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Abstract

A subject of recent interest in inverse problems is whether a corner must
diffract fixed frequency waves. We study the related question of which cones
[0,∞)× Y which do not diffract high frequency waves. We prove that if Y is
analytic and does not diffract waves at high frequency then every geodesic on
Y is closed with period 2π. Moreover, we show that if dimY = 2, then Y is
isometric to either the sphere of radius 1 or its Z2 quotient, RP2.

1. Introduction

A subject of recent interest in the study of inverse problems has been the ques-
tion of whether corners must diffract fixed-frequency solutions of the Helmholtz
equation with potential in R2; here a corner is the location of a singularity of the
potential, which is of the form of a smooth function times the indicator function of a
sector. Affirmative answers to this question have been obtained under various con-
ditions by Bl̊asten–Päivärinta–Sylvester [2] and Päivärinta–Salo–Vesalainen [19]
(who treat certain kinds of conic singularities in R3 as well). More recently, results
on diffraction by partially transparent polygons and polyhedra have been obtained
by Elschner–Hu [8].

In this note, we introduce a related problem that seems fundamental to the
theory of diffraction. On a cone, perhaps the simplest setting in which diffraction
is known to occur, must there be nontrivial diffraction at high frequency? In posing
the problem as a high-frequency one, we restate it as a question about singularities
of solutions to the wave equation. If we study the half-wave propagator e−it

√
∆,

we ask: must there be singularities to the solution other than those along (the
closure of) the geodesics missing the cone tip, i.e., those predicted by geometric
optics in its näıvest form? Passing to the frequency-domain via Fourier transform,
the existence of these singularities implies nontrivial asymptotics, as the frequency
parameter tends to infinity, in regions not predicted by geometric optics away from
the cone tip. Hence the question under consideration here is equivalent to one of
high-frequency asymptotics in stationary scattering.

Our main theorem, admittedly a very partial result in the desired direction, is
that if a real-analytic cone exhibits no diffraction in this sense, then its link must
have the property that every geodesic is 2π-periodic. In the special case when the
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link has dimension 2 (and is still analytic) we are further able to show that the
link must be S2 equipped with its standard round metric of circumference 2π, or
else RP2, its Z2-quotient. Some remarks on conjectured stronger results may be
found below.

We now state our results more precisely.

Definition 1. A cone C(Y ) over a Riemannian manifold (Y, h) of dimension
d− 1 is the d-manifold

C(Y ) = [0,∞)x × Y
whose interior is equipped with the metric

g = dx2 + x2h.

Thus from the point of view of metric geometry, in the cone C(Y ), all points
(0, y), y ∈ Y are identified.

Remark 1. For brevity, the results below will all be stated for cones C(Y ),
which are sometimes referred to as product cones. We remark, however, that in
view of [9, Theorem 3.2], our results apply equally to diffraction by more general
conic metrics. These are nondegenerate metrics on the interior of a manifold with
boundary which near the boundary take the form

g = dx2 + x2h(x, y, dx, dy),

where x is a boundary defining function and h is a smooth symmetric 2-cotensor
that restricts to be a metric on the boundary. Boundary components thus become
cone points, and the results of [9] show that the leading order contribution to the
diffracted wave can be determined from the case of a model product cone obtained
by freezing coefficients at the boundary after making an appropriate choice of
boundary defining function.

Definition 2. We say that C(Y ) is non-diffractive if

singsuppκ(e−it
√

∆) =
{
p, p′ : p, p′ are endpoints of a geodesic of length |t| in C(Y )◦

}
,

where κ(A) denotes the Schwartz kernel of the operator A and B◦ denotes the
interior of B. Otherwise, we say C(Y ) is diffractive. (Here ∆ denotes the Friedrichs
extension of the nonnegative Laplace-Beltrami operator from C∞c (C(Y )◦).)

It is known that in general there are additional “diffracted” singularities of this
Schwartz kernel, at

Dt ≡ {p, p′ : x(p) + x(p′) = |t|};
indeed there is a conormal singularity along this set, degenerating near its in-
tersection with the set of endpoints of geodesics in C(Y )◦, which always carries
singularities. We remark that this intersection occurs exactly at the set{
p, p′ : x(p) + x(p′) = |t|, y(p), y(p′) endpoints of a geodesic of length π in Y

}
.
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It follows from the work of Cheeger–Taylor [3], [4] (see [9, Corollary 2.3]) that
the principal symbol of the diffracted wave on Dt is a nonvanishing multiple of the
Schwartz kernel of the operator

exp

−iπ
√

∆Y + (d− 2)2

4

 ,
where ∆Y is the (positive definite) Laplacian on the link Y of the cone, with
respect to the metric h. Setting

ν =

√
∆Y + (d− 2)2

4 ,

we thus find that a sufficient condition for C(Y ) to be diffractive is that for some
y ∈ Y, κ(e−iπνδy) should have support outside the distance sphere of radius π
centered at y. It is this condition that we exploit in proving the following.

Theorem 1. Let C(Y ) be non-diffractive, and Y real analytic. Then every
geodesic on Y must be periodic with (not necessarily minimal) period 2π.

Remark 2. Many manifolds exist on which all geodesics are periodic with the
same period: in addition to the compact rank one symmetric spaces and their quo-
tients, there is a menagerie of so-called Zoll manifolds which enjoy this property—
see [1] for detailed discussion.

Conversely, we remark that if Y is a spherical space form, i.e., the quotient of
Sd−1 with the standard metric on the unit sphere by the fixed-point-free action of
a finite subgroup of G ⊂ O(d), then C(Y ) is the quotient of Rd by the action of G,
blown-up at the origin (i.e., viewed in polar coordinates). The method of images
then shows that C(Y ) is non-diffractive, since the Schwartz kernel of e−itν on C(Y )
may be obtained by averaging over the action of G the corresponding Schwartz
kernel on Rd, where ordinary propagation of singularities along geodesics holds
true. In the case of d = 2, i.e., dim Y = 1, e−iπν can be calculated explicitly as
in the work of Hillairet [15] and it is easy to verify that these are the only non-
diffractive links. In fact we conjecture that these are the only examples, even in the
smooth category: if C(Y ) is non-diffractive and Y merely C∞, then we conjecture
that Y must be a spherical space form. This conjecture seems out of reach for the
moment.

Returning to the analytic case, we have been able to verify our conjecture in the
case of dimension 2, ruling out Zoll manifolds that are not spherical space forms.

Theorem 2. Let C(Y ) be non-diffractive with Y analytic and dimY = 2. Then
Y is either S2 or RP2 equipped with its standard metric.

We emphasize that by “standard metric” on S2 or RP2 we do not mean “standard
metric up to scale,” but rather the metric on the unit sphere in R3 and its Z2-
quotient respectively; spheres and projective spaces of other sizes do diffract (as
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our proof shows). Unlike in many other geometric situations, the scaling of the
metric plays a role since it corresponds to the size of the “opening” of the cone.

In order to clarify these distinctions, we will use the notation S2
a and RP2

a for
the sphere equipped with the round metric of circumference a and its Z2-quotient,
respectively. Hence S2

2π and RP2
2π are the standard sphere and projective space.

We introduce the non-standard terminology that a P̃a manifold is one on which
all geodesics are periodic with common period a, while we follow [1] in letting Pa
manifolds denote those P̃a manifolds on which a is the minimal common period.
Thus, S2

a is a Pa surface while RP2
a is a Pa/2 surface.
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2. Proof of Theorem 1

Let Φt denote geodesic flow for time t on S∗Y, i.e., the time-t flow generated by
Hp, the Hamilton vector field of (1/2)|ξ|2g, restricted to the unit cotangent bundle.
Let πY denote the projection S∗Y → Y.

Let
K ≡ κ(e−iπν).

Recall that a necessary condition for Y to be non-diffractive is

suppK ⊂
{
y, y′ : y, y′ are endpoints of a geodesic of length π

}
.

(Standard propagation of singularities results [7] show that the singular support
of K lies in the latter set.)

Since Y is analytic, we note that in order to show that all geodesics are periodic
with period 2π, it suffices to show that on a nonempty open set in S∗Y,

Φ2π = Id .

Hence our strategy is to show that the support condition for e−iπν implies the
existence of these closed geodesics.

Consider first the manifold

Λ ≡ graph(Φπ) ⊂ S∗Y × S∗Y

A key observation is now that WFK = Λ′ (see, e.g., [6, Theorem 1]) where

Λ′ :=
{
(x, ξ, y, η) | (x,−ξ, y, η) ∈ Λ

}
.
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Setting
Ψ,Ψ′ : S∗Y → S∗Y × S∗Y

Ψ(y, η) = (y, η,Φπ(y, η))
Ψ′(y, η) = (y,−η,Φπ(y, η))

we thus obtain diffeomorphisms
Ψ : S∗Y → Λ,
Ψ′ : S∗Y → Λ′.

We now consider the projection,
πY×Y Λ ⊂ Y × Y,

which is where suppK lives, by hypothesis. We remark that πY×Y Λ is certainly not
guaranteed to be a smooth manifold. However, since our hypotheses imply that Λ
is analytic, certainly πY×Y Λ is subanalytic, by definition. A theorem of Gabrielov
[10], later rediscovered by Hironaka [16] and Hardt [14] then implies that πY×Y Λ
is a stratified space, and in particular, contains as an open subset, F , a maximal-
dimensional embedded submanifold (note that the “semianalytic shadows” in [14]
are synonymous with subanalytic sets). We will employ a slight strengthening of
this statement, also following from the results of [14].

Lemma 2.1. There is an open subset F ⊂ πY×Y Λ such that

1) F is a maximal-dimensional embedded submanifold.
2) The set F̃ = Ψ−1π−1

Y×Y (F ) ⊂ S∗Y is open
3) For ρ ∈ F̃ , rank dπY×Y dΨ(ρ) = dimF.

Proof. Recall that a stratification of a manifold M is a locally finite collection
S of connected, embedded open submanifolds such that tS∈SS = M and

if S, T ∈ S and T ∩ ∂S 6= ∅, then dimT < dimS, T ⊂ ∂S.
Let Θ := πY×Y ◦Ψ. By [14, Corollary 4.4], since Θ : S∗Y → Y × Y is an analytic
mapping of real analytic manifolds, there is a stratification, S, of S∗Y and T of
Y × Y such that for S ∈ S, Θ(S) ∈ T , with

rank dΘ|S = dim Θ(S).
Define k := supS∗Y rank dΘ and let F̃ ∈ S such that

rank dΘ|F̃ = k, dim F̃ = 2n− 1

Then F := Θ(F̃ ) ∈ T is an embedded submanifold of dimension k. Moreover,
πY×Y Λ is contained in a finite union of submanifolds of dimension ≤ k and hence
F has maximal dimension.

Now, since T is a stratification, and Θ(S) ∈ T for S ∈ S,⋃
S∈S
S 6=F̃

Θ(S) ∩ F = ∅.
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In particular, Θ−1(F ) = F̃ and the proof is complete. q.e.d.

Let F , F̃ as in Lemma 2.1. Then, by construction, for ρ ∈ F̃ , dπY×Y dΨ :
TρS

∗Y → Tπ
Y×Y ◦Ψ(ρ)F is surjective.

Lemma 2.2. Suppose that dπY×Y dΨ : TρS∗Y → Tπ
Y×Y ◦Ψ(ρ)F is surjective. Then

Ψ′(ρ) ∈ SN∗F .

Proof. Fix any ρ0 ≡ (y, η) ∈ S∗Y satisfying the hypotheses. We need to show
that all vectors in Tπ

Y×Y ◦Ψ(ρ0)F are annihilated by pairing with Ψ′(ρ0).
By hypothesis,

Tπ
Y×Y ◦Ψ(ρ0)F =

{
dπY×Y ◦ dΨ(V ) : V ∈ Tρ0S

∗Y
}

=
{
(dπ(V ), dπ ◦ dΦπ(V )) : V ∈ Tρ0S

∗Y
}
,

hence we need to show that the pairing of a vector of this form with Ψ′(ρ0) vanishes,
i.e., (letting square bracket denote the pairing of a covector with a vector) that

(1) − ρ0[dπ(V )] + Φπ(ρ0)[dπ ◦ dΦπ(V )] = 0, for all V ∈ Tρ0S
∗Y.

Now we investigate the quantity Φπ(ρ0)[dπ ◦ dΦπ(V )]. For any V ∈ Tρ0S
∗Y,

choose ρ : (−ε, ε) → S∗Y with ρ(0) = ρ0 and ∂sρ|s=0 = V . Next, define Γ(s, t) =
π(Φt(ρ(s))). Then J(t) := ∂sΓ(s, t)|s=0 = dπ ◦ dΦtV is a Jacobi field along γ(t) :=
Γ(0, t) and

Φt(ρ(0))[J(t)] = 〈γ̇(t), J(t)〉g.

Since J is a Jacobi field, ∂2
t 〈γ̇(t), J(t)〉g = 0 (see [17, p.288]). Recalling that

Hp denotes the Hamilton vector field of (1/2)|ξ|2g, hence the generator of unit
speed geodesic flow in the cosphere bundle, we compute (using symmetry of the
connection—[17, Lemma 6.2])

∂t〈γ̇(t), J(t)〉g|t=0 = 〈γ̇(0), DtJ(0)〉g
= 〈γ̇(0), DsdπHp(ρ(s))|s=0〉g
= 〈dπHp(ρ(0)), DsdπHp(ρ(s))|s=0〉g

= 1
2∂s〈dπHp(ρ(s)), dπHp(ρ(s))〉g|s=0

Now, in coordinates, we have dπHp = gijξi∂xj and therefore, since ρ(s) ∈ S∗Y ,

〈dπHp(ρ(s)), dπHp(ρ(s))〉g = gijξi(s)ξj(s) ≡ 1.

Therefore, ∂t〈γ̇(t), J(t)〉g|t=0 = 0. We have now shown that for any V ∈ Tρ0S
∗Y ,

Φt(ρ0)[dπ ◦ dΦtV ] is constant and in particular,

ρ0[dπ ◦ dΦtV ]− Φπ(ρ0)[dπ ◦ dΦπV ] = 0,

thereby establishing (1). q.e.d.
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Our hypotheses are that suppK ⊂ πY×Y Λ, hence in a neighborhood V of any
point in F , suppK ⊂ F. Since F is a smooth embedded submanifold, we thus
know that on V , we may express

K =
∑

δα(u)φα(y)

where u = (u1, . . . , uk) are defining functions for F , y complete u to a local coordi-
nate system, and φα ∈ D′(F ). Moreover, by Lemma 2.2, for ρ ∈ F̃ = Ψ−1π−1

Y×Y (F ),
Ψ′(ρ) ∈ SN∗F . In particular,

WF(K) ∩ π−1
Y×Y (F ) = Λ′ ∩ π−1

Y×Y (F ) ⊂ SN∗F

which implies φα ∈ C∞(F ).
Such a distribution has the property that its wavefront set is invariant under

the negation map on fibers:

(y, η, y′, η′) ∈WFK ∩ π−1
Y×Y (F ∩ V ) =⇒ (y,−η, y′,−η′) ∈WFK ∩ π−1

Y×Y (F ∩ V ).

Thus, since WFK = Λ′,

(y, η, y′, η′) ∈ Λ ∩ π−1
Y×Y (F ∩ V ) =⇒ (y,−η, y′,−η′) ∈ Λ ∩ π−1

Y×Y (F ∩ V ).

This precisely means that for (y, η) ∈ πL(Λ ∩ π−1
Y×Y (F ∩ V )),

Φπ(y, η) = −Φπ(y,−η) = Φ−π(y, η)

(with negation interpreted as acting on the fibers). Hence

Φ2π(y, η) = (y, η).

Now set U = πL(Λ∩π−1
Y×Y (F∩V )). Since πL : Λ→ S∗Y is bijective, and Λ∩π−1

Y×Y (F∩
V ) is open we have proved the desired periodicity of geodesics on a nonempty open
set in S∗Y. q.e.d.

3. Proof of Theorem 2

By Theorem 1, Y is a P̃2π surface. Thus, it is diffeomorphic to either S2 or
RP2—see [1, Section 4.3].

We begin with the case where Y is diffeomorphic to S2. As in the proof of
Theorem 1, we consider π

S2×S2 Λ ⊂ S2 × S2, the projection of the graph of time-π
geodesic flowout in S∗(S2); we again use crucially that this is a stratified space.
Since the dimension of Λ itself is 3 and since projections onto the left and right
factor of Y of πY×Y Λ are surjective, the dimension of the maximal stratum of
π
S2×S2 Λ may only be 2 or 3. If it is 3, then there is an open set, F in π

S2×S2 Λ that
is a submanifold of S2 × S2 of codimension-1, so that the Schwartz kernel of the
propagator K is locally given by

(2) K =
∑
|α|≤M

δ(α)(u)φα(y)
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where now u ∈ R is locally a defining function for π
S2×S2 Λ, M < ∞ and φα ∈

C∞(F ).
We will need a slightly stronger consequence of [6, Theorem 1] than that (WF(K))′ =

Λ. In particular, we need that

(3)
(WF−1(K))′ = Λ,
WF−1−ε(K) = ∅ for all ε > 0,

where WFs denotes the s-wavefront set, i.e., ρ /∈WFs(u) if and only if there exists
A ∈ Ψ0 so that Au ∈ Hs and σ(A)(ρ) 6= 0. Now, let x0 ∈ F and V a neighborhood
of x0 so that (2) is valid on V . Let χ ∈ C∞c (V ) with χ(x0) = 1. Then, by (2)

(4) χK ∈
⋃
ε>0

H−1/2−j−ε \H−1/2−j ,

where j is the largest |α| such that the coefficient φα in (2) is nonvanishing on
suppχ. On the other hand,

T ∗x0(S2 × S2) ∩WF−1(K) 6= ∅,
T ∗x0(S2 × S2) ∩WF−1−ε(K) = ∅.

Either the first or the second of these statements contradicts (4) depending on
whether j = 0 or j ≥ 1.

We conclude from this contradiction that in fact the dimension of the maximal
stratum is 2.On the other hand, the rank of the projection from Λ ⊂ S∗S2×S∗S2 to
S2 in the first factor already has rank 2. Hence in order for the stratum dimension
not to exceed 2, it must be the case that dξπS2Φπ(x, ξ) = 0 for all x, ξ ∈ S∗(S2).
This means that π

S2 Φπ(S∗x(S2)) is a single point for each x ∈ S2; for brevity we
denote this point Φπ(x). Since Y is a P̃2π manifold, by positivity of the injectivity
radius of a compact manifold, there is some positive minimal common period, hence
Y is a P2π/k manifold for some positive integer k. We now consider separately the
cases where k odd and even.
Case 1: k odd. It has been shown by Gromoll–Grove [12] that on Y diffeomorphic
to S2, the Pa condition implies that Y is an SCa manifold (again in the terminology
of [1, Section 7.8]), which is to say, all geodesics have minimal period exactly a and
are without self-intersection (“simple”). If Y is a P2π/k manifold for k odd, we thus
conclude from [12] that Φπ(x) 6= x for all x, as otherwise this would contradict
simplicity of the geodesics.

Lemma 3.1. Suppose that Y is as above and Y is a P2π/k surface for some k
odd. Then, Y is a Blaschke surface.

Proof. We recall from [1, Theorem 5.43] that among several equivalent defini-
tions of a Blaschke surface is that the cut locus is spherical, which is to say the
distance to the first cut point is independent of direction at each point. For Y a
P2π/k surface with k odd, Φπ/k(x) has distance π/k from x for all x, since otherwise
a geodesic from x would pass through Φπ/k(x) at time t0 ∈ (0, π/k) and then would
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self-intersect at time π/k, contradicting the simplicity of the geodesics from [12].
But then every geodesic must in fact be minimizing up to time-π/k, as a failure to
be minimizing would allow us to construct a continuous, piecewise smooth curve
from x to Φπ/k(x) of length shorter than π/k. Hence the cut-radius is exactly π/k,
at every point in every direction, and our surface is indeed Blaschke. q.e.d.

By Lemma 3.1 together with the resolution of the Blaschke Conjecture [11] (cf.
[1, Theorem 5.59]), we conclude that Y = S2

2π/k.

We now rule out nonstandard spheres, with k 6= 1. We will identify spheres of
all radii with one another using standard polar coordinates, and note that for all
k, on S2

2π/k, Φπ/k(x) = −x, the antipode. Now observe that since e−iπνδx is
supported at Φπ(x) = −x and K takes the form (2),

e−iπνδx = c1δ−x

for some c1 6= 0. Moreover, c is independent of x since isometries act transitively
on S2

2π/k. Now, since S2
2π is non-diffractive,

∞∑
`=0

∑̀
m=−`

e−iπ(`− 1
2 )Y m

` (y)Y m
` (x) = c2δ−x(y)

for some c2 6= 0. Thus, there is c 6= 0 such that for all x, y
∞∑
`=0

∑̀
m=−`

e−iπ(`− 1
2 )Y m

` (y)Y m
` (x) = c

∞∑
`=0

∑̀
m=−`

e−iπ
√
k2`(`−1)+ 1

4Y m
` (y)Y m

` (x).

Since the Y m
` form an orthonormal basis for L2, this implies that for all ` ∈ N,√

k2`(`− 1) + 1
4 − `+ 1

2 ∈ β + 2Z

for some fixed real number β ∈ [0, 2). We note, though, that√
k2`(`− 1) + 1

4 − `+ 1
2 = k`− 1

2k −
k2 − 1

8k` − `+ 1
2 +O(`−2),

and, by Lemma 3.2 (below), this quantity cannot have constant fractional parts
as `→∞ unless k = 1.

Thus, Y = S2
2π. This finishes the case where k is odd.

Lemma 3.2. Let p, q ∈ Z, q > 0, b, c ∈ R and c 6= 0 and define

α` := p

q
`+ b+ c`−1 +O(`−2), ` = 1, 2, . . .

Suppose that {jk}∞k=1 ⊂ Z with jk −→
k→∞

∞. Then there are `,m such that

αj` − αjm /∈ Z.
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Proof. Let
f(`) = p

q
`+ b+ c

`
.

Then, there is L > 0 such for j ≥ L, αj satisfies

|αj − f(j)| ≤ |c|3j .

Hence, for `,m ≥ L, letting e` = α` − f(`), em = αm − f(m), we obtain

(5)
αm − α` = p

q
m+ b+ c

m
+ em − (p

q
`+ b+ c

`
)− e`

= p

q
(m− `) + c

m
− c

`
+ em − e`.

Now, our estimates on em, e` easily give

|em − e`| ≤
|c|
3m + |c|3` .

Now, since jk → ∞, there is M > 0 such that for m ≥ M , jm > max(L, 4|c|q).
Fix m ≥M . Let ` ≥M such that j` ≥ 4jm. Then, we have

αjm − αj` mod 1
q
Z = c

jm
− c

j`
+ ejm − ej` mod 1

q
Z,

and
0 < |c|

3jm
≤
∣∣∣ c
jm
− c

j`
+ ejm − ej`

∣∣∣ ≤ 3|c|
2jm

≤ 3
4q .

Hence the fractional part of αjm − αj` is nonzero. q.e.d.

Case 2: k even. We now assume that Y is a P2π/k surface for some even integer
k, hence that Y is a P̃π surface; we will then derive a contradiction.

For each y ∈ S2, e−iπνδy is by hypothesis supported at the flowout of S∗y(S2),
which we now know to be the point y itself. Thus e−iπνδy must equal ψ(y)δy for
some function ψ; more generally this tells us that
(6) e−iπνf = ψf

for every f ∈ L2. Applying (6) to f = φj , an eigenfunction of ∆Y with eigenvalue
λ2, tells us that

(7) e−iπ
√
λ2
j+1/4 = ψ(y).

The left side is of course constant, so ψ is in fact constant, and all of these values
must agree, i.e., there exists β ∈ [0, 2) such that for all λ2

j in the spectrum of ∆Y ,

(8)
√
λ2
j + 1/4 ≡ β mod 2Z;

equivalently this is just the statement that the spectrum of ν lies in β + 2Z.
Now in order to derive a contradiction, we turn to the strong results known about

spectral asymptotics of Zoll surfaces; this argument is based on the fact that the
spectrum of a Pπ/k manifold must closely resemble that of S2

π/k, which is indeed
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diffractive. Duistermaat–Guillemin [6], Weinstein [20], and Colin de Verdière [5]
have obtained very precise estimates of the clustering of the eigenvalues of such a
Zoll surface. Thus, e.g., [5, Corollaire 1.2] (see also [13], [21]) shows that there is
M > 0 so that the spectrum of ∆Y +1

4 is entirely contained in a union of intervals

In =
[
4(n+ α/4)2 −M, 4(n+ α/4)2 +M

]
,

where α is the Maslov index of all the π-periodic geodesics; the (crucial)1 factors
of 4 arise since we are dealing with a P̃π surface rather than a P̃2π surface as in
[5]. Since the eigenvalues of ∆Y +1

4 , λ2
•+1

4 , lie in In, the square roots
√
λ2
• + 1

4 of
the eigenvalues lie in intervals

Jn =
[
2(n+ α/4)− C/n, 2(n+ α/4) + C/n

]
.

On the other hand, for n large, the constraint (8) implies that each interval In
can contain at most one eigenvalue (possibly with high multiplicity). Indeed, for
n large enough, 2C/n < 2 and hence the interval Jn has length less than 2 and
contains at most one element of the form (8). We have thus reduced to the situation
studied by Zelditch in [22] of a maximally degenerate Laplacian; Zelditch proves
[22, Theorem C] that this places a yet stronger constraint on the locations of the
eigenvalues and that there is an operator A with spectrum in N such that

∆Y = 4
(
A+ 1

2
)2 − 1 + S

with S a smoothing operator; here again we have rescaled by a factor of 4 since
we are dealing with a P̃π surface. Hence the eigenvalues

√
λ2
• + 1/4 of ν are all of

the form

(9)
√

4(`+ 1/2)2 − 3/4 +O(`−∞) = 2`+ 1− 3
16` +O(`−2).

Recall on the other hand that they are in β + 2Z by (8). By Lemma 3.2, these
two constraints are incompatible, i.e. solutions to (9) cannot asymptotically differ
by even integers.

Hence we have ruled out all P̃π manifolds, and completed the case of Y diffeo-
morphic to S2.

To finish the proof, we now turn to the (easier) case when Y is diffeomorphic
to RP2. In this case, Lin–Schmidt [18, Theorem 2] shows that since all geodesics
on Y are closed, Y = RP2

a for some a > 0. (Cf. Green’s proof of Blaschke’s
Conjecture [11].) Next, since Y is a P̃2π manifold, we know that Y = RP2

4π/k
for some k ∈ N. We now rule out all but RP2

2π. To start, we know by the same
argument as in the sphere case that Φπ(x) is a single point for each x. This does not
happen unless k is even and at least 2. For k even, RP2

4π/k is a P̃π-manifold so the

1These factors will later give rise to our contradiction and arise from the rescaling of a P̃2π

metric to a P̃π metric.
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same argument as in the sphere case tells us that the spectrum of ν =
√

∆Y + 1/4
lies in β + 2Z for β fixed. Next, the spectrum of RP2

4π/k is the set

k2

4 2`(2`+ 1), ` ∈ N;

thus the spectrum of ν is(
k2

4 2`(2`+ 1) + 1
4

) 1
2

= k`+ k

4 −
k2 − 4
32k` +O(`−2).

By Lemma 3.2, these cannot have constant fractional part unless k = 2. q.e.d.
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[2] E. Bl̊asten, L. Päivärinta, and J. Sylvester. Corners always scatter. Comm. Math. Phys.,
331(2):725–753, 2014.

[3] J. Cheeger and M. Taylor. On the diffraction of waves by conical singularities. I. Comm. Pure
Appl. Math., 35(3):275–331, 1982.

[4] J. Cheeger and M. Taylor. On the diffraction of waves by conical singularities. II. Comm.
Pure Appl. Math., 35(4):487–529, 1982.

[5] Y. Colin de Verdière. Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes
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