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Abstract 

Animals and humans use a midbrain structure to coordinate and process relevant visual and auditory stimuli while 

suppressing distracting information. In modelling this assembly and managing both environmental and 

physiological stimuli using engineering principles, my research aspires to deep learning models that sense, 

categorize and alert autistic individuals of ecological distractions, biophysical cues and other multimodal input 

that—left unchecked—could decrease individual focus and increase distractibility and anxiety. The designs that 

follow are based upon valid and reliable constructs presented in recent, peripherally related research, including: 

(i) a framework for developing adaptive intelligent user interfaces that enhances user experience (Johnston et al., 

2019); and, (ii) convolution neural networks (CNNs) that improve expression recognition through emotion-

modulated attention (Barros et al., 2017). My intention is to weave a compelling and explicit rationale as to how 

and why deep learning models make the most sense when learning tasks derived from image, time-series and text-

data and applying these to the SensorAble Research Project.  

Keywords:  Autism Spectrum Condition, Attention, Focus, Machine Language, Convolutional Neural Networks, 
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1. Introduction 

Previous research proposes neurocomputational 

models that learn emotional expressions and 
subsequently modulates emotional recognition (Barros 

et al., 2017). Identifying emotional expressions in a 

cluttered environment is implemented through input 

images sensed and processed by a convolutional neural 

network. Experiments have shown that with CNN, 

attention improves recognition when used as a cognitive 

modulator. By re-engineering these neural processes, 

and by substituting different input(s), I propose a nearly 

identical deep learning model that may improve not just 

emotional-modulated attention, but overall attention 
that aims to filter stimuli and subsequently alert autistic 

individuals to myriad and heterogenous cues that causes 

distraction, anxiety and other undesirable conditions.  
Figure 1: Engineering Components of Adaptive Systems 
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At a 35,000’ level, three engineering components are 

required to deliver an adaptive system that enhances 

user experience (e.g. greater focus, reduced distraction 

and attenuated anxiety). These appear in Figure 1 and 

 

Figure 2: How does SensorAble aim to recognise distracting stimuli? 

include dynamic, adaptive and intelligent interfaces—

of which—research has identified an intersectional gap 

in their interactivity (Johnston et al., 2019). Specifically, 

dynamic systems understand the user, their device and 

their environment to provision a basic user experience. 

Adaptive interactivity extends these basics by including 

a user’s capabilities, accessibility issues and flow within 
the ecological/physiological space. The intelligent 

element employs machine learning algorithms that 

deliver a personalised user experience based on her/his 

unique objective(s) and/or thresholds. Ultimately, this 

decreases the “user’s cognitive load and enhances their 

cognitive and interactive experience” (Ibid, 2019, 32).  

 

1.1. Redefining the research questions: 

Manipulating previously identified neurocognitive, 

psychological and social science research questions is 

necessary—now from a re-imagined engineering 

perspective, specifically: 

Q1.: Can ecological and physiological data help train 
deep learning (DL) models to distinguish distracting 

stimuli and localize their position? 

Q2.: Can a trained model be used when comparing 

attentional thresholds and create subsequent data 

alerting a user when their distractibility and anxiety 

increases (e.g. based upon visual, sonic, inertial and 

physiological inputs)? 

Q 3.: Can DL models be used to identify and predict 

disrupting stimuli before they occur? 

Q 4.: Can these models be trained to overcome the 
paradox of typically narrowing results versus the ever-

widening heterogeneity in autism? 

Q 5.: Can this paradox be generalized to a wider 

autistic community beyond the laboratory; and, can DL 

models be operationalized and correlated to field-based 

distractions bound by in situ accounts? 

 

1.2. Blending engineering with biological 

neural mechanisms 

Processing visual spatial, auditory attention and 

physiological stimuli occurs within several areas of the 

brain. One such area—the superior colliculus (SC)—is 

the primary neural mechanism integrating stimuli while 

processing target selection and motor consequences 

(Driver, 2001; Krauzlis, 2013). From an engineering 

perspective, neurophysiologists have studied SC and 

engineered how it assimilates multimodal impulses by 

means of perceptual cue computations that trigger 

attention (Ursino et al., 2014; Bauer et al., 2015).  

United among these discoveries is the proposition that 

selective attention is modulated by the affective 
implication of sensory inputs (Vuilleumier, 2005). 

Behaviourists have shown that attention to expressive 

cues (rather than neutral prompts) are reflexive and 

involuntary; that is, visual targets expressing an 

emotional stimulus are recognized more quickly than 

those without analogous emotional indicators 

(Eastwood et al., 2001; Williams et al., 1996).  

Blended training (resulting from assorted input 

signals) increases accuracy, suggesting that engineering 

of multimodal sensory inputs may provision more 

robust integration when distractibility is present 

(Castellan et al., 2008). Predictably, the preponderance 

of machine learning (ML) studies apply to singular 

modalities and reach acceptable performance levels for 
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just discrete tasks (Li et al., 2015; Viola et al., 2004). 

This represents a challenge as typical ML training (e.g. 

face detection or singular domain stimuli) does not 

support emotional recognition or, for that matter, 

SensorAble’s aims.  

Remember that SensorAble aspires to environmental 

and physiological inputs—not isolated facial images or 

body movements. Figure 2 provides a graphical 

example of a singular visual distracting stimuli affecting 

pupillary and/or gaze data—the latter of which is used 

to train a DL model. Transforming eye data streams to 

a time frequency image could provision ML.  

Figure 3 shows how SensorAble proposes building on 

singular training by provisioning multimodal stimuli 

across audiometric, physiological/anxiety and inertia 
files to train CNN. Each data stream is converted from 

a fundamental state using time-frequency 

transformations that leverage greater validity and 

reproducibility during DL image training procedures.  

SensorAble dimensions formerly successful training 

of expressive recognition and through CNN models that 

distinguish amid facial and body lexes. Those studies 

and their related engineering/designs may scaffold 

SensorAble’s model from an emotional-basis to a 

perception-based system using multimodal sensory 

inputs (e.g. sonics, inertia, galvanic skin response 

(GSR), electrodermal response (EDR), electrodermal 

activity (EDA), skin conductance response (SCR)—

and optics). This may offer significant advantages 

particularly in heterogenous conditions like autism by 

classifying hundreds of thousands of bio/ecological data 

points per mode and then labelling them as distracting.  

From an engineering view, SensorAble utilises these 

multiple stimuli when replacing singular visual data to 

train and enable CNN to discriminate among distracting 

and focussing stimuli (conveyed by ecological and 

physiological activity in Fig. 3) rather than just facial 

expression or movement cues. In so doing, SensorAble 

may become an Intelligent User Interface (IUI) that 

functions in combination with Machine Learning (ML) 
algorithms to tailor a user experience that “provide[s] a 

better user journey" (Johnston et al., 2019, 33). 

 

1.3. Framework definition 

There are myriad challenges to this framework: “the 

main [one] being the type of ML algorithms that…work 

across more than one domain" (Johnston et al., 

2019:34). As SensorAble seeks to train CNN on 

multimodal sensory data—including visual, sonic, 

inertia and physiological types—researchers discovered 

how algorithms assist an “adaptive layout of an 

interface…with user flow, usability and functionality 

aspects" (Ibid, 2019, 34). It is highly critical, then, to not 

only inform and train systems of both meaningful and 

multiple eco/biological data, but of sensory inclinations, 

thresholds and distinctive potentials of each user. 

 

1.4. Improving and extending an already 

working system  

Scientist have shown that even when CNN input is 

composed of a single image sequence, “model training 

autonomously learns separate cue-specific filters” 

(Barros et al., 2017, 105). Unlike traditional systems 

that use labelling for learning methods, probability 
distributions (a more contemporary technique) enables 

image localization through selective attention. This is an 

important consideration as SensorAble may also be able 

to substitute alternative stimuli to triangulate spatial 

calculations (e.g. Figures 3 and 4 utilise three and two 

domains to elicit localization). 

By combining multiple sensory inputs, stimuli 

localization has proven possible the harmonization of 

regions corresponding to directional and probabilistic 

estimates. SensorAble aspires to similar feed-forward 

methods that evaluate distracting stimuli against an 

individual’s pre-defined thresholds. Comparably, 

scientists have calculated combinations of facial 

properties and body movements to detect emotionally 

relevant image areas. By substituting ecological and 

physiological data streams for these facial and body 

data, SensorAble proposes a re-engineering of similar 

combinations and calculations. 

This study anticipates an analogous strategy using 

specific inputs comprised of: (i) single image sequences 

of eye tracking, pupillary and gaze fixation data; (ii) 

audiometric sensing of ambient amplitude, frequency 

and spatial distribution; (iii) inertial measurement units 

tracking individual head sway; and, (iv) physiological 

measures sequencing individual GSR, EDR, EDA 

and/or SCR. These inputs may provide critical training 

data across various domains, sensory inputs, 

classifications, filters and response triggers for 

heterogenous use (see Table 1). Further, SensorAble 

may rely on engineering and sensor data that is cloud-

stored (e.g. Google BigQuery, AWS ML, etc.) aiding in 

relation to security and performance.  

 

2. Deep attention model 

The SensorAble model aspires to hierarchical 

learning and selective attention using CNN. This project 

differs from traditional CNN-based approaches in two 

aspects: first, SensorAble’s input stimuli are composed 

of an entire physiological and ecological scene. By way 

of example, any combination including or eschewing 

people expressing emotions, anxiety or related bodily 
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data may or may not be included and combined with 

ecological data demonstrating distracting stimuli. 

Second, the network is trained to (a) localize where 

distraction(s) and/or anxiety(ies) exist; and, (b) identify 

if detected distractions or anxieties cross thresholds that 

attract the model’s attention along with any number of 

subsequent and related triggers (e.g. a haptic alert, 

audiometric filtering, coaching, etc.—listed as response 

triggers in the Table 1 below).  

 

 

Figure 3: Combined multi-sensory inputs (across three domains) may provide greater accuracy  

when training models to localize stimuli and respond with subsequent alerts. 

 

 

 

 

 

Figure 4: A two-domain training example utilising  

optical face and movement data to localize emotional stimuli. 
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While many contemporary CNNs learn hierarchical 

descriptors from input stimuli and then describe input 

data into smaller, highly abstract representations, 

SensorAble—like those studies from Barros, Johnston 

et al., (2017; 2019)—does not use a strict classification 

technique. Rather than learning tiered contours and 

shapes used in general image recognition tasks, 

convolutional units instead train on sensorial and spatial 

information sometimes originally existing as images 

and other times transformed into visual data (Speck et 

al., 2016).   

Traditional CNNs train upon image libraries 

commonly assembled from digitized photographs, 

video/film frames, etc. SensorAble must use re-formed 
stimuli adapted into time-frequency transformations 

(e.g. audio or biometric signal turned into visual form). 

Explicitly, ecological audio stimuli are filtered first and 

later optimized from a frequency and amplitude 

perspective to better match human hearing spectrums 

and traits. This re-shaped bandwidth and amplitude 

affords supplementary benefits leading to more efficient 

training, processing, recognition and altering of 

resultant triggers due, in no trivial part, to the reduction 

size of initial data streams—much of which are outliers 

to human hearing and cognition. 

As mentioned previously, traditional models have 

successfully detected emotional events using facial 

expressions and body movements. Their associated 

convolutional units trained on feature processing from 

entire images. More recently, newer systems differ from 

this type of classification task by not necessarily tuning 

convolutional units to designate forms. Rather, they 

identify where an expression is located within an image. 

This hierarchical localization represents a level of 

preciseness within a sub-region of an image. In these 

systems, a CNN’s first layers learn how to detect 

Regions of Interest (ROI) that are then fine-tuned in 

successive, deeper layers. Because pooling units 

increase spatial invariance, they are applied to the last 

layers only, leaving earlier layers composed of only 

stacked convolutional units. Localization training such 

as this uses learning strategies based on probability 

density functions (Barros et al., 2017, 2015).   

 

3. Filtering for perception and 

responsiveness 

Barros et al.’s models were trained with full images 

and without dissection (e.g. facial expression and body 

movement were processed homogenously by 

convolutional filters). Once trained for combined visual 

stimuli, filters were then apportioned to either facial or 

movement reactivity. Using a deconvolution process in 

the network’s last layer, the system reflects learning of 

differing modality detection. For example, filters 1–3 

learned facial while filters 4-6 trained on movement.  

SensorAble aspires to employ distraction onset and 

localization training to then alert and filter ecological 

 

Domain  Sensory Input CNN Classification Response Triggers 

Visual 

Eye tracking 

Infrared camera detection of 

pupil centres corneal reflections 

(PCCR). Reconstructs direct 
analogues of pupilometer 

measures from pupil diameter. 

Measures pupillary fixation, 

duration, saccade length and 

visit counts. 

Classification of ~ 2,445,504 

images from 1,474 persons 

yielding a model- and 
appearance-based (AB) 

classification and gaze 

estimation. The model is tested 

against existing AB CNN 

approaches, achieving better eye 
gaze accuracy with significantly 

fewer computational 

requirements. 

V.T.1.: Sequencing patterns for 

attention, distraction and memory 

V.T.2.: Capable of measuring 

direction, intensity and emotion.  

V.T.3.: Works with V.T.1. for 

localization disturbances. 

Pupillary size 

Gaze fixation 

Sonic 

Amplitude—perceived loudness 

or softness of sound 

Quantified using 

multipattern transducers 

(microphones) in a binaural 

configuration and then 
converted to images using 

Time Frequency 

Transformation (TFT). 

100M data set consisting of 

70M training, 10M evaluation, 

20M validation videos 

consisting of ~5.4M hours of 
audio. Each file is classified and 

identified from a set of ~31k 

labels. 

S.T.1.: Adjusts loudness 

pending amplitude classification 

and user preference. 

S.T.2.: Adjusts equalisation 
based upon frequency 

classification. 

S.T.3.: Adjusts frequency 

spectrum pending sidechain input 

Frequency—perceived pitch 

including timbre, resonance and Q 
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Spatial location—perceived 

location of sound in a stereophonic 

field  

of frequency modulated volume. 

S.T.4.: Adjusts distracting 

sonic localization from actual 

spatial position to desired focal 

point. 

Inertia 

Head sway 

Quantified by IMU 
detection of vertical standard 

deviation of head position over 

a duration of one minute. The 

head face position is estimated 

from the detected eyes 
positions resulting from V.T.1.-

3. 

Human activity recognition 
(HAR) is a classification task for 

recognizing human movements. 

HAR uses inputs signals from 

videos or multichannel time-

series, including inertial 
measurement unit (IMUs). 

Traditional HAR segments 

sequences using a sliding-window 

approach, extracting hand-crafted 

features from sequences, while 
training a classifier for assigning 

certain action sequence labels.  

I.T.1.: Works in tandem with 
visual and sonic domains to 

determine disturbance, lack of 

focus and localization. 

Physiological 

GSR/EDR—arousal, sweat, fear, 

anger, startled response 

Quantified by applying an 

electrical potential between two 

points of skin contact and 

measuring the resulting current 

flow between them. 

Multiple heterogeneous sensors 

provide reliable data. Adaptive 

CNN models have improved 

emotion classification accuracy 

and reducing model instabilities. 
Effective spectrogram feature 

extraction and multimodal 

classifiers use two features as 

input at the first layer of a fully 

connected network. 

P.T.1.: Works in tandem with 

V.T.2. (pupillary size) to 

determine anxiety. 

P.T.2.: Works with visual, 

sonic and I.T.1. (inertia) to 
determine onset of distractions and 

localization features. 

EDA—cognitive states, arousal, 

emotion and attention  

SCR – fear, anger, startled 

response, orienting response 

Table 1: Domain, Input, CNN Classification and Response Triggers 

 

and physiological data to the benefit of the individual. 

Once the system is successfully trained to filter for 

perception types, as previously mentioned, SensorAble 

aspires to leverage response triggers to clarify offensive 

and/or distracting stimuli (e.g. spatially re-align audio 

data that does not correlate to active focal points; 

attenuate unpleasant frequencies or amplitudes that may 

be inversely proportional and out-of-phase to disrupting 

signals; and/or, predict environmental cues that may 

exacerbate anxiety but are then modulated by haptic 

alerts prior to onset). 

 

3.1. A one-sided attentional model 

The two-stage hypothesis of emotional attention 

states that attention stimuli are first processed as a fast-

forward signal by the amygdala complex, and then used 

as feedback for the visual cortex (Bullier, 2001). While 

theory provides for multiple connections between 

complex and cortex, previous CNN models like Barros 

et al.’s use one-sided modulation; that is, from attention 
to perception modelling. Based on theory, these models 

begin as fast-forward processing of attention and then 

use detected regions as perception inputs. 

These systems use attentional features to modulate 

perception; specifically: (i) images are fed to attention 

CNN; (ii) a region is obtained; (iii) the model detects 

face and/or body features; and, (iv) filters integrate in a 

second convolutional layer of a Cross-Channel 

Convolution Neural Network (CCCNN).  

 

 

In turn the second layer of existing systems typically 

proceeds convolution of movement which occurs in a 

third layer to discern similar features (no longer 

Figure 5: Last-layer filtering and whole feature extractions. 
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physiognomy but now gesture). This is depicted in 

Figure 6 below.  

 

4. Experimental results 

These existing models were evaluated using three 

different stimuli encompassing face, body movement 

and a combination of the two. Selective attention 

leveraged three scenarios including none, one and two 

displayed expressions. Results with one expression 

presented by a single face yielded top-20 accuracy of 

nearly 88%. With one body movement, accuracy was 

85%. The best results were achieved by combined cues 

yielding >93%. Not surprisingly, two expressions/two 

persons presentations resulted in a drop of 76% for face 

and 68% for movement. When both expressions were 

present across two people, accuracy increased to ~85%.  

 

5. Discussion 

Regardless of models previously experimented or 

proposed, convolutional neural networks require 

immense data quantities to train properly. Barros et al.’s 

network has many connections to train and thus 

demands more computational effort because it is a 

CCCNN. However, once trained, computational costs 

for recognition demand are surprisingly low. The 

researchers reported that “a Core I5 computer with a 

graphic card Nvidia Quadro K620 [produced a typical] 

one training epoch of our CCCNN with attention [of] 

around 4.8 minutes, while one forward pass took 0.4 s” 

(Barros et al., 2017, 111).  

 

6. Conclusion 

Differing from traditional CNN-based classification 

tasks, SensorAble proposes a model with probability 

distributions that indicate focus on attention. Similar to 

more recently structured systems, these models use 

unlabelled expressions to identify attention regions, 

being able to distinguish between emotional and neutral 

expressions that are substituted with visual, sonic, 

inertia and physiological data streams. Similar models 

have shown success as attention modulators for a Cross-

Channel Convolution Neural Networks (CCCNN), 

improving upon CNN recognition capabilities. This is 

an applicable extension to the multitude of sensory 

modalities SensorAble aims to modulate with conjoined 

data input and compound response triggers.  

Similar to CCCNN, SensorAble seeks to derive 

localization from an entire eco/physiological scene, 

where distracting stimuli/data are trained on the network 

which then subsequently learns where to focus. When 

expressions are observed, SensorAble concentrates on 

those stimuli that both exceed a threshold and match a 

focus, distraction and anxiety profile personalized by 

the individual. As in previous studies, SensorAble 

aspires to differentiate between two non-neutral stimuli, 

even if only one presents an attentional peak that may or 

may not correlate to an individual’s threshold/profile. 

Like other CCCNN, this project aims to learn filtering 

algorithms that react to multiple stimuli even if the one 

or more may not have been explicitly defined.  

From an engineering prospective, selective attention 

modulated by a stimulus (e.g. affective behaviour), 

provides evidence that salience influences 

responsiveness. These CCCNN use top-down 

mechanism simulating the selective, neuronal attention 

in the brain where distracting expressions attract more 

attention than neutral lexes.  

Finally, Barros et al., suggest that “the integration of 

auditory information as a perceptual cue would give 

 

 

Figure 6: Flowchart of a Cross-Channel Convolutional Neural Network (CCCNN) 

processing facial and bodily movement data streams. 
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[their] model a more robust multimodal mechanism for 

emotional attention. Therefore, we expect that the 

addition of auditory information would increase 

precision…and approximate our computational 

approach to neurobiologically-motivated neural 

mechanisms for multimodal integration and attention” 

(Barros et al., 2017, 113).  
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