532 

 533 

The antibacterial activity of PMMA fibres containing 2 wt% of GO were initially 534 

tested. These fibres exhibited antibacterial properties with an average bacterial 535 

reduction of 45 2.2%. This percentage reduction is significantly lower than the 536 

observed reduction of pure GO nanosheets. This is due to the GO nanosheets 537 

being embedded within the PMMA fibres and not just on the surface. Increasing 538 

the GO concentration to 4 wt% increased the antibacterial action of the fibres, 539 

showing bacterial reduction at 70%. This indicates a higher concentration of GO 540 

nanosheets on the fibre surface, therefore there is more GO for the bacteria to 541 

interact with. Increasing the GO concentration further to 8 wt% significantly 542 

enhanced the antibacterial action of the fibre, as these fibres showed the 543 

strongest antibacterial activity with a cell inactivation percentage of 85 1.4% 544 

being achieved. Previous literature has reported different minimum inhibition 545 
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concentrations (MICs) for GO. Nanda et al., have reported the MIC to be 1 546 

µg/mL[102]. Liu et al., reported the MIC to be 80 µg/mL, with a 91.6% 547 

inhibition[38]. Whilst Shubha et al., have reported a MIC of 50000 µg/mL[103]. 548 

In this research, when 8 wt% fibres were used, the GO concentration was 530 549 

µg/mL. 550 

 551 

A multitude of GO-based antibacterial mechanisms has been explained in 552 

literature. However, as the GO nanosheets are not floating free in the bacterial 553 

suspension, but instead they are trapped within PMMA fibres and not 554 

protruding from the fibre surface, it can be presumed that in this instance the 555 

antibacterial mechanism of action involves a chemical reaction, such as oxidative 556 

stress. 557 

 558 

3.4.3 Reactive Oxygen Species Generation 559 

The oxidative stress caused by GO has been reported as a main toxicity 560 

mechanism[104]. In this work, the prepared GO/PMMA nanocomposite fibres 561 

were studied to see if they produce ROS. From Figure 9 it is evident that ROS 562 

production began at approximately 70 minutes and steadily increased over the 563 

400-minute incubation period. DCFH can react with different ROS such as 564 

hydrogen peroxide, HO and other free radicals therefore the delay in the signal 565 

may be explained by the participation of other ROS than the hydrogen peroxide 566 
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used in the control. Also while the hydrogen peroxide present in the control is 567 

readily available to reduce the probe while the GO fibres ROS generation may 568 

depend on the generation of an intermediary[105]. Overproduction of ROS is a 569 

principal representative of oxidative stress, hence the measurement of ROS 570 

indicates ROS-mediated oxidative stress is the likely antibacterial mode of 571 

action[104, 106]. It is thought that the GO present on the surface of the fibre 572 

produces ROS via the singlet oxygen-superoxide anion radical pathway, which 573 

plays a significant role in release of cytochrome c and other pro-apoptotic 574 

proteins, which in turn mediate caspase activation and apoptosis through the 575 

generation of protein radicals, activation of lipid peroxidation, DNA-strand 576 

breakage, modification to nucleic acids, gene expression through activation of 577 

redox-sensitive transcription factors and modulation of inflammatory responses 578 

through signal transduction[107-114]. 579 

 580 

3.4.4 Post Treatment Characterisation 581 

3.4.4.1 Imaging Using Stimulated Raman Spectroscopy 582 

GO revealed a strong signal within the SRS channel, this signal has a broad 583 

spectral profile which can be attributed to pump-probe interactions within the 584 

GO, rather than more chemically specific Raman vibrations[115]. PMMA is also 585 

visualised in the SRS channel, the signal from the PMMA shows a strong peak at 586 

2940cm-1 which can be attributed to the CH3 Raman vibrations. Figure 10 a) 587 
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compares the spectra of the PMMA and GO-PMMA-bacteria. The intensity of 588 

the SRS signal in GO-PMMA is much higher than PMMA alone. Figure 10 b 589 

shows the results of Multi Curve Regression (MCR) analysis[116] performed on a 590 

hyperspectral data stack of the sample containing PMMA, GO and bacteria. The 591 

analysis enabled the signal from the PMMA shown in red from the GO shown in 592 

green to be separated based on their spectral properties. The images show 593 

flakes of GO distributed across the surface of the PMMA fibres, which contribute 594 

to the high killing efficacy of composites towards E. coli (which is also 595 

demonstrated from antibacterial activities of composites towards programmed 596 

cell death of bacteria). 597 

 598 

3.4.4.2 Scanning Electron Microscopy 599 

SEM analysis was used to examine the interaction between the microbes and 600 

the 8 wt% GO/PMMA fibres and to assess any changes in cell morphology. 601 

Figure 11 shows the bacterial cells, E. coli, on the 8 wt% GO/PMMA fibres. 602 

 603 

In the presence of 8 wt% GO/PMMA fibres the bacteria showed changes in cell 604 

morphology. Healthy prokaryotic cells form a capsule, a protective layer rich in 605 

sugars, proteins and alcohol, and/or lipids that help stick bacteria to each other 606 

as well as onto the substrate [117, 118]. In addition to this layer, Gram-negative 607 

bacteria (E. coli) also contain an asymmetric outer membrane whose inner 608 
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leaflet is composed largely of glycerophospholipids and an outer leaflet 609 

composed of lipopolysaccharides. These capsules cover the entire bacteria as 610 

well as the whole space between bacteria. As shown in Figure 11, exposure of 611 

the bacterial cells to 8 wt% GO/PMMA fibres caused capsule degradation, as the 612 

capsule is removed from the exposed parts of bacteria. In addition, visible 613 

damage on the E. coli cell surface can be seen as the cells have a distorted 614 

structure. This characteristic is symptomatic of ROS degradation[119, 120].  615 

 616 

The toxic effect of the 8 wt% GO/PMMA on bacterial cells is evident from this 617 

research, however their effect on human cells needs to be further investigated. 618 

Existing literature gives conflicting opinions, some articles state that GO is 619 

cytotoxic, whilst others state that composited GO is not cytotoxic to mammalian 620 

cells and can be used in various biomedical constructs [121-124].  621 

 622 

4.0 Conclusions 623 

This research showcases the antibacterial activity of prepared GO nanosheets 624 

and GO/PMMA nanocomposite fibres for filtration applications. The results 625 

collected in this study support the hypothesis that as-prepared GO nanosheets 626 

are able to retain their antibacterial properties when processed into composite 627 

fibres, therefore demonstrating their effectiveness in the real world. 628 

 629 
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GO/PMMA nanocomposite fibre meshes were successfully prepared using 630 

pressurised gyration and characterised by SEM, FT-IR, Raman mapping, Raman 631 

spectroscopy and stimulated Raman mapping. Average fibre diameters ranged 632 

between 1.4 µm and 3.9 µm. FT-IR and Raman analysis confirmed the presence 633 

of GO nanosheets on the surface of the polymeric fibres. The interaction 634 

between bacterial cells and GO/PMMA fibres, demonstrated the fibres 635 

antibacterial properties. Colony counting method results showed 8 wt% 636 

GO/PMMA fibre meshes to have the strongest antibacterial activity, as a 637 

bacterial reduction of 85 1.4% was observed, which is stronger to what was 638 

observed with GO/poly (vinyl alcohol) fibres when considering poly (vinyl 639 

alcohol) is water soluble[125]. These studies showed the biocidal activities of GO 640 

to be retained when processed using pressurised gyration. The antibacterial 641 

properties of the nanocomposite fibres were dose-dependent, as average 642 

bacterial reductions steadily rose from 45 2.2% to 85 1.4%. The cytotoxicity 643 

properties of the nanocomposite fibres are attributed to the production of 644 

oxidative stress. Increasing the concentration of GO in the fibres, the bacteria 645 

have a higher chance to interact with the toxic GO nanoparticles on the surface 646 

of the fibres (as confirmed by post-treatment SEM and stimulated Raman 647 

spectroscopy). Compared with previous reports of antimicrobial GO, this work 648 

demonstrates the translation of lab-based science to real life application. With 649 

the knowledge obtained in this study it can be concluded that GO nanosheets 650 
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retain their antibacterial properties when composited in non-water-soluble 651 

polymeric fibres, thus providing insight of their potential in a number of 652 

applications including filtration.  653 
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 1000 

 

Figure 1: (A) AFM micrograph and (B) height profile of synthesised GO 1001 

nanosheets showing its thickness. 1002 
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 1004 

(a) 

 

(b) 

 

(c) 

 

Figure 2: Flow cytometry results obtained by exposing E. coli to GO at various 1005 

concentrations for 24 hours at 37oC and 150 rpm. (a) gating strategy example of 1006 

E. coli bacterial cells after exposure to 1 wt% of GO, (b) gating strategy example 1007 

of E. coli bacterial cells after exposure to 2 wt% of GO, (c) percentage of dead 1008 

cells after exposure of E. coli to various concentrations of GO. Error bars 1009 

represent standard deviation, (n = 3). 1010 
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(a) 

 

(b) 

Figure 3: plot of the (a) average surface tension against GO concentration (n=4); 1011 

(b) average viscosity against GO concentration (n=3). Error bars represent 1012 

standard deviation. 1013 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Average Fibre Diameter: 1.4 0.9 µm 

PDI: 64.3% 

Average Fibre Diameter: 1.6 0.9 µm 

PDI: 56.3% 

Average Fibre Diameter: 3.9 2.0 µm 

PDI: 51.2% 
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(g) (h) 

Figure 4: SEM images and fibre diameter distribution of graphene oxide loaded 1016 

PMMA fibres. (a) and (b) pure PMMA fibres, (c) and (d) 2wt% GO fibres, (e) and 1017 

(f) 4wt% GO fibres, (g) and (h) 8wt% GO fibres. In (g) the inset micrograph 1018 

shows the fibres to have smooth surfaces. Polydispersity index (PDI) values are 1019 

also displayed on the graphs.  1020 
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Average Fibre Diameter: 2.0 1.3 µm 

PDI: 65% 
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 1022 

(a)                                                                                               1023 

(b) 1024 

  

ID  (X,Y) IG  (X,Y) 

(c) (d) 

Figure 5: Raman microscopic image of 4wt% GO loaded PMMA fibres: 1025 

microscopic image (a), Raman spectrum (b), and Raman mapping of D (c) and G 1026 

(d) peaks. 1027 
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 1029 

 1030 

Figure 6: FT-IR spectra of GO, PMMA and 8 wt% GO/PMMA nanocomposite 1031 

fibres.   1032 
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 1034 

Figure 7: Raman spectrum of 8 wt% GO/PMMA fibres.  1035 
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 1037 

 1038 

Figure 8: Bacterial reductions observed after incubation of 0, 2, 4 and 8 wt% 1039 

GO/PMMA fibres with E. coli K12 for 24 hours at 150 rpm and 37oC. Pure PMMA 1040 

fibres with no GO were used as a control group. Error bars represent standard 1041 

deviation (n = 3). 1042 
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 1044 

 1045 

Figure 9: Generation of ROS from 8 wt% GO/PMMA fibres. The fluoresce of DCF 1046 

was measured using a fluorimeter with excitation at 485 nm and emission at 530 1047 

nm. Positive control represents a 1:1 dilution of 30% hydrogen peroxide in PBS, 1048 

whilst the negative control represents PBS only. 1049 
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 1051 

Figure 10: a) Stimulated Raman scattering (SRS) spectra from PMMA and GO in 1052 

the 8 wt% GO-PMMA E coli treated samples. b) The results of Multi-Curve 1053 

Regression (MCR) analysis performed on a hyperspectral stack of SRS images 1054 

from bacteria and GO-PMMA. Here the PMMA (red) and GO (green) signals can 1055 

be separated by the different spectral profiles as shown in (a). Gold colour 1056 

indicates a mixture of GO and PMMA. 1057 
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 1059 

 1060 

Figure 11: SEM micrograph of the 8 wt% GO/PMMA post incubation with E. coli. 1061 
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Table 1: GO/PMMA solution composition. 1064 

 

GO Suspension Polymer Solution Final 

Concentration 

of GO in the 

Resulting Fibre 

(wt%) 

GO 

Particles 

(g) 

Chloroform 

(mL) 

PMMA 

(g) 

Chloroform 

(mL) 

GO/PMMA0 0.00 10 4 10 0 

GO/PMMA2 0.08 10 4 10 2 

GO/PMMA4 0.16 10 4 10 4 

GO/PMMA8 0.32 10 4 10 8 

 1065 
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