
Sensitive and rapid methods for comparing
and searching biological sequence data

John Norman Hatwell

September 2001

A thesis submitted in part fulfilment of the requirements of the
University of London for the degree of Master of Philosophy

Department of Mathematical Biology
National Institute for Medical Research

The Ridgeway
Mill Hill
London

NW7 lA A

ProQuest Number: U643162

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U643162

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Sequence database searching is a key tool in current bioinformatics. To improve accuracy,

sequence database searches are often performed iteratively: taking the results of one

search as input for the next. The object of this approach being to progressively isolate

increasingly distant relations of the original query sequence. In practice this method works

well when it is supervised by an expert eye' which can determine when an alignment is

good and when sequences should be excluded from it, but attempts to automate this

process have proven difficult. At present PSI-BLAST is one of the few effective attempts,

but a misalignment of sequences or the wrongful inclusion of a sequence will still rapidly

destroy the specificity of the probe, making incorrect matches more likely.

By combining the search program Quest, which is capable of searching a database

using full length multiple sequence alignments, with independent sequence alignment

and assessment programs, we have been able to reduce the occurrence of this problem.

We use a multiple alignment package to generate an accurate alignment of all hits

generated by the Quest program. Sequences that do not appear to 'fit' with the rest of

the alignment are automatically removed by the separate alignment assessment program

Mulfil. The resulting alignment is fed back to Quest for the next iteration. This scheme

has shown to generate results significantly better than those of PSI-BLAST. Whilst the

total number of correct homologues identified was not increased, the number of incorrect

ones dropped significantly.

In addition, further work demonstrated that equally good quality results are possible

without the use of multiple alignment or profile searching. The Cascade-and-Cluster

scheme uses intermediate sequences and a simple clustering procedure and is able to

produce a result almost equally sensitive and selective as our previous scheme, whilst

running upto ten-fold faster.

Contents

Abstract 2

List of Figures 6

List of Tables 7

Abbreviations 8

Acknowledgements 9

1 Introduction 10
1.1 DNA and the Genetic C o d e ... 11

1.1.1 D N A ... 11
1.1.2 The Genetic C o d e .. 13

1.2 The Journey from Gene to Protein......... .. 14
1.2.1 Transcription... 15
1.2.2 Translation.. 15

1.3 Evolution.. 16
1.4 Sequence Databases... 19
1.5 Sequence Comparison & Database Searching... 22

1.5.1 Sequence A lignm ent... 22
1.5.2 Database Searching... 32

1.6 A im s .. 44

2 Quest: A Profile Based Search Program 47
2.1 Quest: Method of Operation .. 49

2.1.1 Stage I: Input & Preprocessing.. 49
2.1.2 Stage II: Tripeptide Matches & Segment Extension..........................56
2.1.3 Stage III: Segment Assembly & Sequence Scoring 59
2.1.4 Stage IV: Hit Selection & O u tp u t... 63

2.2 Quest: Parameters, Modifiers and Run-M odes.. 64
2.2.1 Quest Parameters.. 65
2.2.2 Quest M od ifie rs ... 69
2.2.3 Quest Run-Modes... 70

2.3 Quest for Parallel Architectures and Workstation C lus te rs74

CONTENTS

2.3.1 The Cluster ... 75
2.3.2 MPI .. 76
2.3.3 Simple Parallel Database Searching... 77

3 The QUEST Scheme 81
3.1 The Search P hase.. 82
3.2 The Alignment P hase .. 83

3.2.1 MULTAL.. 83
3.2.2 CLUSTALW ... 85
3.2.3 P ra line... 86
3.2.4 T-C offee... 87
3.2.5 Other Alternatives.. 88
3.2.6 The Final Decision.. 89

3.3 The Assessment Phase.. 91
3.3.1 T-Coffee... 92
3.3.2 M u lfil... 92
3.3.3 The Final Decision.. 95

3.4 The Method of Iteration... 95
3.5 Cascade-and-Cluster - A New Scheme?...98

4 Benchmarks 105
4.1 M ethods.. 108
4.2 Results & Analysis.. 110

4.2.1 Benchmarking Quest... 110
4.2.2 Quest Parameter Effects... 113
4.2.3 Benchmarking the QUEST Scheme..119
4.2.4 Cascade-and-Cluster... 124
4.2.5 PSI-BLAST Version 2: An Improved Challenger 127

5 The Quest Server: Our Window on the World Wide Web 132

6 Discussion & Conclusions 139

Bibliography 151

List of Figures

1.1 Translation.. 16
1.2 Comparison of Gap C o s ts .. 26
1.3 Dynamic Programming.. 27
1.4 The QUEST Scheme... 44

2.1 Input File Format .. 51
2.2 PSSM Construction... 54
2.3 Segment Extension.. 58
2.4 Segment Assembly.. 61
2.5 An Example Quest O utput.. 63
2.6 Topology of the Linux C luster.. 75

3.1 The Real QUEST Scheme.. 97
3.2 A Sequence C lu s te r ... 100
3.3 Cascade-and-Cluster... 102

4.1 Quest Benchmark Results.. I l l
4.2 Score Cutoff E ffec ts ... 114
4.3 Effects of the Strictness Param eter...115
4.4 Gap Penalty E ffe c ts ... 117
4.5 Benchmarking the QUEST Scheme...120
4.6 Parameter Effects on the QUEST Scheme ...122
4.7 Effects of Alignment Phase on the QUEST Scheme123
4.8 Cascade-and-Cluster Benchmark...125
4.9 PSI-BLAST Version 2 ..128
4.10 PSI-BLAST vs BLASTPGP...130

5.1 The Quest Web Server..134
5.2 Example Results Page: Part I ..136
5.3 Example Results Page: Part I I ..137

List of Tables

1.1 The Universal Genetic C ode.. 14
1.2 Amino A c id s ... 14

2.1 Quest Command Line Options... 65

Abbreviations

A Adenine
BLAST Basic Local Alignment Search Tool
C Cytosine
DNA Deoxyribonucleic acid
DDBJ DNA DataBank of Japan
EBI European Bioinformatics Institute
EMBL European Molecular Biology Laboratory
EPQ Errors Per Query
G Guanine
HMM Hidden Markov Model
MSP High-scoring Segment Pair
HTML HyperText Markup Language
ISS Intermediate Sequence Search
mRNA messenger RNA
NCBI National Center for Biotechnology Information
NJ Neighbour Joining
MPI Message Parsing Interface
PAM Point Accepted Mutation
PDB Protein DataBank
PSSM Position Specific Scoring Matrix
RNA Ribonucleic acid
rRNA ribosomal RNA
SCOP Structural Classification Of Proteins
SYSTERS SYSTEmatic Re-Searching
T Thymine
tRNA transfer RNA
U Uracil
UPGMA Un-weighted Pair Group Mean Arithmetic

Acknowledgements

I would Like to thank the following people for their help and assistance throughout the

length of this project. My supervisors Dr. William Taylor and Dr. Jaap Heringa for their

ideas, criticism and discussion. Nigel Douglas for his knowledge, patience and great

help on all computing matters. Dr. Jens Kleinjung my co-worker on the Quest project,

without whose discussion and input this project would not of been possible. Finally

thanks go to all the remaining members of the Mathematical Biology department at the

National Institute of Medical Research for all their help and support during my two year

stay.

Chapter 1

Introduction

It was probably not anticipated how the development of rapid DNA sequencing technol­

ogy in the 1970's would lead to such an explosion of freely available biological sequence

information. The amount of sequence data being produced has increased exponentially

year on year. What started as a trickle is now thanks to the various genome sequenc­

ing projects a torrent of information pouring in to the sequence databases. The entire

genomes of several organisms have now been sequenced, these range from; The simple

prokaryote, Mycoplasma genitaHum (Fraser et al., 1995); the first multicellular eukaryote

to be sequenced,Csenorhabditis elegans (The C.elegans Sequencing Consortium, 1998);

the first plant genome, Arabidopsis thaliana (The Arabidopsis Genome Initiative, 2000).

Within the last year even the draft copy of the Human genome has been published

(International Human Genome Sequencing Consortium, 2001).

The huge amount of data available in the public sequence databases is an amazing

resource. As the databases grow so does their potential use. More sequences have

Introduction 11

probably been characterised by database searches than by any other technology. However,

it is also true that the larger the database grows the more difficult it is to use them

effectively. The non-redundant version of the Genbank database contains almost 750,000

protein sequences. It is obviously not possible to search through a dataset such as this

manually and indeed several computer programs have been in general use for over a

decade now, the most popular being BLAST (Altschul et al., 1990) and FASTA (Pearson,

1990) which are available at the NCBI and EBI websites respectively. However these are

no longer always the best tools for the job. To understand the problems and pitfalls of

searching these sequence databases we need to first understand some of the complexity

of the biological systems that produce these sequences in the first place.

1.1 DNA and the Genetic Code

1.1.1 DNA

Deoxyribonucleic acid or DNA is the medium in which genetic information is encoded

and recorded. It is through DNA that a parent passes genetic information to its offspring.

This system is almost ubiquitous in nature with only a few organisms exceptions to this

rule, even then most have a DNA stage in their life cycle. DNA is a linear polymer

made up of deoxyribonucleotide monomers. Each of these subunits is made up of a

base, phosphate group and a 2-deoxyribose sugar. These nucleotides are connected

through phosophodiester bonds linking the sugar and phosphate groups of neighbouring

nucleotides. There are four different nucleotides which go to make up the language

Introduction 12

of the genetic code. They are defined by the one of four bases they carry, these are

cytosine (C) and thymine(T) which are purines and adenine (A) and guanine(G) which

are pyrimidines.

Structure

In eukaryotic organisms the nuclear DNA occurs as a duplex of two complementary

antiparallel strands arranged in the classic right-handed double helix. This structure is

stabilised by the hydrogen bonds between complementary base pairs, A binding to T and

C to G. Within the DNA strand it is possible to define discrete units known as genes.

A gene is a region of the DNA strand that codes for a particular product, usually a

protein, also including any regulatory regions e.g. promoters and inhibitors that regulate

the expression of the gene. The total sum of all the genetic information contained in an

organism is known as its genome. A eukaryotic genome may be made up of more than

one double helix of DNA, each of these strands are known as chromosomes. The human

genome for example is made up of 23 pairs of chromosomes.

Replication

As the genetic material it is obviously important that DNA is capable of being duplicated

so that parents may beget offspring. This procedure is known as replication. DNA

is replicated by a semi-conservative mechanism, which reduced it to simplest terms

involves the splitting of the two strands that make the duplex and synthesising their

complementary strands to form two new duplexes. Each of these new DNA molecules

contains one newly synthesised strand and one from the original parent molecule, hence

Introduction 13

the term semi-conservative replication. This procedure is overseen by an enzymatic

complex known as DNA polymerase, which is responsible for the assembly and formation

of the complementary strands.

1.1.2 The Genetic Code

In general genes encode proteins. Like DNA proteins are polymers but instead of nu­

cleotide the monomeric units are amino acids. There are 20 different amino acids com­

monly utilised in all biological systems (Table 1.2). With its alphabet of four letters one

nucleotide obviously does not code for one amino acid. Dinucleotides would only be able

to encode 16 amino acids, however trinucleotides could encode 64 amino acids. This

turns out to be the correct answer; the 64 possible trinucleotides are known as codons

and each has a particular meaning. The majority, 61 of them encode the 20 amino acids,

with varying degrees of redundancy. The remaining 3 are stop codons they mark out the

end of the protein coding sequences. The 64 possible codons make up the genetic code

are detailed in Table 1.1.

Redundancy

Redundancy is implicit in the genetic code, there are 4 ̂ = 64 possible codons and only

20 (Table 1.2) amino acids. This simple calculation could infer two things: either most

of the codons do not code for anything or many of the amino acids are represented by

more than one codon. This is obviously the case, however it is important to note that

this redundancy is not a case of each amino acid Just having three possible codons each.

Introduction 14

ist

Residue

2nd

Residue
3^ ̂ Residue

T C A G
T T Phe Phe Leu Leu

C Ser Ser Ser Ser
A Tyr Tyr Stop" Stop"
G Cys Cys Stop" Trp

C T Leu Leu Leu Leu
C Pro Pro Pro Pro
A His His Gin Gin
G Arg Arg Arg Arg

A T lie lie lie Met^
C Thr Thr Thr Thr
A Asn Asn Lys Lys
G Ser Ser Arg Arg

G T Val Val Val VaP
C Ala Ala Ala Ala
A Asp Asp Glu Glu
G Gly Gly Gly Gly

Table 1.1: The Universal Genetic Code
Throughout nature there are very few exceptions to this code;
almost all protein coding genes are translated using this sys­
tem. "Stop denotes a stop codon and does not encode an
amino acid. *’Both AUG and GUG may serve as initiation
codons.

A Ala Alanine
C Cys Cysteine
D Asp Aspartic Acid
E Glu Glutamic Acid
F Phe Phenylalanine
G Gly Glycine
H His Histidine
1 lie Isoleucine
K Lys Lysine
L Leu Leucine
M Met Methionine
N Asn Asparagine
P Pro Proline
Q Gin Glutamine
R Arg Arginine
S Ser Serine
T Thr Threonine
V Val Valine
W Trp Tryptophan
Y Tyr Tyrosine

Table 1.2: Amino Acids
The 20 amino acids plus their
respective one and three letter
codes.

the distribution is far from even. As shown in Table 1.1 leucine, arginine and serine have

six different codons, cysteine and tyrosine have two whilst methionine and Tryptophan

have only one.

1.2 The Journey from Gene to Protein

The journey from a DNA sequence to a protein is not a direct one. There are many

intermediate stages, which make up the two major processes involved, transcription and

translation.

Introduction 15

1.2.1 Transcription

Transcription generates a single stranded ribonucleic acid (RNA) molecule complemen­

tary in sequence to the template DNA strand. There are three types of RNA that are

involved in protein synthesis: messenger RNA (mRNA), transfer RNA (tRNA) and ri­

bosomal RNA (rRNA). Of these it is mRNA that encodes the protein sequence, whilst

tRNA and rRNA are active parts of the translation machinery. As a result it is mRNA I

will focus on here.

Transcription has many parallels with DNA replication. Firstly the DNA duplex is

partially unwound. This allows the binding of an RNA polymerase; this would be RNA

polymerase II in humans. This transcribes the DNA sequence into a complementary

strand of RNA. RNA is very similar to DNA except that the sugar that makes up the

backbone is ribose rather than deoxyribose. Secondly RNA has a slightly different base

composition to DNA with uracil replacing thymine. This single strand of RNA has a cap

of 5-methyl-cytosine and a poly-adenosine tail added to it to create the final messenger

RNA molecule. The mRNA strand must then be exported out of the nucleus before it

can undergo translation.

1.2.2 Translation

Once the mRNA is exported from the nucleus to the cytoplasm it will be bound by a

ribosome and translated in to protein (Figure 1.1). It is at this stage that the other RNA

types mentioned earlier play a role. The ribosome itself is a complex of both protein and

ribosomal RNA; its binding to the mRNA initialises translation. There is a transfer RNA

Introduction 16

for each codon in the genetic code, these molecules can reversibly bind to their specific

amino acids. Each of these molecules also contain an anti-codon for the amino acid

they carry, which is a trinucleotide with a complementary sequence to the codon. Via

this anti-codon they base pair to the mRNA bringing together the amino acid monomers

in the correct sequence order. As this occurs the ribosome catalyses the polymerisation

of these monomer units and their release by the tRNA. Once complete the protein is

released from the ribosome, after which it may undergo post-translational processing or

may be immediately exported to where it is required.

GCUGACCGU
AUGCUGGCÀCGAUUUACGGCAUC C GUAAGCCUAGGGCUACGCAUUGACGGAUG

Figure 1.1; Translation. The ribosome moves along the mRNA strand in the direction
indicated catalysing the polymerisation of the amino acid monomers, which are assembled into
the correct positions by the influence of the respective tRNA molecules.

1.3 Evolution

Living is a dangerous thing to do, during every minute of every day our cells are under

attack, often from the products o f our own metabolism. There are many mechanisms

through which a cell and more specifically i t ’s DNA may become damaged. Ultra-violet

Introduction 17

light, free radicals and a variety of chemicals can all damage and cause lesions on DNA.

These substances are mutagens i.e. they can induce mutations, in humans they would

often be referred to as carcinogens as many mutations can lead to the development

of cancer. Most of the time damage to a DNA strand is repaired without problems,

however occasionally a mistake in the repair mechanism will culminate in a mutation,

causing a change in the genetic sequence. DNA damage can also result in a mutation

during replication, when base pair mismatches and a host of other problems can occur.

Even in the absence of damage the process of replication can lead to mutation, for

example the DNA polymerase complex could slip leading to the duplication or deletion

of a short region of the DNA strand. If these mutations occur in germ cells then they

will be passed on to the progeny of the organism, becoming variants in the gene pool on

which evolution can then act.

For the purposes of this work we could define evolution as a change in the DNA

sequence of an organism that is passed onto it ’s progeny. This could be as simple as a

single base change in an organisms entire genome. However it is probably more true to

say that evolution has occurred when that change has become fixed in a population of

organisms, be it via selection or other means. A single change in a single organism really

only constitutes a new mutation or variant in the gene pool. There are a great many

factors that can determine whether that change will become fixed in the population. It

could be that the change is a synonymous one, i.e. it does not cause any change in the

protein sequence. This can be brought about if the mutation occurs in a non-coding

region of the genome or if a codon is changed in such a way that it still encodes the

Introduction 18

same amino acid. This is possible due to the degeneracy of the genetic code; changes in

the third base of many codons produce this result. If the mutation is synonymous then

the forces that will lead to it being fixed in a population are essentially random. If it's

frequency rises high enough by chance to become fixed then we can say this is a result

of genetic drift (King and Jukes, 1969). These types of changes can make two DNA

sequences that encode nearly identical protein sequences quite different at the nucleotide

level.

The second type of changes are non-synonymous ones. These are mutations that

cause a change in the protein sequence, for example a change in the second base of a

codon will nearly always have this effect. If the effect of this change is very mild causing

little or no change to the protein’s properties or activity then the self same random

effects can lead to loss or fixation, by a process known as neutral or nearly-neutral

evolution (Kimura, 1983). However if the mutation has a stronger effect e.g. conferring

an advantage of some kind to the carrier then natural selection may act to rapidly fix

the change in the population or if the effect is deleterious to remove it.

It is the cumulative effect of all these changes and many others that lead to the

differences observed between homologous sequences both within and between closely

related organisms. This is why when we wish to search for related sequences in sequence

databases it is essential to take account of evolution in one form or another.

Introduction 19

1.4 Sequence Databases

With the advent of rapid DNA sequencing technology came the development of biological

sequence databases. Since their inception they have multiplied to create a large variety

of both specialised and general repositories. The largest and most well known is the

Genbank/EMBL/DDBJ database, containing virtually all the DNA and protein sequences

known to date. This is actually made up of three databases the Genbank database from

the NCBI, the EMBL database maintained at the EBI and the DNA Databank of Japan.

These three organisations share all data and submissions with each other to create a

‘universally accessible’ databank, for the remainder of this thesis I will refer to this

simply as the Genbank database.

There are several other commonly used databases. SWISS-PROT (Bairoch and

Apweiler, 2000) is a curated protein database with a minimum level of redundancy.

Its intention is to provide a high level of annotated information as well as the protein

sequence itself. This annotation can include details such as function, structure and

post-translational modifications. TrEMBL (Bairoch and Apweiler, 2000) is a supplement

to the SWISS-PROT database. It includes and attempts to automatically annotate all

the translations of Genbank nucleotide sequence entries not yet integrated in SWISS-

PROT. The protein data bank (PDB) (Berman et al., 2000) is a database of known

three-dimensional protein structures. Whilst this is not solely a sequence resource it is

extremely useful, structures can help us to judge when sequences are true homologues of

one another even when the sequences in question do not appear to share any significant

homology. This is useful not only in general biology but also in this project in particular

Introduction 20

as it allows us to judge how well our database searching system is working by being

able to identify and quantify correct and incorrect hits. Derivatives of the PDB are

particularly useful for this purpose, specifically SCOP (Murzin et al., 1995) and GATH

(Orengo et al., 1997). These data sets seek to hierarchically classify sequences according

to their structure. SCOP is manually produced and focuses on reliability, only classifying

proteins together if there is significant evidence that they are related. CATH on the

other hand is largely automatically generated but still seeks to classify proteins and

their folds into homologous families. These classifications can then be used for grading

sequence searching systems or as a method of annotating new sequences (Park et al.,

1997; Brenner et al., 1998; Park et al., 1998; Müller et al., 1999; Salamov et al., 1999;

Pearl et al., 2000; Waliqvist et al., 2000).

In addition to these more established resources there are now a significant number

of organism specific databases, which have resulted from various genome sequencing

projects in addition to previous work. These include FlyBase (The FlyBase Consortium,

1999) for Drosophila and Worm Base (Stein et al., 2001) for C. elegans. Probably the

most well known to the world at large is the human genome sequencing project (Interna­

tional Human Genome Sequencing Consortium, 2001), whilst the results of this are still

not fully complete, preliminary results are available in various forms. The impact of these

various genome sequencing projects upon all the databases has been massive. Already

growing at an alarming rate, the number of sequences being deposited has taken yet

another leap over the past two years. As these databases get larger so do the problems

in using them.

Introduction 21

Whilst these large centralised data resources do have great potential use for scientists,

they do also present a problem. The non-redundant Genbank database has 750,000

sequences; in this amount of data the problem is to locate the ones you are interested in.

Ideally each sequences would be catalogued by organism, position in the genome, name

of gene, function of protein and we could then simply search for and find our sequence

of interest. Unfortunately things are not as simple as this. Whilst this information is

often put into the sequence entries, it is not always available. Many genes have been

sequenced without knowing what the protein they encode. This type of data is routinely

produced by the various genome sequencing projects, in fact they produce large amounts

of sequence data where it is not even known where the genes lie yet alone what they

encode.

Furthermore this approach is fine if you have a simple query like: Find all globin gene

sequences from the mouse Mus musculus. Effective systems to do this Job already exist

e.g. the Entrez interface (http://www.ncbi.nlm.nih.gov/Entrez/) at the NCBI

website. However what if we have a DNA or protein sequence and we want to find any

similar sequences in the database. For example we might have a fragment of a gene and

wish to find out if the entire length has already been sequenced. Or we may wish to

identify homologues in different species, or other members of the same family of genes.

These types of problems require a different type of solution.

http://www.ncbi.nlm.nih.gov/Entrez/

Introduction 22

1.5 Sequence Comparison & Database Searching

The need to be able to compare sequences with one and other has always been apparent.

Initially a simple question like how do two related sequences line up against each other

i.e. which residues are conserved could be answered by aligning the two sequences by

eye. However this is a time consuming process and requires a certain degree of expert

knowledge. What was needed was some method of automating this process.

1.5.1 Sequence Alignment

Sequence alignment is a far from trivial process. When aligning by eye an expert can

take many factors into account including the biological properties and the prevalence of

the various amino acids and also perhaps their relationship to the surrounding sequence

e.g. taking into account knowledge of the proteins structure. Also most importantly it

has to be decided when and where to introduce gaps in the sequences to fully align them.

It is therefore not as simple a task as many might think for a computer to automate.

When attempting to align sequences it is important to bear in mind which amino acids

you consider similar and which dissimilar. The simplest approach would be to consider

only identities, for example an amino acid scoring matrix based on identities only would

give a score of 1 to an identical match and zero otherwise. Whilst this system would

work for closely related proteins with very high sequence identities, it would be useless

for more divergent ones. A relatively simple way around this problem is to consider which

amino acids have similar physical and chemical properties for example we could consider

arginine and lysine similar as then both contain basic groups and aspartic acid would be

Introduction 23

dissimilar because of its acidic group. Qualitatively this method makes a lot of sense

however it is difficult to quantify, for example how much more similar would we consider

serine to threonine as opposed to tyrosine and vice versa. Another simple solution would

be to use the genetic code (Table 1.1) itself to judge the relationships, it is possible to

calculate the minimum number of base changes required to change any amino acid into

any other amino acid. It is also possible to draw inference on how much we can read

in to amino acid identities (when an amino acid matches itself). Methionine only has

one codon whereas serine has six; should a serine-serine match only score a sixth of a

methionine-methionine one, the genetic code would draw you to think so. As attractive

as this concept of scoring may be it is far from prefect. It probably does give an indication

of how often specific amino acid changes occur. However it does not indicate how often

these changes become fixed and it does not take into account the effects of evolution,

specifically those of selection. Therefore a way of judging how frequently one amino acid

changes to another in real sequences is needed.

The first attempt to do this was the PAM (Point Accepted Mutations) matrices

(Dayhoff et al., 1978). This series of matrices was based upon alignments of very

closely related sequences sharing at least 85% identity. The amino acid substitutions

observed in these alignments were recorded and converted to mutational probabilities

according to 1% accepted mutations - one amino acid changed in 100. This matrix was

then scaled by self-multiplication to produce the other matrices of the set which are

applicable to more distantly related sequences e.g. PAM250 log odds matrix represents

250 substitutions in 100 amino acids. Despite the relatively small datasets these matrices

Introduction 24

have proven to be remarkably effective. The work has been repeated with newer larger

datasets (Jones et al., 1992) but the original set are still widely used. In fact it is only in

the last decade that another popular substitution matrix set has arisen. The BLOSUM

(Henikoff and Henikoff, 1992) matrices were derived from approximately 2000 blocks

of aligned sequence segments from more than 500 groups of related proteins. Whilst

both the BLOSUM and PAM matrices have proven very effective for sequence alignment

and database searching there is a certain amount of empirical evidence (Henikoff and

Henikoff, 1992; Henikoff and Henikoff, 1993) pointing to the BLOSUM set being slightly

more reliable.

These matrices provide a reliable method of judging the probability that one amino

acid will be substituted for another over evolutionary time. The next dilemma is how to

use this information to compute the best alignment of two protein sequences.

Dynamic programming

The solution to this problem is most generally credited to Needleman & Wunsch (Needle-

man and Wunsch, 1970). The procedure they introduced is now commonly known as

dynamic programming. The dynamic programming algorithm operates in two steps.

Taking two sequences A and B firstly a search matrix is constructed of dimensions mn

with m being the length of sequence A and n of sequence B. The matrix is filled from

the top left to the bottom right corner, each cell [z, j] receives the score of the exchange

value of residue A% and B̂ plus the maximum score of row z — 1 and column j — 1

minus any incurred gap penalties. Cell [z,j] therefore contains the maximum score for

an alignment of the two sequences up to the point of cell [z, j] . This first step can be

Introduction 25

simply written as:

— l , j — 1]

maxi<a;<i(5[i — x , j — 1] — P (x — 1)) (^-^)

maxi<y<j(5[i — \ , j — y\ — P{y — 1))

Where S[i , j] is the score of the best alignment of sequences A and B up to residues i and

j respectively. The s [i , j] term refers to the exchange value of the residues associated

with cell [i j j] . The Max term denotes the maximum score of the three equations detailed

in the brackets. The first term would be the maximum in the cases where no gap had to

be inserted at this position in the alignment. The second would be true if a gap had to

be inserted in sequence B for residues i and j to be aligned. The third term obviously

corresponds to a gap insertion in sequence A. P{x — 1) is a non-negative penalty value

for a gap of length x — 1 with l< x < i denoting the range of values x could possibly take.

In its original implementation (Needleman and Wunsch, 1970) this gap penalty was

defined as a fixed value for the inclusion of a gap of any length. This idea was soon

replaced by the concept of length-proportional gap costs (Sellers, 1974) where a gap of

length X would have the penalty P(x) = Gx, where G is the cost of a gap of length 1.

However over the years it was noticed that the highest scoring alignments produced using

length-proportional gap costs often contained a large number of short gaps. Such a high

number of short insertions or deletions was not thought to be very plausible. Because

a single mutation may result in the insertion or deletion of a large number of residues

e.g. the insertion or excision of a transposon, it was hypothesised that a long gap should

Introduction 26

not cost sizably more than a short one. Affine gap costs use two gap penalties, Go the

penalty for opening a gap and Ge the penalty for extending a gap giving the formula

P{x) = Go + GeX. This scheme is the predominant one employed by modern alignment

packages, typically Go will be a order of magnitude larger than Ge therefore making it

difficult enough to open a gap but relatively easy to extend it where necessary. The

difference between length-dependent and affine gap costs can be seen in Figure 1.2.

A.

15

0

0 2 4 6

B

15 -

9 1 0 -

0 2 4 6
Gap Length Gap Length

Figure 1.2: A comparison of length dependent and affine gap costs A. length
dependent gap penalty of 5 per unit length. B. Affine gap score; gap opening penalty of 10,
gap extension penalty of 1 per unit length.

The second stage of the dynamic programming algorithm is the traceback step. It

is at this point that the actual optimal or highest scoring alignment is reconstructed.

Starting from the cell with the highest alignment score which will lie in the final row

or in on the final column. The path is traced back following successively lower scores,

each time selecting the highest scoring cell from the previous column or row from the

present position. This continues until both the sequences are fully aligned i.e. until the

traceback reaches the first row or column. This procedure is graphically illustrated in

Figure 1.3.

Introduction 27

8 3 8 11 9 6 8 8 3 8 11 9 6 8

12 1 6 8 8 4 10 1 9 9 16 19 13 16

1 25 2 3 2 6 5 11 111 12 18 25 18

6 2 12 6 5 6 6 ~ 6 3 |33 31 31 31

4 6 8 0 4 20 1 4 12 35 49 (S8)38

8 5 3 6 13 8 7 8 9 29 45 62 51

Figure 1.3: The Dynamic Programming Algorithm. The initial alignment matrix is
shown on the left, the values are then summed (taking into account any gaps) to produce the
matrix on the right. The final alignment is then realised by the traceback step starting from
the highest scoring cell.

The dynamic programming algorithm will always find the optimal alignment between

two sequences for a given scoring scheme. This is fine when the sequences share a certain

degree of similarity e.g. 40% sequence identity. When the sequences are much more

divergent perhaps only sharing 25% sequence identity a global alignment such as this,

where the full lengths of both sequences are aligned, may be far less useful and more

worryingly it may be completely wrong. If the two sequences share only short sections

of homology then an optimal global alignment may miss these segments either in the

noise generated by the divergent regions or the gap penalties may prevent these conserved

segments from being successfully joined. Just because it is possible to align two unrelated

sequences it does not mean that the sequences share any significant degree of similarity.

Two random sequences will share approximately 20% sequence identity when aligned

globally. In cases where the sequences are distantly related we are often more interested

in whether they share have any homologous or more highly conserved segments.

Introduction 28

Local Alignment

In addition to the problems already discussed many proteins are modular in structure,

made up of discrete units known as domains. These domains which are mainly defined

in a structural context can be present in a wide variety of proteins, although not always

in the same order. In such examples a global alignment of two sequences would be

meaningless. Consider a case where two proteins share a domain, in sequence A the

domain makes up the final quarter of the sequence and in sequence B it makes up the

first quarter. In most cases a global alignment method would not pay attention to an

alignment of the first section of one sequence to the last of another. In fact in many

programs to save time this section of the alignment matrix is not even calculated as a

match is such a position is considered unlikely or wrong. There are also other possibilities

that can limit the effectiveness of global alignment methods, for example the occurrence

of internal sequence repeats.

In these circumstances the best strategy is to undertake a local (Smith and Waterman,

1981) as opposed to global alignment. A good way to describe the local alignment

technique is that the most similar regions of two sequences are selected and aligned,

paying no attention to dissimilar regions or linear ordering. The method is essentially the

same as the global alignment algorithm, with a few additional conditions and stages. A

dynamic programming algorithm is implemented but in this case the amino acid exchange

values used must include negative values. Any score in the search matrix that would

be negative is set as zero. The algorithm relies on dissimilar subsequences producing

negative scores allowing them to be discarded by scoring the cells that make them up as

Introduction 29

zero. Equation 1.1 thus becomes:

S[iJ] = s[i , j] + Max < (1.2)

— 1]

maxi<a;<i(5[i — x , j — 1] — P(x — 1))

maxi<y<j(5[i — 1, j — y] — P{y — \))

0

The consequence of these changes is that the highest alignment or more correctly sub­

alignment score no longer has to be in the final row or column but can appear anywhere

in the matrix. Once the highest scoring segment has been traced back it is but a simple

procedure to find the next highest scoring sub-alignment. To do this the second highest

scoring cell in the scoring matrix is located and traced back. However when this is done

you must be careful to exclude the cells that make up the first sub-alignment, otherwise

you will merely traceback along the same route. Following this procedure it is possible

to locate all of the top scoring non-intersecting sub-alignments of the two sequences.

The point at which the sub-alignments cease to be top scoring is obviously user defined.

Multiple Alignment

The mechanisms covered so far relate to pairwise alignments, i.e. the comparison and

search for similarity between a pair of sequences. Whilst the number of available se­

quences was small this was an adequate solution. However as the number of sequences

has grown and specifically when large sets of homologous sequences are available we

often want to compare more than two sequences together and align many sequences at

Introduction 30

once. In theory a multiple alignment should not be difficult to construct or calculate,

however the speed of the dynamic programming algorithm is dependent on the prod­

uct of the lengths of the sequences being aligned. In a pairwise alignment this is just

mn the size of the search matrix, for three sequences we would have to construct a

three-dimensional search matrix, for four it would be four-dimensional and so on. The

number of calculations quickly become prohibitive. Imagine trying to simultaneously

align four sequences each two-hundred amino acids in length, this would give a search

matrix of size 200^ = 1.6 x 10® this is a 40000 times larger computation space than a

pairwise comparison of the same length. With the computation time being proportional

to this it is easy to see that even with modern computers the time and resources needed

to undertake such calculations is prohibitive. Methods have been developed that allow

the multiple alignment of up to 10 sequences of a certain length (Lipman et al., 1989;

Johnson and Doolittle, 1986). Although they work in different ways these algorithms

make the problem tractable by reducing the search space effectively ruling out possible

but unlikely alignment results. Being able to align ten sequences is not enough for most

biologists, many of the sequence families in the databases have had a large number of

their members sequenced. A simple search shows that well over 500 globins have been

sequenced. Trying to complete a true multiple alignment of this number of sequences is

frankly ridiculous.

The unfeasibility of a truly simultaneous multiple alignment algorithm that can work

with large numbers of sequences has led to the development of various heuristic ap­

proaches. The most popular and successful of these has been the progressive alignment

Introduction 31

strategy (Hogeweg and Hesper, 1984). The basis of this strategy is to align the closest

sequences first and successively adding in the more distant ones until all the sequences

are joined in a final multiple alignment. In essence this method reduces the multiple

alignment to a serial sequence of pairwise alignments.

A good example of this method is the CLUSTAL alignment programs (Higgins and

Sharp, 1988). This original program was designed specifically to run on desktop com­

puters and thus had to be not too computationally demanding. The program firstly

uses a fast pairwise alignment step to evaluate all the possible pairs; it then uses this

information to construct a guide tree using the un-weighted pair group mean arith­

metic (UPGMA) method (Sneath and Sokal, 1973). The sequences are then aligned

following the branching order of the guide tree. When groups of sequences came to be

aligned the original implementation used consensus sequences to represent the aligned

subgroups. The CLUSTAL program has been developed and refined over the years:

CLUSTAL V (Higgins et al., 1992) implemented a more efficient dynamic programming

routine; CLUSTAL W (Thompson et al., 1994) made use of the Neighbour-Joining (NJ)

algorithm (Saitou and Nei, 1987) to construct the guide tree and rather than consen­

sus sequences, sequence blocks were represented using profiles. The success and speed

of this method has made CLUSTAL W and CLUSTALX (Thompson et al., 1997) its

graphical counterpart probably the most widely used alignment package.

Other techniques have of course been developed, some such as MULTAL (Taylor,

1988) are variants of the progressive alignment strategy. More recently more novel

methods have been developed. SAGA (Notredame and Higgins, 1996; Notredame et al..

Introduction 32

1998) makes use of a genetic algorithm to align the sequences, T-Coffee (Notredame

et al., 2000) attempts to integrate information from various sources including local

and global alignment information to construct a multiple alignment. Many of these new

techniques have much to offer, however none of them match the speed of the progressive

alignment approach, which will undoubtedly remain a favourite for some years to come.

1.5.2 Database Searching

Both pairwise and multiple sequence alignment have developed into commonly used tools.

These tools are extremely useful for bioinformatics and bench biologists alike. They allow

us to compare two or more sequences together and to putatively infer structure, function

and evolutionary history. But given a sequence we are interested in how can we search

the database for similar sequences. One solution would be to carry out global pairwise

alignments of our query sequence against every other sequence in the database, it would

then be possible select all the sequences with the highest alignment scores as probable

homologues of our query. Unfortunately this is not really a feasible option. Firstly

there are at present approximately 750,000 sequences in the non-redundant Gen bank

database. Doing the better part of a million alignments every time you want to search

the database would be a very time intensive method. Secondly a global alignment would

not be the best method for assessing similarity, as I have already mentioned global

alignment methods can make mistakes when the sequences are distantly homologous,

especially when only segments of the sequences share any degree of homology. In effect

what we need to do is carry out a local alignment comparison of our query sequence to

every member of the database.

Introduction 33

Smith-Waterman search

The idea of a Smith-Waterman (Smith and Waterman, 1981) based search is a very

attractive one. It should theoretically allow the accurate recognition of even quite re­

mote sequences that share only short regions of homology. The same problem still

exists, carrying out such a large number of pairwise local alignments is generally time

prohibitive. This has not however prevented the development of such methods, of these

the SSEARCH program (Pearson and Lipman, 1988) is probably the most well known.

Because this approach is so exhaustive it has been frequently used as a yardstick to com­

pare new approaches to database searching (Shpaer et al., 1996; Agarwal and States,

1998; Brenner et al., 1998). Attempts to accelerate this procedure have frequently relied

on the use of expensive parallel computers. These are generally refered to as hardware

implementations of Smith-Waterman, as well as being much faster have proven to be just

as effective as their software counterparts at finding homologues (Shpaer et al., 1996).

However the high cost of this machinery has meant that they are not in widespread

use. Recent work has made use of special instruction sets present in common desktop

computers to accelerate the search procedure (Rognes and Seeberg, 2000). This type of

method holds a lot of promise, however the speed of searching still does not approach

the heuristic methods that have been developed over the last decade.

Heuristic algorithms

Heuristic alignment algorithms were intentionally devised with database searching in

mind, the goal being to drastically reduce the time needed to search an entire sequence

Introduction 34

database for similarities to a given query sequence. There are two families of heuristic

programs in general use, the FASTA (Pearson and Lipman, 1988; Pearson, 1990) and

BLAST (Altschul et al., 1990) programs.

The first step in the FASTA program is to search for identical ‘words’ of a defined

length (known as /f-tuples) in both the query and target sequences. Generally for proteins

a word length of two {ktup = 2) is sufficient for most searches, it combines good

accuracy with high speed. A higher value increases the speed but at the risk of increasing

inaccuracy. These /r-tuples are then used to identify the ten most interesting diagonal

regions in the alignment matrix. These regions are then re-scored using an amino acid

substitution matrix, thus taking amino acid similarities into account as well as identities.

Only regions with a score above a cutoff value are considered further. A gapped alignment

score is estimated by joining together compatible regions using a Joining penalty. FASTA

also computes an optimal local alignment restricted to a band centred on the highest

scoring region. Finally these scores are used to estimate the statistical significance of

the matches.

The BLAST programs work in a similar way. However it is important to differentiate

between the two BLAST programs that are commonly used for protein-protein sequence

searches. BLASTP (Altschul et al., 1990) is the original program developed for searching

protein sequence databases and is still in common use. BLASTPGP (Altschul et al.,

1997) is a more advanced version and works in a significantly different manner. In the

first step BLASTP uses words of length w. Unlike FASTA, BLAST allows the words

to match similar rather than just identical amino acids. To be counted the words must

Introduction 35

match at score greater than T when scored using the amino acid substitution matrix.

By default BLASTP uses the parameter settings w = 3 and T = 11. In the second

step BLASTP extends the initial words in both directions using the substitution matrix

to form high-scoring segment pairs (HSPs). The extension is stopped when potential

score of the extending segment drops below the the maximum score of the HSP within

the segment. This version of BLAST does not consider gapped alignments at all but

uses sum-statistics (Karlin and Altschul, 1990; Karlin and Altschul, 1993) to compute

the significance of the matches from the highest scoring HSPs.

The BLASTPGP algorithm shares many similarities with the original BLASTP algo­

rithm, however several key improvements have been made and to fully accommodate

these the procedure has been changed somewhat. As before the program looks for all

the words of length w scoring above T. However to reduce the number of words that are

extended (in the original implementation this accounted for approximately 90% or more

of the computation time) the refined algorithm looks for two non-overlapping words on

the same diagonal of the scoring matrix, no further apart than A residues; for w = 3 and

T = 11 it is recommended that A = 40. If two words are matched within the required

distance then an ungapped extension of the second word is triggered. If the HSP gen­

erated has a normalised score above a cutoff then a gapped extension is triggered. This

Smith-Waterman like extension requires 500 times the computation time of that of an

ungapped one, however because extensions are triggered so much less frequently than

in the BLASTP program one gapped extension will only be triggered for upto 4000 un­

gapped extensions in the original program. In addition because the number of ungapped

Introduction 36

extensions are significantly reduced, the total time spent on the extension stage is cut by

a factor of two. The significance of the gapped alignments is then evaluated (Altschul

and Gish, 1996) before the results are reported.

Significance of matches

There one important problem that I have already alluded to that remains when under­

taking a database search. How do you evaluate when a match is a true hit i.e. at what

alignment score is a match no longer considered a true homolog. This is not a clean cut

problem, it is not possible to define an arbitrary alignment score cut off value, longer

sequences have a higher probability of producing a higher alignment score by chance

alone. This problem has been dealt with by several methods but almost ubiquitously all

search engines now evaluate the statistical confidence of their hits. Put most simply this

is the probability that a hit of score score x would occur by chance.

If we assumed that the scores obtained by random sequences in database searches

followed a normal distribution it would be a simple matter to calculate the probabilities,

using the mean and standard deviation of all the scores it is a simple matter to assess

the probability of achieving a score greater than x. However the scores do not follow

a normal distribution and such a calculation would lead to gross errors in the estimates

of confidence. The distribution of scores for an ungapped local alignment of random

sequences has been shown to follow an extreme value distribution (Karlin and Altschul,

1990). For this to be true certain conditions have to be met, uppermost of these is that

the expected score 3 paĥ of randomly chosen residues is negative.

Where pi and pj are the independent probabilities of selecting amino acids i and j .

Introduction 37

This makes good sense, if the probability was positive then local matches would tend to

extend to the full sequence length. Luckily scores based on likelihood ratios such as the

PAM and BLOSUM matrices always satisfy this condition. As long as this condition is

met and at least one of the scores has a positive value it is possible to calculate one of

the parameters of the extreme value distribution. A is the unique positive solution for x

in Equation 1.3.
20

E = 1 (1.3)
i , j = l

The second parameter that is important to our calculations is K, this is a constant which

is defined by a geometrically convergent series, which is dependent on the scoring scheme

i.e. the values of pi, pj and The formula to calculate K is explicitly defined but

due to its complexity I have decided not to reproduce it here; it is well documented in

the appendix of Karlin and Altschul (1990). Using these two parameters it is possible to

calculate the probability of achieving a score S greater than or equal to x the observed

score.

P{S > x) = 1 — exp{—Kmne~^^) (1.4)

The two parameters that have not been discussed yet, m and n, are the lengths of

the query and target sequences respectively. For a database search the target sequence

can be thought of as the database as a whole therefore n would be the length of the

database in residues. It is on this general basis that all the statistical evaluations of

sequence hits are based. Of course this formula only applies to ungapped alignments,

which makes it ideal for use in simpler programs e.g. the original BLASTP. However the

Introduction 38

newer implementation of both BLAST and FASTA produce gapped local alignments as

rather than ungapped ones. An extension of this theory which is known as sum statistics

(Altschul and Gish, 1996) allows the assessment of a set of top scoring local alignments

rather than just the optimal segment via the sum of their scores. From this it has been

shown empirically that the results from gapped local alignments seem to fit this function.

However because the gap penalties alter the scoring scheme the values of A and K for

gapped and ungapped alignments are different. For gapped alignments these parameters

cannot be estimated directly and instead have been estimated by fitting Equation 1.4 to

scores from simulations. When gapped alignments are used a better result is obtained

when the sequence lengths are corrected for edge effects. Because a subalignment does

not exist at a single point it cannot start near the end of either sequence or it will run out

of space before it can reach an optimal score. As a result to correct for this edge effect

it is advisable to estimate the effective length of the sequences. Equation 1.5 shows how

to calculate the effective length m! for sequence m, with the n' calculation following the

same format. H is the relative entropy of the scoring system (Altschul, 1991; Altschul

and Gish, 1996).

, \nK m n
m « m —— (1.5)

Rather than P-values the new versions of BLAST utilise E-values (Altschul et al.,

1997; Schaffer et al., 2001). These are the expected number of subalignments of random

sequences with an optimal subalignment score greater than or equal to x.

Introduction 39

The significance testing methods utilised by the FASTA suite of programs are also based

on the extreme distribution theory. However the implementation of this is somewhat

different (Pearson, 1998). Rather than using pre-computed values of A and K, the

distribution is itself calculated using all the similarity scores produced during the database

search. The mean (/i) and standard deviation (a) are related to K m n and A and are

easy to calculate from these scores. This should mean that the correct distribution

parameters are calculated each time, regardless of the scoring system or gap penalties

used. However, the estimation is only accurate if all the sequences are unrelated e.g. if

random sequences are used. However in a real search some sequences will be related,

indeed these are the very sequences we are trying to locate, the homologues of our query

sequence. When the dataset includes these related sequences this method of estimating

the significance breaks down the effective values of K and A that are implied by the

distribution will be incorrect and will mean that the significance values reported will be

incorrect, true hits would be ignored as false. To overcome this problem the authors

of FASTA implemented a filtering system with the intent of removing any scores that

might be from related sequences so that a correct estimate could be made.

z = (1.7)

Before the significance of a hit is calculated, its score is converted in to a z-va lue as shown

in Equation 1.7. This z-va lue is then converted to a P-value using the extreme value

distribution as shown in Equation 1.8. A more complete explanation of the procedure

Introduction 40

can be found in Pearson (1998).

P {Z > z) = 1 — exp(—e (1.8)

The filtering method used splits all of the scores up into separate 'bins' according to

the lengths of the sequences, the means and standard distribution of each of these bins

is calculated and a simple linear regression line is calculated for the means of the bins.

The z-va lues of all the scores are then calculated with the mean of each bin being taken

from the regression line. Any scores with z-va lues <-3.0 or >5.0 are excluded before

the procedure is repeated for a second time. Once complete are the remaining scores

are used to estimate the extreme value distribution used to calculate the final P-values.

Advanced Search Schemes

As good as these heuristic programs have become and as accurate as the full Smith-

Waterman search is, these methodologies still have limits to their success in finding

homologues. The main limiting factor is that these are all pairwise approaches, they

compare one query sequence to each sequence in the database. What they do not

and can not do is take into account the information contained in any homologues that

have already been identified to the query sequence i.e. the searches do not incorporate

information on the protein family of the query sequence. The idea of doing such a thing

is so that homologues that are much more remote can be isolated, which when compared

to the query sequence alone show no definite homology.

The simplest approach to this problem is the Intermediate Sequence Search (ISS)

Introduction 41

method (Park et al., 1997). This approach makes use of intermediate sequences to

find remote homologues, for example if sequences one and two match each other with

a high score and sequences two and three match with a high score, we can infer that

one and three are homologous even though when compared directly they have a low

score of similarity. This method and other similar ones (transitive sequence searching

(Neuwald et al., 1997), systematic re-searching (Krause and Vingron, 1998) and multiple

intermediate sequence searching (Salamov et al., 1999)) have proven to be very effective

at recognising more remote homologues than the simple pairwise systems (Gerstein,

1998; Park et al., 1998).

Whilst ISS and related methods are simple and effective they are largely just a more

complex way of carrying out a pairwise search. However methods have been developed

that can use more than one sequence at once to search a database. These are the profile

search methods, of these the most predominant is PSi-BLAST (Altschul et al., 1997;

Schaffer et al., 2001). As it's name indicates PSI-BLAST is a member of the BLAST

suite of programs available from the NCBI. It works in almost exactly the same way as

BLASTPGP, in fact a single iteration of PSI-BLAST is Just BLASTPGP. However the

program is designed to iterate and sequences found in the first round are used to help find

more distant homologues in the second round and so on. PSI-BLAST is not a true profile

based database search engine. What it does is use the results of previous rounds or a user

defined alignment to produce a position specific scoring matrix (PSSM) for the query

sequence. The PSSM is a very powerful tool rather than relying on a substitution matrix

like the BLOSUM or PAM series, the construction of the PSSM allows PSI-BLAST to

Introduction 42

define which substitutions are most likely at each position in the query sequence on the

basis of the hits already found. To form the PSSM PSI-BLAST uses a pseudo-multiple

alignment of all the hits above a set threshold e.g. default is an E-value of 0.01. I refer

to this as a pseudo-alignment because the hits are stacked on top of the original query

sequence and no attempt is made at a full alignment, which would involve aligning all

the hits to one another as well. Identical sequences are excluded from the alignment as

are any sections that would involve the insertion of a gap in the query sequence, the

aim of this is to make the PSSM the same length as the query sequence. One of the

main reasons for not conducting a full multiple alignment is to keep the computation

time to a minimum. In comparison to a database search a full multiple alignment is

much more time intensive. The PSSM is then constructed from the pseudo-alignment

using a modified version of the Henikoff and Henikoff weighting scheme (Henikoff and

Henikoff, 1994; Altschul et al., 1997). PSI-BLAST continues iterating until the search

has converged, finding no new hits over the set threshold, or until it reaches the maximum

number of iterations set by the user. The power and success of this method has been

demonstrated in several different benchmarks (Park et al., 1998; Müller et al., 1999).

A somewhat different approach is taken by the QUEST program (Taylor, 1998; Taylor

and Brown, 1999). Unlike PSI-BLAST, QUEST uses an independent multiple alignment

program MULTAL (Taylor, 1987; Taylor, 1988) to align the sequences between iterations,

thereby hopefully improving the quality of the profile fed into the next stage. QUEST

also incorporates two screening steps between iterations. The first removes sequences

that are too divergent to align correctly, this is done with the intention of removing

Introduction 43

any incorrect sequences so that the profile does not become 'polluted'. The second

screening step is similar to one of the PSI-BLAST steps simply removing any sequences

that are too similar thus preventing them becoming overrepresented and hijacking the

profile. The search phase itself is not that dissimilar to the BLAST methods, the main

difference comes from the automatic optimisation of several parameters on the fly. These

parameters are the score cutoffs that will ultimately determine the speed, accuracy and

success of the program. The idea of this automatic control of these parameters is to

allow a relative novice to use the QUEST program and achieve very successful results

without needing any specialist knowledge on judging alignment quality. The success of

this approach has been evaluated and has been found to be quite effective (Taylor, 1998;

Taylor and Brown, 1999).

A different approach is again used by hidden Markov model (HMM) based search

systems. These approaches actually follow the profile based systems quite closely, but

rather than a profile an HMM is used to model the sequence information. HMMs are

a class of probabilistic models that are particularly applicable to linear sequences, such

as biological sequence information. Much of their appeal derives from the strong math­

ematical and statistical theory that is their cornerstone, as opposed to the sometimes

ad-hoc system used in generating profiles. There is not space here to explain the theory

behind hidden Markov models, nor could I do it justice. There are however several good

reviews of HMMs and their application in biological sequence analysis (Durbin et al.,

1998; Eddy, 1998). Good examples of HMM based approaches are SAM-T98 (Karplus

et al., 1998) and HMMER (http://hmmer.wustl.edu), which are proving to be ef­

fective search tools (Karplus et al., 1998; Park et al., 1998; Taylor and Brown, 1999).

http://hmmer.wustl.edu

Introduction 44

1.6 Aims

The broad aim of this project are very simple - to design and devise more efficient systems

for searching and accessing large sequence databases. The priority being to maximise

both the sensitivity and selectivity, which in turn means identifying the maximum number

of correct hits whilst picking up the bare minimum of incorrect sequences.

Input Sequence(s)

ASSESSMENT PHASE
e.g. Mulfll, T-Coffee

SEARCH PHASE
e.g. Quest

^ Output Sequence

ALIGNMENT PHASE
e.g. ClustalW, T-Coffee

Figure 1.4: The QUEST Scheme

The basis for this work was the QUEST program (Taylor, 1998; Taylor and Brown,

1999). QUEST is actually a scheme made up of several stages and programs, one of

these is Quest the database searching program. To distinguish between these two the

search scheme will be refered to in capitals only i.e. QUEST whereas the search program

will be largely lowercase i.e. Quest. This project aims to develop both the scheme and

the program. With the QUEST scheme we intend to evaluate and optimise the various

programs used to improve sensitivity whilst introducing advanced filtering steps between

the various stages to maximise the selectivity. The basic form of the QUEST scheme

Introduction 45

can be seen in Figure 1.4. It starts with a heuristic based searching step similar to that

of PSI-BLAST but able to take a multiple alignment as a query. PSI-BLAST still only

takes a single sequence as a query and uses the alignment just to construct a PSSM for

the query. The second stage is the alignment phase. The hits from the first phase are

aligned, unlike PSI-BLAST this is a true multiple alignment rather than a stack of pairwise

similarities to a single query sequence. The third phase is the assessment phase where

sequences that are too divergent or indeed too similar are filtered out. The resulting

alignment is then fed back to the search phase as the query for the next iteration. In

the original QUEST implementation the alignment program MULTAL was responsible

for the alignment phase and most of the assessment phase. One of the intentions of this

work was to more fully modularise this scheme so that these two phases can be separated

allowing different programs to be mixed and matched in the various phases to maximise

the overall success of the scheme.

At the same time the intention of the project is to improve the efficacy of the Quest

program itself. Test runs of Quest proved it to work quite well when it is used iteratively

with a multiple sequence input, however attempts to run it with a single query sequence

gave extremely poor results. It is likely that in many cases a single sequence would

be used as a query to start the iterative process, thereby it is hope that improving the

efficiency of the program with a single sequence input should also improve the results

from the multiple sequence iterations.

To sum up the aims of this project are to build on the foundations of previous work

with ultimate aim being the same as that of the original project to develop a database

Introduction 46

search system that maximises both sensitivity and selectivity. Whilst at the same time

being simple to use allowing a bench biologists to produce an accurate set of results just

as easily as a trained bioinformatician.

Chapter 2

Quest: A Profile Based Search

Program

The original Quest program was written by Willie Taylor and Nigel Brown (Taylor, 1998;

Taylor and Brown, 1999). As part of the QUEST scheme and under strict control its

execution was quite effective. However preliminary work on the program showed it to

have several key weaknesses. On the simplest level its interface and output was over

complicated and confusing to new users. Much more seriously were problems inherent

in its design. Quest had been written to use a multiple sequence alignment as a search

query and in such circumstances this worked relatively well. But in many if not most

real database searches we are naturally going to start with a single query sequence,

which Quest could not read. It was possible to fool the program by presenting it with

an alignment of two identical sequences as a query. However the method by which it

constructed its scoring scheme meant that the result achieved in this manner extremely

poor.

Quest: A Profile Based Search Program 48

From these preliminary observations some of the key aims of this project were put

together. Primarily the aim was to improve the stand alone efficiency of the Quest

program, i.e. how well it works outside of the QUEST scheme. A core part of this aim

was to make Quest work equally well with either a single sequence or a multiple alignment

input. Both of these abilities would be important in an iterative scheme. The secondary

aim was to improve the usability of Quest, whilst not as important to the core aims of

the project this is still relevant if people are going to make use of the program. This

goal incorporates as simple ideas as removing redundant parameters from the command

line and using standard rather than proprietary file formats to presenting the results in a

coherent easy to read manner. As well as making Quest easier to use this goal would also

allow the QUEST scheme to be much more modular. The use of standard inputs and

outputs would allow Quest to be paired with a much larger variety of sequence analysis

programs.

Rather than starting again from scratch we decided to take the original program as

our starting point and effectively go through all of the code line by line. This allowed us

to understand totally how the program was working and how each function interacted.

From this level it was then possible to simplify and improve the operation of the program.

This included stripping out all the excess code that was no longer in use and updating

the syntax allowing it to be compiled much more easily on most available platforms. This

code was then taken as our starting point as we set about re-writing the key functions

to improve the accuracy of the program.

Quest: A Profile Based Search Program 49

2.1 Quest: Method of Operation

Because the Quest program has been so completely rewritten, I will go through the

whole method of operation taking care to highlight the key differences between the two

versions. The original methods have been well documented in the previous literature

(Taylor, 1998; Taylor and Brown, 1999). The overall operation of Quest can be split

into four distinct stages.

2.1.1 Stage I: Input & Preprocessing

The first stage of the program is the input of the necessary data and the preprocessing

that has to be done before the search stages themselves can begin. This stage has three

substages; data input, profile construction and tripeptide table construction.

Data Input

Data input does not just involve the reading of the input file by Quest, but also includes

several other important pieces of data. The first thing Quest does is to read the informa­

tion passed to it on the command line. There are a number of parameters and options

that can be passed to the program is this way; these are fully detailed in Section 2.2

and I will not cover them fully again here. Of these parameters there are three that we

are particularly interested in at this stage, the input, database and matrix parameters.

These parameters respectively define which input, database and matrix file Quest should

use in the current run. If a matrix file is specified that file is read by Quest and loaded

into memory to use as the amino acid substitution matrix. If no file is specified a de-

Quest: A Profile Based Search Program 50

fault BLOSUM62 matrix that is hard coded in the program is used. The database file

information is stored until the search stages begin.

Once the matrix file has been evaluated, the input file is dealt with next, in the

original implementation Quest expected a multiple alignment as an input file. In addition

to this the multiple alignment had to be in MULTAL (Taylor, 1988) format. This is a quite

unique format with the multiple alignment being in a vertical as opposed to horizontal

orientation. Whilst easy to read by eye and computer, its weakness was its unusual

nature. No other alignment programs produced this type of file format and none of the

commonly available file conversion programs recognised it. It was thus decided to scrap

this format and use a much more universally acceptable one. After evaluating several

options we turned to the Fasta format (Figure 2.1). Although not ideal for representing

multiple alignments, which are difficult for the human eye to make much sense of in this

layout. The Fasta format had two distinct advantages; it could represent single sequences

and multiple alignments in the same format, allowing Quest to take a single sequence

input as easily as a multiple alignment, with no further rewriting needed. Secondly the

Fasta sequence format is very widespread, the majority of sequence analysis programs

are capable of understanding and using it. Because almost all database sequences are

available in this format, they can be directly used in Quest with no previous alteration

needed.

Profile Construction

After the initial sequence or alignment has been read into the program the preprocessing

stages start. The first step is the production of the profile, which basically amounts to

Quest: A Profile Based Search Program 51

A. B.

>SEQ1 >SEQ1
ACDEFGHIKLMNPQRSTVWYACDEFGHIK >SEQ2
LMNPQRSTVWY >SEQ3
>SEQ2 >SEQ4
ACD— GHIKLMNPQRS------------ AATT
-MNPQRSTVWY CCCC
>SEQ3 DDDN
TCDQYGYIKLMNPEGADI---------- E-QQ
-MNPQRSTVWY F-YY
>SEQ4 GGGA
TCNQYAYVELINPEGADL---------- HHYY
IINPQRSTVWY IIIV

Figure 2.1: Input File Formats: A. Pasta: The present Quest input format. This format is
defined by having a title line for each sequence starting with a > character, the actual sequence is
then contained on the following lines. B. MULTAL: The previous Quest input format. The start of the
same alignment is shown in MULTAL format. The vertical orientation is clearly visible as is its increased
readability, divergent positions being more clearly visible in this format.

the construction of a PSSM from the input sequence(s). Before the PSSM is constructed

the input alignment is pruned. The section of the alignment that is used to build the

PSSM starts at the first position at which less than 25% of the sequences have gaps and

ends at the last position where less than 25% of the sequences have gaps. The intention

of this restriction is to prevent the frequently divergent tails of the multiple alignment

from distorting the search specificity. Of course when the query is a single sequence, the

whole sequence satisfies this condition and so no part of the sequence is excluded.

The actual method of the profile construction itself has changed radically from the

previous version of Quest. It was in fact at this stage that a large amount of the errors

and problems were previously introduced, especially with single sequence inputs. In the

original version of Quest, this stage did not involve the production of a traditional PSSM,

but instead the calculation of something known as the amino acid similarity transfer

Quest: A Profile Based Search Program 52

function. Whilst the function did give a weight for each amino acid at each position

much like a PSSM, the method of its construction was quite different and complex. First

of all for a given position in the profile the 20 amino acids were given a weight of

1 if they are present and 0 if they are not. No attention was paid to the frequencies

of the amino acid types, merely their presence or absence. A modified weight (^w) was

then calculated according to the Equation 2.1. Where s[i, j] is the amino acid exchange

weight for residues i and j in the exchange matrix (PAM120 in the original program)

and a is a constant between 0 and 10 (Taylor, 1998).

(2.1)
i=i

These weights were then normalised to have unit variance and a mean of zero. The

normalised weights were shifted so that the mean was equal to the mean of ^w, the

original weights. The resulting values were then mapped into the range -1 to +1 by

a switch function formed by the tails of a Gaussian curve. A much fuller account of

these transformations can be found in the original literature (Taylor, 1998). Finally, in

an attempt to prevent the dissipation of the original signal, all the amino acids that were

present at that position in the original profile were set to 1, the maximum value.

On closer examination we found this excessively complex weighting scheme to be

responsible for some of the worst errors that Quest was producing. When a single

sequence was used as an input, no matter which amino acid is present at a given position

it would have a score of one for a self match. No discrimination was made against

different amino acid types. In the BLOSUM62 matrix, tryptophan has a score of 11

Quest: A Profile Based Search Program 53

for an identity match, whereas alanine has only 4. Scoring all of them the same means

that a huge amount of information is lost. Essentially it converts a similarity matrix

into a virtual identity matrix. Furthermore, if a multiple alignment is used as an input,

highly conserved sites will not be made obvious unless they are conserved in every single

sequence. For example an alignment often sequences has one highly conserved site; 9 of

the sequences have the amino acid aspartic acid and 1 has lysine. Because only presence

or absence is scored this will give the same result as a 50:50 split. As a result of these

problems we moved to completely rethink the method of PSSM construction, with the

intention of preserving as much information from the sequence or alignment as possible.

In the new implementation the PSSM is calculated in a more classical way (Gribskov

et al., 1987), directly from the alignment. Where the input is a single sequence we can

think of this as an alignment of only one sequence. For each position in the alignment.

Quest scans through the amino acids present. For each occurrence of a residue its

substitution values from the exchange matrix are multiplied by the weight of the sequence

and added to those for the other sequences. When all of the sequences at that position

have been added, the exchange values are divided by the sum of the sequence weights.

This gives the final exchange scores for the present position of the PSSM. The idea of

dividing by the sum of the sequence weights is to prevent the values of the scoring scheme

increasing each time new sequences are added. When the input is a single sequence the

weight of the sequence is obviously one and therefore the scoring scheme is essentially

just the exchange matrix that was initially selected. For clarity a graphical representation

of this system is detailed in Figure 2.2.

Quest: A Profile Based Search Program 54

Sequence 1 2 3 4
Residue A A T T

Seq. Weight 1.0 0.5 1.0 1.5

A 4.0 2.0 0.0 0.0 6.0 1.5
C 0.0 0.0 -1.0 -1.5 -2.5 -0.625
D -2.0 -1.0 -1.0 -1.5 -5.5 -1.375
E -1.0 -0.5 -1.0 -1.5 -4.0 -1.0
F -2.0 -1.0 -2.0 -3.0 -8.0 -2.0
G 0.0 0.0 -2.0 -3.0 -5.0 -1.25
H -2.0 -1.0 -2.0 -3.0 -8.0 -2.0
1 -1.0 -0.5 -1.0 -1.5 -4.0 -1.0

K -1.0 -0.5 -1.0 -1.5 -4.0 -1.0
L -1.0 -0.5 -1.0 -1.5 — y -4.0 — >■ -1.0

M -1.0 -0.5 -1.0 -1.5 sum up scores -4.0 divide by sum -1.0
N -2.0 -1.0 0.0 0.0 of the 4 seqs. -3.0 of seq. weights -0.75
P -1.0 -0.5 -1.0 -1.5 -4.0 -1.0
Q -1.0 -0.5 -1.0 -1.5 -4.0 -1.0
R -1.0 -0.5 -1.0 -1.5 -4.0 -1.0
S 1.0 0.5 1.0 1.5 -4.0 -1.0
T 0.0 0.0 5.0 7.5 12.5 3.125
V 0.0 0.0 0.0 0.0 0.0 0.0

W -3.0 -1.5 -2.0 -3.0 -9.5 -2.375
Y -2.0 -1.0 -2.0 3.0 -8.0 -2.0

Figure 2.2: Construction of the PSSM. The first 4 columns denote the amino exchange
value for the four amino acids multiplied by their respective sequence weights. The effect of
this can be seen by comparing columns 1 and 3 (which both have a weight of one) to 2 and 4
respectively (which do not). Each of the rows in these columns are then summed to produce
the fifth column. Which is then divided by the sum of the sequence weights (4 in this example)
to give the final exchange values for this position in column six.

Tripeptide Lookup Table

Once the PSSM has been constructed the next stage is to compile the tripeptide lookup

table. Like many other database searching programs Quest uses a short initial segment

match as a starting point, these are known as k-tuples in FASTA and words in BLAST. In

Quest we do not allow their size to vary and so we refer to them simply as tripeptides. In

Quest: A Profile Based Search Program 55

the original implementation Quest scanned through the profile and recorded the positions

of approximately 25% of the top scoring tripeptides. It is important to note that these

tripeptides did not necessarily occur in any one of the sequences in the input alignment,

they can be formed from a combination of the sequences. The idea of the 25%/75%

cutoff value was to save time by preventing Quest evaluating matches to the lower

scoring tripeptides, which were less likely to be meaningful. Unusually the system used

to score the tripeptides did not depend on the amino acid weights for the three positions,

but instead was calculated as the sum of their positional conservation scores (see below

Equation 2.2). This was a different method to that used to score segment extensions

(Section 2.1.2). The consequence of which was that identical segments seeded from

different but adjacent tripeptides could have quite different scores.

The new implementation uses a coherent scoring system throughout. The tripeptide

lookup table is still constructed and is still categorised by score and position. However the

tripeptide scores are now calculated from the PSSM in an identical way to the segment

extension method. In addition to giving very reliable indications of how well conserved

and informative the tripeptides were, this system also creates consistency, consequently

identical segment matches will always have identical scores. Because Quest was being

designed with the QUEST scheme still very much in mind, we made the decision to drop

the tripeptide cutoff and accept any tripeptide with a score greater than zero. There

was a specific reason for this decision, in the QUEST scheme it is the alignment phase

rather than the search phase that is generally the rate limiting step. As a result time

saving was no longer considered a good enough argument for the loss in sensitivity caused

Quest: A Profile Based Search Program 56

by this cutoff. It is important to note that a restricted version of the cutoff is still in

place. By defining the cutoff as zero we prevent negative scoring tripeptides from being

considered. Examples of these would be tripeptides that have been included as a result

of a low strictness setting (Section 2.2.1), i.e. a tripeptide made up of three amino acids

similar to those found at those particular positions but not actually present themselves.

So in short even though the cutoff is set to zero not all possible tripeptides will be found

in the lookup table, unless of course the makeup of the input sequences is extremely

diverse.

2.1.2 Stage II: Tripeptide Matches & Segment Extension

The second stage of the Quest program is responsible for the location and initial scoring

of the local subalignments between the profile and the database sequences. Within the

Quest program we refer to these subalignments as segment hits. There are two substages

to the production of these segments; tripeptide matches and segment extension. I will

deal with these together because the first does immediately trigger the second.

Before I go any further I must return to the subject of the database. In Section 2.1.1

it was indicated that the name of the database file is saved for later use. It is at this

point that we put it to use. Quest works through the database by reading each sequence

one at a time and evaluating the scores produced from stages II and III before moving

on to the next sequence. The method of reading the database is not quite as simple

as this sounds. Quest actually uses two files; the database file and a file known as the

scanner file. The scanner file and the reasoning behind it is more fully explained in

Quest: A Profile Based Search Program 57

Section 2.3.2. In short, it is a list of the databases attributes including the number of

sequences, the residue length of the database and the file positions of all the sequences

within the database.

Once the database sequence has been read in to the Quest program each of the

overlapping tripeptides that make it up are read and analysed in turn. If the tripeptide

is present in the lookup table the segment extension function is triggered. Segment

extension is summarised in Figure 2.3 and basically involves Quest attempting to extend

the tripeptide match into a larger subalignment known as a segment. The C- and N-

terminal extensions of the tripeptide are dealt with identically but independently before

being combined to give the final segment boundaries and score. Starting with the

tripeptide the segment is extended by adding the exchange value from the PSSM of

the next amino acid in the database sequence to the tripeptide score. If this score

is higher than the tripeptide match score then it is set as the segment score and the

segment coordinates are similarly extended. This is then repeated for the next residue

and so on. If at any point the score is higher than the previous maximum obtained, the

segment score and boundaries are set to the new values. However, if at any point the

current score of the extension drops below zero, the extension is stopped and the segment

score and boundaries are reported from the maximum scoring point. The process is then

repeated in the other direction before the two are combined to give the final segment

score and boundaries. This process may seem to have little in common with the Smith-

Waterman local alignment procedure reported earlier (Section 1.5.1), but it is in fact

a restricted version of it. Segments are essentially ungapped sub-alignments indicating

local similarity between the probe profile and the database sequence.

Quest: A Profile Based Search Program 58

2
8œ

DAAVAKVCGSEAÏKANLRRSWGVÎÎS^ÏEATGLMLMS^LFTLRDTKTYFTR

Figure 2.3: Segment Extension. The initial tripeptide match (red) is extended one amino
acid at a time until the extension score (black line) reaches zero. The boundaries of the highest
scoring segment are defined by the maximum scores (vertical blue lines) giving the segment
shown (blue).

The original method of segment extension worked in a very similar manner. The one

difference emanated from how the position specific scores, or weights were calculated in

the original version. Because the amino acid weights took no account how many amino

acids were present at a particular position, rather just their presence or absence. When

the score at each position was added to the running total, the weight of that position

was multiplied by P the positional conservation (Equation 2.2).

(2.2)

Where Q was the number of positively weighted amino acids at that position. P only

takes integer values, thus a completely conserved position would give P = 20, whilst a

position with 11 or more positive residues would have P = 0. Because the new scoring

system already takes into account the numbers and occurrences of amino acids this

factor was redundant and hence removed.

Quest: A Profile Based Search Program 59

2.1.3 Stage III: Segment Assembly & Sequence Scoring

Stage III builds on the second stage by attempting to turn the various segments and

their scores into one continuous sequence hit. As before there are two substages to

this process, this time quite distinct in their operation; segment assembly and P-value

calculation. However, before either of these processes are initiated, the segments are

sorted according to score with those scoring less than the cutoff being discarded. The

cutoff score calculation is virtually unchanged from its original implementation. Once

stage I is complete. Quest carries out a mini database search by reversing the input

sequences and using them as a database. The purpose of his reversal is to generate

sequences that have the same length and amino acid makeup as the original input

sequences but with no homology to them. In effect this is a fast and effective method

of producing a pseudo-random sequence. The segment cutoff is set so that 10% of the

segments generated from the reverse sequences would be accepted and 90% rejected.

In it's original incarnation this level was 95%, but experimental evidence indicated that

a small drop produced considerably better results with only a very small trade off in

computation time.

Segment Assembly

The new segment assembly function in Quest was designed to be as simple as possible.

To save on excessive computing time it was designed as a ‘greedy’ algorithm. We assume

the highest scoring segment hit to the current database sequence to be ‘correct’. The

definition of ‘correct’ obviously does not mean that the sequence is a match to the query.

Quest: A Profile Based Search Program 60

but that any other segments that contradict this one will be ignored. From this highest

scoring segment we then step down to the second highest scoring segment and evaluate

whether it can be fitted to the first. For this to be true the segment must be linear to

the highest scoring segment. This concept is easiest explained by an example. If the

highest scoring segment is a match between the centre of the profile and the centre of

the database sequence (dark blue line in Figure 2.4), then the second is rejected if it

is a match between the start of the profile and the end of the database sequence. It

is rejected because the segments cannot be laid out in a linear order. To be accepted

the segment as well as following a linear sequence the segment cannot overlap with the

highest scoring segment, it must be wholly in the top left or the bottom right corners

of the alignment matrix (outside the shaded area in Figure 2.4). If these conditions are

satisfied the two segments will be joined if their combined scores minus any gap penalty

(Section 2.2.1) is greater than the present highest scoring segment. If the two segments

are combined a quick check is done to see if any other lower scoring segments that fit

the same conditions fall between the ends of the two joining segments. If these exist

their scores are also added to the combined segment to form a new larger highest scoring

segment. This process is then repeated with the next highest scoring segment and so

on until all the segments have been assessed and either joined to the highest scoring

segment or discarded from the evaluation. The final remaining extended segment is

renamed as the sequence hit for the present database sequence.

Quest: A Profile Based Search Program 61

Figure 2.4: Segment Assembly. The large rectangle represents the alignment matrix. The
blue line is the highest scoring segment. The light blue shaded area indicates the excluded
region. Any segments within this area will either overlap or be non-continuous with the highest
scoring segment. The red lines represent segments, that depending upon the gap penalty can
be joined to the best segment. Whilst the grey lines are segments that fall on or in the excluded
region and hence cannot.

P-Value Calculation

At this stage the score of the sequence hit is the sum of its constituent segment scores.

The segments themselves are scored according to the pairwise similarity of the profile and

the database sequence. On its own this scoring system has no inherent faults. However

when we wish to compare the results of more than one database sequence, problems can

occur. The score is length dependent, a longer hit is much more likely to have a high

score than a shorter hit. By chance alone a long sequence be it in the input or database

is more likely to generate a hit of score x than a shorter one.

Quest: A Profile Based Search Program 62

In the original implementation any hits above a certain cutoff score were reported as

true, with no attempt made to sort or return them on the basis of score. This was not

an acceptable result, many researchers will wish to know which sequences are the best

hits and what level of confidence to have in the various results. Consequently we decided

to make Quest calculate and report P-values in a similar format to that of BLAST and

FASTA. Rather than re-iterate the large amount of work that has been done in this

field, we examined methods used by other authors and decided to implement a function

that was kindly donated by S. Altschul (Karlin and Altschul, 1993; Altschul and Gish,

1996), which provided the exact functionality we required. The sum-statistics functions

estimate the P-value of sequence hits made up of several smaller segments, making them

ideal for our situation. The mathematics for these ideas has already been summarised

in the previous chapter (Section 1.5.2) and I will not repeat them here. When Quest

is given a single sequence input the scoring scheme is essentially just the BLOSUM62

matrix for which the values of A and K are already known (Altschul and Gish, 1996).

When multiple sequences are used as input, the scoring scheme although based on the

BLOSUM62 matrix is unique to each alignment. As a result of this the values of A and

K may no longer be correct. However re-estimating the values of these parameters for

each run of Quest or each iteration in the QUEST scheme would be excessive and very

time consuming. As a result the values of the parameters are kept at the same values

as for single sequences. Whilst not fully mathematically rigorous, this does save a large

amount of time and does not appear to cause excessive errors in the selectivity of the

program.

Quest: A Profile Based Search Program 63

2.1.4 Stage IV: Hit Selection & Output

The final stage of the Quest program has one simple function, the output of results. The

top five hundred hits of the database search are stored throughout the search procedure.

This maximum is enforced purely to conserve run-time memory and it can easily be

altered by changing a single definition during the compilation of the program. Whilst

this maximum may seem restrictive, in practice it is not a problem. Any correct hits that

do not get into the top set during the first iteration of the QUEST scheme should easily

do so in the second.

QUEST
Version 2.0

J.Kleinjung, J.Hatwell, N.Brown, W.Taylor

August 2001

infile = seql
dbfile = SCOP
strict = 100
cutoff = l.OOOOOOe-02
matrix = Default:Blosum62

scanning SCOP

Signifcant Hits found to the Probe Sequence(s)
Name of Sequence Terminii Score P-value nseg
DISCTA. 1.1 1.1.1 1-150 755 1.07e-98 1
DISCTB. 1.1 1.1.1 18-148 478 2.95e-60 1
D3SDHA_ 1.1 1.1.1 12-145 358 6.Ole-42 2
DlCQXAl 1.1 1.1.48 56-126 94 7.69e-07 1
DIHBRA. 1.1 1.1.21 6-77 90 1.75e-05 2
D10UTA_ 1.1 1.1.23 6-62 84 2.08e-05 1
D1HLM__ 1.1 1.1.46 65-149 81 2.18e-04 2
D1HLB__ 1.1 1.1.46 89-150 74 4.87e-04 1
D1CG5A_ 1.1 1.1.25 15-62 72 1.02e-03 1
DIBABA. 1.1 1.1.16 4-44 71 1.48e-03 1
D1A4FA_ 1.1 1.1.22 2-42 68 3.85e-03 1

scanned = 4133 matched = 11

Figure 2.5: An example of a Quest output. The top of the output is the Quest program
information, followed by the parameter settings and results for this run.The five result columns
respectively are: The name of the database sequence found; the termini of the sequence hit
on the database sequence; score of the sequence hit; P-Value of the sequence hit; number of
segments combined to produce the sequence hit.

Quest: A Profile Based Search Program 64

When Quest has finished scanning all of the database sequences it prints out the

results with a P-value lower than the cutoff (Section 2.2.1). By default Quest actually

produces two outputs. The primary output is to the screen, an example of this can

be seen in Figure 2.5. All of the hits that were accepted as true are printed out, the

information includes the sequence name, size, score, P-value and the number of segments

that make up the hit. Unlike the previous implementation this output is in the form of

a sorted list with the sequence hit with the lowest P-value being printed first. It is

important to note that P-values and scores are not the same thing. Most of the time

the sequence with the lowest P-value will be the highest scoring sequence, but this will

not always be true.

The second output is to a file, by default named hits.seq'. The information saved

from each hit is used by Quest to grab the sequence information for each of these hits

back from the database file. The sequences are then printed out in Fasta format to the

‘hits.seq’ file. This file can then be aligned with the original input sequences and fed

back into Quest for the next iteration. To prevent the need to align non-homologous

regions only the areas of the sequences that make up the sequence hit are written to the

hits.seq'. Thus the sequences in this file will almost always be shorter than the database

sequences themselves.

2.2 Quest: Parameters, Modifiers and Run-Modes

Despite our aim to make Quest easier to use it has accumulated no less than 16 different

command line options (Table 2.1). It is not however necessary to use all of these options.

Quest: A Profile Based Search Program 65

In fact only two are compulsory, the input file name and the database file name, all of

the other options have default states. Many of the options would not be used at all

when Quest is used on it's own; they have been added specifically for use as part of the

QUEST scheme. The options can actually be separated in to the following three groups;

parameters, modifiers and run-modes.

Option Short Description
-c <cutoff> Specify P-Va lue cutoff. Default = 0.01
-d <database> Specify the database you wish to search.
-D <scanner file> Specify the scanner file
-e Exclude mode.
-f Return full length hits.
-g <open>:<extend> Specify gap penalty. Default = 10:1
-h Print out the help information
-i <input file> Specify input file name.

-m <matrix> Specify the substitution matrix. Default = Blosum62
-0 <output file> Specify output filename. Default = hits.seq
-P Generate a pseudo alignment.
-r Recursive mode.
-s <strictness> Specify the strictness parameter. Default = 100

-T T-Coffee compatability mode.
-V Verbose output.
-w Very Verbose output.

Table 2.1: Command Line Options for Quest. A short explanation of the sixteen command
line options available to Quest. The -h' option simply causes quest to print out the information
contained in this table.

2.2.1 Quest Parameters

There are three true parameters for the Quest program, they all work by changing key

settings within the program . Alteration of their values will lead to a change in the

reported results.

Quest: A Profile Based Search Program 66

Score Cutoff

The score cutoff is defined by the '-c' option on the command line. By default if no

value is given the cutoff is set to 0.01. The score cutoff is the simplest of the three

parameters in both its operation and effects. The score cutoff sets the level at which

sequence hits are accepted or rejected. Any sequence hit that has a P-value less than

the score cutoff is accepted as a sequence hit and any value that is greater is rejected.

Therefore, if no sequence hits are found during a Quest run, the score cutoff can be

raised until one is reported. However just because it is possible to do this it does not

mean that that sequence hit will be homologous to the query sequence. Probably more

useful is the ability to set the cutoff at a very low level, allowing only very significant

hits to be reported. This reduces the chance of returning an incorrect sequence as a hit.

Strictness Parameter

When undefined the strictness parameter (‘-s') has a default setting of 100. This is the

maximum value the parameter can take and effectively switches off the match softening

function. The effects of changing this parameter are much less predictable and more

complex in their action than those of the score cutoff.

The strictness parameter takes a value in the range of 0 to 100, with 100 denoting a

completely strict match set. Any value lower than this leads to a softening of the match

set. As the strictness level drops the procedure for selecting amino acids that make up

the tripeptides in the lookup table gets softer. At 100% all of the tripeptides are made

up of amino acids that are present at those positions in the input alignment. As the level

Quest: A Profile Based Search Program 67

drops other highly similar amino acids will be included. Similarity is of course defined by

the score of the amino acids in the PSSM. As the strictness drops lower still less similar

ones will be included. Until at 0% all amino acids will be included at every position.

However, many of these tripeptides will have scores lower than zero and hence will be

excluded by the tripeptide cutoff. The strictness parameter works by calculating the

highest and lowest amino acid exchange score at each position and turning the distance

between them into a percentage. Any amino acids that score equal or greater than

the strictness parameter will be allowed to form tripeptides in the lookup table, if those

tripeptides have a score greater than zero.

Gap Penalty

The gap penalty used in Quest is similar to the affine gap penalties used in alignment

algorithms. As such it has two parts; a gap opening penalty Go and a gap extension

penalty Gg. By default Quest operates with Go = 10 and Ge = 1. As already described

the gap penalty does not act on the alignment algorithm itself but rather on the segment

assembly function. The function of the penalty is to prevent segments which would

require too large a gap in either the database or profile sequences from being joined.

If Sa and Sb are the scores of the highest scoring segment and the present segment

respectively and n is the length of gap required to join the two segments. Then for a

Quest: A Profile Based Search Program 68

single sequence query, the two segments will be joined when Equation 2.3 is true.

Sa + Sb if n = 0
(2.3)

Sa ~\~ Sb — {Go H" GeTl) if 71 > 0

However, when a multiple alignment is used as an input the assessment is more compli­

cated. If any of the sequences in the alignment have a gap between the positions of the

two segments, then the gap penalty is altered. If is the maximum gap length in the

alignment between the two segments, then the segments will be joined if Equation 2.4

is true.

Sa “ h Sb if 71 < or 71 = 0

^ ̂ Sa-\- Sb - {Go + Gen) if 71 > 0 and = 0 (2.4)

Sa Sb — G e{n — Qn) if 71 >

In essence, when n < qn the gap is not penalised because a gap of this size or greater is

already present in the alignment. When n > Qn the increased size of the gap is penalised,

but because gaps have been recorded in this position previously no gap opening penalty

is charged. This procedure allows the gap penalty to be somewhat tailored to the input

alignment without actually calculating position dependent gap penalties for its entire

length. It also offers the opportunity to control the type of gaps we allow. Charging an

extremely high opening penalty but low extension penalty would prevent new gaps from

being opened but would happily allow gaps to be introduced in regions they are already

present. A high extension penalty would discourage new gaps larger than one residue

Quest: A Profile Based Search Program 69

from forming, whilst allowing gaps up to the previously observed size in regions where

they already exist.

2.2.2 Quest Modifiers

There are a variety of options that do not actually act on the searching or assessment of

sequences but can none the less be essential for the operation of the program. Some of

these options are essential and others may only be used very rarely, however they all fit

into roughly two groups. Those that modify the inputs of the program and those that

modify the outputs.

Input Modifiers

The input modifying options allow the user to specify the filenames of the input ('-

i’), exchange matrix ('-m'), database (‘-d') and the scanner ('-D') files. Of these only

the input and database file names are compulsory. Quest has a built in copy of the

BLOSUM62 matrix which it will utilise if no matrix is specified or if the ‘-m’ option is

used with the argument ‘blosum62’. Whilst the scanner file is compulsory for Quest to

operate, if it has the standard filename and path that Quest expects there is no need

to specify it explicitly. Quest expects the scanner file to be in the same directory as the

database file and to have the exactly the same name as the database but with the file

extension ‘.scan’. So for example a database named ‘genbank’ would need a scanner file

named ‘genbank.scan’. If the scanner file does not fit the default then the ‘-D’ option

must be used to explicitly define its name and path.

Quest: A Profile Based Search Program 70

Output Modifiers

Unlike the previous set most of the output modifiers have quite different effects. The

output file option ‘-o' like the input modifiers allows the output file name to be changed

from the default 'hits.seq'. The verbose output option '-v' prints out a little extra

information to the screen, most significantly it shows the effect of the strictness parameter

on extending the match set. The very verbose option '-w' sends extreme amounts of

output to the screen and should not be used apart from debugging purposes. The other

two output modifiers can be more useful. The pseudo-alignment option -P' causes

the output of a file named 'hits.aln' containing a pseudo-alignment of the output and

query sequences. This is somewhat akin to the method that PS I-BLAST uses and was

introduced to allow fast independent iteration. However it's efficiency has not yet been

fully assessed. The full sequences option '-f' is probably the most useful output modifier.

When specified it causes Quest to output the full length hit sequences to the output

file, rather than just the hit regions. This saves the user from having to extract them

manually from the database and can allow the more divergent non-hit sections of the

sequences to be used to locate more distant hits in subsequent iterations.

2.2.3 Quest Run-Modes

The three run-mode options could easily be grouped together with the input and output

modifiers specified above. The reason I have separated them is twofold. Firstly they do

actually alter the internal operation of the program rather than Just the inputs or outputs.

Secondly, their functions were specifically designed with the QUEST scheme in mind.

Quest: A Profile Based Search Program 71

Recursive Mode

The recursive mode is undoubtedly the most important of these three modes. It was

written into Quest to allow the program to be more easily used in an iterative context.

The obvious effect during the first iteration is that the query sequences as well as the

hits have been printed to the output file. This is so that they can all be aligned before

being fed back to the next iteration of the program. The second difference is in the

format of the sequence names in the output file. Rather than the standard Fasta format

sequence name, which would have the format:

>Sequence name

Quest tags on a small amount of additional information so that all of the sequence names

follow one of two possible formats:

>?SI Sequence name

>?H1135271 Sequence name

The simply indicates that these sequences have already been through at least one

Quest iteration. The first of these formats relates only to the initial query sequences

of the first iteration. These are known as the seed sequences and hence have been

marked with an ‘S’. There is no other extra information needed for these sequences so

after the vertical bar spacer the original sequence name is added. The second format

relates to sequence hits from this or previous iterations of Quest, with the H' obviously

representing this fact. The number inside the vertical bars is unique for each hit, it

represents the file position of that sequence inside the database. Once these sequences

Quest: A Profile Based Search Program 72

have been aligned and fed back into Quest, the recursive mode becomes responsible for

reading this extra information back into the program. When the program comes across

a previous hit it records the database file position information. This knowledge is then

used during the search stages to prevent the program hitting the same sequence again.

The final results of the Quest iterations are therefore the sum of all the iteration results

and unlike PSI-BLAST not just the final iteration result. This means that without any

outside intervention once a sequence is assigned as a hit it is always a hit. Because the

QUEST scheme has a separate sequence assessment stage this is not a serious problem.

This concept can also be advantageous. Previous work (Park et al., 1998) on PSI-BLAST

has noted that strong hits from early iterations are often lost in the final rounds and have

to be artificially added back. At the end of the iteration all of the hits from the present

and previous rounds along with the initial seed sequences are printed in the output file

ready for the next round. It is important to note that the recursive mode does not make

Quest iterate on its own accord, it merely adds some features that may be useful when

running the program iteratively.

Exclude Mode

The idea of the exclude mode grew very simply from the recursive mode and indeed

it is intended to operate along side it. During iterative runs it may be decided that

one or more of the sequence hits are incorrect. If these sequences are removed from

the alignment then they may frequently be hit again in successive rounds. Rather than

filtering them out from the results each time, the exclude mode works to exclude them

from being hit again. When the exclude mode is active, any sequence names in the

Quest: A Profile Based Search Program 73

‘exclude.seq' file will be excluded from consideration in the database. This works in

exactly the same way that the recursive mode prevents previous hits from being hit

again. The sequence names in the exclude file must be in the same format as the hit

names returned by the recursive mode above.

T-Coffee Compatibility Mode

The T-Coffee compatibility mode was added to allow Quest to produce a library file

that is compatible with the T-Coffee (Notredame et al., 2000) alignment program. T-

Coffee is capable of bringing together disparate sources of information to align a set of

sequences. By default it uses global and local pairwise alignment information to align a

set of sequences. The library produced by Quest contains information indicating how all

the segments in the accepted sequence hits align to the query sequences. The scores of

these hits are also included as an indication of how much we trust these sub-alignments

to be true. The purpose of this library is not to improve the quality of the multiple

alignment because the Quest alignment system is not expected to be fully accurate.

Instead T-Coffee also has the ability to judge the quality of an alignment on the basis of

the information it has received. Thus, if for a certain number of sequence hits the Quest

library disagrees with the alignment suggested by the local and global alignments, T-

Coffee will indicate that these sequences are likely to be incorrect and should be removed

from the alignment. This would allow us to use T-Coffee for the assessment phase as

well as the alignment phase.

In addition to the library file a sequence weight file is also produced by the T-Coffee

mode. This is an extremely simple file consisting of all the sequence names in the output

Quest: A Profile Based Search Program 74

file and the weights that should be given to them during alignment. At present this is set

up so that the original seed sequences are weighted as five times more important than the

hit sequences. This has the effect of partially forcing the other sequences to be aligned

to the original query. This was implemented after we observed the seed sequences being

badly broken up when aligned to larger numbers of hits, thus severely reducing the signal

we were originally searching for.

2.3 Quest for Parallel Architectures and Workstation

Clusters

Whilst one of the original goals of the Quest project was to develop a rapid as well as

sensitive database searching program, Quest never was one of the fastest heuristic based

search programs and the changes that have been made in the latest version have done

nothing to improve this. On a 650 MHz Pentium III workstation with 256Mb of memory

the latest version of Quest takes approximately 100 seconds to search a database of

500,000 sequences. Whilst BLASTPGR in comparison takes on average 18 seconds,

over five and half times faster. Rather than introduce more heuristics to speed up the

operation of Quest, we decided to make more efficient use of the computing resources

available to us.

Quest; A Profile Based Search Program 75

2.3.1 The Cluster

There are three main computing resources available for general use within the depart­

ment. There are 15 user machines of various configurations and ages all running a

standardised version of the Linux operating system (Linux is a freely available Unix-like

operating system, suitable for use on most desktop computers; for further information

see http://www.linuxhq.org, http://www.linux.org and for the particular distri­

bution we use http://www.suse . com). We also have two Linux clusters (also known as

compute farms) named Jura and Oban. Jura is made up of 27 dual processor computers,

which because it was constructed over a significant period of time, vary from 400MHz

Pentium M's with 512Mb to 600MHz Pentium Ill's with 1Gb of memory. Oban is much

newer and is made up from 64 identical dual 733MHz Pentium III processor machines

each with 1Gb of memory. The basic setup of the clusters is shown in Figure 2.6. Each

processor in these clusters represents a single computing node that run an individual

program, this makes 54 nodes on Jura and 128 on Oban. The two clusters are gen-

Node 2

Nodes

Node 4

Server

Node 1

Switch

Figure 2.6: Topology of the Linux Cluster. This diagram shows a simple cluster made
up of four nodes and one server. The server is a centralised computer that distributes jobs to
the cluster nodes. It is connected to all the nodes by a switch. The switch also acts to connect
all the nodes to one another, allowing a process running on node 1 to communicate directly
with another on node 4. When a node has finished its assigned job it sends the results back
to the server, from where it is delivered to the user.

http://www.linuxhq.org
http://www.linux.org
http://www.suse

Quest: A Profile Based Search Program 76

erally used to run time consuming, computationally exhaustive or memory demanding

programs. For example an all against all database search (all sequences in a database

being compared to all other sequences) could run upto 128 times faster if it split across

all the oban nodes.

As well as being possible to run multiple copies of one program at the same time, it

is also possible to design a program so that it can run across many computers/processors

at once to finish a single task more quickly. This technique is known as parallel pro­

gramming. By implementing parallel programming in Quest it should be possible to

significantly cut the time required for a database search.

2.3.2 MPI

For a program to utilise several computers/processors at once it must be capable of

communicating between them. There are several communication systems available that

provide libraries for C programming, but one of the most widely used is the Message-

Parsing Interface (MPI). MPI is actually a standard that defines the syntax and semantics

of various library routines. There are several MPI implementations available, both com­

mercial and free. We used the freely available ‘mpich’ from Argonne National Lab and

Mississippi State University (http://www.mcs.anl.gov/mpi/mpich/), but any other

implementation should work just as well. The scope and use of MPI is too broad to cover

here, but extensive literature is available both on the web and more traditional sources

(Pacheco, 1997). A parallel program running on several computers at once is not a

single program, but instead multiple copies of the original program communicating with

http://www.mcs.anl.gov/mpi/mpich/

Quest: A Profile Based Search Program 77

each other, working towards a common goal. MPI provides all the necessary functions to

carry out this communication. But it is still up to the programmer to figure out how to

spread out the work load and what information to communicate between the processes.

2.3.3 Simple Parallel Database Searching

The first task in converting Quest to run in a parallel fashion was to assess which functions

and routines could be spread across several processors and which ones all of the processors

would need knowledge of. Stage I of Quest would need to be completed by all the

processes as it provides the information that is the basis of the search. It would however

be quite possible to split the work done in stages II and III across many processes. These

stages are responsible for comparing the search profile to all the database sequences. A

simple approach to parallelise this process is to split the database into smaller segments

and have each process search one of the segments. This is essentially the method

we decided to implement. Rather than physically splitting the database in several files,

which would fix the number of computation nodes we would be able to use. We internally

assigned sets of sequences from the database to each node, so that no matter how many

or how few nodes were used each one would have approximately the same amount of work

to do. This assignment of sequences is done in a naive manner with no load balancing

implemented. Each computation node is allocated an equal share of the sequences, for

example if three nodes were used; node one would scan sequences 1,4,7,10... ', node

two would take 2,5,8,11... ', whilst 3,6,9,12.. .\Nou\d go to node three. If one node

finishes before the others it must wait, no attempt is made to allocate it some of the

Quest: A Profile Based Search Program 78

unfinished sequences from other nodes. Whilst it is possible to implement load balancing

we decided not to for the sake of simplicity. This will only become a problem if Quest

is being run across machines that operate at vastly different speeds, the program will

always run at the speed of the slowest machine.

Once all of the nodes have finished scanning their sections of the database they

have to transmit their results back to a single node to sort and print out the results.

Like the normal version of Quest each of the nodes store the top 500 results of their

database search. Every node except the first one then uses MPI to package up these

500 results and transmit them to the first node. These slave Quest processes then exit

having completed the parallel part of the program. The first node which can be thought

of as the master process, receives all the results from the nodes and adds them to its

own. The increased result set is then sorted according to P-value and the top 500 are

retained. The program then deals with these as normal and prints out the final results.

Whilst the parallel processing scheme implemented in Quest is very naive, it is

nonetheless very effective. The previously used example stated that Quest would take

about 100 seconds to search a database of half a million sequences. When running across

two processors this drops to 50 seconds, across 25 Quest takes just 6 seconds. There

is not much further gain beyond this, the more processors that are used, the greater

amount of communication that has to go back and forth between them. Eventually it

is the speed of this communication that becomes the limiting factor, with each process

spending more time waiting for data to arrive. Similarly this is why the speed does not

double each time the number of processor used doubles. This limitation is not a severe

Quest: A Profile Based Search Program 79

problem for us, using parallel processing we are able to accelerate Quest upto 16 times

faster. At the same time we are still using less than a fifth of the computing power

available to us.

The scanner file

The scanner file was introduced in order for each computation node to rapidly move

between it allocated sequence. The scanner file comprises three important pieces of

information: the number of sequences in the database, the length of the database in

amino acids and the file positions of all the sequences in the database. The first and third

of these are used by each node to scan its required sequences. Using the file position

information to directly access the database file at the correct positions turned out to be

much simpler and faster than making each node read through the file from start to end,

whilst only assessing the sequences it was allocated. Accordingly the 'scanner' file was

generated. A program available with Quest, appropriately named scanner will generate

the file automatically for the given database. The reason that the scanner file has been

made part of the normal Quest program is twofold. Firstly it allows both versions of

Quest to work in identical ways. This prevents the need for duplicate functions that do

the same job. In fact by programming all of the MPI dependent code within ‘IFDEF’

statements it was possible to code both versions of the program in the same files, with

the desired version being specified at the time of compilation. This had the advantage

that when a change was made to the program it affected both the MPI and normal

versions without having to remember to update two file sets. Secondly the scanner file

allows additional information on the database to be passed to Quest. For example, one of

Quest: A Profile Based Search Program 80

the standard pieces of information the scanner file contains is the length of the database.

This is essential in the P-value calculations and its presence in this file prevents the need

for it to be passed to or calculated by Quest during each run. One future goal for the

development of Quest is to expand the use of the scanner file, perhaps use it to pre-filter

the database and thus accelerate the search procedure, in much the same way as the

formatdb program does for the BLAST programs.

Chapter 3

The QUEST Scheme

In the original literature (Taylor, 1998; Taylor and Brown, 1999) very little distinction was

made between the QUEST scheme and the Quest program. Nor indeed was there any

need to be, only two programs were responsible for all of the phases of the scheme; Quest

and MULTAL (Taylor, 1988). In addition these two programs were very interdependent,

each produced output in a format the other could use, but incompatible to most other

programs. The two programs together were fairly inseparable and comprised the entire

scheme. Throughout this thesis I have been very careful to distinguish between the

scheme and the program. With good reason, when this project was started we believed

that this search scheme could be much enhanced by increasing its modularity. This would

allow different programs to be slotted into the different roles depending on which was

the most efficient for the Job in hand.

In its original conception the QUEST scheme only really had two phases; the search

phase and the alignment/assessment stage. When redefining the scheme we separated

The QUEST Scheme 82

the alignment and assessment into separate phases to give the scheme shown in Fig­

ure 1.4. The reason for this is simple, most alignment packages make no comment on

the quality of the sequences they are aligning. They will attempt to produce the best

alignment even if the sequences are not homologous. Hence a separate stage would

be needed to assess the quality of the alignment and whether any sequences should be

rejected. For any alignment packages that are capable of filtering out bad sequences the

separate assessment phase offers a simple and convenient double-check.

3.1 The Search Phase

The search phase has one requirement of whichever program is used. The program must

be able to take a multiple alignment as an input and it must return the sequences that

it considers as true hits in the database as an output. There were two main contenders

available to us for use in this phase, one obviously was Quest, the other was PSI-BLAST.

We chose to use Quest for a variety of reasons; firstly because it was our program and we

had done a lot of work on it to offer extra functionality to the QUEST scheme. Secondly

PSI-BLAST did not offer some of the functionality we were looking for. Although it is

possible to feed PSI-BLAST an externally produced multiple alignment, it still requires a

single query sequence as an input as well. Whilst it is true that many if not most searches

would start with a single sequence and PSI-BLAST would work well in these cases, it will

not always be so and in such circumstances PSI-BLAST would require us to choose one

of the input sequences as the query. This generates further problems because no gaps

are allowed in the query sequence, which would mean a loss of information in the other

The QUEST Scheme 83

sequences. Quest was therefore chosen because it could take a full multiple alignment

as a query, with each sequence contributing equally and gaps allowed in all. The method

of Quest's operation has been well covered previously and will not be repeated here.

3.2 The Alignment Phase

As previously stated the function of the alignment phase was originally undertaken by the

program MULTAL (Taylor, 1988). Now that Quest had been changed so as not to be

dependent on the MULTAL file format we decided to evaluate various packages for the

alignment phase. We looked into four main possibilities: T-Coffee, Praline, CLUSTAL W

and the original program MULTAL.

3.2.1 MULTAL

MULTAL is a implementation of the progressive alignment strategy (Hogeweg and Hes-

per, 1984). It makes use of a clustering algorithm to align the most related sequence

first, followed progressively by more distant sequences. To represent multiple sequences

during the rounds of pairwise alignments MULTAL makes use of consensus sequences.

What makes MULTAL different from many other alignment packages is that it will not

force all the sequences given to it into an alignment. If the score for adding a sequence

to an aligned block or joining two blocks is too low then they will not be joined. Any

sequence blocks that are not joined to the main alignment (which from the point of view

of the QUEST scheme is defined as the alignment block containing the probe sequences)

will be reported as separate alignments. It is this ability to reject distant or unrelated

The QUEST Scheme 84

sequences combined with its speed of operation that led to its use in the original scheme.

Whilst these attributes are useful, they are no longer essential. The separate assess­

ment phase has made the ability to reject sequences somewhat redundant. This is now a

useful feature as opposed to a required one. In addition to this change in circumstances

we also ran into some other problems with the program. To produce an alignment

MULTAL requires a parameter file in addition to the sequence file. The parameter file

controls the behaviour of MULTAL during its iterative alignment procedure. Quite small

changes in the file can lead to large differences in the reported alignment. Before we

began to evaluate other alignment packages to carry out this phase of the scheme, we

made an attempt to optimise the operation of MULTAL. To do this we needed to identify

the parameters that produced the optimal output for the QUEST scheme. This turned

out to be no easy task. Each iteration of the MULTAL alignment procedure depends

upon a minimum of 5 parameters. In the initial QUEST paper (Taylor, 1998) MUL­

TAL was given up to 14 iterations, this made a grand total of 70 parameters to find

the optimum value for. An attempt towards this goal was made using the BAIiBASE

(Thompson et al., 1999a) alignment set as an assessment criteria. However this attempt

was soon abandoned because the time needed to achieve this goal was not affordable for

the importance of the task and the fact that the work done did not yield any appreciable

improvement in results. In addition to this, work done using BAIiBASE to benchmark

various alignment programs (Thompson et al., 1999b) showed MULTAL to be one of

the worst performing in terms of alignment accuracy.

The QUEST Scheme 85

3.2.2 CLUSTAL W

The CLUSTAL W (Thompson et aL, 1994) alignment program has already been touched

upon in Section 1.5.1. Like MULTAL it is a progressive alignment strategy. The original

CLUSTAL (Higgins and Sharp, 1988) program was a contemporary of MULTAL, but

the program was revamped several times leading to CLUSTAL W. CLUSTAL W is many

leaps and bounds ahead of it first incarnation. Firstly the input sequences are weighted to

prevent near duplicate sequences causing distorted alignments. Secondly different amino

acid substitution matrices are used at different stages depending on how divergent the

sequences or blocks are that have to be aligned. Thirdly gap penalties are implemented in

a residue specific type manner, giving much greater control over where gaps are inserted.

This procedure also includes reducing the gap penalties for regions which already have

gaps in them from the early alignment stages. This encourages new gaps to form in the

same regions. Fourthly the guide tree is constructed by the Neighbour-Joining method

(Saitou and Nei, 1987) rather than the UPGMA method (Sneath and Sokal, 1973). This

host of improvements coupled with those made in earlier revisions has made CLUSTAL W

one of the most reliable alignment programs available. This conclusion is borne out by its

performance in the benchmark (Thompson et al., 1999b) carried out using the BAIiBASE

alignments. CLUSTAL X (the graphical user interface for CLUSTAL W) was found to

be in the top four of the alignment packages tested. In addition to this it was the only

one of these four that was based on the older progressive alignment method and as such

ran approximately 80 times faster than it's nearest competitor. The speed accuracy and

ease of use of CLUSTAL W have made it one of the most widely used packages and are

very compelling arguments in favour of its use in the alignment phase.

The QUEST Scheme 86

3.2.3 Praline

Praline (Heringa, 1999) is a relatively new implementation of the progressive alignment

system. Unlike CLUSTAL, Praline does not build a guide tree, its progressive strategy

is more akin to that of MULTAL. However unlike MULTAL, Praline is profile based. All

of the initial pairwise alignments are calculated, with the most similar pair of sequences

being joined and replaced with a profile. The profile is then compared to all the remaining

sequences and the highest scoring alignment is Joined and replaced by a profile. It is

important to note that at this stage the highest scoring alignment may be a pairwise one

between two as yet unjoined sequences or between the first profile and another sequence.

This procedure continues until all the sequences have been combined in single multiple

sequence alignment. In addition to this well proven technique. Praline has the capacity

to implement two additional novel methods to the alignment strategy.

The first is refered to as profile-preprocessed multiple alignment. The specific aim

of this method is to reduce match errors during the early alignment rounds, specifically

in relation to the placement of gaps. The idea being to combat one of the inherent

errors of the progressive strategy that once a error has been made in a early round it

will be propagated through all the remaining ones, the so called once a gap, always

a gap' problem. This method works by creating preprocessed profiles for each of the

input sequences before the alignment itself begins. To construct these profiles all of

the pairwise alignments are calculated, then for each input sequence these alignments

are used to produce a stacked alignment of sequences in much the same way that PSI-

BLAST produces its alignment. Sequences that fall below a user defined cutoff are not

The QUEST Scheme 87

added to the stack. Any regions that would involve the insertion of a gap into the

stack's 'seed' sequence are excised (again in the same way as PSI-BLAST operates).

These stacks are then used to generate profiles for each of the starting sequences along

with position specific gap penalties. These profiles are then used in place of the original

input sequences to generate the final multiple alignment.

The second strategy Praline introduces is secondary structure-induced multiple align­

ment. This allows Praline to use secondary structure information to improve the quality

of the alignment. Because many sequences have not yet had their structures deter­

mined, Praline is able to make use of secondary structure prediction programs such as

SSPRED (Mehta et al., 1995) with iterative rounds of alignment until a final alignment

is produced.

3.2.4 T-Coffee

T-Coffee (Notredame et al., 2000) is another recent alignment package that is loosely

based on the progressive alignment strategy. The strategy itself is very similar to the

one found in CLUSTAL W. The neighbour-joining method is used to create a guide

tree which is then used to determine the order of sequence alignment. However the

alignment procedure itself uses weights generate by T-Coffee from library files. These

library files can be produced by a variety of programs e.g. Quest. They allow T-

Coffee to integrate information from various sources when constructing an alignment. It

would be possible to integrate information from structural alignments, threading, manual

alignments, sequence motifs, different multiple alignment algorithms and a whole host of

The QUEST Scheme 88

others. By default T-Coffee produces and integrates information from global and local

alignments of the input sequences to produce the final multiple alignment. Within the T-

Coffee program are versions of CLUSTAL W (Thompson et al., 1994) and Lalign (Huang

and Miller, 1991; Pearson and Lipman, 1988) that are responsible for generating global

and local pairwise alignments respectively. The results of these alignments are combined

together to form an extended library file which is then used in the final alignment process.

Whilst these extra alignment rounds do cost T-Coffee in terms of computation time, the

program still runs relatively fast and the cost is more than compensated by the result.

When T-Coffee was compared against other high-scoring programs using the BAIiBASE

dataset it had a statistically significant higher average accuracy in each of the BAIiBASE

categories (Notredame et al., 2000).

3.2.5 Other Alternatives

Whilst these programs were the main four we were giving serious consideration there are a

variety of very effective alignment packages available that operate in a diverse manner of

methods. I have already mentioned that the BAIiBASE benchmarking paper (Thompson

et al., 1999b) recommended four programs that performed extremely well. I have already

covered CLUSTAL X, but the other three also deserve a mention; DIALIGN (Morgenstern

et al., 1996), PRRR (Gotoh, 1996) and SAGA (Notredame and Higgins, 1996). All three

of these programs are iterative alignment strategies of one form or another. DIALIGN

uses a local alignment approach, constructing a multiple alignment from segment to

segment comparisons in an iterative manner, as opposed to the traditional residue to

The QUEST Scheme 89

residue comparison method. PRRP on the other hand is an iterative progressive global

alignment strategy. SAGA uses a different approach altogether using a genetic algorithm

to optimise an objective function (a measure of the quality of the alignment), this

was further enhanced by the use of the consistency based objective function COFFEE

(Notredame et al., 1998). Whilst these methods have all been shown to produce very

accurate results (Notredame et al., 1998; Thompson et al., 1999b; Notredame et al.,

2000), they do have one downfall as far as their use in the QUEST scheme goes and

that is the computation time they require. An alignment of 89 histone proteins has been

demonstrated to take only 161 seconds for CLUSTAL X, whereas DIALIGN and PRRP

both took over 13000 seconds each (Thompson et al., 1999b). The run time required

for SAGA to complete a multiple alignment can vary considerably between alignments

but examples of over 110000 seconds have been quoted (Notredame et al., 1998). The

alignment phase is already the rate limiting step of the QUEST scheme and thus there

is always going to be a trade off between speed and accuracy. Even so we considered

the time required for many of these programs to be excessive for our requirements and

hence they were not seriously considered for the role.

3.2.6 The Final Decision

The final decision was only effectively between two of these programs. MULTAL was

eliminated first for multiple reasons including its difficulty to use and optimise but mainly

because it had scored so badly in measurements of its accuracy. Its ability to filter

sequences was not a compelling enough reason to retain it. Praline was also rejected

The QUEST Scheme 90

fairly early on. Initial work with the program had shown it to be very accurate. Another

compelling fact in its favour was that it was an 'in-house' program and as such we

had direct access to the author and could get certain changes implemented if necessary.

However the reason for the rejection was the same as that given above for not considering

other alignment programs. The computation time required to align large numbers of

sequences was too great when used in an iterative scheme. This left us with CLUSTAL W

and T-Coffee. CLUSTAL W has an established pedigree and is well respected as a fast

and accurate alignment program. There was no real issue on which we could fault

it. Compared to many other algorithms it is very fast even when aligning very large

numbers of sequences. It is already well benchmarked and well optimised. But in the

end we chose to use T-Coffee, not because of any failing in CLUSTAL W but because

of a few additional features in T-Coffee that could be of use to us. T-Coffee is not as

fast as CLUSTAL W by any means, but it is not excessively slow either, it will align large

numbers of sequences significantly faster than Praline. Even in the relatively short space

of time that T-Coffee has been available it has established itself as a strong alignment

strategy, outperforming many of the best packages available including CLUSTAL W itself

(Notredame et al., 2000). But there are three features that really tipped the scale. Firstly

T-Coffee uses local and well as global alignment information to construct it's alignment.

Local alignments are often much better when the sequences that are being compared are

very distant and this will be a common occurrence in the results of a database search.

Secondly T-Coffee easily allows the user to assign weights to the sequences which are

to be aligned. This allows us to increase the weight of the original seed sequences to

The QUEST Scheme 91

prevent their signal being dissipated too much. Finally T-Coffee also has the ability to

judge how well sequences fit/belong to an alignment and as such it could be used to filter

out incorrect hits. This particular function will be more fully covered in the next section.

So for these reasons we Judged the extra time that T-Coffee requires over CLUSTAL W

to be an acceptable tradeoff, and hence chose T-Coffee for use in our alignment phase.

3.3 The Assessment Phase

Unlike the alignment phase we did not consider a large variety of options for the as­

sessment phase. We considered two main options T-Coffee and a program we have

developed named Mulfil. MULTAL was not considered as it would only reject sequences

on the basis of its own alignment and not one fed to it from another program. It is

important to note that for the assessment phase it is not really a choice of either/or, it

is quite possible to use both T-Coffee and Mulfil to filter the sequences, or indeed any

combination of programs. It would be possible to tailor QUEST to very specific queries

by enforcing a set of equally specific filters at this stage. The filters do not have to act

just to accept or reject sequences, they could also alter the alignment itself e.g. filter out

low or high complexity regions. As far as this project goes we have kept the assessment

phase very simple, using a single filtering program to simply reject any sequences that it

deems to be incorrect sequence hits.

The QUEST Scheme 92

3.3.1 T-Coffee

As described in the previous section T-Coffee brings together disparate sources of in­

formation to produce an optimal multiple alignment. By default the sources it uses are

local and global pairwise alignment results. These sources of information do not always

agree, they will often indicate that the same residue of one sequence should be aligned

to completely different positions in a second. It is possible to force T-Coffee to output

a file that give a score to each residue in the alignment according to how consistent

its positioning is to all the alignment methods used. Very distant or or unrelated se­

quences are likely to have a large number of low scoring residues, as it is likely that the

different alignment methods will disagree fairly heavily on how best to deal with them.

It is therefore a simple procedure to analyse the contents of the score file to exclude

incorrect sequences. In addition, the use of the T-Coffee library produced by Quest will

highlight any hit sequences that are aligned to different regions of the query sequences

than they were in the original database search, thus flagging them for removal. This

filtering system has another advantage, although it is possible to exclude whole sequence

on the basis of their consistency scores. Because the scores are instituted on a residue

by residue basis it would be possible to just filter out the poorly fitting regions. Thereby

keeping the high scoring sections to extend the profile in the next QUEST round.

3.3.2 Mulfil

Mulfil is a purpose written program for the assessment of sequences within the QUEST

scheme. It is written in 'C and shares a large amount of its code with the Quest program

The QUEST Scheme 93

itself (sequence input/output etc.). It reads in a multiple alignment file in Fasta format

and then uses 3 separate filters to remove or exclude sequences, before writing the

remaining sequences to its output.

Filter 1: Sequence identity

The first of the three filters is by far the simplest. From the alignment it has been

given, Mulfil calculates the sequence identity between the sequence hits and the seed

sequences. Any sequence hit that has an identity higher than a user specified level (95%

by default) is removed from the alignment. This is done to prevent identical sequences

from masking the signals of more distant sequences in the Quest profile. Any sequences

that are rejected by this method are obviously hits and as such can be recovered at

the end of the QUEST iterations. They are Just excluded from the remaining search by

entering their details into Quest's exclude file. This is the only of the three filters that

intentionally excludes correct hits.

Filter 2: Sequence weights

The second filter is responsible for cutting out most of the incorrect sequence hits from

the alignment. It is based on the same scheme that Quest uses to weight sequences

when constructing its PSSM (Henikoff and Fienikoff, 1994). Every sequence at each

column of the alignment is given a positional weight (Wp) according to Equation 3.1.

W p - — (3.1)

The QUEST Scheme 94

With a being the number of different amino acids that occur at the given position in the

alignment and / being the frequency of the observed amino acid in the present alignment

column. Unlike the original weighting scheme of Henikoff and Henikoff we include gaps

(as a 21st amino acid) when calculating the value of a. The sequence weights (TTg) are

then calculated by summing all the positional weights of the given sequence, dividing

this by the length I of the alignment and finally multiplying by the total number n of

sequences (Equation 3.2).

X n (3.2)

By definition we know that the mean of the sequence weights is exactly one. From these

values we can also calculate the standard deviation (cr^). Using these two pieces of data

we implement our second sequence filter. Any extremely divergent sequence will have an

anomalously high sequence weight. Hence we exclude any sequence that has a weight

greater than five standard deviations above the mean i.e. if Equation 3.3 is true then

the sequence will be excluded.

W s> l-\- bayj (3.3)

Filter 3: Sequence connectivity

The pairwise similarity scores of all the sequences in the alignment are converted into

P-values using exactly the same method that Quest employs. Any pairs that have a

P-value lower than a specified cutoff are said to be 'linked'. If a sequence is 'linked'

directly to the seed sequence(s) or is linked to more than 25% of the sequences that

are directly linked to the seed sequence(s), then the sequence is accepted. Otherwise

The QUEST Scheme 95

the sequence is rejected and deleted from the alignment. The idea of this filter is to

reject sequences that form distinct groups within the alignment set which are not well

related/connected to the other sequences and the original query sequences in particular.

3.3.3 The Final Decision

In the end the choice of filtering program was made for us. During much of the devel­

opment of both Quest and the QUEST scheme we had not decided finally on the best

alignment program to use for Quest. As a result for the assessment phase we needed a

program that could work with any alignment package, this was Mulfil. For T-Coffee to

be easily used it is much simpler if it is the alignment package as well as the assessment

package. Now that we have settled on T-Coffee for the alignment phase we would also

like to implement its filtering abilities alongside those of Mulfil. Unfortunately, T-Coffee

does not remove sequences from the alignment itself, another program would be required

to read the score file and then cut out the sequences accordingly. This functionality could

easily be added as a fourth filter in the Mulfil program. However time constraints have

meant that at the time of writing this has not yet been implemented.

3.4 The Method of Iteration

The QUEST scheme itself and its method of iteration is controlled by a Perl script. This

script is responsible for triggering the programs required during the search, alignment

and assessment stages. However, the method of iteration is not just a matter of running

cycles of Quest, T-Coffee and Mulfil until no new hits are found. There are further

The QUEST Scheme 96

complexities, the most obvious of which is that the simplistic scheme shown in Figure 1.4

is not entirely correct. Once the search phase is over the results are passed to the

alignment phase. The subsequent sequence alignment is then used in the assessment

phase to determine whether any of the sequence hits are incorrect. If this turns out

to be so, those sequences are removed from the alignment before it is passed back to

the search phase. This is where the problem exists, if sequences are removed from the

alignment then the remaining alignment is unlikely to be the optimal one for those that

remain. As such the sequences from the assessment phase must re-enter the alignment

phase. The resulting alignment may indicate that other sequences are incorrect, and so

it must be fed back to the assessment phase. Thus the real QUEST scheme actually has

a loop between these two stages within the loop of the scheme itself (Figure 3.1).The

scheme will exit from the inner assessment/alignment loop when the assessment phase

does not remove any new sequences. The alignment then finally being passed back to

the search phase for the next iteration.

This is not the only complexity in the iteration scheme. The QUEST script must

also control how the parameters of the three programs alter during their iterations. This

process starts with the first iteration. In many circumstances the initial query will be

a single sequence, therefore the first run is responsible for adding sequences to form

the first profile for the next run. As a result it is possible in the QUEST scheme to

set the parameters of the first run independently of the other iterations. This allows

us to set stringent parameters for the initial run so that only the closest homologues

are added to the profile that the remaining iterations build upon. There are two other

The QUEST Scheme 97

Output SequenceInput Sequence(s) SEARCH PHASE
Quest

ASSESSMENT PHASE
Mulfil

ALIGNMENT PHASE
T-Coffee

Figure 3.1: The Real QUEST Scheme

points at which the parameters may be modified, the first is the divergence checkpoint

which occurs after the search phase and the second is the convergence checkpoint which

occurs after the assessment phase. The divergence checkpoint put quite simply acts to

prevent Quest hitting too many new sequences from the second iteration onwards. If

Quest returns more than double the number of hits it found in the previous iteration then

the score cutoff is reduced by a factor of ten and the search phase is run again. This is

done because casual observation indicated that the worst errors were creeping into the

results when large numbers of sequences were suddenly incorporated in one iteration.

We believe this was an indication that the query sequences included divergent sequences

which had caused the profile to match to new unrelated sequence groups. In addition

to reducing the Quest cutoff, the Mulfil cutoff was also reduced by an equal amount, in

the hope of filtering out any of these incorrect sequences in the next assessment phase.

The second checkpoint is for convergence. This occurs after the assessment-alignment

The QUEST Scheme 98

loop has completed. It has a different role in later rounds, but if no new hits are located

in the first two iterations then the convergence checkpoint reduces the strictness setting

for the next Quest run and increases the score cutoff (upto a maximum of 0.01 - no

increase is made beyond this). This has the effect of widening the search and reporting

slightly weaker results, making it more likely that some new hits will be found in the

next iteration for the rest of the QUEST scheme to act upon. From the third iteration

onwards it does actually act as a convergence checkpoint. It is responsible for stopping

the QUEST cycles and reporting the final results when no new sequence hits have been

found during the present iteration.

3.5 Cascade-and-Cluster - A New Scheme?

The various problems and errors we encountered during the development of Quest and

the QUEST scheme led to the development of a second scheme that I refer to as Cascade-

and-Cluster. Profile and alignment based search schemes like PSI-BLAST and QUEST

have one intrinsic problem that can not be overcome. By combining several sequences

together to search a database we are effectively always searching with a centroid of a

group of sequences. Taking a set of homologous sequences in the database, some of

those sequences will be outliers i.e. much more distant members of the group. When

the results of database searches are combined to search for more sequences we are likely

to end up focusing on the 'average' group members, those that lie in the canter of the

group. These centroid sequences are likely to be well connected, by which I mean that a

database search using them will find a large number of the remaining sequences of the

The QUEST Scheme 99

set. But they may well not hit the outlier sequences, which by definition are not well

connected. When used as a query outlying sequences may hit only a few members of the

set. The use of a profile to search a database will usually have the effect of searching

with a centroid sequence, after all using a profile is a method of searching with the

average sequence of those that make up the profile.

There was a second problem with the QUEST scheme that I wished to avoid. The

aim of this project was to develop a rapid and sensitive database searching system.

Whilst we may well have achieved sensitivity, the QUEST scheme is not rapid. Part

of this reason is that the Quest program has not been written with speed as a primary

consideration. This could easily be rectified and I am sure that given time it would be

possible to rewrite and optimise its functions so as to increase its speed substantially

without reducing its sensitivity. The main reason for the slow pace of QUEST is the

alignment phase, which as I have already indicated is generally the rate limiting step. As

a result if I wanted to use Quest in a much faster scheme I would either have to abandon

the alignment phase or at least radically simplify it.

It was in response to these two problems that I developed the cascade and cluster

scheme. To approach the first problem it is easiest to think of a set of homologous

sequences in a database as forming a sequence cluster or web as shown in Figure 3.2.

The letters A-K represent homologous sequences; each possible pair of sequences are

connected by a line if the two sequences are recognised as homologous by a sequence

search. The length of the lines represents approximately how similar the two sequences

are. Sequences A-G represent the central sequences of this cluster, they are well con­

The QUEST Scheme 100

nected to each other by quite short lines. Each of these sequences would be able to

locate most of the rest of the group if used as a query. Equally if a number of these

sequences were in the profile used to search the database then the majority of the cluster

would be identified. Sequences H-K are outlying sequences, they are poorly connected.

Using these sequences as a query will only allow us to find one or two other members of

the set. If they are part of the profile they may prevent other outliers from being found,

e.g. if sequence J was part of a profile with sequences A-K then it ’s signal may prevent

sequences H,l and K from being recognised.

Figure 3.2: A Sequence Cluster. Letters A-K represent a set of homologous sequences.
The lines connecting them indicate that those sequences are sufficiently similar to be identified
as homologues by a database search. The length of the lines is an indication of how similar
the sequences are, a long line indicates two distantly related sequences.

However, because these sequences form an interconnected web it is possible to locate

all of the by searching the database sequentially with each of the sequences that were hit

in the previous round. In effect triggering a cascade of database searches from the original

query allowing us to identify all of the sequences contained in the cluster. Unfortunately

it is not difficult to see how this cascade could easily run out of control. If all the

homologous sequence sets formed discrete units like the one shown in Figure 3.2 there

The QUEST Scheme 101

would be no problem. But in reality these sets will by chance or evolution frequently be

interlinked. On a single database search these interlinks will just appear as incorrect hits

in the output. During a cascade we would follow these links to other sequence sets, which

could then cascade to further sets. Eventually it is possible that this simple technique

would involve querying the database with every single sequence contained within it. This

is obviously not a feasible concept. To prevent this run away cascade I implemented a

very simple limiter, restricting the search to only running two levels, i.e. searching with

the original query and the hits produced by it only. Within this subset there is still ample

scope for incorrect results, hence an assessment phase of some description is still required.

My solution to this problem was to use the Quest results themselves to determine which

sequences were likely to be correct hits and which were not. To do this I implemented a

simple clustering algorithm (hence Cascade-and-Cluster). The initial Quest run with the

original input sequence is referred to as the primary run and the sequences it matched

as primary hits. The Quest runs using the primary hits as queries are secondary runs

and any new sequences that are matched (i.e. non-primary hits) are secondary hits. It

is the results of the secondary runs that I use for the clustering routine. Each time a

primary hit matches another primary hit within a secondary run it is awarded a score of

one. If two secondary runs share identical secondary hits they will be awarded a score of

1. For example if a secondary run has 3 primary hits in its results and shares 3 secondary

hits with other secondary runs, the query sequence of that run will be given a score of

3.75. When all of the primary hits have thus been awarded scores I reject any sequences

that have a score of less than two i.e. any sequences that do not link directly back to

The QUEST Scheme 102

the query sequence by two or more primary hits (or eight secondary hits). For those

sequences that score above this cutoff, all secondary hits that were instrumental in their

score are also reported as results. A graphical representation of this process is illustrated

in Figure 3.3. Primary hits 1-3 would be accepted as true hits whilst number 4 would be

rejected. In addition to these three sequences the secondary hits coloured blue in runs

1-3 would also be reported as probable true hits. All of the secondary hits from run 4

would be rejected as would any secondary hits in the other runs that are coloured black.

Initial Query Primary Secondary Score

— — 2.75 Accept

2.5 Accept

3.25 Accept

0.25 Reject

Figure 3.3; Cascade and Cluster The red bar represents the initial query sequence; the
green bars are the four primary hits. The blue bars are secondary hits that are shared by more
than one of the secondary runs, whilst the black bars are hits that are unique to that run.

It was only after the initial benchmarking of this technique (detailed in Section 4)

that I realised that similar techniques had previously described. The Cascade-and-Cluster

method has many similarities with the transitive sequence search (Neuwald et al., 1997;

Gerstein, 1998), ISS (Park et al., 1997), MISS (Salamov et al., 1999) and SYSTERS

(Krause and Vingron, 1998) methods. In the transitive and intermediate sequence search

The QUEST Scheme 103

(ISS) methods, if sequence a matches sequence b and sequence b matches sequence

c, both with high degrees of confidence. Then sequences a and c are inferred to be

homologues even if they share no significant similarity when directly compared. In the

original ISS presentation the query sequence is used to search the OWL database (Bleasby

et al., 1994), thus locating the intermediate sequences. These intermediate sequences

were then used to query the database of interest, in this case the SCOP dataset (Murzin

et al., 1995). The multiple intermediate sequence search (MISS) method is very similar to

ISS the main difference being that as the name suggests multiple intermediate sequences

may be employed to extend the search further. These methods allow a search to be

extended much further than the traditional single sequence based methods. But at the

same time they have the added bonus that they do not require any new programs or

algorithms, the original BLAST and FASTA programs are ideal for the job. However the

ISS based methods do not make any inherent judgements on the quality of the additional

sequences they locate. In this respect the SYSTERS (SYSTEmatic Researching) method

is much more similar to my Cascade-and-Cluster system. Again an initial query is used to

search the database, all highly similar hits are retained, i.e. those with a P-va lue of 10“ °̂

or less. The lowest scoring sequence of this set is used as a query for the next round.

This procedure is repeated until either no new hits are found above the cut off or until

the search result has no sequence in common with the set of accepted sequences from

the first search. This second condition prevents the searches cascading out of control.

All of the hits are then scored against the query sequence using Lalign (Huang and

Miller, 1991). These scores are then used in a set theoretic clustering method (Krause

The QUEST Scheme 104

and Vingron, 1998). The idea of the SYSTERS method and the clustering procedure

in specific is not purely as a database searching system but as a method of splitting a

database up into discrete protein cluster units (Krause et al., 2000). As such the method

and aim is different to that of the Cascade-and-Cluster system. The aim of my method

is to use single sequences and all the diversity they contain to more effectively query a

database, whilst at the same time using a simple clustering algorithm to assess and filter

of the hits returned.

Chapter 4

Benchmarks

An important step in assessing the effectiveness of the methods and programs we have

developed is to benchmark them against a known dataset or an established method.

Previous benchmarking papers have explored various techniques for the comparison of

database searching programs. One of the earlier papers (Shpaer et al., 1996) compared

FASTA, BLAST and Smith-Waterman search methods. For the test set, they used

the protein identification resource (PIR) database, or more specifically the super-family

definitions of the PIR dataset were used to classify hits as correct and incorrect. A later

benchmark (Agarwal and States, 1998), comparing ‘probabilistic Smith-Waterman' (a

hidden Markov model based method), WU-BLAST2 (a version of BLAST made available

by Washington University), SSEARCH, FASTA and BLASTP also made use of the PIR

classifications when sorting results. This method has some problems associated with it,

the PIR classifications are not considered to be 100% reliable. In fact they can often be

partly defined using the very tools that are being tested. More recent attempts (Brenner

Benchmarks 106

et al., 1998; Park et al., 1998; Müller et al., 1999) have focused around the SCOP

database (Murzin et al., 1995). SCOP or Structural Classification Of Proteins is compiled

from the PDB structural database. Unusually for a structurally based dataset, the

custodians of the SCOP database also classify the sequences according to the estimated

evolutionary relationships of their structural domains. This combined with the very

thorough manually controlled classification system make the SCOP dataset ideal for

assessing sequence search methods.

The SCOP classification system is hierarchical, it indicates levels of relationship be­

tween the sequences/domains/structures. The SCOP database is organised according

to four major levels: Class, Fold, Superfamily, and Family.

Class. For ease of use the folds have been grouped into very general classes on the basis

of the secondary structural elements they are composed of. The five structural classes

are:

1. all alpha, structure is essentially comprised of a-helices;

2. all beta, structure is essentially comprised of ^0-sheets;

3. alpha and beta, contain both a-helices and ^0-sheets;

4. alpha plus beta, a-helices and ^0-sheets are present but largely segregated;

5. multi-domain, proteins with domains of different folds and for those that have no

known homologues.

Fold. Superfamilies and families are defined as having a common fold if the proteins have

the same major secondary structures in the same arrangement with the same topological

connections.

Benchmarks 107

Superfamily. Families which have low sequence identity but whose structures and possi­

bly functions suggest a common evolutionary origin are placed together in superfamilies.

Family. Sequences are clustered as families on the basis of two criteria. Firstly all

proteins that have residue identities of 30% or greater or secondly proteins of lower

sequence identity but whose structures and functions are very similar, e.g. the globin

family has sequence identities as low as 15%.

it is this hierarchical classification that makes this dataset particularly interesting to

us. By conducting searches within this database we can judge which hits are correct,

which are incorrect and even how incorrect they are, e.g. if they are not in the same

family but are still a member of the same superfamily. These factors combine to make

a compelling argument in favour of the use of the SCOP database in benchmarking

applications.

The benchmarking papers that make use of this dataset also present a simple but

effective way of evaluating the results of different search programs. Using a shortened

version of the database that only includes sequences that are less than 40% identical,

previous benchmarks (Brenner et al., 1998; Park et al., 1998) ran all against all database

searches for each program. Then for each program taking the combined results of the

searches and sorting them by score, it is possible to plot a graph of true hits against

false hits. This can easily be converted to a coverage (proportion of total true hits

located) versus errors per query plot. Ideally the coverage should increase first to the

maximum followed by any increase in the number of errors per query, denoting that all

true hits are found first, followed by any false ones. In reality this perfect segregation is

Benchmarks 108

not possible, but by comparing the lines of different programs it is possible to compare

their sensitivities and selectivities simultaneously.

4.1 Methods

The methods we employed to benchmark our methods and programs are very similar

to those mentioned above. For the reasons stated previously we have made use of the

SCOP dataset. However rather than use the PDB40D set that contains only distantly

related sequences we decided to make use of SCOP-70 (Astral-SCOP 1.53 (Brenner

et al., 2000); http://astral.stanford.edu). This is made up of all the sequences in

the SCOP database that share a sequence identity of 70% or less. The reason for using

this dataset is twofold. The 40% filtered dataset is very small, containing approximately

only 1000 sequences. The 70% set on the other hand has 4133 sequences, a significantly

larger dataset and much easier to draw conclusions from. Secondly the SCOP-70 set is

more realistic, when a database search is carried out there will frequently be highly similar

sequences as well as a range of more distantly related ones. A database search program

must be able to cope well over this entire range. This requirement was well demonstrated

to us during development, when small scale tests proved that it is occasionally possible

to improve the ability to detect very distant sequences at the same time making it more

difficult to locate more similar ones. Therefore it is important to test a program against

a whole range of conditions.

There are several other significant differences between the methods we employed and

those that have been reported before (Park et al., 1998). Our approach throughout

http://astral.stanford.edu

Benchmarks 109

was to compare the various programs as equally and realistically as possible. When

running PSI-BLAST we did not carry out an initial search in a separate larger database

to pick out useful intermediate sequences. All searches were carried out solely within

the benchmarking dataset. This was done because not all programs are capable of using

intermediate sequences making such comparisons unfair. Secondly, in a real database

search users are likely to just be searching within one database, thus this provides a more

realistic scenario. In the same paper any high scoring hits that PSI-BLAST lost during

iterative rounds were artificially added back to the final results. This is not a fair way

to conduct a benchmark, it could easily boost the PSI-BLAST results, making it appear

to be better than it actually is. So to prevent these errors in our benchmarks all the

programs were run in a simple manner with no outside intervention.

Each of the benchmark runs is assessed in an identical manner. For each program

the database is queried in turn by each of the 4133 sequences it contains. Each of these

4133 results is then combined into a single list which is sorted by score. Each of the hits

are graded as true or false depending on whether or not they are members of the same

SCOP family. Cumulative scores are then calculated, so that for each sequence hit in

the list the number of correct and incorrect hits identified so far is known. The data is

transformed subsequently once more to give the coverage and errors per query (EPQ).

Coverage is calculated by dividing the number of true hits located so far by the theoretical

maximum number of true hits that could be located in an all against all database search,

44232 for the SCOP-70 dataset. The number of errors per query was calculated as the

number of false hits identified so far divided by the total number of queries, in this case

Benchmarks 110

4133. To generate the benchmarking graphs we plotted the coverage (y-axis) against

the EPQ (x-axis). A perfect search algorithm would find all the correct hits before any

incorrect ones and so the graph would consist of two straight lines, one following the

y-ax\s from 0 to 100% coverage, the other would follow from the 100% coverage point

running parallel to the x-axis. This ideal result will not generally be possible, there are

typically some homologous sequences that are too distantly related to be distinguished

from non-homologous sequences using sequence analysis alone. Nonetheless our aim and

that of every database searching program is to approach this perfect result as closely as

possible, thus maximising both our sensitivity and selectivity.

4.2 Results 8t Analysis

4.2.1 Benchmarking Quest

The first comparison we undertook was to measure the performance of the non-iterative

Quest program on its own in comparison to other similar methods (Figure 4.1). The

programs we chose to compare Quest against were two of the BLAST suite; BLASTP and

BLASTPGP. BLASTP is the classic heuristically based protein database search program.

It uses a single sequence input and conducts a pairwise search in a manner not dissimilar

to Quest. It does not allow gaps in the high scoring segments it identifies, but the

segments can be combined together to create a larger sequence hit. BLASTPGP is

a much newer implementation and uses a significantly different method of operation

(detailed in Section 1.5.2). It is capable of evaluating gapped segments and forms the

Benchmarks 111

0)
S’
CD

Ü

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15 Original Quest
Quest c=0.25
Quest c=0.01

BLASTP
BLASTPGP

0.1

0.05

0
0 0.2 0.4 0.8 10.6

Errors Per Query

Figure 4.1: Quest Benchmark. Comparing non-iterative runs of the Quest program to
BLASTP and BLASTPGP.

basis of the iterative PSI-BLAST scheme. All three programs were run with their default

parameter settings. A second Quest run was also carried out with a considerably more

lenient score cutoff (c = 0.25). This was done to give an extended Quest graph that

can be more easily compared to the BLAST programs, which by default return hits to a

lower significance level.

As can be seen in Figure 4.1 Quest outperforms both versions of BLAST, not only

finding more correct hits in total, but also making less errors per query for equal levels of

coverage. For example at a coverage of 35% both BLAST programs have an error rate of

~0.2 EPQ, whereas Quest had less than 0.1 EPQ. The default Quest result (c = 0.01)

Benchmarks 112

is very reassuring. Although it does not cause the program to stop when it reaches the

highest coverage, it does stop Quest just as the Benchmark curve is levelling out, i.e.

before the number of incorrect hits located increases dramatically.

Despite the ability to take a multiple alignment as an input. Quest actually shares far

more similarity with the BLASTP method than the BLASTPGP method. Interestingly

BLASTP does actually perform slightly better than BLASTPGP. The possible reasons for

this are as numerous as the differences between these two programs. However, a possible

source of this difference is that BLASTP carries out more segment extensions than

BLASTPGP. Gapped sequence hits are more time costly to evaluate, as such BLASTPGP

strives to save time in other areas. By carrying out less simple segment extensions it may

be preventing itself from finding as many hits. This very simple explanation may also

be the reason for Quest's out-performance of both the BLAST programs. Because in

the present Quest implementation the tripeptide cutoff score has been dropped to zero,

far more tripeptide matches and hence segment extensions are evaluated. This could be

allowing Quest to recognise a few more homologous sequences than BLAST.

Also shown in Figure 4.1 is the result of the original Quest program. As already

stated, the original program was extremely weak when dealing with a single sequence

query, this is dramatically illustrated in it's benchmark curve. It achieves a little over

half the coverage of either the BLAST programs or the updated Quest program. Whilst

many changes have been made to the Quest program since the original implementation

(Chapter 2), much of the improvement in this particular case comes from the alterations

in the profile construction method.

Benchmarks 113

4.2.2 Quest Parameter Effects

As well as allowing the easy comparison of Quest to other sequence database searching

programs, the benchmarking system also allows us to observe how varying the parameter

settings can alter the performance of Quest.

Score Cutoff

The score cutoff is a very simple parameter, it simply defines the level at which we

consider a P-va lue to be significant. It's simple operation is reflected in the way it

affects the Quest result. The benchmark curve in Figure 4.2 is the same as that in

Figure 4.1 when Quest had a cutoff of 0.25. This is an extremely high level to set the

cutoff at, the only reason it was chosen was to give an extended line that continues past

1 EPQ. The six vertical lines represent the positions that the Quest line would terminate

at, if the cutoff was set to the specified level. For example, at a cutoff of 0.05 the

line would end at a coverage of 45% and an error rate of 0.42 EPQ. In other words as

the cutoff decreases the benchmark curve remains the same, it just terminates earlier.

However, this shrinking of the line is not linear, as the origin is approached a larger

reduction in the cutoff must be made to produce a similar drop in the error rate.

Strictness

The effect of the strictness parameter on the final Quest result is not quite as straight

forward. Figure 4.3 shows the results of four Quest runs, each with a different strictness

setting but otherwise identical default parameters. The strictness settings shown here

Benchmarks 114

0.5

0.45

0.4

0.35

0.3
CT>

0.25

0.2

0.15 0.05
0.01

0.001
0.0001

0.000010.05

0 0.2 0.4 0.6 0.8 1
Errors Per Query

Figure 4.2: The effects of the score cutoff parameter on the benchmarking
curve. The numbers listed in the key correspond to the score cutoff settings of the Quest
program.

were picked for specific reasons. A setting of 100 is the maximum possible and also the

default value, which basically turns off the softening function. However, when the input

is a single sequence and the BLOSUM62 matrix is used a reduction in the strictness

setting down to 50% has virtually no effect. This is purely because the scores for a

self hit of a particular amino acid in this scoring matrix are almost always at least twice

those for the next highest match. For this reason no other values in this range have

been plotted on this graph. It is important to note that this is only the case with a

single sequence input. With multiple sequences the scoring system changes and this fact

may well not remain true. After this cutoff point each 10% drop in strictness is plotted

Benchmarks 115

(D
CD
20)

u

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15
20

0.1
40

1000.05

0
0 0.2 0.4 0.6 0.8 1

Errors Per Query

Figure 4.3: The effects of the strictness parameter on the benchmarking curve.
The numbers listed in the key correspond to the strictness settings used in the various Quest
runs.

until 20% is reached. The reason for not going further is purely for the sake of clarity,

the 10% and 0% graphs are very similar to the 20% because at these levels the new

tripeptides that are introduced are largely (but not wholly) negative scoring and so are

prevented from joining the lookup table.

The results for strictness settings of 30, 40 and 100 superficially resemble those of

the score cutoff above. It appears as though as the strictness increases the line gets

shorter but otherwise stays the same. This is not so. As the line gets longer it is also

deforming towards the right, with this being particularly visible in the coverage range

0.25 to 0.4. For equal levels of coverage the lower strictness levels are making slightly

Benchmarks 116

more mistakes. Beyond this point where the lines begin to level out the lower strictness

levels actually end up locating a larger number of correct hits, albeit at the cost of

a substantial number of incorrect ones. The reason for this is that we are searching

with an extended tripeptide match set. This means that we are more likely to find seed

tripeptides on more distantly related sequences and as a result are more likely to get a

positive result from them. Unfortunately this is a double-edged sword which means that

we are also more likely to get chance hits from entirely unrelated sequences, hence the

progressively longer tails on the graphs. This is particularly evident on the 20% strictness

line which actually extends greatly beyond the bounds of Figure 4.3 to finally end at a

coverage level of 58% but also an EPQ rating of 22.9.

Whilst this graph does give an indication of how the strictness parameter can affect

the results of a Quest search, it is important not to read too much into it. The action

of this parameter is very dependent on the query sequence and substitution matrix used.

This is especially true when the input is a multiple alignment. In such cases the actual

scoring matrix the parameter operates on (the PSSM) is virtually unique on each occasion

and as such so is the effect of the strictness setting.

Gap Penalty

Like the strictness parameter above, the gap penalty does not affect the results in a

simple manner. For clarity only a few of the possible settings are represented on the graph

(Figure 4.4). The gap penalty has two parts, the gap opening and gap extension penalty.

A setting of 0:0 means that there is no gap penalty, a gap of any size can be introduced

anywhere at zero cost. With a single sequence query a setting of 100:100 means that no

Benchmarks 117

0)O)
2
Îo

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15
0:0 -----

0.1
10:1

100:1000.05

0
0.6 0.8 10 0.2 0.4

Errors Per Query

B.

Q)
g
Io

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15
0:0

0.1
10:1

100:1000.05

0
0.001 0.01 0.1

Errors Per Query

Figure 4 4: The effects of the gap penalty on the benchmarking curve. A Graph
shows the benchmarking curve for four specified gap penalties. B. Same graph as A. but with
a logarithmic scale on the x-axis to exaggerate the observed differences.

Benchmarks 118

gaps are allowed by the segment assembly function (unless the segments being joined are

extremely high scoring). These two settings together represent the opposite extremes

of gap penalties, the other two lines detailed on the graphs in Figure 4.4 represent far

more sensible values. A gap opening penalty of 10 and an extension penalty of 1 is the

default setting for Quest, whereas the 0:1 setting represents a simple length dependent

gap penalty. Unsurprisingly the worst performing result is observed when there is no gap

penalty imposed. This setting does not prevent any segments from being joined together

no matter how distant, therefore the chance of getting a high scoring hit with an unrelated

sequence increases significantly. The other extreme setting does much better, in fact

until the coverage reaches ~30% it is the best performing setting. This is particularly

visible in the log graph (B). At this level the sequences being assigned as homologues

are very similar and are unlikely to need gaps between the segments. The sequences that

are rejected are those that require gaps, which are more likely to be false hits. To extend

significantly beyond this point, the ability to insert gaps becomes necessary to locate

the more distant homologues. Somewhat surprisingly the very low length dependent gap

penalty actually rises to equal the 100:100 setting at approximately 35% coverage, before

continuing to rise to 44% coverage. This is surprising because this penalty is extremely

low, in fact it is the smallest possible length dependent penalty available under this

scheme. The 0:1 penalty is actually far closer to the zero setting than the strict 100:100

setting, but it performs better than both of these. This is because to find more distant

homologues gaps will almost certainly have to be inserted between segment matches,

hence a strict penalty will eventually fail. Equally even a very small penalty will prevent

Benchmarks 119

low-scoring segments from joining together and hence will dramatically reduce the chance

of unrelated sequences becoming hits. Another significant change is observed when we

add a gap opening penalty often to this small gap extension penalty. Quest still manages

to reach almost the same levels of coverage but at the same time finding two-thirds less

incorrect sequences, only 0.2 EPQ instead of 0.6 EPQ.

4.2.3 Benchmarking the QUEST Scheme

Having established that Quest works well as a database searching program in its own

right. The next focus of our benchmarking method was to compare the QUEST scheme

to other similar methods. There are not a huge number of automated iterative search

programs available, we chose to evaluate the performance of QUEST against the most

prevalent and similar method; PSI-BLAST. The performance of PSI-BLAST has been

evaluated in several previous works (Park et al., 1998; Müller et al., 1999). It has

uniformly been found to be an effective search tool and a significant improvement on

simpler pairwise search methods, finding approximately twice as many correct hits as

FASTA and BLASTPGP for the same error rates (Park et al., 1998). The previous PSI-

BLAST benchmarks do not use the default parameter settings, instead the E-value cutoff

was set to 0.0005 and the maximum number of iterations was 20. Because these settings

were observed to improve the performance of PSI-BLAST with the SCOP database, we

also decided to use them and hence make our comparison more stringent. The optimal

parameter settings for the QUEST scheme are still the subject of work and discussion, for

the benchmark the settings we chose were as follows: For the initial QUEST iteration the

Benchmarks 120

score cutoff for both Quest and Mulfil was set to 1 x 10^, whilst all other parameters were

left at the default. For all other iterations Quest ran with a strictness of 25% but default

score cutoff of 0.01, whilst Mulfil used a score cutoff of 1 x lO' .̂ The maximum number

of QUEST iterations was left as the default 15. The reason why the QUEST scheme

does not let the constituent programs run with their default settings is that these defaults

were defined as being optimal (or at least close to optimal) when the programs were run

individually and non-iteratively. In effect the iterative context of the QUEST scheme

alters what the optima for these various settings are. Figure 4.5 shows that the QUEST

scheme does actually outperform PSI-BLAST. This success could be rooted in several

0)O)
2
(D

O
o

0.6

0.5

0.4

0.3

0.2

QUEST
PSI-BLAST0.1

0
10 0.2 0.4 0.6 0.8

Errors Per Query

Figure 4.5: Benchmark graph comparing the performance of the QUEST scheme
to PSI-BLAST.

Benchmarks 121

factors. Firstly the Quest program outperforms the BLASTPGP program and both

of these respectively form the basis of QUEST and PSI-BLAST schemes, what we are

observing here could simply be the cumulative effect of this. Secondly QUEST uses more

information than PSI-BLAST, the sequence hits are fully aligned during each iteration

and no parts of the alignment are excluded for introducing gaps into the seed sequence.

The alignment quality itself in QUEST as opposed to PSI-BLAST may have been enough

to cause this disparity. Finally it is impossible to discount the effect of the assessment

phase. The difference could be due to QUEST more efficiently excluding incorrect hits

from the search profile. In reality it is likely to be a combination of these factors that are

responsible for this difference. It is not easy to isolate which differences are the key ones

in causing this result, relatively minor alterations to the various parameters controlled

within the QUEST scheme can quite significantly change the result. Two examples of

this are shown in Figure 3.1, the original QUEST and PSI-BLAST results are shown

for comparison. The first new QUEST line was generated by changing the score cutoff

parameter fed to Mulfil. The new setting (0.01) is more lenient than the original. As a

result sequences were left in the profile that were previously removed and the QUEST

iterations consequently picked up a higher number of incorrect sequences. Additionally

during progressive iterations the search profile would be of lower quality and the total

number of true hits discovered would have been reduced. The second new QUEST result

came from altering the strictness parameter of the Quest search itself from 25 to 30.

This change makes the search slightly more strict therfore less segments will be evaluated

and similarly less hits will be considered significant. Hence, this line is very similar to

Benchmarks 122

0)05
2
i
Ü

0.6

0.5

0.4

0.3

0.2

QUEST
PSI-BLAST

QUEST (Mulfil c=0.01)
QUEST (Quest s=30)

0 0.2 0.4 0.8 10.6
Errors Per Query

Figure 4.6: An evaluation of the effects of different parameter settings on the
QUEST scheme.

the original QUEST result just with a lower overall coverage. The fact that the lower

strictness setting was more efficient at finding correct sequences is a testament to the

effectiveness of the assessment phase. A decreased strictness also greatly increases the

chance of hitting inappropriate sequences, yet the error rate in the original run {s = 25)

is not higher than the s = 30 run.

It is quite simple to look at the effect of the multiple alignment quality on the

QUEST result. We decided to repeat this analysis using two different alignment methods

in the alignment phase. Firstly we tested our second preference alignment program

CLUSTAL W. As already stated, this program is not thought to produce quite as reliable

Benchmarks 123

alignments as T-Coffee, it does nonetheless rapidly produce high quality alignments.

The second program we tested was Quest itself. Using the pseudo-alignment option it

is possible to force Quest to produce an already aligned output file. This shares several

similarities to the PSI-BLAST alignment system, it does not allow gaps in the seed

sequence and all sequences are only aligned to the seed sequence, not to each other.

The effects of these methods on the benchmark results shown in Figure 4.7 speak for

themselves. The speed of the CLUSTAL W and pseudo-alignment algorithms was very

0)O)
g

I

0.6

0.5

0.4

0.3

0.2

QUEST
PSI-BLAST

QUEST (CLUSTAL W)
QUEST (Stacked)

0.1

0
0 0.2 0.4 0.6 0.8

Errors Per Query

Figure 4.7: An evaluation of the effects of different alignment systems in the
QUEST scheme. The QUEST and PSI-BLAST results are the same as those presented
previously. The CLUSTAL W result uses the same settings as the previous QUEST run and
default alignment parameters. The ‘Stacked’ result uses the Quest pseudo-alignment mode
to align the sequence hits. It is so called because the sequences are simply stacked upon one
another.

Benchmarks 124

noticeable when running the benchmarks. The pseudo-alignment method negated the

need for a true alignment program and as a result the QUEST scheme ran extremely

rapidly. Unfortunately the QUEST alignment system is not meant to be completely

reliable and it's inaccuracies are quite obvious, e.g. at 40% coverage the original scheme

had an error rate of only 0.1 EPQ, whereas the pseudo-alignment scheme was five

times higher at 0.5 EPQ. Part of these differences could be attributed to the decreased

amount of information in the pseudo alignment compared to the normal alignment file.

The pseudo-alignment only includes the regions of sequences that are contained in the

segment hits that make up a sequence hit. In the normal Quest output file the intervening

regions are also placed in the output file, allowing the search to be extended through

them once they have been properly aligned. The CLUSTAL W program does very well,

the reported difference in alignment quality between itself and T-Coffee is not large and

this is a point which is well reflected in the results. At a coverage level of between

35% and 50% the CLUSTAL W based scheme actually outperforms the T-Coffee one.

However, the result drops off and terminates after this stage whereas the T-Coffee one

continues to climb. This result combined with the much reduced time required to run

the QUEST scheme using CLUSTAL W makes it much more difficult to justify the use

of T-Coffee in the present implementation for the small gain that it does make.

4.2.4 Cascade-and-Cluster

The Cascade-and-Cluster method was devised as a possible complement or alternative

to the QUEST scheme. Whilst slower than PSI-BLAST, it runs considerably faster than

Benchmarks 125

the QUEST scheme itself. This is because there is no alignment phase involved in this

method, hence the slowest part of the QUEST scheme is not present. In addition to this

the assessment of sequences is carried out on the Quest results themselves using a very

fast and simple algorithm. In consequence the total time taken is just the sum of the

required for the multiple Quest searches. Whilst this particular search scheme is still very

much in development and little or no optimisation has been done on it we considered the

theory behind it compelling enough to warrant further investigation. The results of the

benchmark are seen in Figure 4.8, the QUEST and PSI-BLAST results are unchanged

CD05
20)
s
Ü

0.6

0.5

0.4

0.3

0.2

QUEST
PSI-BLAST

Cascade-and-Cluster 1
Cascade-and-Cluster 2

0.1

0
0 0.2 0.4 0.6 0.8 1

Errors Per Query

Figure 4.8; Benchmark of the Cascade-and-Cluster scheme. The QUEST and
PSI-BLAST results are taken from Figure 4.5. The primary and secondary runs of ‘Cascade-
and-Cluster T use the Quest program running with default parameters (strictness of 100 and
score cutoff of 0.01). ‘Cascade-and-Cluster 2’ is the same as the first except that for all the
secondary runs the Quest strictness is set to 30.

Benchmarks 126

from Figure 4.5, whilst the two Cascade-and-Cluster results correspond to two different

parameter settings. The first result was obtained simply by using Quest with the default

settings for both the primary and secondary searches. The second result shows how the

coverage can be increased simply by lowering the strictness of the secondary search runs

from 100% to 30%. Both of these results are very interesting. Despite the simplicity of

the scheme and not having optimised the settings for either Quest or for the clustering

mechanism, the first result still performs significantly better than PSI-BLAST and only

slightly less well than our best QUEST result. The slightly less strict settings of the

second run do significantly increase the number of incorrect sequences found, however

at the same time the total number of correct hits identified is boosted, so that the overall

result is slightly better than PSI-BLAST for the entire length of the graph.

More simplistic intermediate sequence search methods have been shown to perform at

a level halfway between the best pairwise and profile based search methods (Park et al.,

1998). The Cascade-and-Cluster scheme is really only an extended form of intermediate

sequence searching, yet with this particular dataset it has shown itself to perform better

than the profile based search system of PSI-BLAST. At the same time it has performed

on an almost equal par to the QUEST scheme. This poses questions as to whether

combining sequence information to produce a profile is always the best method to use.

Is the time spent aligning sequences in the QUEST scheme truly justified? PSI-BLAST

does well with a much more approximate alignment and the Cascade-and-Cluster scheme

uses no alignment whatsoever.

Benchmarks 127

4.2.5 PSI-BLAST Version 2: An Improved Challenger

During the writing of this thesis a new improved version of PSI-BLAST has been made

available (Schaffer et al., 2001). The changes made to produce this new version are

generally quite small, none of them are of the magnitude of those that corresponded to

the change from BLASTP to PSI-BLAST (Altschul et al., 1997). The most important

of these improvements is the introduction of composition based statistics. The two

parameters that are required to calculate P-vales and E-values are A and K\ their values

are dependent on the scoring system used and the composition of the sequences being

compared. It is not feasible to recalculate these values for the composition of the

sequence based in each database search, however, it is possible to rescale the PSSM

to alter the value of A to fit the one used. Such an estimation should improve the

accuracy of these statistical measures when the composition of the query and database

sequences are significantly divergent from the expected values. Another small change

was to incorporate the information provided by gaps in the sequences. Previously when

gaps occurred in an alignment column, only the sequences that had amino acids present

were counted, any with gaps were ignored. The new implementation treats gaps as

a 21 *̂ amino acid, allowing a little more information to be gleaned from the profile.

The cumulative effect of these small changes has been quite significant. Figure 4.9

shows the best results from the QUEST and Cascade-and-Cluster schemes along with

the original PSI-BLAST result (denoted as version 1) and the new PSI-BLAST result

(denoted as version 2). The first graph (A) shows that the performance of PSI-BLAST

has jumped upwards by quite a margin. Whilst both the QUEST and Cascade-and-Cluster

Benchmarks 128

A.

0)02
2
Io

0.6

0.5

0.4

0.3

0.2

QUEST
Cascade-and-Cluster -

PSI-BLAST v1
PSI-BLAST v2

0.1

0
0 0.2 0.4 0.6 0.8 1

Errors Per Query

B.

(DO)
2
oo

0.6

0.5

0.4

0.3

0.2

QUEST
Cascade-and-Cluster

PSI-BLAST v1 -
PSI-BLAST v2 -

0.1

0
0 0.2 0.4 0.6 0.8 1

Errors Per Query

Figure 4.9: Benchmark of the new version of PSI-BLAST A. The result for PSI-
BLAST version 2 was obtained using the same optimised parameters as the original PSI-BLAST
run. B. PSI-BLAST version 2 running with its default parameter settings.

Benchmarks 129

schemes still outperform PSI-BLAST up to the 40-45% coverage level, beyond this point

the performance of PSI-BLAST is equal to QUEST and above Cascade-and-Cluster.

Furthermore the PSI-BLAST result continues past the point that the QUEST result

reaching a high of 57% coverage. The second graph (B) shows the same results, but this

time the new version of PSI-BLAST was run with it ’s default parameters rather than the

more optimal ones suggested previously for this dataset. In the original implementation

the effects of these parameter settings was not large; they improved the result, but not

by much. The new PSI-BLAST implementation is another matter entirely, the default

settings do not do as well on this particular dataset. PSI-BLAST still rises above the final

results of both the QUEST and Cascade-and-Cluster schemes, but it does not actually

pass through their results and the increased number of errors per query shifts the line to

the right. This result is obviously something of a disappointment to us as PSI-BLAST is

still a much faster scheme than QUEST. It does not use the extra sequence information

that QUEST can, yet it still manages to perform as well as QUEST in this new version.

However, these results are not as bad as they may at first appear. PSI-BLAST does do

extremely well, however a lot of work has been put into optimising its performance since

the original release and by comparison there is still a lot of improvements to be done

within the QUEST scheme. The Cascade-and-Cluster system on the other hand has had

no optimisation whatsoever and yet still performs almost as well as PSI-BLAST, which

is certainly one of the most powerful search programs in common use. In addition to this

the graphs of both the old and new PSI-BLAST programs present an interesting result.

When compared to QUEST, Cascade-and-Cluster or even just a single run of BLASTP

Benchmarks 130

or Quest, the PSI-BLAST results are unusual in that for the early part of the benchmark

curve they perform very badly. This point is emphasised in Figure 4.10. PSI-BLAST not

only performs substantially worse than QUEST up to the 50% coverage level, it is also

outperformed to the 30% level by a single BLASTPGP run (the basis of PSI-BLAST

itself). This figure rises to 40% when PSI-BLAST is compared directly to a non-iterative

Quest run. The form of the PSI-BLAST graph is almost sigmoidal; it rises well at first,

but after finding about 10% of the possible correct hits it suddenly takes in quite a large

number of errors. This causes PSI-BLAST to have an error rate of approximately 0.1

EPQ for only 20% coverage, compared to QUEST and Quest which find less than 0.01

CD

S'
CD

a

0.6

0.5

0.4

0.3

0.2

Quest -
BLASTPGP

QUEST
PSI-BLAST v2 —

0.1

0
0.4 0.6 0.8 10 0.2
Errors Per Query

Figure 4.10: Comparison of PSI-BLAST and QUEST to non iterative schemes.
the PSI-BLAST (version 2) and QUEST results reported are the same as those in Figure 4.9A.,
the Quest and BLASTPGP results are taken from Figure 4.1.

Benchmarks 131

errors per query, more than ten times less. From this point on PSI-BLAST picks up

again, the gradient of the line becomes very steep and the coverage increases to 50%

with very little increase in errors. The QUEST scheme in comparison closely follows the

Quest results, rising steeply before gradually levelling out. The QUEST result simply

continues on past this point before finally starting to level out itself at which point it

meets the PSI-BLAST result coming up. For a blip to occur such as that seen in the

PSI-BLAST curve means that there are a significant number of high scoring but incorrect

hits in the result set. Because these are not seen in QUEST or even in a non-iterative run

of BLASTPGP, this indicates that there are some intrinsic problems in the PSI-BLAST

scheme.

Chapter 5

The Quest Server: Our Window on

the World Wide Web

A major goal of this project was to make the tools developed easily available for the use

of the research community as a whole. A large amount of the work in the furtherance

of this goal went into improving the user friendliness of the Quest program. This ranged

from altering the Quest program to accept and deliver sequences in a common file format,

to making the command line act in a standard way, similar to most other text based

Unix/Linux programs. However, a text based interface is not considered friendly by a

large proportion of the more casual computer users that make up a large proportion of

the scientific community. In addition some workers will not have access to the necessary

machinery or computing power to run these programs effectively. In response to these

problems we developed a web interface for the Quest program which has been made

available at: http://mathbio.nimr.mrc.ac.uk/quest.

http://mathbio.nimr.mrc.ac.uk/quest

The Quest Server: Our Window on the World Wide Web 133

The web interface takes the format of a simple form (Figure 5.1) that is made

up of six sections. Section one allows users to paste their sequences of interest into

the form or specify a file on their local machine that contains the sequences. The

second section asks for the user's email address so they can be notified when the job is

complete. The ‘Settings' section allows users to choose from specific parameters settings,

including the database to search, the score cutoff and the search strictness. The Run

mode' section gives a choice of three methods in which Quest can be run: Iterative'

is the QUEST scheme specified in this thesis (although to save time and resources

the alignment package used is CLUSTALW). ‘Cascade and Cluster' is unsurprisingly an

implementation of the Cascade-and-Cluster scheme specified here. ‘Single run' triggers

a simple non-iterative Quest run, although when complete the user is asked whether

they wish to use the results as a query for a second iteration. The fifth section, ‘Output

Options' allows the user to specify whether they wish to have full length sequence hits

returned as results rather than Just the high scoring regions. The second option specifies

that the results page should use coloured output. This means that the amino acids

in any sequence alignments returned in the results will be coloured according to their

similarities (Taylor, 1997). This allows users to easily judge for themselves the quality of

the alignment and the hits contained within it. This output is not returned by default

because the colour format produces big HTML files that can take a long time to load

when a slow connection is being used. The final section simply consists of the submission

button labelled Run QUEST' and the reset button which clears the form.

When the necessary data has been entered and the submission button has been clicked

The Quest Server: Our Window on the World Wide Web 134

Mathematical Biology Quest - Iterated Protein Databank Searching N IM R

9

QUEST
9

QUEST is a profile
based sequence
database search
engine.

More about Quest:

Introduction

Running QUEST

The QUEST Project

RgfgrgPCg?

Qqtpqt

Paste in your aligned sequences in PASTA format:

OR Upload tfie containing sequences in PASTA format:
-

Database NR Genbank P-value 0.01

B r o ws e. . .

Email addrggs

Strictness 100

Rqn made:
iterative '✓ Cascade and Cluster ^ Single run

Qqtpyt Option?:
J Full Sequences T Colour Output

Comments or problems to: mathblo@nimr,mrc ac uk

Figure 5.1: The Quest Web Server

on the information is sent across the web to our local server, which passes it on to the

controlling script. This script simply checks which run-mode was specified and triggers

one of three secondary scripts accordingly. The specified script is then sent to one of

the nodes on our local Linux cluster which executes the job. When complete the results

are processed into an HTML format and sent back to the web server, which publishes

The Quest Server: Our Window on the World Wide Web 135

them and simultaneously emails the user the information that the job is complete and

where the results can be found. When the user checks their results they will find a web

page similar to that shown in Figures 5.2 & 5.3. The results fall into three easy to

interprète sections, the first two are shown in Figure 5.2 and the third in Figure 5.3. The

first section contains the details of the job, including: the job ID number, date, query

sequence(s), database searched and the Quest parameter settings used. This is all the

information that would be required to re-run this search. The second section is the initial

results section; it is a list of all the significant hits to the query sequence(s) found in the

specified database, complete with their scores and associated P-values. The third section

is shown in Figure 5.3, it contains the second half of the results; a multiple alignment of

all the hits to the original query sequence(s). If the coloured output option was selected

then the alignment will be coloured as shown, otherwise an identical monochromatic

alignment will be presented. If a large number of hits are located, the size of the results

page also becomes very large, this is especially true when coloured output is specified.

For a user on a low bandwidth connection this will mean a long wait to download the

file and view the results. To remedy this, if the total number of hits is larger than 20,

the alignment is moved to a separate page and an addition link to it is added to this

section. The other two links in this section are to non-HTML files, they allow users to

simply download the hit sequences in either a plain or aligned format.

The example result shown here was generated by the 'Single run' mode of the web

server. As such it actually has a fourth section not contained in the results for either

the 'Iterative' or ‘Cascade and Cluster' modes. This is shown at the base of Figure 5.2.

The Quest Server: Our Window on the World Wide Web 136

Mathematical Biology N IM R

QUEST Results

Job details

Job ID: 05zJFcCoAQMAADtKB8l
QUEST version 2.0
Date: Wed Sep 12 18:39:50 BST 2001
Query sequence(s):

>D1SCTA_ 1.1.1.1.1 HEMOGLOBIN I {ABE. CLAM (SCAPHABCA IHAEQUIVALVXS)}
XVDAAVAKV C 6 SEAIKANLRRSWOVL SADIEAT OLMLM SHLFTLRPDTKTYFTRL ODVQE
GKAHSKLRCHAITLTYALHHFVDSLDDPSRLKCVVEKFAVHKINRKISCDAFGAIVEPMK
ETLKARMCHVYSDDVAGAWAALVGVVQAAL

Databank: SCOP
P-value: 0.001
Strictness: 100
Run Number; 1

Results

Name Hit Boundaries Score P-Value
D1SCTA_ 1.1.1.1.1 1-150 755 1.07e-98

D1SCTB_ 1.1.1.1.1 18-148 478 2.950-60

D3SDHA_ 1.1.1.1.1 12-145 358 6 O le-42

D1CQXA1 1.1.1.1.48 56-126 94 7.690-07

D1HBRA_ 1.1.1.1.21 6-77 90 1.750-05

D1OUTA_ 1.1.1.1.23 6-62 84 2.080-05

D 1H LM _ 1.1.1.1.46 65-149 81 2.180-04

D 1H LB_ 1.1.1.1.46 89-150 74 4.870-04

Iteration

P-value 0.01 Strictng?§ 1 0 0 Next Iteration

Press button If the resulting alignment should be run against QUEST again.

Figure 5.2: An example results page: Part I. Example results from the web server
generated by a single sequence query of the SCOP database, with Quest running in ‘Single
run’ mode. Continued in Figure 5.3

The Quest Server: Our Window on the World Wide Web 137

Result details

Final alignment

Seed: D1SCTA_
D1SCTA_
D1SCTB_
D3SDHA_
D1CQXA1
D1HBRA_
D10UTA_
D 1H LM _
D1HLB

'D ' KV SE IK. HLRRSW ■ Ls DiE T'.LMLMSHLFt LR DTKTï Ft RL D QK
D KV SE IK HLPRSW VLS DIE T LMLMSHLFTLR DTKTYFTRL D'^QK

LRI'ISW VLS' DMe T' LMLM HLFKTS S K KF RL D S
VKKDLRDSTJK'-I. SDKK H'.V LMt TLF DHQETI YFKRL H SQ

L R VY Y EHIED HSLM LKMI HKH SL K EOY I EHLL
KKLIQQ WeK SHQEEF E LTRMFTTY QTKTYF HF dLS
KSV K FW KIS K DvV.v E RMLt Y QTKTYFsHÏ',’ dLs

RTSRoMH H IRV5 LWttYIDEMDTE' L ell tLtRTKDKHK KK}?YriLF K LM
DSDIL ell tL RtHdLhK DHY’HLF K" LM

Seed: D1SCTA K HSKLR H I t Lt Y LHHF'DSLDD SRLK ' EKF HHIHRKIS D F ■JCVZ M
D1SCTA K HSKLR iH ITLTY l h h f v d s l d d SRLK '.'EKF h KIh PXIS D F I'E M
D1SCTB KJDHSKLR HSITLMY LQHF' ii Ld DVERLK EKF HKIHROIS d e f El'’ L
D3SDHA M HDKLR HSITLMY LQHFId q Ld H DDLV EKF Vh HIt RKIS e f KlH I
D1CQXA1 IKE L H TDDIIS W Q Y
D1HBRA SDQ R 1 H(KK'"'L L H KH 'DHLs Q
D10UTA 5 K KH II
D1HLM E IK EL ' FtKO Hd W KTF I'Q
D 1H LB_ E l q el SDFHEKTRD w K F s v .Q

Seed: D1SCTA KE i LK RM HYYSDD'f W LV.'.V’VQ L
D1SCTA KETLK RM HYYSDD' W LV(,VVq L
D1SCTB ROTLK RM HYFDEDT W SL' . , Q S
D3SDHA KK"'L SKH F dKY H \ 7 KLV L
D1CQXA1
D1HBRA_
D10UTA_
D 1H LM _
D1HLB

Aliqnmont in Fw l» Format
Non-Aligned Sequence»

Figure 5.3: An example results page: Part II. Continuation of the Quest web server
result started in Figure 5.2

The ‘Iteration’ section allows a subsequent single run of Quest to be initiated using the

results of this run as a Query. This manual form of iteration can be tightly controlled by

altering the strictness and the score cutoff of the subsequent searches, allowing confident

users to tightly control the expansion of their search. Equally it is possible to download

the sequence alignment result file and use this as a query for a new search, perhaps

across a different database or using a different scheme.

The Quest Server: Our Window on the World Wide Web 138

The Quest web server allows anyone with an internet connection to make use of

the sequence database searching methods detailed in this thesis. However, it does not

provide the full functionality or controllability of the programs themselves. For users that

require these abilities the programs and source code are available for download from the

ftp server: ftp://mathbio.niinr.mrc.ac.uk/pub/.

ftp://mathbio.niinr.mrc.ac.uk/pub/

Chapter 6

Discussion & Conclusions

The initial aims of this project were to design and produce more effective systems for

searching and accessing large sequence databases. Rather than re-approaching this prob­

lem from scratch we used the Quest program and the QUEST scheme (Taylor, 1998;

Taylor and Brown, 1999) as our initial starting point. We then proceeded to re-evaluate

all the parts of these processes in an attempt to improve their operation in any way

possible. This involved the substantial rewriting of the Quest program itself, less than

15% of the code in the present version has remained unchanged from the original imple­

mentation. Broadly speaking the drastic nature of these changes was successful. When

benchmarked the Quest program (when used in an independent non-iterative context)

has improved its sensitivity by ^100%, to the extent that it now capable of finding a

larger number of correct sequence hits than either BLASTP or BLASTPGP. As well as

improving the sensitivity we have maintained its strength of selectivity. For equal levels

of coverage the Quest program also returned a lower number of errors per query than

the two BLAST packages.

Discussion & Conclusions 140

For the QUEST scheme the task of improvement was split into tree stages. Firstly,

increasing the modularisation of the scheme, allowing a variety of different methods and

programs to fulfil the requirements of the search, alignment and assessment phases.

This task was completed without significant trouble. The second stage, involved the

evaluation of the different possible methods to allow us to put together out 'preferred'

QUEST scheme. We retained the newly improved Quest program for the search phase,

but decided on the replacement of the MULTAL program for the alignment and assess­

ment phases. The replacements chosen were T-Coffee, a relatively new but powerful

alignment package and Mulfil, a purpose written (for the QUEST scheme) alignment

assessment program. The third and final stage was to optimise the settings for these

various programs and the automatic parameter control within the scheme itself. Whilst

not fully completed, the current settings used within the QUEST scheme allowed it to

outperform the most popular iterated search program, PSI-BLAST. Unfortunately this

result is not quite as clear cut as that for the Quest program itself. Whilst the entire

length of the QUEST benchmark curve is closer to the ideal than PSI-BLAST it does not

quite reach the same level of sensitivity. PSI-BLAST eventually reached a coverage of

59% whereas QUEST managed only 56%. However, whilst the sensitivity is slightly lower

the selectivity of QUEST is significantly higher, at these final coverage levels QUEST

only finds 0.37 EPQ's in comparison to PSI-BLAST's 0.80. In fact even at lower cov­

erage levels the selectivity of QUEST is noticeable, at a coverage level of 20% QUEST

returns approximately ten-fold less errors than PSI-BLAST.

Part of the goals of this project were to develop methods that were rapid as well

Discussion & Conclusions 141

as sensitive. Quest is a heuristic based search method and as such it is faster than a

full Smith-Waterman search algorithm. However, it is significantly slower than other

heuristic based methods. The reason for this is that speed of operation was not such

a high priority for us as it was for the developers of the other heuristic based methods.

When BLAST and FASTA were originally developed, computers were much slower and

less widespread and the need to make a program run as fast as possible was much higher.

Our situation has been quite different because the computing resources available to us

and many others are far greater. As a result the Quest program was not as heavily

optimised as perhaps it might have been, instead our focus was firmly on increasing

both the sensitivity and selectivity of the system. However, when completed we still

needed to address the issue of its execution speed. We approached this problem by

optimising the program to make the best use of the computing resources available to

us. As such we made use of the MPI libraries for the 'C' programming language to allow

Quest to run in parallel across more than one processor or computer at a single time

thereby drastically reducing its runtime. This acceleration of Quest was fine when it

was being used as a simple database search program, when used as part of the QUEST

scheme parallélisation is much less useful. The slowest step of the QUEST scheme is

almost uniformly the alignment phase (except when very few sequences are involved), it

is our rate limiting step. Unfortunately, it is far more difficult to parallelise a multiple

alignment method than a database search procedure. So it was not possible to speed

up the QUEST scheme in the same way as the Quest program itself. In effect, the only

way to speed up the operation of the QUEST scheme in it ’s current form is to use a

Discussion & Conclusions 142

faster alignment package. Trial runs with the CLUSTALW program proved that a faster

alignment package does speed up the scheme significantly, however the runtime can still

not be called rapid. The Quest program has a pseudo-alignment option similar to the

alignment system used in the PSI-BLAST program. When this is used the run time is

very fast, but the results are extremely poor, too much information is lost through this

approximate alignment system (PSI-BLAST has a better intrinsic alignment system than

Quest and as a result seems to avoid this fate). Because the entire point of the QUEST

scheme is to use as much information of the best quality possible, we decided to abandon

any further attempts to accelerate its operation and instead merely focus on improving

its effectiveness as a search tool.

The second search scheme developed during this project manages to completely avoid

these problems by doing away with an alignment phase altogether. The Cascade-and-

Cluster system can be thought of as an intermediate sequence search based method.

Quest is used to search a database with a query. All of the significant hits are then

used as individual queries themselves. The results generated by these Quest runs are

then brought together and a simple clustering algorithm removes the sequence hits that

it regards as incorrect. The final result is a scheme that runs relatively quickly (it is

still held back somewhat by the speed of the Quest program itself), but that produces a

result significantly better than PSI-BLAST and only very slightly worse than the QUEST

scheme. This is a significant improvement over simpler intermediate sequence search

methods that are documented as performing only 75% as well as PSI-BLAST.

Recently a new version of PSI-BLAST has been made available that provides a

Discussion & Conclusions 143

greater challenge to our results. The many small enhancements that have been made

to this program have improved its final performance so that it is capable of reaching a

coverage of 57% for only 0.44 EPQ. This final performance is greater than that of the

Cascade-and-Cluster scheme and approximately equal to that of the QUEST scheme.

The new PSI-BLAST program does still have some problems, it ’s selectivity at the lower

coverage levels still leaves a lot to be desired, upto a coverage level of 47% it still

performs significantly worse than the QUEST scheme. This increases when the default

parameters are used so that both QUEST and Cascade-and-Cluster equal or better PSI-

BLAST. In these cases the PSI-BLAST result does eventually rise above these but this

is at a cost of a large number of incorrect hits. When very low cutoff levels are used to

isolate sequences that are virtually certain hits, PSI-BLAST is likely to make more errors

than QUEST and Cascade-and-Cluster, in fact even Quest and BLASTP are likely to do

better. As far as our methods go these results are not as bad news as they may initially

seem. PSI-BLAST is now capable of equalling our best results and and doing so quicker

than we can manage, but it is also a heavily developed and optimised program. Our

methods in comparison are still relatively new and are still partially under construction.

The next stage in the QUEST scheme development is to finalise the optimisation of

the parameter settings within the scheme. The preliminary work of this goal led to a

significant improvement in the results. It is difficult to believe that its finalisation will

not improve them further. There is plenty of scope for improvement within the programs

used in the scheme as well. The implementation of the T-Coffee based alignment filter

in the Mulfil program may well improve the quality of the sequence alignment used in

Discussion &. Conclusions 144

each iteration and hence both the sensitivity and selectivity of the scheme overall. But

it is Quest itself that offers many opportunities. Despite the aggressive rewrite of the

Quest program undertaken in this project it's general mode of operation was unchanged.

As such Quest shares more similarity with the much older database searching programs,

e.g. BLASTP, than the newer ones, e.g. BLASTPGP. Whilst the older methods have

been shown to operate very well in a simple pairwise based database search, they maybe

leaving a little to be desired in an iterative scheme. Furthermore QUEST performed

very badly when it was run in pseudo-alignment mode. This method of operation uses

Quest's own alignment of the sequence hits as a seed for the next search round. This

problem is not observed in PSI-BLAST, which suggests that Quest's alignment system

and hence scoring system may not be as accurate and reliable as it could be. As well as

possibly improving the accuracy of the QUEST program incorporating some of the types

of changes seen in newer search programs would also accelerate it's speed of operation.

A good example of this is the initial double word hit of the BLASTPGP and PSI-BLAST

algorithms (Altschul et al., 1997). There are also less dramatic changes that could be

made to the Quest program of which the most significant would be the overhaul of the

segment assembly function. If the alignment system was left as it is, improving the

assembly function is quite likely to improve the final results. The present method is

a greedy algorithm that assumes the highest scoring segment to be 'correct', therefore

any segments disagreeing with this are disallowed. In certain cases the highest scoring

segment may well be incorrect, especially in scenarios where there are several similarly

scoring but incompatible segments. The original segment assembly function actually

Discussion & Conclusions 145

took into account all these various possibilities, however it was replaced with this much

simpler system for good reasons. Firstly it was very slow and whilst speed of operation

was not our primary concern we had to take it into consideration. But the primary reason

why the original method was replaced was that it did not perform as well as the newer

simpler method, it returned more errors and less correct sequences. However, this was

probably a result of an error within this implementation rather than the concept itself.

To sum up, the QUEST scheme and the programs within it offer significant scope for

further improvement, allowing the real possibility that they could surpass rather than

equal the results of the improved PSI-BLAST.

One aspect of the Quest program that probably offers the most scope for improvement

is the P-value calculation. The system presently implemented is the same as that used

in the earlier BLAST programs (Karlin and Altschul, 1993; Altschul and Gish, 1996) and

has proven to be less reliable than the schemes used in other programs, most noticeably

FASTA (Pearson, 1998; Brenner et al., 1998). The accuracy of the latest version of PSI-

BLAST is noticeably greater than that of the original version. Much of this improvement

is undoubtedly due to the enhanced methods used in calculating the E-values. Because

Quest uses an even more primitive scheme it is quite possible that implementing one

of the newer or more accurate strategies would lead to a significant improvement in

performance.

In my opinion one of the most promising results from this project was that for the

Cascade-and-Cluster scheme. The performance of this scheme was not quite as high

as the QUEST scheme and its result was surpassed by the new version of PSI-BLAST.

Discussion & Conclusions 146

However, this method may have more scope for improvement than either of the other

two. With no optimisation whatsoever the first run of this scheme almost equalled the

best QUEST scheme result and surpassed the original PSI-BLAST. This scheme uses

no form of multiple sequence alignment and only a very simple form of iteration, yet

it's results are equal to these profile based schemes and are far beyond those of simpler

mechanisms, be they non-iterative runs of Quest, BLAST, FASTA or simple intermediate

search schemes (Park et al., 1998). A simple parameter change for the secondary Quest

runs has shown to lead to an increased number of correct hits being located. It is quite

possible that a proper tuning of the parameters could achieve much more. Beyond this,

there are a number of further possibilities for improvement. The reason the optimum

running parameters for this scheme have not yet been determined is that this scheme was

only developed during the last few weeks of this project. Equally because of this time

restriction a number of other shortcuts were made. The number of search levels was

limited to two; the initial search and the secondary searches using the primary results.

The reason given for this earlier was to prevent the search cascade from spiralling out of

control. This is a valid reason to put a limit on the number of search levels, but it does

not mean that two is the right number for that limit. Three search levels may result in a

much higher coverage level without necessarily increasing the error rate too significantly.

Similarly the program put together to perform the clustering procedure was written from

scratch and no attempt to optimise its performance was made. The scoring system it

uses to cluster the sequences is quite arbitrary and testing different values for direct and

indirect links may give a better final result. It could also be possible to take into account

Discussion & Conclusions 147

the strength of the hits i.e. their P-values, when evaluating their linkage to one another.

Put simply, the Cascade-and-Cluster method presented here was designed ad hoc as a

test of concept, which happened to perform very well. However, it is unlikely that it

managed to produce the optimal results on the first attempt, which is what the results

discussed here truly represent.

The Cascade-and-Cluster method does have its problems to overcome. To date the

method has only been tested on the small benchmarking database. On a large dataset

such as the Genbank database it would come against several problems. Firstly there would

be the problem of redundancy. It is pointless to cascade a search with identical or nearly

identical sequences to the original query because they will just give identical results, which

would probably overwhelm the clustering procedure. As a result the cascade searches

would have to be triggered by sequences that are significantly different enough from the

original query. The method worked well with the benchmarking database which had no

sequences that were more than 70% identical. Consequently this may be a good cut off

level for the triggering of the cascade. It is important to note that this cutoff should not

just apply to the original query sequence. Sequences that are deemed too similar to any

of the previous sequences (including but not solely the original query) used in the search

should be excluded from triggering another search themselves. The reasoning behind

this is the same as for the query sequence itself. A large number of extremely similar

sequences will override the scoring mechanism in the clustering algorithm and may lead

to incorrect sequences being accepted as correct. This sequence exclusion would also

probably largely overcome the second problem with the Cascade-and-Cluster scheme on

Discussion & Conclusions 148

large datasets and that is the time that would be required to complete the search. In a

small database this is not a problem because the number of searches in the cascade will

generally be low due to the small size of the sequence clusters. In a larger database the

clusters are likely to be of equally larger sizes. The exclusion of redundant sequences

is likely to contract the size of these sequence clusters significantly, but the number of

searches required is still likely to be larger. There are two ways to overcome this time

problem, either the number of sequence searches is further reduced, perhaps by searching

with only 50% of the possible hits, or secondly by using a faster search program. It has

already been stated that Quest was not designed for speed, which is not so for many

of the other search programs. In a simple comparison BLASTP has proven to perform

much faster and only slightly less well than Quest, FASTA in turn has been documented

as being slightly slower but more accurate than BLASTP. Trials with these alternative

programs may lead to a significant acceleration of operation without much if any loss in

accuracy.

If time had been available, there are numerous additional pieces of work that could

have been done on the benchmarking of the methods presented here. Of these one of

the most interesting would have been to repeat the benchmark run of both QUEST and

PSI-BLAST, this time using a larger database for example the non-redundant Genbank

database for at least the initial iteration, if not all of them. The purpose of this is to

build up a diverse profile by grabbing as many similar sequences as possible from the

larger dataset and then using this to search the smaller test set for the remainder of the

iterations. This should allow both QUEST and PSI-BLAST to play to their strengths;

Discussion & Conclusions 149

both programs were designed to make use of profiles to find more distant sequences.

The more data they are given to start with and the larger the profile they have the more

successful the search should be in locating distant homologues. Indeed this was the

method used in the previous PSI-BLAST benchmarks (Park et al., 1998). The reason

this approach was not used here was as I have already stated so that I could directly

compare programs that were not able to use intermediate sequences with those that

could. However it is possible that because the dataset used was so small it may not

have contained enough information to build up useful profiles. The result of which being

that the profile based methods would not have had any appreciable advantage over the

traditional pair-wise methods. The results presented in the benchmarking chapter do

indicate that this may have been the case.

To sum up, the primary goals of this project have been fulfilled. We have managed to

develop both rapid and sensitive methods for searching sequence databases, using both

single and multiple sequence queries. The Quest program itself has been much enhanced,

performing up to twice as well as the original implementation and significantly better

than several of its main competitors. The performance of the QUEST scheme is also

much enhanced. Through the use of iteration, sequence alignment and hit assessment

we have shown it possible to combine both high levels of sensitivity and selectivity in a

single search scheme. The results of the QUEST scheme are now equal to if not better

than it's nearest competitor PSI-BLAST. During the duration of the project a second

simpler search scheme refered to as Cascade-and-Cluster was developed. This scheme is

loosely based on the theory of intermediate sequence searching and unlike QUEST and

Discussion & Conclusions 150

PSI-BLAST, it does not rely on multiple sequence alignment to expand the range of its

search. As such it operates much faster than the QUEST scheme whilst producing results

of an almost equal quality. Both of these schemes and the programs that comprise them

offer much room for further development, indicating that more improvement should be

possible, allowing the construction of both faster and more accurate searching tools in

the near future.

Bibliography

Agarwal, P. and States, D. (1998). Comparative accuracy of methods for protein se­

quence similarity search. Bioinformatics, 14(l):40-47.

Altschul, S. (1991). Amino acid substitution matrices from an information theoretic

perspective. Journal o f Molecular Biology, 219:555-565.

Altschul, S. and Gish, W. (1996). Local alignment statistics. In Doolittle, R., editor.

Computer Methods for Macromolecular Sequence Analysis, volume 266 of Methods

in Enzymology, chapter 27, pages 460-480. Academic Press, Inc., 24-28 Oval Road,

London NWl 7DX.

Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990). Basic local

alignment search tool. Journal o f Molecular Biology, 215(3):403-10.

Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., and Lipman,

D. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs. Nucleic Acids Research, 25(17):3389-402.

Bairoch, A. and Apweiler, R. (2000). The SWISS-PROT protein sequence database and

its supplement TrEMBL in 2000. Nucleic Acids Research, 28:45-48.

BIBLIOGRAPHY___ ^

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I.,

and Bourne, P. (2000). The Protein Data Bank. Nucleic Acids Research, 28:235-

242.

Bleasby, A., Akrigg, D., and Attwood, T. (1994). OWL - a non-redundant composite

protein sequence database. Nucleic Acids Research, 22:3574-3577.

Brenner, S., Chothia, C., and Hubbard, T. (1998). Assessing sequence comparison

methods with reliable structurally identified distant evolutionary relationships. Pro­

ceedings o f the National Academy o f Sciences o f the United States o f America,

95:6073-6078.

Brenner, S., P., K., and M., L. (2000). The astral compendium for protein structure and

sequence analysis. Nucleic Acids Research, 28(l):254-256.

Dayhoff, M., Schwartz, R., and Orcutt, B. (1978). A model of evolutionary change in

proteins, matrices for detecting distant relationships. In Dayhoff, M., editor. Atlas

of Protein Sequence and Structure, volume 5, pages 345-358. National Academic

Research Foundation, Washington DC.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis:

Probabilistic models o f proteins and nucleic acids. Cambridge University Press, The

Edinburgh Building, Cambridge CB2 2RU,UK.

Eddy, 5. (1998). Profile hidden Markov models. Bioinformatics, 14(9):755-763.

Fraser, C., Gocayne, J., White, 0., Adams, M., Clayton, R., Fleischmann, R., Bult,

BIBLIOGRAPHY___ ^

C., Kerlavage, A., Sutton, G., Kelley, J., Fritchman, J., Weidman, J., Small, K.,

Sandusky, M., Fuhrmann, J., Nguyen, D., Utterback, T., Saudek, D., Phillips, C.,

Merrick, J., Tomb, J., Dougherty, B., Bott, K., Hu, P., and Lucier, T. (1995). The

minimal gene complement of Mycoplasma genitalium. Science, 270:397-404.

Gerstein, M. (1998). Measurement of the effectiveness of transitive sequence comparison,

through a third ’intermediate’ sequence. Bioinformatics, 14(8):707-14.

Gotoh, 0. (1996). Significant improvement in accuracy of multiple protein sequence

alignments by iterative refinement as assessed by reference to structural alignments.

Journal o f Molecular Biology, 264(4) :823-838.

Gribskov, M., McLachlan, A., and Eisenberg, D. (1987). Profile analysis: Detection of

distantly related proteins. Proceedings o f the National Academy o f Sciences o f the

United States o f America, 84(13) :4355-4358.

Henikoff, S. and Henikoff, J. (1992). Amino acid substitution matrices from protein

blocks. Proceedings o f the National Academy o f Sciences o f the United States o f

America, 89:10915-10919.

Henikoff, S. and Henikoff, J. (1993). Performance evaluation of amino acid substitution

matrices. Proteins, 17(1):49-61.

Henikoff, S. and Henikoff, J. (1994). Position-based sequence weights. Journal o f

Molecular Biology, 243(4):574-8.

Heringa, J. (1999). Two strategies for sequence comparison: profile-preprocessed and

BIBLIOGRAPHY___ ^

secondary structure-induced multiple alignment. Computers & Chemistry, 23(3-

4):341-64.

Higgins, D., Bleasby, A., and Fuchs, R. (1992). CLUSTAL V: improved software for

multiple sequence alignment. CABIOS, 8:189-191.

Higgins, D. and Sharp, P. (1988). CLUSTAL: a package for performing multiple sequence

alignment on a microcomputer. Gene, 73:237-244.

Hogeweg, P. and Hesper, B. (1984). The alignment of sets of sequences and the con­

struction of phyletic trees: an integrated method. Journal o f Molecular Evolution,

20:175-186.

Huang, X. and Miller, W. (1991). A time-efficient linear-space local similarity algorithm.

Advances in Applied Mathematics, 12:337-357.

International Human Genome Sequencing Consortium (2001). Initial sequencing and

analysis of the human genome. Nature, 409:860-921.

Johnson, M. and Doolittle, R. (1986). A method for the simultaneous alignment of three

or more amino acid sequences. Journal o f Molecular Evolution, 23:267-278.

Jones, D., Taylor, W., and Thornton, J. (1992). The rapid generation of mutation

matrices from protein sequences. CABIOS, 8:275-282.

Karlin, S. and Altschul, S. (1990). Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. Proceedings o f the

National Academy o f Sciences o f the United States o f America, 87:2264-2268.

BIBLIOGRAPHY___ ^

Karlin, S. and Altschul, S. (1993). Applications and statistics for multiple high-scoring

segments in molecular sequences. Proceedings o f the National Academy o f Sciences

o f the United States o f America, 90(12):5873-5877.

Karplus, K., Barrett, C., and Hughey, R. (1998). Hidden Markov models for detecting

remote protein homologies. Bioinformatics, 14(10):846-856.

Kimura, M. (1983). The Neutral Theory o f Molecular Evolution. Cambridge University

Press, Cambridge.

King, J. and Jukes, T. (1969). Non-Darwinian evolution. Science, 164:788-798.

Krause, A., Stoye, J., and Vingron, M. (2000). The SYSTERS protein sequence cluster

set. Nucleic Acids Research, 28(l):270-2.

Krause, A. and Vingron, M. (1998). A set-theoretic approach to database searching and

clustering. Bioinformatics, 14(5):430-438.

Lipman, D., Altschul, S., and Kececioglu, J. (1989). A tool for multiple sequence

alignment. Proceedings o f the National Academy o f Sciences o f the United States

of America, 86:4412-4415.

Mehta, P., Heringa, J., and Argos, P. (1995). A simple and fast approach to prediction

of protein secondary structure from multiply aligned sequences with accuracy above

70%. Protein Science, 4:2517-2525.

Morgenstern, B., Dress, A., and Werner, T. (1996). Multiple DNA and protein sequence

BIBLIOGRAPHY___ ^

alignment based on segment-to-segment comparison. Proceedings o f the National

Academy of Sciences o f the United States o f America, 93(22):12098-12103.

Mülier, A., MacCallum, R., and Sternberg, M. (1999). Benchmarking PSI-BLAST in

genome annotation. Journal o f Molecular Biology, 293(5):1257-71.

Murzin, A., Brenner, S., Hubbard, T., and Chothia, C. (1995). SCOP: a structural

classification of proteins database for the investigation of sequences and structures.

Journal o f Molecular Biology, 247(4):536-40.

Needleman, S. and Wunsch, C. (1970). A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal o f Molecular Biology,

48:443-453.

Neuwald, A., Liu, J., Lipman, D., and Lawrence, C. (1997). Extracting protein alignment

models from the sequence database. Nucleic Acids Research, 25(9):1665-77.

Notredame, C. and Higgins, D. (1996). SAGA: sequence alignment by genetic algorithm.

Nucleic Acids Research, 24(8): 1515-1524.

Notredame, C., Higgins, D., and Heringa, J. (2000). T-coffee: A novel method for

fast and accurate multiple sequence alignment. Journal o f Molecular Biology,

302(1):205-217.

Notredame, C., Holm, L., and Higgins, D. (1998). COFFEE: an objective function for

multiple sequence alignments. Bioinformatics, 14(5):407-422.

BIBLIOGRAPHY___ ^

Orengo, C., Michie, A., Jones, S., Jones, D., Swindells, M., and Thornton, J.

(1997). CATH - A hierarchic classification of protein domain structures. Struc­

ture, 5(8):1093-1108.

Pacheco, P. (1997). Parallel programming with MPI. Morgan Kaufmann Publishers,

Inc., San Francisco, California, USA.

Park, J., Karplus, K., Barrett, C., Hughey, R., Haussier, D., Hubbard, T., and Chothia, C.

(1998). Sequence comparisons using multiple sequences detect three times as many

remote homologues as pairwise methods. Journal o f Molecular Biology, 284:1201-

1210.

Park, J., Teichmann, S., Hubbard, T., and Chothia, C. (1997). Intermediate sequences

increase the detection of homology between sequences. Journal o f Molecular Biol­

ogy, 273:349-354.

Pearl, P., Todd, A., Bray, J., Martin, A., Salamov, A., Suwa, M., Swindells, M., Thorn­

ton, J., and Orengo, C. (2000). Using the CATH domain database to assign struc­

tures and functions to the genome sequences. Biochemical Society Transactions,

28(2):269-75.

Pearson, W. (1990). Rapid and sensitive sequence comparison with fastp and fasta.

Methods in Enzymology, 183:63-98.

Pearson, W. (1998). Empirical statistical estimates for sequence similarity searches.

Journal of Molecular Biology, 276(1):71-84.

BIBLIOGRAPHY ___ ^

Pearson, W. and Lipman, D. (1988). Improved tools for biological sequence analysis.

Proceedings o f the National Academy o f Sciences o f the United States o f America,

85(8):2444-2448.

Rognes, T. and Seeberg, E. (2000). Six-fold speed-up of Smith-Waterman sequence

database searches using parallel processing on common microprocessors. Bioinfor­

matics, 16(8):699-706.

Saitou, N. and Nei, M. (1987). The neighbour-joining method: a new method for

reconstructing phylogenetic trees. Molecular Biology and Evolution, 4:406-425.

Salamov, A., Suwa, M., Orengo, C., and Swindells, M. (1999). Combining sensitive

database searches with multiple intermediates to detect distant homologues. Protein

Engineering, 12(2):95-100.

Schaffer, A., Aravind, L., Madden, T., Shavirin, S., Spouge, J., Wolf, Y., Koonin, E.,

and Altschul, S. (2001). Improving the accuracy of PSI-BLAST protein database

searches with composition-based statistics and other refinements. Nucleic Acids

Research, 29(4):2994-3005.

Sellers, P. (1974). On the theory and computation of evolutionary distances. SIAM

journal o f Applied Mathematics, 26:787-793.

Shpaer, E., Robinson, M., Yee, D., Candlin, J., Mines, R., and Hunkapiller, T. (1996).

Sensitivity and selectivity in protein similarity searches: A comparison of smith-

waterman in hardware to BLAST and FASTA. Genomics, 38:179-191.

BIBLIOGRAPHY___ ^

Smith, T. and Waterman, M. (1981). Identification of common molecular subsequences.

Journal o f Molecular Biology, 147:195-197.

Sneath, P. and Sokal, R. (1973). Numerical Taxonomy. W.H.Freeman, San Francisco.

Stein, L., Sternberg, P., Durbin, R., Thierry-Mieg, J., and Spieth, J. (2001). Wormbase:

network access to the genome and biology of caenorhabditis elegans. Nucleic Acids

Research, 29(l):82-86.

Taylor, W. (1987). Multiple sequence alignment by a pairwise algorithm. CABIOS,

3:81-87.

Taylor, W. (1988). A flexible method to align large numbers of biological sequences.

Journal o f Molecular Evolution, 28:161-169.

Taylor, W. (1997). Residual colours: a proposal for aminochromography. Protein Engi­

neering, 10(7):743-746.

Taylor, W. (1998). Dynamic sequence databank searching with templates and multiple

alignment. Journal o f Molecular Biology, 280(3):375-406.

Taylor, W. and Brown, N. (1999). Iterated sequence databank search methods. Com­

puters & Chemistry, 23(3-4):365-85.

The Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the

flowering plant Arabidopsis thaliana. Nature, 408:796-815.

The C.elegans Sequencing Consortium (1998). Genome sequence of the ne­

matode Caenorhabditis elegans. a platform for investigating biology. Sci­

BIBLIOGRAPHY___ 160

ence, 282:2012-2018. The full list of authors can be found at

http://www.sanger.ac.uk/Projects/C_elegans/Science98/.

The FlyBase Consortium (1999). The FlyBase database of the Drosophila genome

projects and community literature. Nucleic Acids Research, 27(l):85-88.

Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F., and Higgins, D. (1997). The

CLUSTAL X windows interface: flexible strategies for multiple sequence alignment

aided by quality analysis tools. Nucleic Acids Research, 25(24):4876-4882.

Thompson, J., Higgins, D., and Gibson, T. (1994). CLUSTAL W: improving the sensitiv­

ity of progressive multiple sequence alignment through sequence weighting, position-

specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673-

4690.

Thompson, J., Plewniak, F., and Poch, O. (1999a). BAIiBASE: a benchmark align­

ment database for the evaluation of multiple alignment programs. Bioinformatics,

15(l):87-8.

Thompson, J., Plewniak, F., and Poch, 0. (1999b). A comprehensive comparison of

multiple sequence alignment programs. Nucleic Acids Research, 27(13):2682-90.

Wallqvist, A., Fukunishi, Y., Murphy, L., Fadel, A., and Levy, R. (2000). Iterative

sequence/secondary structure search for protein homologs: comparison with amino

acid sequence alignments and application to fold recognition in genome databases.

Bioinformatics, 16(11):988-1002.

http://www.sanger.ac.uk/Projects/C_elegans/Science98/

