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Abstract

In contrast to the symmetries of translation in space, rotation in space, and translation in

time, the known laws of physics are not universally invariant under transformation of scale.

However, a special case exists in which the action is scale invariant if it satisfies the follow-

ing two constraints: 1) it must depend upon a scale-free Lagrangian, and 2) the Lagrangian

must change under scale in the same way as the inverse time, 1=t. Our contribution lies in

the derivation of a generalised Lagrangian, in the form of a power series expansion, that sat-

isfies these constraints. This generalised Lagrangian furnishes a normal form for dynamic

causal models–state space models based upon differential equations–that can be used to

distinguish scale symmetry from scale freeness in empirical data. We establish face validity

with an analysis of simulated data, in which we show how scale symmetry can be identified

and how the associated conserved quantities can be estimated in neuronal time series.

Author summary

Considerations of the way in which a dynamical system changes under transformation of

scale offer insight into its operational principles. Scale freeness is a paradigm that has been

observed in a variety of physical and biological phenomena and describes a situation in

which appropriately scaling the space and time coordinates of any evolution of the system

yields another possible evolution. In the brain, scale freeness has drawn considerable

attention, as it has been associated with optimal information transmission capabilities.

Scale symmetry describes a special case of scale freeness, in which a system is perfectly
unchanged under transformation of scale. Noether’s theorem tells us that in a system that

possesses such a symmetry, an associated conservation law must also exist. Here we show

that scale symmetry can be identified, and the related conserved quantities measured, in

both simulations and real-world data. We achieve this by deriving a generalised equation

of motion that leaves the action invariant under spatiotemporal scale transformations and

using a modified version of Noether’s theorem to write the associated family of
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conservation laws. Our contribution allows for the first such statistical characterisation of

the quantity that is conserved purely by virtue of scale symmetry.

Introduction

A symmetry is a transformation to a physical law that leaves its mathematical form invariant

[1]. For instance, the known laws of physics are invariant under translation in space, rotation

in space, and translation in time. In other words: having taken all influencing factors into

account, it is impossible for an external observer to determine whether a dynamical system has

been shifted to a new location, rotated by a fixed angle, or whether its onset has been shifted in

time.

However, the laws are generally not invariant under transformation of scale. Richard Feyn-

man famously described an intuitive example of why this is the case for a scale transformation

within a gravitational field. He asked the audience to consider a thought experiment in which

an intricate cathedral made of matchsticks was increased in size to the point where it would

instead be made of great logs, thus collapsing under its own weight. The scale dependence of

this system is further emphasized by his observation that:

“. . .when you’re comparing two things you must change everything that’s in the system. The
little cathedral made with matchsticks is attracted to the Earth. So, to make the comparison I
should make the big cathedral attracted to an even bigger Earth. Too bad–a bigger Earth
would attract it even more and the sticks would break even more surely.” [2]

Scale symmetries are therefore not universally applicable in the same way as translation in

space, rotation in space, and translation in time. However, there are known constraints (see

Materials and Methods) under which scale symmetries can arise in dynamical systems.

In 1918 Noether demonstrated that for every continuous symmetry of the action of a

dynamical system there exists a corresponding conservation law [3]. This theorem tells us that

it is by virtue of the symmetries of translation in space, rotation in space, and translation in

time that the corresponding quantities of linear momentum, angular momentum, and energy

are conserved, respectively.

It is the purpose of the present work to devise a method for estimating scale symmetries

and their associated conserved quantities in empirical time series.

Materials and Methods are presented in two sections:

In the first section, we introduce the principle of stationary action, the distinction between

scale freeness and scale symmetry, and Noether’s Theorem. We then show that an equation of

motion leads to a scale invariant action under the constraints that its Lagrangian: 1) is scale-

free, and 2) transforms inversely with time under change of scale.

In the second section, the main contribution of this paper is presented via the derivation of

a generalised scale-symmetric Lagrangian, in the form of a power series expansion, which can

be used to model time series from any scale-free system that follows the principle of stationary

action. We then use Noether’s theorem to write the expression for the family of conservation

laws associated with this generalised Lagrangian.

Results are presented in two sections:

In the first section, we demonstrate proof of principle by showing that the generalised

Lagrangian can be used to distinguish scale symmetry from scale freeness via simulations of a

classical particle.
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In the second section, using murine calcium imaging and macaque monkey fMRI datasets,

we show that neural systems support a neurobiologically-based quantity that is conserved by

virtue of scale symmetry.

Results

See Materials and Methods for all definitions, techniques, and equations.

We use two ground truth datasets in the form of (noiseless) particle trajectories that are

known a priori to be a) scale-symmetric, and b) scale-free. In Eqs (28) through (30) we show

that the scale-symmetric case arises when the particle experiences a force that varies inversely as

the cube of its distance from the origin, which in turn is known to result in an logarithmic spiral

trajectory [4] (Fig 1A, left). In the scale-free case we use an inverse square force law which is

known to result, for instance in planetary orbits, in an elliptical trajectory [5] (Fig 1B, left). Note

that we use a version of (34) in which we accommodate both an x and y coordinate, as shown in

the accompanying code, to allow for the particles to trace 2D trajectories (see S1 Text). This

means that the conserved quantity in (23) can be related directly to the geometric properties of

the logarithmic spiral in the scale-symmetric case (e.g. the polar slope and curvature).

We use Dynamic Expectation Maximisation (DEM) [6] to infer the latent states and esti-

mate the parameters (and hyperparameters; i.e. the precision components of random fluctua-

tions on the states and observation noise). Having applied the optimization to the full model

comprising a non-zero δ (i.e. scale-free) in Eq (33) we subsequently use Bayesian model reduc-

tion [7,8] to estimate the evidence for the reduced model in which δ = 0 (i.e. scale-symmetric).

We specify the reduced model by setting the prior variance over the δ parameter to zero,

where δ is also given a prior mean of zero.

Using Bayesian model inversion, followed by model reduction, we show that the correct

model is identified (Fig 1A and 1B centre). We subsequently use the posterior expectations of

the parameters for the full (scale-free) and reduced (scale-symmetric) models to show that the

Noether conserved quantity (or Noether charge) is constant in time for the scale-symmetric

(Fig 1A, right), but not for the scale-free case (Fig 1B right). We then explore the way in which

the value of the Noether conserved quantity varies within the parameter space close to the pos-

terior densities in terms of 1) α vs. each of the expansion coefficients (Fig 1C); 2) the first two

expansion coefficients (Fig 1D, left); and 3) the first three expansion coefficients (Fig 1D,

right), with a rotating version shown in S1 Movie. Finally, we run the model forward to show

the behaviour of the pure equation of motion in the δ parameter range −1.5<δ<1.5, thus

showing the transition from scale freeness with δ<0, through scale symmetry (δ = 0), and back

to scale freeness with δ>0 (Fig 1E).

Neuroimaging data

Here, we analyse murine calcium imaging [9] (rest and task) and macaque monkey fMRI [10]

(rest and anaesthetised) datasets, using the same techniques as with the particle simulations

described above. The fMRI datasets are taken from the Nathan Kline Institute Macaque Data-

set 1, in which twelve fMRI scans (each approximately 10 minutes long) are acquired in a sin-

gle monkey in an awake state and twelve in an anaesthetized state. The macaque monkey was

sedated with dexdomitor (0.02 mg/kg IM), ketamine (8 mg/kg IM), atropine (0.05 mg/kg IM),

and maintained at an isoflurane level of 0.75% following intubation. Pre-processing of the

murine calcium imaging [11] and macaque monkey fMRI [12] datasets were carried out as

described previously. We show all results obtained for the resting states in Fig 2.

The calcium imaging data were collected across an entire hemisphere of mouse cortex (Fig

2A & 2B). We perform Bayesian model averaging across n = 3 mice with 10 trials of 10s (200
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time points) duration each. We find that there is higher model evidence for scale symmetry, as

opposed to scale freeness, in a single region (Fig 2C, left). All other regions show either higher

model evidence for scale freeness, or else cannot be statistically classified either as scale-sym-

metric or scale-free–these regions are not coloured and appear white (Fig 2C, right). No region

emerges as scale-symmetric in the task state. We show a sample timecourse from the region

classified as scale-symmetric, together with the estimated data following model inversion (Fig

2D). We then run both the full (scale-free) and reduced (scale-symmetric) models forward,

with low noise in the absence of external inputs, in order to show the way in which the pure

equations of motion evolve in time (Fig 2E). We show the variational free energy (Fig 2F) and

associated probability (Fig 2G) of the reduced model for the scale-symmetric region and run

the model forward, with parameters furnished by posterior densities from the scale-symmetric

model to show that Noether’s conserved quantity N is constant in time (Fig 2H).

In the macaque monkey fMRI data, we observe higher model evidence for scale symmetry,

as opposed to scale freeness, in a single cortical network (Fig 2I). We show a sample

Fig 1. Simulations of a classical particle. A) In order from left to right: 1) the trajectory of a particle moving under

the influence of a force that varies inversely as the cube of position; 2) Approximate lower bound log model evidence

given by the free energy (F) following Bayesian model reduction for scale-symmetric (sy.) and scale-free (fr.) models;

3) Probabilities (p) derived from the log evidence; 4) Noether conserved quantity (N) as a function of time with low

noise; B) Same layout as A) but for a particle moving under the influence of a force that varies inversely as the square of

position; C) Noether conserved quantity values between negative and positive unity, as indicated by the colour bar, for

the four expansion coefficients (left to right) as a function of α. The centred red cross indicates the posterior densities

in A); D) Left: Noether conserved quantity as a function of the first two expansion coefficients, with the posterior

density values obtained in A) shown by the red dot; Right: Noether conserved quantity as a function of the first three

expansion coefficients, with the posterior densities obtained from A) indicated by the centred red cross; E) The

equation of motion resulting from a forward generative model for different values of δ as indicated by the colour bar.

https://doi.org/10.1371/journal.pcbi.1007865.g001
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Fig 2. Neuroimaging data. A) Wide-field calcium imaging over the left hemisphere of a head-fixed mouse, expressing

GCaMP6f in layer 2/3 excitatory neurons; B) Example z-scored (DF/F) activity averaged over a 10s trial length, shown

as standard deviation (s) of the signal from the mean. Cortical areas are aligned to the Allen Mouse Common

Coordinate Framework; C) Log variational free energy values corresponding to the colour bar, thresholded at F = 3 for

regions found to have higher model evidence for scale symmetry (left) and freeness (right); D) z-scored (DF/F) activity
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timecourse, together with the estimated data following model inversion, from this scale-sym-

metric network (Fig 2J). We also calculate the variational free energy (Fig 2K), associated prob-

abilities (Fig 2L), and Noether conserved quantity (Fig 2M) for this scale-symmetric network.

No network emerges as scale-symmetric in the anaesthetised state.

Note that, although we focus on neuroimaging data in this study, these tools can be used to

distinguish between scale symmetry and scale freeness in any dynamical system with measur-

able time series without restriction upon data dimensionality–provided that the system: a)

operates with scale-free dynamics and b) follows the principle of stationary action.

Discussion

In contrast to the symmetries of translation in space, rotation in space, and translation in time,

the known laws of physics are not universally invariant under transformation of scale. In fact,

as we show in Eqs (28) to (30) (see Materials and Methods), the only way for a classical 1D

time-independent Lagrangian to qualify as scale-symmetric is if its potential energy term var-

ies as the inverse square of position. More generally, we show that a scale-free dynamical sys-

tem that follows the principle of stationary action is only scale-symmetric in the special case

that its Lagrangian scales inversely with time (see Eq (12) in Materials and Methods).

This restrictive condition may explain why symmetries under change of scale are not usu-

ally discussed in the context of dynamical systems. Another reason could be that a symmetry is

often defined as being contingent on a Lagrangian remaining invariant, which would only be

possible in a scale transformation if the rescaling factors preceding the spatial and temporal

variables cancelled each other in every term. However, such a definition of scale symmetry

would only be compatible with Noether’s theorem if the Jacobian associated with the rescaling

of the temporal variable were equal to unity. In the case of a non-unity Jacobian, quantities

conserved by virtue of scale symmetry only exist if one redefines what is meant by scale sym-

metry to include a factor that cancels the Jacobian. No other definition leads to a conservation

law. In other words, instead of satisfying the sufficient but not necessary condition of an

invariant Lagrangian, we allow for the existence of scale symmetry via the sufficient and neces-

sary condition of an invariant action.

To demonstrate the practical applicability of the theoretical results, we derive an expression

for a generalised scale-symmetric Lagrangian in the form of a power series expansion (see Eq (16)

in Materials and Methods) and show that this can be used to distinguish scale symmetry from

scale freeness in ground truth models of classical particle trajectories. We then use Noether’s theo-

rem to write the family of conservation laws that arise under change of scale for this generalised

scale-symmetric Lagrangian. Assuming that neural systems operate with scale-free dynamics [13–

15] and evolve via a stationary action principle [16–18], we therefore establish a link between scal-

ing properties and conservative aspects of neuronal message passing (e.g. excitation/inhibition

shown as standard deviation (s) of the signal from the mean from an example trial in one mouse in the scale-

symmetric region (blue), together with the estimated time series following model inversion (red), E) Normalized

timecourses of observable measurements (y) showing the evolution of the scale-free (blue) and scale-symmetric (red)

equations of motion with low noise and without driving inputs; F) Approximate lower bound log model evidence

given by the free energy (F) following Bayesian model reduction for scale-symmetric (sy.) and scale-free (fr.) models in

the calcium imaging data; G) Probabilities (p) derived from the log evidence in F); H) Noether conserved quantity (N)

as a function of time for the calcium imaging data; I) The region explaining the highest amount of variance defined via

temporal-concatenation probabilistic ICA, thresholded at z>3; J) z-scored fMRI activity shown as standard deviation

(s) of the signal from the mean from an example scan in the scale-symmetric network (blue), together with the

estimated time series following model inversion (red). K) Approximate lower bound log model evidence given by the

free energy (F) following Bayesian model reduction for scale-symmetric (sy.) and scale-free (fr.) models in the fMRI

data; L) Probabilities (p) derived from the log evidence in K); M) Noether conserved quantity (N) as a function of time

for the fMRI data.

https://doi.org/10.1371/journal.pcbi.1007865.g002
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balance [19,20])–two fields that have thus far largely been studied in isolation in neuroscience.

When describing angular momentum one can turn to familiar real-world examples involving e.g.

an ice skater spinning faster upon retracting her arms. Yet, if asked to provide a similarly intuitive

understanding of the quantity conserved by virtue of scale symmetry, we would be hard-pressed.

We can, however, attempt to better understand this quantity by mapping the way in which it var-

ies with respect to different parameters (see Fig 1C–1E & S1 Movie).

In summary, our demonstration makes use of a generative model, allowing for the assess-

ment of scale freeness/symmetry directly from neuroimaging data collected at a single spatial

and temporal scale. We build an inference tool that allows for nonlinear effects with complex

noise to be identified in the context of a hypothesised scale free dynamical systems architec-

ture. Crucially, this solution to the inverse problem (from data to mechanism) enables us to

test for alternate scaling principles. We hope that our theoretical framework, as well as the data

and code we have made publicly available, will allow researchers to apply this methodology

across a broader range of datasets, in order to reveal clues as to the biological underpinning of

conservation laws arising by virtue of scale symmetries in neural systems

Materials and methods

The principle of stationary action

In the Lagrangian formulation of classical mechanics, the evolution of a dynamical system

along a trajectory from an initial time ti to a final time tf is associated with a number, known as

the action, which is calculated by integrating the Lagrangian function of the system’s position

and velocity along the trajectory. The action can be evaluated for any trajectory, but trajecto-

ries that satisfy the equation of motion and thus might be followed in reality are distinguished

because they render the action stationary. That is, a small variation of any trajectory that satis-

fies the equation of motion leaves the value of the action unchanged to first order [21]. This

principle of stationary action, also known as Hamilton’s principle, is a powerful mathematical

tool for investigating dynamical systems and has found ubiquitous use in the physical sciences.

Almost all of modern physics, including field-theoretic descriptions of electromagnetism,

gravity and quantum theory, can be re-cast in terms of the principle of stationary action.

In this work, we consider a Lagrangian with explicit time-dependence Lðq; _q; tÞ to facilitate

the analysis of driven systems. The principle of stationary action tells us that the trajectory q(t)
followed by the system from any chosen initial point qi at time ti to any chosen final point qf at

time tf renders the action, given by:

S qðtÞ½ � ¼
R tf

ti
L qðtÞ;

dqðtÞ
dt

; t
� �

dt; ð1Þ

stationary.

In other words, for any infinitesimal path variation δq(t) satisfying δq(ti) = δq(tf) = 0, we

must have:

S½qðtÞ þ dqðtÞ� ¼ S½qðtÞ� þO½ðdqÞ2�: ð2Þ

One can then use standard arguments [22] to show that any trajectory q(t) for which the

action is stationary is a solution of the Euler-Lagrange equation:

@L
@q
�

d
dt

@L
@ _q

� �

¼ 0: ð3Þ
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Scale freeness

Scale freeness describes a situation in which different levels of magnification of a dynamical

system are indistinguishable to within a multiplicative constant [23]. Given the set of points (t,
q) lying on some chosen trajectory q(t), we define the corresponding scaled trajectory as the

set of points (ts,qs) = (λαt,λq), where λ (>0) is a spatial scale factor and the time coordinate has

been rescaled by λα, where α is a system-dependent constant.

The scaled trajectory passes through the point:

qs ¼ lq;

ts ¼ l
at;

ð4Þ

implying that qs(λ
αt) = λq(t), or, equivalently that:

qsðtsÞ ¼ lqðl
� atsÞ; ð5Þ

from which it follows that:

dqsðtsÞ
dts

¼ l
1� a

_q l
� atsð Þ: ð6Þ

We refer to the system’s dynamics as being scale-free if, for any path q(t):

S½qðtÞ� ¼ k S½qsðtsÞ�; ð7Þ

where κ is a constant that may depend on the scale factor λ but is independent of path.

More explicitly, using (1) and (7), we see that the system is scale-free if:

R tf
ti
L qðtÞ;

dqðtÞ
dt

; t
� �

dt ¼ k
R latf
lati

L qsðtsÞ;
dqsðtsÞ
dts

; ts

� �

dts: ð8Þ

Assuming that q(t) is a physical trajectory derived by applying the principle of stationary

action to a scale-free action, it follows from (2) and (7) that:

S½qsðtsÞ þ dqsðtsÞ� ¼ S½qsðtsÞ� þ O½ðdqsÞ
2
�; ð9Þ

for all infinitesimal path variations δqs(ts).
This shows that the scaled path described by (5) also renders the action stationary, i.e. if q(t)

is a possible physical trajectory then the same can be said for the scaled trajectory qs(ts) = λq
(λ−αts).

Scale freeness has been observed in a variety of physical and biological settings [24]. These

include neural systems across different species [25,26], in which evidence for scale freeness is

identified by signatures of critical neuronal dynamics [27,28], and is considered to offer func-

tional [29], developmental [30], as well as evolutionary [31,32] advantages. However, some

studies recognize the lack of sufficient orders of magnitude in spatial and temporal scale within

such studies in neuroscience [33]. Furthermore, there are known limitations inherent in indi-

rectly inferring scale freeness on the basis of proximity to power law behavior in neural cascad-

ing events [34] or in power frequency plots [35].

Scale symmetry

We say that a system is scale-symmetric if it is impossible to determine the magnification at

which its evolution is observed. In other words, scale symmetry means that a system is perfectly
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unchanged under transformation of scale, i.e. by setting κ = 1 in Eq (8), such that:

R tf
ti
L qðtÞ;

dqðtÞ
dt

; t
� �

dt ¼
R latf
lati

L qsðtsÞ;
dqsðtsÞ
dts

; ts

� �

dts: ð10Þ

The condition for scale symmetry

We see via (5), (6) and (10) that:

R tf
ti

LðqðtÞ; _qðtÞ; tÞdt ¼
R latf
lati

Lðlqðl� atsÞ; l
1� a

_qðl� atsÞ; tsÞdts

¼ l
a
R tf

ti
LðlqðtÞ; l1� a

_qðtÞ; latÞdt;
ð11Þ

where, using (4), the integration variable on the right-hand side was changed from ts to t =

λ−αts.
Since the path of integration is arbitrary, it follows that the action is scale-symmetric if and

only if the Lagrangian satisfies:

Lsðq; _q; tÞ � Lðlq; l1� a
_q; latÞ ¼ l� aLðq; _q; tÞ; ð12Þ

where the identity defines the scaled Lagrangian Ls and the equality describes the condition

for scale symmetry.

We therefore see that scale symmetry can exist in scale-free systems if these can be

described by a Lagrangian that scales inversely with time. In other words, given a spatiotempo-

ral transformation in which q!λq and t!λαt, the system is scale-symmetric if the Lagrangian

transforms as L! l
� aL, implying that L scales in the same way as 1=t .

A family of scale-symmetric Lagrangians

Here, we present the main contribution of this paper via the derivation of a generalised scale-

symmetric Lagrangian that can be used to identify scale symmetry in time series from any

scale-free dynamical system that follows the principle of stationary action.

We can write an expression for a Lagrangian Lðq; _q; tÞ as a sum over power terms:

Lðq; _q; tÞ ¼
P

x;y;zCxyzq
x _qytz; ð13Þ

where x, y and z are constants and Cxyz is an arbitrary expansion coefficient.

Using (12) we see that (13) is scale-symmetric if:

Lsðq; _q; tÞ ¼ Lðlq; l1� a
_q; latÞ ¼

P
x;y;zl

xþð1� aÞyþazCxyzq
x _qytz ¼ l� aLðq; _q; tÞ; ð14Þ

and since λ is arbitrary, this implies that:

xþ ð1 � aÞyþ az ¼ � a; ð15Þ

8 x,y,z: Cxyz6¼0.

We can use (15) to uniquely determine the value of x given α and the knowledge that a

non-zero term with specific values of y and z exists. This in turn means that we can replace the

triple summation in (13) with a double summation:

Lðq; _q; tÞ ¼ q� a
P

y;zCyzq
yða� 1Þ� za _qytz; ð16Þ

which describes a family of scale-symmetric Lagrangians.

We arrive in (16) at a general Lagrangian that satisfies the condition for scale symmetry for

a system with (z6¼0) or without (z = 0) external driving inputs. This means that one can use an

PLOS COMPUTATIONAL BIOLOGY Conservation laws under change of scale in neural systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007865 May 4, 2020 9 / 16

https://doi.org/10.1371/journal.pcbi.1007865


expansion of this expression (to the desired number of terms) as a forward generative model.

This model is capable of creating data and also of applying an inverse procedure (fitting) to

recover key model parameters from arbitrary time series. This can be done for any dynamical

system (i.e., not necessarily neural systems), in order to determine the extent to which they can

be approximated by a scale-symmetric function. Note that one can in principle restrict the

allowed values of the exponents in (16) to be natural numbers in order to obtain an analytic

function. However, for the purpose of the work presented here we do not place such a restric-

tion, in order to allow for greater flexibility in subsequent time series analyses.

Noether’s theorem and scale symmetry

Beginning from the statement of scale symmetry (11), we set λ = 1+�, where � is an arbitrarily

small constant. This allows for any scale transformation to be constructed by sequentially

applying such infinitesimal transformations.

Working to first order in � we can write (11) as follows:

R tf
ti
Lðq; _q; tÞdt ¼

R tf
ti
Lðð1þ �Þq; ð1þ ð1 � aÞ�Þ _q; ð1þ a�ÞtÞð1þ a�Þdt: ð17Þ

Expanding the right-hand side and cancelling the �-independent terms we see that:

�
R tf

ti
q
@L
@q
þ ð1 � aÞ _q

@L
@ _q
þ at

@L
@t
þ aL

� �

dt ¼ 0; ð18Þ

and since dL
dt ¼

@L
@t þ

@L
@q _q þ @L

@ _q €q, this is equivalent to:

�
R tf

ti
q
@L
@q
þ ð1 � aÞ _q

@L
@ _q
þ aLþ at

dL
dt
�
@L
@q

_q �
@L
@ _q

€q
� �� �

dt ¼ 0: ð19Þ

If we now stipulate that q(t) is a physical path of the system, we can use the Euler-Lagrange

Eq (3) to eliminate @L
@q from (19) in order to obtain:

�
R tf

ti
ðq � at _qÞ

d
dt

@L
@ _q

� �

þ ð1 � aÞ _q
@L
@ _q
þ aLþ at

dL
dt
� at€q

@L
@ _q

� �

dt ¼ 0; ð20Þ

which can be rewritten as:

�
R tf

ti

d
dt
ðq � at _qÞ

@L
@ _q
þ atL

� �

dt ¼ 0; ð21Þ

from which we see that the quantity:

N ¼ q � at _qð Þ
@L
@ _q
þ atL ¼

@L
@ _q

q � Hat; ð22Þ

must have the same value at the (arbitrary) initial and final times ti and tf, where the total

energy, or Hamiltonian, H ¼ _q @L
@ _q � L.

We therefore arrive at a special case of Noether’s theorem in (22) applicable to scale-sym-

metric systems.
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Conservation laws associated with a family of scale-symmetric Lagrangians

Using (22) we can now write an expression for the conserved quantities associated with the

family of scale-symmetric Lagrangians in (16):

N ¼ aq� at
P
ð1 � yÞCyzq

yða� 1Þ� za _qytz þ q1� a _q � 1
P

yCyzq
yða� 1Þ� za _qytz: ð23Þ

which arise within a specific subset of functions (Fig 3):

We therefore arrive in (23) at an expression for all possible conserved quantities that arise

in a dynamical system that possesses a symmetry under transformation of scale, i.e. one that

can be modelled by (16).

Free classical particle

Here we analyse what is perhaps the simplest example of a dynamical system, in the form of a

classical particle moving in the absence of applied forces. The motion of this free particle is

described by the following Lagrangian:

L ¼
1

2
m _q2; ð24Þ

which, using (6), transforms under scale as follows:

L! Ls ¼ l
2ð1� aÞ 1

2
m _q2: ð25Þ

Fig 3. Scale-symmetric functions. In order of decreasing size, the areas of the circles represent the space of I. All

possible functions; II. Functions that can be cast within a Lagrangian framework; III. Scale-free Lagrangians, IV. Scale-

free Lagrangians that can be expressed as a power series; and V. Scale-symmetric power series Lagrangians. It is for this

smallest subset of functions for which the quantities in (23) are conserved by virtue of scale symmetry.

https://doi.org/10.1371/journal.pcbi.1007865.g003
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This satisfies the condition for scale symmetry in (12) when:

2ð1 � aÞ ¼ � a¼)a ¼ 2; ð26Þ

which, together with (22) and (24), shows us that the corresponding conserved quantity is

given by:

N ¼
1

2
m _q2 � m _q2

� �

2t þmq _q ¼ m _q q � _qtð Þ: ð27Þ

Since, for a free particle, _q is constant and q ¼ qi þ _qðt � tiÞ, we see that N is indeed con-

served along the trajectory.

Classical particle in a potential

We now consider the effect of adding a potential energy term to (24), such that the Lagrangian

is given by:

L ¼
1

2
m _q2 þ kqp; ð28Þ

where k and p are constants.

Using (4) and (6) we see that (28) transforms under scale as:

L! Ls ¼ l
2ð1� aÞ 1

2
m _q2 þ l

pkqp: ð29Þ

From (12) we know that a scale symmetry exists if and only if Ls ¼ l
� aL, implying that 2(1

−α) = p = −α and hence that α = 2 and p = −2.

To be scale-symmetric, the potential must therefore be an inverse square and the Lagrang-

ian in (28) must take the following form:

L ¼
1

2
m _q2 þ kq� 2: ð30Þ

In other words, in order for a particle described by (28) to be scale-symmetric, it must be

acted upon by a force that varies inversely as the cube of its distance from the origin–a special

case that has been analysed previously [36,37]. We include a 2D generalization of Eqs (28) to

(30) in S1 Text, as is used for the particle simulations in Fig 1.

Using (22) and (30) we see that:

N ¼ mq _q � ðm _q2 � 2kq� 2Þt; ð31Þ

which can be simplified by noting from (30) that the system’s total energy, or Hamiltonian, is

given by H ¼ 1

2
m _q2 � kq� 2, which means that (31) can be re-written as:

N ¼ mq _q � 2Ht: ð32Þ

One can then use Newton’s second law: m€q ¼ � 2k=q3, together with (32), to verify that
dN
dt ¼ 0. We therefore arrive at expression in (32) for the quantity that is conserved by virtue of

scale symmetry for a classical particle moving under the influence of an inverse-cube force law.

Classical particle simulations

Here we use Bayesian model inversion, followed by model reduction, to demonstrate face

validity by using Dynamic Causal Modelling (DCM) [38] to distinguish between datasets that
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are known to be a) scale-symmetric; and b) scale-free but not scale-symmetric—henceforth

referred to simply as scale-free.

We expand (16) to fifth order for a system with a time-independent Lagrangian and multi-

ply the resultant expression by qδ, where δ is a constant, such that:

L ¼ q� aþd
P4

y¼0
Cyq

yða� 1Þ _qy; ð33Þ

thus allowing us to use δ a measure of deviation from scale symmetry, i.e. we can use (33) to

describe the two cases in which the system is a) scale-symmetric when δ = 0; and b) scale-free

when δ6¼0. Note that we have now re-defined α as the exponent required for the Lagrangian to

be scale-symmetric.

We then use the Euler-Lagrange Eq (3) to recover the equation of motion associated with

(33), to which we apply noise terms describing random, non-Markovian fluctuations [39]

within the Statistical Parametric Mapping (SPM) software. This means that we use (33) as a

state space model of observable measurements y by equipping the associated equations of

motion with random fluctuations ωf and mapping the (latent) states to observable quantities

with additive observation noise ωg:

x ¼ _q þ oðxÞf

_x ¼
q� 1
P4

y¼0
Cyð1 � yÞðða � 1Þyþ d � aÞqða� 1Þy _qy

P4

y¼2
yðy � 1ÞCyqða� 1Þy _qy� 2

þ o
ð _xÞ
f

y ¼ qþ og:

ð34Þ

This furnishes a dynamic causal model in the form of a stochastic differential equation

(where the random fluctuations are assumed to be small). This is the form of the equation of

motion used for all analyses presented in this paper. Crucially, the parameters θf = (α,δ,C0,C2,

C3,C4) of this model can now be recovered from observations under the prior assumptions

that the underlying dynamics take the form in (34). The equation of motion in (34) can be

regarded as a normal form for scale-free systems that becomes scale-symmetric when δ = 0.

This distinction affords the opportunity to assess the evidence for scale symmetry by compar-

ing models both with and without tight shrinkage priors on δ, i.e. determining if δ is non-zero.

Parameter estimation and model comparison

Model inversion is applied to the simulated and empirical datasets in order to estimate the

model parameters. We use a variational Bayesian inversion scheme which comprises a gradi-

ent ascent on the (negative) variational free energy F�ln(p(D|m)), where D are the data, and m
is the model.

In variational schemes, posterior densities over parameters θf = (α,δ,C0,C2,C3,C4) and

hyperparameters h ¼ oðxÞf ;o
ð _xÞ
f ;og in Eq (34) are obtained via an optimisation algorithm. Spe-

cifically, we use Dynamic Expectation Maximisation (MATLAB code spm_DEM.m from

https://www.fil.ion.ucl.ac.uk/spm/), which uses a mean field partition to obtain gradients for

three distinct sets of latents–namely the parameters θf, hyperparameters h and the states x; _x; y.

This provides a probabilistic interpretation of the deterministic dynamics encoded in Eq (34).

Priors on model parameters θf and hyperparameters h are set to 0 and 1/64, respectively. The

objective function F comprises a sum of log-likelihoods and Kullback-Leibler divergences

describing accuracy and model complexity, respectively. Therefore, every iteration of the

DEM algorithm should improve the fit, while retaining the most parsimonious set of

parameters.
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Finally, for model comparison we use a Bayesian model reduction approach by comparing

the evidence for models with and without constraints on δ, where the constraints imply scale-

symmetric (with δ = 0) or scale-free (with δ6¼0) dynamics. We compare these two models

using the log Bayes Factor F(δ = 0)−F(δ6¼0), which returns the relative evidence for scale sym-

metry over scale freeness. We then calculate the associated probabilities by normalizing F,

such that p d ¼ 0ð Þ ¼
Fðd¼0Þ

Fðd¼0ÞþFðd6¼0Þ
.
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