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Abstract  

Genome-wide association studies (GWAS) have identified at least ten single-nucleotide 

polymorphisms (SNPs) associated with papillary thyroid cancer (PTC) risk. Most of 

these SNPs are common variants with small to moderate effect sizes. Here we 

assessed the combined genetic effects of these variants on PTC risk by using 

summarized GWAS results to build polygenic risk score (PRS) models in three PTC 

study groups from Ohio, US (1,544 patients and 1,593 controls), Iceland (723 patients 

and 129,556 controls), and the United Kingdom (UK) (534 patients and 407,945 

controls). A PRS based on the 10 established PTC SNPs showed a stronger 

predictive power compared with the clinical factors model with a minimum increase of 

area under the receiver-operating curve of 5.4 percentage points (P≤1.0x10-9). Adding 

an extended PRS based on 592,475 common variants did not significantly improve 

the prediction power compared to the 10 SNPs model, suggesting that most of the 

remaining undiscovered genetic risk in thyroid cancer is due to rare, moderate to high 

penetrance variants rather than common low-penetrance variants. Based on 10-SNP 

PRS, individuals in the top decile group of PRSs have a close to 7-fold risk (95% CI 5.4-

8.8) compared to the bottom decile group. In conclusion, polygenic risk scores based on 

a small number of common germline variants emphasize the importance of heritable 

low-penetrance markers in PTC. 

 

Significance Statement 
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Thyroid cancer shows a high degree of heritability in comparison with other cancers.  

GWASs have identified at least 10 SNPs associated with PTC risk. How these risk 

factors might help in individualizing the assessment of thyroid cancer risk clinically is 

unexplored. We present PRS analysis with consistent results in three large cohorts (US, 

Iceland, and UK).  The 10 GWAS SNPs have additive effects on cancer predisposition 

and the 10-SNP PRS has equally strong risk predictive power compared to a PRS 

with greater than 500,000 common variants.  Our work demonstrates that the 10 low-

penetrance variants have the potential to be applied in medicine to improve 

individualized cancer risk assessment. 

 

Introduction  

Recent advances in genetic and genomic research have led to the development of 

efficient methods to detect and evaluate diagnostic and prognostic factors in the 

individual patient.  In numerous monogenic and congenital disorders, diagnoses can be 

made based on the occurrence of germline variants.  In contrast, polygenic and 

acquired disorders can be assessed by the study of somatic mutations in the 

appropriate cell or tissue.  Typically, this applies to many cancers where the study of 

genetic mutations in the tumor itself can be diagnostic, prognostic, or informative for 

choice of therapy (1-3).  The present study investigates methods for thyroid cancer risk 

assessment at the germline level.  

 

Thyroid cancer is the 9th most common type of cancer in the world, with an 

annual incidence of over 500,000 cases (over 50,000 of which in the United States) (4, 
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5). Although surgery and other therapies solve most cases, morbidity among patients is 

high, and in some cases, the tumors can have more aggressive behavior.  Thyroid 

cancer can be categorized by histology.  The medullary type accounts for approximately 

5% of all cases arises from parafollicular C-cells of the thyroid.  The remaining 95% of 

all thyroid cancer cases are of the non-medullary type and arise in cells of follicular 

origin.  There are three major histological forms of non-medullary thyroid cancer: 

papillary (PTC), follicular (FTC) and anaplastic (ATC).  PTC alone accounts for ~85% of 

all thyroid cancers. 

 

The concept of this study has already been used in many investigations dealing 

with risk assessment in cancers (4-8). Here we are addressing an aspect of this field 

that has not yet been fully examined, namely the phenotypic effect of low-penetrance 

mutations and their use in individualized thyroid cancer risk assessment.  PTC 

mutations with high penetrance have been found but account for a very minor part of all 

PTC. We and others have suggested that common alleles each conferring a slightly 

increased risk may account for many PTCs and provide an explanation for the high 

heritability of PTC (9-11).  Indeed, many common, low-penetrance SNPs have been 

found to convey PTC risk (12-21).  In this study we analyze the combined genetic 

effects of 10 well established thyroid cancer risk SNPs, by constructing and evaluating 

their polygenic risk scores (PRSs). We also checked for any residual predictive power in 

the remaining genome by generating a genome-wide PRS using 592K tagging SNPs 

and adding it to the 10-SNP PRS as well as including conventional clinical factors. 
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Results 

Study participants and their demographic characteristics. The results reported here 

are based on previously published GWAS of thyroid cancer, with populations from 

Columbus, Ohio and Houston, Texas, in the United States (US), Iceland, the 

Netherlands and Spain (16). In addition, we have incorporated thyroid cancer GWAS 

data generated using genotypic information from the UK Biobank (UKB) (22, 23). The 

addition of UKB results to the meta-analysis of thyroid cancer did not reveal any new 

genome-wide significantly associated risk variants. 

 

 The calculation of the polygenic risk scores (PRS) was done in the three 

largest sample sets coming from Ohio, Iceland and the UK. The Ohio study group is 

comprised of 1,544 thyroid cancer samples, and 1,593 controls (Table 1). From Iceland, 

723 thyroid cancer samples and 129,556 controls were used, and from the UK we used 

534 thyroid cancer cases and 407,945 controls (Table 1).  

 

Polygenic risk score (PRS) analysis in study groups from Ohio, Iceland, and the 

UK and association with cancer risk. The effect estimates included in the PRS 

analysis are based on the meta-analysis of thyroid cancer including all study groups 

listed above. In short, we generated PRSs for the Ohio study group by using effect 

estimates after excluding all samples from the US from our thyroid cancer GWAS meta-

analysis, thereby omitting any potential confounding effects. Similarly, when generating 

PRS for Icelandic and British individuals, corresponding samples from those study 

groups were excluded from the meta-analysis (Table 2). 
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For each individual belonging to the Ohio, Icelandic or UK study groups, a PRS 

was generated using the published 10 GWAS thyroid cancer risk SNPs (10-SNP PRS; 

see Table 2) as well as using 592,475 (592K) common SNPs with minor allele 

frequency > 1% (592K-SNP PRS) . PRS for the 592K common SNPs is estimated 

based on LDpred method adjusting for GWAS summary statistics for the effects of 

linkage disequilibrium (24). The risk loci, risk allele frequencies, and the effect estimates 

of the 10 GWAS SNPs included in the 10-SNP PRS are provided in Table 2. The PRSs 

of the 10-SNPs and the 592K-SNPs are approximately normally distributed among 

thyroid cases and controls (SI Appendix, Fig S1) and are significantly different between 

thyroid cancer cases and controls in all three study groups (p= 2.9×10-58, p= 3.3×10-48 in 

Ohio; p= 1.3×10-48, p= 4.7×10-33 in Iceland; and p= 1.3×10-25, p= 2.2×10-23 in UK, 

respectively, for the 10-SNP PRS and the 592K-SNP PRS)   

  

 

PRSs in prediction models. In order to investigate the predictive ability of PRSs, we 

evaluated prediction models using receiver operating characteristic (ROC) curves.  With 

clinical factors (CF), including: year of birth (YOB), gender, the 10 first principal 

components (PCs), and familiality (not available for the UKB samples), we obtained an 

area under the ROC curve (AUC) of 0.585 (95% CI 0.565-0.605) in the Ohio study 

group. Using the Icelandic- and UKB study groups the results amounted to an AUC of 

0.697 (95% CI 0.680-0.714) and 0.629 (95% CI 0.606-0.651), respectively (see Fig 1, 

and Table 3). By adding the10-SNP PRS to the Ohio model with CF, we obtained a 
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significantly increased AUC of 0.692 (p=3.1×10-21; Fig 1A, Table 3). Similarly, by adding 

10-SNP PRS to the model with CF for Iceland and UKB, we obtained significantly 

increased AUCs of 0.751 (p=3.0×10-14) and 0.694 (p=1.0×10-09), respectively, (Fig 1B 

and 1C, Table 3). 

 

We further evaluated the prediction ability after adding the 592K-SNP PRS to 

the model with 10-SNP PRS and CF (SI Appendix, Table S2 for results for individual 

covariates). For the Ohio and the Icelandic samples AUCs of 0.693 and 0.752, 

respectively, were obtained, showing only a 0.1 percentage point increase over the 10-

SNP PRS model (p=0.34 and p=0.31) (Fig 1A, 1B and Table 3). In the UKB samples 

an AUC of 0.697 was obtained, or a non-significant 0.3 percentage point increase 

(p=0.27) (Fig 1C and Table 3). Together, these results demonstrate that no significant 

improvement was achieved by adding the genome–wide PRS (592K-SNP PRS) to the 

model. 

 

In a multi-collinearity analysis, we observed variance inflation factors (VIFs) of 

2.32 and 2.32, and of 2.04 and 2.04 in the Ohio and UK study groups, respectively 

and for the 10-SNP and 592K-SNP PRS scores, respectively, included in the all-

predictive factors combined model. The VIF in the Icelandic study group is somewhat 

smaller, compared to the other two study groups, of 1.64 and 1.63 for the 10-SNP 

and 592K-SNP PRS scores. The VIF indicates how much larger the variance is, 

compared to what it would be if the respective variables included in the model were 
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not correlated with each other. Moreover we estimated that the 10 SNPs under study 

explained ∼8% of the familial risk of thyroid cancer in the Ohio study group. 

  

Assessing thyroid cancer risk by 10-SNP PRS percentile groups based on the 

meta-analysis results from Ohio, Iceland and the UK. We meta-analyzed results 

from Ohio, Iceland and the UK after ranking 10-SNP PRS scores for each individual 

and correlating it with the cancer status. Individuals in the top decile group of the 

PRSs have a 6.9-fold risk compared to the bottom decile group (P=5.1×10-54; Fig 2). 

This difference is substantial and might be useful in clinical counseling.  

 

Discussion  

Our findings largely confirm a previous estimate that 11% of the genetic predisposition 

to PTC could be accounted for by the interaction of 5 common SNPs (4).  In our present 

study involving 10 SNPs and larger numbers of cases the proportion was slightly 

smaller (8%); this can probably be explained by a somewhat different sample set and 

higher genetic resolution applied in the present study. Nevertheless, the fraction of 

predisposition accounted for is quite low even when ~592,000 common SNPs were 

investigated.   

 

Interestingly, our data indicate that the 10-SNP PRS in the prediction model of 

thyroid cancer performs equally well compared to the combined model with 10-SNP 

PRS and common 592K-SNP PRS in all three study populations.  Our observations 
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further support the notion that the ten variants previously detected by GWAS are 

important genetic factors conferring thyroid cancer risk (16). The majority of the 

variants (9 out of 10) are located either intronic or intergenic, while only one SNP 

rs6793295 is a missense variant in the LRRC34 gene in  3q26.2 (16).  This coding 

variant is also significantly associated with the risk of multiple myeloma, monoclonal 

gammopathy and interstitial lung disease (25, 26). Interestingly five non-coding 

variants (rs11693806, rs2466076, rs1588635, rs368187 and rs116909374) are also 

associated with serum levels of thyroid function related hormones (TSH, T3 and T4) 

and the SNP rs116909374 is associated with hypothyroidism (12, 13, 16, 27). The 

intergenic non-coding variant rs7902587 in 10q24.33 is significantly associated with 

lung cancer and ovarian cancer and rs11693806 in 2q35 is associated with breast 

cancer (28-30).  

 

Our data suggest that the current PRS models with either 10-SNP or 592K-SNP 

PRSs could still have the problem of missing heritability (31, 32).  Most likely, only few 

other common variants may remain to be discovered as the 592K-SNP PRS was 

designed to assess and estimate the contribution of such variants (16). We therefore 

hypothesize that hitherto undetected low frequency or rare DNA variants, in particular 

those located in regions of low linkage disequilibrium (LD), may play a role in PTC risk 

prediction (33). Indeed, we and others have demonstrated that there is a high degree of 

genetic heterogeneity in thyroid cancer (34-36).  We have identified multiple rare or very 

low frequency DNA variants which may contribute to the predisposition of familial and 

sporadic PTC (35-38).  Identification of additional low frequency and/or rare germline 
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DNA variants may benefit the assessment of additive genetic effects in PRS models 

and personalized medical diagnosis and treatment (32).  We note with great interest 

that the recent studies by Vogelstein et al. have reached the same conclusion in that the 

great majority of the driver mutations in PTC are somatic events occurring randomly in 

stem cells of the target organ (39, 40).  These findings appear to predict that only few or 

very few additional high-penetrance germline variants will be found in the future.  

Nevertheless the data presented here further support that individual PTC-associated 

variants confer small or modest disease risk, but the combined effect of the known 

associated SNPs on PTC risk can be substantial in predicting cancer risk (4, 16, 20). 

Our data provide evidence that PRS could be used for profiling individuals in the highest 

and lowest relative risk groups for thyroid cancer, which has potential for the 

development of population-based risk screening and stratification programs as 

demonstrated in other cancers (7, 41-44).   

 

The strength of our current study is the availability of large numbers of case-

control samples from three study groups representing different areas of Caucasians 

(Ohio, Iceland and UK).  We used effect sizes obtained from meta-analyses of the 

Iceland/UK study groups, Ohio/UK study groups, and Ohio/Iceland study groups to 

estimate PRSs in the excluded population, Ohio, Iceland and UK, respectively.  The 

PRSs constructed in this study omitted any confounding effect from the study 

populations being used to evaluate the correlation between the PRS and the disease 

status.  Overall, the data presented here provide further evidence that PRS exhibits 

strong association with thyroid cancer.  Fritsche et al reported association of PRSs in 
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multiple cancers, including thyroid cancer, using a PRS with 8 SNPs (7). Interestingly, 

they found an attenuated association between increasing thyroid cancer PRS and 

reduced risk for hypothyroidism (7).  

 

In our study, thyroid cancer patients belonging to the top decile of the 10-SNP 

PRS have a close to 7-fold risk, relative to the bottom decile, based on meta-analysis 

results including data from Ohio, Iceland and the UK. We conclude that hereditary 

germline variants should be taken into account alongside the traditional high-penetrance 

variants/somatic mutations that have already become standard of care in the clinical 

handling of PTC (45-47). Identifying individuals with high genetic risk may prove useful 

to optimize screening for thyroid cancer. 

 

Materials and Methods  

Study populations. The thyroid cancer meta-analysis has been described previously 

(16). In short, the meta-analysis included totally 3,001 non-medullary thyroid cancer 

patients and 287,550 controls coming from Iceland, Ohio and Texas in the US, the 

Netherlands, and Spain (SI Appendix, Table S1). In the present study we added thyroid 

cancer GWAS data from the UKB (accessed under Application Number: 24711); 

comprised of samples from 534 patients  with ICD code = C73 (PTC, FTC, 

Cancer/Carcinoma and rare non-medullary) and 407,945 controls, not known to have 

thyroid cancer (SI Appendix, Table S1) (22).  
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Genotyping. The genotyping and imputation for the study groups from Iceland, Ohio 

and Texas in the US, the Netherlands, and Spain has been previously described (16). 

Genotyping of UKB samples was performed using a custom-made Affymetrix chip, UK 

BiLEVE Axiom (48), and with the Affymetrix UK Biobank Axiom array (49). Imputation 

was performed by the Wellcome Trust Centre for Human Genetics using the Haplotype 

Reference Consortium (HRC) and the UK10K haplotype resources (49). This yielded a 

total of 96 million imputed variants, however only 40 million variants imputed using the 

HRC reference set were used in this study due to quality issues with the remaining 

variants.  

 

Variants in the UK imputation dataset were mapped to NCBI Build38 positions 

and matched to the variants in the Icelandic dataset based on allele variation. The 

results from all study groups were combined using a fixed effect model in which the 

study groups were allowed to have different population frequencies for alleles and 

genotypes but were assumed to have a common OR and weighted with the inverse of 

the variance. Heterogeneity (Phet) was tested by comparing the null hypothesis of the 

effect being the same in all populations to the alternative hypothesis of each population 

having a different effect using a likelihood ratio test. I2 lies between 0 and 100% and 

describes the proportion of total variation in study estimates that is due to heterogeneity. 

 

Polygenic Risk Score. To evaluate the additive genetic effect of variants, we created 

polygenic risk scores (PRSs) as the sum of effects of each allele representing selected 
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sets of variants as described in Vilhjalmsson et al (24). For the PRS analysis, we 

regenerated three meta-analysis datasets, each time excluding data from the study 

group in which we intended to assess correlation between the PRSs and affection 

status (i.e. when generating PRSs for Icelanders we used effect estimates from a meta-

analysis after excluding Icelandic results). 

 

PRSs were generated using two different sets of variants: a) the10 published 

GWAS thyroid cancer risk variants, and b) using 592,475 common variants based on 

the previously published meta-analysis (16) including the addition of the UKB data 

described above. All PRS scores were standardized to have a unit standard deviation. 

Odds ratio per unit standard deviation increase is reported. 

 

Statistical Analysis. Logistic regression analysis was used to assess the association of 

PRSs with thyroid cancer status, adjusting for year of birth, gender, ancestry with 10 

principal components and familiality based on self-reported first or second-degree 

relative information. Familiality information was not available for the UKB samples. 

Strength of prediction models to predict thyroid cancer against controls was assessed 

by comparing the area under the curve (AUC) of the respective receiver operating 

curves (ROC) that plots the true-positive rate against the false-positive rate. ROC 

curves were compared by applying DeLong’s test (50). Higher AUC indicates better 

model performance. We examined all pairwise correlations and calculated variance 

inflation factors (VIFs) associated with the PRS models (51). PRS percentile groups 
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were used to create categorical predictors, and risk of thyroid cancer between percentile 

groups was assessed applying logistic regression. Odds ratios (OR) per one SD 

increase to estimate the associations and AUCs to assess the discriminatory accuracy 

are presented with 95% CI. Familial relative risk assessment is estimated with 10-SNPs 

assuming an overall familial relative risk of 8.48 for thyroid cancer (16, 52, 53). 

 

Data Availability. The authors declare that the data supporting the findings of this study 

are available within the article, its Supplementary, and upon reasonable request 

addressed to the corresponding author(s). The UK Biobank data can be obtained upon 

application (ukbiobank.ac.uk). 
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Figure Legends 

 

Figure 1. Receiver–operator characteristic (ROC) curves assessing the discriminative 

power of the PRS models. (A) The Ohio study group. (B) The Iceland study group. (C) 

The UK study group. CF, Clinical factors model with year of birth, gender, ancestry, and 

familiality except for the UK where no information was available about family history of 

thyroid cancer. 

Figure 2. Odds ratio (OR) estimates for 10-SNP PRS deciles of thyroid cancer status 

obtained from the meta-analysis results from Ohio, Icelandic, and the UK study groups; 

using the bottom 10-SNP PRS decile (0%–10%) as the reference group (shown as a 

horizontal solid line). 

 

 

 







Table 1. Summary of demographic characteristics of the Ohio, Iceland and UKB study 
groups 

Study group Characteristic Patients Controls 
Ohio Total 1,544 1,593 

Gender 
        Male n(%) 395 (26) 423 (27) 
        Female n(%) 1,149 (74) 1,170 (73) 
Mean age (sd.) 42.9 (±15.1) 45.2 (±14.0) 
Median year of birth (range) 1962 (1913-2001) 1963 (1918-1991) 

 
First or Second degree relative 
diagnosed with thyroid cancer   
         Yes n(%) 135 (8.7) 9 (0.6) 
         No n(%) 1,409 (91.3) 1,584 (99.4) 

Iceland Total 723 129,556 
Gender 
        Male n(%) 183 (25.3) 60,282 (46.5) 
        Female n(%) 540 (74.7) 69,274 (53.5) 
Mean age (sd.) 49.3 (±17.3) 60.4 (±18.0) 
Median year of birth (range) 1946 (1911-1989) 1956 (1890-1990) 

 
First or Second degree relative 
diagnosed with thyroid cancer   
         Yes n(%) 84 (11.6) 6,455 (5.0) 
         No n(%) 639 (88.4) 123,101 (95.0) 

UKB Total 534 407,945 
Gender 
        Male n(%) 131 (24.5) 187,661 (46.0) 
        Female n(%) 403 (75.5) 220,818 (54.0) 
Mean age (sd.) 51.8 (±12.18) 64.1 (±8.00) 
Median year of birth (range) 1949 (1938-1969) 1950 (1934-1969) 

 
*First or Second degree relative 
diagnosed with thyroid cancer   
         Yes n(%) na na 

           No n(%) na na 
*No information about family history of thyroid cancer is available for the UKB samples 
 



 

Table 2. Effect estimates used in PRS model in each study group. 

    
 

          
 

    Ohio Iceland UKB 

Marker Locus 
Position 

(bp)* 
OA EA EAF ORa EAF ORb EAF ORc 

rs12129938 1q42.2 233,276,815 G A 0.81 1.2 0.783 1.16 0.775 1.32 

rs11693806 2q35 217,427,435 G C 0.318 1.43 0.285 1.37 0.279 1.43 

rs6793295 3q26.2 169,800,667 C T 0.755 1.2 0.78 1.16 0.729 1.23 

rs73227498 5q22.1 112,150,207 T A 0.891 1.28 0.855 1.33 0.863 1.37 

rs2466076 8p12 32,575,278 T G 0.528 1.32 0.467 1.3 0.452 1.32 

rs1588635 9q22.33 97,775,520 C A 0.476 1.64 0.356 1.72 0.326 1.69 

rs7902587 10q24.33 103,934,543 C T 0.12 1.25 0.095 1.22 0.098 1.41 

rs368187 14q13.3 36,063,370 C G 0.626 1.33 0.523 1.28 0.55 1.39 

rs116909374 14q13.3 36,269,155 C T 0.044 1.71 0.049 1.73 0.038 1.71 

rs2289261 15q22.33 67,165,147 G C 0.7 1.14 0.669 1.22 0.647 1.23 

* the chromosomal position in base pairs (bp) with reference to Build 38, the effect allele (EA) and the other allele 
(OA), the effect allele frequency (EAF) in controls for each study group, and the odds ratio (OR) used to calculate the 
polygenic risk score for each study group. 

aOdds ratio from the meta analysis after excluding results for the Ohio study group 
bOdds ratio from the meta analysis after excluding results for the Icelandic study group 
cOdds ratio from the meta analysis after excluding results for the UKB study group 



1 
 

  

Table 3. Classification results for different models in each study group 

 
    

Study group Model AUC 95% CI P-value* 

Ohio CF 0.585 (0.565-0.605) Reference 

 

CF+10SNPs_PRS 0.692 (0.673-0.710) 3.10E-21 

 

CF+10SNPs_PRS+592KSNPs_PRS 0.693 (0.675-0.712) 0.34 

Iceland CF 0.697 (0.680-0.714) Reference 

 

CF+10SNPs_PRS 0.751 (0.736-0.768) 3.00E-14 

 

CF+10SNPs_PRS+592KSNPs_PRS 0.752 (0.680-0.714) 0.3 

UKB CF 0.629 (0.606-0.651) Reference 

 

CF+10SNPs_PRS 0.694 (0.673-0.716) 1.00E-09 

  CF+10SNPs_PRS+592KSNPs_PRS 0.697 (0.676-0.719) 0.27 

*The P-value is for the stepwise addition of factors shown in the Model column 
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