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Abstract

The motivating application of this thesis is the Southall And Brent REvisited (SABRE)

study, a tri-ethnic cohort study conducted in the UK. We analyse the metabolic and

phenotypic data of SABRE, with a view to identifying potential ethnic differences

in metabolite levels and associations, to gain a better understanding of different risk

of cardio-metabolic disorders and diabetes development across ethnicities. Our first

focus is on modelling the distribution of Homeostasis Model Assessment Insulin Res-

istance (HOMA IR), which is a frequent precursor to the development of type 2

diabetes. We adopt a Bayesian nonparametric random intercept/error model, which

allows for data-driven clustering of patients, while adjusting for individual metabol-

ite levels. The results highlight the presence of sub-populations in the data, with

diverse levels of HOMA IR related to different metabolic profiles. The second stage

of research is concerned with the development of Bayesian multiple graphical models,

to infer the structure of association between metabolites, across ethnicities. In the

first model we adopt a Dependent Generalised Dirichlet Process (DGDP) prior on the

edge inclusion probabilities, allowing the estimation of multiple Gaussian Graphical

Models (GGMs) in a sparse multivariate regression framework (i.e. the seemingly un-

related regression (SUR) model). The DGDP prior allows a convenient way to share

information across edges and multiple graphs, while within the sparse SUR framework

we impose sparsity on the precision matrices, through the Stochastic Search Structure

Learning prior, and on the regression covariates, through the Horseshoe prior. In our

final contribution, we propose a dynamic multiple groups extension of the Nodewise

Regression technique. We allow multiple groups of different sample sizes to be ana-

lysed. We estimate dynamic multiple graphs adopting a dynamic shrinkage prior,

which allows to share information across times and groups, while ensuring good com-

putational scalability. Posterior inference is performed through Markov Chain Monte

Carlo (MCMC).
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Impact Statement

The need to understand the mechanisms underpinning the development of diabetes

and cardiovascular diseases is of paramount importance given the huge implications

that these ailments can have on the quality of life of affected individuals and society as

a whole. The purpose of this thesis is to provide novel statistical tools through which

we can analyse a wide range of biostatistical data, in particular multivariate outcomes

and covariates of interest. The novelty of the application lies in the approach that we

take in analysing a wide range of metabolites, within a graphical modelling framework,

elucidating ethnic differences and linking our findings to diseases of interest, such as

diabetes and cardiovascular diseases. The proposed methodologies allow us to directly

analyse multiple outcomes, conditionally to confouders of interest, and to account for

the existence of multiple related sub-populations. The development of this work can

be of great use inside the academic environment. First and foremost for the SABRE

team who continue to study the SABRE datasets, of which the metabolomics data

is a small part. Moreover, the application of the proposed models is favoured by

the availability of computational routines that can be used in R. Other academic

research bodies can benefit from our work, for example the UCLEB (UCL-LSHTM-

Edinburgh-Bristol) consortium based at UCL, whose research is focused on genomics

and metabolomics, could benefit from our contributions.

The impact of the thesis is not limited to the academic environment, in fact, the

methodological developments, as well as the computational aspects, can be useful in

industry. For example, biopharmaceutical companies that deal with metabolomics,

and in general ’omics data, could use the proposed models in the analysis of complex

datasets that are readily available thanks to the technology advances in profiling

genes and metabolites. The application of such methodology is not limited to the

medical field, in fact it can also be employed for a variety of problems, such as in

socio-economic disciplines, where multivariate data are commonplace.
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Chapter 1

Introduction

1.1 The SABRE study

The Southall And Brent REvisited (SABRE) study is a cohort research study in-

volving nearly 5000 European, South-Asian (from the Indian subcontinent) and African-

Caribbean men and women (Tillin et al., 2010). SABRE is funded by two registered

charities, the Wellcome Trust and The British Heart Foundation, and is run by a

team now based at University College London with support from experts at the Uni-

versities of Bristol, Cambridge, Edinburgh, Exeter, Glasgow, Newcastle, Oxford and

Washington (Seattle, USA). The first measures available refer to the baseline study

dating back to 1988-1991. A first follow-up is available from 2008-2011 and a second

follow up is being currently completed. Recruited volunteer patients in SABRE have

been analysed twice, first in a fasting state and a second time two hours after an oral

glucose test (post oral glucose tolerance test, OGTT). Here we focus on the fasting

state measurements for both the baseline and follow-up data.

1.1.1 The data

The SABRE study covers several research projects involving different kinds of data.

In this work we concentrate on the metabolomics data, with a focus on ethnic differ-

ences and Insulin Resistance. Metabolomics is the large-scale study of small molecules,

commonly known as metabolites, within cells, bio-fluids, tissues or organisms. Col-

lectively, these small molecules and their interactions within a biological system are

known as the metabolome. In Figure 1.1 we show a summary of the relationships

occurring between different ’omics fields. With the term ’omics we refer to the col-

17



lection of disciplines which includes genomics, metabolomics, proteomics, etc. Some

Genome DNA

Transcriptome RNA

Proteins

Metabolome

Proteome

Sugars Amino
Acids LipidsNucleotides

Metabolites

Figure 1.1: Examples of ’omics fields of study and their relationship. The genome, the

ensemble of every gene in the DNA, contains the instructions, which are translated and

executed by the RNA to build proteins. Finally, the metabolome is the collection of

all small molecules produced by the metabolic reactions occurring within an organism

(the metabolism).

examples of small molecules include sugars, lipids, amino acids, fatty acids, phen-

olic compounds etc. The actual dataset contains over 200 metabolites and ratios of

metabolites, and a major proportion of them is represented by lipoproteins. Lipopro-

teins are classified according to their density and we can distinguish very-low density

lipoprotein (VLDL), low density lipoprotein (LDL), intermediate density lipoprotein

(IDL) and high density lipoprotein (HDL). Each lipoprotein is further categorised ac-

cording to its dimension, ranging from extra-extra large to extra small. The task of

these lipoproteins is to carry through the blood stream lipids compounds which are

triglycerides, phospholipids, cholesterol esters and free cholesterol. In this work we

focus on a subset of all the metabolites, excluding from the analysis all the ratios of

metabolites, reducing the total number of measurements to 88. All the metabolites

concentrations are measured in millimoles per litre (mmol/L). Table D.1 contains the

selected molecules along with the acronym used throughout the thesis. A considerable

proportion of the selected metabolites has a high degree of correlation, in particular,

lipoproteins compounds are very correlated (Figure E.1).

Insulin resistance and ethnic differences are of major interest in this research. Insulin

resistance represents the “resistance”of the body towards the action of insulin aimed

18



to decrease the level of glucose in the blood. In other terms, in a healthy individual,

when the glucose concentration in the blood is too high, the beta cells in the pan-

creas produce insulin in order to facilitate the absorption of glucose by other cells for

energy production, reducing its concentration. In the status of insulin resistance, the

organism (liver, fat, muscles, etc.) does not respond properly to insulin production,

diminishing the proportion of glucose absorbed, as a consequence the pancreas needs

to increase the production of insulin to maintain the right glucose level in the blood.

This disordered state can potentially lead to the development of type 2 diabetes. Dia-

betes poses an enormous individual and societal burden, with a high risk of major

complications and diminished quality and length of life. Hence, it is imperative to un-

derstand causal mechanisms to identify those at highest risk and to tailor preventive

and therapeutic measures for appropriate periods during the life course. The global

epidemic of type 2 diabetes disproportionately affects non-European ethnic groups.

South-Asians (from the Indian subcontinent) form the largest ethnic minority group

in the UK with prevalence of diabetes in South-Asians estimated to be 2-4 times

higher than that of the general population (Sproston and Mindell, 2006). Migrant

populations of African-Caribbean origin, although smaller in number, are also at

greater risk of developing type 2 diabetes, with prevalence also estimated at 2-4 times

that of the general UK population (Sproston and Mindell, 2006). Research to date

suggests that insulin resistance and differences in body fat distribution explain some

of the ethnic differences in diabetes risk, but underlying mechanistic pathways are

altogether poorly understood, although likely to involve a complex interplay between

environmental, behavioural, metabolic, genetic and epigenetic disturbances.

The first part of the thesis is devoted to an exploratory analysis of the SABRE

metabolic and anthropometric data. We exclude from the analysis the individuals

with known diabetes at the time of the first visit. This choice is motivated by the fact

that people with known diabetes were already receiving treatments that may alter

their metabolite levels. We include control variables, such as the Homeostasis Model

Assessment Insulin Resistance (HOMA IR), an index of Insulin Resistance (Matthews

et al., 1985) proportional to the product of blood concentration of insulin and glucose

(both measured in millimoles per liter (mmol/L)), three important enzymes, alanine

aminotransferase, aspartate aminotransferase and gamma glutamyl transferase, which
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are indicators of the liver health. We include anthropometric variables, especially

measures of body fat distribution, of which Waist to Hip Ratio (WHR) is the most

relevant, being a measure of central adiposity. Age, sex and smoking status are also

considered as standard control variables. The SABRE study specifically focuses on

ethnic differences and this characteristic is reflected in our analysis, where we consider

ethnicity as a potential factor for metabolic differences. In Table 1.1 we provide a brief

description of the number of complete observations, proportion of females patients,

mean level of HOMA IR, Age, Waist to Hip Ratio and proportion of current smokers,

stratified by ethnicity. In Figure 1.2 we show the empirical distribution of HOMA

Table 1.1: Number of patients, percentage of females, mean level of HOMA IR, mean

age, average Waist to Hip ratio and percentage of current smokers in each ethnic

group, calculated on the baseline fasting sample data

Ethnicity Obs. Females HOMA IR Age WHR Current Smokers

percentage percentage

Europeans 1030 13.2% 1.981 53.4 0.922 29.5%

South-Asians 772 20.9% 2.808 50.6 0.953 14.5%

Africans-Caribbean 86 7% 2.135 52.9 0.932 24.4%

IR for each ethnic group. We can see the difference, especially between Europeans

and South-Asians, in the empirical distribution. The South-Asian density is slightly

shifted to the right and has a heavier right tail, to indicate the presence of a greater

number of less healthy individuals. In Table D.2 we report the full list of covariates

that are used throughout the thesis, together with their acronyms (the total number

of covariates is 21).
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Figure 1.2: The plot shows the HOMA IR distribution, stratified by ethnicity (where

the vertical line represents the sample median of each group). The plot is obtained

through a kernel density estimate, with a Gaussian kernel with bandwidth equal to

1, as given by the standard function density employed in the R package stats.

1.2 Proposed methods

In this work, we address multiple questions about the impact that ethnic differences

can have on the structure of associations among metabolites, the different risk of de-

velopment of cardiovascular diseases and development of type 2 diabetes. We first

address the question of how Insulin Resistance is affected by individual metabolic

profiles and how its level differs across ethnicities. We use a Bayesian nonparametric

random intercept/random error regression model to approach these questions. The

adoption of Bayesian nonparametric methods, in particular the use of a Dirichlet

Process type prior (Ferguson, 1973; Antoniak, 1974), allows data-driven clustering

of individuals without the need to specify a priori the number of clusters. Using an

extension of the Dirichlet Process, the Dependent Generalised Dirichlet Process, we

allow the clustering to be ethnic specific, while borrowing information across groups.

Moreover, the random error in the regression makes the model more robust to outliers.
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To address the question of how ethnic differences can have an impact on the struc-

ture of associations of the metabolites, we adopt Bayesian Graphical Models, imposing

sparsity to handle the great number of dependent and independent variables involved.

We first analyse the baseline data, developing a model which is able to treat multiple

groups of observations, corresponding to multiple graphs (defined by ethnicity). Un-

der the Bayesian framework, we employ a nonparametric prior on the edge inclusion

probabilities of the graph and we propose an extension of the model to estimate mul-

tiple graphs. A wealth of models is available to handle multivariate outcomes and

possibly different sets of covariates. A pioneering method is the Seemingly Unrelated

Regressions (SUR) Model introduced by Zellner (1971). The SUR model can be seen

as a generalization of the linear regression model, where there are multiple regression

equations, each one having its own dependent variable and possibly a specific set of

regression covariates. The peculiarity of this model is that the regressions are not

estimated independently, but they are linked together by the error terms that can be

correlated. The SUR model offers flexibility but comes with a large number of para-

meters to be estimated. For this reason, we adopt a Sparse SUR approach (Wang,

2010; Billio et al., 2017), that is a SUR model where the coefficients associated with

the regression covariates and the error precision matrix can shrink to zero. We treat

the metabolites as the outcomes of a set of linear regressions where the covariates

for each equation are represented by the variables previously introduced (Table D.2).

The precision matrix between equations is specified conditionally on an underlying

graphical model, which determines the patterns of conditional independences of the

metabolites. Zeros in the error precision matrix indicate conditional independences

between variables (Lauritzen, 1996). We use the Stochastic Search Structure Learning

(SSSL) prior of Wang (2015), which allows efficient posterior inference of the under-

lying graph, and conditional on the graph, allows inference of the precision matrix.

Sparsity in the vector of regression coefficients indicates a dependence of the mean of

the response only on a subset of covariates. Different approaches have been proposed

to handle variable selection in a linear regression context. See, among the others,

O’Hara and Sillanpää (2009) for a review of methods for variable selection in a single

linear regression framework. When moving to the context of simultaneous multiple

regressions we need to perform the selection jointly on all the outcomes. Brown et

al. (1998) uses an efficient MC3 method that exploits the marginal likelihood of the
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Matrix Normal distribution. However, their model assumes that all the responses

have the same predictors, which leads to the same selected subset for each response.

The SUR model is broader and allows for different predictors in each outcome, hence

a potential different selection. In order to maintain a good scalability with respect

to the number of variables involved, we adopt the continuous Horseshoe shrinkage

prior of Carvalho et al. (2010) which shrinks small or negligible coefficients to zero,

while leaving important coefficients unaffected thanks to its heavy tails. We model

the edges inclusion probabilities of the multiple GGMs with a Dependent Generalised

Dirichlet Process (DGDP, Barcella et al. (2017)) prior, allowing clustering of the coef-

ficients across multiple groups and sharing information about the possible common

structure. The DGDP is a generalisation of the well-known Dirichlet Process (DP,

Ferguson (1973) and Antoniak (1974)), which posses greater flexibility thanks to the

richer parametrisation and enables the introduction of dependence between random

measures through the weights of the process.

The last part of the project concerns the development of a Bayesian model to analyse

temporal patterns of association among a set of metabolites over different groups of

patients. We develop a model to jointly estimate multiple graphs, corresponding to

the ethnicities, and multiple time points, which in our case correspond to the baseline

and follow-up data of the SABRE study. We are interested in identifying potential

ethnic differences in metabolite levels and associations as well as their evolution over

time, with the aim of gaining a better understanding of different risk of development

of cardio-metabolic disorders across ethnicities. Within a Bayesian framework, we

employ Nodewise Regression technique (Meinshausen and Bühlmann, 2006) to infer

the structure of the graphs, borrowing information across time and ethnicities. The

response variables of interest are metabolite levels measured at two time points for two

ethnic groups, Europeans and South-Asians. We use Nodewise Regression to estimate

the high-dimensional precision matrix of the metabolites, by regressing each metabol-

ite on the remaining and imposing sparsity on the regression coefficients through a

dynamic extension of the Horseshoe shrinkage prior proposed by Kowal et al. (2017).

The Horseshoe prior has some desirable characteristics as detailed above, moreover

employing a continuous prior allows fast posterior inference. Graph selection is based

on a functional of the posterior distribution as described in Carvalho et al. (2010).
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1.3 Outline of the thesis

The thesis is organised as follows.

• In Chapter 2, we introduce the fundamental ideas behind Bayesian inference

and graphical models needed for the development of our models.

• In Chapter 3, we perform several exploratory analyses on the metabolites and

the covariates previously listed. We perform network analysis on the metabolites

and variables selection in a linear regression context considering each metabolite

as outcome. We also build a simple change-point model aimed to discover the

ideal cut-off to be used in the Differential Network analysis.

• In Chapter 4, we build a nonparametric random intercept / random error re-

gression model to investigate the ethnic differences in the distribution of Insulin

Resistance conditioning on the metabolites levels. Thanks to the clustering

property of the Bayesian nonparametric prior, we can highlight clusters of in-

dividuals with different metabolic profiles and risk of development of type 2

diabetes.

• In Chapter 5, we present our approach to the estimation of multiple Gaussian

Graphical Models. We specify the DP type prior distribution on the edge inclu-
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sion probabilities and we study in detail the graphical properties that this prior

generates. We test the performance of the model in simulations and we analyse

the SABRE dataset, providing in-depth analysis of the results.

• In Chapter 6, we propose an approach to infer dynamic multiple graphical mod-

els, providing evidence of the model performance on simulated datasets. We

analyse the baseline and follow-up data from SABRE, providing a set of inter-

pretable results with a pathway enrichment analysis.

• Finally, in Chapter 7,, we discuss the main findings and contributions of this

project and we outline some open research questions.
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Chapter 2

Methodological Background

In this research project, we adopt a Bayesian framework. The fundamental character-

istic of the Bayesian approach is the way we treat an unknown parameter θ, which is

the object of inference and represents a characteristic of the population under study.

Rather than consider it as an unknown constant value, as in the frequentist approach,

θ is a random variable, so the object of inference is the distribution of θ.

Most of this thesis is related to Graphical Models and in particular Gaussian Graph-

ical Models (GGMs). A Graphical Model is a convenient way of defining a set of

dependences over a multivariate random variable. If we further assume a multivariate

Normal distribution, then we have a Gaussian Graphical Model (GGM). The res-

ulting graph determines the structure of the precision matrix that characterises the

distribution and defines a set of conditional independences between the coordinates

of the multivariate random variable.

Here we provide an introduction to the central aspects of Bayesian inference and

Graphical Models.

2.1 Introduction to Bayesian Inference

We use probabilities to express information beliefs, or uncertainty, about an unknown

quantity of interest. Bayes’ rule is a rational method through which we can update

our beliefs about the unknown quantity, given some new information (Hoff, 2009).

The process of learning through Bayes’ rule is called Bayesian Inference. We define

θ ∈ Θ to be the random variable denoting a population characteristic, where Θ is the

parameter space, that is the set of all possible values that θ can assume. We then call
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y the subset of observations, from the population, on which we measure the variable of

interest. In order to make inference on θ we need to set up our model, which consists

of a prior distribution and a distribution over the sampling model.

1. The probability distribution p(θ) describes our uncertainty about θ before the

experiment takes place. We may have a vague idea about the true value of θ,

so the prior will reflect this information.

2. Given a specific value of θ, the sampling model is p(y | θ). This represents the

distribution of our observations y given θ known.

Once a dataset y is obtained we can update our uncertainty about θ. Thus we need

to update the prior distribution on θ with the newly gathered information. Bayes’

theorem allows updating uncertainty through

p(θ | y) =
p(y | θ)p(θ)∫

Θ
p(y | θ̃)p(θ̃)dθ̃

(2.1)

Equation (2.1) is the posterior distribution, which is a combination of the likelihood

p(y | θ) and the prior p(θ) in the numerator. The denominator is a normalizing

constant (it does not contain θ) which ensures that the new distribution integrates to

one.

There are cases where the posterior is of simple derivation while in other cases it will

require numerical approximations. We can have a prior which is conjugate or non-

conjugate. Conjugacy refers to the fact that prior and posterior belong to the same

family of probability distributions. When conjugacy is achieved, we can obtain the

posterior distribution avoiding the computation of the integral in the denominator of

(2.1), which can be problematic. There are several combinations of sampling models

and prior that are conjugate. For example when p(y | θ) and p(θ) are both Gaussian

distributions (where θ represents the mean), p(y | θ) Binomial and p(θ) Beta or p(y | θ)

Poisson and p(θ) Gamma. When the prior is not conjugate to the data model, we

can not simply ignore the denominator in Bayes’ rule. Here lies the main reason that

prevented the use of Bayesian inference to spread until the late 90’s. Often in many

applications, we have to deal with updates requiring complex integrals to be solved,

so it is only with the development of efficient computational algorithms that Bayesian

methods have become popular.
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2.1.1 Monte Carlo

With a standard conjugate distribution, we can easily get the corresponding posterior

distribution of θ. However, we are often interested in a function of θ, say g(θ),

or a comparison between two or more populations, of which we want the posterior

distribution. For example we can be interested in the posterior of |θ1 − θ2|, θ1
θ2

or

log
(

θ1
1−θ1/

θ2
1−θ2

)
. To calculate such quantities, we can rely on Monte Carlo (MC)

methods. Given a posterior distribution from which we can draw random values,

we can get a numerical approximation of any function using these random samples.

Let θ be a parameter of interest and let y1, . . . , yn be a sample from a distribution

p(y1, . . . , yn | θ). Suppose we can sample a number S of independent random values

of θ from the posterior distribution p(θ | y1, . . . , yn):

θ(1), . . . , θ(S) iid∼ p(θ | y1, . . . , yn)

Then, the empirical distribution of the samples
{
θ(1), . . . , θ(S)

}
approximates p(θ |

y1, . . . , yn), with greater precision as S increases. Moreover, by the law of large num-

bers we obtain that if θ(1), . . . , θ(S) are iid samples from p(θ | y1, . . . , yn), then

1

S

S∑
s=1

g
(
θ(s)
)
−→ E [g(θ) | y1, . . . , yn] =

∫
g(θ)p(θ | y1, . . . , yn)dθ for S −→∞

This result implies that any by-product of the posterior distribution can be accurately

approximated by a MC sample.

The previous framework works well when we can simulate from the posterior distri-

bution of θ. However, in many cases when we treat a model with multiple paramet-

ers, the joint posterior distribution may be non-standard and difficult to sample. In

this event, a class of numerical approximation based on Markov Chain Monte Carlo

(MCMC) is available. MCMC are a class of algorithms for sampling from a probab-

ility distribution, through the construction of a Markov Chain that has the desired

joint posterior probability distribution as its equilibrium distribution. This method

is based on sampling from a certain distribution (for example a factorization of the

joint posterior), whose realisations are not iid as in a MC, but have a Markovian

dependence, i.e. each sample is independent of the past given the most recent value.

It is convenient to distinguish the two main categories of MCMC, the Gibbs sampler

and the Metropolis-Hastings. See Robert and Casella (2011), among the others, for

a discussion about the development of these algorithms. The Metropolis algorithm
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precedes the Gibbs sampler chronologically, but we will introduce them in a reverse

order.

2.1.2 Gibbs Sampler

The Gibbs sampler is a technique for generating random samples from a target distri-

bution without the need of calculating the density of the distribution itself. Instead of

solving difficult, or often impossible calculations, we can rely on a sequence of easier

computations. Among the most notable literature on Gibbs sampler, we have Geman

and Geman (1984) and Gelfand and Smith (1990) with their pioneering works. We

follow the work of Casella and George (1992) to explain the Gibbs sampler.

Suppose we have p+1 unknown parameters, with joint density f(φ, θ1, . . . , θp), and we

want to make inference on them. We can be interested, for example, in the marginal

density of the parameter φ:

f(φ) =

∫
Θ1

· · ·
∫

Θp

f(φ, θ1, . . . , θp)dθ1 . . . dθp

There are many cases where the analytical solution of such integral is very difficult

or even impossible, and even a direct numerical solution may not work, such as a

MC, when the multidimensional parametric space is too wide to be properly covered.

Instead of computing directly f(φ), we can use the Gibbs sampler to iteratively gener-

ate samples from f(φ). Consider the case where we have a bivariate random variable

(θ, φ), through the Gibbs sampler we can generate samples of f(φ) by sampling from

the full conditional distributions f(φ | θ) and f(θ | φ). The term full conditional

refers to the distribution of a variable conditioned on all the other variables forming

the joint distribution. Consequently, a condition to use the Gibbs sampler is the

availability of these distributions and the ability to generate samples from them. The

Gibbs sampling procedure starts by specifying an initial value for θ(0) = θ0 (we could

equally start from φ instead) and then iteratively sample from the full conditionals

alternating

φ(s) ∼ f(φ | θ = θ(s))

θ(s+1) ∼ f(θ | φ = φ(s))
(2.2)

Under reasonably general conditions (Casella and George, 1992) the distribution of

φ(s) converges to the true marginal f(φ) as s −→ ∞, where s is the number of

iterations of the algorithm. Then, effectively after a certain number of iterations of the
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sampler, we are in a situation where we are sampling from the equilibrium distribution

and we can regard the samples (φ(s), θ(s)) as draws from the joint posterior distribution

f(φ, θ). The convergence of this algorithm is not always guaranteed. In Casella

and George (1992) a sufficient condition for the convergence is that the marginal

distribution is a proper density, i.e.
∫
fφ(φ) dφ <∞. General convergence conditions

for the Gibbs sampler are discussed in detail by Schervish and Carlin (1992).

2.1.3 Metropolis-Hastings algorithm

In order to use the Gibbs sampler, we must be able to sample from the full condi-

tional distributions. This is not the only limitation of the Gibbs sampler, in fact,

there are cases where the mixing of the sampler is very slow, which means that the

algorithm remains stuck in a region of the parameter space with high density and it

may take a very long time to explore all regions with significant probability mass. The

Metropolis-Hastings sampler, in contrast, does not require a direct sampling from the

full conditional distributions, but it rather makes use of a proposal distribution. This

sampler was first introduced by Metropolis et al. (1953), who developed the Metro-

polis in the case of a symmetric proposal distribution. It was then extended to a more

general type of proposal by Hastings (1970).

As before, we are interested in the joint posterior distribution f(θ, φ), which is ap-

proximated through a Metropolis-Hastings sampler by drawing values from a proposal

distribution alternately for each parameter or with a joint proposal. The proposal dis-

tribution is selected so that we can easily generate random values from it. There are

two kinds of proposal, symmetric such as the Gaussian and Uniform distributions

and asymmetric like the Gamma distribution. The proposed value is not automatic-

ally accepted and stored as in the Gibbs sampler, but it has to be accepted through

a stochastic acceptance step. A Metropolis-Hastings algorithm for approximating

f(θ, φ), given a proposal distribution q(·) and a sampling model p(y | θ, φ), runs as

follows

• 1. sample θ∗ ∼ qθ(θ | θ(s), φ(s))

2. calculate the acceptance ratio:

r =
p(y | θ∗, φ(s))p(θ∗, φ(s))

p(y | θ(s), φ(s))p(θ(s), φ(s))
× q(θ(s) | θ∗, φ(s))

q(θ∗ | θ(s), φ(s))
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3. set θ(s+1) = θ∗ with probability equal to min(1, r), otherwise θ(s+1) remains

equal to θ(s)

• 1. sample φ∗ ∼ qφ(φ | θ(s+1), φ(s))

2. calculate the acceptance ratio:

r =
p(y | θ(s+1), φ(∗))p(θ(s+1), φ(∗))

p(y | θ(s+1), φ(s))p(θ(s+1), φ(s))
× q(φ(s) | θ(s+1), φ(∗))

q(φ∗ | θ(s+1), φ(s))

3. set φ(s+1) = φ∗ with probability equal to min(1, r), otherwise φ(s+1) remains

equal to φ(s)

We can update each parameter individually or using block updates, i.e. updating

more parameters together. It is sometimes the case that a multivariate update is

required, over a subset of parameters, for mixing purposes and faster convergence.

The Metropolis-Hastings algorithm is related to the Gibbs sampler, in fact the latter

is a special case of the Metropolis, where each proposed new value is always accepted.

When dealing with more complex models, we can mix the two algorithms, alternating

steps of Gibbs with steps of Metropolis, depending on the posterior’s complexity.

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a particular type of Metropolis, whose proposal

distribution is based on Hamiltonian dynamics. Hamiltonian dynamics is a well stud-

ied topic in physics, but the concept has been exploited in statistics to create an

efficient way of constructing a proposal distribution for the Metropolis algorithm

(Brooks et al. (2011), chapter 5). A Metropolis algorithm equipped with Hamiltonian

proposals can quickly explore the state space, avoiding the random walk behaviour

of independent Gaussian proposals and consequently, it can efficiently explore the

posterior distribution of the parameters of interest.

Consider a parameter of interest θ ∈ RD with density p(θ). The HMC works by adding

an independent auxiliary random variable φ ∈ RD, with density p(φ) = N(0,M)

which has the role of a momentum variable, where M represents the mass matrix.

The joint density p(θ,φ) can be factorised as p(θ)p(φ) and has negative joint likeli-

hood

H(θ,φ) = − log p(θ) +
1

2
log
(
(2π)D|M |

)
+

1

2
φTM−1φ (2.3)
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In physics a Hamiltonian describes the sum of a potential energy function, which is

− log p(θ), defined as the position of θ, and a kinetic energy term φTM−1φ/2. The

gradient of (2.3) with respect to the position and momentum variables has a physical

interpretation as the time evolution, with respect to a fictitious time t, of a dynamic

system as given by Hamilton’s equations

dθ

dt
=
∂H

∂φ
= M−1φ

dφ

dt
= −∂H

∂θ
= ∇θ log p(θ) (2.4)

In practice, the differential equations in (2.4) have to be approximated via numerical

methods. The leapfrog method is a popular choice (Brooks et al., 2011) and it is

adopted in Stan (Carpenter et al., 2017), a probabilistic programming language which

allow the users to employ HMC to perform Bayesian inference. The approximation

introduces a small bias which is then corrected introducing an accept-reject step.

2.1.4 Dirichlet Process

We provide a brief introduction of the Dirichlet Process, which is arguably the most

widely used Bayesian nonparametric prior and is the starting point for many ex-

tensions developed in the literature. The DP can be viewed as a distribution of

distributions (Ferguson, 1973; Antoniak, 1974). Sethuraman (1994) provides a con-

structive definition of this process, showing that if a random probability measure P

is distributed according to a DP, with mass parameter α and base measure P0, then

P =
∞∑
k=1

ψkδθk (2.5)

where θ1, θ2, . . . are iid realisations from P0 and δθk is the Dirac measure that assigns

a mass probability of one in correspondence of the location θk. The weights ψk are

generated according to the stick breaking construction (see Ishwaran and James (2001)

for details):

ψk = φk

k−1∏
j=1

(1− φj), k = 2, 3, . . . (2.6)

with the φk
iid∼ Beta(1, α) and ψ1 = φ1. By construction 0 ≤ ψk ≤ 1 and

∑∞
k=1 ψk =

1. In the following chapters the DP is extended to accommodate our modelling

requirements.
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2.1.5 Bayesian Shrinkage Priors

A wealth of literature is available about variable selection and regularisation in the

Bayesian framework; see, for example, O’Hara and Sillanpää (2009) for a review on

shrinkage priors. Two important examples are the class of two components discrete

mixture priors, known as Spike and Slab (George and McCulloch, 1993) and the class

of continuous shrinkage priors, of which examples are the Horseshoe prior and the

Horseshoe+ prior (see Bhadra et al. (2017), among the others, for a review). The

Spike and Slab approach implies a positive probability for the regression coefficient

to be zero, but it can be computationally demanding with a relatively high number

of parameters, due to the large state space. On the other hand, continuous priors

are easier to implement and are usually more computationally efficient, although

the probability for the coefficient to be exactly zero is zero. The Horseshoe prior

(Carvalho et al., 2010) is characterised by an accentuated spike at zero to strongly

shrink small or negligible coefficients, while leaving important coefficients unaffected

thanks to its heavy tails (given by the tick tails of the half-Cauchy distribution).

Therefore, it allows to effectively ignore spurious or redundant covariates (in the case

of a regression), while retaining good scalability.

We introduce the Horseshoe prior for a simple Normal model with unknown mean

parameter. Let y ∼ N(θ, σ2Ip), where θ = (θ1, · · · , θp) is an unknown mean parameter

of dimension p (assume σ2 known). A Horseshoe prior on θ is specified as follows

θj | λj, τ ∼ N
(
0, λ2

jτ
2
)

λj ∼ C+ (0, 1)

τ ∼ C+ (0, 1)

(2.7)

with j = 1, . . . , p. λ2
j is the local shrinkage parameter, specific for the j−th coordinate

of θ, while τ 2 represents the overall shrinkage level. The choice of a half-Cauchy

distribution results in aggressive shrinkage over small or negligible coefficients and is

therefore suitable for variable selection in a Bayesian context. C+(0, 1) denotes the

standard half-Cauchy distribution, with probability density function:

p(λj) =
2

π(1 + λ2
j)
, λj > 0

The half-Cauchy is equivalent to a half-t distribution with one degree of freedom,

which corresponds to the distribution of the absolute value of a centred student-t
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distribution. In particular, let x a be random variable having a t distribution with ν

degrees of freedom, then y = |x|, where |x| denotes the absolute value, is distributed

as a half-t distribution with ν degrees of freedom (Psarakis and Panaretoes, 1990).

Carvalho et al. (2010) compare the performance of the variable selection based on

(2.7) with that of a Spike and Slab prior (George and McCulloch, 1993), showing that

the posterior selection given by the Horseshoe is consistent with that of the Spike

and Slab. Moreover, the continuous nature of this prior allows efficient computations

trough Gibbs sampler algorithms and it can be also easily employed with Bayesian

software such as Stan.

2.2 Gaussian Graphical Models

Gaussian Graphical Models (GGMs) provide a fundamental tool to analyse the un-

derlying dependence structure of a collection of random variables provided with a

joint Normal distribution. It is worth to make a distinction between Network models

and GGMs, the former are statistical models over an observable network while the

latter are statistical models constructed over a non-observable network. GGMs were

first introduced by Dempster (1972), exploiting the properties of the random variables

that belong to the exponential family and combine them together with the covariance

selection models. It is assumed that M variables have a joint Normal distribution

with probability density function

f(X) = (2π)−
M
2 |Σ|−

1
2 exp

{
−1

2
XTΣ−1X

}
(2.8)

where |A| denotes the determinant of the matrix A. Let Σ−1 = Ω be the precision

matrix or, as it is called in Dempster (1972), the concentration matrix, whose elements

are concentrations. In order to introduce sparsity in the precision, we can restrict some

parameters ωij to be zero (where ωij represents the element in position (i, j) in the

matrix Ω). Dempster (1972) proved the existence of a unique estimate Σ̂ of Σ under

such constraints. Σ̂ is a maximum likelihood estimate and it is completely defined by

the zero constraints on its inverse Ω. Later, Wermuth (1976) showed that a zero in the

precision matrix Ω corresponds to a zero partial correlation, under the assumption

of Normality. This is a relevant result because a zero partial correlation implies a

conditional independence of the corresponding coordinates of the multivariate Normal

random variable.
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Figure 2.1: Example of Graph decomposition. The light blue triangles represent

maximal cliques. The dark blue subgraphs are maximum cliques, i.e. the biggest

cliques in the graph

2.2.1 General theory of graphical models

Here we provide some background on graph theory following the work of Lauritzen

(1996). Let G = (V,E), with V = {1, 2, . . . ,M} and E ⊂ {(i, j) ∈ V × V : i < j},

be an undirected graph whose vertices are associated with a M -dimensional vector

X. From the vertex set V we can extract a subset of vertices A, with A ⊆ V , which

induces a subgraph GA that is defined by the subset of vertices A and the implied

subset of edges EA. A graph, or a subgraph, is said to be complete if all the vertices

are connected by an edge. The property of completeness is related to a key concept

in graph theory, the clique. A clique is a subset of vertices that are fully connected,

implying that the induced subgraph is complete (Lauritzen, 1996). In Figure 2.1 we

show some examples of cliques, the light blue triangles are all maximal cliques, that is,

a clique that cannot be extended including an adjacent vertex (because it will result

in a non-complete subgraph); the two dark blue subgraphs are maximum cliques, that

is, they are the biggest cliques in the graph. A prime component is a subgraph (or a

graph) that does not admit a further decomposition. A subset C is called a separator

if it separate two subsets A and B, i.e. every path from A to B has to go through C.

An important aspect of graphs is their decomposability, which is also a property

of major interest because it allows the factorization of the associated multivariate

distribution. According to Lauritzen (1996), a triple of disjoint subsets (A,B,C), of
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the vertex set V , generates a weak decomposition of the graph G, if V = A ∪ B ∪ C

and the two following conditions hold:

• C separates A from B

• C is a complete subset of V

which is also a strong decomposition if all the nodes in the graph refer to distributions

of the same nature (e.g. continuous distributions). Then, we can say that (A,B,C)

decomposes G in two components, GA∪C and GB∪C . For example, the graph in Figure

2.1 is non-decomposable because there are some cycles of more than three vertices

that do not have a chord (a chord is an edge that is not part of the cycle, but connects

two vertices of that cycle), and hence they are not decomposable. Indeed, every cycle

made by four or more vertices that do not have a chord, is non-decomposable (see

Lauritzen (1996) for the proof as well as further corollaries and definitions).

Now we introduce the Markov properties that apply to a probability distribution over

a graph. Assume that we have a collection of random variables (Xi)i∈V taking values

in the probability spaces (Xi)i∈V , meaning that there is a random variable associated

with each element of the vertex set V . For a generic subset A of V we use the short

notation XA and XA, with xA to denote an element of XA. Given an undirected graph

G = (V,E) and a correspondent collection of random variables XV , for a probability

measure P on XV , Lauritzen (1996) defines the following three properties:

• Pairwise Markov property, if for any pair (A,B) of non-adjacent vertices A ⊥⊥

B | V \ {A,B}

• Local Markov property, if for any vertex A ∈ V , A ⊥⊥ V \cl(A) | bd(A)

• Global Markov property, if for any triple (A,B, S) of disjoint subsets of V such

that S separates A from B, A ⊥⊥ B | S

where A ⊥⊥ B means A is independent of B, bd(A) denotes the boundary of A, i.e. the

set of nodes that are neighbours to A, and cl(A) denotes the closure of A which is the

union between A and its boundary. Various theorems about the relationships among

these properties are discussed and proved in Lauritzen (1996), among which, the

equivalence of the three Markov properties in a GGM. The global property is strictly

connected to the concept of density factorization which is a fundamental aspect of
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GGMs. Given a sample x from a multivariate Gaussian distribution X, conditionally

to a decomposable graph G, we can factorize the joint distribution as

p(X | Ω, G) =

∏
C∈C p(XC | ΩC)∏
S∈S p(XS | ΩS)

(2.9)

where C and S denote the sets of cliques and separators, ΩC and ΩS represent the sub-

matrices defined respectively by the clique C and the separator S (Giudici and Green,

1999). This decomposition gives an important gain in efficiency, as we do not need

to conduct the calculations on the full joint distribution. This result has implications

on the development of a conjugate family of distribution over the precision matrix

of a multivariate Normal distribution, which includes the Hyper-Wishart distribution

(Roverato, 2002) and the G-Wishart distribution (Atay-Kayis and Massam, 2005).

In the next chapter we introduce the SABRE metabolomics data and present an

initial exploratory analysis and basic statistical models.
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Chapter 3

Exploratory Data Analysis on

SABRE

The complexity of the SABRE dataset and the large number of variables involved

pose many challenges. We focus on the metabolites measurements, and try to infer

some particular patterns in their relationship and look at the differences according

to particular disease states or factors of interest. Moreover, we analyse the relation

between the metabolites and the available covariates, for example, looking at the dif-

ferences induced by a specific ethnicity. Also, we can infer the association between

the metabolites and the development of diabetes, examining the different interactions

for each ethnicity.

In this chapter, we restrict the analysis to a subset of the 88 metabolites, by merging

together the lipoproteins sub-fractions. Instead of considering the finest distinction

given by the compound content and dimension, we use aggregate measures for VLDL,

IDL, LDL and HDL and we include total serum triglycerides and total serum choles-

terol as extra metabolites. The decision to not analyse all the sub-fractions of each

molecule of lipoproteins is motivated by the initial focus of the clinicians and epi-

demiologists, collaborating on this project, who are interested in understanding the

overall dependencies between the major classes of lipoproteins and the other amino-

acids. Moreover, given the complexity and high correlation of the data at hand we

first perform an exploratory analysis of the metabolites on a reduced selection of vari-

ables. The results obtained with this first analysis give us additional evidence that

a more detailed study of the lipoproteins sub-fractions would be needed, therefore in

the following chapters we carry a more in depth analysis.
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3.1 Network Analysis

The first analysis that we conduct is aimed to explore the space of metabolites and the

interactions occurring among them. Individual Networks and Differential Networks

are the techniques we use for this purpose (Valcárcel et al., 2011). Each analysis

is conducted stratifying by ethnicity, in particular, we focus on the European and

South-Asian sub-populations (the size of the African-Caribbean sample is not enough

to allow a proper estimate of the networks). The next sub-sections show the results

of the network analysis on the fasting dataset.

Individual networks

Individual Networks are used to examine the patterns of association of a group of vari-

ables, exhibited under certain conditions. In our application, the two sub-samples,

the Europeans and the South-Asians, have been divided into two subgroups according

to the individual levels of Homeostasis Model Assessment Insulin Resistance (HOMA

IR). Patients with a HOMA IR level under the first quantile (25% of HOMA IR cu-

mulative distribution) and the patients with HOMA IR over the third quantile (75%

of HOMA IR cumulative distribution). These values are calculated on the pooled

sample of South-Asians and Europeans and are respectively 1.2 and 2.9. The con-

struction of the network is based on a binary representation of the underlying partial

correlations (significant and non-significant in a frequentist sense, according to a spe-

cified significance level). Instead of the standard partial correlation statistic, shrinkage

methods for network estimation are adopted to decrease the number of connections in

the graphs and avoid spurious associations. This implies a reduction in the network

complexity and a corresponding more parsimonious biological interpretation (we refer

to Valcárcel et al. (2011) for a similar application of this technique). The analysis is

made with the R package GeneNet.

In Figure 3.1 we plot the two Individual Networks for the European ethnicity, origin-

ated according to the levels of HOMA IR. In Europeans, with both high and low levels

of HOMA IR, the Individual Networks suggest, as expected, significant correlations

between metabolites associated with the citric acid cycle (acetoacetate, glutamine,

lactate and pyruvate), although the correlation with acetoacetate is lost in those

with high HOMA IR, suggesting possible increase in energy supply from glycogen-

esis relative to ketogenesis and/or altered ketone metabolism. Europeans with low

39



levels of HOMA IR have a well correlated group of “harmful”lipids, monounsaturated

fatty acids (mufa), phosphatidylcholines and sphingomyelins- again this is a plausible

grouping which corresponds to known pathways of lipid and phospholipid metabolism

and which is less pronounced in those with high levels of HOMA IR, suggesting some

level of dysregulation in this pathway in association with HOMA IR. We repeat the

same procedure to estimate the Individual Networks in South-Asians. The results

are reported in Figure 3.2 (note that some edges may overlap because we chose to fix

the position of the nodes in order to better spot the differences between the different

conditions and populations). South-Asians with low levels of HOMA IR have no sig-

nificant metabolite correlations apart from that between beta-hydroxybutyrate and

acetoacetate- both are ketone bodies. In contrast, South-Asians with high levels of

HOMA IR have a large number of correlated metabolites and patterns of correlation

appear remarkably similar to those seen in Europeans with low levels of HOMA IR.

This is a surprising finding, which needs further study and points to ethnic differences

in the mechanistic pathways underlying the development of Insulin Resistance.

Differential Networks between low and high levels of HOMA IR

While with Individual Networks we can highlight the patterns of partial correlations

for each individual level of HOMA IR, to find out which pairwise partial correl-

ations are actually statistically different, we need to introduce another technique.

Differential Networks can be used to find the main and more relevant differences

in associations between low and high levels of HOMA IR. In our analysis we test

the null hypothesis H0:The partial correlation between two metabolites across the two

different sub-groups is the same against the alternative hypothesis H1:The partial

correlation between two metabolites across the two different sub-groups is different,

by means of a two-sample permutation test, as described in Valcárcel et al. (2011).

Each connection in a Differential Network indicates a significant change in the partial

correlation between two metabolite measures across the two conditions. The change

in the structure can occur through either a significant increase or decrease in the

pairwise partial correlation between two measures, or a significant alteration in the

sign of partial correlations (here we choose to describe changes with respect to the

low level of HOMA IR). Figures 3.3 and 3.4 show the estimated networks stratified

by ethnicity, respectively for Europeans and South-Asians. In Europeans, compared
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Figure 3.1: Individual Networks for Europeans. Top panel: low level of HOMA IR.

Bottom Panel: High level of HOMA IR. Every edge included in the graph represents

a partial correlation that is statistically significant at the 1% significance level.
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Figure 3.2: Individual Networks for South-Asians. Top panel: low level of HOMA IR.

Bottom Panel: High level of HOMA IR. Every edge included in the graph represents

a partial correlation that is statistically significant at the 1% significance level.
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with those with low HOMA IR, individuals with high HOMA IR have different correl-

ations for a number of metabolites –particularly noticeable for glycine (a glycogenic

amino acid) where associations with histidine and citrate change from negative to

positive and with acetoacetate from positive to negative. However, the correlation

between acetoacetate and leucine (a ketogenic amino acid) also changes from positive

to negative, likewise the correlation between tyrosine (both a ketogenic and glycogenic

amino acid) and glucose. These differences perhaps reflect changes in the balance of

amino acid glycogenesis and ketogenesis for energy provision in the fasting state in

insulin resistant Europeans. In the insulin resistant state, phosphatidylcholines are

positively correlated with omega 3 fatty acids and with total VLDL lipids, suggesting

some alteration in structures of the phospholipids which make up the bulk of cell

membranes, perhaps with implications for intracellular signalling processes.

In South-Asians, we see changes in many correlations on moving from low levels of

HOMA IR to high levels. There are changes in correlations between glutamine and

glucose (positive to negative) and between glutamine and pyruvate (stronger negative

correlation). In contrast, the correlation between alanine and glucose changes from

negative to positive in South-Asians with high HOMA IR. While alanine, like glutam-

ine, is a glucogenic amino acid and abundant in muscle tissue, taken together, one

interpretation could be that insulin resistant South-Asians may favour glutamine over

alanine as a source of glucose in the fasting state (as glutamine breaks down, gluc-

ose levels increase). There is a change from positive to negative correlation between

leucine, an essential branched chain and ketogenic amino acid, and LDL cholesterol

suggesting an alteration in leucine’s effect on lipid metabolism in insulin resistant

South-Asians.

Differential networks between Europeans and South-Asians

It is worth exploring the difference in the partial correlations between Europeans and

South-Asians, adjusting the metabolites levels for the value of HOMA IR. We estimate

two Individual Networks and one Differential Network, whose respective graphs are

presented in Figures E.2 and Figure 3.5. There is a weaker negative correlation

between glutamine and apoliprotein-B for South-Asians compared with Europeans,

suggesting that glutamine may be less correlated with lipid profiles in South-Asians

than in Europeans. There is some evidence to suggest a role for glutamine, not only as
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Figure 3.3: Differential Network for the European sub-population. Fasting dataset.

The graph shows information about the sign of the partial correlations and whether

there is a change in the sign going from a low level of HOMA IR to a high level of

HOMA IR. Every edge included in the graph represents a partial correlation that is

statistically significant at the 1% significance level.

a regulator of pancreatic beta cell function, but also as a substrate for lipid synthesis

in adipose tissue and in fuelling inflammation – the latter could contribute to another

potential pathway to explain excess HOMA IR in South-Asians. The change from

negative to positive correlation between tyrosine and DHA in South-Asians is harder

to explain, both are commonly found in high levels in fish, so there may be some

dietary component. Both tyrosine and DHA can be used in the synthesis of dopamine,

hence it is possible that there are some ethnic differences in dopamine metabolism and

that its ensuing adrenergic effects might be connected with increased risk of HOMA IR

in South-Asians. Changes in correlations between branched chain and aromatic amino

acid correlations with glucose in South-Asians, although difficult to interpret, broadly

support previously observed disturbances in metabolism involving these amino acids
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Figure 3.4: Differential Network for the South-Asian sub-population. Fasting dataset.

The graph shows information about the sign of the partial correlations and whether

there is a change in the sign going from a low level of HOMA IR to a high level of

HOMA IR. Every edge included in the graph represents a partial correlation that is

statistically significant at the 1% significance level.

in association with the development of insulin resistance and diabetes, both states

being much more frequent in South Asian populations.

These associations are all cross-sectional in nature, so no causal inferences may be

drawn and validation in other studies is required. However, the findings highlight areas

for further research and also suggest areas of focus for further analyses using a more

advanced platform for measurement of many thousands of metabolites. Throughout

the previous analysis we used a cut-off on HOMA IR which is not entirely objective.

In literature there is not a clear and unique value to distinct between individuals

with high and low level of insulin resistance. The value we chose to discriminate

the higher values of HOMA IR corresponds to the third quartile of the distribution,

which correspond to 2.882. This threshold is not without foundation in the literature,
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Figure 3.5: Differential Network between Europeans and South-Asians. The graph

shows information about the sign of the partial correlations and whether there is a

change in the sign comparing Europeans to South-Asians. Every edge included in

the graph represents a partial correlation that is statistically significant at the 1%

significance level.

because very similar values have been proposed by other authors, an example of which

is Tam et al. (2012). In the next section we try to determine a cut-off which can be

justified from a medical and statistical point of view. For this reason we build a

Bayesian model to infer the value from the data, rather than fix it a priori.

3.2 HOMA IR cut-off selection

We estimate the ideal cut-off for a continuous variable, here HOMA IR, with a change-

point model defined as follows. Given M metabolites, where each metabolite repres-
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ents a random variable, we assume the following model

Y ∼ N (0,Σ)

Σ ∼ Inverse-Wishart (ν0, S0)

where Y represents the n×M matrix of observations, centred to have zero mean. Each

row yi, for i = 1, . . . , n, is an M -dimensional vector corresponding to the metabolite

measurements for individual i. The prior over Σ is an Inverse-Wishart random variable

with the following probability density function

p(Σ | ν0, S0) =

[
2
ν0M
2 π

(M2 )
2 |S0|−

ν0
2

M∏
j=1

Γ

(
ν0 + 1− j

2

)]−1

|Σ|−
ν0+M+1

2 exp

{
−1

2
tr
(
S0Σ−1

)}
with expected value

E [Σ] =
S0

ν0 −M − 1

where ν0 and S0 are respectively the prior number of degrees of freedom and the

prior base measure of the Inverse-Wishart distribution and tr(A) and |A| represent

the trace and the determinant of a matrix A respectively. The parameter of interest

in this application is the covariance matrix Σ, whose inverse, defined as Ω = Σ−1,

contains the concentrations, which imply conditional independences when equal to

zero.

We search the ideal cut-off over a fine grid of values of HOMA IR and decide whether

the proposed value produces a statistically acceptable split of the dataset by evaluating

the ratio of marginal likelihoods. In particular, we assume that, conditioning on the

proposed splitting value of HOMA IR, the full marginal likelihood can be factorised

in the sum of the marginal likelihood of the two identified sub-samples.

Given the model likelihood

p (y1, . . . ,yn | Σ) =
n∏
i=1

(2π)−
M
2 |Σ|−

1
2 exp

{
−1

2
yTi Σ−1yi

}

= (2π)−
nM
2 |Σ|−

n
2 exp

{
−1

2

n∑
i=1

yTi Σ−1yi

}

= (2π)−
nM
2 |Σ|−

n
2 exp

{
−1

2
tr
(
SyΣ

−1
)}

(3.1)
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where Sy =
∑n

i=1 yiy
T
i , the marginal likelihood is given by

p(Y ) =

∫
Σ

p(Y | Σ)p(Σ) dΣ

= (2π)−
nM
2

[
2
ν0M
2 π

(M2 )
2 |S0|−

ν0
2

M∏
j=1

Γ

(
ν0 + 1− j

2

)]−1

×∫
Σ

|Σ|−
n+ν0+M+1

2 exp

{
−1

2
tr
[
(Sy + S0) Σ−1

]}
dΣ

= (2π)−
nM
2

[
2
ν0M
2 π

(M2 )
2 |S0|−

ν0
2

M∏
j=1

Γ

(
ν0 + 1− j

2

)]−1

×[
2

(ν0+n)M
2 π

(M2 )
2 |S0 + Sy|−

ν0+n
2

M∏
j=1

Γ

(
ν0 + n+ 1− j

2

)]
In passage two, the argument of the integral represents the kernel of the posterior

Inverse-Wishart distribution with parameters Sn = S0 + Sy and νn = ν0 + n. There-

fore, the marginal likelihood reduces to the ratio between the posterior and prior

normalizing constant of the Inverse-Wishart distribution, plus a residual term from

the Normal likelihood.

Next, let indicate with x the variable HOMA IR, then given a value xs of x, we

can divide the full dataset Y in Yx<xs and Yx≥xs , where Yx<xs indicates the set of

observations whose corresponding level of HOMA IR is lower than xs and the set

of observations Yx≥xs , whose corresponding level of HOMA IR is higher (or equal)

than xs. Conditional on the proposed value xs, the marginal likelihood at iter-

ation s, p(Y )(s), can be decomposed in the sum of two independent components,

p(Y )(s) = p(Yx<xs)
(s) + p(Yx≥xs)

(s), which are the marginal likelihood evaluated on

the first sub-sample and on the second sub-sample respectively. The cut-off search

proceeds iteratively as follows, at iteration s:

1. Propose a value xs

2. Given xs, divide the data Y in Yx<xs and Yx≥xs

3. Evaluate the marginal likelihood ratio α = p(Y )(s)/p(Y )(s−1) and accept the

new value of xs with probability equal to min(α, 1)

Ideally, we want to divide the dataset in such a way that one group of patients can

be considered relatively healthy and the other group potentially less healthy. How-

ever, from the analysis of the metabolites we find that the algorithm converges to a

threshold that is always located on the right extreme tail of the distribution of HOMA
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IR, leading to a split of the dataset into a group with just a few individuals and a

group with all the other patients. This is somehow expected, because the individuals

with very high levels of HOMA IR experience a down-break of many connections at a

metabolic level, but the groups identified are not useful for a proper network analysis.

Even if the model works well in simulated settings, the structure of this real dataset

is too complex to be examined in this way. For a pure exploratory purpose we ex-

amine the pairwise correlations for each couple of metabolites on a grid of ten values

of HOMA IR. So, we equally divide the distribution of HOMA IR with the deciles of

the distribution, and for each corresponding slice of Y we calculate all the pairwise

correlations. The idea is to look at the correlation patterns and identify some recur-

ring behaviours over the different metabolites. For example, a rapid change in the

correlation for a certain decile, either an increase or a decrease, that can be observed

for many metabolites. However, due to the variety of different measures involved, we

can not find a clear pattern, nor a clear break point, except for a value of HOMA IR,

around 1.7, where almost overall the pairwise correlations have a slight decrease.

3.3 Bayesian Variable Selection

In the previous section we have adjusted the metabolites levels for the set of covariates

in Table D.2 before performing the analysis. Before introducing the more general

Sparse SUR model, we can obtain some information about the covariates that are

more important in predicting metabolites levels. We have a total of 684 regression

coefficients, i.e. 18 for each of the 38 metabolites in the restricted selection, therefore,

it is useful to reduce this number in order to have a clearer scenario of which factors

are more associated with each metabolite.

Every metabolite represents the response variable of a regression model. We have M

independent linear regressions, with the same regressor matrix of dimension n×p. The

algorithm that we adopt to perform Bayesian variable selection is the MC3 algorithm

of Madigan et al. (1995), applied to each regression. The model is specified as follows:

ym | βm, τ 2
m ∼ N

(
Xβm, τ

2
m

)
βm | β0,Ω0, τ

2
m ∼ N

(
β0,Ω0τ

2
m

)
τ 2
m | ν0, s0 ∼ Gamma (ν0, s0)

(3.2)
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for m in 1, . . . ,M . β0 represents the prior mean of the regression coefficients and Ω0

represents the prior precision matrix. We use a semi-conjugate model, to be able to

derive the marginal likelihood and use the MC3 algorithm. We drop the subscript

m for ease of notation, noting that the same result applies to every regression. The

likelihood of the model in Equation 3.2 is

p(y | β, τ 2) = (2π)−
n
2 (τ 2)

n
2 exp

{
−τ

2

2
(y −Xβ)T (y −Xβ)

}
and the prior distributions over β and τ 2 are respectively

p
(
β | β0,Ω0, τ

2
)

= (2π)−
1
2 |Ω0τ

2|
1
2 exp

{
−τ

2

2
(β − β0)T Ω0 (β − β0)

}
p(τ 2 | ν0, s0) =

sν00

Γ(ν0)
(τ 2)ν0−1exp

{
−s0τ

2
}

The marginal likelihood of the model is then

p(y) =

∫
τ2

∫
β

p(y | β, τ 2)× p
(
β | β0,Ω0τ

2
)
× p

(
τ 2 | ν0, s0

)
dβ dτ 2

= (2π)−
n
2 |Ω0|

1
2 |Ωn|−

1
2
sν00

Γ(ν0)

∫
τ2

(τ 2)ν0−1+n
2 exp

{
−τ 2

[
1

2
m0 −

1

2
βnΩnβ

T
n + s0

]}
dτ 2

= (2π)−
n
2 |Ω0|

1
2 |Ωn|−

1
2
sν00

Γ(ν0)

[
sνnn

Γ(νn)

]−1

where

m0 = yTy + β0Ω0β0

Ωn = Ω0 +XTX

βn = Ω−1
n

(
yTX + β0Ω0

)T
νn = ν0 +

n

2

sn =
1

2
m0 −

1

2
βnΩnβ

T
n + s0

The MC3 algorithm proceeds iteratively proposing the inclusion of a new regressor or

the removal of an old one. The new model is evaluated through a Metropolis step,

where the probability of acceptance is the minimum between one and the ratio of the

marginal likelihoods of the two models. The result of the variable selection is sum-

marized in Table D.3. The approach used in this case does not take into account the

possible influence that can arise across the regressions, but still can give an idea about

the most important covariates. WHR, age and sex are the control variables that are

selected more often, in particular WHR is the most important measure of body fat

distribution. The ethnic group of origin is also important, with both the indicators
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for South-Asians and Africans-Caribbean selected for many metabolites, denoting the

importance of the ethnic factor. HOMA IR is also quite important, together with the

liver health indicators ALT and AST.

This exploratory analysis concludes the first part of the thesis. In the following

chapters we present our major contributions, in particular in the next chapter we

provide a formal analysis of the differences in the distribution of HOMA IR according

to the ethnic group of origin, accounting for the individual metabolic profiles.
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Chapter 4

Bayesian Nonparametric Modelling

of Insulin Resistance

The causal mechanisms underlying the development of type 2 diabetes remain poorly

understood, and no study has yet conclusively explained the reasons for the excess risk

of diabetes experienced by South-Asian and African-Caribbean populations, suggest-

ing that complex metabolic disturbances may underlie the ethnic differences (Tillin et

al., 2012). Insulin resistance is a frequent precursors of type 2 diabetes in all popula-

tions and can be measured non-invasively using indices such as HOMA IR, which can

be calculated from fasting blood glucose and insulin levels (Matthews et al., 1985).

The main purpose of this work is to explore potential mechanisms underlying the

marked ethnic differences in insulin resistance (Figure 1.2).

By employing Bayesian nonparametric statistical methods, we cluster individuals

based on their HOMA IR levels. In doing so, we are able to account for the effect

of covariates, in our case anthropometric measures and metabolites concentrations,

and identify the most influential variables. Moreover, we are able to asses if the dis-

tribution of the selected covariates vary between clusters and if the clusters ethnic

composition has an effect on the covariate distribution. We allow for clusters of indi-

viduals belonging to different ethnic groups. The full list of metabolites included in

the analysis is available in Table D.1. We include three important enzymes: alanine

aminotransferase, aspartate aminotransferase (that are liver health indicators) and

gamma glutamyl transferase. Anthropometric variables are also included, in partic-

ular global measures of body fat distribution such as waist to hip ratio (WHR) and

more specific adiposity measures, such as sagittal diameter and subscapular skinfold
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thickness. The list of anthropometric and clinic covariates can be found in Table D.2.

We exclude from the analysis individuals with known diabetes since they were already

receiving anti-diabetes medication or had undergone lifestyle modifications that might

alter their metabolite levels and potentially the conclusions of the analysis. In this

paper, we focus on the SABRE study baseline metabolic and phenotypic dataset.

To address our research aims, we use a Bayesian nonparametric prior, the Depend-

ent Generalized Dirichlet Process (DGDP, Barcella et al. (2017)) within a regression

framework. The discrete nature of the DGDP allows for data-driven clustering of the

observations. We specify the DGDP prior on the regression intercept and the error

precision parameter, allowing for cluster specific locations and precisions. The choice

of the DGDP allows a great flexibility, accounts for inter-subject variability and it does

not fix a priori the number of clusters. When prior evidence is available, through the

calibration of the DGDP hyper-parameters, we can favour a large number of clusters,

allowing estimation of more heterogeneous groups. Moreover, to deal with the large

number of clinical and anthropometric covariates and metabolites available, we adopt

a Spike and Slab approach (George and McCulloch, 1993; George and McCulloch,

1997) in order to perform variable selection on the design matrix and highlight the

most important determinant of the clinical outcome under study.

4.1 The model

Let y = (y1, . . . , yn) be a continuous response variable observed over n individuals.

We assume a linear regression model:

yi = β0 +

p−1∑
j=1

βjxij + εi (4.1)

where p is the number of independent variables (including the intercept). The error

terms εi are assumed to be normally distributed as

εi
iid∼ N

(
0, τ 2

)
with mean 0 and precision τ 2. The model in (4.1) assumes the same parameters for

each observation. This assumption can be relaxed by allowing, for example, β0 and

τ 2 to vary with i (random effect model), accounting for inter-subject variability:

yi = βi0 +

p−1∑
j=1

βjxij + εi (4.2)
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where

εi | τ 2
i
ind∼ N(0, τ 2

i )

In this way, a subject-specific intercept and precision are introduced in the model,

allowing for more flexibility. We now need to specify a prior on the model parameters.

In particular, we need to choose a random effect distribution for (β0i, τ
2
i ). A tradi-

tional and computationally convenient choice is a Normal random effects model for

βi0 and a Gamma distribution for τ 2
i . Instead, we opt for a nonparametric random

effects distribution as, often, the parametric assumptions are too restrictive in applic-

ations. The random effects distribution needs to accommodate the heterogeneity in

the population and to allow for outliers, clustering and over-dispersion. At the same

time, the model should not be overly complex and should still allow computationally

efficient implementation of full posterior inference. Ideally the model should be a

natural generalization of a traditional random effects distribution. In the next section

we describe our choice of prior distributions.

4.1.1 Prior distributions

The model in (4.2) requires the specification of prior distributions for the vector of

regression coefficients β = (β1, . . . , βp−1), the intercept βi0 and the precision para-

meter τ 2
i . We adopt a nonparametric prior, the DGDP prior, on both the intercept

and precision term (βi0, τ
2
i ). As explained below, this choice of prior distribution al-

lows to cluster the observations. Moreover the use of the DGDP prior provides both

flexibility and parsimony about the number of parameters that we introduce in the

model. We now introduce the Generalised Dirichlet Process (GDP) and the extension

to the DGDP.

Consider the DP described in Section 2.1.4. The discreteness of the nonparametric

process induces clustering of the subjects in the sample based on the unique values

of the random effects parameters (in our case θk = (β0k, τ
2
k )), where the number K

of clusters is unknown and learned from the data. In this paper we are interested in

modelling the distribution of HOMA IR in each of the three ethnic groups (i) allowing

for borrowing information across groups (ii) highlighting differences and similarities

(iii) accounting for the effect of covariates. To this end, we employ a generalisation

of the DP proposed by Hjort (2000) and Ishwaran and James (2001), the General-

ised Dirichlet Process (GDP). The GDP employees a richer parametrisation in the
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stick-breaking construction, allowing greater flexibility in the moments of the ran-

dom distributions. Consider the stick-breaking in (2.6), where the elements φk are

draws from a Beta(1, α). In the generalisation proposed by Hjort (2000) the φk are

still draws from a Beta distribution, but the first hyper-parameter does not need to

be fixed to one. In what follows we use an alternative parametrisation of the Beta

distribution, where the hyper-parameters are specified in terms of the mean and the

concentration parameter. In the GDP the {φk} are then independent draws from a

Beta(µkυk, (1− µk)υk):

p(φk | υk, µk) =
Γ(υk)

Γ(υkµk)Γ(υk(1− µk))
φυkµk−1
k (1− φk)υk(1−µk)−1 (4.3)

where E [φk] = µk ∈ (0, 1) and Var [φk] = µk(1 − µk)/(1 + υk), with υk ∈ (0,∞), are

the expected value and the variance of the Beta random variable respectively. The

weights of the GDP admit the same stick-breaking construction as for the DP. Hjort

(2000) proposes a more parsimonious parametrisation of (4.3), setting µk = µ and

υk = υ. This simplification does not impose significant restriction in applications.

We now explain how we introduce ethnicity information in the distribution of HOMA

IR. The final model will contain two main components: one for the clinical covariates

and one for the patients effect. The model for the covariates expresses prior informa-

tion on how covariates influence the clinical outcome, while the nonparametric prior

(GDP) is used as a random effect distribution to capture inter-patients variability.

Moreover, it is desirable to specify a random effect distribution for each ethnicity in

a way that the random effect distributions are related (similar or very different), but

not necessarily identical. There is a wealth of literature on how to extend the DP to

incorporate covariate information, for example, letting the weights and/or locations

of the infinite mixture in (2.5) depend on a variable of interest that defines sub-groups

in the observations. See the seminal paper of MacEachern (1999) on the Dependent

Dirichlet Process (DDP). Similarly, also the GDP can be extended in presence of

categorical covariates. Barcella et al. (2017) introduce the Dependent Generalised

Dirichlet Process (DGDP) where the dependence among random distributions is in-

troduced through the weights ψk of the mixture in (2.5). The parameters ψk are

generated from the stick-breaking process, so the dependence is introduced directly

on the parameters υ and µ.

Consider G groups defined by a covariate of interest g ∈ G, where G is the covariate

space. We let µ, which represents the mean of the Beta random variables, depend on
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the particular value of g, while we assume the same υ across groups. We denote with

µg the mean of the Beta random variable corresponding to group g. In our applica-

tion groups are defined by the ethnicity. The random measure Pg, i.e. the random

distribution associated to group g, is then defined as:

Pg =
∞∑
k=1

ψk,gδθk

Here θk = (β0k, τ
2
k ). In particular, dependence across the µg, g = 1, . . . , G, is obtained

by specifying a Beta regression on µg and using a categorical predictor zg, i.e. an

indicator variable which denotes to which group the observations are associated to.

This strategy allows for group dependent clustering of the observations. See Barcella

et al. (2017) for details and clustering properties.

Finally, the full model for HOMA IR is specified as follows

y1g, . . . , yng | g, Pg
ind∼

∫
N

(
β0 +

p−1∑
j=1

xijβj, τ
2

)
Pg(dβ0dτ

2)

P1, . . . , PG | υ, µg, G0 ∼ DGDP(υ, µg, G0)

G0(β0, τ
2) | m0, κ

2
0, τa, τb = N

(
m0, κ

2
0

)
×Gamma(τa, τb)

f(µg) = zgη

υ | aυ, bυ ∼ Gamma(aυ, bυ)

for g = 1, . . . , G. The parameter µ is linked through a function f (e.g. logit or probit),

mapping from (0, 1) into (−∞,∞), to the linear predictor zgη where η is a vector of

regression coefficients of appropriate dimension to which we assign a standard Normal

prior:

η | ηµ,ηΣ ∼N(ηµ,ηΣ)

where ηµ and ηΣ denote the prior mean and covariance matrix respectively. We

assume independence a priori between the parameters β0 and τ 2, which is reflected in

the choice of the base measure G0, defined as the product of a Normal distribution

and a Gamma distribution.

We specify a Spike and Slab prior on each of the p − 1 regression coefficients βj.

This prior specification provides an effective variable selection strategy (George and

McCulloch, 1993; Malsiner-Walli and Wagner, 2018). We introduce indicator variables

ωj:

βj = ωjN
(
µβ, τ

2
β

)
+ (1− ωj)δ0(βj)
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where p(ωj = 1|π) = π is the probability of the slab, i.e. the probability that a

covariate is included in the model, while 1−π represents the probability of the spike,

i.e. the probability that the regression coefficient corresponding to the j-th covariate

is equal to 0 and does not affect the response. As before, δ0(βj) is a mass point at

zero, representing the spike of the mixture. µβ represents the prior mean (usually set

to 0) of the slab component and τ 2
β is the prior precision. The parameter π is assigned

a Beta prior:

π ∼ Beta(πa, πb)

where πa and πb are the hyper-parameters of the Beta distribution (e.g. setting

πa = πb = 1 gives a uniform distribution). Appropriate choices of these hyper-

parameter allows us to impose sparsity in the variable selection.

4.1.2 Posterior Inference

Posterior inference is performed through Markov Chain Monte Carlo (MCMC) meth-

ods. A detailed description of the algorithm is provided in Appendix A. We run the

MCMC for 30000 iterations, discarding a burn-in period of 15000, thinning every 5

iterations. We specify the following hyper-parameters: the truncation level of the

stick-breaking is set to L = 30. The base measure parameters are set to m0 = 0,

κ2
0 = 0.1, τa = 0.5, τb = 0.5. The DGDP concentration parameter υ has a Gamma

prior with aυ = 2 and aυ = 1, with expected value aυ/bυ = 2. The regression coeffi-

cient η is parametrised with prior mean ηµ = (0, 0, 0) and ηΣ = I3. The slab of the

regression coefficient βj is a Normal distribution with prior mean µβ = 0 and prior

precision τ 2
β = 0.1. The prior inclusion probability π has a Beta prior with parameters

πa = πb = 1. Details on the MCMC posterior updates can be found in Appendix A.

We have employed the Binder loss function, as implemented in the R package mcclust,

to provide a posterior estimate of the clustering allocation and overcome the problem

of label switching that affects Bayesian mixture models. There is no consensus in

the literature on how to report clustering output, but it is very common in Bayesian

nonparametric models to report the clustering allocation that minimises the Binder

loss function which assigns equal costs to each type of misclassification error. See Lau

and Green, 2007 for a discussion.
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4.2 Results on HOMA IR: Cluster Analysis

We employ the proposed model to analysis data from the SABRE study. The empir-

ical distribution of the outcome of interest, the Homeostatic Model Assessment insulin

resistance (HOMA IR) is shown for the three ethnic groups in Figure 1.2. Particularly

noticeable is the difference between the distribution of HOMA IR in Europeans and

South-Asians. The South-Asian distribution is slightly shifted to the right and has a

heavier right tail, indicating a higher percentage of more insulin resistant individuals.

The distribution shows multiple local modes, pointing towards the existence of mul-

tiple sub-populations in the sample.

Posterior inference for HOMA IR shows evidence of ten clusters. We use the Binder

loss function (Binder, 1978) available in the R package mcclust, to estimate the number

of clusters in the sample and the clustering allocation based on the MCMC output. In

Figure 4.1 we show the number of active clusters at each iteration of the MCMC. From

the plot we can see that the number of non-empty clusters is concentrated between 8

and 12. This number is in accord with the number of clusters estimated by the min-

imisation of Binder loss function. In Figure 4.2 we show the empirical distribution of
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Figure 4.1: Number of active clusters (i.e. non-empty) identified at each iteration of

the MCMC algorithm.

the outcome HOMA IR in each of the ten estimated clusters. The overlap between
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some of the curves is due to the fact that the clusters are estimated conditionally to

the covariates and metabolite levels included in the regression model. Table 4.1 sum-

marises the ethnic composition of each cluster, while Table 4.2 provides some basic

information in terms of age, smoking habits, percentage of females and percentage

of first generations (i.e. foreign-born) migrants in each cluster. It is worth noting

that clusters 8, 9 and 10, the most insulin resistant clusters, are mostly composed

of first generation migrants. In Table D.4 we report the ethnic composition for each

cluster. The majority of South-Asians come from the Punjabi-Sikh minority, which

represents the major South-Asian component in each cluster, with the exception of

cluster 9, where there is a higher percentage of South-Asians of Muslim origin. To un-

derstand which covariates are the most important determinant of the response, we ex-

amine the posterior probability of each regression coefficient to be different from zero,

p(ωj = 1|rest, data). Ten predictors have the respective p(ωj = 1|rest, data) > 0.5

and are considered for further analysis (Figures E.3, E.4 and E.5). Cluster 1 is

Table 4.1: Number of individuals in each ethnic group allocated to each cluster.

Cluster Europeans South- Africans- Total

Number Asians Caribbean Number

1 784 382 83 1249

2 33 0 0 33

3 49 0 0 49

4 0 61 0 61

5 10 0 0 10

6 90 125 28 243

7 60 104 4 168

8 13 75 0 88

9 0 19 0 19

10 13 49 2 64

the largest and least insulin resistant group (n = 1249, 57% of participants). Its

ethnic composition is: 71% of Europeans, 39% of South-Asians and 70% of Africans-

Caribbean. The second largest group is cluster 6, comprising 243 participants (11%

of the total, of which, 8% of Europeans, 13% of South-Asians and 24% of Africans-

Caribbean). It is evident the clear distinction between clusters with a South-Asian
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Figure 4.2: Empirical distribution of HOMA IR in each cluster. Black lines denote

clusters with a higher proportion of Europeans, while red lines denote a higher pro-

portion of South-Asians. A description of cluster main characteristics is given in Table

4.1. The numbers above each distribution denote the cluster. The plot is obtained

through a kernel density estimate, with a Gaussian kernel with bandwidth equal to

1, as given by the standard function density employed in the R package stats.

majority, compared with Europeans, which are all characterised by higher levels of

HOMA IR, with the exception of cluster 4. Cluster 5 (entirely Europeans) compared

with cluster 1, presents both measures of adiposity(subscapular skinfold and sagittal

diameter) are modestly higher, while levels of the amino acids tyrosine and isoleucine

are significantly higher. Moreover, acetoacetate levels are lower compared to cluster

1, while the levels of alanine aminotransferase (ALT) in cluster 5 are higher than in

cluster 1 (Figure E.5), the latter suggesting that raised HOMA IR levels may be char-

acterised in this cluster by increased insulin levels with reduced clearance of insulin by

the liver (Bonnet et al., 2011) implying relatively intact pancreatic beta cell function.

The metabolite patterns for cluster 5 also indicate associations with both central and

subcutaneous adiposity and amino acid perturbations.

Each of the ten clusters has a distinctive metabolic and phenotypic profile, consistent

with suggestions that there are different pathways to type 2 diabetes (Udler et al.,
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Table 4.2: Mean age, percentage of smoking habits, percentage of females and per-

centage of first generation migrants in each cluster.

Cluster Mean Ex- Current Females First

Number Age Smoker Smoker proportion Generation

1 52.51 27% 25% 18% 46%

2 53.27 33% 45% 3% 21%

3 52.02 41% 31% 10% 10%

4 49.54 11% 16% 33% 98%

5 52.00 20% 30% 0% 10%

6 51.93 23% 19% 12% 67%

7 51.43 17% 19% 11% 67%

8 51.25 11% 12% 9% 86%

9 51.89 11% 37% 11% 95%

10 50.95 17% 25% 9% 80%

2018) and that some pathways may be more strongly associated with a particular

ethnic group. For example clusters 4 and 9 are entirely composed of South-Asians,

while clusters 2, 3 and 5 are entirely Europeans. Of these clusters, 8, 9 and 10 are

among the most insulin resistant with high levels of tyrosine, alanine, ALT and sub-

cutaneous adiposity.

Some of the clusters identified are very small and will need replication in larger studies

together with formal pathway analysis. However, these methods have generated in-

triguing, novel and persuasive clusters, which highlight the complexity and potential

multiplicity of mechanisms underlying the development of insulin resistance and type

2 diabetes.

4.3 Model Fitting and Predictive Accuracy

We test the predictive accuracy, as well as the fitting of our model through a valida-

tion analysis performed on the real data. We split the dataset, randomly allocating

80% of the observations into a train set and the remaining 20% into the test set.

Next, we asses the performance of the model through the classic Mean Squared Error

(MSE), calculated as the average of the sum of the squared differences between the
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real outcome y and the prediction given by our model. In Figure 4.3 we report the

MSE value calculated at each iteration of the MCMC, for both the train and test set.

From the MSE values for the test set we can see that the model is not overfitting, as

the mean value of the MSE levels around 2.5 and at the same time the MSE values

for the train set are steady around a mean value of 1.5, at convergence. The spike

and slab prior allows to effectively perform variable selection, and therefore avoid a

potential overfitting that a model with many covariate could incur in. We measure
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Figure 4.3: Mean Squared Error calculated at every iteration of the MCMC algorithm,

respectively for the train set in black and the test set in red.

the goodness of fit of the model through the standard R2 measure. The posterior

mean of R2 in our application is 0.8037 and, being the R2 bounded between 0 and

1, the observed value of 0.8037 indicates a good fit of the model. Moreover in Figure

4.4 we show the distribution of the regression residuals. This plot is also showing the

good fit of the model, with the residuals symmetrically concentrated around 0, with

very few values higher than 3 in absolute value.

We then further asses the validity of our prior choices through a sensitivity analysis

to determine the impact of different parametrisation of the spike and slab prior. In

particular we tested different parametrisation of the Beta distribution over π, rep-

resenting the prior probability of inclusion of a covariate in the model. We tested

the following pair of values, respectively for πa and πb: (1, 1), (1, 5), (5, 1). The res-

ults of the analysis shows that the parametrisation with a Beta(5, 1) allows a higher

number of covariates to be included in the model, which is expected because such
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Figure 4.4: Regression residual values distribution calculated using the posterior mean

of the fitted values. Each residual value is calculated as the difference between the

real value of yi and the fitted value given by the model. The first plot on the left

shows the residual value of each observation, while the second plot on the right shows

a kernel density estimate of the empirical distribution of the residuals.

parametrisation put more probability mass close to 1 in the Beta density function,

but critically the set of selected covariates always include the subset given by the

stricter parametrisation used in the final application. Finally, the Beta(1, 5) gives

a prior distribution that favours smaller inclusion probabilities, but nevertheless the

identified subset of covariates is selected anyway. We opt for the Beta(1, 1) paramet-

risation, as this better represents our weak prior information about the number of

covariates that should be included in the model. Moreover, the structure of the spike

and slab allows for an effective selection of the variables, which is consistent with the

other parametrisations.

4.4 Conclusions

The model presented in this chapter allows us to analyse multiple groups of patients

and provides data-driven clustering of the observations thanks to the Bayesian non-

parametric prior. We specify a Spike and Slab prior on the regression coefficients
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to effectively perform variable selection on the covariates, allowing us to understand

which variables are important in predicting the dependent variable of interest, i.e.

HOMA IR. We employ the proposed model to analyse data from the SABRE cohort

study, a tri-ethnic information rich dataset on cardiovascular and metabolic diseases.

Our clinical interest focuses on modelling the distribution of HOMA IR. We include

anthropometric variables and metabolites concentrations as covariates in the regres-

sion framework. The results highlight the presence of sub-populations in the data,

with a multi-ethnic composition, characterised by different levels of HOMA IR, which

can lead to a different risk of developing type 2 diabetes. From the analysis, it is evid-

ent that clusters with higher levels of insulin resistance are composed mainly by the

South-Asian ethnicity and, in particular, the more extreme clusters present a higher

proportion of first-generation migrants. The results obtained from our analysis are

promising and the proposed model has the potential to highlight areas for further

research.

The next chapter introduces the problem of multiple Gaussian Graphical Mod-

els estimation. We provide a general multivariate regression framework, where the

precision matrix of a multivariate Gaussian distribution is dependent on the graph

realisation of a GGM.
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Chapter 5

Bayesian Nonparametric Gaussian

Graphical Models

In this chapter we discuss our approach to Bayesian modelling of multiple Gaussian

Graphical Models (GGMs) and the application to the metabolomics SABRE data.

We propose a novel approach to the estimation of multiple GGMs to analyse patterns

of association among a set of metabolites, under different conditions, the ethnic origin

in our case. We focus on the SABRE study baseline metabolic and phenotypic data-

set, with a view to identify and elucidate potential mechanistic pathways to insulin

resistance (and hence risk of developing type 2 diabetes), and to explore ethnic differ-

ences in these pathways. We model the relationship between a set of metabolites and

a set of covariates through a Sparse Seemingly Unrelated Regressions model and we

use GGMs to represent the conditional dependence structure among metabolites. We

specify a Dependent Generalised Dirichlet Process prior on the edge inclusion probab-

ilities to borrow strength across groups and we adopt the Horseshoe prior to identify

important biomarkers. The statistical analysis poses several challenges: inter-subject

variability, the high dimensionality of the dataset (due to the large number of vari-

ables under investigation) and the high correlation between metabolite levels. The

statistical literature is rich in proposals on how to tackle these problems. We employ

the Seemingly Unrelated Regressions (SUR, Zellner (1971)). To regularise posterior

inference we adopt a Sparse SUR approach, assuming a local-global shrinkage prior

for the regression coefficients, i.e. the Horseshoe prior (Carvalho et al., 2010), and

we model association patterns among metabolites employing a Gaussian Graphical

Model (GGM, Dempster (1972)). Zeros in the error precision matrix are obtained
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by imposing a set of conditional independence restrictions arising from an underly-

ing graphical model (Lauritzen, 1996). Two common choices of prior distribution

for the precision matrix are the G-Wishart prior of Lenkoski and Dobra (2011) and

the Bayesian graphical Lasso of Wang (2012). The G-Wishart prior explicitly treats

the graph as an unknown parameter leading to a direct inference of the underlying

structure. However, the convergence of the posterior distribution can be slow due

to the single edge update and the intractable normalizing constant that needs to be

approximated. On the other hand, the Bayesian graphical Lasso is fast, thanks to

the continuous priors, which enable a block Gibbs sampler that updates the preci-

sion matrix one column at time. However, this method does not explicitly provide a

treatment of the underlying graphical structure. Here we use the Stochastic Search

Structure Learning (SSSL) algorithm of Wang (2015) to specify the precision matrix

prior distribution. The SSSL exploits the advantages of the G-Wishart and Bayesian

graphical Lasso priors, enabling explicit structure learning while maintaining good

scalability.

We specify a Generalised Dirichlet Process (GDP, Hjort (2000)) prior, previously ex-

posed in Chapter 4 in a regression context, on the edge inclusion probabilities of a

single GGM, allowing for clustering of the edges and sparsity in the graph. We briefly

re-introduce the nonparametric prior in the context of graphical models, providing

some results on the degree distribution induced by the GDP. Moving to a multiple

GGMs scenario, we extend the GDP prior to multiple graphs, enabling borrowing

information between graphs under different biological conditions introducing depend-

ence through the Dependent GDP (DGDP). This strategy allows us to highlight com-

mon patterns and structural differences. In this context, each graph is characterised

by the same set of nodes (that represent the dependent variables of the SUR model),

connected by a set of group-specific edges. Thanks to the clustering property of the

DGDP prior, we allow edges from different graphs to share the same edge probability

and consequently to inform each other.

5.1 Methods

In this section we review the main properties of the SUR model and its generalisation

to Sparse SUR. We also introduce the main properties of GGMs and we present
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our choice of prior distribution for the graph space based on the GDP. Finally, we

generalise our modelling strategy to multiple GGMs.

5.1.1 Sparse SUR model

Consider M response variables yl, l = 1, . . . ,M , each observed on n individuals, i.e.

yl = (yl1, . . . , yln)′, modelled as individual linear regressions

y1 = X1β1 + u1

...

yl = Xlβl + ul
...

yM = XMβM + uM

(5.1)

where the Xl is a n × pl response specific matrix of explanatory variables, βl =

(βl1, . . . , βlpl) is a p-dimensional vector of regression coefficients and ul = (ul1, . . . , uln)

is the n-dimensional vector of error terms, distributed as a Multivariate Normal,

N (0, In), where In is the identity matrix of dimension n× n.

The error terms are assumed to be correlated across equations. We denote with Ω the

cross-equation precision matrix. We can rewrite the system of equations in a compact

matrix form, as

y = Xβ + u

u ∼ N(0,Ω⊗ In)

by concatenating the responses in a unique column vector y of dimension Mn. X is

now a block diagonal matrix of dimension Mn × Q, where Q =
∑M

l=1 pl is the total

number of parameters. β is an Q-dimensional vector containing all the regression

coefficients. Here ⊗ denotes the Kronecker product. Note that the precision matrix

of the concatenated error vectors implies that error terms within the same equation

are independent (e.g. ulj and uli for j 6= i), but error terms corresponding to the same

subject in different equations are assumed to be correlated (e.g. ulj and urj for l 6= r).

We shall denote the generic element of the regression coefficients vector β with βlj,

which corresponds to the regression coefficient associated to the jth covariate in the

lth equation.
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5.1.2 Background on graphical models

We use the same terminology for graphical models introduced in Chapter 2. The

graph G can be represented by a set of M(M − 1)/2 binary variables Z = (zij)i<j,

where zij = 1 ⇐⇒ edge (i, j) ∈ E. There is a direct correspondence between the

elements of the precision matrix Ω and the edges in the graph G. A missing edge

in E implies ωi,j = 0 (Wermuth, 1976), which in turn corresponds to a conditional

independence assumption of yi and yj given the remaining variables y−ij, where y−ij

denotes the elements of the random vector y excluding the i and j coordinates. The

parameter Ω is constrained to belong to the cone PDG, i.e. the set of positive definite

matrices with entries equal to zero for all (i, j) /∈ E. We denote with eij the edge

between node i and j in the graph G, with i, j ∈ {1, . . . ,M} and let r = M(M −1)/2

be the total number of edges in the graph.

5.1.3 Prior Specification

We adopt the Horseshoe prior ((2.7)) of Carvalho et al. (2010) defined in Section 2.1.5,

to impose regularisation on the regression coefficients β. In the current regression

framework the prior is specified as follows

βlj | λlj, τl ∼ N
(
0, λ2

ljτ
2
l

)
λlj ∼ C+ (0, 1)

τl ∼ C+ (0, 1)

(5.2)

with l = 1, . . . ,M and j = 1, . . . , p. C+ denotes the standard half-Cauchy distribution,

λ2
lj is the local shrinkage parameter, specific for the coefficient βlj, while τ 2

l represents

the overall shrinkage level for equation l. However, the original paper does not provide

details for an efficient sampling scheme from the posterior distribution and a standard

Gibbs sampling approach is difficult to implement due to the presence of the half-

Cauchy prior. To overcome this problem, we adopt the conjugate sampler proposed

by Makalic and Schmidt (2016), which allows a fast Gibbs sampling, avoiding to work

directly with the half-Cauchy distribution. Makalic and Schmidt (2016) exploit the

following relationship. Let κ and ρ be random variables such that

κ2 | ρ ∼ IG(1/2, 1/a) and ρ ∼ Inverse-Gamma(1/2, 1/A2) (5.3)
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then κ ∼ C+(0, A). Exploiting the scale mixture representation in (5.3) we can express

(5.2) as

βlj | λlj, τl ∼ N
(
0, λ2

ljτ
2
l

)
λ2
lj | νlj ∼ Inverse-Gamma (1/2, 1/νlj)

τ 2
l | ξl ∼ Inverse-Gamma (1/2, 1/ξl)

νlj, ξl ∼ Inverse-Gamma (1/2, 1)

(5.4)

We model the cross-equation precision matrix Ω with the SSSL prior of Wang (2015),

specified as

p(Ω) = {C(θ)}−1
∏
i<j

{
(1− π)N

(
ωij | 0, v2

0

)
+ πN

(
ωij | 0, v2

1

)}∏
i

Exp
(
ωii |

η

2

)
1{Ω∈PDG}

(5.5)

where Exp(ω | η) represents the Exponential density with expectation 1/η and 1{·}

is the indicator function. The normalising constant C(θ), with θ = {v0, v1, π, η},

ensures that p(Ω) integrates to one over the space PDG. The parameters v0, v1 are

set to be small and large, respectively, in order to perform variable selection on the

off-diagonal elements of the precision matrix. We do not impose regularisation on η,

fixing its value to 1 as done in Wang (2015). The prior on π is discussed later. The

first product in (5.5) involving the off-diagonal elements of Ω, involves a mixture of

two Normal distributions and is similar to the Bayesian graphical Lasso. The second

product multiplies M Exponential densities for the diagonal elements of Ω. Now,

recalling the connection between the graph G and its binary representation through

the adjacency matrix Z = (zij)i<j, (5.5) can be rewritten as

p(Ω | Z, θ) = {C(Z, v0, v1, η)}−1
∏
i<j

N
(
ωij | 0, v2

zij

)∏
i

Exp
(
ωii |

η

2

)
(5.6)

p(Z | θ) = {C(θ)}−1C(Z, v0, v1, η)
∏
i<j

{
π
zij
ij (1− πij)1−zij

}
(5.7)

where v2
zij

= v2
1 if zij = 1 and v2

zij
= v2

0 if zij = 0, C(Z, v0, v1, η) and C(Z, v0, v1, η) are

normalising constant for the respective densities. The joint distribution p(Ω, Z | θ)

admits (5.5) as a marginal distribution for Ω. In the representation in (5.6)-(5.7) small

values of v0 give high probability to the event zij = 0, so that the distribution of ωij is

concentrated around 0, implying that the correspondent edge will have a close-to-zero

probability to be included in the graph G. Vice-versa for v1 (Wang, 2015).
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The choice of v0 and v1 = v0× h is important to ensure a good mixing of the MCMC

and quick convergence to the true posterior distribution. The value of v0 should be

such that if the evidence is in support of zij = 0 then ωij is small enough to be

replaced by zero. Wang (2015) discusses the choice of v0 and h and observe that,

with standardised data, the MCMC converges quickly with v0 ≥ 0.01 and h ≤ 1000.

Finally choosing a value for η is easier, as with standardised data, a choice of η = 1

assigns probability to the entire region of plausible values for the inverse variances

ωii.

There is a wealth of literature regarding the choice of the prior distribution for πij, the

edge inclusion probability. See, for example, Carvalho and Scott (2009) and Tan et al.

(2016) for a review of some popular methods. In this paper we adopt a nonparametric

Bayesian approach to model the uncertainty about the inclusion probabilities, allowing

for clustering of the edges and the possibility to impose sparsity on the graph. We

specify a GDP prior on πij as follows

{πij}i<j | P
iid∼ P

P | α, µ, P0 ∼ GDP(α, µ, P0)

P0 | aπ, bπ = Beta(aπ, bπ)

α | αa, αb ∼ Gamma (αa, αb)

µ ∼ Beta(aµ, bµ)

(5.8)

We can tune the hyper-prior parameters characterising the base measure P0 to achieve

the desired level of sparsity. The parameters α and µ control the clustering structure

of the GDP (note that posterior clustering depends also on the choice of the base

measure). The choice of the hyper-parameters depends on the particular application.

The model for eij is then given by:

{eij | πij}
ind∼ Ber(πij), i < j

{πij}i<j | P
iid∼ P

P | α, µ, P0 ∼ GDP(α, µ, P0)

(5.9)

The above equations defines a GDP Mixture model (GDPM, see Lo (1984) and Bar-

cella et al. (2017)) for {eij}. Recalling the discrete nature of the GDP. we can rewrite

(5.9) as

{eij}i<j | P
iid∼

∞∑
k=1

ψkBer(e | πk)

where the πk denote the (unique) locations of the GDP prior.
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5.1.4 Degree Distribution

One of the main consequences of choosing a GDP prior is that the edges are clustered

on the basis of their inclusion probability. A priori, the GDP does not constraint

the number of clusters to a finite value, indeed their number can grow as new data

become available. Only a posteriori, once we observe the data, the estimated number

of clusters is finite, potentially equal to the number of edges. We now investigate the

possible graphs structure supported by a GDP prior. We follow the framework of Tan

et al. (2016) and describe some properties of the degree distribution.

The degree, Di, of a node i is the number of connections that involve node i, so

Di =
∑

j 6=i eij, where eij is the edge connecting nodes i and j. The degree Di is then

bounded between 0 and M − 1, the total number of nodes minus one. The following

properties hold (proofs in Appendix B):

a Conditionally on πij, the probability that a node i is connected to a node j is

πij.

b The degree of a node i is distributed as a mixture of Binomial distributions,

with mixing weights given by the GDP

Di | P ∼
∞∑
k=1

ψkBinomial(M − 1, πk)

where, once again for ease of notation, we have substituted the index (ij) with

k. We have that E [Di | P ] =
∑∞

k=1 ψk(M − 1)πk

Var [Di | P ] = (M−1)
∑∞

k=1 ψkπk [(1− πk) + (M − 1)πk]−[
∑∞

k=1 ψk(M − 1)πk]
2

c Marginalising over the random measure, we obtain:

E [Di] = (M − 1)
aπ

aπ + bπ

E
[
D2
i

]
= (M − 1)

{
aπ

aπ + bπ
+ (M − 2)

(aπ + 1)aπ
(1 + aπ + bπ)(aπ + bπ)

}
The shape of the degree distribution highlights structural characteristics of the graph

implied by the prior choice, which are relevant in data analysis. In particular we

focus on sparsity. In a dense graph each node is connected to many others and,

as a consequence, there are few pairwise conditional independences, while a sparse

graph presents fewer connections and hence the graph can be decomposed into sub-

graphs defined by conditional independence structures. A careful choice of prior

71



hyper-parameters allows us to obtain the desired level of sparsity, retaining at the

same time a good level of flexibility. To better understand the shape of the degree

distributions implied by the GDP prior, (5.8), we perform a sensitivity analysis for

different values of α and µ and different parametrizations of the base distribution

P0. In Figure E.6 and E.7 we present the resulting degree distribution for different

combinations of hyper-parameters. It is evident that our prior choice is able to ac-

commodate different shapes. However, simulations show that, by appropriate choice

of hyper-parameters, we can obtain an exponential decay in the tails of the functions,

but not a power law decay.

5.1.5 Multiple GGMs

Often in applications we observe groups of subjects under different experimental con-

ditions. In the SABRE study, for example, we are interested in understanding how

patterns of association between metabolites vary across three different ethnicities, in

particular in relation with cardiovascular diseases and diabetes. In our application

ethnicity defines three natural sub-samples, each characterised by its own graph. In

general, we expect different groups to share some common structure as well as group

specific connection patterns. Estimating a single graphical model would lead to an

implicit assumption of homogeneity of the underlying graphs across the ethnicities,

with a consequent loss of information about their heterogeneity and a consequent high

risk of false positives. On the other hand, inferring each graph individually might lead

to a loss of power given the reduction in sample size. There is a growing research in-

terest in multiple graphical models. For example, in the Bayesian framework Peterson

et al. (2015) estimate multiple GGMs through a Markov random field prior, which

encourages common edges. Also relevant is the work of Tan et al. (2016), which

propose a multiplicative prior to capture common and group-specific structures. We

propose to model multiple graphs through an extension of the GDP prior, i.e. the

Dependent Generalised Dirichlet Process (DGDP, Barcella et al. (2017)). Due to the

discrete nature of the DGDP, each edge can be clustered together with any other edge,

independently of the group g of origin. This ensures sharing of structural information

among groups, at the same time maintaining parsimony in the number of parameters

to be estimated. This strategy also allows detecting group-specific connections.

Suppose we observe R groups, for example, defined by ethnicity in the SABRE study.
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Each sub-sample g, g = 1, . . . , R, is characterised by a specific sample size ng and its

own graph Gg. Here we assume that the vector of regression parameters β is common

to all groups, although this assumption can be easily relaxed. The prior distribu-

tions in (5.6) and (5.7) are generalised to handle multiple precision matrices Ωg, and

therefore multiple adjacency matrices Zg as follows:

p(Ωg | Zg, θg) = {C(Zg, v0, v1, ηg)}−1
∏
i<j

N
(
ωg,ij | 0, v2

zg,ij

)∏
i

Exp
(
ωg,ii |

ηg
2

)
(5.10)

p(Zg | θg) = {C(θg)}−1C(Zg, v0, v1, ηg)
∏
i<j

{
π
zg,ij
g,ij (1− πg,ij)1−zg,ij

}
(5.11)

The hyper-parameters v2
0 and v2

1 remain unchanged and are common to all groups.

We can see that, conditional on the inclusion probabilities πg,ij, ηg, v
2
0 and v2

1, (5.10)

and (5.11) are independent across groups. The prior in (5.8) on πg,ij can be extended

in presence of multiple groups, so that the random measures associated to each group

are dependent. Dependence can be introduced in the weights of the stick-breaking

representations, by allowing ψk to be a function of a categorical x, identifying the

group. Note that dependence on other group-specific covariates (when available) can

be easily introduced. The resulting process is called Dependent GDP, which is defined

as follows. Let

Pg =
∞∑
k=1

ψkgδθk

be the random measure associated to group g. The locations are iid draws from

a common base measure P0, as before. The weights still admits the stick-breaking

representation:

ψkg = φkg

k−1∏
j=1

(1− φjg) , k = 2, 3, . . .

ψ1g = φ1g

Each φkg has a Beta distribution, Beta(αµg, α(1− µg)), but now µg is group-specific.

(Barcella et al., 2017) propose to introduce dependence across the {µg} employing

a Beta regression framework and letting the µg depend on a categorical covariates

denoting group. Using the DGDP, the model in (5.8) can then be extended to the
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multiple graphs as follows

{πg,ij}i<j | Pg
ind∼ Pg

Pg | α, µ1, . . . , µR, P0 ∼ DGDP(α, µ1, . . . , µR, P0)

P0 | aπ, bπ = Beta(aπ, bπ)

α | αa, αb ∼ Gamma(αa, αb)

µg = logit(xgζ)

ζ | ζµ, ζΣ ∼ NR(ζµ, ζΣ)

xg is a categorical design vector of dimension R which includes an intercept term

and identifies the group from which the observations come from. ζ is a vector of

regression coefficients, to which we assign a Normal prior. In our application the

European ethnicity is the reference group. The DGDP process offers a convenient

way to share information across different groups and ensures a greater flexibility than

the GDP thanks to the richer parametrization. Note that xg can include other group

specific covariates when available. The MCMC algorithm for posterior inference from

a DGDP process is based on a truncation of the infinite mixture (Ishwaran and James,

2001). A discussion on how to choose the truncation level can be found in Ishwaran

and James (2001) and Barcella et al. (2017). Details of the MCMC algorithm can be

found in Appendix B.

5.2 Simulations results

In this section we compare the performance of the proposed model with respect to the

baseline parametric version of the SSSL model. We then investigate the the efficacy of

the proposed nonparametric model analysing synthetic datasets simulated from three

different sparse SUR structures.

We start by providing a comparison between the nonparametric and the parametric

version of the SSSL model. In Figures 5.1 we report the AUC values for two different

simulated datasets, where for each simulation we generate data from a SUR model

characterised by four graphs with 20 nodes each and a common linear regression term.

In the first simulation we generate the first sparse graph with 20 edges and create the

other three graphs as perturbation of the first by randomly removing and adding five

edges. In the second simulation we generate the first sparse graph with 50 edges and

create the other three graphs as perturbation of the first by randomly removing and
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adding ten edges. The aim of this comparison is to asses whether the nonparametric

model performs better than its parametric counterpart under two different conditions,

the first where the number of edges is low compared to the dimension of the graph and

the second one where the number of edges included is about one third of the dimen-

sion of the graph. We can see from Figure 5.1 that the nonparametric model performs

better in both cases, especially in the sparser scenario, providing overall higher AUC

scores and also a lower variability over repeated simulations. We further observe that

the nonparametric model is always performing at least as well as the parametric one,

despite the higher complexity. This fact may be explained by the properties of the

Bayesian nonparametric prior that allows the model to grow in complexity as needed,

while at the same time retaining a small number of parameters thanks to the impli-

cit clustering provided by the DP type priors. Next we compare the performance of

another type of nonparametric prior in three different scenarios as described earlier.

Each model is characterised by specific multiple graphs and a common linear regres-

sion term. We test our model on three different scenarios, investigating the ability

of the proposed models to recover the true underlying graphical structure of each

group through the Area Under the Curve (AUC) and the ability to correctly estim-

ate the mean regression parameters. The purpose of the three simulation settings is

to determine the models performance with different graph structures. For the first

scenario we closely follow the work Peterson et al. (2015) in which every node in the

first graph has two connections, following a second order autoregressive structure,

and the other three dependent graphs are a perturbation of the first. This scenario is

intended to check the performance of the models on a well-defined structure where the

nodes have an ordering. The second scenario is based on a random allocation of the

edges, and therefore we seek to assess the performance of the models on an opposite

situation compared with the first scenario. Finally, in the third simulation study, we

want to assess the ability of our models to estimate graphs that resemble the complex

structure of the original data, to this end we select a subset of metabolites and we

construct the graph from those observations. In the following paragraphs we give the

details about the simulations and the respective results.

In the first simulation we generate four multiple graphs following the guidelines of

Peterson et al. (2015). We construct four precision matrices Ω1,Ω2,Ω3 and Ω4 cor-

responding to graphs G1, G2, G3 and G4, of M = 20 nodes (for a total number of

75



1 2 3 4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Simulation 1

Group

A
U

C

● ● ●

●

1 2 3 4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

DGDP
Parametric

●

●

●

1 2 3 4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Simulation 2

Group

A
U

C

●

1 2 3 4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

DGDP
Parametric

Figure 5.1: Comparison between DGDP and Parametric models. Boxplots of the

AUC values for two simulated datasets. The AUC distribution is evaluated over 10

replicates for each scenario. The number on the x-axis refer to the group.

possible edges of r = M(M − 1)/2 × 4 = 760). We first define the precision matrix

Ω1 and then we derive the others as a perturbation of the first. Ω1 is a M × M

symmetric matrix with the main diagonal elements equal to one, first off-diagonal

elements ωi,i+1 = ωi+1,i = 0.5, for i = 1, . . . , 19 and second off-diagonal elements

ωi,i+2 = ωi+2,i = 0.4, for i = 1, . . . , 18, while the rest of the elements are set to zero.

The total number of non-zero off-diagonal elements is 37. To construct Ω2, we remove
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ten edges at random from Ω1, setting the corresponding entries to zero. Then, we

randomly add ten edges that are not present in Ω1, giving a value of 0.5 to the new

precision coefficients. The procedure is repeated similarly for Ω3 and Ω4, avoiding the

replacement of edges that were previously deleted. The newly created matrices are

not necessarily positive definite, to this end, we compute the nearest positive-definite

approximation through the R function nearPD (Higham, 2002), from the package

Matrix). The precision matrices Ω2,Ω3,Ω4 constructed with this procedure are a per-

turbation of Ω1: as a result they exhibit some common edges and some group specific

connections. The number of observations is fixed to 60, 50, 50, 40, for group 1, 2, 3,

and 4 respectively.

The second simulation scenario is similar to the first, but Ω1 has now a unit di-

agonal and we add 60 non-zero off-diagonal elements, chosen randomly from the r

possible edges. Ω2, Ω3 and Ω4 are constructed removing 10 edges and adding 10 new

edges, randomly selected as before. Once again the number of observations is fixed

to 60, 50, 50, 40, for group 1, 2, 3, and 4 respectively.

The third simulated example reproduces the structure of the SABRE dataset. We

randomly select 40 metabolites from the original dataset, keeping the original sample

size of the three ethnic groups. For each group we fix precision matrices equal to

the respective empirical partial correlation matrix. We set to zero the elements of

the precision matrices in absolute value below 0.1, which implies missing edges in the

associated graphs. The response for each group is then simulated by a multivariate

Normal using the corresponding precision matrix.

Finally, all three simulation scenarios are characterised by the same linear regression

term Xβ. We simulate p = 3 independent covariates, each drawn from a Normal dis-

tribution, with mean 1, -1 and 1 and standard deviation 0.5, 0.5 and 1, respectively

for X1, X2 and X3. The regression coefficients β are fixed as follows: the intercept

is fixed to 1 for every equation and the other three regression coefficients are chosen

at random (with replacement) in the set {−1, 1,−2, 2, 0}. In this way, we introduce

zeros in the regression coefficients vector, so that a covariate might not have an effect

on a particular response. To evaluate the performance of our model in estimating the

true underlying graph, we use the Area Under the Curve (AUC), which is a normal-

ised measure of the area under the Receiver Operating Characteristic (ROC) curve.

The ROC curve is created by plotting the true positive rate against the false positive
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rate at various thresholds. The AUC distributions for ten simulated datasets for the

first and second scenarios are displayed in Figure 5.2 (top and middle panels) The

distributions are concentrated between 0.9 and 1, denoting the ability of the model

to recover the true graphical structure. We compare the DGDP with a Dependent

DP (DDP, (MacEachern, 1999)), in particular with the ANOVA DDP (De Iorio et

al., 2004). The performance is very similar for both algorithms. The third scenario

presents similar results. The recovery of the true graph structures for groups one and

two is excellent, while for group three (corresponding to the African-Caribbean ethni-

city) the performance is slightly worse (with a median AUC level of about 0.8), which

is, however, expected given the much smaller sample size. In Figure 5.3 we plot the

posterior distributions of the regression coefficients βl,2, βl,3 and βl,4, for each equation

l (we do not report the posterior distribution of the intercept) for 20 randomly selec-

ted responses and just one of the 10 replicates. The true value of each coefficient is

represented by a dashed vertical red line. The posterior distribution are concentrated

around the true values and the model is able to correctly identify covariates which

have no effect in a particular equation.
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Figure 5.2: Comparison between DGDP and ANOVA DDP. Boxplots of the AUC

values for the three simulation scenarios. The AUC distribution is evaluated over 10

replicates for each scenario. The number on the x-axis refer to the group.
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Figure 5.3: Posterior distributions of β for 20 randomly selected equations and for

one of the 10 simulation replicates. The red dashed vertical lines represent the true

value of β used in the simulations.

80



5.3 SABRE results

In this section we fit the proposed model for multiple GGMs to the SABRE meta-

bolic dataset. The dataset described in Chapter 1 has a total of 2200 observations,

stratified in three ethnicities, 1103 Europeans, 978 South-Asians and 119 Africans-

Caribbean. The number of nodes (i.e. the number of equations in the SUR model)

is M = 88, a list of which can be found in Table D.1. As predictors in the regression

term of the mean, we include the covariates listed in Table D.2, consisting of measures

of body-fat distributions, liver health functions, enzymes and control variables, such

as smoking habits, sex and age (the total number of the covariates is p = 18 plus the

intercept). All the covariates are included in each equation, but variable selection is

equation-specific. We specify the following prior distributions. The scale parameters

for the Normal mixture in (5.10) are chosen to ensure sparsity in the estimated graph,

so that negligible and small off-diagonal coefficients of the precision matrix are set to

zero. We choose v0 = 0.01 and h = 100, while ηg = 1, following the recommendations

of Wang (2015). The DGDP base measure P0 is a Beta(aπ = 0.01, bπ = 0.01). The

concentration parameter α is assigned a Gamma(αa = 0.1, αa = 2) prior, while the

vector of coefficients ζ in the Beta regression is given a Normal distribution with

mean ζµ = 0 and covariance matrix ζΣ = 10× IR. We specify a Horseshoe prior for

regression coefficients β as described in (5.4). We run the MCMC for 30000 iterations,

comprising a burn-in period of 10000 iterations. In addition to the multiple graphs

we also estimate the differential networks (Fuente, 2010; Valcárcel et al., 2011) arising

from the pairwise comparison between the three ethnicities. A differential network

includes all the edges that are present only in one of the two groups (i.e. present in

one group and not the other and vice-versa), thus helping us to understand the main

differences between two ethnicities. Here we focus mainly on the differences between

Europeans and South-Asians, since the African-Caribbean ethnicity has a very small

sample size that heavily affects the estimation of the latent graph.

In Figure 5.4 we show the differential network between Europeans and South-Asians,

where an edge between two nodes is added to the differential graph if the probability

of an edge being in one ethnic specific graph but not in the other is higher than 0.5.

It is worth noting that there are no edges among the majority of lipoproteins sub-

fractions, which implies that the presence or absence of those connections are shared

by both of these ethnicities. On the other hand, the majority of the amino acids have
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some distinct connections, highlighting potential differences in underlying metabolic

processes. For example, the amino acid Histidine features many connections with

other amino acids and a subset of lipoproteins sub-fractions, with these edges only

present in the South-Asian group. Other central nodes in the differential network

are Acetoacetate, Acetate, Pyruvate and Lactate. In Appendix we report the indi-

vidual networks for all three ethnicities in Figures E.8, E.9 and E.10, respectively for

Europeans, South-Asians and Africans-Caribbean. These networks are characterised

by a high number of edges, in particular, we can notice a very highly connected group

of lipoproteins in the first two largest ethnicities. The African-Caribbean graph has

less edges, but we can still identify clusters of connected lipoproteins.

To gain a better understanding of the estimated connections and to relate the estim-

ated graph to known metabolic pathways, we conduct a pathway over-representation

analysis (ORA) using the online software MetaboAnalyst (Chong et al., 2018). We

include in the analysis all metabolites that have a connection in the differential net-

work. ORA evaluates statistically the fraction of metabolites in a particular pathway

found among the user-specified set of metabolites, in our case the metabolites with

connections in the differential network. For each pathway, input metabolites that are

part of the pathway are counted. Next, every pathway is tested for over or under-

representation in the list of input metabolites using the hypergeometric test. The most

represented pathways are the ones with smaller p-value levels and higher number of

over-represented metabolites. Here we discuss the first four top-ranked pathways,

Pyruvate Dehydrogenase Deficiency (E3), Pyruvate Carboxylase Deficiency, Diabetes

Mellitus (MODY) Non-Insulin-Dependent and Chronic Progressive External Ophthal-

moplegia (CPEO) and Kearns-Sayre Syndrom (KSS). Pyruvate dehydrogenase and

pyruvate carboxylase deficiency are the most common disorders in pyruvate metabol-

ism. Pyruvate dehydrogenase (PDH) is an enzyme complex made of three subunits,

pyruvate dehydrogenase, dihydrolipoamide acyltransferase and dihydrolipoamide de-

hydrogenase (indicated as E3). The enzyme complex converts pyruvate into acetyl-

CoA, that together with oxaloacetate, are two essential substrates in the production

of citrate. PDH Complex Deficiency therefore leads to a limited production of citrate

and because citrate is the first substrate in the tricarboxylic acid cycle, the cycle is

blocked and other metabolic pathways need to be stimulated to produce acetyl-CoA.

However, the most common deficiency involves the first subunit, while mutations in
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the second and E3 are less often the cause for PDH Complex Deficiency. The en-

zyme defect causes more pyruvate to be metabolized to lactate and leads to lactic

acidosis (Bissonnette and Bissonnette, 2006). Overall, PDH Complex plays a key role

in regulating the supply of adenosine triphosphate during the feed-fast cycle, where

cells must select fatty acid or glucose as energy source, therefore it is important in

regulating the glucose metabolism and, therefore, PDH deficiency is related to meta-

bolic diseases, like type 2 diabetes and obesity (Lee, 2014). Of particular interest is

pyruvate carboxylase deficiency. Lao-On et al. (2018) explore the role of pyruvate

carboxylase in human diseases, such as diabetes. Pyruvate carboxylase (PC) is an

anaplerotic enzyme which plays an essential role in various cellular metabolic path-

ways, including gluconeogenesis and and glucose-induced insulin secretion. Pyruvate

originates as the final product of the pathway Pyruvate. In aerobic conditions, Pyr-

uvate enters mitochondria via the mitochondrial pyruvate carrier, where it may be

further metabolized in two different ways. In non-gluconeogenic tissues, like muscles

and brain, Pyruvate is decarboxylated to form acetyl-CoA catalysed by the Pyruvate

Dehydrogenase Complex. In gluconeogenic tissues, most of Pyruvate entering mito-

chondria is carboxylated by the enzyme pyruvate carboxylase to form oxaloacetate.

Given the importance of oxaloacetate in various biochemical pathways, perturbation

of oxaloacetate production by PC can produce serious diseases such as type 2 diabetes

or neurological disorder.

Diabetes Mellitus (MODY) is an autosomal dominant monogenic disorder of pancre-

atic beta cells that is usually manifested before the age of 30 and accounts for 1− 3%

of diabetes in this age group (Misra and Owen, 2018), although the prevalence of

MODY in South-Asians is low, despite their increased risk of type 2 diabetes (Eht-

isham et al., 2004). Finally, Chronic progressive external ophthalmoplegia (CPEO)

is one of the most common mitochondrial disorders in adults. The main symptom

is a slowly progressive extra-ocular muscle weakness. KSS and CPEO are probably

the same disorder, but differ in the degree of severity (Gilman, 2011). In both CPEO

and Kearns–Sayre syndrome, hearing loss and diabetes mellitus can precede the onset

of muscle involvement by years (Shoffner et al., 1990). Additionally, involvement of

systems other than muscle is common in CPEO. Multi-system involvement can cause

functional impairments secondary to dysfunction of (proximal) skeletal muscles, ret-

ina, cochlea, cerebrum, cerebellum and heart (Smits et al., 2011). Ocular manifesta-
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tions include, among the others, retinopathy and optic atrophy. Cardiac manifesta-

tions include cardiac conduction block and cardiomyopathy. Cerebral manifestations

can include epilepsy, cerebellar ataxia, and dementia. Endocrine involvement in-

cludes diabetes mellitus, hypothyroidism, hypoparathyroidism, and hypogonadism.

Sensorineural hearing loss and gastrointestinal involvement are also possible (Vorgerd

and Deschauer, 2011).

In conclusion, these findings suggest plausible metabolic pathways which may be dis-

ordered to a greater extent in South-Asians and contribute to their excess risk of

diabetes and cardiovascular disease.

In Figure 5.5 we plot the posterior mean of the regression coefficients βlj, for each

equation l and covariate j. The only covariates that do not show association with

any metabolite are waist to hip ratio (WHR) and diastolic blood pressure. It is worth

noting, however, that WHR has a strong positive correlation with some of the other

measures of adiposity (such as sagittal diameter), which can result in the selection of

a variable over the other. The same scenario applies to the variable diastolic blood

pressure, which is positively correlated with systolic blood pressure.

To evaluate the sensitivity of the model to the prior parametrisation, we perform

a sensitivity analysis for different combinations of v0 ∈ {0.01, 0.1} and aπ, bπ ∈

{0.01, 0.5}. In particular, the choice of v0 plays a major role in determining the

level of sparsity of the graphs. A comparison of the estimates given v0 = 0.01 and

v0 = 0.1 shows differences in the number of edges included in each of the three graphs.

However, the peculiarities of the single graphs and the differential network are main-

tained. In particular, the differential network between Europeans and South-Asians

highlights similar connectivity patterns, e.g., the amino acid Histidine presents con-

nections with other amino acids and lipids sub-fractions, with these edges being only

present in the South-Asian group, as before. Varying the prior values of πa, πb between

{0.01, 0.5} does not lead to relevant differences.
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are only present in the European network, while blue edges are only present in the

South-Asian network.
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Figure 5.5: Each dot represents the mean of the posterior distribution of a coefficient

βlj. Red dots denote coefficients whose 95% credible interval does not contain the

zero.

5.4 Conclusions

The model developed in this chapter allows the specification of a desired level of

sparsity in the graph and the inclusion of prior information about specific connec-

tions between pairs of nodes, when prior knowledge is available, for example, from

literature or from expert opinions. We analyse the properties induced on the Graph

by the GDP prior in terms of the degree distribution. We demonstrate that this prior

is able to capture a wide range of structures, from sparse to more dense graphs. The

GDP prior allows us to cluster a posteriori the edges based on their inclusion probab-

ilities. Using an extension of the GDP process, the DGDP, we develop a framework

for inference on multiple GGMs. The DGDP offers a convenient way to share inform-

ation across groups and allows for the possibility to include group specific information

in the model. The SSSL prior ensures good scalability of the MCMC thanks to its

efficient update scheme and good convergence rates. The SUR model is completed

by specifying a global-local shrinkage prior on the coefficients in the mean regression

term, allowing each equation to have its own vector of regression parameters and its

variable selection. The Horseshoe prior effectively shrinks small and negligible coeffi-

cients to zero, while leaving important coefficients unaffected thanks to its heavy tails,

as such performing (group specific) variable selection. We illustrate the performance
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of the proposed model and compare it with an alternative nonparametric prior on

the edge inclusion probabilities (the ANOVA DDP prior) in a simulation study. The

results highlight the ability of the model to recover the true underlying structure of

the graphs and to correctly identify association between covariates and response.

Finally, we employ the proposed sparse SUR model to analyse the SABRE meta-

bolomics dataset. Our clinical interest focuses on different patterns of metabolite

associations within the three ethnicities. Our approach allows us to provide an inter-

pretable set of unique associations patterns which can aid mechanistic understanding

of between-group differences in the development of insulin resistance and diabetes and

can highlight areas for further research. In doing this, we still correct for potential

confounders within the SUR framework. The results obtained from our analysis are

promising.
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Chapter 6

Bayesian Dynamic Multiple

Graphical Models

In this final chapter we propose a novel approach for the estimation of multiple Graph-

ical Models to analyse temporal patterns of association among a set of metabolites

over different groups of patients. We are interested in identifying potential ethnic

differences in metabolite levels and associations as well as their evolution over time,

with the aim of gaining a better understanding of different risk of cardio-metabolic

disorders across ethnicities. Within a Bayesian framework, we employ Nodewise Re-

gression technique to infer the structure of the graphs, borrowing information across

time and ethnicities. The response variables of interest are metabolite levels meas-

ured at two time points for two ethnic groups, Europeans and South-Asians. We use

Nodewise Regression to estimate the high-dimensional precision matrix of the meta-

bolites, by regressing each metabolite on the remaining and imposing sparsity on the

regression coefficients. To this end we assume a time dependent global-local shrink-

age prior, the dynamic horseshoe prior, on the regression parameters, which allows

us to favour sparse graphs and to accommodate the temporal dimension. Moreover,

we extend the prior to analyse multiple groups of observations. Posterior inference is

performed through Markov Chain Monte Carlo (MCMC) methods. We also provide

code to fit the proposed model using the Bayesian software Stan, which implements

Hamiltonian Monte Carlo methods. The proposed approach is able to capture a

wide range of graph topologies and identify common/group-specific structures across

multiple graphs, in our case corresponding to different ethnicities, and allows us to

describe temporal trends in metabolic associations.
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Most cardiovascular diseases involve disturbances in cardiac metabolism, moreover,

disturbances in metabolism that occur in diseases, such as diabetes mellitus, directly

impact cardiac metabolism. It is also becoming more clear that heart disease can

affect the metabolism, therefore, disturbances in metabolism may initiate a vicious

cycle that causes and deteriorate cardiovascular diseases (McGarrah et al., 2018).

Metabolomics has emerged as a powerful tool for defining changes in metabolism that

occur across a range of cardiovascular disease states. Findings from metabolomics

studies have contributed to a better understanding of the metabolic changes that oc-

cur in heart failure and ischaemic heart disease and have identified new cardiovascular

disease biomarkers. With the advance of technologies, the metabolomics field con-

tinues to evolve rapidly and the use of metabolomics can help to better understand

the evolution dynamics of specific diseases. Therefore, it is essential not to limit the

analysis to differences in metabolite levels across ethnicities over time, but to con-

sider as well patterns of variations in metabolic associations to gain better insight

in molecular mechanisms of disease pathogenesis and to formulate novel data-driven

scientific hypotheses. We represent association patterns among metabolites through a

graph which is the main object of statistical inference. Within a Bayesian framework,

our model is based on Nodewise Regression, originally introduced by Meinshausen

and Bühlmann (2006). In Nodewise Regression estimating a graph is equivalent to

estimating the precision matrix between variables, in our case metabolite levels. This

is achieved by rewriting the problem in terms of M independent linear regressions,

where M is the number of variables, and each variable is regressed on all the others.

It is a local method, because it infers the neighbour structure of each node (i.e. the

connections involving the node) independently, as opposed to global methods that

aim to infer jointly the association patterns across all the nodes. In Nodewise Re-

gression we model each variable, using the others as predictors. The element j, l in

the precision matrix is estimated to be non-zero if either the estimated coefficient of

variable j on l, or the estimated coefficient of variable l on j, is non-zero.

A wealth of proposals is available in the literature to impose sparsity on the regression

coefficients. See, Section 2.1.5 for a brief introduction to Bayesian variable selection

and shrinkage priors. We opt the Horseshoe prior, which is characterised by an accen-

tuated spike at zero to strongly shrink small or negligible coefficients, while leaving

important coefficients unaffected thanks to its heavy tails. Moreover, this prior allows
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for efficient computations. Employing the dynamic extension of the Horseshoe prior

proposed by Kowal et al. (2017), we are able to accurately estimate dynamic evolving

complex precision matrices, across multiple groups of observations of different sample

sizes at each time point.

A similar approach is taken by Lin et al., 2017, where the neighbour selection of each

node is based on the Nodewise Regression method of Meinshausen and Bühlmann,

2006, but it is different from our approach in two ways: a) how shrinkage is imposed

on the regression coefficients and hence how the edge selection is obtained, b) how

information is shared across multiple groups and time points. Lin et al., 2017 use a

Spike and Slab prior over the regression coefficients, while we adopt the Horseshoe

prior which is fully continuous and does not require hyperparameter tuning (in its

base version), moreover it allows us to use alternative inference approaches, such as

Hamiltonian Monte Carlo, which is applicable only with continuous prior distribu-

tions. Lin et al., 2017 introduce additional parameters that force the graphs to be

similar between groups and between times, while we share information across multiple

groups directly through the hyperparameters of the horseshoe prior. Moreover, we

can explicitly incorporate time dependence into the model through the schema pro-

posed by Kowal et al., 2017, imposing a time structure on the linear predictor in the

regression component. Both approaches are computationally efficient, being suitable

for parallel computations on multicore machines, moreover the approach proposed by

Kowal et al., 2017 scales linearly in the number of time points.

A limitation of the neighbourhood selection based on Nodewise Regression, which

applies to both approaches, is the lack of a direct posterior estimate of the true pre-

cision matrix. As detailed in Lin et al., 2017, the Bayesian version of the Nodewise

Regression allows to accurately estimate the true posterior distribution of the edge

selection, but does not directly provide an estimate of the precision matrix. Nonethe-

less, we can use the estimated posterior distribution of the regression coefficients as

an approximation of the true value and as a reference to understand the strength and

direction of each specific connection in the graph.
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6.1 Nodewise Regression for graphical models

In this section we explain how to estimate a Graphical Model through Nodewise

Regression. We use the same terminology for graphical models introduced in Chapter

2. Let G = (V,E) be an undirected graph, with vertex set V = (1, . . . ,M) and edge

set E ⊂ {(j, l) ∈ V × V : j < l}, whose vertices are associated with a M -dimensional

vector of variables y = (y1, . . . , yM), which is assumed to follow a multivariate Normal

distribution

y ∼ N (0,Ω) (6.1)

where Ω = (ωjl) is the M ×M precision matrix. An edge is present between nodes Vj

and Vl, that is (j, l) ∈ E, if and only if ωjl 6= 0 (Wermuth, 1976; Lauritzen, 1996). If

ωjl = 0 (absence of an edge), then yj and yl are conditionally independent given the

remaining variables y−jl, where y−jl denotes the random vector y excluding the (j, l)

element. Therefore, estimating the graph G corresponds to estimating the precision

matrix Ω. We address the problem of estimating the graph G with the technique

proposed by Meinshausen and Bühlmann (2006), Nodewise Regression, that exploits

the relation between the partial correlation coefficients and the regression coefficients

of a linear regression. Consider the following standard linear regression

yl =
∑
j 6=l

βjlyj + εl, εl ∼ N(0, σ2
l ) (6.2)

where each βjl is the regression coefficient that encodes the effect of the variable yj on

the dependent variable yl, for j 6= l. Since βjl =
−ωjl
ωll

and symmetrically βlj =
−ωlj
ωjj

,

then,

ωjl 6= 0 ⇐⇒ βlj 6= 0 ⇐⇒ βjl 6= 0

This result can be also derived from the moments of the conditional Normal distribu-

tion. Consider the partition where the scalar yl is the l-th coordinate of y, and y−l

corresponds to the remaining coordinates. The conditional distribution of yl given

y−l is

yl | y−l,µ,Ω ∼ N

(
µl −

∑
j 6=l

ωjl
ωll

(yj − µj),
1

ωll

)
(6.3)

where ωjl/ωll = βjl, for j 6= l. For ease of explanation, in the following sections we

assume, without loss of generality, µ = 0, except in Section 6.3, where µ is modelled
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through a linear predictor. The corresponding graph can then be constructed by ap-

plying either the OR rule or the AND rule. In the first case we draw an edge between

nodes j and l if and only if βjl 6= 0 or βlj 6= 0. If using the AND rule, draw an edge

between nodes l and j if and only if βjl 6= 0 and βlj 6= 0. Moreover, given βjl and σ2
l ,

an estimate of Ω can be derived by setting the diagonal elements equal to 1/σ2
l and

off-diagonal elements equal to −βjl/σ2
l .

This framework allows us to express the problem of graphical model selection as M

independent linear regression problems. Alternative approaches to graphical models

estimation are available in literature. Graphical Lasso is a popular global method in

both the frequentist and Bayesian domain, based on a penalised maximum likelihood

estimator (Friedman et al., 2008) or on double exponential prior (Wang, 2012), re-

spectively. Graphical Lasso has the advantage of ensuring a positive definite estimate

of Ω, but requires a greater computational effort and it is less flexible in estimat-

ing the individual scaling levels (i.e. the diagonal elements of Ω) compared to the

nodewise approach (Janková and Geer, 2018). The possibility to treat each regres-

sion separately also allows a straightforward parallel programming strategy. Other

Bayesian approaches to graphical model estimation rely on the specification of a suit-

able prior distribution over the graph space and, conditional on the graph, a prior

for the precision matrix is selected. For example, Lenkoski and Dobra (2011) pro-

pose the G-Wishart prior, a generalisation of the Hyper-Wishart distribution, that

allows to deal with non-decomposable graphs. However, the convergence of associated

MCMC algorithms can be slow due to the single edge update and the intractable nor-

malising constant in the marginal posterior that requires numerical approximations.

Mohammadi and Wit (2015) develop a more efficient birth-death MCMC algorithm

to estimate a single GGM using a G-Wishart prior. In Section 6.2 we compare our

approach with the G-Wishart model proposed by Mohammadi and Wit (2015).

6.1.1 The Model

Often in the frequentist framework the Lasso (Meinshausen and Bühlmann, 2006)

or square-root Lasso (Janková and Geer, 2018) are utilised, among the others, to

impose sparsity on elements of the precision matrix, particularly in high-dimensional

settings. In the Bayesian framework a wealth of sparse Bayesian regression techniques

is available. In a regression context, when performing variable selection, a popular
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choice is to impose shrinkage priors on the regression coefficients. Typical examples

are presented in 2, here we opt for the Horseshoe prior of Carvalho et al. (2010), here

defined as

βj | λj, τ ∼ N
(
0, λ2

jτ
2
)

λj, τ ∼ C+(0, 1)

where τ is a global hyper-parameter that shrinks all the parameters towards zero,

while λj is a local hyper-parameter specific to βj, a regression parameter in our case,

that allows to counterbalance the global shrinkage.

Let Y be a n × M matrix of observations, where n is the sample size and each

column yl = (y1l, y2l, . . . , ynl)
T , for l = 1, . . . ,M , contains the measurements of the

l-th variable. Let p = M−1. The regression model for the l-th column can be written

as

yl | βl, σ2
l ∼ N

(
Xβl, σ

2
l In
)

βjl | λjl, τl ∼ N
(
0, λ2

jlτ
2
l

)
σ2
l | aσ, bσ ∼ Inverse-Gamma (aσ, bσ)

λjl ∼ C+ (0, 1)

τl ∼ C+ (0, 1)

(6.4)

where X is the matrix of explanatory variables corresponding to Y−l (i.e. Y excluding

the l-th column) and βl = (β1l, β2l, . . . , βpl) is a vector of regression coefficients for the

l-th regression. Carvalho et al. (2010) define a pseudo inclusion probability parameter

κjl:

κjl =
1

1 + Var(βjl|λjl, τl)
=

1

1 + λ2
jlτ

2
l

(6.5)

which is interpretable as the amount of shrinkage towards zero, with κjl ≈ 1 yield-

ing maximal shrinkage and κjl ≈ 0 corresponding to minimal shrinkage. Carvalho

et al. (2010) compare the performance of the variable selection based on (6.5) (with

a threshold level of 0.5) with the explicit variable selection based on Spike and Slab,

showing that the posterior selection given by κ is consistent with that of the Spike

and Slab.

To improve computational efficiency we use the following representation of the stand-

ard half-Cauchy distribution (employed by Gelman (2006) and Piironen and Vehtari

(2017)). The standard half-Cauchy distribution can be expressed as the product of
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a standard half-Normal random variable times the square root of an Inverse-Gamma

random variable. Let z ∼ N+(0, 1) and y ∼ Inverse-Gamma(1/2, 1/2) and define

x = z
√
y, then x ∼ C+(0, 1). N+(0, 1) denotes the standard half-Normal distribution,

which is defined as the absolute value of a Normal distribution (Leone et al., 1961).

This re-parametrisation can help to avoid divergent transitions in the HMC algorithm

(a problem commonly encountered with funnel shaped distributions). Piironen and

Vehtari (2017) also allow for a tunable global scale parameter τ 2
l , which can help

achieving the desired level of sparsity. Thus the prior distribution on the regression

parameters becomes

βjl | λjl, τl ∼ N(0, λ2
jlτ

2
l )

σ2
l | aσ, bσ ∼ Inverse-Gamma (aσ, bσ)

λjl = λajl

√
λbjl

τl = τal

√
τ bl τ0

λajl ∼ N+(0, 1)

λbjl ∼ Inverse-Gamma(1/2, 1/2)

τal ∼ N+(0, 1)

τ bl ∼ Inverse-Gamma(1/2, 1/2)

(6.6)

where τ0 = p0
p−p0

σ√
n

and p0 is a prior guess about the number of non-zero coefficients.

The choice of p0 is extensively discussed by Piironen and Vehtari (2017) and is often

fixed to be the reciprocal of the number of observations.

Extension to multiple groups

We now extend the Horseshoe prior to allow borrowing information across multiple

groups of observations. These group are usually defined by the problem under invest-

igation, for example they might correspond to different biological conditions, disease

status, spatial regions. Estimating a single graphical model would lead to an implicit

assumption of homogeneity of the underlying graphs across the groups, with a con-

sequent loss of information about their heterogeneity and a consequent high risk of

false positives. On the other hand, inferring each graph individually might lead to

a loss of power given the reduction in sample size. In our case, groups are defined

by ethnicity. Let R be the number of groups and let Yr be a matrix of dimension

nr×M containing only the observations belonging to group r, with r = 1, . . . , R. We

introduce dependence across groups through the global shrinkage parameter τ 2 of the
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Horseshoe prior. The model is now defined as follows

ylr | βlr, σ2
lr ∼ N

(
Xrβlr, σ

2
lrInr

)
σ2
lr | aσ, bσ ∼ Inverse-Gamma (aσ, bσ)

βjlr | λjlr, τlr ∼ N
(
0, λ2

jlrτ
2
lr

)
λjlr = λajlr

√
λbjlr

τlr = τal

√
τ bl τ0r

λajlr ∼ N+(0, 1)

λbjlr ∼ Inverse-Gamma(1/2, 1/2)

τal ∼ N+(0, 1)

τ bl ∼ Inverse-Gamma(1/2, 1/2)

(6.7)

where Xr is a nr × p matrix corresponding to Y−lr (i.e. Yr excluding the l-th column)

and βlr = (β1lr, β2lr, . . . , βplr) is a vector of regression coefficients specific to equation l

and group r. We exploit the structure of the Horseshoe prior, retaining group specific

local shrinkage parameters λjlr, while we link together the global shrinkage parameters

τlr through the common τ bl and τal . The intuition behind our strategy is justified by

the structure of the Horseshoe prior. The global shrinkage parameter τlr pulls all

the coefficients globally towards zero, while the thick half-Cauchy tails for the local

variances λ2
jlr allow the important coefficients to escape the global shrinkage (Carvalho

et al., 2010). We expect the graphs to have group specific connection patterns, which

is why we maintain group specific local shrinkage parameters λjlr, allowing edges to

escape the global shrinkage independently in each group. We also expect groups to

share some common structures and a similar number of connections, therefore we link

together the global shrinkage parameters τlr, allowing borrowing of information about

the global level of sparsity of the graphs.

Extension to multiple time points - Dynamic Horseshoe prior

A natural extension of the model above is to introduce a temporal dimension, which

allows joint inference of time dependent data from multiple groups. In this work

we consider the evolution over time of the patterns of metabolic associations for two

ethnic groups. Here we provide an extension of the Nodewise Regression which enables

estimation of time dependent graphs, along with the respective precision matrices.

We allow for different sample sizes at each time point and observations stratified in

multiple groups. Our goal is to estimate sparse multiple-graphs evolving over time.

In summary we introduce two levels of dependence among graphs: between groups

and between time points, with the aim to also understand how the differences in

associations among groups evolve over time. To this end we extend the model in (6.7)
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by imposing a time structure over the shrinkage scale parameters of the Horseshoe

prior following the approach proposed by Kowal et al. (2017), who introduce a general

dynamic prior for sparse dynamic linear regressions, of which the dynamic Horseshoe

prior is a special case. Time dependence is introduced specifying a stochastic volatility

model on the log-variance of each regression coefficient. Let t = 1, . . . , T be the time

index and let Yrt be a nrt ×M matrix containing only the observations belonging to

group r at time t. Given the time dependence of the log-variance ht

hjrt = log
(
τ 2
jrτ

2
0 /
√
pnrt

)
+ φjr

(
hjrt−1 − log

(
τ 2
jrτ

2
0 /
√
pnrt

))
+ log

(
λ2
jrt

)
(6.8)

the time-dependent multiple-groups Nodewise Regression model becomes, (omitting

the equation subscript l for ease of notation):

yrt | βrt, σ2
rt ∼ N

(
Xrtβrt, σ

2
rtInrt

)
σ2
rt | aσ, bσ ∼ Inverse-Gamma (aσ, bσ)

βjrt = βjrt−1 + γjrt exp(hjrt/2)

γjrt ∼ N(0, 1)

(φjr + 1)/2 | φa, φb ∼ Beta(φa, φb)

τ0 ∼ C+ (0, 1)

τjr ∼ C+(0, 1)

λjrt ∼ C+(0, 1)

(6.9)

where φjr is an autoregressive coefficient specific to the j-th covariate and r-th group,

τ 2
0 is a global shrinkage parameter common to all predictors and shared by all groups,

τ 2
jr is a predictor specific shrinkage parameter and λ2

jrt is a time and covariate specific

local shrinkage parameter. βrt = (β1rt, . . . , βprt) is a time and group specific vector

of regression parameters and Xrt is a nrt × p matrix corresponding to Y−lrt (i.e. Yrt

excluding the l-th column). The distribution of the logarithm of the square of a

half-Cauchy random variable is a Z-distribution (Kowal et al., 2017). In particular, if

η = log(λ2), where λ ∼ C+(0, 1), then η has probability density function:

g(η) = π−1 exp (η) [1 + exp (η) , ]−1 , η ∈ R

The Z-distribution can be represented as a mean-variance mixture of Gaussian distri-

butions (Barndorff-Nielsen et al., 1982) and thanks to the Polya-Gamma expansion

proposed by Kowal et al. (2017) we can develop a multiple groups hierarchy similar

to the one in model (6.7). To this end we define ηjrt = log
(
λ2
jrt

)
, µ0 = log (τ 2

0 ) and

µjr = log
(
τ 2

0 τ
2
jr

)
and we re-write the prior distributions for the parameters in log
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scale

ηjrt | ξηjrt ∼ N
(

0, ξ−1
ηjrt

)
µjr | µ0, ξµjr ∼ N

(
µ0, ξ

−1
µjr

)
µ0 | ξµ0 ∼ N

(
0, ξ−1

µ0

)
ξηjrt ∼ Polya-Gamma(1, 0)

ξµjr ∼ Polya-Gamma(1, 0)

ξµ0 ∼ Polya-Gamma(1, 0)

(6.10)

The global shrinkage parameters µ0 is shared by all groups, allowing borrowing of

information about the global level of shrinkage. This modelling strategy allows us

to propagate the shrinkage profile of each regression coefficient over time, allowing

fast structural changes or slowly adjusting processes. Kowal et al. (2017) explore the

theoretical properties of the dynamic Horseshoe prior and show its good performance

when compared to alternative priors. Moreover, the Polya-Gamma expansion in (6.10)

leads to efficient computations as it allows to design a fast block-Gibbs sampler.

6.1.2 Posterior Inference

For reasonable sized datasets, M ≤ 30 and sample size n ≤ 1000, posterior inference

for the Nodewise Regression model with Horseshoe prior (static and dynamic) can

be performed efficiently in Bayesian software like Stan (Carpenter et al., 2017) or

JAGS (http://mcmc-jags.sourceforge.net/). In Appendix we provide sample code

to implement the proposed approach in Stan, which implements Hamiltonian Monte

Carlo (HMC, Brooks et al. (2011), chapter 5). For larger problems, implementation in

a low level language is advisable. Here, we develop a block Gibbs sampling, extending

the algorithm provided by Kowal et al. (2017), allowing for multiple groups of different

sample sizes to be analysed. Details of the MCMC are provided in Appendix C.

6.2 Simulations

In this section we analyse the performance of the proposed models on synthetic data-

sets. We evaluate the ability of each model to recover the true graph structure G using

the Area Under the Curve (AUC), which is a normalised measure of the area under

the Receiver Operating Characteristic (ROC) curve. The ROC curve is obtained by

plotting the true positive rate against the false positive rate evaluated at different

thresholds the for edge inclusion probability. We also use the posterior distributions

of the Nodewise regression coefficients to give an estimate the precision matrix Ω and
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asses its accuracy through the Mean Absolute Error (MAE), calculated between the

true matrix and the estimate given by the model. Although we cannot recover the

true posterior distribution of the precision matrix, we show that the estimates given

by the proposed models are very accurate, when compared to alternative methodolo-

gies.

In the first simulation we test the ability of Nodewise Regression to estimate the graph

corresponding to a set of highly correlated variables. In order to test the robustness

of the model to such scenario, we build a graph with 20 nodes with the following

characteristics: a) the first ten nodes are all connected, with a correlation coefficient

of 0.9, b) nodes from 16 to 20 are all connected, with a correlation coefficient of 0.7, c)

we connect the two groups specifying a correlation of 0.4 between the pairs of nodes

(1, 16) and (2, 18). The resulting precision matrix is a block matrix, where nodes 11

to 15 are disconnected, while the other 15 nodes form a dense sub-graph. The partial

correlation is interpreted as the correlation between two variables, net of the effect

of all the other remaining variables. Therefore, the partial correlation coefficient will

decrease as the correlation value and the number of correlated nodes rise. We gener-

ate five datasets of n = 100 observations each, given the graph described above, and

estimate the correspondent graphs and precision matrices with Nodewise Regression

and with the G-Wishart model from the R package BDgraph. We use the AUC to

measure the ability to retrieve the true conditional independences and the MAE to

measure the actual discrepancy in the partial correlations (compared with the true

one). In Figure 6.1 we report the boxplot summarising the AUC and MAE for the

five simulations replicates. The AUC for the Nodewise regression is higher than that
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Figure 6.1: Mean Absolute Error (left figure) and AUC (right figure) comparison

between the Horseshoe prior model in 6.6 and the G-Wishart model from the package

BDgraph
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of the BDgraph package, while, there is not a significant difference between the MAE

boxplot. This simulation highlights the ability of the proposed Nodewise regression to

be able to correctly estimate the true graph structure in the high correlation scenario

described above.

In the second simulation we compare the estimate of the multiple groups model in

(6.7) with that of the R package BDgraph, which implements a birth-death MCMC

algorithm for Bayesian structure learning in graphical models. We construct three

precision matrices Ω1, Ω2 and Ω3, corresponding to graphs G1, G2 and G3, of M = 20

nodes. Following (Peterson et al., 2015), we first define the precision matrix Ω1 and

then derive the others as a perturbation of the first. We set the main diagonal elements

of Ω1 equal to 1, first off-diagonal elements ωi,i+1 = ωi+1,i = 0.5, for i = 1, . . . , 19 and

second off-diagonal elements ωi,i+2 = ωi+2,i = 0.5, for i = 1, . . . , 18. Then we set all

ωi,j = 0.9, for i < j < 6, while the rest of the elements are set to zero. Ω2 is derived

from Ω1, setting the second off-diagonal elements ωi,i+2 = ωi+2,i = 0, for i = 1, . . . , 18,

all the remaining elements being equal. Ω3 is derived from Ω1, setting the first off-

diagonal elements ωi,i+1 = ωi+1,i = 0, for i = 1, . . . , 19, all the remaining elements

being equal. The newly created matrices are not positive definite and, therefore, we

compute the nearest positive-definite approximation through the R function nearPD

(Higham (2002), from the package Matrix). The precision matrices Ω2 and Ω3 con-

structed with this procedure are a perturbation of Ω1: as a result they exhibit some

common edges and some group specific connections. The number of observations is

fixed to 60, 40, 30, for group 1, 2 and 3 respectively. Each graph is characterised by a

dense group of edges on nodes 1 to 6, representing a set of high partial correlations

(absolute value of 0.9). In Figure 6.2 we display the boxplot of the MAE and AUC,

calculated over ten simulations, respectively with the multiple groups Nodewise model

(6.7) and with the BDgraph package. The Nodewise Regression model works better

in terms of MAE, for which a value closer to 1 denotes an estimate of Ω close to the

true one, and in terms of AUC, for which a value close to 1 denotes a better recovery

of the true graph.

In the third simulation scenario we compare the multiple groups dynamic Nodewise

model in (6.9) with the static multiple groups Nodewise model in (6.7) (where we

assume the three times to be independent). We consider two groups and we construct

two matrices Ω1t1 and Ω2t1 , one for each group at time 1, of M = 20 nodes. First we
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Figure 6.2: Mean Absolute Error (left panel) and AUC (right panel) for the compar-

ison between the multiple groups Nodewise regression model in (6.7) and the package

BDgraph

set the main diagonal elements of Ω1t1 equal to 1 and we add 12 non-zero off-diagonal

elements, chosen randomly from the K possible edges and setting them equal to 0.5.

Then Ω2t1 is constructed removing 2 edges from Ω1t1 at random and adding 3 new

edges chosen randomly as before. These three new edges are set equal to 0.5. Finally,

we simulate the evolution over time of the two precision matrices, removing 2 edges

and adding a new edge randomly chosen for each time point (setting the correspond-

ing elements in the precision matrix equal to 0.5) for a total of T = 3 time points. In

Figure 6.3 we show the network generated with such procedure from which we sim-

ulate the dataset. The number of observations is fixed to 50, 40, 30 respectively for

t1, t2 and t3 (where each group has half of the total sample size at each time point).

In the fourth simulation we construct the dynamic precision matrices following the

same procedure as the second scenario, changing the number of time points to T = 10.

The number of observations is fixed to 40 per time point (equally split between two

groups). The generated graphs are characterised by a slowly changing pattern, where

only one edge is added or removed at each time point. The results of the comparison

between the dynamic and static Nodewise models is shown in Figure 6.5, where we

report the boxplots of the AUC calculated over five simulations. The dynamic model

has higher and less variable values of AUC in group 1, while there are fewer differences

in performance between the models for group 2.
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Figure 6.3: Simulation of time dependent graphs

101



M
ea

n 
Ab

so
lu

te
 E

rro
r

0.
00

0.
05

0.
10

0.
15

0.
20

G1 t1 G2 t1 G1 t2 G2 t2 G1 t3 G2 t3

Dynamic HS model
Static HS Model

A
U

C

0.
80

0.
85

0.
90

0.
95

1.
00

G1 t1 G2 t1 G1 t2 G2 t2 G1 t3 G2 t3

Dynamic HS model
Static HS Model

Figure 6.4: Mean Absolute Error (top panel) and AUC (bottom panel) comparison

between the dynamic model in (6.9) and the static model in (6.7)

102



AU
C

0.
70

0.
85

1.
00

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Dynamic HS model
Static HS Model

AU
C

0.
70

0.
85

1.
00

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Dynamic HS model
Static HS Model

Figure 6.5: AUC comparison for groups 1 and 2 (top and bottom panel respectively)

between the dynamic model in (6.9) and the static model in (6.7).

103



6.3 SABRE results

In this section we fit the Nodewise Regression for dynamic multiple graphical models

to the SABRE metabolic data. The dataset described in Chapter 1 has a total of 1246

observations at baseline (T1) and 875 at follow-up time (T2). Individuals are stratified

in two ethnicities at each time point, 690 Europeans and 556 South-Asians at T1

and 503 Europeans and 372 South-Asians at T2. Nodes on the graph correspond to

metabolites and there are a total of M = 88 of nodes (i.e. the number of equations in

the Nodewise Regression), a list of which can be found in Table D.1. When analysing

this data, it is important to control for clinical events of interest (e.g. development

of diabetes) that occur before T1 and between T1 and T2. To this end, we model the

mean µl of the conditional Normal distribution in (6.3) through a linear predictor and

assume that µlrt = Zrtβ
z
lrt, where Z is a matrix of predictors common to all equations

and βzlrt is a pz-dimensional vector of regression coefficients for the mean level. The

model is completed by specifying a time dependent structure and a prior distribution

on βzlrt as follows

βzklrt = βzklrt−1 + γzklrt

γzklrt ∼ N(0, s0)

for k = 1, . . . , pz, where s0 is the prior variance, here specified to induce a flat Nor-

mal distribution. Posterior inference is performed by sampling together the regression

coefficients βlrt and βzlrt. We include the predictors listed in Table D.5, consisting of a

measure of body-fat distribution, total blood lipids, blood pressure, control variables,

such as smoking habits, sex and age and indicators of the occurrence of cardiovascular

diseases and diabetes. We also include an intercept term so that the total number of

covariates is pz = 20. We run the MCMC for 10000 iterations, comprising a burn-in

period of 2000 iterations and a thinning of 4. In addition to the individual networks

we also estimate the differential networks (Fuente, 2010; Valcárcel et al., 2011) arising

from the pairwise comparison between the two ethnicities for each time point and the

pairwise comparison between T1 and T2 for each ethnicity. A differential network in-

cludes all the edges that are present only in one of the two groups/times (i.e. present

in one group/time and not the other and vice-versa), thus helping us to understand

the main differences between ethnicities and the evolution of the metabolic pathways

over time.
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In Figures 6.6 and 6.7 we show the differential networks between T1 and T2, respect-

ively for Europeans and South-Asians, where an edge between two nodes is added to

the differential graph if the probability of an edge being in one specific graph but not

in the other is higher than 0.5. It is worth noticing that there are no edges among

the majority of the metabolites in both differential networks, which implies that the

presence or absence of those connections are shared by the respective ethnicity at

T1 and T2. Moreover, for both ethnic groups, the edges in differential networks de-

rive exclusively from edges present at baseline, but not at follow-up. The connected

metabolites in the European differential network (Figure 6.6) belong predominantly

to the groups of very low density lipoproteins and high density lipoproteins, with

the addition of the metabolite 3-hydroxybutyrate, which is connected to cholesterol

esters in xxl-VLDL. 3-hydroxybutyrate is a metabolic intermediate that constitutes

about 70% of ketone bodies produced in the liver, mainly from the oxidation of fatty

acids released from adipose tissue. Ketone body contribution to the overall energy

metabolism in the heart and other tissues increases significantly, for example, after

prolonged exercise, fasting periods and low carbohydrate diets. If the release of free

fatty acids from adipose tissue exceeds the capacity of tissues to metabolize them, as

occurs during insulin deficiency of type I diabetes or less commonly in the insulin-

resistant of type II diabetes, severe and potentially fatal diabetic ketoacidosis can

occur (Dedkova and Blatter, 2014). The connection between 3-hydroxybutyrate and

cholesterol esters in xxl-VLDL is found also in the South-Asian differential network

(Figure 6.7), where the cholesterol ester lipoprotein is also connected to the amino

acid Alanine and other lipoproteins components. Alanine plays an important role in

the Alanine-Glucose cycle, whose alterations that increase the levels of serum alanine

aminotransferase are linked to the development of type II diabetes (Lehninger et al.,

2005).

In Figures 6.8 and 6.9 we report the differential networks between Europeans and

South-Asians, respectively at time T1 and T2, where an edge between two nodes is ad-

ded to the graph if the probability of an edge being in one ethnic specific graph but not

in the other is higher than 0.5. This network presents edges connecting amino-acids

and lipoproteins sub-fractions, highlighting potential differences in underlying meta-

bolic processes. To gain a better understanding of the estimated connections and to

relate the estimated graph to known metabolic pathways, we conduct a pathway over-
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representation analysis (ORA) using the online software MetaboAnalyst (Chong et al.,

2018). We include in the analysis all metabolites that have a connection in the differ-

ential network. ORA evaluates statistically the fraction of metabolites in a particular

pathway found among the user-specified set of metabolites, in our case the metabolites

with connections in the differential network. For each pathway, input metabolites that

are part of the pathway are counted. Next, every pathway is tested for over or under-

representation in the list of input metabolites using the hypergeometric test. The

most represented pathways are the ones with smaller p-value and higher number of

over-represented metabolites. Here we discuss the first two top-ranked pathways, Pyr-

uvate Dehydrogenase Deficiency (E3) and Pyruvate Carboxylase Deficiency. Pyruvate

dehydrogenase and pyruvate carboxylase deficiency are the most common disorders

in pyruvate metabolism. Pyruvate dehydrogenase (PDH) is an enzyme complex con-

sisting of three subunits, pyruvate dehydrogenase, dihydrolipoamide acyltransferase

and dihydrolipoamide dehydrogenase (known as E3). This enzyme complex converts

pyruvate into acetyl-CoA, an essential substrate in the production of citrate, whose

limited production leads to a block in the tricarboxylic acid cycle and other metabolic

pathways need to be stimulated to produce acetyl-CoA. The deficiency causes more

pyruvate to be metabolized to lactate and leads to lactic acidosis (Bissonnette and

Bissonnette, 2006). Overall, PDH Complex plays also a key role in regulating the sup-

ply of adenosine triphosphate during the feed-fast cycle, where cells must select fatty

acid or glucose as energy source, therefore it is important in regulating the glucose

metabolism, consequently PDH deficiency is related to metabolic diseases, e.g. type

2 diabetes and obesity (Lee, 2014). Of particular interest is pyruvate carboxylase

deficiency. Lao-On et al. (2018) explore the roles of pyruvate carboxylase in human

diseases, such as diabetes. Pyruvate carboxylase (PC) is an anaplerotic enzyme which

plays an essential role in various cellular metabolic pathways, including gluconeogen-

esis, fatty acid synthesis, amino acid synthesis, and glucose-induced insulin secretion.

In aerobic conditions, Pyruvate enters mitochondria via the mitochondrial pyruvate

carrier, where may be further metabolized in two ways. In non-gluconeogenic tissues,

such as muscles and brain, Pyruvate is decarboxylated to form acetyl-CoA catalysed

by the Pyruvate Dehydrogenase Complex, while in gluconeogenic tissues, where pyr-

uvate carboxylase is highly abundant, most of Pyruvate entering mitochondria is

carboxylated by this enzyme to form oxaloacetate. Given the importance of oxalo-
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acetate in various biochemical pathways, alterations of oxaloacetate production by

PC can produce serious diseases such as type 2 diabetes and neurological disorder.

The third and fourth ranked pathways are related to seizures disorders, which are

found to be associated with abnormal glucose levels, whether too high or too low.

The problem is particularly relevant to individuals with diabetes, whose blood gluc-

ose levels can vary widely over the course of a day, as a result of the disease, variations

in insulin levels, or other metabolic factors. Clinical studies show that adults with hy-

perglycaemia have an increased tendency to experiencing seizures (Stafstrom, 2003).

These findings suggest plausible metabolic pathways which may be disordered to a

greater extent in South-Asians and contribute to their excess risk of diabetes and

cardiovascular disease.

The differential network between Europeans and South-Asians for the follow-up time

has more edges compared to the baseline network, with new connections between

amino-acids and lipoproteins sub-fractions, implying a greater difference between the

ethnicities. To gain a better understanding of the network we proceed as before,

conducting a pathway over-representation analysis including all nodes involved in

connections in the differential network at T2. The first ranked pathway is related to

acute seizures, while the second and third pathways are again related to the disorders

in the pyruvate metabolism (Pyruvate Dehydrogenase Deficiency (E3) and Pyruvate

Carboxylase Deficiency).

In Appendix we report the individual networks for the two ethnicities at baseline

and follow-up in Figures E.11, E.12, E.13 and E.14, respectively for Europeans at

T1 and T2 and South-Asians at T1 and T2. These networks are characterised by a

high number of edges, in particular, we can notice a very highly connected group

of lipoproteins in all four graphs. In Figures E.15, E.16, E.17 and E.18 we plot the

posterior mean of the regression coefficients βjlrt, for each equation l and covariate

j, grouped by ethnicity and time. The measure of body-fat distribution WHR has

a negative effect on many metabolites for both ethnicities, particularity at T1, while

a few metabolites are affected at T2. Blood lipids (triglycerides, cholesterols) and

HDL are important for both groups and time periods. The presence of diabetes, or

diabetes treatment, also affects the mean level of some metabolites, in particular in

Europeans. HOMA IR has an effect on an elevated number of metabolites at T1 and

T2 in both Europeans and South-Asians. Overall, HOMA IR, blood lipids and serum
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HDL are the control variables that have more significant effects (see the 95% credible

region) on the metabolites. High blood triglycerides and low HDL are among the

risk factors that determine the metabolic syndrome (Roberts et al., 2013), which can

lead to the development of type 2 diabetes. In summary, these findings highlight the

presence of complex interplays between metabolic processes, anthropometric factors

and clinical markers, which can have different impacts on the risk of diabetes and

other cardiovascular diseases across ethnicities and across time.
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Figure 6.6: European Differential network between baseline and follow-up. Red edges

are only present in the baseline network, while blue edges are only present in the

follow-up network.
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Figure 6.7: South-Asians Differential network between baseline and the follow-up.

Red edges are only present in the baseline network, while blue edges are only present

in the follow-up network.
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Figure 6.8: Differential network between Europeans and South-Asians at baseline.

Red edges are only present in the European network, while blue edges are only present

in the South-Asian network.
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Figure 6.9: Differential network between Europeans and South-Asians at follow-up.

Red edges are only present in the European network, while blue edges are only present

in the South-Asian network.
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6.4 Conclusions

In this final contribution we extend Nodewise Regression technique to infer dynamic

evolving multiple graphs. The model allows to analyse multiple groups of differ-

ent sample sizes observed at multiple time points, allowing borrowing of information

across time and groups. The flexibility of the model permits to impose regularisation

on the regression coefficients and the inclusion of prior information about specific

connections between pairs of nodes, when prior knowledge is available. The structure

of Nodewise Regression ensures good scalability of the MCMC thanks to the possib-

ility to infer each regression independently. The Horseshoe prior effectively shrinks

small and negligible coefficients to zero (inducing sparsity in the graph), while leaving

important coefficients unaffected due to its heavy tails, as such performing (group

and time specific) variable selection. We illustrate the performance of the proposed

model in a simulation study and compare it with an alternative Bayesian model for

graph estimation. The results highlight the ability of the model to recover the true

underlying structure of the graphs and to accurately estimate the corresponding preci-

sion matrices. Finally, we employ the proposed dynamic model to analyse metabolic

data from the SABRE cohort study, an information rich dataset on cardiovascular

and metabolic diseases. Our clinical interest focuses on different patterns of meta-

bolite associations which characterise the European and South-Asian ethnicities and

their evolution over time, from the baseline visit to the follow-up. Our approach

allows us to provide an interpretable set of unique associations patterns which can

aid mechanistic understanding of between-group and between-times differences in the

development of insulin resistance, diabetes and cardiovascular diseases and have the

potential to highlight areas for further research. In doing this, we correct for potential

confounders and clinical events that would alter the metabolites levels. The results

obtained from our analysis are promising.
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Chapter 7

Discussion and Conclusion

We discuss here the main findings and contributions of this work and we describe

some open research questions and further developments of the proposed models.

7.1 Summary of the main findings and contribu-

tions

In Chapter 3 we present some preliminary network analysis as well as a variable se-

lection on each metabolite. The differential networks highlight the diverse structure

of connections for individuals with high levels of HOMA IR compared to those with

low levels. These differences suggest changes in the balance of amino acid and in

processes of glycogenesis and ketogenesis for energy provision in the fasting state in

insulin-resistant Europeans. In South-Asians there is a significant change in the cor-

relation between leucine, an essential branched chain, and ketogenic amino acid, and

LDL cholesterol suggesting an alteration in leucine’s effect on lipid metabolism in

South-Asians affected by Insulin Resistance. The variable selection, performed for

each metabolite independently, points out the importance of ethnic differences, in

particular between Europeans and South-Asians and the relevance of HOMA IR as

well as the liver health indicators ALT and AST.

The first contribution, presented in Chapter 4, involves the study of the distribu-

tion of HOMA IR over the three ethnicities, conditionally on the metabolic profile

of each individual. By adopting a Bayesian nonparametric approach, we are able to

obtain data-driven clustering of the observations, highlighting the presence of sub-

populations in the SABRE data, with a multi-ethnic composition, characterised by
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different levels of HOMA IR, which can cause different risk of development of type

2 diabetes. Moreover, we regularise the estimation of the regression by performing

variable selection on the covariates with a Spike and Slab prior, pointing out a group

of metabolites and anthropometric covariates that predict HOMA IR. The proposed

model gives us promising results, for example, identifying clusters, characterised by

high levels of tyrosine, alanine, ALT and subcutaneous adiposity. The modelling

approach has the potential to highlight areas for further research, such as the invest-

igation of metabolic specific profiles that can lead to a greater risk of onset of type 2

diabetes and replications in bigger samples with a formal pathway analysis.

The second part of the thesis, which includes Chapters 5 and 6, investigates the

analysis of the metabolic interactions, their differences across ethnicities and across

time. In Chapter 5 we build our second contribution with a Bayesian nonparamet-

ric model to infer multiple graphs in a Sparse SUR framework, where we control for

confouders of interest, while estimating the underlying graphs. The nonparametric

prior that we adopt over the edges inclusion probabilities allows great flexibility and

imply borrowing of information across multiple groups (in our case corresponding to

ethnicities). The Sparse SUR model is completed with the adoption of a continu-

ous shrinkage prior, i.e. the Horseshoe prior, on the coefficients associated with the

regression covariates, which ensures good computational scalability and a successful

regularisation. In order to highlight the key differences between graphs we estimate

the pairwise differential networks and we analyse them through a dedicated software.

We conduct a pathway enrichment analysis, in order to put our findings in a more

general metabolic context and understand if the highlighted connections are indicator

of diseases of interest.

Finally, in our third contribution (Chapter 6), we build a more general model through

which we can estimate multiple dynamic graphs, allowing borrowing of information

across times and groups. We develop a Bayesian model, merging together the tech-

nique of Nodewise Regression (Meinshausen and Bühlmann, 2006) and the dynamic

shrinkage process of Kowal et al. (2017), extending them to allow multiple groups of

different sample sizes to be analysed. Nodewise Regression together with the dynamic

Horseshoe prior ensures great scalability, both over the number of time points and the

number of nodes in the graph. The resulting technique can be used to infer dynamic

graphs in high-dimensional datasets, while adjusting for confunders of interest. As
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for the static model, we put our findings in a more general metabolic context, analys-

ing the differential networks between times and between ethnicities with the online

software MetaboAnalyst.

The SSSL algorithm adopted in Chapter 5 has the advantage of ensuring a positive

definite estimate of the precision matrices, conditionally on the graphs, while retaining

a good scalability for medium sized models (in terms of number of nodes). A limit-

ation of this approach is the necessity to specify a priori a threshold for the discrete

mixture of Normal distributions in (5.5). We test the goodness of our choice through

a sensitivity analysis, repeating the estimation of the model for different values of the

threshold, confirming that the specified value of ν0 = 0.01 gives a good compromise

between complexity and ease of interpretation. On the other hand, the Nodewise

Regression model in Chapter 6 is based solely on continuous priors, therefore it has

a great scalability to graphs of higher dimension and it does not require the choice

of a threshold during inference. The inclusion or exclusion of an edge in the graph is

based on a functional of the Horseshoe prior that possesses some desirable properties

(Carvalho et al., 2010). Moreover, the proposed model based on Nodewise Regression

with Horseshoe prior can be more easily extended to more complex scenarios.

In conclusion, this thesis originates from a collaboration with the SABRE research

team and focuses on a thorough analysis of the metabolomics SABRE dataset, with

an interest in understanding the implications of alterations in the human metabolism

on the development of Insulin Resistance, and hence development of type 2 diabetes.

Moreover, given the multi-ethnic nature of SABRE, we want to understand how the

onset of diabetes and cardio-vascular diseases differs across ethnicities and the dif-

ferences in the underlying metabolic processes. The findings that we expose will be

used as a starting point for further hypothesis generation and in-depth analysis by

the epidemiologists and clinicians working in SABRE. The availability of R routines

will be beneficial for the work of the team and for that of other researchers.

7.2 Open research questions

Some open research questions are left that we think would constitute relevant exten-

sions or improvements of the proposed models.
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• Investigate the performance of alternative nonparametric priors on edge inclu-

sion probabilities in the multiple GGMs model in Chapter 5. A relatively newer

type of Bayesian nonparametric prior is the class of normalised completely ran-

dom measures (Kingman, 1993). It would be interesting to asses the effect of

choosing this different prior on the estimation of multiple graphs.

• Extend the multiple GGMs model to allow the automatic detection of multiple

graphs on the basis of a continuous covariate. In our contribution we define

groups of observation according to a categorical variable of interest (ethnicity in

our case), which naturally defines sub-samples in the data. The automatic iden-

tification of sub-groups of observation would allow the discovery of differences in

the patterns of associations of metabolites that correspond to particular values

of a variable of interest.

• The dynamic model in Chapter 6 allows the estimation of multiple graphs over

multiple time points efficiently, thanks to the scalability of the Horseshoe shrink-

age prior. The extension to non-Gaussian and mixed data would provide an even

more general modelling strategy that would allow the joint analysis of continu-

ous and discrete variables. An example of graphical model for mixed data, for

a single graph, is given by Dobra and Lenkoski (2011). Haslbeck and Waldorp

(2015) provide a model to infer dynamic mixed graphical models (for a single

group) in a time-series framework.

There are other real data applications that would be interesting to study. First of all

the application of predictive Bayesian models to outcomes of interest in the SABRE

study, such as diabetes, stroke and coronary heart disease. The implications of al-

terations in metabolic processes on the development of cardiovascular diseases is an

ongoing area of active research, therefore the detailed study of these variables would

be beneficial to the metabolomics research.

The SABRE study encompasses a rich collection of variables. In this thesis we con-

centrated on metabolomics, but other ’omics data are available, of which genomics is

a major one. The inclusion in our analysis of genomic data could also lead to employ

causal inference techniques, in fact genomic data can be used to asses a causal ef-

fect through the technique of Mendelian Randomisation (Davey Smith and Ebrahim,

2003).
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Finally, the SABRE team is collecting at present date data from the second follow-up.

The second follow-up would be extremely informative and useful for the analyse of

the evolution pattern of the metabolic interactions for a longer time period and to

eventually perform a formal survival analysis.

117



Bibliography

Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian

nonparametric problems. In: The Annals of Statistics, 2, 1152–1174.

Atay-Kayis, A. and Massam, H. (2005). A Monte Carlo method for computing the

marginal likelihood in nondecomposable Gaussian graphical models. In: Biomet-

rika, 92,2, 317–335.

Barcella, W., De Iorio, M., Favaro, S. and Rosner, G. L. (2017). Dependent general-

ized Dirichlet process priors for the analysis of acute lymphoblastic leukemia. In:

Biostatistics.

Barndorff-Nielsen, O., Kent, J. and Sørensen, M. (1982). Normal variance-mean mix-

tures and z distributions. In: International Statistical Review/Revue Internationale

de Statistique, 145–159.

Bhadra, A., Datta, J., Polson, N. G., Willard, B. et al. (2017). The horseshoe+ es-

timator of ultra-sparse signals. In: Bayesian Analysis, 12,4, 1105–1131.

Billio, M., Casarin, R. and Rossini, L. (2017). Bayesian nonparametric sparse seem-

ingly unrelated regression model (SUR). In: Available at SSRN 2832728.

Binder, D. A. (1978). Bayesian Cluster Analysis. In: Biometrika, 65, 31–38.

Bissonnette, B. and Bissonnette, B. (2006). Syndromes: rapid recognition and periop-

erative implications. McGraw-Hill New York, NY.

Bonnet, F., Ducluzeau, P.-H., Gastaldelli, A., Laville, M., Anderwald, C. H., Konrad,

T., Mari, A., Balkau, B., Group, R. S. et al. (2011). Liver enzymes are associated

with hepatic insulin resistance, insulin secretion, and glucagon concentration in

healthy men and women. In: Diabetes, 60,6, 1660–1667.

Brooks, S., Gelman, A., Jones, G. and Meng, X.-L. (2011). Handbook of markov chain

monte carlo. CRC press.

118



Brown, P. J., Vannucci, M. and Fearn, T. (1998). Multivariate Bayesian variable

selection and prediction. In: Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 60,3, 627–641.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,

Brubaker, M., Guo, J., Li, P. and Riddell, A. (2017). Stan: A Probabilistic Pro-

gramming Language. In: Journal of Statistical Software, Articles, 76,1, 1–32. issn:

1548-7660. doi: 10.18637/jss.v076.i01. url: https://www.jstatsoft.org/

v076/i01.

Carvalho, C. M. and Scott, J. G. (2009). Objective Bayesian model selection in Gaus-

sian graphical models. In: Biometrika, 96,3, 497–512.

Carvalho, C. M., Polson, N. G. and Scott, J. G. (2010). The horseshoe estimator for

sparse signals. In: Biometrika, 97,2, 465–480.

Casella, G. and George, E. I. (1992). Explaining the Gibbs sampler. In: The American

Statistician, 46,3, 167–174.

Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S. and Xia, J.

(2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolo-

mics analysis. In: Nucleic Acids Research, gky310. doi: 10.1093/nar/gky310.

eprint: /oup/backfile/content_public/journal/nar/pap/10.1093_nar_

gky310/1/gky310.pdf. url: http://dx.doi.org/10.1093/nar/gky310.

Davey Smith, G. and Ebrahim, S. (Feb. 2003). ‘Mendelian randomization’: can ge-

netic epidemiology contribute to understanding environmental determinants of

disease?*. In: International Journal of Epidemiology, 32,1, 1–22. issn: 0300-5771.

doi: 10.1093/ije/dyg070. eprint: http://oup.prod.sis.lan/ije/article-

pdf/32/1/1/11213726/320001\_dyg070.pdf. url: https://doi.org/10.1093/

ije/dyg070.

De Iorio, M., Müller, P., Rosner, G. and MacEachern, S. (2004). An ANOVA Model for

Dependent Random Measures. In: Journal of the American Statistical Association,

99, 205–215.

Dedkova, E. N. and Blatter, L. A. (2014). Role of β-hydroxybutyrate, its polymer

poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and

disease. In: Frontiers in physiology, 5, 260.

Dempster, A. P. (1972). Covariance selection. In: Biometrics, 157–175.

119

https://doi.org/10.18637/jss.v076.i01
https://www.jstatsoft.org/v076/i01
https://www.jstatsoft.org/v076/i01
https://doi.org/10.1093/nar/gky310
/oup/backfile/content_public/journal/nar/pap/10.1093_nar_gky310/1/gky310.pdf
/oup/backfile/content_public/journal/nar/pap/10.1093_nar_gky310/1/gky310.pdf
http://dx.doi.org/10.1093/nar/gky310
https://doi.org/10.1093/ije/dyg070
http://oup.prod.sis.lan/ije/article-pdf/32/1/1/11213726/320001\_dyg070.pdf
http://oup.prod.sis.lan/ije/article-pdf/32/1/1/11213726/320001\_dyg070.pdf
https://doi.org/10.1093/ije/dyg070
https://doi.org/10.1093/ije/dyg070


Dobra, A., Lenkoski, A. et al. (2011). Copula Gaussian graphical models and their

application to modeling functional disability data. In: The Annals of Applied Stat-

istics, 5,2A, 969–993.

Ehtisham, S, Hattersley, A., Dunger, D. and Barrett, T. (2004). First UK survey of

paediatric type 2 diabetes and MODY. In: Archives of Disease in Childhood, 89,6,

526–529.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. In: The

Annals of Statistics, 1, 209–230.

Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estima-

tion with the graphical lasso. In: Biostatistics, 9,3, 432–441.

Fuente, A. De la (2010). From ‘differential expression’to ‘differential networking’–

identification of dysfunctional regulatory networks in diseases. In: Trends in ge-

netics, 26,7, 326–333.

Gelfand, A. E. and Smith, A. F. (1990). Sampling-based approaches to calculating

marginal densities. In: Journal of the American statistical association, 85,410,

398–409.

Gelman, A. et al. (2006). Prior distributions for variance parameters in hierarchical

models (comment on article by Browne and Draper). In: Bayesian analysis, 1,3,

515–534.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. In: IEEE Transactions on pattern analysis and

machine intelligence 6, 721–741.

George, E. and McCulloch, R. (1993). Variable selection via Gibbs sampling. In:

Journal of the American Statistical Association, 88, 881–889.

— (1997). Approaches for Bayesian variable selection. In: Statistica Sinica, 7, 339–

373.

Gilman, S. (2011). Neurobiology of disease. Elsevier.

Giudici, P. and Green, P. (1999). Decomposable graphical Gaussian model determin-

ation. In: Biometrika, 86,4, 785–801.

Haslbeck, J. M. and Waldorp, L. J. (2015). mgm: Structure Estimation for time-

varying Mixed Graphical Models in high-dimensional Data. In: J Stat Softw.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and

their applications. In: Biometrika, 57,1, 97–109.

120



Higham, N. J. (2002). Computing the nearest correlation matrix—a problem from

finance. In: IMA journal of Numerical Analysis, 22,3, 329–343.

Hjort, N. L. (2000). Bayesian analysis for a generalised Dirichlet process prior. In:

Preprint series. Statistical Research Report http://urn. nb. no/URN: NBN: no-

23420.

Hoff, P. D. (2009). A first course in Bayesian statistical methods. Springer Science &

Business Media.

Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking

priors. In: Journal of the American Statistical Association, 96,453, 161–173.
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Appendix A

Supplementary Material Bayesian

Nonparametric Modelling of

Insulin Resistance. MCMC Details

In this appendix we describe the steps of the MCMC algorithm to estimate the non-

parametric random intercept/error model presented in 4. We implement a Gibbs

sampling, which requires a Metropolis update for some parameters.

1. The update of β, the vector of regression coefficients, is the standard conjugate

update from a Normal model, but conditional on the Spike and Slab selection.

Note that in our application the observation yi are also indexed by the ethnicity

indicator g. For ease of notation we drop the subscript g as we assume the

regression coefficients to be the same across ethnicities and we simply assume

to have a total of n observations. We introduce the latent variable indicator

vector ω = (ω1, . . . , ωp−1), where the element ωj is equal to 1 if the jth covariate

is included in the model and 0 otherwise. If ωj = 0 then the corresponding βj is

equal to zero. Let βω denote the sub-vector of β including elements for which

the corresponding ωj is equal to 1 (slab component of the model) and let Xω

be the design matrix consisting only of those columns of X corresponding to

non-zero effects. Then the conditional distribution of βω

p(βω | rest) ∝
n∏
i=1

N
(
yi | β0i + xωiβω, τ

2
i

)
×
∏
j:ωj=1

N
(
βj | µβ, τ 2

β

)
= N

(
βω | µ̃β, C̃β

)
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where

C̃β = τ 2
βI +X ′ωV Xω

V =


τ 2

1 0 · · · 0

0 τ 2
2

. . . 0
... 0

. . . · · ·

0 · · · 0 τ 2
n


µ̃β = C̃−1

β

(
τ 2
βµβ +X ′ωV y

)
and y = (y1, . . . , yn). Here µβ is the vector of appropriate dimension whose

elements are all equal to µβ.

2. The update of ω is performed evaluating the model marginal likelihood indi-

vidually for each covariate (with the intercept β0i always included) as

p(ωj = 1 | ω\j , rest) =

[
1 +

1− π
π

p(y | ωj = 0,ω\j , τ
2
1 , . . . , τ

2
n)

p(y | ωj = 1,ω\j , τ 2
1 , . . . , τ

2
n)

]−1

where ω\j denotes the vector ω excluding ωj. p(y | ωj = 1,ω\j , τ
2
1 , . . . , τ

2
n)

represents the marginal likelihood of the model obtained marginalising with

respect to β:

p(y | ωj = 1,ω\j , τ
2
1 , . . . , τ

2
n) =

=

∫
β

p(y,β|τ 2
1 , . . . , τ

2
n, ωj = 1,ω\j) dβ

=

∫
β

p(y|β, τ 2
1 , . . . , τ

2
n, ωj = 1,ω\j)p(β) dβ

= −1

2
n log(2π) +

1

2
log
(
|τ 2
βI|
)
− 1

2
log
(
|C̃β|

)
= −1

2

(
ỹ′ỹ − µ̃′βC̃βµ̃β

)
where |A| is the determinant of the matrix A and ỹ = (ỹ1, ỹ2, . . . , ỹn)′, where

ỹi = (yi − β0i)τi.

3. The update of π is a straightforward conjugate update from a Beta-Bernoulli

model

p(π | rest) = Beta
(
πa +

∑
ωj, πb + (p− 1)−

∑
ωj

)
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4. To update the DGDP we adopt a truncated stick-breaking approach, i.e. we

approximate the infinite mixture with a finite mixture with L components where

L is large. A discussion on the truncation level can be found in Ishwaran and

James (2001) and Barcella et al. (2017). We perform the following steps in order

to update the parameters of the DGDP.

(a) Resampling the cluster allocation vector, given the rest. Conditionally on

the remaining parameters in the model, the allocation vectors, sg, are

independent. Note that we have an allocation vector for each ethnicity g.

Let sig be the cluster indicator for observation i in group g, with sig ∈

1, . . . , L, for i = 1, . . . , n. We draw sig from

p(sig = k | rest) ∝ ψkgN(yig | β0i +
∑
j:ωj=1

βjxij, τ
2
i )

for k = 1, . . . , L.

(b) Resampling the mixture weights, ψkg, given the rest. Conditionally on g

and the remaining parameters in the model, the mixture weights for each

group are independent. This is a straightforward update due to the con-

jugacy between the Generalised Dirichlet distribution on ψ1g, . . . , ψLg and

the Multinomial distribution on s:

φkg | rest ∼ Beta

(
µgυ +

ng∑
i=1

I(sig = k), (1− µg)υ +

ng∑
i=1

I(sig > k)

)

where ng is the number of observations in group g and I(·) represents the

indicator function, assuming value 1 if the inner condition is satisfied and

0 otherwise. Then the weights ψkg can be obtained using a stick-breaking

procedure.

(c) Resampling µ = (µ1, . . . , µG) given the rest. Conditionally on the weights

ψkg and υ we update µ with a Metropolis-Hastings step, using a Multivari-

ate Normal proposal. In this case the data corresponds to the set of sticks

φkg and the likelihood is given by the product of Beta distributions. See

Barcella et al. (2017) for details.

(d) Resampling υ given the rest. Conditionally on the weights ψkg and µ we

update υ with a Metropolis-Hastings step, with a Gamma proposal and
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data given by the set sticks φkg for g = 1, . . . , G.

(e) Resampling of the locations θk = (β0k, τ
2
k ) given the rest. The locations of

the DGDP are a priori iid realisations of the base measureG0 = N (m0, κ
2
0)×

Gamma(τa, τb). Given the clustering structure defined by the allocation

vector s, the update of θk is performed separately for each cluster and it

is a straightforward conjugate update:

p(β0k, τ
2
k | rest) ∝ G0(β0k, τ

2
k )

∏
i,g:sig=k

N(yig | β0k +
∑
j:ωj=1

βjxig, τ
2
k )

for k = 1, . . . , L
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Appendix B

Supplementary Material Bayesian

Nonparametric Gaussian Graphical

Models

In this Appendix we provide the proofs of the degree distribution generated by a

Generalised Dirichlet Process prior adopted over the edges inclusion parameters of a

GGM. We also provide the details of the MCMC algorithm to estimate the Sparse

SUR model with multiple GGMs presented in Chapter 5.

B.1 Degree Distribution properties

The degree, Di, of a node i is the number of connections that involve node i, so

Di =
∑

j 6=i eij, where eij ∈ {0, 1}, with eij = 1 denoting the presence of an edge

connecting nodes i and j and 0 otherwise. The degree Di is then bounded between 0

and M−1, the total number of nodes minus one. Conditionally on πij, the probability

that a node i is connected to a chosen node j is πij. The degree of a node i is

distributed as a mixture of Binomial distributions, with mixing weights and locations

defined by the GDP prior:

Di | P ∼
∞∑
k=1

ψkBinomial(M − 1, πk)
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where πk refers to a unique location in the GDP prior. The conditional first and

second moments are:

E [Di | P ] = E

[
∞∑
k=1

ψkBinomial(M − 1, πk)

]
=
∞∑
k=1

ψkE [Binomial(M − 1, πk)]

=
∞∑
k=1

ψk × (M − 1)πk

and

E
[
D2
i | P

]
=
∞∑
i=1

ψk(M − 1)πk(1− πk + (M − 1)πk)

Marginalising over the probabilities πks, we obtain

E [Di | ψ] =
aπ

aπ + bπ

∞∑
k=1

ψk × (M − 1)

E
[
D2
i | ψ

]
=

∞∑
k=1

ψk(M − 1)

[
aπ

aπ + bπ
+ (M − 2)

aπ(aπ + 1)

(aπ + bπ)(aπ + bπ + 1)

]
Marginalising over ψk gives

E [Di] =
aπ

aπ + bπ
µ
∞∑
k=1

(1− µ)k−1 × (M − 1)

=
aπ

aπ + bπ
(M − 1)µ

1

1− (1− µ)
= (M − 1)

aπ
aπ + bπ

E
[
D2
i

]
= (M − 1)µ

∞∑
k=1

(1− µ)k−1

{
aπ

aπ + bπ
+ (M − 2)

(aπ + 1)aπ
(1 + aπ + bπ)(aπ + bπ)

}
= (M − 1)

{
aπ

aπ + bπ
+ (M − 2)

(aπ + 1)aπ
(1 + aπ + bπ)(aπ + bπ)

}
Given the first two moments, the variance is easily derived.

B.2 Posterior Inference details

Here we provide the details of the MCMC algorithm for the SUR model in the case

multiple GGMs. We use a block Gibbs Sampling with Metropolis steps. Define yg to

be the sub-vector of y, of dimension Mng, including only the observations belonging

to group g. Similarly, define Xg to be a block diagonal sub-matrix of X, of dimension

Mng ×Q, including only the observation belonging to group g.

1. Resampling β, ν and ξ given all the rest. This step requires only conjugate
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updates.

β | rest ∼ N
(
b, A−1

)
A =

R∑
g=1

{
XT
g

(
Ωg ⊗ Ing

)
Xg

}
+ Λ−1

∗

b = A−1

R∑
g=1

{
XT
g

(
Ωg ⊗ Ing

)
yg
}

Λ∗ =


τ 2

1 Λ1 0 · · · 0

0 τ 2
2 Λ2 · · · 0

...
...

. . .
...

0 0 · · · τ 2
MΛM


where Λl, for l = 1, . . . ,M , is a square matrix with diagonal equal to (λ2

l1, . . . , λ
2
lpl

)

and zeros elsewhere, pl is the number of covariates in regression l and ⊗ denotes

the Kronecker product. The conditional posterior distributions for the local and

global shrinkage parameters are

λ2
lj | rest ∼ Inv-Gamma

(
1,

1

νlj
+
β2
lj

2τ 2
l

)
τ 2
l | rest ∼ Inv-Gamma

(
pl + 1

2
,

1

ξl
+

1

2

p∑
j=1

β2
lj

λ2
lj

)

with l = 1, . . . ,M and j = 1, . . . , pl. The hyper-parameters are updated as

νlj | rest ∼ Inv-Gamma

(
1, 1 +

1

λ2
lj

)

ξl | rest ∼ Inv-Gamma

(
1, 1 +

1

τ 2
l

)
with l = 1, . . . ,M and j = 1, . . . , pl.

2. Resampling Ωg given all the rest. Ωg is updated column-wise following the

algorithm described in Wang (2015). Let Ỹg = [ỹ1 . . . ỹM ], a ng ×M matrix,

where each column is defined as ỹl = yl − Xlβl and Vg = (v2
zij

), is a M ×M

symmetric matrix with zeros on the diagonal. For simplicity of explanation,

consider the last column and partition Ωg, Sg = Ỹ T
g Ỹg and Vg as follows (index

g omitted for ease of notation)

Ω =

Ω11 ω12

ωT12 ω22

 , S =

S11 s12

sT12 s22

 , V =

V11 v12

vT12 v22


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Then, through the change of variable ω22 → u = ω22 −ωT12Ω−1
11 ω12, we have the

following full conditionals

ω12 | rest ∼ N (−Cs12, C)

u | rest ∼ Gamma

(
ng
2

+ 1,
s22 + η

2

)
where C =

{
(s22 + η)Ω−1

11 + diag(v12)−1
}−1

. The steps are repeated for each

column, leading to a fast block update.

3. Resampling Gg given all the rest. The graph for group g is independent from

all the other graphs given the edge inclusion probabilities πg,ij. We update the

graph through its adjacency matrix Zg. The zg,ijs are independent Bernoulli

random variables with probability of success

p(zg,ij = 1 | Ωg, rest) =
πg,ijN(ωg,ij | 0, v2

1)

πg,ijN(ωg,ij | 0, v2
1) + (1− πg,ij)N(ωg,ij | 0, v2

0)

To update the parameters in the DGDP we follow the algorithm proposed Barcella

et al. (2017), which is based on a truncation to K components of the infinite mixture.

1. Resampling the cluster allocation vector, given the rest. Let cg,ij be the cluster

indicator for edge eij in group g, with cg,ij ∈ {1, . . . , K}, for i, j = 1, . . . ,M, i <

j. Draw cg,ij from

p(cg,ij = k | rest) ∝ ψkgBer(eg,ij | πk), for k = 1, . . . , K

2. Resampling the mixture weights, ψkg, given the rest. Conditionally on the group

g and the remaining parameters in the model, the mixture weights for each

group are independent. This is a straightforward update due to the conjugacy

of the Generalised Dirichlet distribution on ψ1g, . . . , ψKg with the Multinomial

distribution on cg:

φkg | rest ∼ Beta

(
αµg +

∑
i<j

1(cg,ij = k), α(1− µg) +
∑
i<j

1(cg,ij > k)

)

where 1(·) denotes the indicator function, assuming value 1 if the inner condition

is satisfied and 0 otherwise. The weights ψkg can be obtained using the stick-

breaking procedure.

133



3. Resampling α and ζ, given the rest. We use two Metropolis steps for α and

ζ. Draw a new value α∗ by sampling logα∗ from a Normal proposal centred

around the current value and accept α∗ with probability min{aα, 1}, where the

ratio aα is given by (taking into account the Jacobian J() of the transformation

α→ logα)

aα =
p(φ|α∗,µs)p(α∗)J(α∗)

p(φ|αs,µs)p(αs)J(αs)

where µs = (µs1, . . . , µ
s
R), µsg = xgζ

s and the super-index s refers to the current

value of µ and ζ.

Draw a new value ζ∗ from a multivariate Normal proposal centred on the current

values and accept with probability min{aζ , 1}, where the ratio aζ is given by

aζ =
p(φ|αs,µ∗)p(ζ∗)
p(φ|αs,µs)p(ζs)

where µ∗ = (µ∗1, . . . , µ
∗
R) and µ∗g = logit(xgζ

∗) and µs.

4. Resampling P0 given the rest. This step is a conjugate update from the Beta-

Binomial model. For each component draw πk from

πk | rest ∼ Beta (a∗π, b
∗
π)

a∗π = aπ +
R∑
g=1

∑
i<j

1(cg,ij = k ∧ eg,ij = 1)

b∗π = bπ +
R∑
g=1

∑
i<j

1(cg,ij = k ∧ eg,ij = 0)

where ∧ is the and boolean condition.
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Appendix C

Supplementary Material Bayesian

Dynamic Multiple Graphical

Models

In this appendix we provide the Gibbs sampling algorithm details and the Stan code

to perform inference on the Dynamic Multiple Graphical Models via Nodewise Re-

gression presented in Chapter 6.

C.1 Gibbs sampling algorithm

Here we provide details of the Gibbs sampling. Our starting point is the algorithm

described in Kowal et al. (2017) and we extend it to allow for multiple groups of

different sample sizes. The sampler consists of two main components: a stochastic

volatility sampling algorithm (Kastner and Frühwirth-Schnatter, 2014) augmented

with a Polya-Gamma sampler (Polson et al., 2013), and a Cholesky Factor Algorithm

(Rue, 2001) to sample the regression coefficients in the dynamic linear model. We

provide details of the update steps that differ from the original paper, for the others

refer to Kowal et al. (2017).

1. Resampling the log-variances hjrt given the rest. Omori et al. (2007) propose

a method to sample directly from the full-conditional distribution of hjr =

(hjr1, . . . , hjrT ), working on the log-scale, where the ensuing log-chi-square dis-

tribution of the likelihood log(γ2
jrt), from

log
(
(βjrt − βjrt−1)2

)
= log(γ2

jrt) + hjrt
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is approximated via a known normal mixture approximation of 10 components.

To sample the new log-variances we use the all-without-a-loop (AWOL) sampler

of Kastner and Frühwirth-Schnatter (2014), which allows to sample hjr jointly

without the need of a sequential algorithm. Conditional on all the other para-

meters the log-variances are independent across groups. Resampling proceeds

as in Kowal et al. (2017).

2. Resampling the mixture components indicator sjrt given the rest. The discrete

mixture probabilities are straightforward to update. The prior mixture prob-

abilities are the pre-specified mixing proportions given by Omori et al. (2007)

and the likelihood is log(γ2
jrt + c) ∼ N(hjrt + msjrt , vsjrt), where c is a small

offset to avoid numerical underflows and m and v are the pre-specified mean

and variance, respectively, of the 10 mixture components. Resampling proceeds

as in Kowal et al. (2017), independently for each group.

3. Resampling the mean parameters µjr given the rest. The update of µjr is done

independently for each group. We can re-write the log-variance equation in

(6.8) as an ordinary linear regression, where the parameters µjr play the role of

regression coefficients, as follows:

hjrt = µjr + φjr(hjrt−1 − µjr) + ηjrt

h̃jrt = µjr(1− φjr) + ηjrt

where h̃jrt = hjrt − φjrhjrt−1 and h̃jrt ∼ N
(
µjr(1− φjr), ξ−1

ηjrt

)
. Finally, we can

write

˜̃hjrt ∼ N (µjrzjrt, 1)

where zjrt = (1 − φjr)
√
ξηjrt are the regression covariates, µjr is the regression

coefficient and ˜̃hjrt = h̃jrt
√
ξηjrt , for t = 2, · · · , T , are the response variables.

The posterior follows from the standard update of a Normal prior with Normal

likelihood. For j = 1, . . . , p and r = 1, . . . , R we sample from

µjr | rest ∼ N (lµ/qµ, 1/qµ)

qµ = ξµjr + ξηjr1 +
T∑
t=2

z2
jrt

lµ = ξµjrµ0 + hjr1ξηjr1 +
T∑
t=2

˜̃hjrtzjrt
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4. Resampling the mean parameter µ0 given the rest. The posterior distribution of

µ0 follows from the standard update of a Normal prior and Normal likelihood

represented by µjr. We sample from

µ0 | rest ∼ N(l0/q0, 1/q0)

q0 = ξµ0 +
R∑
r=1

p∑
j=1

ξµjr

l0 =
R∑
r=1

p∑
j=1

ξµjrµjr

5. Resampling the autoregressive coefficients φjr given the rest. The new value of

φjr is drawn via slice sampler, independently for each group. The parametrisa-

tion (φjr+1)/2 ∼ Beta(aφ, bφ) implies that |φjr| < 1, which ensures a stationary

stochastic process for hjr. Resampling is performed as in Kowal et al. (2017).

6. Resampling the Polya-Gamma mixing parameters ξηjrt, ξµjr and ξµ0 given the

rest. This step is a conjugate update of a Polya-Gamma prior given a Gaussian

likelihood (Polson et al., 2013).

ξηjrt | rest ∼ Polya-Gamma(1, ηjrt), ∀j, r, t

ξµjr | rest ∼ Polya-Gamma(1, µjr − µ0), ∀j, r

ξµ0 | rest ∼ Polya-Gamma (1, µ0)

7. Resampling the regression coefficients βrt given the rest. Conditional on the rest,

the regression coefficients of each group are independent. We perform a joint

update of β = (βT1 , . . . ,β
T
t , . . . ,β

T
T ), where βt = (β1t, . . . , βpt), exploiting the

block-diagonal structure of the posterior precision matrix of β. The posterior

distribution is (omitting the group subscript for ease of notation)

β | rest ∼ N
(
Q−1
β mβ, Q

−1
β

)
Qβ = Aσ + Ah

where Aσ is a Tp× Tp block-diagonal matrix defined as follows:

Aσ =



XT
1 X1/σ

2
1 0 · · · · · · 0

...
. . .

...
...

...

0 · · · XT
t Xt/σ

2
t · · · 0

...
...

...
. . .

...

0 0 · · · · · · XT
TXT/σ

2
T


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and Ah is a Tp× Tp matrix defined as follows:

Ah =
(
DT ⊗ Ip

)
Σ−1
h (D ⊗ Ip)

where ⊗ denotes the Kronecker product, D is a T × T tri-diagonal matrix with

diagonal entries equal to 1 and first off-diagonal elements equal to −1, Ip is the

p×p identity matrix and Σ−1
h is a Tp×Tp diagonal matrix with diagonal entries

equal to

(exp(h11/2), . . . , exp(hp1/2), . . . , exp(h1T/2), . . . , exp(hpT/2))

The posterior mean mβ is a Tp-dimensional vector defined as:

mβ =
(
XT

1 y1/σ
2
1, . . . , X

T
t yt/σ

2
t , . . . , X

T
T yT/σ

2
T

)
8. Resampling the observation error variances σ2

rt given the rest. This step is a

conjugate update of an Inverse-Gamma prior given a Gaussian likelihood. For

each group r and time t we sample:

σ2
rt | rest ∼ Inverse-Gamma

(
aσ +

nrt
2
, bσ +

∑nrt
i=1(yirt − xirtβrt)2

2

)

C.2 Stan Code

data {

int < lower = 1 > NT; // Time points

int < lower = 1 > n_t[ NT ]; // Number of observations for each time point

int < lower = 1 > Ngr; // Number of groups

int < lower = 1 > n_groups[ Ngr*NT ]; // Dimension of the groups for each time

int < lower = 1 > m; // Number of regressors

int < lower = 1, upper = Ngr > G_t[ sum(n_groups) ]; // Vector with groups membership

vector [ sum(n_t) ] y_t; // Response variable

row_vector[m] X_t[ sum(n_t) ]; // Input matrix (= Y_-j)

// ---------------

real < lower = 0 > scale_global_tau_0[ Ngr ]; // prior scale for the global shrinkage parameter Tau

real < lower = 1 > df_global_0; // degrees of freedom for Tau

real < lower = 1 > df_global_j;

real < lower = 1 > df_local_t; // degrees of freedom for Lambdas

matrix <lower = 0> [m, Ngr] devs_X_t[ NT ]; // Deviances of X (diag of XtX )

// ------ Params for the regularisation of the Horseshoe

real <lower = 0> slab_scale_c_t; // Slab of student-t

real <lower = 0> slab_df_c_t; // df of student-t

// Parameters Beta on Phi_j

real <lower = 0> phi_ab[ 2 ];

real <lower = 0> sigma_prior;
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}

transformed data{

int n_cumsum_gr[ Ngr * NT ]; // Vector of cumulative sum of observations in groups per time

int pos;

pos = 1;

for(tt in 1:NT){

for(gr in 1:Ngr){

if( pos == 1) n_cumsum_gr[ pos ] = 1;

if( pos > 1) n_cumsum_gr[ pos ] = n_cumsum_gr[ pos - 1 ] + n_groups[ pos - 1 ];

pos += 1;

}

}

}

parameters {

vector < lower = 0 > [ Ngr * NT ] sigma_t; // Time varying noise std

// Parameters T

vector[ m * Ngr ] z_t[ NT ]; //Innovations for Beta_t

// Tau_j

vector < lower = 0 > [ m * Ngr ] aux1_global_j;

vector < lower = 0 > [ m * Ngr ] aux2_global_j;

// Tau_0

real < lower = 0 > aux1_global_0;

real < lower = 0 > aux2_global_0;

// Local Lambda_jt

vector < lower = 0 > [ m * Ngr ] aux1_local_t[ NT ];

vector < lower = 0 > [ m * Ngr ] aux2_local_t[ NT ];

vector < lower = 0 > [ Ngr ] aux_c_t[ NT ];

// Autoregressive Parameter phi_j for the dynamic HS

vector < lower = 0 , upper = 1 > [ m * Ngr ] phi_j_pos;

}

transformed parameters {

vector < lower = -1 , upper = 1 > [ m * Ngr ] phi_j;

// Tau_j

vector < lower = 0 > [ m ] tau_j[ Ngr ];

// Tau_0

real < lower = 0 > tau_0[ Ngr ];

// Local Lambda_j,t

vector < lower = 0 > [ m ] lambda_t[ NT * Ngr ];

vector < lower = 0 > [ m ] lambda_tilde_t[ NT * Ngr ]; // truncated local shrinkage parameter

vector < lower = 0 > [ Ngr ] c_t[ NT ]; // c for reg HS

// log_scale variance h_j,t

vector [ m ] log_h[ NT * Ngr ];

vector < lower = 0 > [ m ] exp_h[ NT * Ngr ];

// Beta_t

vector[ m ] beta_t[ NT * Ngr ];

vector [ sum( n_t ) ] f_t;

vector < lower = 0 > [ sum(n_t) ] sigma_long; // To store the sigma for each obs

// <<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>

// <<<<<<<<<<<<<<< Now operations >>>>>>>>>>>>>>

// <<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>

// Adjust phi_j
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phi_j = (phi_j_pos * 2) - 1;

// In Time == 1

c_t[ 1 ] = slab_scale_c_t * sqrt( aux_c_t[ 1 ] );

for(gr in 1:Ngr){

// Global Shrinkage parameters

tau_j[ gr ] = aux1_global_j[((gr-1)*m + 1):((gr-1)*m + m)] .*

sqrt( aux2_global_j[((gr-1)*m + 1):((gr-1)*m + m)] );

tau_0[ gr ] = aux1_global_0 * sqrt( aux2_global_0 ) * scale_global_tau_0[ gr ] * sigma_t[ gr ];

// tau_j[ gr ] = aux1_global_j .* sqrt( aux2_global_j[ ((gr-1)*m + 1):((gr-1)*m + m) ] );

lambda_t[ gr ] = aux1_local_t[ 1 ][((gr-1)*m + 1):((gr-1)*m + m)].*

sqrt( aux2_local_t[ 1 ][((gr-1)*m + 1):((gr-1)*m + m)] );

lambda_tilde_t[ gr ] = sqrt( ( c_t[ 1 ][ gr ]^2 *

square( lambda_t[ gr ] ) ) ./ ( c_t[ 1 ][ gr ]^2 +

square( tau_j[ gr ] ) .* square( lambda_t[ gr ] )));

// Begin the creation og log-volatility h

log_h[ gr ] = 2*log( lambda_tilde_t[ gr ] ) + 2*( log( tau_j[ gr ] ) + log(tau_0[ gr ]) );

exp_h[ gr ] = exp( 0.5 * log_h[ gr ] );

}

// For time > 1

for(tt in 2:NT){

c_t[ tt ] = slab_scale_c_t * sqrt( aux_c_t[ tt ] );

for(gr in 1:Ngr ){

lambda_t[ (tt-1)*Ngr + gr ] = aux1_local_t[ tt ][((gr-1)*m + 1):((gr-1)*m + m)] .*

sqrt( aux2_local_t[ tt ][((gr-1)*m + 1):((gr-1)*m + m)] );

lambda_tilde_t[ (tt-1)*Ngr + gr ] = sqrt( ( c_t[ tt ][ gr ]^2 *

square( lambda_t[ (tt-1)*Ngr + gr ] ) ) ./

( c_t[ tt ][ gr ]^2 + square( tau_j[ gr ] ) .* square(lambda_t[ (tt-1)*Ngr + gr ])));

for(jj in 1:m){

log_h[ (tt-1)*Ngr + gr ][jj] = 2*log( lambda_tilde_t[ (tt-1)*Ngr + gr ][ jj ] ) +

2*( log( tau_j[ gr ][jj]) + log( tau_0[ gr ] ) ) +

phi_j[ (gr-1)*m + jj ] * ( log_h[ (tt-2)*Ngr + gr ][jj] -

2*( log( tau_j[ gr ][jj]) + log( tau_0[ gr ] )));

exp_h[ (tt-1)*Ngr + gr ][jj] = exp( 0.5 * log_h[ (tt-1)*Ngr + gr ][jj] );

}

}// gr

}// tt

// Beta_t

for(gr in 1:Ngr){

beta_t[ gr ] = z_t[ 1 ][((gr-1)*m + 1):((gr-1)*m + m)] .* exp_h[ gr ];

}

for(tt in 2:NT){

for(gr in 1:Ngr){

beta_t[ (tt-1)*Ngr + gr ] = beta_t[ (tt-2)*Ngr + gr ] + z_t[ tt ][((gr-1)*m + 1):((gr-1)*m + m)] .*

exp_h[ (tt-1)*Ngr + gr ];

}

}

// Mean function

{

int ii_ind;

ii_ind = 1;

for(tt in 1:NT ){
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for(gr in 1:Ngr){

for(ii in 1:n_groups[ (tt-1)*Ngr + gr ] ){

sigma_long[ ii_ind ] = sigma_t[ (tt-1)*Ngr + gr ];

f_t[ ii_ind ] = X_t[ ii_ind ] * beta_t[ (tt-1)*Ngr + gr ];

ii_ind += 1;

}

}

}

}

}

model {

// Here we use auxiliary variables for tau and lambda

// Locals shared across groups

sigma_t ~ inv_gamma( 0.5, 0.5 );

phi_j_pos ~ beta( phi_ab[1], phi_ab[2] );

// One global tau for each group

aux1_global_0 ~ std_normal();

aux2_global_0 ~ inv_gamma( 0.5 * df_global_0, 0.5 * df_global_0 );

aux1_global_j ~ std_normal();

aux2_global_j ~ inv_gamma( 0.5 * df_global_j, 0.5 * df_global_j );

for(tt in 1:NT){

aux2_local_t[ tt ] ~ inv_gamma( 0.5 * df_local_t, 0.5 * df_local_t );

aux1_local_t[ tt ] ~ std_normal();

aux_c_t[ tt ] ~ inv_gamma( 0.5 * slab_df_c_t, 0.5 * slab_df_c_t );

z_t[ tt ] ~ std_normal();

}

// Likelihood

y_t ~ normal(f_t , sigma_long );

}

generated quantities {

// Vector of k_j, the pseudo inclusion probability

vector [ m ] k_j_t[ NT * Ngr ];

// Vector to hold precision Omega elements for the current equation

vector [ m ] omega_vec_t[ NT * Ngr ];

// Elements of Omega

for(tt in 1:NT){

for(gr in 1:Ngr ){

for(jj in 1:m){

k_j_t[ (tt-1)*Ngr + gr ][jj] = 1/( 1 + 1/square( sigma_t[ gr ] ) * (exp_h[ (tt-1)*Ngr + gr ][jj] *

exp_h[ (tt-1)*Ngr + gr ][jj]) * devs_X_t[ tt ][ jj, gr ] );

omega_vec_t[ (tt-1)*Ngr + gr ][ jj ] = (- beta_t[ (tt-1)*Ngr + gr ][ jj ] ) / square( sigma_t[ gr ] );

}

}

}

}

141



Appendix D

Tables
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Table D.1: List of metabolites included in the analysis. Each listed lipoprotein is

further fractioned according to the content of triglycerides, phospholipids, cholesterol

esters and free cholesterol. All the metabolites concentrations here listed are measured

in millimoles per litre (mmol/L)

Abbreviation Full name

acace Acetoacetate

ace Acetate

ala Alanine

alb Albumin

apoa1 Apolipoprotein A-I

apob Apolipoprotein B

bohbut 3-hydroxybutyrate

cit Citrate

crea Creatinine

dha 22:6, docosahexaenoic acid

faw3 Omega-3 fatty acids

faw6 Omega-6 fatty acids

glc Glucose

gln Glutamine

glol Glycerol

gly Glycine

gp Glycoprotein acetyls, mainly

a1-acid glycoprotein

his Histidine

ile Isoleucine

la 18:2, linoleic acid

lac Lactate

leu Leucine

mufa Monounsaturated fatty acids;

16:1, 18:1

pc Phosphatidylcholine and other

cholines

phe Phenylalanine

pufa Polyunsaturated fatty acids

pyr Pyruvate

sfa Saturated fatty acids

sm Sphingomyelins

tyr Tyrosine

unsatdeg Estimated degree of unsatura-

tion

val Valine

Abbreviation Full name

lipids s hdl Small HDL lipids compounds

lipids m hdl Medium HDL lipids compounds

lipids l hdl Large HDL lipids compounds

lipids xl hdl Extra large HDL lipids compounds

lipids s ldl Small LDL lipids compounds

lipids m ldl Medium LDL lipids compounds

lipids l ldl Large LDL lipids compounds

lipids idl IDL lipids compounds

lipids xs vldl Extra small VLDL lipids compounds

lipids s vldl Small VLDL lipids compounds

lipids m vldl Medium VLDL lipids compounds

lipids l vldl Large VLDL lipids compounds

lipids xl vldl Extra large VLDL lipids compounds

lipids xxl vldl Extra extra large VLDL lipids compounds
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Table D.2: List of clinical and anthropometric covariates

Abbreviation Full name

Age Age at the first visit (baseline)

WHR Waist to Hip Ratio

HOMA IR Homeostasis Model Assessment Insulin Resistance

Thigh skinfold Thigh skinfold

Arm circumf Arm circumference

Sagittal diam Sagittal diameter

Subscap skinfold Subscapular skinfold

Supiliac skinfold Suprailiac skinfold

Thigh circumf Thigh circumference

Triceps skinfold Triceps skinfold

bp avdias Blood pressure diastolic

bp avsys Blood pressure systolic

ALT Alanine aminotransferase

AST Aspartate aminotransferase

GGT Gamma glutamyltransferase

Sex female Dummy variable for female sex

Smoke Ex Dummy variable ex smoker

Smoke Current Dummy variable current smoker
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Table D.3: Bayesian Variable Selection from the MC3 method

acace ace ala alb apoa1 apob bohbut cit crea dha faw3 faw6 glc gln glol gly gp his ile la lac

Age . . . . . X . X X X X X . . . X X . . X .

WHR . X X . . X . . . . X . X . X . X . X . X

HOMA IR X X X . X . . . . . . . X X X . X . X . X

thigh skinfold . . . . . . . . . . . . . . . . . . . . .

arm circumf . . . . . . . . . . . . . . . . . . . . .

sagittal diam . . . . . . . . . . . . . . . . . . . . .

subscap skinfold . . . . X . . . . . . . . . . . X . . . .

supiliac skinfold . . . . . . . . . . . . . . . . . . . . .

thigh circumf . . . . . . . . . . . . . . . . . . . . .

triceps skinfold . . . . . . . . . . . . . . . . . . . . .

ALT . X X . X X . . . X X X . . . X . . . X .

AST . X . . X X . . . X X X . . X . . . . X .

GGT . . . . X . . . . . . . . X . . X . . . .

Ethn Asian X X . . . X X . . X X X X X . . X . . X X

Ethn African . . X . . X . . X X . . X . X . X . . . .

Somke Ex . . . . . . . . . . . . . . . . . . . . .

Smoke Current . . . . . . . X . . . X . . . X X . . X X

Sex female X X X . X . X . X . . X X X X X . X X X X

leu mufa pc phe pufa pyr serum c serum tg sfa sm tyr unsatdeg val lip vldl lip ldl lip idl lip hdl

Age . . X . X . X X . X . X . X X X .

WHR X X . X . . . X X X X X X X . . .

HOMA IR X . . X . X . X X . X X X X . . X

thigh skinfold . . . . . . . . . . . . . . . . .

arm circumf . . . . . . . . . . . . . . . . .

sagittal diam . . . . . . . . . . . X . . . . .

subscap skinfold . . . . . . . . . . . . X . . . X

supiliac skinfold . . . . . . . . . . . . . . . . .

thigh circumf . . . . . . . . . . . X . . . . .

triceps skinfold . . . . . . . . . . . . . . . . .

ALT . X X . X . X X X X . X . X X X .

AST . X X . X . X X . X . X . X X X .

GGT . X X . . X . X . . . . . . . . X

Ethn Asian X X X . X X X X X . X X X X X X .

Ethn African . X . . . X . X X X . X . X . . .

Somke Ex . . . . . . . . . . . . . . . . .

Smoke Current . X . . . . . . . X . X . . . . .

Sex female X X X . X . X . X X . X X . X X X

Table D.4: Proportion of Ethnic sub-groups of origin in each cluster. (Max per row

in bold).

Cluster Africans Gujarati Irish Muslim Native Other Other Punjabi Punjabi

Number Caribbean Hindu British Europeans South-Asians Hindu Sikh

1 .07 .02 .07 .04 .53 .03 .04 .04 .16

2 .00 .00 .18 .00 .73 .09 .00 .00 .00

3 .00 .00 .10 .00 .84 .06 .00 .00 .00

4 .00 .16 .00 .13 .00 .00 .13 .11 .46

5 .00 .00 .00 .00 .90 .10 .00 .00 .00

6 .12 .03 .04 .08 .32 .01 .07 .04 .29

7 .02 .07 .01 .11 .33 .02 .06 .05 .33

8 .00 .08 .03 .10 .11 .00 .12 .11 .43

9 .00 .21 .00 .26 .00 .00 .21 .16 .16

10 .03 .11 .00 .16 .19 .02 .08 .03 .39
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Table D.5: Anthropometric covariates, diabetes indicator, CVD indicators and other

control variables. Every variable is used at time 1 (T1) and time 2 (T2)

Variable name Label

Age Respondent’s age

WHR Waist to Hip Ratio

Systolic blood pressure Systolic blood pressure

HOMA IR Homeostasis model assessment Insulin Resistance

Sex female Dummy variable for female sex (male as reference category)

Smoke Ex Indicator variable for ex smoker category

Smoke Current Indicator variable current smoker category

Pt alcohol Weekly quantity of alcohol consumed

Phys score Physical activity score

Edu years Years of education (assumed constant over time)

bl hdl Concentration of HDL

bl trig Concentration of blood Triglycerides

bl chol Concentration of blood Cholesterol

CHD Indicator variable for the presence of Coronary Heart Disease up

to T1 and T2

stroke Indicator variable for the presence of stroke up to T1 and T2

Diabetes Indicator variable for the presence of Diabetes Mellitus (type 2)

up to T1 and T2

dm treat Indicator variable for the presence of drug treatment for diabetes

up to T1 and T2

bp treat Indicator variable for the presence of blood pressure lowering

drugs treatment up to T1 and T2

lipids treat Indicator variable for the presence of blood lipids lowering drugs

treatment up to T1 and T2
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Appendix E

Figures

E.1 Figures Exploratory Data Analysis
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Figure E.2: Individual Networks for the Europeans (top panel) and the South-Asians

(bottom panel)
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E.2 Figures Bayesian Nonparametric Modelling of

HOMA IR
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Figure E.3: From top to bottom, boxplots of Acetoacetate, Alanine and Glycine.

Black boxplots indicate clusters with a majority of Europeans, while red boxplots

indicate clusters with a majority of South-Asians.
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Figure E.4: From top to bottom, boxplots of Histidine, Isoleucine and Phospholipids

in large HDL. Black boxplots indicate clusters with a majority of Europeans, while

red boxplots indicate clusters with a majority of South-Asians.
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Figure E.5: From top to bottom, boxplots of Tyrosine, sagittal diameter and Alanine

Aminotransferase. Black boxplots indicate clusters with a majority of Europeans,

while red boxplots indicate clusters with a majority of South-Asians.
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E.3 Figures Bayesian Nonparametric Gaussian Graph-

ical Models
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Figure E.6: Degree Distribution for α = 0.1 and µ = 0.1 (top panel) and µ = 0.9

(bottom panel) and different combinations of the Beta hyper-parameters aπ, bπ.
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Figure E.7: Degree Distribution for α = 5 and µ = 0.1 (top panel) and µ = 0.9

(bottom panel) and different combinations of the Beta hyper-parameters aπ, bπ.
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Figure E.8: Graph for the European ethnicity. An edge between two nodes is included

in the graph if its posterior probability of inclusion is higher than 0.5.
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Figure E.9: Graph for the South-Asian ethnicity. An edge between two nodes is

included in the graph if its posterior probability of inclusion is higher than 0.5.
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Figure E.10: Graph for the African-Caribbean ethnicity. An edge between two nodes

is included in the graph if its posterior probability of inclusion is higher than 0.5.
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E.4 Figures Bayesian Dynamic Multiple Graphical

Models
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Figure E.11: Individual network for the European ethnicity at baseline. An edge

between two nodes is included in the graph if its posterior probability of inclusion is

higher than 0.8.
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Figure E.12: Individual network for the European ethnicity at follow-up. An edge

between two nodes is included in the graph if its posterior probability of inclusion is

higher than 0.8
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Figure E.13: Individual network for the South-Asian ethnicity at baseline. An edge

between two nodes is included in the graph if its posterior probability of inclusion is

higher than 0.8
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Figure E.14: Individual network for the South-Asian ethnicity at follow-up. An edge

between two nodes is included in the graph if its posterior probability of inclusion is

higher than 0.8
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Figure E.15: Posterior means of βlj for the Europeans at baseline. Each dot represents

the mean of the posterior distribution of a coefficient βlj, l = 1 . . . ,M . Red dots

denote coefficients whose 95% credible interval does not contain the zero.
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Figure E.16: Posterior means of βlj for the South-Asians at baseline. Each dot rep-

resents the mean of the posterior distribution of a coefficient βlj, l = 1 . . . ,M . Red

dots denote coefficients whose 95% credible interval does not contain the zero.
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Figure E.17: Posterior means of βlj for the Europeans at follow-up. Each dot repres-

ents the mean of the posterior distribution of a coefficient βlj, l = 1 . . . ,M . Red dots

denote coefficients whose 95% credible interval does not contain the zero.
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Figure E.18: Posterior means of βlj for the South-Asians at follow-up. Each dot

represents the mean of the posterior distribution of a coefficient βlj, l = 1 . . . ,M .

Red dots denote coefficients whose 95% credible interval does not contain the zero.
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