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Abstract

Rationale—Mycobacterium vaccae (NCTC 11659) is an environmental saprophytic bacterium 

with anti-inflammatory, immunoregulatory, and stress resilience properties. Previous studies have 

shown that whole, heat-killed preparations of M. vaccae prevent allergic airway inflammation in a 

murine model of allergic asthma. Recent studies also demonstrate that immunization with M. 
vaccae prevents stress-induced exaggeration of proinflammatory cytokine secretion from 

mesenteric lymph node cells stimulated ex vivo, prevents stress-induced exaggeration of 

chemically induced colitis in a model of inflammatory bowel disease, and prevents stress-induced 

anxiety-like defensive behavioral responses. Furthermore, immunization with M. vaccae induces 

anti-inflammatory responses in the brain and prevents stress-induced exaggeration of microglial 

priming. However, the molecular mechanisms underlying anti-inflammatory effects of M. vaccae 
are not known.

Objectives—Our objective was to identify and characterize novel anti-inflammatory molecules 

from M. vaccae NCTC 11659.

Methods—We have purified and identified a unique anti-inflammatory triglyceride, 1,2,3-tri 

[Z-10-hexadecenoyl] glycerol, from M. vaccae and evaluated its effects in freshly isolated murine 

peritoneal macrophages.

Results—The free fatty acid form of 1,2,3-tri [Z-10-hexadecenoyl] glycerol, 10(Z)-hexadecenoic 

acid, decreased lipopolysaccharide-stimulated secretion of the proinflammatory cytokine IL-6 ex 

vivo. Meanwhile, next-generation RNA sequencing revealed that pretreatment with 10(Z)-

hexadecenoic acid upregulated genes associated with peroxisome proliferator-activated receptor 

alpha (PPARα) signaling in lipopolysaccharide-stimulated macrophages, in association with a 

broad transcriptional repression of inflammatory markers. We confirmed using luciferase-based 

transfection assays that 10(Z)-hexadecenoic acid activated PPARα signaling, but not PPARγ, 

PPARδ, or retinoic acid receptor (RAR) α signaling. The effects of 10(Z)-hexadecenoic acid on 

lipopolysaccharide-stimulated secretion of IL-6 were prevented by PPARα antagonists and absent 

in PPARα-deficient mice.

Conclusion—Future studies should evaluate the effects of 10(Z)-hexadecenoic acid on stress-

induced exaggeration of peripheral inflammatory signaling, central neuroinflammatory signaling, 

and anxiety- and fear-related defensive behavioral responses.
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Introduction

The global prevalence of anxiety disorders has been estimated to be 7.3%, ranging from 

5.3% in African cultures to 10.4% in Euro/Anglo cultures (Baxter et al. 2013). According to 

the Diagnostic and Statistical Manual of Mental Disorders (5th ed.) (DSM-5; American 

Psychiatric Association 2013), anxiety disorders include those that share features of 

excessive fear and anxiety and related behavioral disturbances, such as generalized anxiety 

disorder, panic disorder, social anxiety disorder (social phobia), and specific phobia 

(American Psychiatric Association 2013). Posttraumatic stress disorder (PTSD), although 

formerly classified as an anxiety disorder, is classified as a trauma- and stressor-related 

disorder (American Psychiatric Association 2013). Collectively, anxiety and trauma-related 

disorders are complex and multifactorial, and their differentiation and management are 

complicated by phenotypic heterogeneity. The etiology and pathophysiology of these 

disorders are thought to involve interactions among the genome, epigenome, and 

environment (Nugent et al. 2011). Recently, investigation of the etiology and 

pathophysiology of psychiatric and neurological diseases has expanded to include a potential 

role of the microbiota–gut–brain (MGB) axis (Forsythe et al. 2010; Cryan and Dinan 2012, 

2015; Leclercq et al. 2016). Of particular interest, evidence from preclinical and clinical 

studies suggests that exaggerated inflammation, which in some cases may be secondary to 

dysregulation of the microbiome, may be a risk factor for the development of trauma- and 

stressor-related disorders (for review, see Langgartner et al. 2018). These studies raise the 

question of whether or not microbial-based interventions with anti-inflammatory or 

immunoregulatory properties may have value in the prevention or treatment of trauma- and 

stressor-related disorders.

Evidence suggests that some common pathogenic and non-pathogenic microorganisms, to 

which humans have been exposed throughout evolution, drive anti-inflammatory and 

immunoregulatory mechanisms that inhibit inappropriate immune responses by the host 

(Rook and Rosa Brunet 2002; Rook 2009, 2010; Okada et al. 2010). Throughout human 

evolution, the interactions between these ancestral microorganisms, which we have 

collectively referred to as “old friends,” and the innate immune system promoted 

immunoregulation. These “old friends” included microorganisms that (1) were part of host 

physiology (human microbiota); (2) were harmless but inevitably contaminating air, food, 

and water (environmental microbiota); or (3) led to severe host tissue damage when attacked 

by the host immune system (e.g., helminthic parasites) (Rook 2013; Blaser 2017).

“Old friends” are thought to suppress host inflammation through a variety of mechanisms, 

including the induction of specific subsets of antigen-presenting cells such as macrophages 

and dendritic cells (DCs) and modulation of innate immunity (Le Bert et al. 2011; Garn et 

al. 2016; Lowry et al. 2016). In their absence, the host may develop inappropriate immune 
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responses to allergens, self-antigens, or gut microbiota. It has been hypothesized that 

increases in allergies, auto-immune diseases, inflammatory bowel diseases, and psychiatric 

disorders in modern living conditions may be due, in part, to decreased exposure to “old 

friends” (Rook 2010; Lyte and Cryan 2014; Bloomfield et al. 2016; Lowry et al. 2016; 

Stamper et al. 2016). In parallel, individuals with a diagnosis of PTSD have a higher risk of 

development of any autoimmune disease, relative to those with other psychiatric disorders, 

or relative to those with no psychiatric disorder (O’Donovan et al. 2015), suggesting that 

impaired immuno-regulation or inappropriate inflammation may confer risk for development 

of both autoimmune conditions and PTSD. The saprophytic mycobacterium, Mycobacterium 
vaccae (National Collection of Type Cultures (NCTC) 11659), has shown encouraging 

therapeutic potential in diseases of inflammation and immunodysregulation (Gutzwiller et 

al. 2007; Rook et al. 2007) and has shown immunoregulatory and stress-protective effects in 

murine models (Zuany-Amorim et al. 2002; Adams et al. 2004; Lowry et al. 2007; Reber et 

al. 2016; Fox et al. 2017; Frank et al. 2018). Mycobacteria are abundant in municipal water 

supplies (Gebert et al. 2018) and are a normal component of the healthy human microbiome 

of the oral cavity (buccal mucosa and dental plaque) and upper respiratory tract (nostrils and 

oropharynx) and, therefore, are considered part of the microbiome of the upper airways 

(Macovei et al. 2015).

The identification of specific microbially derived molecules with anti-inflammatory or 

immunoregulatory properties may provide novel therapeutic avenues for the treatment of 

diseases of immunodysregulation or trauma- and stressor-related disorders where 

exaggerated inflammation is thought to be a risk factor (Lowry et al. 2016; Langgartner et al. 

2018). We have previously shown that treatment with a heat-killed preparation of the 

saprophytic mycobacterium, M. vaccae, prevents murine allergic pulmonary inflammation 

by inducing CD4+CD45RBlow Tregs (Zuany-Amorim et al. 2002). These cells are allergen-

specific and, upon passive transfer, can protect recipient allergic mice from airway 

inflammation by significantly reducing eosinophilia in the lungs. In addition, treatment with 

M. vaccae induces a population of pulmonary CD11c+ antigen-presenting cells, which are 

characterized by increased expression of IL-10, transforming growth factor beta (TGFβ) and 

interferon α (IFNα) (Adams et al. 2004). Furthermore, at least in vitro, priming of human 

DCs with M. vaccae induces strong inhibition of Th2 responses (Le Bert et al. 2011).

Meanwhile, we have shown that immunization of mice with M. vaccae promotes a more 

proactive response to a chronic psychosocial stressor, prevents stress-induced colitis, 

prevents stress-induced exaggeration of chemically induced colitis in a model of 

inflammatory bowel disease, and attenuates anxiety-like defensive behavioral responses 

(Reber et al. 2016). Consistent with these findings, immunization with M. vaccae prevents 

stress-induced exaggeration of interferon gamma and IL-6 secretion from freshly isolated 

mesenteric lymph node cells stimulated with anti-CD3 antibody ex vivo. Importantly, 

preimmunization with M. vaccae, in stressed mice, resulted in a two orders of magnitude 

increase in IL-10 secretion from mesenteric lymph node cells stimulated ex vivo. However, 

until now, specific constituents of M. vaccae that suppress inflammation in macrophages in 

the periphery or central nervous system have not been identified.
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Through a screening process of M. vaccae NCTC 11659 lipid extracts, a single triglyceride, 

1,2,3-tri [Z-10-hexadecenoyl] glycerol, was identified with potential immunotherapeutic 

benefits (Rosa Brunet and Rook 2008). The lipid was demonstrated to prevent allergic 

airway inflammation, and the lipid recapitulated the therapeutic effects of whole heat-killed 

M. vaccae. The protective phenotype was characterized by increased IL-10, decreased IL-5, 

and reduced infiltration of eosinophils and macrophages in bronchoalveolar lavage fluid 

(Rosa Brunet and Rook 2008). It was also shown that the efficacy of the triglyceride was not 

dependent on the glycerol structure, as the synthetic, constituent free fatty acid, 10(Z)-

hexadecenoic acid, was sufficient to suppress pulmonary airway inflammation. The 

mechanism through which this long-chain, monounsaturated fatty acid was capable of 

limiting symptoms of inflammation is unknown, but it is explored here in a model of 

macrophage activation.

Notably, it is relatively rare in nature for an organism to naturally produce a fatty acid that is 

unsaturated at the C10 position, yet several mycobacteria species—including M. vaccae, can 

perform that desaturation (Scheuerbrandt and Bloch 1962; Coyle et al. 1992; Böttger et al. 

1993; Springer et al. 1993; Suutari and Laakso 1993; Chou et al. 1998; Tay et al. 1998; 

Pacífico et al. 2018). We successfully synthesized the free fatty acid, 10(Z)-hexadecenoic 

acid, and using cell-based assays and RNA-seq, revealed that 10(Z)-hexadecenoic acid 

upregulated genes associated with the peroxisome proliferator-activated receptor (PPAR) 

signaling pathway and inhibited proinflammatory signaling of activated macrophages ex 

vivo. Furthermore, studies using cultured cells transfected with lipid-regulated transcription 

factors revealed that both the monoacylglycerol lipid constituent of M. vaccae and its free 

fatty acid form selectively increased PPARα signaling. The effects of 10(Z)- hexadecenoic 

acid to inhibit proinflammatory signaling of activated macrophages ex vivo were prevented 

by PPARα antagonists and absent in PPARα-deficient mice. This is the first report, to our 

knowledge, to show that a synthetic M. vaccae-derived lipid acts to induce anti-

inflammatory responses in host immune cells by acting as an agonist at host PPARα 
receptors.

Materials and methods

Animals

Adult male BALB/c mice (BALB/cAnHsd; Cat. No. 047; Harlan, Indianapolis, IN, USA), 

6–8 weeks old, were used and housed under standard conditions with food and water 

available ad libitum. Adult male PPARα−/− (B6;129S4-Pparatm1Gonz/J; Cat. No. 008154; 

Jackson Laboratories, Bar Harbor, ME, USA) and control mice (C57BL/6J; Cat. No. 

000664; Jackson Laboratories), 6–8 weeks old, were used and housed under standard 

conditions with food and water available ad libitum. Although the C57BL/6J inbred strain is 

considered an approximate control for the PPARα−/− mice (B6;129S4-Pparatm1Gonz/J; 

Jackson Laboratories), future studies should ideally compare PPARα−/− mice to wild-type 

littermates.

All experimental protocols were consistent with the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals, Eighth Edition (The National Academies Press 

2011), and the Institutional Animal Care and Use Committee at the University of Colorado 
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Boulder approved all procedures. This work was covered under CU Boulder IACUC 

Protocol Numbers 2134–14MAY2018 and 2361–14MAY2018-DT. The research described 

here was conducted in compliance with The ARRIVE Guidelines: Animal research: 

reporting of in vivo experiments, originally published in PLOS Biology, June 2010 

(Kilkenny and Altman 2010). All possible efforts were made to minimize the number of 

animals used and their suffering.

Synthesis of 10(Z)-hexadecenoic acid; (10Z) -hexadec-10-enoic acid (CAS No. 2511–97-9)

Unless otherwise noted, reagents were obtained commercially and used without further 

purification. Dichloromethane (CH2Cl2) was distilled over calcium hydride (CaH2) under a 

nitrogen atmosphere. Tetrahydrofuran (THF; (CH2)4O) was distilled from sodium-

benzophenone under a nitrogen atmosphere. Thin-layer chromatography analysis of reaction 

mixtures was performed on Dynamic Adsorbents, Inc., silica gel F-254 TLC plates. Flash 

chromatography was carried out on Zeoprep 60 ECO silica gel. 1H spectra were recorded 

with a Varian INOVA 500 spectrometer. Compounds were detected by monitoring UV 

absorbance at 254 nm.

To a 5-mL sealed tube containing 1-heptene (0.50 mL, 3. 55 mmol), methyl 10-undecenoate 

( 0. 080 mL, 0.36 mmol), and THF (0.35 mL), a Grubbs Z-selective metathesis catalyst was 

added (Grubbs Catalyst(R) C633, 2.2 mg, 3.48 μmol, Cat. No. 771082, Sigma-Aldrich, St. 

Louis, MO, USA). The reaction was stirred at 45 °C for 8 h before cooling to room 

temperature. The slurry was filtrated through a short plug of silica gel and concentrated. The 

obtained oil was dissolved in 1.0 mL THF. The solution was cooled to 0 °C, then 9-

borabicyclo[3.3.1] nonane (9-BBN) solution in THF (1.28 mL, 0.50 M, 0.64 mmol) was 

added. After 2 h stirring at 0 °C, the reaction was quenched with 60 μL EtOH, then 1.5 mL 

pH 7 potassium phosphate buffer and 1.5 mL 30% H2O2. The mixture was stirred at room 

temperature for 12 h, then extracted with 5 mL EtOAc three times. The combined organic 

layers were washed with 4 mL saturated Na2S2O3 and 3 mL brine, then dried over Na2SO4, 

filtered, and concentrated. To the crude oil in 1.0 mL THF was added LiOH monohydrate 

(38 mg, 0.90 mmol) in 1.0 mL water. After 2 h, the reaction solution was cooled to 0 °C 

before the addition of 0.91 mL 1.0 N HCl. After being concentrated under reduced pressure, 

the aqueous solution was saturated with NaCl and extracted with 3 mL dichloromethane 

three times. The combined organic layers were dried over Na2SO4, filtered, and 

concentrated. Purification by flash chromatography (2:1:1 hexanes/dichloromethane/diethyl 

ether) provided (10Z)- hexadec-10-enoic acid (0.022 g, 90%) as a colorless oil. 1H NMR 

(500 MHz, CDCl3): δ 5.48–5.22 (m, 2H), 2.35 (t, J = 7.5 Hz, 2H), 2.01 (q, J = 6.6 Hz, 4H), 

1.63 (p, J = 7.4 Hz, 2H), 1.35–1.15 (m, 16H), 0.88 (t, J = 6.9 Hz, 3H).

Murine peritoneal macrophage isolation and screening

Murine peritoneal macrophages were isolated and cultured as previously described (Zhang 

et al. 2008) and used to determine the effects of 10 ( Z )-hexadecenoic acid on 

lipopolysaccharide (LPS)-induced IL-6 secretion. Briefly, mice received a single injection of 

3% thioglycollate medium (1 mL, i.p.; Cat. No. 9000–294, VWR, Radnor, PA, USA). Mice 

were euthanized 96 h later using cervical dislocation, and macrophages were collected in 

Dulbecco’s phosphate-buffered saline (DPBS; Cat. No. 14190136, Invitrogen, Carlsbad, CA, 
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USA). Cells were centrifuged and resuspended in Dulbecco’s modified Eagle medium/

Nutrient Mixture F-12 (DMEM/F-12; Cat. No. 10565018, Invitrogen) supplemented with 

10% (v/v) fetal bovine serum (Cat. No. 16000036, Invitrogen) and 1% penicillin/

streptomycin (Cat. No. 15140148, Invitrogen). One mouse yielded enough cells for one 

experimental replicate; 1 × 105 cells/well were allowed to adhere for 1.5 h before being 

washed with DPBS. 10(Z)- hexadecenoic acid was dissolved in DMEM/F-12 with 0.5% 

(v/v) dimethyl sulfoxide (Cat. No. D8418, Sigma-Aldrich). The macrophages were 

incubated with either 10(Z)- hexadecenoic acid (0.4, 4, 20, 100, 500, 1000 μM) or DMEM/

F-12 for 1 h before being stimulated with either 1 μg/mL LPS (serotype 0127:B8, Sigma-

Aldrich, St. Louis, MO, USA) or DMEM/F-12. Culture supernatants were collected at 6, 12, 

and 24 h post-stimulation.

Cytokine measurements

Cell culture supernatants (10 μL) from freshly isolated peritoneal macrophages were diluted 

1:200, and IL-6 was measured using ELISA (Cat. No. 431304, BioLegend, San Diego, CA, 

USA). The assay has a minimal detectable concentration of 2 pg/mL IL-6. All samples were 

measured using duplicate wells in the ELISA.

Cytotoxicity assay

Cytotoxicity was determined using the sulforhodamine B (SRB) colorimetric assay, as 

previously described (Vichai and Kirtikara 2006). Briefly, without removing the culture 

media, cells were fixed by adding cold trichloroacetic acid and incubated at 4 °C for 1 h. 

The plates were washed with slow-running tap water and set out to dry overnight. Then, 

0.057% SRB (Cat. No. AC333130050, Fisher, Pittsburgh, PA, USA), solubilized in 10 mM 

Tris (Cat. No. BP153, Fisher), was added to each well. After 30 min, plates were washed 

with 1% acetic acid and set out to dry overnight. SRB was measured at 490 nm on a Synergy 

HT microplate reader (Part Number 7091000, Biotek, Winooski, VT, USA). Cell viability 

was expressed as the ratio of experimental and control growth.

Ligands

For studies using reporter gene assays following transfection of COS1 cells, rosiglitazone, 

troglitazone, and WY14643 were obtained from Alexis Biochemicals (San Diego, CA, 

USA); ATRA and AM580 were obtained from Sigma-Aldrich. In addition, GW9662 was a 

gift from T.M. Willson (GlaxoSmithKline, Brentford, UK). For experiments using freshly 

isolated peritoneal macrophages, GW 6471 (Cat. No. 4618), GW 9662 (Cat. No. 1508), 

GSK 0660 (Cat. No. 3433), WY 14643 (Cat. No. 1312), rosiglitazone (Cat. No. 5325), and 

GW 0742 (Cat. No. 2229) were obtained from Tocris Bioscience (Bristol, UK).

Transfections and reporter gene assays

Cells were transfected with the following receptor and reporter constructs: Gal4-PPARα-

LBD, Gal4-PPARγ-LBD, Gal4-PPARδ-LBD, Gal4-RARα-LBD, pMH100-TK-luc, and 

pCMX-β-galactosidase (Chen and Evans 1995). All transfection experiments were 

performed with COS1 cells using polyethylenimine (Sigma-Aldrich) reagent (Szatmari et al. 

2006). After 6–8 h of the transfection, the medium was replaced with DMEM medium 
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containing the indicated ligands or vehicle (as control) (Chen and Evans 1995; Benko et al. 

2003). Cells were lysed and assayed for reporter expression 18 h after transfection. The 

luciferase assay system (Promega, Madison, WI, USA) was used as described previously 

(Nagy et al. 1999). Measurements were carried out with a Wallac Victor-2, multilabel 

counter. Luciferase activity of each sample was normalized to the β-galactosidase activity.

RNA extraction and library preparation

Total RNA content of 1 × 105 macrophages pretreated for 1 h with 200 μM 10(Z)-

hexadecenoic acid (utilizing separate macrophage preparations from n = 3 mice) or vehicle 

(utilizing separate macrophage preparations from n = 3 mice) and stimulated with 1 μg/mL 

LPS was extracted using TRI Reagent® (Cat. No. T9424, Sigma-Aldrich) according to the 

manufacturer’s instructions. The RNA input was quantified on a Qubit™ 3.0 Fluorometer 

(Cat. No. Q33216, Thermo Fisher, Waltham, MA, USA) to ensure there was sufficient 

starting material. The RNA sequencing libraries were generated with the NEBNext rRNA 

Depletion Kit (Cat. No. E6310, New England BioLabs) in order to enrich the samples in 

mRNA and NEBNext Ultra Directional RNA Library Prep Kit for Illumina (Cat. No. 7240, 

New England BioLabs). Briefly, mRNA was purified from 100 ng of total RNA, fragmented, 

and converted to double-stranded cDNA. Barcodes were ligated to the cDNA fragments, and 

prior to PCR enrichment of the library, the cDNA product was quantified on a Qubit 3.0 

Fluorometer (Thermo Fisher). The integrity of the purified oligo libraries was evaluated on 

an Agilent Bioanalyzer 2100 (Cat. No. G2939BA, Agilent, Santa Clara, CA, USA).

Sequencing

Libraries were sequenced at the Next Generation Sequencing Facility at the University of 

Colorado Boulder. The libraries were multiplexed and sequenced on an Illumina HiSeq 2000 

Sequencing System (Cat. No. SY-401–1001, Illumina, San Diego, CA, USA). For each 

sample, paired-end 100-bp reads were sequenced using V3 chemistry.

RNA read processing, mapping, and differential expression

Quality analysis of sequencing data was done using FastQC. The adaptors and low-quality 

raw reads were cut with Trimmomatic (version 0.32) (Bolger et al. 2014). The reads were 

aligned to the mouse genome, mm10 (University of California, Santa Cruz, CA, USA), 

using the TopHat2 sequence aligner (version 2.0.6) (Kim et al. 2013). Reads mapping to 

exon features were counted using HTseq (version 0.6.1) (Anders et al. 2015). The raw reads 

and count data have been deposited in the GEO database under accession number 

GSE125930. Differentially expressed genes were identified using the R package, DESeq 

(version 1.28.0) (Anders and Huber 2010).

Statistical analysis

Data are presented as means ± SEM or means + SEM. Data were subjected to a normality 

test and one-way analysis of variance (ANOVA); Fisher’s least significant difference (LSD) 

tests were performed as appropriate. A two-tailed p value ≤ 0.05 was considered significant. 

ELISA IL-6 data were analyzed using linear mixed effects models using the software 
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package SPSS (version 21.0, SPSS Inc., Chicago, IL, USA). Network visualizations were 

created in Cytoscape (version 3.5.1) using an enrichment map plug-in (Merico et al. 2011).

Results

10(Z)-hexadecenoic acid decreases LPS-induced secretion of IL-6 in macrophages

To simulate inflammation, freshly isolated mouse peritoneal macrophages were challenged 

with LPS (1 μg/mL) ex vivo (outlined in Fig. 1). Macrophages that were cultured in the 

presence of 10(Z)-hexadecenoic acid (0, 0.4, 4, 20, 100, 500, 1000 μM) for 1 h prior to 1 

μg/mL LPS stimulation secreted less IL-6 relative to macrophages cultured with media alone 

prior to LPS stimulation (Fig. 2a–c) (F(1, 111) = 15.20, p < 0.001). This difference was 

observable as early as 6 h after LPS challenge and was sustained for at least 24 h. We 

selected the 6-, 12-, and 24-h time points for measurement of IL-6 as previous studies have 

shown increased IL-6 secretion using LPS-stimulated peritoneal macrophage cultures in 

mice at these time points, with linear increases in IL-6 up to the 24-h time point (Shacter et 

al. 1993; Wollenberg et al. 1993; Lin and Tang 2007; Lee et al. 2015; Arteaga Figueroa et al. 

2017). The effect also appeared to be concentration and time dependent. Using a constrained 

logistic model on the relative secretion of IL-6, we estimated the EC50 to be 823, 115, and 

190 μM at the 6-, 12-, and 24-h observations, respectively (Fig. 2). Post hoc pairwise 

comparisons of raw IL-6 values relative to paired media control values at the same time 

point (n = 3 per group) are presented in Table S1. This time and concentration dependence 

may indicate that a receptormediated transcriptional change is occurring. In contrast to the 

effects of 10(Z)-hexadecenoic acid on LPS-induced IL-6 secretion, it had no detectable 

effect on IL-6 secretion by itself (IL-6 was undetectable in all conditions; Fig. S1). We 

cannot exclude the possibility, however, that 10(Z)-hexadecenoic acid by itself had effects 

on IL-6 secretion that were below the limit of detectability of the assay used (i.e., 2 pg/mL). 

Cell viability was measured to dispel the possibility that senescence or cell death was 

contributing to reduced IL-6 secretion. Using a high concentration (1 mM) of 10(Z)-

hexadecenoic acid, less than 40% of macrophages were viable at most time points. However, 

macrophages cultured with all other concentrations of 10(Z)-hexadecenoic acid studied (i.e., 

10, 50, 125, 250, and 500 μM) were as viable as media controls (Fig. S2).

Treatment with 10(Z)-hexadecenoic acid induces a broad anti-inflammatory transcriptional 
profile in LPS-stimulated macrophages

To explore the potential effects of 10(Z)-hexadecenoic acid on transcriptional responses in 

LPS-stimulated macrophages, we used RNA-seq. Murine peritoneal macrophages were 

incubated with 200 μM 10(Z)-hexadecenoic acid or a media-only control condition for 1 h 

prior to stimulation with LPS. Using IL-6 as a measure for the suppressive activity of 10(Z)-

hexadecenoic acid, we estimated the EC50 at 12 h to be 115 μM. The 200-μM concentration 

was chosen as it was sufficiently larger than the EC50, but less than a concentration that 

would affect macrophage viability. After a 12 h exposure to LPS, the RNA was extracted 

and depleted of rRNA. We selected the 12-h time point for measurement of mRNA using 

RNA-seq as previous studies have shown increased IL-6 secretion using LPS-stimulated 

peritoneal macrophage cultures in mice at this time point, as well as the ability to suppress 

IL-6 mRNA expression at this time point by interfering with a TLR4–MyD88–BLT2–Nox1–

Smith et al. Page 9

Psychopharmacology (Berl). Author manuscript; available in PMC 2019 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ROS–NF-κB pathway leading to IL-6 secretion (Lee et al. 2015). The cDNA libraries were 

sequenced in a 100-bp paired-end experiment generating 51–63 million reads per sample 

(Table S2; Fig. S3).

For differential expression, we examined LPS-stimulated macrophages pretreated with either 

10(Z)-hexadecenoic acid or vehicle (GSE125930). Differentially expressed transcripts were 

identified using the R package, DESeq (Anders and Huber 2010). A total of 203 genes were 

found to be differentially expressed with an FDR-adjusted p < 0.1 (Table S3). Of the 203 

differentially expressed genes, 109 were downregulated in the 10(Z)-hexadecenoic acid 

condition, and 20% of those genes were associated with proinflammatory processes (Table 

S4). The top 20 differentially expressed genes are reported in Fig. 3a. Consistent with the ex 

vivo macrophage experiments measuring IL-6 protein with ELISA, the second most 

significantly differentially expressed transcript was IL-6 (Table S3).

PPARα-regulated genes are associated with 10(Z) -hexadecenoic acid treatment in LPS-
stimulated macrophages

To better understand the pathways affected by 10(Z)- hexadecenoic acid treatment, the list of 

203 differentially expressed genes was queried against the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) (Huang et al. 2009). Within the top 40 

most significantly enriched KEGG pathways, 34 (i.e., 85%) were related to disease or 

inflammation (Table S5). In addition, 32 of the top 40 most significantly enriched KEGG 

pathways (i.e., 80%) were exclusively enriched for genes that were significantly 

downregulated by treatment with 10(Z)-hexadecenoic acid. Among these most significantly 

affected pathways, there was a wide scope of immunological context, which included 

infections, diseases, cytokine signaling, and various inflammatory pathways. The top 5 

pathways with genes that were exclusively downregulated by treatment with 10(Z)- 

hexadecenoic acid are reported in Fig. 3c.

While the majority of pathways with genes affected by 10(Z)-hexadecenoic acid involved 

genes that were exclusively downregulated by 10(Z)-hexadecenoic acid, some pathways 

involved genes that were exclusively upregulated by 10(Z)- hexadecenoic acid. Of the top 40 

pathways, 7 (i.e., 17.5%) pathways were exclusively enriched for genes that were 

significantly upregulated by treatment with 10(Z)-hexadecenoic acid. Overall, of 203 genes 

that were differentially expressed following treatment with 10(Z)-hexadecenoic acid, 93 

genes (46%) were upregulated. The pathways with detectable enrichment involved 

regulation of lipolysis in adipocytes, glycerolipid metabolism, circadian entrainment, PPAR 

signaling pathway, and extracellular matrix–receptor interaction (Fig. 3b). The top 5 

pathways with genes that were exclusively upregulated by treatment with 10(Z)-

hexadecenoic acid are reported in Fig. 3b. The PPAR signaling pathway was among the top 

5 most-enriched KEGG pathways with genes that were exclusively upregulated by treatment 

with 10( Z)- hexadecenoic acid (Fig. 3b).

In a secondary analysis, rather than rely on a subset of genes for biological interpretation, we 

used all expression data in Gene Set Enrichment Analysis (GSEA). We queried all detected 

transcripts against the KEGG pathways database (c2.cp.kegg.v6.2), and the top 5 enriched 

gene sets for the 10(Z)-hexadecenoic acid phenotype were as follows: “peroxisome” 
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(KEGG: hsa04146), a main site of fatty acid oxidation via the β-oxidation cycle; 

“ppar_signaling_pathway” (KEGG: hsa03320); “citrate_cycle_tca_cycle” (KEGG: 

hsa00020); “fatty_acid_metabolism” (KEGG: hsa00071); and “propanoate_metabolism” 

(KEGG: hsa00640) (Table S6). Of potential interest, four of these KEGG pathways, 

“ peroxisome ” (KEGG: h s a0 4146 ), “ ppar_signaling_ pathway” (KEGG: hsa03320), 

“fatty_acid_metabolism” ( KEGG: hsa00071), and “propanoate_metabolism” (KEGG: 

hsa00640), were also found to be enriched in livers from 24 h fasted PPARα+/+ relative to 

PPAR−/− mice, while “peroxisome” (KEGG: hsa04146), “ppar_signaling_pathway” (KEGG: 

hsa03320), and “fatty_acid_metabolism” (KEGG: hsa00071) were found to be enriched in 

livers from wild-type mice treated with the PPARα agonist Wy14643, relative to vehicle 

(Kersten 2014). Together, these studies support a convergence of 10(Z)- hexadecenoic acid 

effects on PPARα signaling pathways induced by physiological or pharmacological stimuli. 

Propionate is one of the short-chain fatty acids, which are emerging as key mediators and 

regulators of host–microbe cross-talk, with a significant impact on host metabolism, 

including as an energy source (Hoyles et al. 2018). All five gene sets were significant with 

an unadjusted p value < 0.05 but failed to reach significance using FDR-adjusted p values; 

nevertheless, the overall pattern is consistent with a modulation of lipid metabolism. In a 

network visualization of gene set overlap between all detected pathways using GSEA, 

PPARs and peroxisomal lipid metabolism were prominent vertices (Fig. 3d). We also 

searched against the collection of transcription factor binding motifs (c3.tft.v6.0), which 

revealed enrichment for CREB, Gfi1, and PPARα cis-regulatory motifs upstream of the 

genes upregulated with 10(Z)-hexadecenoic acid treatment in LPS-stimulated macrophages 

(Table S7). Again, these were nominally significant (i.e., p < 0.05; q > 0.05), but these 

findings bolster PPARs, and specifically PPARα, as a potential receptor mediating anti-

inflammatory effects of 10(Z)- hexadecenoic acid.

Downstream signaling of TLR4 is inhibited with 10(Z) -hexadecenoic acid treatment

NF-κB is one of three major transcription factors down stream of LPS-induced activation of 

toll-like receptor 4 (TLR4), the other two being IRF3 and AP-1 (Kawasaki and Kawai 

2014). Using all expression data in GSEA, we found that pretreatmentwith10(Z)-

hexadecenoicacid, relativetotreatmentwith vehicle, prior to LPS stimulation, downregulated 

signaling pathways downstream from TLR4, such as NF-κB and IRF3, but not AP-1. In a 

network visualization of the most significant pathways (FDR < 0.1), there is a bifurcation at 

the “ZHOU_INFLAMMATORY_RESPONSE_LPS” node representing the NF-κB and 

IRF3 responses (Fig. 4a). Among all nodes in this network, we counted and ranked the 

occurrence of enriched transcripts. The counts for the highest ranking transcripts were 

categorized into either NF-κB- regulated responses or IRF-regulated responses (Fig. 4b). We 

also examined enrichment for transcription factor motifs anddetectedenrichmentfor NF-κB, 

IRF1, IRF2, and IRF_Q6 amongothers, in transcripts associatedwith the vehicle-

treated,LPSstimulatedgroup(Table S8). Alternatively, thiscanbe understood to mean that 

mRNA transcripts that are located near those transcription factor binding sites are 

downregulated in 10(Z)-hexadecenoic acid-treated, LPS-stimulated macrophages. To better 

understand the classification of the IRF_Q6 geneset(N = 242 genes) 

anddifferentiallyexpressed genes(q < 0.1, N = 203 genes), theywerebothqueriedagainst the 

Interferome database (Rusinova et al. 2013). There are three types of interferons (IFNs), 

Smith et al. Page 11

Psychopharmacology (Berl). Author manuscript; available in PMC 2019 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



namely type I (composed of α, β, κ, ε, and ω subtypes), type II (IFNγ), and type III (IFNλ; 

also called IL-28 and IL-29), which are distinguished by having distinct genetic loci, amino 

acid sequence homology, and specific cognate receptors (Pestka et al. 2004). This analysis 

revealed that a vast majority of the differentially expressed genes are regulated by both type 

I and II interferon responses(Fig. 4c), consistentwiththehypothesisthat 10(Z)- hexadecenoic 

acid alters TLR4, IRF3, and interferon signaling. Of note, cells infected with 

Mycobacterium tuberculosis induce type I interferons, including IFNα and IFNβ, which are 

thought to promote infection with M. tuberculosis (Travar et al. 2016). Using enrichment 

tools, like DAVID and GSEA, these RNA-seq data suggest that both NF-κB and IRF3 

pathways are downregulated in LPS-stimulated macrophages when treated with 10(Z)-

hexadecenoic acid.

The anti-inflammatory effects of 10(Z)-hexadecenoic acid are mediated through PPARα

10(Z)-hexadecenoic acid specifically activates PPARα—Fatty acids can modulate 

inflammation via the activation n of nuclear hormone receptors (Chinetti et al. 2000; Kidani 

and Bensinger 2012). Therefore, we assessed the nuclear receptor activation capacity of (1) 

the triacylglycerol (TAG), 1, 2, 3- tri [ Z - 10 - he xa de ce no yl] gly ce rol ; (2 ) t h e 

monoacylglycerol (MAG), 1 -[ Z −10-hexadeceno yl]glycerol; and (3) the free fatty acid 

(FFA), 10(Z)- hexadecenoic acid. We conducted reporter gene assays via the transfection of 

COS1 cells using GAL4-fusion ligand binding domains (LBDs) of various lipid-activated 

nuclear receptors (PPARα-LBD, PPARγ-LBD, PPARδ-LBD, and RARα-LBD) along with 

a plasmid carrying MH100-TK- luciferase reporter (Chen and Evans 1995). Transfected 

cells were incubated with TAG, MAG, or FFA for 18 h, and relative luciferase activity, 

normalized to β- galactosidase activity, was measured. Each reporter transfection was 

validated with the respective receptor agonist (PPARα, WY-14643; PPARγ, rosiglitazone 

(RSG); PPARδ, GW1516; RARα, AM580). Both the MAG and FFA, at concentrations of 

80 μM, reliably increased PPARα-, but not PPARγ-, PPARδ-, or RARα-regulated reporter 

expression (Fig. 5a–d). The triglyceride had no effect (Fig. 5a–d). Together, these results 

demonstrate that 10(Z)- hexadecenoic acid and its monoacylglycerol form selectively 

activate the PPARα receptor.

PPARα is required for anti-inflammatory effects of 10(Z) -hexadecenoic acid—
Next, we investigated if this interaction was necessary for inhibiting LPS-stimulated release 

of IL-6. Agonists and antagonists of each PPAR were used to test if PPARα has a singular 

role in this process. The agonists and antagonists and their receptor specificities are listed in 

Table S9. Macrophages were incubated with a single PPAR antagonist for 1 h prior to 

treatment with either 200 μM 10(Z)-hexadecenoic acid or a PPAR agonist complementary to 

its respective PPAR antagonist. After another 1 h incubation period, the cells were 

stimulated with LPS (1 μg/mL), and IL-6 was measured 12 h later. Only with the PPARα 
antagonist, GW 6471, could the anti-inflammatory effects of 10(Z)-hexadecenoic acid be 

significantly reversed (Fig. 6a). The effects of the PPARγ and PPARδ antagonists were 

comparable to media (Fig. 6a). These results suggest a selective interaction between 10(Z)-

hexadecenoic acid and PPARα, as the PPARα antagonist, GW 6471, had no effect on 

macrophage viability (Fig. S4), while it was effective in reversing the anti-inflammatory 

effects of the PPARα agonist, WY-14643, as measured by IL-6 secretion in LPS-stimulated 
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macrophages (Fig. S5). To further explore the role of PPARα in the anti-inflammatory 

effects of 10(Z)-hexadecenoic acid, we repeated the assay with freshly isolated peritoneal 

macrophages from adult male C57BL/6J wild-type and PPARα−/− mice. As expected, 

10(Z)-hexadecenoic acid suppressed LPS-stimulated IL-6 in macrophages from wild-type 

C57BL/6J mice, but this effect was absent in macrophages from PPARα KO mice (Fig. 6b). 

This indicated a full reversal of the anti-inflammatory effect of 10(Z)-hexadecenoic acid and 

the necessity of PPARα in mediating the effect.

Discussion

Here, we characterized the monounsaturated C16 free fatty acid, 10(Z)-hexadecenoic acid, 

derived from M. vaccae NCTC 11659, a saprophytic bacterium with anti-inflammatory and 

immunoregulatory properties that previously has been shown to prevent stress-induced 

exaggeration of peripheral inflammation and neuroinflammation and to prevent stress-

induced exaggeration of anxiety- and fear-related defensive behavioral responses. In 

addition, we showed that 10(Z)-hexadecenoic acid induced a broad transcriptional 

repression of inflammatory gene markers (see, for example, Tables S10–11) and suppressed 

IL-6 secretion from freshly isolated, LPS-stimulated, murine peritoneal macrophages. 

Furthermore, we showed that both the monoacylated glycerol, 1-[Z-10-hexadecenoyl] 

glycerol and 10(Z)-hexadecenoic acid, activated PPARα signaling, as measured by 

transfection assays. Finally, we showed that PPARα antagonists prevented the anti-

inflammatory effects of 10(Z)-hexadecenoic acid in macrophages, while the ex vivo effects 

of the lipid were absent in macrophages isolated from PPARα-deficient mice.

Here, we focused on the effects of 10(Z)-hexadecenoic acid on peritoneal macrophages. 

Based on a number of lines of evidence, the effects of 10(Z)-hexadecenoic acid actions on 

peritoneal macrophages may have important implications for CNS immunity and subsequent 

behavioral outcomes. Intraperitoneal administration of LPS is known to induce priming of 

hippocampal microglia and worsen CNS outcomes (Cunningham 2005, 2013; Cunningham 

et al. 2009). Although the mechanisms through which peripheral inflammation signals to the 

CNS to induce microglial priming and neuroinflammatory responses are not entirely clear, a 

number of potential signaling mechanisms have been proposed. These include (1) entry of 

cytokines into the brain at circumventricular organs that have a reduced blood–brain barrier; 

(2) binding of cytokines to cerebralvascular endothelium, inducingthe secretionofcentral 

neuroinflammatory mediators; (3) carrier-mediated transport of immune signals into the 

brain, across the blood–brain barrier; (4) migration of proinflammatory monocytes from the 

periphery to the CNS; and (5) activation of peripheral afferent nerves, including vagal and 

nonvagal pathways (Watkins et al. 1995; Maier et al. 1998; Maier 2003; Miller et al. 2010; 

Miller and Raison 2016).

Together, these data support the hypothesis that bacterially derived 10(Z)-hexadecenoic acid 

may induce a form of macrophage “inflammation anergy” (i.e., a condition characterized by 

the absence of the normal immune response to a particular antigen, see, for example, 

Smythies et al. 2005, 2010) through actions on PPARα. Peroxisome proliferator-activated 

receptors, PPARα, PPARγ, and PPARδ, are ligand-activated nuclear receptors, each of 

which acts as a heterodimer with retinoid X receptor (RXR), with potent anti-inflammatory 
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properties, through interference with proinflammatory transcription factor pathways 

(Chinetti et al. 2003). PPARα−/− mice have increased vulnerability to chemically induced 

colitis, experimental autoimmune encephalitis (EAE, a model of multiple sclerosis), and 

experimentally induced allergic asthma, consistent with the hypothesis that endogenous 

PPARα suppresses inflammatory signaling in these models (for review, Bensinger and 

Tontonoz 2008). Activation of PPARα in macrophages inhibits the production of 

proinflammatory response markers, including IL-6, IL-1β, TNF, and inducible nitric oxide 

synthase (Xu et al. 2005; Paukkeri et al. 2007). Interaction between PPARα and TLR4 

signaling has been observed in other endogenous systems, like vascular smooth muscle cells, 

where responses to activation of TLR4 with LPS are mitigated by a PPARα agonist (Ji et al. 

2010). The anti-inflammatory effects were mediated, in part, by a reduction of tissue 

inhibitor of metalloprotease-1 (TIMP-1), which was also reduced in our study (Table S3). 

PPARα- mediated inhibition of TLR4 signaling has also been shown in enteric glial cells 

(Esposito et al. 2014), and a potential downstream target of PPARα-mediated suppression, 

TRIF, is required for LPS-induced activation of microglia (Burfeind et al. 2018). TRIF KO 

mice have attenuated expression of Il6, Ccl2, and Cxcl2, which were all also suppressed in 

our study (Table S3), in the hypothalamus after peripheral LPS stimulation (Burfeind et al. 

2018). Furthermore, bacterially derived agonists of PPARs have potential for modulation of 

hostacquired immunity; PPARs have been found to regulate T- cell survival, activation, and 

CD4+ T-helper cell differentiation into the Th1, Th2, Th17, and Treg lineages (Choi and 

Bothwell 2012).

Synthesis of 10(Z)-hexadecenoic acid by mycobacteria may be an example of molecular 

mimicry of eukaryotic signaling. Endogenous host-derived agonists of PPARα include 16:1 

isoforms of palmitoleic acid (Kliewer et al. 1997; Kota et al. 2005), a lipokine released from 

adipose cells. Palmitoleic acid localizes predominantly to nuclear fractions, consistent with a 

nuclear mechanism of action in host cells (Foryst-Ludwig et al. 2015), and is potently 

antiinflammatory (Chan et al. 2015). In addition, the endocannabinoid, 

palmitoylethanolamide (PEA), acts as an agonist at PPARα (Verme et al. 2005; Guida et al. 

2017). Of interest to trauma- and stressor-related psychiatric disorders, PEA induces potent 

antidepressant-like behavioral responses (Yu et al. 2011) and, through induction of 

cannabinoid 2 receptors, alters the phenotype of macrophages and microglia (Guida et al. 

2017). Recent studies have demonstrated PEA increases the biosynthesis of 

allopregnanolone, an endocannabinoid, in the spinal cord, brainstem, hippocampus, and 

amygdala, effects that are associated with faster fear extinction learning and improvement of 

aggression in socially isolated mice (Sasso et al. 2012; Locci and Pinna 2017; Pinna 2018). 

Future studies should determine if 10(Z)-hexadecenoic acid is sufficient to induce the 

enhanced fear extinction learning previously demonstrated using whole, heat-killed M. 
vaccae (Fox et al. 2017), and to what extent these effects are mediated by PPARα.

Mycobacteria are unique in that they accumulate triacylglycerols as intracellular lipophilic 

inclusions. For example, Mycobacterium smegmatis accumulates triacylglycerols and the 

acyl chain composition varies depending on the growth medium (Garton et al. 2002). 

Monounsaturated fatty acids, C16:1 hexadecenoic acid and C18:1 octadecenoic acid, were 

found to be high when bacteria were grown in nutrient-rich Middlebrook 7H9 broth, relative 

to low-nitrogen Youmans’ broth, but highest when bacteria were grown in Youmans’ broth 
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with monounsaturated oleic acid ((9Z)- octadec-9-enoic acid) supplementation. Thus, it is 

possible that mycobacteria synthesize and store triacylglycerols using environmental fatty 

acids as substrates, potentially for export to the cell envelope and release. If so, it may be 

possible to modify the immunoregulatory and anti-inflammatory potential of mycobacteria 

through modification of growth conditions.

Of potential importance, conjugated linoleic acids are bacterial metabolites. For example, 

specific members of the genus Lactobacillus, including Lactobacillus reuteri and L. 
plantarum, as well as bifidobacteria, mediate the conversion of dietary linoleic acid into 

immunomodulatory conjugated linoleic acids (Coakley et al. 2003; Lee et al. 2003; Ogawa 

et al. 2005; Kishino et al. 2013). Most of the conjugated linoleic acid produced is located in 

the extracellular space (~ 98%) (Lee et al. 2003; Roman-Nunez et al. 2007), suggesting that 

bacterially derived conjugated linoleic acids may be metabolic signaling molecules that 

modulate the host immune response. These bacterially derived fatty acid metabolites include 

10-hydroxy-cis-12- octadecenoic acid (HYA), cis-9,trans-11-linoleic acid, trans-9,cis-11-

linoleic acid, and cis-10,trans-12-linoleic acid (Lee et al. 2003; Miyamoto et al. 2015), 

among many others (Ogawa et al. 2005). Several of these bacterially derived fatty acid 

metabolites are potent PPARα agonists (IC50 values from 140 to 400 nM) (Moya-Camarena 

et al. 1999). Perhaps the closest analogue of 10(Z)-hexadecenoic acid identified here is 

trans-10-octadecenoic acid, produced by L. plantarum from linoleic acid (Kishino et al. 

2013) or γ-linolenic acid (Ogawa et al. 2005). Although, to the best of our knowledge, the 

efficacy of trans-10-octadecenoic acid at PPARα receptors is not known, production of 

10(Z)-hexadecenoic acid and diverse conjugated linoleic acids, which then act at host 

PPARα receptors, may be a general strategy of commensal organisms to suppress host 

immune responses, and promote symbiotic relationships with the host. Consistent with this 

hypothesis, macrophages lining the gut mucosa are anergic, characterized by an inability to 

mount proinflammatory responses, despite avid phagocytic activity (Smythies et al. 2005), 

while lung airway macrophages are immunoregulatory (Strickland et al. 1996; Soroosh et al. 

2013; Duan and Croft 2014). Recent studies have also identified α-linolenic acid-derived 

bacterial metabolites, 13-hydroxy-9(Z),15(Z)-octadecadienoic acid (13-OH) and 13-

oxo-9(Z),15(Z)-octadecadienoic acid (13-oxo), that induce differentiation of anti-

inflammatory M2 macrophages through activation of G protein-coupled receptor 40 

(GPR40) (Ohue-Kitano et al. 2018). Together, these data support the hypothesis that 

bacterially derived “postbiotic” compounds, including fatty acid metabolites, have important 

beneficial effects on the host via diverse host receptor signaling mechanisms.

Although we did not assess the effects of 10(Z)- hexadecenoic acid on DCs or 

immunoregulation, defined as the balance between regulatory and effector T cells, 

conjugated linoleic acid suppresses NF-κB signaling and IL-12 production in DCs through 

IL-10 production (Loscher et al. 2005). Exposure of murine DCs to conjugated linoleic acid 

suppresses their ability to promote differentiation of naïve T cells into Th1 and/or Th17 cells 

in vitro following their adoptive transfer in vivo (Draper et al. 2014). Future studies should 

investigate the effects of 10(Z)-hexadecenoic acid on inflammatory signaling in 

macrophages, DCs, as well as on T-cell differentiation and function, the potential role of 

PPARα in these effects, and consequences for stress-induced exaggeration of anxiety- and 

fear-related behavioral responses.
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Overall, our data suggest that chemical mimicry of eukaryotic signaling molecules may be 

common among environmental bacteria, including mycobacteria (Gebert et al. 2018), that 

are abundant in host mucosal surfaces (Macovei et al. 2015), and bacterially derived anti-

inflammatory lipids have potential as a novel approach to therapeutic intervention in 

inflammatory disease and stress-related psychiatric disorders, where immunodysregulation 

and inappropriate inflammation have been identified as risk factors (Rohleder 2014; 

Langgartner et al. 2018).
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

CD Cluster of differentiation

CNS Central nervous system

DC Dendritic cell

DSM-5 Diagnostic and Statistical Manual of Mental Disorders (5th ed.)

IL Interleukin

IFN Interferon

IRF Interferon regulatory factor

LPS Lipopolysaccharide

MGB Microbiota–gut–brain

NCTC National Collection of Type Cultures

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

PEA Palmitoylethanolamide

PPAR Peroxisome proliferator-activated receptor

PTSD Posttraumatic stress disorder
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RAR Retinoic acid receptor

TGFβ Transforming growth factor beta

TLR Toll-like receptor

Treg Regulatory T cell
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Fig. 1. 
Experimental timeline for ex vivo macrophage stimulation. Abbreviations: FFA, free fatty 

acid; LPS, lipopolysaccharide
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Fig. 2. 
Anti-inflammatory effects of 10(Z)-hexadecenoic acid in freshly isolated murine peritoneal 

macrophages. Freshly isolated murine peritoneal macrophages were incubated for 1 h with 

synthetic 10(Z)- hexadecenoic acid (0, 0.4, 4, 20, 100, 500, 1000 μM), then challenged with 

lipopolysaccharide (LPS; 1 μg/mL). Cell supernatants were collected at a 6 h, b 12 h, and c 

24 h after LPS challenge. Interleukin (IL) 6 concentrations in the supernatant were 

determined using enzymelinked immunosorbent assay (ELISA) and reported relative to 

media-only controls (n = 6 replicates, with each replicate using different freshly isolated 

peritoneal macrophages; each sample was run using duplicate wells in the ELISA). Data 

were fit with a logistic function, which was used to estimate the EC50. Data are expressed as 

mean ± SEM
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Fig. 3. 
Gene networks upregulated following pretreatment with 10(Z)- hexadecenoic acid in LPS-

stimulated macrophages suggest anti-inflammatory effects are mediated by PPARα. Murine 

peritoneal macrophages were treated with either 10(Z)-hexadecenoic acid (200 μM) or 

vehicle. Following a 12-h period after stimulation with lipopolysaccharide (LPS), total RNA 

content was measured using RNA-seq. a Heat map of the top 20 differentially expressed 

transcripts. b, c Genes significantly b upregulated or c downregulated following treatment 

with 10(Z)-hexadecenoic acid were separately queried on the Database for Annotation, 

Visualization and Integrated Discovery (DAVID). b The top 5 Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways enriched for genes upregulated following pretreatment of 

LPS-stimulated macrophages with 10(Z)-hexadecenoic acid, relative to media pretreated, 

LPS-stimulated macrophages. c The top 5 KEGG pathways enriched for genes 

downregulated following pretreatment of LPS-stimulated macrophages with 10(Z)-
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hexadecenoic acid, relative to media pretreated, LPS-stimulated macrophages. d Pathway 

analysis using the entire transcriptional data set was performed with Gene Set Enrichment 

Analysis (GSEA). Pathways enriched for genes upregulated following pretreatment of LPS-

stimulated macrophages with 10(Z)-hexadecenoic acid, relative to mediapretreated, LPS-

stimulated macrophages, were visualized in a network built by their gene set overlap. The 

size of the network node represents the number of genes shared between the particular gene 

set and the transcription data. The weight of network edges represents the degree of gene set 

overlap. In the largest cluster of pathways enriched in genes upregulated with 10(Z)-

hexadecenoic acid, lipid metabolism and peroxisome proliferator-activated receptors 

(PPARs) were implicated as some of the more salient pathways. Abbreviations: Adamtsl4, 

thrombospondin repeat-containing protein 1; AMPK, 5′ AMP-activated protein kinase; 

Ch25h, cholesterol 25-hydroxylase; Cish, cytokine-inducible SH2 containing protein; 

Ctla2b, cytotoxic T-lymphocyte- associated protein 2-beta; Cyp26b1, cytochrome P450 

family 26 subfamily B member 1; Dusp1, dual specificity phosphatase 1; ECM, extracellular 

matrix; F3, coagulation factor III; Flrt3, fibronectin leucine-rich transmembrane protein 3; 

Hdc, histidine decarboxylase; Hp, haptoglobin; Il1b, interleukin 1 beta; Il6, interleukin 6; 

LKB1, liver kinase B1; Mir5105, microRNA 5105; MTOR, mechanistic target of rapamycin 

kinase; Plbd1, phospholipase B domain containing 1; Plin2, perilipin 2; PPAR, peroxisome 

proliferator-activated receptor; PPARA, peroxisome proliferator-activated receptor alpha; 

Ptgs2, prostaglandin- endoperoxide synthase 2; RORA, RAR-related orphan receptor A; 

TNF, tumor necrosis factor; Tns1, tensin 1; Tsc22d3, Tsc22 domain family member 3; 

Vnn3, vanin 3
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Fig. 4. 
10(Z)-hexadecenoic acid suppresses expression of transcription factors downstream of 

TLR4. Murine peritoneal macrophages were treated with either 10(Z)-hexadecenoic acid 

(200 μM) or vehicle for 1 h, then challenged with lipopolysaccharide (LPS; 1 μg/mL). 

Following a 12-h period after stimulation with LPS, mRNA was measured using RNA-seq. a 
From the Gene Set Enrichment Analysis (GSEA; c2.all.v6.2), pathways enriched with genes 

downregulated following pretreatment of LPS-stimulated macrophages with 10(Z)- 

hexadecenoic acid, relative to media-pretreated, LPS-stimulated macrophages, were 

visualized in a network built by their gene set overlap. The size of the network node 

indicates the number of genes shared between the particular gene set and the transcription 

data from our study. The weight of network edges indicates the degree of gene set overlap 

between nodes. The color of the node indicates whether the genes in the gene set were 

downregulated in NF-κB pathways (blue), downregulated in IRF pathways (purple), 

ambiguously downregulated (gray), or upregulated (red) in the 10(Z)-hexadecenoic acid 

condition. b Among the leading edges of enriched pathway gene sets, the occurrence of high 

ranking genes in either the NF-κB-regulated network (blue) or IRF-regulated network 

(purple) (corresponding to data illustrated in panel a) are reported. c Genes included in the 

IRF_Q6 gene set (left; i.e., genes having at least one occurrence of the transcription factor 

binding site V$IRF_Q6 (v7.4 TRANSFAC) in the regions spanning up to 4 kb around their 

transcription starting sites) and the significant 10(Z)- hexadecenoic acid-dependent 

differentially expressed genes with q < 0.1 (right) were queried against the Interferome 

database (v2.0) to identify their association with known interferon responses. The majority 

of genes in both gene sets are attributed to both type I and type II interferon responses. 
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Abbreviations: CCL2, C-C motif chemokine ligand 2; CXCL1, C-X-C motif chemokine 

ligand 1; CXCL2, C-X-C motif chemokine ligand 2; IER3, immediate early response 3; 

IFN, interferon; IFNA, interferon alpha; IFNB1, interferon beta 1; IKK, inhibitor of nuclear 

factor kappa B kinase; INHBA, inhibin subunit beta A; IL1A, interleukin 1 alpha; IL1B, 

interleukin 1 beta; IL1R, interleukin 1 receptor; IL6, interleukin 6; JUNB, junB proto-

oncogene, AP-1 transcription factor subunit; LPS, lipopolysaccharide; NFKB, nuclear factor 

kappa B; NFKB1, nuclear factor kappa B subunit 1; PLAUR, plasminogen activator, 

urokinase receptor; PSMB8, proteasome subunit beta 8; PSMB9, proteasome subunit beta 9; 

PSMB10, proteasome subunit beta 10; PSME1, proteasome activator subunit 1; PTGS2, 

prostaglandin-endoperoxide synthase 2; STAT3, signal transducer and activator of 

transcription 3; TNF, tumor necrosis factor
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Fig. 5. 
Analysis of the effects of M. vaccae-derived lipids on peroxisome proliferator-activated 

receptor (PPAR) α, PPARγ, PPARδ, and retinoic acid receptor (RAR) α signaling in 

transfection assays using COS-1 cells. a Relative activity of PPARα following incubation 

with the 1,2,3-tri [Z- 10-hexadecenoyl] glycerol (PI-70; TAG), monoacylglycerol, 1-[Z-10- 

hexadecenoyl] glycerol (PI-69; MAG), or 10(Z)-hexadecenoic acid (PI- 71; FFA) for 18 h, 

expressed as relative luciferase activity, normalized to β-galactosidase activity. b Relative 

activity of PPARγ. c Relative activity of PPARδ. d Relative activity of RARα. 

Abbreviations and concentrations: AM580 (RARα-specific agonist, 100 nM); GW1516 

(PPARδ agonist, 1 μM); RSG, rosiglitazone (PPARγ agonist, 2.5 μM); troglitazone (PPARγ 
agonist, 10 μM); WY-14643 (PPARα agonist, 2 μM). Data are representative of two to three 

replicates per experiment
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Fig. 6. 
PPARα is required for suppression of LPS-induced inflammation in macrophages. A 

peroxisome proliferator-activated receptor (PPAR) α, γ, or δ antagonist (GW 6471, GW 

9662, GSK 0660, respectively) or vehicle was applied to murine peritoneal macrophages 

followed by treatment with either 10(Z)-hexadecenoic acid (200 μM), vehicle, or 

dexamethasone (Dex; 10 μM), then stimulated with lipopolysaccharide (LPS; 1 μg/mL). a 
After 12 h, interleukin (IL) 6 was measured in the cell supernatant and reported relative to 

vehicle controls. b The necessity of PPARα was shown in a PPARα knockout (KO) model. 

Murine peritoneal macrophages from PPARα−/− or WT mice were incubated with either 

10(Z)-hexadecenoic acid (50 or 200 μM) or vehicle, then stimulated with LPS (1 μg/mL). #p 
< 0.05, Fisher’s least significant difference (LSD), relative to cells only treated with 10(Z)-

hexadecenoic acid. *p < 0.05 relative to KO. Abbreviations: 10H, 10(Z)-hexadecenoic acid; 

Dex, dexamethasone; IL-6, interleukin 6; KO, PPARα knockout; WT, wild type
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