
1

Current Protocols in Bioinformatics September 2019

Constructing and Analysing Computational Models of Cell Signalling with BMA

Benjamin A. Hall1* and Jasmin Fisher2*

1MRC Cancer Unit, University of Cambridge, Cambridge, UK; 2UCL Cancer Institute,
University College London, London, UK

*Correspondence should be addressed to Ben Hall bh418@mrc-cu.cam.ac.uk or Jasmin
Fisher jasmin.fisher@ucl.ac.uk

Keywords: systems biology, formal verification, cell signalling, executable models

Current Protocols in Bioinformatics September 2019

 2

Abstract

BioModelAnalyzer (BMA) is an open-source graphical tool for the development of executable models
of protein and gene networks within cells. Based upon the Qualitative Networks formalism, the user
can rapidly construct large networks, either manually or by connecting motifs selected from a built-in
library. After the appropriate functions for each variable are defined, the user has access to three
analysis engines to test their model. In addition to standard simulation tools, the tool includes an
interface to the stability testing algorithm and a graphical Linear Temporal Logic (LTL) editor and
analysis tool. Alongside this, we have developed a novel ChatBot to aid users constructing LTL queries,
and to explain the interface and run through tutorials. Here we present worked examples of model
construction and testing through the interface. As an initial example, we discuss fate decisions in D.
discoidum and cAMP signalling. We go on to describe the workflow leading to the construction of a
published model of the germline of C. elegans. Finally, we demonstrate how to construct simple
models from the built-in network motif library.

Current Protocols in Bioinformatics September 2019

 3

Introduction

Computational modelling represents a major strand of research in the life sciences. Over the past two
decades, advances in modelling biological processes at the level of the cellular network have enabled
novel insights into a wide range of processes including fundamental biological questions of organ
development (Bonzanni et al., 2009; Hall, Piterman, Hajnal, & Fisher, 2015; Nusser-Stein et al., 2012),
blood cell fate determination (Bonzanni et al., 2013; Chuang et al., 2015; Moignard et al., 2015;
Silverbush et al., 2017), the dynamics of metabolic systems (Riedel et al., 2018) and ion channel
networks (Shorthouse et al., 2018), amongst others. This progress has led directly to contributions in
the biomedical sciences too, allowing for new discoveries with clinical relevance in diseases such as
cancer.

Within this larger body of work, the field of executable models continues to expand (Fisher &
Henzinger, 2007). In this field highly abstract models of genes, proteins, and cells are used to capture
the key functional behaviour of biomolecules, rather than the specific chemical concentrations or
physical parameters, following approaches used in the analysis of software and hardware systems.
This class of models, which include Boolean and qualitative networks, finite state automata, and
others, has several distinct advantages over traditional approaches. When considering complex
networks, particularly in human cells, there may be multiple genes that have not been identified, and
even for those genes that have been identified the physical parameters describing the protein function
may not be available and require fitting. The fitting of multiple parameters raises specific issues of
testability, but more generally incompleteness in models may undermine predictions on, for example,
specific parameters if the predicted parameters result from the interactions of missing components.
The simplified representation of gene activity within an executable model is less sensitive to this type
of problem, as the coarse functional outcome should be captured more accurately than fine-grained
details.

A further advantage of executable models is their amenability to analysis by methods from the field
of formal verification (Claessen, Fisher, Ishtiaq, Piterman, & Wang, 2013; Cook, Fisher, Krepska, &
Piterman, 2011). This field has been developed to analyse the behaviour of computer software and
hardware systems, and uses model checking approaches to prove properties of models. In contrast to
simulations, these analyses offer guarantees over all of state space. As such they can allow researchers
to state that a specific behaviour never occurs, or always occurs. This is particularly valuable for
systems that are highly robust (where proofs can show failures never occur) or suffer from rare failures
(where the proofs should find the failure).

Finally, the level of abstraction used in executable models naturally maps to a large number of
biological experiments. In many systems, cell decision-making processes lead to discrete outcomes,
such as cell fate determination, or phenotype specification. Genetic screens, whether performed by
random mutagenesis or more recently CRISPR screens, frequently generate this kind of experimental
outcome with excellent sampling. In this context executable models, with discrete levels of activity
and the ability to address all possible outcomes through formal verification, naturally maps to the
experimental outcomes.

Constructing such models however remains difficult and frequently requires a dual-expertise
reflecting both an understanding of the underlying biology and computing proficiency. Several tools
have been developed to present an appropriate user interface to reduce the barriers to update,
including Bio Model Analyzer (BMA) (Benque et al., 2012), GINsim (Naldi et al., 2009), CellCollective
(Helikar et al., 2012), and BioLayOut3D (Wright, Angus, Enright, & Freeman, 2014). In many cases,
these ease users into the process of model building through graphical user interfaces (GUI) but for

Current Protocols in Bioinformatics September 2019

 4

some analyses require use of programming or command line interfaces (CLI), for example through the
use of related tools such as NuSMV (Cimatti et al., 2002). The mixture of both GUI and CLI usage within
a workflow is widespread and reflects the breadth of use cases and the need for some users to access
advanced tools. It also reflects the reliance on formal languages for describing properties (i.e. formal
logic or temporal logic) which do not necessarily map well into GUIs. In the case of the BMA tool, this
has led us to investigating ChatBots as a more user-friendly alternative to either a rigid GUI, or a
technically demanding CLI (Ahmed et al., 2017), available through Skype (https://bit.ly/3aAvrKZ).

In the following set of tutorials, we demonstrate how to use the BMA tool to construct and analyse a
series of different biological systems. The BMA is a web-based tool www.biomodelanalyzer.org that
presents a blank canvas for users (Figure 1) to construct and analyse models whilst avoiding use of the
CLI as much as possible. The tutorials introduce key, distinguishing features of the approach and tool;
developing models and specifications of varying complexity, using the graphical linear temporal logic
(LTL) editor (Ahmed et al., 2017; Claessen et al., 2013), and the motif library (a collection of pre-built
mini-networks, encoding key biological functions) (Paterson et al., 2018). BMA is open source (MIT
license) and is run as a publicly available web service for all users. No model data is stored on the
server, but for users who want to run calculations locally, for privacy or security reasons, an offline
installation package is also made available.

Current Protocols in Bioinformatics September 2019

 5

Basic Protocol 1. Modelling the signalling network of Dictyostelium discoidum

The first example is intended as a gentle introduction to modelling a simple system. In this tutorial you
should work through the steps and construct the models, using the suggested tests described. At the
end you should understand the basic process of modelling, from developing a specification,
constructing the model, to testing and refining the model. Recommended background references are
papers by Kim and Laub (Kim, Heslop-Harrison, Postlethwaite, & Bates, 2007; Laub & Loomis, 1998).
To complete this tutorial you will need a computer with a modern web browser such as Chrome,
copies of the background papers to reference.

Dictyostelium discoidum is a slime mold with a complex life cycle, involving switching from a single
cellular organism to a multicellular one and back. Here we look to model the process by which a single
cell initiates the process of aggregation, in response to starvation. The model should have two
developmental end states (attractors).

a. For the non-starvation state, the model should have a single fixpoint with low cAMP
activity. ACA activity is low (as ACA activity is reported to trigger the starvation response).

b. For the starvation state, the model should have a single oscillation where cAMP rises and
falls. ACA is active at some point of the cycle.

In this protocol we will build this model from the literature and show that it reproduces these
behaviours. All work can be completed in the browser.

Steps and annotations

1. Open the web browser and navigate to http://biomodelanalyzer.org/, and click on “launch tool”
to open the canvas (Figure 1). At the top of the screen are controls for editing and building the
model. In the top left are the pan/select tool, and zoom tools. In the centre are variables to add
to the canvas, and in the top right are undo/redo, settings, and information buttons. On the left
hand side of the screen are icons for opening a new model, saving, and importing and exporting
from the web browser. On the right hand side are different analysis tools; from top to bottom,
stability testing, simulation, and LTL. At the bottom of the screen is the motif library.

2. Transcribe the Dictyostelium discoidum network from Figure 2A, based on the network from Kim
et al. (Kim et al., 2007), making minimal edits to specify target functions.

a. Drag and drop Variables onto the canvas, and add activations and inhibitions by selecting
the appropriate tool in the top bar and dragging between variables (or a single variable
for a self-interaction).

b. Right click the activating variable for RegA, click edit, and write “1” for its target function
(large, lower text box). This specifies that it has a basal level of activity.

Note: non-overlapping edges are drawn as straight lines. This can be changed, along with
different rendering options, in the settings menu found by clicking the gear icon in the top
bar.

3. Test the model behaviour using the Linear Temporal Logic (LTL) interface (Figure 2B). Click the 3rd
button from the top on the left hand side of the screen to open the analysis tab. To create
formulas, click the lower button opening a new window. At the top of this window, user created
operands are on the left, built-in operands (true, fixpoint, and self loop) are in the middle, and
operators on the right.

a. In this tool you create logical formula that describe specific simulations. When the formula
is tested, the model is searched for simulations that match or fail to match the behaviour

Current Protocols in Bioinformatics September 2019

 6

described, returning one of three results; the formula is true for all simulations, the
formula is never true, or the formula is sometimes true and sometimes false. For each
result, examples can be viewed of each result to confirm that the formula has worked as
expected. Only simulations that contain an attractor are returned (cycle or fixpoint), and
the results are correct for an inputted length of simulation (defaulting to 10 steps). The
formula itself is constructed from a mixture of built-in operators (e.g. and, or, next, upto)
and operands (left to right: oscillation, fixpoint, and true), and user created operands.

b. To create a formula, drag operators and operands from the top of the screen into the
middle.

c. To test the formula, click the test button that appears on the right side of the formula
once it is complete. This will change the colour of the formula to indicate which result
(cyan for true for all, pink for false for all, and striped pink/cyan for true sometimes, false
sometimes).

d. To examine examples of simulations where the formula is either true or false, click the
“open” button which replaces the test button after the analysis is complete, and click the
cyan “example” button for a simulation where the formula is true, and the pink “example”
button for a simulation where the formula is false.

Note: these elements can be created through a drag/drop interface, though advanced users
have the option to right click on formulae to edit as text.

Note: You can create multiple formulas in the same window, and if you close and reopen the
LTL tab, the formulas will be saved and retested if the model changes.

4. Create the following formulas
a. “Eventually fixpoint” returns true for some simulations, and false for others, and the

example of a matching simulation ends with low cAMP. This result shows that there exist
cycles and fixpoints but does not show us how many there are. We need to use the
example simulations to test this- open each example simulation, and right click on the last
timepoint in the table to create an LTL state, noting down the names. Here we will assume
that “A” is the fixpoint, and “B” is a state in the cycle.

b. To show the fixpoint is unique, use the formula “(always (not A)) and (eventually
fixpoint)”. If the model is correct this should return always false as the only fixpoint is A.

c. Similarly, to show the cycle is unique, use the formula “(always (not B)) and (eventually
oscillation)”. If the model is correct this should return always false as the only oscillation
contains B.

An alternative approach to testing these properties is to use the ChatBot interface. This takes
requests in natural language (e.g. “find me a simulation that eventually reaches a fixpoint”).
This will return the query rephrased into LTL, and if a model has been provided, the query will
be tested and a link to view the model and query in the BMA provided.

5. If these tests are passed, the model of a single cell is correct. Name the model by clicking on the
text in the left hand tab, and save the result by clicking the save icon.

6. Test that the model works when multiple cells share a single pool of cAMP (Figure 2C). Rename
the model and save to prevent losing the single cell model. In the pan/select mode, shift click the
cell to select it. Copy with ctrl-v, and paste the cell into other spaces with ctrl-v. Connect the
external cAMP to all cells. Repeat the LTL testing to show that the system still oscillates. Save the
model.

Current Protocols in Bioinformatics September 2019

 7

Basic Protocol 2. Modelling the germline progression of C. elegans

The C. elegans germline (Hall et al., 2015) represents a model system for understanding the role of
Notch (LIN-12 in C. elegans) and Ras (LET-60 in C. elegans) in cancers. In the niche, cells divide in a
stem cell pool in response to Notch activation by delta, produced by the distal tip cell. The process of
division drives cells away from the distal tip cell, causing Notch to become inactive and meiosis is
initiated (pachytene stage). At a later time, apoptosis and further development (diplotene) is triggered
by LET-60 activation, before subsequent LET-60 inactivation as the germ cells separate from the
syncytium, enter the bended region of the organ, and enter the process of diakinesis. Finally, cells
move down the proximal arm, and if exposed to sperm (triggering LET-60 activation), become fertilised
and enter the uterus. As there are several developmental stages and different triggers acting on the
system, the final model needs to reflect all of this complexity. Based on the fact that fate progression
is invariant – wild-type cells always proceed through the stages in a single order – Basic Protocol 2 will
demonstrate how to build a large model to match all of the desired behaviours by starting with a
smaller model and building upon it.

To complete this tutorial you will need a computer with a modern web browser such as Chrome,
copies of the background papers to reference, and the models supplied in supplementary information.

The initial specification is highly simplified. We assume that there are two genes (LIN-12 and LET-60,
three developmental outcomes (mitosis, pachytene, and diplotene) each associated with a different
“environment” (set of external stimuli). The environments are determined by variables representing
delta present, a LET-60 activating ligand (here named sGF for “some growth factor”). We assume that
the model is stable in each environment to ensure reliable fate progression. The initial specification is

• If the target function of delta is 1 and sGF is 0, the model is stable. In the fixpoint mitosis is 1,
meiosis is 0, and differentiation is 0.

• If the target functions of delta and sGF are 0, the model is stable. In the fixpoint mitosis is 0,
meiosis is 1, and differentiation is 0.

• If the target function of delta is 0 and sGF is 1, the model is stable. In the fixpoint, mitosis is 0,
meiosis is 1, and differentiation is 1.

Steps and annotations

1. Construct the network from Figure 3A by adding variables and interactions as before
(“Germline v1.json”). Note that only one environment is not part of the specification- where
both LET-60 and LIN-12 are active.

2. Test the different environments by editing individual target functions, and performing stability
testing. To do this, right click on each of the environent ligands (Delta or sGF), click edit in the
context menu, and write a number (1 or 0) into the target function dialog box (bottom). Test
the model by clicking the stability testing button (right hand side of screen, top button). You
should find that the model matches the specification as described above. The model is stable
under all conditions, and the value of mitosis, meiosis and differentiation are as noted.

Note: testing the model under the unspecified condition (delta and sGF are both equal to
one) reveals that the model is unstable

3. Expand on this model based on known interactions from the literature (Figure 3B, “Germline
v2.xml”). Each pathway is expanded to include more genes, and with that their more complex
relationships. The original behaviours however remain the same, with each environment

Current Protocols in Bioinformatics September 2019

 8

leading to a stable phenotype. The increased detail in the model allows us to extend our
original specification to include other genes.

4. At this stage the model had been used in a hybrid simulation under different conditions. This
is discussed in detail in Hall et al, but briefly, this model was used to describe cell state whilst
a physical simulation was used to describe cell movements in the organ. Physical interactions
arising from cell collision and division move cells along the organ and through different
signalling environments, altering the state of the BMA model for each cell. One observation
was that if LET-60 and LIN-12 were active at the same time, the fate order did not necessarily
change if the cell had time to reach a fixpoint before the overlapping region was encountered.
This is despite the model under those conditions being unstable, suggesting that only one
fixpoint is reachable from the earlier.

5. At this point we extend the core specification, taking account of this observation and including
diakinesis explicitly. The specification states that when LIN-12 and LET-60 are active the model
is stable. When both are inactive however the model is unstable, and there are fixpoints
representing diakinesis and pachytene states. Show this by performing stability testing, and
click further testing to show that the fixpoints exist (they appear as a bifurcation).

6. Extend the model to follow this specification (Figure 3C, “Germline v3.xml”). Fate
determination is modelled as the interactions between downstream gene targets of the LIN-
12 and LET-60 pathways.

Note: Through the console tool, fate progression can be tested explicitly using the
“Pathfinder” algorithm. Run the command

BioCheckConsole.exe -engine PATH –model model1.json -model2 model2.json
-state initial_state.csv -state2 target_state.csv

model1.json and model2.json are exported BMA models representing two different
conditions, whilst initial_state.csv and target_state.csv are csv files describing the final
fixpoint for each state.

7. Similar to the above, extend the model to include the “fertilisation” state activated by LET-60
mechanisms to the tension between diakinesis and pachytene states. Again, the finding that
fate progression invariance is achieved through “islands of stability”- that is, fixpoints that can
only reach one fixpoint after a change in conditions.

8. Finally, based on observations in the hybrid model, add a cell cycle “clock” variable (triggered
by time measured in the hybrid simulation) to trigger diplotene (Figure 3D, “Germline
v5.2.json”).

Current Protocols in Bioinformatics September 2019

 9

Basic protocol 3. Constructing a model of the cell cycle using motifs

“Motifs” are small networks that perform a specific function in the cell. Tyson, Chen, and Novak
(Tyson, Chen, & Novak, 2003) characterised these models for continuous modelling in detail.
Subsequently, we established that executable models were similarly expressive, and integrated a set
of motifs into the tool itself (Paterson et al., 2018). Such motifs aid the construction of complex
networks by providing a set of fundamental cellular patterns that can be directly integrated into the
network. Moreover, the tool allows users to create their own motifs based on their systems
requirements.

In this tutorial we will revisit the cell cycle model from Paterson et al., demonstrating how a simplified
version can be constructed out of available motifs. Here you should follow the instructions to build
the model using the steps described. We will go on to show how one motif is not behaving as expected
in the model and show how users can create their own motifs and reuse them. The basic cell-cycle
model from Tyson (Tyson et al., 2003) can be considered as being constructed around three motifs;
two mutual inhibition motifs and a negative feedback leading to an oscillation. These are coordinated
through interaction with cyclin dependent kinases, whose activity rises in response to activation of
the mutual inhibition motifs until finally causing the cell to commit to division.

To complete this tutorial you will need a computer with a modern web browser such as Chrome,
copies of the background papers to reference, and the models supplied in supplementary information.

Steps and annotations

1. Open the motif editor by clicking on the pull-out at the bottom of the screen. Individual motifs
can then be dragged and dropped onto the canvas. Drag the mutual inhibition motif to the
canvas twice, and the oscillation once as shown (Figure 4A).

2. Add an “extracellular” protein to the centre of the model and rename this CDK (right click,
select edit, edit name). Move the receptors on the cells to neighbour this (drag and drop after
clicking to “pan” icon, top left, to start “pan/select” mode), rename the cells and variables,
and connect with activations and inhibitions by dragging interactions as shown (Figure 4B). In
the model, commitment to S and M are both activated and activate CDK, whilst commitment
to division initiates a process that reduces CDK activity and its downstream effectors. To
represent this commitment a self-interaction is included for the division variable. Additionally,
the division process is reset once CDK activity drops to zero.

3. Edit the target functions and ranges for the variables. A key feature of the model is that rising
CDK activity drives the movement of the cell through different stages of the cell cycle. To
reflect this, we increase the range of CDK activity to 0-14, with a mind that a level greater than
one initiates progression through G1, 5 or more triggers G2, and a level of 10 initiates
commitment to division. Set the range of Division to 0-1, to reflect the switch and commitment
to the division process. We also want the process of division to inhibit the G1 and G2 modules,
whilst division is considered “complete” once CDK levels reach 1. Finally, CDK has a constant
basal activity due to growth signals. To achieve this, the following functions should be used
for variables:

a. G1.I = var(CDK)*4-var(Division)
b. G2.I = var(CDK)*2-var(Division)
c. I_a = var(CDK)/4
d. Division = ceil(min(var(CDK),(max(var(A_a),var(Division)))))
e. CDK = 4+var(M)/3+var(S)/3-var(Division)

Current Protocols in Bioinformatics September 2019

 10

4. Finally, test the model by simulation. Run a simulation of 50 steps and the model should give
a cycle (Figure 4C). This reproduces the key features of the cycle- S precedes M, which
precedes division, whilst the level of CDK activation rises to a plateau, rises again in G2, and
then falls following commitment to division.

5. There is however one feature that is incorrect. The first cycle is correct, but the second cycle
(which represents the attractor) does not have a gap between S and M. Examination of the
model reveals that the mutual inhibition loop does not work as expected and that this breaks
the cycle. To demonstrate how to use your own motifs, open the model MI5.

6. Select the whole motif by either left clicking the cell, or right-clicking and dragging to select all
the variables. Then, right click the selected variables and choose “Selection -> Create Motif”.

7. Open the model and drag the new motif from the pull-out as before. It is automatically named
“Clipboard model”, as is a generic description, both of which can be edited by the user by
clicking and editing the text in place. Replace the motifs in the network and reuse the target
functions as above and re-simulate (Figure 4D).

Guidelines for Understanding Results

The protocols here stand as an introduction to the construction and analysis of executable
network models of biological systems. We have focused here on the construction of gene
regulatory networks, but this approach can be applied to a wide range of biological systems. These
have included such diverse systems as metabolic networks (Riedel et al., 2018) and ion flow across
membranes (Shorthouse et al., 2018). This work and others like it illustrate that the methods are
not tied to a specific class of models, and can be broadly applied to different problems.

Commentary

 Background

In each protocol we have constructed a model based on the knowledge of interacting gene
networks and the characterised behaviours of the cell. We start from simple motifs that reproduce
the basic specification, and build up an increasingly detailed picture of the genes and cell
behaviours. The resulting models demonstrate that the proposed mechanism is sound, and can
be used to describe the observation. It further predicts new behaviours- the activation and
inhibition of genes not included in the original network, and conditions that are untested and not
part of the original specification. These predictions can be validated experimentally, and once
confirmed added back to the model for future work.

A central theme of each protocol is the construction of models from smaller, well understood
components. Directly transcribing complex networks from the literature is possible, but can
quickly lead to the development of models that cannot be debugged and refined. The
development of core components that interact enables reliable and understandable model
building and furthermore can help downstream users of the models.

 Critical Parameters

The correctness of the model is most clearly dependent on the network of genes involved. The
orders of dependencies will determine how mutations combine with one another to change cell
properties. More subtly, the target functions must describe thresholds for activity, and the precise

Current Protocols in Bioinformatics September 2019

 11

relationship between genes. A pair of activating interactions may combine redundantly to induce
activity, or the downstream gene may require both active inputs to trigger. Identifying the
appropriate functions to link genes will play a major part of the process of model building.

More subtly, large networks built directly from the literature may obscure more simple underlying
mechanisms of cell control. A model of ~50 genes (for example the model of leukaemia from
(Chuang et al., 2015), https://bit.ly/30UJBSo) could be constructed directly from the literature,
and may be partially correct with refinement. However, if a complex model cannot be refined, the
size of the network may make it impossible to identify which features are causing problems.
Starting from a simple mechanism based on key genes, and building in the detail after establishing
that the small network is correct can avoid this.

 Trouble Shooting

Broadly speaking, two classes of analysis error are more common than others. Models may be too
large and lead to timeout of the analysis used. If this is the case it may be necessary to simplify
the model by removing genes, or reconsider whether the specification can be tested with
simulation or stability analysis, both of which are faster than LTL.

Secondly, target functions may be too complex for the underlying tools to compute. This will give
an unknown response when using analysis. This can be avoided by working to simplify the
functions, reducing the number of operators used. If this is unsuccessful, any bugs/issues can be
reported through the tool’s github page (https://github.com/hallba/BioModelAnalyzer/issues).

Acknowledgements

BAH is supported by the Royal Society through a URF (UF130039) and through an MRC Grant in
Aid to the MRC Cancer Unit. J.F. is a member of the Mark Foundation Institute for Integrated
Cancer Medicine at the University of Cambridge.

Current Protocols in Bioinformatics September 2019

 12

Figure 1. The BioModelAnalyzer user interface. Users interact with the model menu, motif editor,
and analysis tools by clicking to “pull out” an interface that sits over the main canvas. Networks can
be dragged and dropped or click-to-drop using the model building icons, whilst users can pan and
zoom around the canvas through the pan tool.

Current Protocols in Bioinformatics September 2019

 13

Figure 2. Modelling Dictyostelium discoidum cAMP signalling network. (A) The initial model
transcribed from Laub et al. (B) LTL formula that show that there exists a single fixpoint attractor and
a single cycle. “Eventually selfloop” shows that some simulations end in a cycle whilst others in a
fixpoint (indicated by pink/blue stripes). Using the examples of the fixpoint (“A”) and cycle (“B”) we
show that these are unique (solid pink). An alternative query “Eventually (A or B)” would true for all
simulations (and appear solid blue). (C) A model with more than one cell and a shared external cAMP
pool shows synchronous oscillations.

Current Protocols in Bioinformatics September 2019

 14

Figure 3. Evolving models of the C. elegans germline. A-D show sequentially developed models of
increasing complexity. (A) A small model is constructed to fit a simple specification, and later expanded
based on known genes from the literature (B). (C) an extended specification requires an expansion of
cell phenotypes and interactions, whilst the final model (D) includes details of the cell cycle.

Current Protocols in Bioinformatics September 2019

 15

Figure 4. Constructing a cell cycle model from motifs. (A) Initially, subsystems are dragged from the
motif editor. (B) Adding relevant interactions between specific genes allows the subdomains to
coordinate with one another. (C) Initial simulations show that the model mostly reproduces expected
cycles, whilst a refined model (D) does this more accurately.

Current Protocols in Bioinformatics September 2019

 16

Ahmed, Z., Benque, D., Berezin, S., Dahl, A. C. E., Fisher, J., Hall, B. A., . . . Skoblov, N. (2017, 2017//).
Bringing LTL Model Checking to Biologists. Paper presented at the Verification, Model
Checking, and Abstract Interpretation, Cham.

Benque, D., Bourton, S., Cockerton, C., Cook, B., Fisher, J., Ishtiaq, S., . . . Vardi, M. Y. (2012, 2012//).
Bma: Visual Tool for Modeling and Analyzing Biological Networks. Paper presented at the
Computer Aided Verification, Berlin, Heidelberg.

Bonzanni, N., Garg, A., Feenstra, K. A., Schutte, J., Kinston, S., Miranda-Saavedra, D., . . . Gottgens, B.
(2013). Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory
network model. Bioinformatics, 29(13), i80-88. doi:10.1093/bioinformatics/btt243

Bonzanni, N., Krepska, E., Feenstra, K. A., Fokkink, W., Kielmann, T., Bal, H., & Heringa, J. (2009).
Executing multicellular differentiation: quantitative predictive modelling of C.elegans vulval
development. Bioinformatics, 25(16), 2049-2056. doi:10.1093/bioinformatics/btp355

Chuang, R., Hall, B. A., Benque, D., Cook, B., Ishtiaq, S., Piterman, N., . . . Fisher, J. (2015). Drug Target
Optimization in Chronic Myeloid Leukemia Using Innovative Computational Platform.
Scientific Reports, 5, 8190. doi:10.1038/srep08190

https://www.nature.com/articles/srep08190#supplementary-information
Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., . . . Tacchella, A. (2002).

NuSMV 2: An OpenSource Tool for Symbolic Model Checking. Paper presented at the
Proceedings of the 14th International Conference on Computer Aided Verification.

Claessen, K., Fisher, J., Ishtiaq, S., Piterman, N., & Wang, Q. (2013, 2013//). Model-Checking Signal
Transduction Networks through Decreasing Reachability Sets. Paper presented at the
Computer Aided Verification, Berlin, Heidelberg.

Cook, B., Fisher, J., Krepska, E., & Piterman, N. (2011, 2011//). Proving Stabilization of Biological
Systems. Paper presented at the Verification, Model Checking, and Abstract Interpretation,
Berlin, Heidelberg.

Fisher, J., & Henzinger, T. A. (2007). Executable cell biology. Nat Biotechnol, 25(11), 1239-1249.
doi:10.1038/nbt1356

Hall, B. A., Piterman, N., Hajnal, A., & Fisher, J. (2015). Emergent stem cell homeostasis in the C.
elegans germline is revealed by hybrid modeling. Biophys J, 109(2), 428-438.
doi:10.1016/j.bpj.2015.06.007

Helikar, T., Kowal, B., McClenathan, S., Bruckner, M., Rowley, T., Madrahimov, A., . . . Rogers, J. A.
(2012). The Cell Collective: Toward an open and collaborative approach to systems biology.
BMC Systems Biology, 6(1), 96. doi:10.1186/1752-0509-6-96

Kim, J., Heslop-Harrison, P., Postlethwaite, I., & Bates, D. G. (2007). Stochastic noise and
synchronisation during dictyostelium aggregation make cAMP oscillations robust. PLoS
Comput Biol, 3(11), e218. doi:10.1371/journal.pcbi.0030218

Laub, M. T., & Loomis, W. F. (1998). A molecular network that produces spontaneous oscillations in
excitable cells of Dictyostelium. Mol Biol Cell, 9(12), 3521-3532. doi:10.1091/mbc.9.12.3521

Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A. J., Tanaka, Y., Wilkinson, A. C., . . . Gottgens, B.
(2015). Decoding the regulatory network of early blood development from single-cell gene
expression measurements. Nat Biotechnol, 33(3), 269-276. doi:10.1038/nbt.3154

Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., & Chaouiya, C. (2009). Logical modelling of
regulatory networks with GINsim 2.3. Biosystems, 97(2), 134-139.
doi:https://doi.org/10.1016/j.biosystems.2009.04.008

Nusser-Stein, S., Beyer, A., Rimann, I., Adamczyk, M., Piterman, N., Hajnal, A., & Fisher, J. (2012). Cell-
cycle regulation of NOTCH signaling during C. elegans vulval development. Mol Syst Biol, 8,
618. doi:10.1038/msb.2012.51

Paterson, Y. Z., Shorthouse, D., Pleijzier, M. W., Piterman, N., Bendtsen, C., Hall, B. A., & Fisher, J.
(2018). A toolbox for discrete modelling of cell signalling dynamics. Integrative Biology, 10(6),
370-382. doi:10.1039/c8ib00026c

Current Protocols in Bioinformatics September 2019

 17

Riedel, A., Swietlik, J., Shorthouse, D., Haas, L., Young, T., Costa, A. S. H., . . . Shields, J. (2018). Tumor
pre-conditioning of draining lymph node stroma by lactic acid. bioRxiv, 442137.
doi:10.1101/442137

Shorthouse, D., Riedel, A., Kerr, E., Pedro, L., Bihary, D., Samarajiwa, S., . . . Hall, B. A. (2018). Exploring
the role of stromal osmoregulation in cancer and disease using executable modelling. Nat
Commun, 9(1), 3011. doi:10.1038/s41467-018-05414-y

Silverbush, D., Grosskurth, S., Wang, D., Powell, F., Gottgens, B., Dry, J., & Fisher, J. (2017). Cell-Specific
Computational Modeling of the PIM Pathway in Acute Myeloid Leukemia. Cancer Research,
77(4), 827-838. doi:10.1158/0008-5472.can-16-1578

Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of
regulatory and signaling pathways in the cell. Curr Opin Cell Biol, 15(2), 221-231.
doi:10.1016/s0955-0674(03)00017-6

Wright, D. W., Angus, T., Enright, A. J., & Freeman, T. C. (2014). Visualisation of BioPAX Networks using
BioLayout Express (3D). F1000Research, 3, 246-246. doi:10.12688/f1000research.5499.1

