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Longitudinal Assessment of Multiple
Sclerosis with the Brain-Age Paradigm
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Objective: During the natural course of multiple sclerosis (MS), the brain is exposed to aging as well as disease effects.
Brain aging can be modeled statistically; the so-called “brain-age” paradigm. Here, we evaluated whether brain-
predicted age difference (brain-PAD) was sensitive to the presence of MS, clinical progression, and future outcomes.
Methods: In a longitudinal, multicenter sample of 3,565 magnetic resonance imaging (MRI) scans, in 1,204 patients
with MS and clinically isolated syndrome (CIS) and 150 healthy controls (mean follow-up time: patients 3.41 years,
healthy controls 1.97 years), we measured “brain-predicted age” using T1-weighted MRI. We compared brain-PAD
among patients with MS and patients with CIS and healthy controls, and between disease subtypes. Relationships
between brain-PAD and Expanded Disability Status Scale (EDSS) were explored.
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Results: Patients with MS had markedly higher brain-PAD than healthy controls (mean brain-PAD +10.3 years; 95%
confidence interval [CI] = 8.5–12.1] versus 4.3 years; 95% CI = 2.1 to 6.4; p < 0.001). The highest brain-PADs were in
secondary-progressive MS (+13.3 years; 95% CI = 11.3–15.3). Brain-PAD at study entry predicted time-to-disability pro-
gression (hazard ratio 1.02; 95% CI = 1.01–1.03; p < 0.001); although normalized brain volume was a stronger predic-
tor. Greater annualized brain-PAD increases were associated with greater annualized EDSS score (r = 0.26; p < 0.001).
Interpretation: The brain-age paradigm is sensitive to MS-related atrophy and clinical progression. A higher brain-PAD
at baseline was associated with more rapid disability progression and the rate of change in brain-PAD related to wors-
ening disability. Potentially, “brain-age” could be used as a prognostic biomarker in early-stage MS, to track disease
progression or stratify patients for clinical trial enrollment.
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Age has long been implicated as the dominant driver
of disease progression in multiple sclerosis (MS).1

Older age increases the risk of progression,2 irrespective of
disease duration; once progression starts, disability accrual
is independent of the previous evolution of the disease,
the presence of relapses, or relapse rates.3–7 Some people
with MS experience faster rates of brain atrophy, leading
to poorer long-term outcomes.8 Early prediction of risk
for accelerated atrophy could have great clinical benefit for
treatment decisions and patient management. However,
making such early predictions of future brain atrophy rates
is challenging, not least because normal aging also results
in brain atrophy.

Neuroimaging, particularly magnetic resonance
imaging (MRI), offers a window into the longitudinal evo-
lution of atrophy patterns in MS and aging, allowing them
to be compared and contrasted.9–12 For example, Ghione
and colleagues showed similar rates in the percentage of
brain volume change between patients with MS and age-
matched healthy controls, although patients with MS
started from a lower baseline volume. Conversely, this
study found scant percentage lateral ventricle volume
change in patients with MS, whereas healthy controls vol-
umes increased to reach similar volumes as patients with
MS by age 60 years.9 Meanwhile, Azevedo and colleagues
focused on thalamic volume, showing significantly greater
reductions in MS (−0.71%/year) compared to healthy
aging (−0.28%/year).11 Similarly, Bishop and colleagues
reported “excess” grey matter volume reductions in sub-
cortical regions, including but not limited to the thalamus,
in both early and late-onset patients with MS groups, rela-
tive to age-matched controls.12 These studies suggest that,
although there is some neuroanatomic overlap between
aging and MS-related atrophy, the spatial patterns and
rates of change differ. Although whole-brain volume is
likely to add value to clinical decision making in MS,13

potentially more “high-dimensional” approaches that cap-
ture patterns across all voxels from a brain scan could add
value.

An alternative approach to consider the relationship
between disease and healthy aging is the so-called “brain-
age” paradigm.14 Rather than correlate age and brain vol-

ume, this approach aims to predict chronological age from
neuroimaging data; analogous to efforts to model biologi-
cal age from biogerontology research. The difference
between an individual’s chronological age and the age
predicted by machine-learning analysis of voxelwise neuro-
imaging data, the brain-predicted age difference (brain-
PAD), has been proposed as an age-adjusted index of
structural brain health. Research has shown brain-PAD to
be sensitive to neurological and psychiatric diseases,15,16

including MS.17,18 Specifically, MS was associated with
between 4 and 6 years of added brain-PAD, similar in
magnitude to previous work on traumatic brain injury19

and epilepsy20 and greater than well-treated HIV21 or
Down’s syndrome.22 Kaufmann and colleagues reported
that brain-age gap (equivalent to brain-PAD) was associ-
ated with Expanded Disability Status Scale (EDSS) score.
Meanwhile, Høgestøl and colleagues found a relationship
between change in whole-brain brain-age gap measure and
disease-modifying therapy status, but no change in EDSS.
This study was relatively small (n = 62), so it is still
unclear whether brain-PAD has prognostic value in MS,
as has been demonstrated in larger studies of demen-
tia23,24 and normal aging.25

Here, we used unique access to large longitudinal
cohort of patients with MS and healthy controls to assess
whether MS is associated with a higher apparent brain age
and whether a patient’s brain-PAD has utility in
predicting clinical outcomes. Specifically, we tested the
following hypotheses: (1) patients with MS have higher
brain-PAD than healthy controls; (2) in patients with MS,
there is a relationship between brain-PAD and disability at
study entry; (3) brain-PAD increases over time as disabil-
ities worsen; and (4) brain-PAD at baseline predicts future
disability progression.

Methods
Participants
This cohort study used data collected from seven
European MS centers (MAGNIMS: www.magnims.eu)
and Imperial College London on n = 1,354 participants
(Table 1), largely overlapping with our previous work
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(Table S1).10 Patients had all received a diagnosis of MS
according to 2010 McDonald Criteria or clinically isolated
syndrome (CIS).26,27 Patients with MS and CIS were
scored on the EDSS.28 Healthy controls without history
of neurological or psychiatric disorders were also included
(n = 150). For longitudinal imaging analysis, participants
were required to have undergone at least 2 high-resolution
T1-weighted MRI acquired with the same protocol with
an interval of ≥1 month.

The final protocol for this study was reviewed and
approved by the European MAGNIMS collaboration for
analysis of pseudo-anonymized scans and the Imperial
NHS Trust (London Riverside Research Ethics Commit-
tee: 14/LO/0343). All participants provided written,
informed consent to take part in the research.

Expanded Disability Status Scale Progression
Time-to-event, where a progression event was an individ-
ual’s progression on the EDSS, was defined as per our pre-
vious work.10 That is, if a patient showed a longitudinal
change of: a 1.5-point increase in EDSS if the baseline
EDSS was 0; a 1-point increase if baseline EDSS was 1 to
6 inclusive; and a 0.5-point increase if EDSS was greater
than 6.

Neuroimaging Acquisition
Overall, 3,565 T1-weighted MRI scans were used in the
study according to local MRI protocols, which used

similar acquisition parameters. Thirteen different scanners
(Siemens, GE, and Philips) were used in patients recruited
from 1998 onward (Supplmentary Table S2).

Machine-Learning Brain-Age Analysis
Brain-predicted age calculation followed our previously
established protocol, which has high test–retest reliability
(intraclass correlation coefficient = 0.97).21,29 In brief, all
structural images were preprocessed, using the SPM12
software package (www.fil.ion.ucl.ac.uk/spm/software/
spm12/), to generate grey matter and white matter seg-
mentations. Visual quality control was then conducted to
verify segmentation accuracy; all images were included.
However, n = 13 participants were excluded from a single
site, due to labeling errors. Segmented grey matter and
white matter images were then nonlinearly registered to a
custom template (based on the training dataset). Finally,
images were affine registered to Montreal Neurological
Institute (MNI) 152 space (voxel size = 1.5 mm3),
modulated and smoothed (4 mm). Summary volumetric
measures of grey matter, white matter, cerebrospinal fluid
(CSF), and intracranial volume were also generated.

Brain-predicted ages were generated using Pattern
Recognition for Neuroimaging Toolbox (PRoNTo version
2.0, www.mlnl.cs.ucl.ac.uk/pronto) software.30 First, a
model of healthy brain aging was defined. Brain volumet-
ric data (from in a separate training dataset,21 n = 2001
healthy people screened to exclude comorbidities, aged

TABLE 1. Characteristics of Patients with MS, CIS, and Healthy Controls
Healthy controls All MS/CIS patients CIS RRMS SPMS PPMS

N 150 1204 296 677 111 120

N with follow-up data 111 1155 279 653 104 119

Female, n (%) 82 (55) 771 (64) 199 (67) 453 (67) 67 (60) 52 (43)

Number of scans per
participant mean � SD
[range]

2.82 � 1.90 [1–10] 2.61 � 1.01 [1–7] 2.44 � 0.98 [1–5] 2.71 � 1.05 [1–7] 2.71 � 1.05 [1–3] 2.71 � 1.05 [1–5]

Length of follow-up, yr,
mean � SD [range]

1.97 � 1.38 [0.5–6.0] 3.41 � 3.15 [0.2–15] 3.63 � 4.04 [0.2–15] 3.57 � 3.10 [0.45–15] 2.43 � 1.12 [0.5–5.5] 2.86 � 1.67 [0.8–6]

Age at baseline scan, yr,
mean � SD [range]

37.29 � 9.96 [23–66] 39.41 � 10.76 [15–68] 33.01 � 8.08 [15–55] 38.83 � 9.68 [18–66] 50.11 � 9.39 [30–68] 48.55 � 10.04 [19–65]

Brain-predicted age at
baseline, yr, mean � SD
[range]

38.43 � 11.12 [14.5–70] 50.27 � 14.90 [7.4–92] 37.60 � 10.01 [13.7–82] 51.33 � 13.32 [7.4–92] 67.36 � 10.42 [40.2–89] 59.77 � 10.90 [31–84]

Time since clinical diagnosis
at baseline, yr

- 7.26 � 7.96 [0–48] 0.52 � 1.50 [0–18] 7.67 � 7.31 [0–42] 17.44 � 9.04 [2.5–48] 6.65 � 5.63 [1–27]

EDSS at baseline mean �
SD [range]

- 2.60 � 1.95 [0–9] 1.36 � 1.02 [0–4.5] 2.12 � 1.40 [0–6.5] 5.83 � 1.20 [3–9] 5.10 � 1.32 [2–8]

Disease-modifying treatment
at baseline, n (%): yes/no/
unknown

- 475 (39) / 675
(56) / 54 (5)

60 (20) / 234
(79) / 2 (1)

356 (53) / 285
(42) / 36 (5)

51 (46) / 52
(47) / 8 (7)

8 (7) / 104
(87) / 8 (7)

CIS = clinically isolated syndrome; EDSS = Expanded Disability Status Scale; MS = multiple sclerosis; PPMS = primary-progressive multiple sclerosis;
RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.
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18 to 90; see Table S2 for data sources) were used as the
independent variables in a Gaussian Processes regression,
with age as the dependent variable. This regression model
predicted chronological age with a mean absolute error of
5.02 years, assessed using 10-fold cross-validation, which
explained 88% of the variance in chronological age.

Next, the coefficients from the full training model
were applied to the current test data (ie, patients with MS
and CIS and healthy controls) to generate brain-predicted
ages. These values were adjusted to remove age-related
variance, as discussed by Le and colleagues,31 by sub-
tracting 3.33 and then dividing by 0.91; the intercept and
slope calculated from a linear regression of brain-predicted
age (outcome) on chronological age (predictor) in the
training dataset. Finally, brain-PAD scores were calculated
by subtracting chronological age from brain-predicted age
and used for subsequent analysis. A positive brain-PAD
score indicates that the individual’s brain is predicted to
be “older” than their chronological age.

Statistical Analysis
Using brain-PAD values, further statistical analysis was
carried out to test our hypotheses, using R version 3.5.2.
A full list of R packages and versions and analysis code is
included in the accompanying R Notebook (https://
github.com/james-cole/UCL-MAGNIMS-Brain-age). We
used linear mixed effects models, enabling incorporation of
fixed and random effect predictors to model each given
outcome measure. In these models, brain-PAD was used as
the outcome variable. Each model included fixed effects of

group (eg, patients with MS and CIS vs. healthy controls;
MS subtype [CIS, relapsing-remitting, secondary-progres-
sive, and primary-progressive]), age, age2, sex, normalized
brain volumes (ie, whole-brain to intracranial volume
ratio), and MRI scanner field strength (1.5 T or 3 T) and a
random effect of original study cohort (modeling inter-
cept). Estimated marginal means or trends (for interac-
tions) and confidence intervals (CIs) from linear models
were calculated, using asymptotic CIs where appropriate.
This analysis was repeated using data from a single
cohort from a single center (UCL, London, UK), where
all MS clinical subtypes were present (not CIS). To test
the influence of disease-modifying treatments on the
analysis, we repeated the mixed-effects modeling with
the addition of baseline treatment status as an additional
covariate, before calculating estimated marginal means
for those patients with MS receiving treatment com-
pared to those not.

A random effects meta-analysis was conducted to
explore the heterogeneity of the group effects on brain-
PAD across different study cohorts. Only cohorts that
included healthy controls and patients with MS or CIS
were included in this analysis.

To establish whether brain volume measurements were
driving the variability in brain-PAD, we performed a linear
regression with hierarchical partitioning of variance, with
brain-PAD as the outcome variable and age, sex, normalized
brain volume, cohort, and field strength as predictors.

Subsequent analyses were conducted to test for
fixed-effect influences of EDSS score (patients with MS

TABLE 2. Comparisons of Estimated Marginal Means in Brain-PAD Between MS subtypes

Group comparison Estimated difference Standard error DF t-ratio p

CIS-healthy controls −2.15 0.916 724 −2.35 0.13

RRMS-healthy controls −7.30 0.811 868 −9.00 <0.0001

SPMS-healthy controls −8.74 1.013 1,227 −8.63 <0.0001

PPMS-healthy controls −6.16 0.952 1,296 −6.47 <0.0001

RRMS-CIS −5.15 0.575 1,100 −8.95 <0.0001

SPMS-CIS −6.59 0.916 1,295 −7.19 <0.0001

PPMS-CIS −4.01 1.011 659 −3.97 <0.0001

SPMS-RRMS −1.44 0.764 1,342 −1.89 0.32

PPMS-RRMS 1.14 0.871 700 1.30 0.69

PPMS-SPMS 2.58 0.986 1,110 2.62 0.06

Brain-PAD = brain-predicted age difference; CIS =clinically isolated syndrome; DF = degrees of freedom; MS = multiple sclerosis; PPMS =
primary-progressive multiple sclerosis; RRMS = relapsing-remitting multiple sclerosis; SPMS = secondary-progressive multiple sclerosis.
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FIGURE 1: Brain-predicted age difference (brain-PAD) for patients with multiple sclerosis (MS) and clinically isolated syndrome
(CIS) and healthy controls (HCs) at baseline. (A) A random-effects meta-analysis of the 6 cohorts that included both patients with
MS and CIS and healthy controls found the pooled effect of multiple sclerosis and CIS on brain-PAD compared to healthy
controls was 9.45 years (95% confidence interval [CI] = 13.11–5.80), across a total of n = 200 patients with MS and CIS and
n = 150 healthy controls. Heterogeneity was estimated at I2 = 59% [95% CI = 3–91%]. (B) Grouped scatterplot depicting the
distributions of brain-PAD at baseline in years. Solid lines represent the group median, boxes show the interquartile range, and
whiskers 1.5 times the interquartile range from the median. (C) Data from cohort “UCL3,” where all MS subtypes were present,
confirms a result similar to that of the total cohort. (D) Examples of how brain structure relates to brain-PAD, with axial slice from
T1-weighted magnetic resonance imaging (MRI) from 1 healthy control and 4 individuals with CIS or MS. A control brain from a
30-year-old woman with a brain-PAD of −0.8 years can be compared to a 31-year-old woman with CIS, Expanded Disability
Status Scale (EDSS) of 0.0 and a brain-PAD of +0.7 years, and 31-year-old with relapsing-remitting multiple sclerosis (RRMS),
EDSS of 2.0, and a brain-PAD of +9.2 years. In addition, we illustrate a 48-year-old with secondary-progressive multiple sclerosis
(Figure legend continues on next page.)
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and CIS), and time since clinical diagnosis and age at clin-
ical diagnosis (patients with MS only). Model fits were
considered using F-tests and post hoc pairwise compari-
sons using t-tests or Tukey tests where appropriate.

We explored how longitudinal changes in brain-
PAD related to changes in disability over time in 2 ways:
(1) by correlating annualized change in brain-PAD (ie,
the difference between first measured brain-PAD and
last brain-PAD, divided by the interval in years) with
the annualized change in EDSS score; and (2) by using
linear mixed effects models to investigate group (patients
with MS and CIS vs. healthy controls; patient subtype)
by time interactions. These analyses included a random
effect of participant (modeling slope and intercept),
alongside age, age2, sex, field strength, and cohort
effects.

Survival analysis, using a Cox proportional hazards
regression, was used to test whether baseline brain-PAD
predicted time-to-EDSS progression, including age at
baseline MRI and sex as covariates. An additional survival
analysis was conducted with normalized brain volume as a
further covariate.

We investigated the impact of MS lesions on brain-
PAD in MS. Using cross-sectional data from a subset of
n = 575 patients with MS and CIS, for which manually
annotated lesion maps were available, we explored the
relationship between MS lesions and measurements of
brain-PAD using the FSL lesion-filling algorithm32 by
artificially removing lesions from T1-weighted MRI scans.
Both “lesion-filled” and “unfilled” scans were run through
the brain-age prediction procedure, then resulting brain-
PAD scores were compared.

Results
Multiple Sclerosis is Associated with Older
Appearing Brains
The MAGNIMS sample forms part of a well-characterized
population (see Table 1). The combined cohort involves
patients from 6 countries with a mean follow-up of
3.41 years in patients. At baseline, age was correlated with
age at diagnosis (r = 0.69), time since diagnosis (r = 0.49),
and EDSS score (r = 0.51). As would be expected, age at
diagnosis was negatively correlated with time since diagno-
sis (r = −0.27). EDSS score was correlated with age at
diagnosis (r = 0.21) and time since diagnosis (r = 0.40).

Patients with MS and CIS had markedly greater brain-
PAD scores at the time of the initial MRI scan compared
with healthy controls (estimated marginal means 10.3 years
[95% CI = 8.5–12.05] vs. 4.3 [2.1–6.4]; p < 0.001). The
linear mixed-effects model was adjusted for the age, age2, sex,
field strength normalized brain volume, and cohort.

Despite heterogeneity between study cohorts, due to
clinical characteristics and technical factors (eg, MRI scan-
ner system), the difference between patients with MS and
CIS and healthy controls was robust in a random-effects
meta-analysis of the 6 cohorts that included both patients
with MS and CIS and healthy controls (Fig 1A). The
heterogeneity in the group differences was substantial
(I2 = 59% [95% CI = 3–91%]).

MS subtype (CIS, relapsing-remitting, secondary-
progressive, and primary-progressive) significantly influenced
brain-PAD (F3,773 = 28.1; p < 0.001; Fig 1B). Estimated
marginal mean brain-PAD per subtype were: CIS 6.7 years
(95% CI = 5.0–8.4), relapsing-remitting 11.9 years [95%
CI = 10.3–13.4], secondary-progressive 13.3 years [95% CI =

(SPMS), EDSS of 6.5, and a brain-PAD of +18.6 years and a 49-year-old with primary-progressive multiple sclerosis (PPMS), EDSS
of 2.0, and a brain-PAD of +14.9 years. (E) Scatterplot showing brain-predicted age derived from original, “unfilled”
T1-weighted MRI scans (x-axis), plotted against brain-predicted ages generated from T1-weighted MRIs that had undergone the
automated lesion “filling” procedure. (F) Bland–Altman plot of brain-predicted age from unfilled T1-weighted MRI scans and
brain-predicted ages generated from “filled” T1-weighted MRIs. The plot shows the mean value from the 2 measures for each
participant (x-axis) and the difference between the 2 measures (y-axis). The mean difference line is solid (mean difference =
−0.28 years), and the corresponding limits of agreement (�1.96 * standard deviation of difference) are dashed lines. [Color
figure can be viewed at www.annalsofneurology.org]

TABLE 3. Standardized Beta Coefficients from Linear Mixed Effects Models of Clinical Measures

Baseline clinical measure Brain-PAD Normalized brain volume Age Age2 Sex Field strength

EDSS 0.141 −0.143 0.265 0.096 0.000 −0.068

Time since diagnosis 0.245 −0.102 0.407 0.074 −0.041 −0.062

Age at onset −0.202 0.086 0.774 −0.065 0.028 0.044

Brain-PAD = brain-predicted age difference; EDSS = Expanded Disability Status Scale.
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11.3–15.3], and primary-progressive 11.2 years [95% CI =
9.2–13.3]. Post hoc pairwise group comparison based on the
estimated marginal means (Table 2) showed statistically signif-
icant differences (p < 0.05) in brain-PAD between each sub-
type and healthy controls (excluding CIS), and between

patients with CIS and each of the 3 MS groups (relapsing-
remitting, secondary-progressive, and primary-progressive).
There were no differences among the 3 clinical MS groups.
The findings of differences in brain-PAD among each MS
subtypes and healthy controls (p < 0.001) can also be seen in
a single cohort from a single center (cohort UCL3; Fig 1C).
Again, there were no pairwise differences among subtypes
(relapsing-remitting multiple sclerosis [RRMS] and secondary-
progressive multiple sclerosis [SPMS] p = 0.74; RRMS and
primary-progressive multiple sclerosis [PPMS] p = 0.96; and
SPMS-PPMS p = 0.98).

Brain-PAD scores and corresponding T1-weighted
MRI scans of individual female participants with different
subtypes of MS are illustrated in Fig 1D to demonstrate
the atrophy associated with higher brain-PAD.

The Relationship Among Lesions, Brain Volume,
Scanner, and brain-PAD
We considered the impact of lesions of brain-PAD, by com-
paring brain-PAD values on a single MRI scan from
n = 575 patients with both a lesion-filled and unfilled ver-
sion of the same image. The correlation between brain-
predicted age using filled and unfilled scans was r = 0.99,
p < 0.001 (Fig 1E) suggesting that the presence of lesions
did not overly influence the brain-PAD values used through-
out the study (which were unfilled). A Bland–Altman plot
showed a mean difference between filled and unfilled scans

FIGURE 2: Scatterplot of brain-predicted age difference by
age at diagnosis, time since diagnosis, and Expanded
Disability Status Scale (EDSS) score. (A) Baseline EDSS score
(x-axis) and concurrent brain-predicted age difference (brain-
PAD; y-axis). (B) Age at clinical diagnosis at first scan (x-axis)
and concurrent brain-PAD (y-axis). (C) Time since diagnosis at
baseline (x-axis) and concurrent brain-PAD (y-axis). Panels
show patients with clinically isolated syndrome (CIS),
relapsing-remitting multiple sclerosis (RRMS), secondary-
progressive multiple sclerosis (SPMS), and primary-
progressive multiple sclerosis (PPMS) separately. Lines
represented the linear regression lines calculated per group,
and shaded areas are the 95% confidence intervals. [Color
figure can be viewed at www.annalsofneurology.org]

FIGURE 3: Scatterplot of annualized changed in Expanded
Disability Status Scale (EDSS) score and brain-predicted age
difference. Panels show patients with clinically isolated
syndrome (CIS), relapsing-remitting multiple sclerosis (RRMS),
secondary-progressive multiple sclerosis (SPMS), and primary-
progressive multiple sclerosis (PPMS) separately, with
annualized change in EDSS score between baseline and final
follow-up (x-axis) and annualized change in brain-predicted
age difference (brain-PAD) between baseline and final follow-
up (y-axis). Lines represented the linear regression lines
calculated per group, and shaded areas are the 95%
confidence intervals. [Color figure can be viewed at www.
annalsofneurology.org]
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was −0.28 � 1.29 years with no systemic bias caused by
lesion filling evident, although there was increased variability
between ages 60 and 70 years (Fig 1F).

We examined whether normalized brain volume,
scanner field strength, and study cohort were driving the
variability in brain-PAD using hierarchical partitioning of
variance. The combination of chronological age, sex, grey

matter, white matter, and CSF volume, field strength, and
cohort explained an adjusted R2 = 0.56 of the variance in
brain-PAD. Independent contributions were: age (5.6%
variance explained), sex (0.004%), normalized brain vol-
ume (38.9%), and field strength (0.006%). Cohort (ie,
scanner) explained a further 10.5% of the variance in
brain-PAD, highlighting the importance of statistically
accounting for scanner or study site.

Brain-Predicted Age Difference at Baseline
is Associated with Disability, Age at Clinical
Diagnosis, Time since Diagnosis, and
Disease-Modifying Treatments
At baseline, a higher brain-PAD was associated with higher
disability, as measured by the EDSS, when adjusting for
age, age2, sex, normalized brain volume, field strength, and
cohort: for every 0.64 years increase in brain-PAD, EDSS
increased by one (95% CI = 0.36–0.91; p < 0.001). There
was no statistically significant interaction between MS sub-
type and EDSS score (F3,1159 = 2.43; p = 0.06; Fig 2A).
With the same adjustments, a higher brain-PAD was asso-
ciated with both younger age at diagnosis and longer time
since diagnosis: for every year increase in brain-PAD, the
age at diagnosis was reduced by 0.16 years (95% CI =
-0.23 to -0.09; p < 0.001); for every year increase in brain-
PAD, the time since diagnosis increased by 0.16 years
(95% CI = 0.08–0.23; p < 0.001). There was no statisti-
cally significant interaction between subtype and age at
diagnosis (F2,877 = 0.60; p = 0.55; Fig 2B). For time since
diagnosis, the interaction was also not significant (F2,797
= 0.97; p = 0.38; Fig 2C). When predicting baseline clini-
cal measures, brain-PAD was a significant predictor, along-
side normalized brain volume, and age (see Table 3).
Patients receiving a disease-modifying treatment had a
higher estimated marginal mean brain-PAD (12.1 [95%
CI = 10.6–13.7]) compared to those not receiving treat-
ment (10.2 [95% CI = 8.8–11.6). This estimated differ-
ence of 1.91 years brain-PAD was significantly different
(t = 3.9; p < 0.001).

Longitudinal Brain-Predicted Age Difference
Increase Correlates with EDSS Worsening
and Time since Diagnosis
In patients who had 2 or more scans (n = 1155), annual-
ized change in brain-PAD was a significant predictor of
annualized change in EDSS (r = 0.26; p < 0.001). This
relationship remained significant when accounting for
change in normalized brain volume using partial correla-
tions. There was a significant interaction between EDSS
change and disease subtype, when predicting brain-PAD
change in linear model (F3,1089 = 3.90; p = 0.009; Fig 3).
This interaction remained significant when covarying for

FIGURE 4: How baseline age at onset and time since
diagnosis interact with changes in brain-predicted age
difference (brain-PAD). (A) Predicted slopes from estimate
marginal means analysis of 3-way interaction between
interval since baseline scan (x-axis), brain-PAD (y-axis), and
age at disease diagnosis (ie, onset age). Predicted values for
the estimated model were made for 5 exemplar onset ages,
ranging from 20 years old to 60 years old. The predicted
changes (ie, slopes) in brain-PAD over time from baseline
scan are plotted for each, along with their 95% confidence
intervals. No interaction is evident. (B) Predicted slopes from
estimate marginal means analysis of 3-way interaction among
intervals since baseline scan (x-axis), brain-PAD (y-axis), and
time since disease diagnosis. Predicted values for the
estimated model were made for 3 exemplar times since
diagnosis, 0 years, 7.5 years, and 15 years since diagnosis at
study baseline. The predicted changes (ie, slopes) in brain-
PAD over time from baseline scan are plotted for each, along
with their 95% confidence intervals. A strong interaction is
evident.
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change in normalized brain volumes. The slopes were pos-
itive in CIS (beta = 0.84; p = 0.0001) and relapsing-
remitting (beta = 1.25; p < 0.001), although flatter in
primary-progressive (beta = 0.59; p = 0.090) and negative
(although not significant) in secondary-progressive (beta =
−0.70; p = 0.29). To explore the latter finding post hoc,
we correlated baseline brain-PAD with the number of
follow-up scans completed. This showed a significant
inverse correlation (n = 104; Spearman’s rho = −0.29;
p = 0.0028). We also explored whether baseline age at dis-
ease onset and time since diagnosis predicted rates of
change in brain-PAD, using linear mixed effects models,
accounting for fixed effects of age, age2, sex, field strength,
and random effects of cohort and participant. When
predicting brain-PAD, the interaction between interval
and age at onset was not significant (F1,693 = 1.06;
p = 0.30), but the interaction between time since diagno-
sis was (F1,745 = 33.27; p < 0.0001). The direction of this
effect was negative, whereby those with greater time since
diagnosis has less change in brain-PAD across the study
duration (Fig 4).

Initial Brain-Predicted Age Difference Predicts
EDSS Worsening
In patients who had EDSS assessed at ≥2 timepoints
(n = 1,143), baseline brain-PAD significantly predicted
EDSS worsening. Of these patients, 303 (26.5%) experi-
enced EDSS worsening during the follow-up period.
Using a Cox proportional-hazards regression model,

adjusted for age, age2, sex, and field strength, the hazard
ratio for brain-PAD was 1.023 (95% CI = 1.012–1.038;
p < 0.001; Fig 5). In other words, for every 5 years of
additional brain-PAD, there was a 12.2% increased chance
of EDSS progression during follow-up. The assumptions
of proportional hazards were met (p > 0.05). However,
when including baseline normalized brain volume as a
covariate, the relationship between brain-PAD and EDSS
worsening was no longer significant (p = 0.54), whereas
the relationship between normalized brain volume and
EDSS worsening was (hazard ratio = 8.14e−5; 95%
CI = 2.75e−6 to 2.41e−3; p < 0.001).

Brain-Predicted Age Difference Increases over
Time in Patients with Multiple Sclerosis
A total of 1,266 participants had 2 or more MRI scans
(patients with MS and CIS = 1,155 and healthy con-
trols = 111). This included 573 with 3 or more scans
(patients with MS and CIS = 509 and healthy con-
trols = 64). When using these data, we found a significant
interaction between group and time (F1,1325 = 5.85;
p = 0.016) and between MS subtypes and time (F4,845
= 4.99; p = 0.002), when adjusting for age, age2, sex, field
strength, and cohort. This indicated that the annual rate
of increase in brain-PAD over time was faster in patients
with MS and CIS than in healthy controls and was signifi-
cantly different among MS subtypes. The estimate mar-
ginal trends (ie, slopes) of change in brain-PAD per group
was as follows: healthy controls −0.17 = [95% CI = -0.46

FIGURE 5: Time-to-Expanded Disability Status Scale (EDSS) progression survival curves based on baseline brain-predicted age
difference (brain-PAD). Kaplan–Meier plot illustrating the relationship between brain-PAD at first scan and survival prior to an
EDSS progression “event.” Based on a median split of brain-PAD within patients with multiple sclerosis (MS) and clinically
isolated syndrome (CIS; median brain-PAD = +9.68 years). The solid line is the survival curve for patients > median brain-PAD,
the dashed line for patients < median brain-PAD. Shaded areas represent the 95% confidence intervals for the survival curves.
[Color figure can be viewed at www.annalsofneurology.org]
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to 0.13]; CIS = 0.15 [95% CI = 0.01–0.30]; relapsing-
remitting patients = 0.24 [95% CI = 0.14–0.34],
secondary-progressive patients = −0.26 [95% CI = -0.54
to 0.02]; primary-progressive patients = 0.42 [95%
CI = 0.19–0.65]; and all patients combined (MS and
CIS) = 0.61 [95% CI = -0.03 to 1.27].

Discussion
By applying the brain-age paradigm in a large longitudinal
cohort of patients with MS, we found that indeed MS has
a pronounced effect on the brain-PAD metric, indicative
of poor structural brain health. As the disease develops
from a clinically isolated episode to clinically diagnosed
MS, brain-PAD increases, reaching similar levels to
patients with dementia.33,34 A single baseline brain-PAD
was independently associated with higher disability (mea-
sured by EDSS), younger age at diagnosis and longer time
since diagnosis, irrespective of disease phenotype. Using
scans performed at multiple sites in different scanners we
observed that longitudinal brain-PAD increases correlate
with worsening disability. Baseline brain-PAD also
predicted future disability accumulation, although only
when not accounting for normalized brain volume. In the
whole cohort, we show that measures of brain-PAD
increase more rapidly than normal chronological aging in
relapsing-remitting and primary-progressive MS, implying
that the brain-age approach is sensitive to accelerations in
brain atrophy in MS.

In a life-long disease, the accumulation of neurologi-
cal disability is the main clinical and societal burden,35

estimated to cost $10.6 billion/year in the United States.36

Tracking disease evolution is hampered by the lack of a
simple and powerful outcome measure. MRI-assessed
brain atrophy is a surrogate outcome for this process, but
the requirement for precise longitudinal assessments, usu-
ally over at least a 12-month interval, reduces the feasibil-
ity of use. Here, we demonstrate that with a single
T1-weighted MRI, brain-PAD values can index elements
of MS disease progression. First, we show that a single
point estimate can place a patient’s disease and disability
in context of their age. Our results suggest that the
“brain-age” framework can provide informative data with-
out the need for longitudinal scans.37 Second, we demon-
strate that a single measure can give prognostic value for
disability accumulation. However, this effect seemed to be
explained by normalized brain volumes, suggesting that
brain-age would not be suitable to replace more conven-
tional measures for prognostic purposes. The ability to
make prognostic predictions from cross-sectional data
should prove highly valuable to facilitate early use of ther-
apy to prevent future disability accumulation,38 however,

it remains to be seen if the brain-age paradigm can add
significant value over more commonly used volumetric
measures in this context.

The brain-age paradigm has been applied widely in
neuropsychiatric diseases,14 although only recently in
MS.17,18 Cross-sectional comparisons showed a strong
effect of MS on brain-age (mean increases of 4.4 and
5.6 years), whereas preliminary longitudinal evidence
(n = 62) reported an additional 0.41 years of brain aging
per year in relapsing-remitting patients, although no con-
trols were included in this longitudinal analysis.17 Here,
we utilize serial MRI scans acquired over 15 years in a
wide range of settings (eg, different countries, institutions,
and scanners), analyzing n = 1,155 patients with MS and
CIS. The mean magnitude of the apparent brain aging we
observed in patients with MS (10.3 years) is greater than
has been reported in dementia (9 years),33 epilepsy
(4.5 years),20 or after a traumatic brain injury
(4.7 years),19 as well as being greater than the 2 previous,
related brain-age studies in MS.17,18 We show that brain-
PAD increases faster than chronological age in patients
with MS and CIS, with an additional 0.61 (95% CI =
-0.03 to 1.27) years of brain aging per year across all MS
subtypes. This is not dissimilar to the rate reported in
Høgestøl and colleagues’ study of n = 62 patients,17

although it is important to be mindful of the precision of
these estimates, hence, the CIs are important to consider.
In our case, brain-PAD did not increase longitudinally in
secondary-progressive patients, which widened the CIs
(across zero) when considering the patients with MS and
CIS together. The most rapid change in brain-PAD over
time was in PPMS (0.42 [95% CI = 0.19–0.65]), and
whereas the CIs robustly indicate that the brain-PAD
changes are greater than expected in aging, the exact rate
of change cannot be stated precisely. The decreasing
brain-PAD in the SPMS group is potentially due to a sur-
vivor bias or a floor effect in this group, whereby those
patients with rapidly deteriorating disease did not return
for longitudinal follow-up. Evidence for this comes from
the inverse correlation between brain-PAD at baseline and
the number of follow-up scans acquired in secondary-
progressive patients. Interestingly, brain-PAD relates to
baseline EDSS as well as tracking changes in EDSS over
time. The relationship is moderate, and of a similar mag-
nitude to previous reports,17,18 suggesting that it is robust.
These changes in disability status co-occurred with
changes in apparent “brain-age” even when adjusting for
normalized brain volume.

We addressed some potential issues with the use of a
nonspecific aging biomarker like brain age for the assess-
ment of MS. Brain lesions, the overt MRI marker of MS
disease activity, had minimal impact of the brain-PAD
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measurement in MS. Brain volume is strongly similar to
brain-age, however, statistically these measures are partially
independent. In other words, brain volume correlated
with brain-PAD, although >50% of the variance in brain-
PAD is independent from brain volumes or age. Brain-age
incorporates voxelwise MRI data in the statistical model,
thereby capturing more information than using tissue-
volume summary statistics. This means that more wide-
spread and distributed patterns of features (ie, voxelwise
grey matter and white matter volumes) can contribute to
the age-prediction model, capturing elements of cortical
thinning, sulcal widening, and ventricular enlargement,
alongside more macroscopic loss of tissue volume. This
study complements our recent work in MAGNIMS that
assessed brain-regional volumes,10 providing spatial infor-
mation on brain atrophy during MS progression; the cur-
rent work offers an alternative perspective on MS
progression, using a global biomarker of age-related brain
structural patterns. A key advantage of the brain-age para-
digm over brain volume or longitudinal atrophy measures
is that it automatically places an individual’s brain health
in context for their age, summarizing complex information
in an intuitive and accessible manner. Brain-age also has
the potential to go beyond merely brain structure, as
recent work has shown the potential of incorporating mul-
tiple neuroimaging modalities into brain-age prediction
models,39,40 which could provide greater sensitivity to
changes in brain health.

Our study has some strengths and weaknesses. The
sample size for both training and test sets is relatively large
but one potential limitation is the multiple sources of train-
ing data, although previous work has shown high between-
scanner reliability.29 Thus, application to a single individual
needs to be in the context of individual scanner perfor-
mance. Comprehensive biomedical data were not available
on all training dataset participants, meaning some may have
had undetected health conditions. However, individuals in
this sample were screened according to various criteria to
ensure the absence of manifest neurological, psychiatric, or
major medical health issues. For longitudinal analysis, the
follow-up time was short relative to the duration of MS
(mean = 3.41 years), which means that the brain-PAD tra-
jectories are only a restricted window onto the underlying
disease dynamics. For controls, follow-up time was shorter
still (mean <2 years), nevertheless, we were still able to esti-
mate the temporal progression of brain-PAD in this healthy
group (which was stable), which is informative given that
the only previous longitudinal study of brain-age in MS did
not include longitudinal controls. The MS and control
cohort included data from multiple sites and scanners,
which does impact brain-PAD values, and could potentially
add a bias given that not every site included healthy

controls. Nevertheless, we were able to statistically remove
variance associated with each site, and by using a meta-
analysis, able to demonstrate that the effects were robust in
separate study sites, suggesting that scanner-related variance
did not influence the study findings. Regarding lesions, we
used unfilled images here, as our analysis indicated that
lesion filling had minimal impact on brain-PAD values.
Potentially, this means that lesion-severity, a key character-
istic of MS, is not accounted for in our analysis. However,
this may also be a strength, indicating the invariance of
brain-age to pathological (ie, not healthy-aging related)
changes to brain structure. Finally, our brain-age analysis
pipeline only generates a whole-brain age prediction, thus
does not provide any spatial local information about differ-
ential patterns in different brain regions, unlike some alter-
native methods,18 meaning that neuroanatomic insights
from this method are limited. However, we justify the use
of the current approach as previous testing shows that
whole-brain models result in higher correlations and lower
errors than regional ones, and the aim of this study was to
provide a robust and reliable biomarker that relates to clini-
cal measures and outcomes, rather than investigate local
neuroanatomy, which we have previously addressed using
regional brain volumes in other related work.10 Finally, we
saw some effect of disease-modifying treatments on brain-
age, whereby those receiving treatments had a higher brain-
PAD than those who did not. This intriguing finding
would benefit from follow-up in a clinical trial, where expo-
sure to treatments is controlled experimentally, as studying
treatment in a cohort study has several limitations, includ-
ing the variable adherence and dosages, patients changing
regimens, and, moreover, the confound that patients who
are clinically worse at baseline are more likely to receive
treatment. Potentially the observed higher brain-PAD in
those receiving treatment is an artifact of the clinical
requirements, rather than relating to brain-PAD directly.

This work supports the use of the “brain-age” para-
digm in MS. We propose that brain-PAD has potential
value for: (1) MS disease monitoring; potentially capturing
the progressive processes that start early on in all disease
phenotypes including CIS. (2) Integrating MRI measures
of brain injury in MS in a wide range of centers and dif-
ferent scanners. (3) Conveying complex neuroanatomic
information in a conceptually simple and intuitive man-
ner. (4) Assessing both current brain health and prognosis.
(5) Aiding clinical trial design, by stratifying enrolment
based on high brain-PAD, or using brain-PAD as a surro-
gate outcome measure, reflecting age-associated neu-
rodegeneration. Further work is needed to determine its
utility, over and above common brain volumetric mea-
sures, in larger clinical cohorts, but its ease of use makes it
an exciting candidate for such cohorts. Extensions of
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brain-PAD could also incorporate multiple neuroimaging
modalities and improve the anatomic interpretability
of brain-age, both in general and specifically to
MS. Ultimately, this may offer insight into an individual’s
disease course, in line with the move toward precision
medicine in the treatment of MS.
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