Advances in Data Analysis and Classification (2020) 14:463-484
https://doi.org/10.1007/s11634-020-00401-y

REGULAR ARTICLE

®

Check for
updates

ParticleMDI: particle Monte Carlo methods for the cluster
analysis of multiple datasets with applications to cancer
subtype identification

Nathan Cunningham'@® - Jim E. Griffin?® - David L. Wild'

Received: 15 January 2019 / Revised: 29 March 2020 / Accepted: 14 May 2020 /
Published online: 12 June 2020
© The Author(s) 2020

Abstract

We present a novel nonparametric Bayesian approach for performing cluster analysis
in a context where observational units have data arising from multiple sources. Our
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the mixing of the MCMC chain. We develop several approaches to improving the
computational performance of our algorithm. These methods can achieve greater than
an order-of-magnitude improvement in performance at no cost to accuracy and can
be applied more broadly to Bayesian inference for mixture models with a single
dataset. We apply our algorithm to the discovery of risk cohorts amongst 243 patients
presenting with kidney renal clear cell carcinoma, using samples from the Cancer
Genome Atlas, for which there are gene expression, copy number variation, DNA
methylation, protein expression and microRNA data. We identify 4 distinct consensus
subtypes and show they are prognostic for survival rate (p < 0.0001).
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1 Introduction

Cluster analysis can broadly be described as the task of inferring an underlying group
structure in a dataset. Groups are defined such that observations within a cluster are
more similar to one another than they are to observations in other clusters. Cluster
analysis has proven a popular exploratory tool and found application areas in market
segmentation, machine learning, data compression, and genomic analysis.

In analysing genomic data we may aim to infer risk cohorts among patients suffering
particular diseases given their genetic make-up, or we may look to infer groups of genes
to help gain an understanding of their function. However, these application areas pose
issues not typically encountered in other contexts, owing in particular to the fact that
each unit of observation (i.e. patients in the former example) may have data arising
from multiple data sources, e.g. gene expression, DNA methylation, or copy number
variations. These data sources each give complementary, but differing, views of the
underlying processes and, thus, it is vital that analyses of such data can encompass
these data sources in a single, integrative analysis.

Integrative clustering algorithms infer a cluster structure for a group of observational
units for which data is available from multiple sources. While we wish to assign these
observational units to clusters accounting for the different variation in each data source,
itis not essential that the cluster structure is identical across datasets. What complicates
this task is that the data sources need not be of a shared type, for example, we may need
to integrate continuous data with discrete data, and so we cannot simply concatenate
the various sources of data into a single data matrix. Many approaches to integrative
cluster analysis exist: performing cluster analysis at the level of underlying latent
variables (see, e.g., Shen et al. 2009; Gabasova et al. 2017; McParland et al. 2014,
2017, ); or ensemble methods which average over independent clustering solutions for
multiple datasets (see, e.g., Monti et al. 2003; Lock and Dunson 2013, ). Across these
and other similar methods, the terms ‘correlated clustering’, ‘consensus clustering’ or
‘multi-view clustering’ may be used in place of ‘integrative clustering’. In this paper,
we propose a novel integrative clustering algorithm built within the framework of
multiple dataset integration (MDI) (Kirk et al. 2012), a flexible model-based integrative
clustering algorithm which facilitates the sharing of information between datasets.

The remainder of this paper is structured as follows: Sect. 2 introduces MDI; Sect. 3
introduces ParticleMDI, our development upon MDI which updates cluster allocations
using a conditional particle filter; Sects. 3.1 and 3.2 present several techniques for
improving the computational performance of ParticleMDI which are applicable more
generally in the single dataset context; Sect. 4 outlines example applications of the
method to synthetic and real datasets, demonstrating an ability to infer clinically
meaningful subgroups; Sect. 5 concludes.

2 Multiple dataset integration
MDI (Kirk et al. 2012) is a framework for the integrative cluster analysis of multiple

data sets of potentially different data types. It generalises the standard mixture model to
the context of multiple datasets, allowing for the cluster structure in pairs of datasets
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to inform one another. The extent to which information is shared between datasets
is inferred by the model, allowing different levels of information to be shared for
different pairs of datasets depending on their structural similarity. These cross-dataset
comparisons are made at the level of the inferred cluster allocations, affording MDI
the flexibility to model different data types naturally. Savage et al. (2013) demonstrate
how MDI can uncover clinically meaningful groups in genomic datasets.

We begin by describing the generating model of an integrative mixture model
in which no information is shared across datasets in Eq. 1 (Kirk et al. 2012). We
assume that K datasets are observed on the same n observational units. Dataset k
has py features which are collected in the (n x pj)-dimensional data matrix Xj with
(i, j)—thentry x; ;. The ordering of observations is consistent across datasets, such
that row i of X; and X; correspond to the same observational unit—if we aim to infer
clusters of people these quantities refer to different measurements made on the same
person. Throughout this paper, we will use the notation x,.;, to represent the sequence
Xy Xq+1s - - - s Xb—1, Xp. The model is

Xi LprklCiskes 0 ~ F Oy k)

¢ik|mk ~ Multinomial (71 g, ..., TN k) |
wk = (T k, ..., TNk) ~ Dirichlet(a/N,...,o/N) M
0
Oci 1.k ~ G
A latent cluster allocation variable ¢; x € 1,2, ..., N relates an observation x; ; to

one of the N components in the mixture model. Each component is characterised by a
particular probabilistic model, F', with cluster-specific parameter 0., , x with conjugate
prior G,?. The cluster labels, c; x, have associated weights 7.y x, which Kirk et al.
(2012) assign a prior of a finite approximation to the Dirichlet process (Ishwaran
and Zarepour 2002) which defines a Dirichlet-multinomial allocation mixture model
(Green and Richardson 2001). The algorithm does not require a specification of the
number of clusters a priori, but rather a maximum number of possible clusters, N, to be
fit to the data. This is often referred to as an overfitted mixture model, as the number
of clusters specified by the model is likely greater than the true number. Rousseau
and Mengersen (2011) demonstrate that the posterior distribution of such models
tends to concentrate on a sparse representation in which any superfluous clusters are
not occupied by any data points. While the value of N is shared across all datasets,
the number of clusters inferred (the number of occupied components) in each need
not be the same. Although in practice N may be specified as large as the number of
observations, the choice will often be dictated by the computational time and resources
available; Kirk et al. (2012) propose using one-half of the number of observations as
a compromise.

Note that Eq. 1 models the cluster structure of each of the datasets independently.
To facilitate the sharing of information across datasets, Kirk et al. (2012) introduce
a (12< )—dimensional concordance parameter, @, reflecting the level of dependence in
cluster structure between pairs of datasets, as shown in Fig. 1. The joint distribution
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Fig. 1 A graphical model representation of MDI and ParticleMDI in a three dataset case (K = 3). x;
denotes observation i in dataset k arising from cluster ¢; ; with parameters 0., , ¢, which are given a prior

G,EO). Clusters in dataset k have prior allocation weights, 73 which themselves are given a Dirichlet(a/N)
prior. The @; ; value allows the allocations in data sets i and j to inform one another.[Figure recreated
from (Kirk et al. 2012)]

of ¢ 1,¢i2,...,ci k in Eq. 1 is replaced by the following choice
K K-1 K
p(ci1s Cio, s ik |P) X l_[ﬂc,-,k,k 1_[ l_[ (I + pul(cix = cin) @)
k=1 k=11l=k+1

Each element of @ reflects the pairwise agreement in the cluster structure across
datasets at the level of the cluster labels, with ¢ ; indicating the strength of the rela-
tionship between the cluster structures in datasets k and /. To capture the dependence
across datasets, the @ values are used to upweight the likelihood of an observation
belonging to the same cluster in two or more datasets. For example, if ¢ » is large, MDI
will more strongly favour placing observations in datasets 1 and 2 in the same cluster.
Different @ values allow different levels of partial agreements between datasets with-
out requiring strict agreement, for example if ¢ ; = 0, then the cluster allocations in
datasets k and / would not affect one another.

Algorithm 1 shows the approach of Kirk et al. (2012) to inference in the MDI model,
a Gibbs sampling approach alternating between updating the cluster allocations and
updating the hyperparameters. Cluster allocations are updated in a similar way as in the
standard k-means approach: following an initial allocation of observations to clusters,
observations are iteratively shifted between clusters, conditional on all other cluster
allocations remaining fixed. Specifically, given a current allocation of observations
to clusters, MDI iterates through each observation, calculates the marginal likelihood
of moving it to each cluster, and probabilistically assigns it a cluster label based on
these marginal likelihoods. Such one-at-a-time approaches to updating cluster labels
can potentially inhibit the mixing of the Gibbs sampling chain, meaning subsequent
samples from the algorithm can be highly correlated. Thus, the algorithm may be
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slow to explore the sample space and struggle to move away from local optima once
discovered, as it can be difficult to propose a better assignment of observations to
clusters if it is not similar to the current proposal. Such highly autocorrelated MCMC
chains may be unrepresentative of the posterior distribution in the short run as they
over-represent the local area of exploration in the chain. In the long-run these problems
can be mitigated via the generation of more samples and subsequent thinning. However,
this comes at the additional computational cost of having to generate these samples
and, depending on the extent that mixing is inhibited, these additional samples may
be prohibitively expensive to generate.

Algorithm 1 Gibbs sampler for MDI

Initialize:
() vector of prior allocation weights and @) vector of dataset concordance
values, and c(() an initial allocation of observations to clusters
fori=1, ..., number of iterations do
Conditional on 7(; _y1) and @(; _1) update cluster labels, c(;)
Conditional on c(;) update ;) and @(;)
end for

3 ParticleMDI

In this paper we present ParticleMDI, an algorithm built within the framework of MDI
which maintains MDI’s strengths in modelling flexibility but changes the inference
approach from Gibbs sampling to particle Gibbs sampling (Andrieu et al. 2010) by
updating cluster labels using a conditional particle filter which allows us to update
groups of cluster allocations jointly.

Particle filters or sequential Monte Carlo (SMC) are typically used for inference in
state space models where we wish to learn about a latent variable, x,,, given an obser-
vation, y,, at time i. The approaches aim to approximate sequentially the sequence of
densities p(x1.,|y1:,) for n > 1 as well as the sequence of marginal likelihoods

P(1m) :/-~-/p()’n|xn)p(xn|x]:(n7]))dxl coodxy

for n > 1. They do so by breaking the problem down into sampling from a sequence
of intermediate densities p(x1.;|y1;;) fori = 1,..., n. At each i, the method works
by first generating M ‘particles’ from a proposal distribution using the approximation
for i — 1. The particles are random samples representing different potential realisa-
tions of the latent variable, x1.,. Each of the particles is reweighted according to an
importance weight £ for m = 1, ..., M which depends on the proposed value of
x; and the observed value of y;. The notation of a superscripted index in parentheses
refers to the particular particle in question. After the reweighting step, some particles
will have negligible weights and so a resampling step replaces the weighted sample of
particles with an unweighted set by removing particles with low weights and replacing
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with those with relatively high weights. Various resampling techniques exist (see Hol
et al. 2006), of which we implement systematic resampling as it has been found to
offer significantly improved mixing over other methods and decrease the level of path
degeneracy (Chopin and Singh 2015; Griffin 2014). This allows for exploitation of
the information gained by these higher weight particles by concentrating computa-
tional resources on them. It is typically not advised to resample at every step of the
particle filter, and so resampling is often only performed when the effective sample
size (ESS)—measured by the variance of the particle weights—falls below a certain
threshold (Liu and Chen 1995). This is often chosen as half of the number of particles
(Doucet and Johansen 2009). In the context of inference in mixture models, Griffin
(2014); Bouchard-Coté et al. (2017) find that adaptive resampling leads to greater
performance than resampling at every step.

The task of cluster analysis, however, is not typically one viewed as evolving over
time and so would not appear suitable for sequential methods. Nevertheless, particle
filter methods have been successfully applied to the task (see, e.g., Chopin 2002;
Fearnhead 2004; Griffin 2014; Bouchard-Co6té et al. 2017, ). The approach involves
treating the observation index, 1:n, as an artificial time index. As in the standard
mixture model approaches, a latent variable, c;, is introduced reflecting the cluster label
assigned to observation x;. The problem then can be stated as performing inference
for p(ci.n|x1:n) for n > 1, via the intermediate densities p(cy.i|x1;;) fori =1,...,n.
Fearnhead (2004) demonstrates that the incremental particle weight associated with
assigning observation x; to cluster a can be calculated as

N
£ = £ 5 pe™ = alel)_, xi) = EM x Y fxilxion. ey, = a).
a=1

3)

where f(.) is the posterior predictive density for observation x; given the observa-
tions in xj.;—1) for which CYQ— = a. This approach facilitates the modelling of
data of different types, provided we can analytically derive the posterior predictive
distribution.

The SMC method for mixture models can be extended to the integrative MDI
model by treating each particle as a realisation of the cluster allocations across all K
datasets. That is, we wish to infer p(c1.,,1.x|X1, - . . , Xk ) with observations assigned
to clusters conditional only on the allocations within that dataset. We update Eq. 3 for

the integrative context as follows

K K-1 K
£0M x HP(CI-(TZ) = a|cgr;’8_1)’x]:i,1:pk,k) X l_[ l_[ (1 +¢k,1]1(6,(f7<) = C,(Zl)))
k=1 k=1 I=k+1

“
We infer the @ values and cluster labels via a particle Gibbs sampler (Andrieu et al.

2010), a particle MCMC extension of the Gibbs sampler in which a particle cilr)l 1.k 1S
used to update the hyperparameters and subsequently used as an input to the follow-
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ing pass of the particle filter. The conditional distributions for the hyperparameters are
described in Kirk et al. (2012), although we derive an alternative conditional distribu-
tion for @ in the supplementary material. The particle is sampled from an initial pass
of the particle filter, and its survival of the resampling step is ensured throughout the
following sweep of the conditional particle filter. As this particle was inferred using the
entire sequence of observations, it helps guide the remaining particles towards a good
region of the sample space. We outline this conditional particle filter in Algorithm 2.

The specification of the algorithm is flexible because it allows for the modelling of
any statistical distribution for which we can analytically derive a posterior predictive
distribution. Throughout this paper, we model continuous-valued data as arising from
a Gaussian distribution, with a normal-gamma prior (see Murphy 2007) and we model
discrete-valued data as draws from a categorical distribution with a Dirichlet prior (see
Bernardo and Smith 2001). Other data types could also be included using conjugate
pairs such as the Poisson and gamma distributions. For computational speed, we treat
the features as independent, however dependent features can also be incorporated.
Treating the features as independent also allows us to incorporate the feature selection
approach specified in (Savage et al. 2013). In this instance, the probability of a specific
feature being selected relates to the Bayes factor, the ratio of the marginal likelihood
of the data in that feature under the inferred cluster model compared with a null model
in which all observations belong to a shared cluster.

The particle Gibbs approach to MDI, however, is more computationally inten-
sive. While a trade-off can be made between the computation time of an algorithm
and its mixing time—the number of iterations required to approach the posterior
distribution—the algorithm does not strike the right balance between the two. Through-
out the remainder of this section, we explore some techniques for improving the
computational efficiency of the algorithm.

3.1 Block-updating Gibbs sampler

Consider the propagation step in the particle Gibbs sampler described in Algorithm
2. For each observation, x; 1:p, k. a cluster label, a, is sampled proportional to the
posterior predictive distribution f (x;,1:py k|C1:i k> X1:G—1), 1:p,k)- That is, observation
i in dataset k is assigned a cluster label, a, on the basis of the cluster assignments of the
firsti — 1 observations. When i = n this will give a meaningful estimate of the cluster
label ¢; 1, ..., ci k. However, when, for example, i = 3, this estimate will be much
less meaningful. Thus, there is a dependence in the results on the order in which the data
are incorporated in the particle filter. One approach to reducing this dependency (as
done in Algorithm 2 and Griffin (2014)) is to update ¢1.(;—1),1, - - . , C1:(i—1),k during
the resampling step. While this means all cluster labels can be updated using the full
set of data, this greatly increases the computational complexity of the algorithm. In
a scheme where resampling is not adaptive, or a worst-case scenario in an adaptive
scheme, this would result in i operations being required at each iteration, i, increasing
computational complexity from O(n) to O(n?), assuming each individual step can be
carried out in constant time. This solution also compounds the computational problem
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Algorithm 2 Conditional particle filter to update cluster allocations

Inputs:
prior cluster weights 7, prior dataset dependence measures @, cluster allocation,
CT:n.l: x from a previous run of the particle filter, and threshold « to control
resampling

Initialize:
Set particle weights 5(1), e, S(M) =1

(1) _
Set Cl:n,l:K - Cl:n,l:K

fori=1,...,ndo > (iterate over observations)
form=1,...,Mdo > (iterate over particles)
fork=1,...,K do > (iterate over datasets)

if m # 1 then > (particle 1 is the reference)

Sample lef;’() from p(cl.(f',z) =a) X f(xi’liﬁkyk‘cir:réz)‘fl),k’ X1:(i—1),1:pg.k) X Tq k> (assign

X k to a cluster, ‘propagation’ step)

end if
end for
K-1 K K N
Update ™ = £ 5 TT [T (0 +oeaie]y = eV makf Giotipilely = a) o
k=1 l=k+1 k=la=1
(Update particle weights, accounting for allocation agreement across datasets)
end for M omn
m
Calculate ESS = (Z’];,:#
1 %-(m)Z
if ESS < aM then
resample particles according to cm = _Em reset particle weights £ (1) eM) =1 and
AT e ’
resample allocations cizl'fi
end if

end for
Select a final cluster label allocation according to ¢ (m)

of wasteful calculations assigning observations to clusters on the basis of very few
previous observations.

Furthermore, there is a problem specific to the integrative context. As shown in Eq. 4
we inflate particle weights for inter-dataset agreement as indicated by observations
sharing the same cluster label. Although we carry out label matching between passes
of the particle filter, there can be no assurances within a pass that the cluster labels
refer to the same partition of observations across datasets.

We tackle both of these problems with an augmentation of the particle Gibbs sam-
pler, proposing to only update a portion of the cluster allocations in each pass of the
particle filter. The remaining allocations are held fixed from the previous pass; we
term this portion as p, where 0 < p < 1. We select at random a subset of the indices
1:n of size |np| and assign these observations to the same clusters as in the reference
particle from the standard particle Gibbs sampler. Although the algorithm is based on
a sequential Monte Carlo sampler, the order of the data is, in fact, not important. As
such, it is inconsequential to permute the order of observations randomly and assume
the first [np| observations to have their cluster allocations fixed from the previous
pass of the particle filter. The permutation ensures we do not condition on the same
portion of observations at each pass and placing the fixed portion at the beginning
obviates the potentially challenging task of defining a proposal to bridge between
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(a) Standard particle Gibbs (b) ParticleMDI

OO0 O ~@-0-0-0 O
~O-0-0-0 O ~@-0-0-0 O

Fig.2 The standard particle Gibbs scan (a) in a three particle, single-dataset case. A single reference particle
(m = 1) is conditioned upon (as indicated by the shaded circles), guaranteeing it survives the resampling

step. The values indicated in the circles are c%)‘ In our augmentation (b) a subset of cluster allocations
are conditioned upon such that all particles share a chunk of observations (p, here 3/n) the same as the
reference particle. So that the same observations are not held fixed at every iteration the order of observations
is shuffled according to a permutation function o ()

separate fixed sections of the particles. We term the function for permuting the obser-
vation indices o (-), ensuring that the same permutation is carried out for each dataset.
The algorithm then proceeds as before, with future allocations updated conditional on
previously observed data. That is, where the particle Gibbs sampler typically samples
alternately from p(6|x1.,, c1.,) and pg(ci.n|x1:n) (Where 6 represents hyperparame-
ters which are fixed at each run of the particle filter), ParticleMDI samples alternately
from p(01x1.4, c1:0) and py (o () rnp1en|X1n, 0 () 1:10p)) (Fig. 2).

This idea of updating only a subset of sequential observations in a particle Gibbs
sampler was proposed in the original particle Gibbs paper (Andrieu et al. 2010). Given
that we can trivially reorder our data, this is a particularly suitable application of this
augmentation of the particle Gibbs sampler; the approach was explored in the particle
Gibbs split-merge (PGSM) algorithm(Bouchard-Co6té et al. 2017), in which a particle
Gibbs scan was restricted to just the observations sharing a cluster label with two
randomly selected ‘anchor’ points. The PGSM algorithm then proceeds to ‘split’ this
cluster if both anchor points belonged to the same cluster, or ‘merge’ them otherwise.

Provided p is suitably chosen, this augmentation can minimise the dependency
on the order in which the data are observed. Thus, we propose a greedy version of
Algorithm 2, wherein cluster allocations are not updated during the resampling step
as described in Algorithm 3. Assuming each step can be performed in constant time,
the computational complexity of this algorithm is now O([n x (1 — p)]), although
given only a portion of the cluster labels are updated, the comparison with Algorithm
2 is not entirely accurate.

Finding a value of p which is ‘suitably chosen’, however, may not be straight-
forward. The choice of p involves a trade-off between computation time and mixing
time with larger values reducing computation time at the cost of updating fewer clus-
ter allocations. However, the trade-off between computation time and mixing time
is not linear, as very low values may induce a dependence on the order of incorpo-
ration of the observations. The greedy nature of the algorithm is predicated on the
conditioned-on chunk of data being an adequate summary of the dataset as a whole.
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Algorithm 3 Conditional particle filter for ParticleMDI

Inputs:
prior cluster weights 7, prior dataset dependence measures @, cluster allocation,
CT:n,l:K for observations x1.,,1:x , @ permutation of 1, ..., n, o (-), such that o (c);

corresponds to the allocation label for observation o (x);, and thresholds « and p to
control resampling, the portion of data conditioned-on, respectively.

Initialize:
Set particle weights S(l), . S(M) =1

(1) 2:M)
Set U(C)I:A,I:K = U(C)T:n,lzk’ U(C)I:\_an,I:K = G(C)T:I_n,oj,l:K

fori = [np],...,ndo
form=1,...,Mdo
fork=1,...,K do
if m # 1 then

Sample o (¢)}"}) from p(o (@)} = @) o f(@@)i 1 k|01 011y, 1:p k) X

Ta,k
end if
end for
K—-1 K K N
£ =5 T [T +erat@@ = o @PD ] 7k f @it p klo@y) =
k=1 I=k+1 ' k=la=1
a)
end for

M (m)y2
Calculate (ESS) = Q=1 87

Z%:l E(m)Z :
if ESS < aM then
» i (m) £ ~ iohts £(D (M)
resample particles according to ¢ = W and reset particle weights €%V, ... & =1
=1
end if "
end for

Select a final cluster label allocation according to cm

This is important, first of all, in the context of inflating the weight of particles which
assign observations to the same cluster label. It is important to ensure that p is large
enough so as to imbue some meaning on the cluster labels, ensuring that the cluster
labels refer, insofar as is practicable, to the same partitions of the observational units.
This should be the case in the reference particle, as we align cluster labels across
datasets in this particle. Thus, p should be specified such that this meaning persists
throughout the remaining observations. For example, if the conditioned portion of
observations were small enough to exclude many clusters entirely, there could be no
guarantee that labels assigned to these clusters, once encountered, will agree across
datasets. It is important, also, that p be specified at a value large enough to overcome
the dependence on the order in which the data are incorporated in the conditional par-
ticle filter. For example, were we to condition only on a single observation these data
would not hold sufficient weight to guide the subsequent observations. Proliferation
of the reference particle through resampling, however, can help alleviate both of these
problems, but may not remove them entirely. We explore the impact of the choice of
p in Sect. 4.1.
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3.2 Exploiting the redundancy in the particle filter

The accuracy of particle filter methods requires the specification of a large value for
M, the number of particles. In the context of mixture models, Griffin (2014) found that
good performance could be achieved even with relatively few particles. In ParticleMDI,
for each particle we require storage of the assigned cluster labels, as well as summary
statistics to facilitate the propagation of particles. This necessitates a large amount of
memory access which can hamper the computational performance of the algorithm.

Not all this storage is necessary, however, as particle filters by their nature induce
redundancy in the particles. The resampling step generates duplicates of some parti-
cles, while removing others. Following resampling, the particles are propagated as an
additional observation arrives. Propagation requires evaluation of the posterior pre-
dictive densities for the new observation at each cluster, as shown in Eq. 4. These
calculations will be identical for each copy of a particle and can add significantly to
the computational burden of the algorithm. More specifically to our problem, given
that we are dealing with a discrete state space there are very few possible distinct off-
spring for each particle, the result being that it is likely that, even without resampling,
we generate many identical particles.

These redundancies have been discussed previously by Fearnhead (2004) who pro-
posed an augmentation to the resampling algorithm in order to minimise the number
of duplicated particles. The rationale for this is that, for example, a set of particle
indices [1, 1, 2, 2] with respective weights [0.1, 0.2, 0.3, 0.4] is equivalent to having
just two particles with weights [0.3, 0.7] as all possible particle descendants can be
considered. Fearnhead (2004) proposes to retain all particles with normalised weights
above a threshold performing resampling on the remaining particles, minimising the
number of particle duplicates.

Instead of minimising the redundancy we try to exploit it. In order to avoid perform-
ing redundant calculations, we need to be able to identify which particles are identical
to others. We can identify those particles which are identical due to the resampling
step from the resampled particle indices. For others, we propose assigning each par-
ticle a running ID as described in Algorithm 4, and only calculating the incremental
importance weight once for each unique particle and storing in a hash table. However,
this approach will not capture all duplicate particles. Consider two particles which
are identical up to a permutation of the cluster labels. These particles will not share a
particle ID as the IDs are constructed based on the assigned labels. This can be seen
in Fig. 3, where particles 1 and 2 can be made identical by switching allocation labels.
Consider also a case where two particles are mostly identical, for example out of 10
inferred clusters, the two particles have assigned the same labels to eight of them,
while the remaining two clusters have differing labels. Again, these particles will not
be identified as duplicates, despite the evaluation of the incremental importance weight
being identical in both. To overcome this, we shift the general setup of the algorithm
from particles containing distinct environments to a scenario where there is a global
environment into which each of the particles index, as shown in Fig. 3. Thus, when
calculating the incremental importance weight, we now need only to evaluate the pos-
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terior predictive density for the observation belonging to each of the unique clusters
inferred in the data.

Algorithm 4 Calculation of running particle IDs

Initialize:
ID(()].M) -1
fori=1,...,ndo

form=1,..., Mdo
1D = 1D x (M x N) +c\™
end for
Seth =1
for u in unique 7/ D; do
form=1,..., Mdo
if 10" = u then
Set 1D = b
end if
end for
Setb=b+1
end for
end for

To examine the benefits which can be achieved using these approaches, we exam-
ined the growth in computation time as the number of particles grow. As the benefit of
avoiding redundant calculations will vary according to the complexity of the particular
dataset being analysed, we consider two cases: a simple Gaussian dataset containing
two well-defined clusters with means +5 and —5, respectively, across 100 observa-
tions; and Fisher’s Iris dataset (Fisher 1936) which contains three clusters, two of
which are not well-separated across 150 observations. The first dataset represents a
best-case scenario, illustrating the kind of improvements in computation time which
are possible from our manner of implementing ParticleMDI, while the Iris dataset
might represent the more modest improvements which can be expected in practice.
Figure 4 shows the empirical effect on computation time as a function of the num-
ber of particles in these datasets. All analyses were run for 1,000 MCMC samples
with p = 0.25, and the results presented are the mean of 100 such runs. Under the
traditional approach, computation time would be expected to grow linearly with the
number of particles. Under ParticleMDI, however, a sublinear growth is evident in
both cases, with M = 1,024 particles taking approximately 15x as long to complete
as M = 2 for the synthetic data, and 161 x as long for the Iris dataset. This represents
approximately 3% and 31.5% respectively of the time expected under the standard
implementation, representing the potential for greater than an order-of-magnitude
improvement in computation time. It should be noted that the improved scaling with
particles is only one aspect of the improvement in computation time, as due to the
identification of redundant clusters, even when M = 2 there are improvements made
in computation time. These improvements, it is important to recall, come at no cost
in terms of the accuracy of the inferred cluster allocation, as we are only avoiding the
evaluation of redundant calculations.
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(a) Standard implementation (b) ParticleMDI
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Fig.3 Two representations of the same particle filter system. a Shows a standard implementation in which
each particle contains an isolated environment of clusters. The mutation step involves evaluating a posterior
predictive density for a future observation belonging to each cluster in each particle. b Represents the
implementation in ParticleMDI, in which each particle indexes into a global environment of clusters. In this
case, the posterior predictive density need only be evaluated for each unique cluster in the global cluster
environment

(a) Synthetic Gaussian data (b) Tris data
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Fig.4 The growthin computation time associated with a growth in the number of particles. a Is an application
of ParticleMDI to a synthetic Gaussian dataset comprising two distinct clusters. b Is an application of
ParticleMDI to Fisher’s Iris data

3.3 Extracting consensus clusters

The output of ParticleMDI is a chain of cluster labels for each observation in each
dataset. As these cluster labels are exchangeable across iterations, we cannot simply
calculate the posterior probability of an observation belonging to a particular cluster.
Instead, we calculate the posterior similarity matrix (PSM) (Monti et al. 2003) for
each of the K datasets. The PSM is an n x n matrix whose (i, j)-th entry takes a
value in [0, 1] indicating how frequently observations i and j are assigned to the same
cluster. An overall consensus across datasets can then be derived as the element-wise
average of each of these PSMs (Savage et al. 2013). The PSMs can be visualised as a
heatmap as shown in Figs. 6 and 7. A final consensus cluster allocation can be inferred
from the PSM by applying hierarchical clustering methods using (1 — PSM) as a
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distance matrix (Medvedovic et al. 2004; Fritsch et al. 2009; Rasmussen et al. 2009).
The dendrogram resulting from this analysis will produce an ordering of observations
such that pairs of observations most frequently assigned to the same cluster can be
positioned adjacently in the heatmap allowing for a heuristic identification of the
underlying cluster structure.

4 Applications

In this section, we demonstrate the capability of ParticleMDI to infer cluster structure
in synthetic and real datasets, and explore the impact on cluster accuracy of the block-
updating in the particle Gibbs sampler described in Sect. 3.1. Further examples are
included in the supplementary material.

4.1 The impact of the choice of p

To explore how the choice of p impacts the balance between mixing time and compu-
tation time, we run ParticleMDI in a single-dataset context with a fixed computational
budget of 1 second. While we acknowledge that such restrictions are unlikely in
practice, it is sufficient to gain an insight into the balance between these competing
objectives in a synthetic data setting. We generate the synthetic datasets as follows:

1. Generate cluster weights
m ~ Dirichlet(0.2,0.2,0.2,0.2,0.2)
2. Generate cluster allocations
€1:100,1 ~ Multinomial (1, 1)
3. Generate dataset

N(@©,1) forcip=1
N@, 1) foreir=2
X321~ AN@, 1) forcip=3
N(=4,1) forci, =4
N(=2,1) forc;p =5.
xi17:32,1 ~ N (0, 1)

We generate 100 datasets as such with n = 100 observations, and for each we generate
samples from ParticleMDI up to a fixed computational budget of 1s. We divide the
range [0, 1] seconds into 250 equal bins, and for the last sample generated at the end
of each time bin we calculate the adjusted Rand Index Rand (1971) as a measure of
the accuracy of the current cluster allocation. Figure 5 shows the median ARI at each
of these time points for a range of values of p. It can be seen that very large values of
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Fig.5 Theeffect on the accuracy of the output of ParticleMDI of varying choices of p for a fixed computation
time of 1s

p—0.75 and 0.95—appear to perform distinctly poorly. In these cases, ParticleMDI
only updates very small portions of the data at each iteration and, so, it takes a long time
to move away from the initial allocation. Conversely, choosing a value of p which is
too low—-0.01 in this case—is also associated with poor performance as convergence
is slow as relatively few samples are generated. Values of p between 0.25 and 0.35
appear to offer a suitable balance between computation time and mixing time; we use
a value of p = 0.25 throughout the remaining examples.

4.2 The impact of

In order to demonstrate the impact of the parameter @ in allowing ParticleMDI to
share information across datasets, we present an illustrative example application of
ParticleMDI to Fisher’s Iris dataset (Fisher 1936), a canonical example application in
clsuter analysis. The dataset contains 150 observations on three different species of
iris: setosa, virginica, and versicolor, each representing an equal portion of the dataset.
The results of applying ParticleMDI to these data in Fig. 6a highlight that while one
species—setosa—is distinctly identifiable, the other two exhibit a significant degree of
overlap. In order to address this, we conduct this analysis in an integrative setting, by
complementing the Iris data with an additional categorical dataset containing the true
cluster labels. While we concede that it is unlikely to have a dataset with such perfect
signal of the ground truth cluster structure, Fig. 6b illustrates how ParticleMDI is able
to use information from one dataset to inform the cluster structure in the other. Not
only is the true cluster structure evident in the overall consensus PSM, but the cluster
structure inferred in the raw data now shows separation between the three species.

@ Springer



478 N. Cunningham et al.

(a) The single-data context (b) The integrative context

Iris data Overall consensus True Labels
Lo

Iris data

Fig. 6 Heatmaps of the PSM derived from application of ParticleMDI to the iris dataset (a) and in an
integrative context where the Iris data is complemented by a categorical data containing the true cluster
labels (b)

4.3 Subtype discovery in cancer patients

The primary motivation for MDI is the integrative analysis of multiple biological
datasets. In this section, we explore an application of ParticleMDI to inferring clusters
of patients presenting with a particular form of cancer, with genomic and other ‘omic’
measurements recorded on each. We use these inferred groups to retrospectively pre-
dict the risk profile of patients.

4.3.1 Data

We consider the Cancer Genome Atlas pan-cancer dataset previously analysed by
Yuan et al. (2014), who discovered that clinical covariates mostly outperformed
‘omic’ features in predicting the survival probability of individuals when considered
independently, while integrative approaches conferred additional prognostic power.
Specifically, we focus on patients presenting with kidney renal clear cell carcinoma
(KIRC), a group of 243 patients for whom each of the ‘omic’ data types were avail-
able, as well as data on survival times. We use the data as prepared by Yuan et al.
(2014). We provide an additional application of ParticleMDI to a dataset on patients
with ovarian serous cystadenocarcinoma in the supplementary material. While Parti-
cleMDI is capable of simultaneously performing feature selection and cluster analysis,
we complement this by an initial reduction in the number of features for computational
purposes. This initial reduction is based on the variability of the individual clusters as
this relates to the ‘clusterability’ (Steinley and Brusco 2008) of a feature, and has been
performed in other similar analyses (Shen et al. 2009; Lawlor et al. 2016). Post-hoc
analysis of the selected features and inferred cluster allocations can be potentially
illuminating of the particular genes driving patient prognosis. The data available are
as follows:
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— Messenger RNA (mRNA)—The data platform is Illumina HiSeq 2000 RNA
Sequencing V2. Of 20,203 mRNA features present we select the 100 most variant
of these. We treated these data as continuous and modelled them as arising from
a Gaussian distribution.

— microRNA (miRNA)—The data platform is Illumina Genome Analyzer/HiSeq
2000. Of 795 miRNA features, we select the 100 most variant. We treated these
data as continuous and modelled as arising from a Gaussian distribution.

— Reverse-phase protein array (RPPA)—The data platform is MD Anderson Reverse
Phase Protein Array Core platform. Of 166 features, we retain the 100 most variant.
We treated these data as continuous and modelled as arising from a Gaussian
distribution.

— DNA methylation (methyl)—The data platform is [llumina Infinium Human DNA
Methylation 450K. Of 16,484 DNA methylation features, we select the 100 most
variant. We discretised these at a threshold of 0.85 and removed any features with
fewer than 10 ‘hits’. The remaining features were modelled as arising from a
categorical distribution.

— Somatic copy number alterations (SCNA)—SCNAs are known to be extremely
common in cancer, with acquisition a known driver of cancer. The data platform
is Affymetrix Genome-Wide Human SNP Array 6.0. 69 SCNA features were
available, which we discretised, with values > 0.1 indicating an amplification, and
values < —0.1 indicating a deletion. These values were modelled as categorical
data.

— Clinical data—Clinical and administrative data are available for the patients includ-
ing age, gender, tumour grade, and survival times. For the purposes of this analysis,
we consider the survival data, and tumour grading, as means of assessing how
meaningful the inferred clusters are.

4.3.2 Results

The PSMs shown in Fig. 7 show the cluster structure inferred across the five datasets.
The overall consensus PSM suggests the existence of one large cluster (bottom left)
which appears to strongly reflect the cluster structure of the SCNA and methylation
data. This cluster can be further subdivided using the structure inferred in the protein
data. The dendrogram obtained by applying hierarchical cluster analysis to the con-
sensus posterior similarity matrix is cut to give four clusters. The posterior mean @
values are shown in Fig. 8f, showing that the strongest agreement in cluster structure
is between the methylation and the SCNA data.

Despite the granularity evident in the inferred clusters in the mRNA data, it can
be seen in Fig. 8a that cluster 3 corresponds generally to a group of patients with
particularly high levels of expression in the selected genes, relative to the other clus-
ters, and similarly cluster 2 contains patients with typically low expression. Cluster
3 is also distinct in the methylation data, Fig. 8d, showing distinctly high levels of
methylation, and in Fig. 8e it can be seen that patients belonging to cluster 3 and
cluster 1 exhibit greater levels of copy number alterations than clusters 2 and 4. The
tumour grading scores presented in Fig. 8 suggest that individuals in clusters 1 and
3 typically have higher tumour grading scores, suggesting poorer outcomes for these
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Overall mRNA

miRNA

Protein

Fig.7 Heatmap representation of the PSMs inferred from applying ParticleMDI to the KIRC datasets. The
overall PSM is the element-wise average of the individual dataset-specific PSMs. The cluster allocations
are indicated by the dashed white line

individuals relative to those in other clusters. This is confirmed by the Kaplan-Meier
survival curves shown in Fig. 9, showing a significant difference in the survival rates
in the inferred groups (log-rank p-value = 1.197133 x 10~7). The Tarone-Ware test
(Tarone and Ware 1977), which is sensitive to early differences in the survival curves
also suggests significant difference in the survival curves (p < 0.0001). We present
both results as tests for significance in survival analysis are often limited by crossing
occurring in the survival curves, as discussed by Li et al. (2015). Of note, cluster 3
which was identified as having unique characteristics across multiple datasets, is seen
to have distinctly poorer survival prognosis than the other clusters. The median sur-
vival time for the 24 patients belonging to cluster 3 is just 866 days, in comparison
with 1979 days for the patient cohort as a whole. Patients in cluster 1 (n = 79), who
were characterised as having high levels of somatic copy number alterations, have a
median survival time of 1625 days. Patients in cluster 2 (n = 47), who were noted
for having lower levels of mRNA expression, are seen to have a much better progno-
sis with a median survival time of 2830 days, which is close to the end of the study
period. Further analysis of the biological significance of the inferred cluster structure
is presented in the supplementary material.

Running specifications 100,000 samples were generated from ParticleMDI, thinned
to one sample for every ten. The first 50% of samples were discarded as burn-in. The
inferred @ values were checked for convergence (see supplementary material). A total
of 1,024 particles were used, and p was set to 0.25.
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Fig.8 a—e Heatmaps for each of the KIRC datasets with the inferred cluster allocations from ParticleMDI
highlighted with a dashed white line and the grey bars along the right margin. The bar on the furthest right
reflects tumour grading scores, with brighter colours indicating higher (worse) grading scores. Posterior
feature selection probabilities are indicated by the bars on the lower margin. f The inferred @ for pairs of
datasets in ParticleMDI

5 Discussion
We have presented ParticleMDI, a novel method for the integrative cluster analysis
of multiple datasets using particle Monte Carlo methods. While we have focused on

applications with Gaussian and categorical data, our methods are easily generalisable
to other data types where a posterior predictive distribution can be analytically derived,
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Fig. 9 The survival curves for the cancer datasets analysed in Sect. 4.3, showing distinct risk profiles for
each of the inferred clusters. A log-rank test for the difference in survival curves gives p < 0.0001. Created
using survminer (Kassambara and Kosinski 2018)

including multivariate Gaussian models with a full covariance structure. We have pre-
sented novel means of improving the computational efficiency of our algorithm, with
experimental results demonstrating improvements of an order of magnitude or more
with no penalty in accuracy. Our approaches are applicable more broadly in the context
of particle filters applied to discrete state-spaces. We have demonstrated the efficacy
of our approach to uncovering the ground truth in synthetic data. We have applied our
algorithm to real biological data from the Cancer Genome Atlas, demonstrating the
capability of our approach to infer clinically meaningful subgroups as shown by the
significantly different survival profiles of the patients contained within. Membership
of these groups is not governed by the variation in just a single dataset, highlighting the
importance of using integrative methods. ParticleMDI is freely available as a package
in the statistical programming language Julia (Cunningham et al. 2019)
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