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Modeling of Errors due to Uncertainties in
Ultrasound Sensor Locations in Photoacoustic

Tomography
Teemu Sahlström, Aki Pulkkinen, Jenni Tick, Jarkko Leskinen and Tanja Tarvainen

Abstract—Photoacoustic tomography is an imaging modality
based on the photoacoustic effect caused by the absorption of
an externally introduced light pulse. In the inverse problem of
photoacoustic tomography, the initial pressure generated through
the photoacoustic effect is estimated from a measured pho-
toacoustic time-series utilizing a forward model for ultrasound
propagation. Due to the ill-posedness of the inverse problem,
errors in the forward model or measurements can result in
significant errors in the solution of the inverse problem. In
this work, we study modeling of errors caused by uncertainties
in ultrasound sensor locations in photoacoustic tomography
using a Bayesian framework. The approach is evaluated with
simulated and experimental data. The results indicate that the
inverse problem of photoacoustic tomography is sensitive even
to small uncertainties in sensor locations. Furthermore, these
uncertainties can lead to significant errors in the estimates and
reduction of the quality of the photoacoustic images. In this
work, we show that the errors due to uncertainties in ultrasound
sensor locations can be modeled and compensated using Bayesian
approximation error modeling.

Index Terms—Photoacoustic tomography (PAT), inverse prob-
lems, Bayesian methods, error modeling.

I. INTRODUCTION
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PHOTOACOUSTIC tomography (PAT) is an imaging
modality that utilizes the photoacoustic effect. In PAT, the

imaged target is illuminated with a short (typically nanosecond
scale) light pulse. Absorption of this light is followed by
local thermal expansion and mechanical stress resulting in
an initial pressure distribution within the target. This initial
pressure relaxes as broadband ultrasound waves that can be
measured on the boundary of the target. In the inverse problem
of PAT, the initial pressure is estimated from the measured
photoacoustic data. For reviews of PAT, its physical principles
and applications see e.g. [1], [2].

Various methods for image reconstruction in PAT have been
proposed. Some of the most common approaches include
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series-summation based methods [3], [4], back-projection
type approaches [5], [6], time-reversal [7], [8], least-squares
and regularized least-squares techniques [9], [10], and a
Bayesian approach [11]–[13]. Out of these methods, the series-
summation and back-projection based methods are based on
analytic inversion formulas. In practice, these methods are,
however, limited to specific geometries such as planar, cylin-
drical, or spherical measurement geometries. Time-reversal,
least-squares, regularized least-squares, and Bayesian meth-
ods utilize a numerical solution of the forward problem.
These methods are computationally more intensive as the
photoacoustic wave-field within the entire domain needs to be
computed. They can, on the other hand, be generally applied
in arbitrary measurement geometries.

In this work, the inverse problem of PAT is approached
in the framework of Bayesian inverse problems [14], [15]
following the groundwork described in [11], [13]. In the
Bayesian approach to inverse problems, all of the parameters
are modeled as random variables. The solution of the inverse
problem, i.e. the posterior probability density, is obtained
through inference of measurements, forward model, and a
prior model for the unknown parameters.

The inverse problem of PAT is ill-posed. The ill-posedness
means that even small errors or uncertainties in the measure-
ments or modeling can result in significant errors in the solu-
tion of the inverse problem. These errors can appear as artifacts
in the reconstructed images. The modeling errors can arise
from, for example, the use of a coarse numerical discretization
to reduce computational cost. In addition, some assumptions,
such as incorrect speed of sound can result in significant
errors in the solution of the inverse problem. Furthermore, with
experimental setups, errors may originate from uncertainties in
the measurement setup geometry. In order to produce accurate
photoacoustic images, these modeling errors or uncertainties
have to be taken into account. Previously, modeling of errors
and their effect in the solution of the inverse problem in PAT
have been studied in cases such as variable speed of sound
[16]–[18] and finite ultrasound transducer size [19], [20].

Modeling errors due to discretization can often be elim-
inated by using sufficiently dense discretization, i.e. forward
models which can be considered accurate within measurement
precision. With practical measurement setups, elimination of
the modeling errors can be more challenging. The measure-
ment setup can, for example, be constructed such that the exact
modeling of the sensor locations is challenging.

The Bayesian approach to inverse problem facilitates rep-
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resenting and taking into account errors and uncertainties
in parameters, models, and measurement geometries [14].
In this work, we investigate errors caused by uncertainties
in ultrasound sensor locations in PAT. Further, we study
modeling of these errors using Bayesian approximation error
modeling. In the approach, modeling errors are approximated
as Gaussian and treated as noise in the solution of the
inverse problem. The Bayesian approximation error approach
has been previously utilized in the optical inverse problem
of quantitative PAT in modeling of noise and errors [21],
marginalization of scattering [22], and model reduction by
using coarse discretization [23]. Furthermore, it has recently
been proposed for marginalization of the speed of sound in
PAT [18]. In other optical and ultrasonic imaging applications
it has been applied, for example, in compensating of errors
due to discretization [24], reduction of the physical model [25],
domain truncation [26], [27], uncertainties related to geometry
and shape [28], [29], and uncertainties in model parameters
[30], [31]. Outside biomedical imaging, it has been utilized
in other acoustical modeling and inverse problems such as
model reduction in aquifer dimension estimation from seismic
signals [32], [33]. This paper is one of the first works in
which the Bayesian approximation error modeling is utilized
in the inverse problem of PAT. Furthermore, this is one of the
few studies of Bayesian approximation error modeling where
experimental data is used.

The remainder of this paper is organized as follows. The for-
ward problem of PAT is described in Section II. The Bayesian
framework and modeling of errors in PAT are described in
Section III. Results using simulated and experimental data
are presented in Sections IV and V, respectively. Finally,
discussion and conclusions are presented in Section VI.

II. PHOTOACOUSTIC FORWARD MODEL

Propagation of photoacoustic waves generated by an initial
pressure p0 in a non-absorbing acoustically homogeneous
medium is described by the initial value problem

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= 0

p(r, t = 0) = p0(r)

∂

∂t
p(r, t = 0) = 0,

(1)

where p(r, t) is the pressure, r denotes the spatial position, t
is the time, and c is the speed of sound [34]. In practice, the
photoacoustic time series, denoted by pt, is measured at finite
number of time points and positions around the imaged target.
In this work, the wave equation is solved with a pseudospectral
k-space method using the k-Wave MATLAB toolbox [35].

III. INVERSE PROBLEM

In PAT, the objective is to estimate the initial pressure p0
generated by the photoacoustic effect, when the measured
photoacoustic time series pt is given. According to Bayes’

theorem, the solution of the inverse problem can be presented
as a conditional probability density function of the form

π(p0|pt) =
π(pt|p0)π(p0)

π(pt)

∝ π(pt|p0)π(p0),

(2)

where π(p0|pt) is the posterior probability density, π(pt|p0) is
the likelihood probability density, π(p0) is the prior probability
density, and π(pt) is a normalization constant [14], [15].

A. Conventional error model
The solution p of the wave equation (1) is linear with respect

to the initial pressure p0. Utilizing this linear dependency, the
observation model of PAT can be written in a discrete form

pt = Kp0 + e, (3)

where pt ∈ Rn is a vector of the photoacoustic time series
for each sensor, p0 ∈ Rm is a vector describing the initial
pressure, and e ∈ Rn is additive measurement noise. Further,
K ∈ Rn×m is a discrete forward operator that is assumed to be
exact within measurement accuracy. In this work, the forward
operator K is constructed by simulating impulse responses for
each of the pixels in the reconstructed domain and placing the
recorded waveform on the columns of the forward operator K
[11]. The impulse responses were simulated using a k-space
time-domain method implemented in the k-Wave toolbox. For
a matrix-free approach for the inverse problem of PAT, where
the forward operator K is not explicitly constructed or stored,
see e.g. [13].

Let us now consider the observation model (3). Commonly,
the measurement noise is modeled by assuming that the
measurement system has some noise level regardless of the
imaged target i.e. the noise e and the initial pressure p0 are
mutually independent. In this case, the likelihood probability
distribution can be written as

π(pt|p0) = πe(pt −Kp0), (4)

where πe(·) denotes the probability density of the measure-
ment noise e.

Let us model the measurement noise e as Gaussian
e ∼ N (ηe,Γe), where ηe is the mean and Γe is the covariance
of the measurement noise. The likelihood probability density
(4) can then be written as

π(pt|p0) ∝ exp

{
−1

2
‖Le(pt −Kp0 − ηe)‖22

}
, (5)

where Le is the Cholesky decomposition of the inverse covari-
ance matrix of the measurement noise Γ−1e = LT

eLe [14]. The
likelihood model (5) is referred to as the conventional error
model (CEM).

Let us further model the prior density π(p0) as Gaussian
p0 ∼ N (ηp0

,Γp0
), where ηp0

is the mean and Γp0
is the

covariance of the prior distribution. In this case, the posterior
probability density takes the form

π(p0|pt) ∝ exp

{
− 1

2
‖Le(pt −Kp0 − ηe)‖22

− 1

2
‖Lp0

(p0 − ηp0
)‖22
}
,

(6)
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where Lp0
is the Cholesky decomposition of the inverse

covariance matrix of the prior density Γ−1p0
= LT

p0
Lp0 [14].

Posterior distribution (6) describes a Gaussian distribution [11]

p0|pt ∼ N (ηp0|pt
,Γp0|pt

),

where

ηp0|pt
= Γp0|pt

(KTΓ−1e (pt − ηe) + Γ−1p0
ηp0) (7)

Γp0|pt
= (Γ−1p0

+KTΓ−1e K)−1. (8)

B. Bayesian approximation error approach

To produce accurate solutions of the inverse problem, the
forward operator K has to model the underlying physics
to a sufficient degree of accuracy. In practice, the forward
operator can, however, contain modeling errors due to, for
example, numerical discretization or uncertainties in the model
parameters. In the Bayesian framework, the modeling errors
can be taken into account by using the so-called Bayesian
approximation error approach [14], [36].

Let us now consider a situation, where the forward operator
K is parameterized by some inaccurately known parameter
ϕ, such as those arising from uncertainties in measurement
geometry. The observation model (3) can then be written as

pt = K(ϕ)p0 + e. (9)

In practice, however, the random variable ϕ is often fixed
to some constant ϕ→ ϕ0 and a computationally approximate
forward operator K(ϕ0) is used instead. Then, the observation
model (9) can be written as

pt = K(ϕ0)p0 + (K(ϕ)p0 −K(ϕ0)p0) + e

= K(ϕ0)p0 + ε+ e

= K(ϕ0)p0 + n,

(10)

where ε ∈ Rn is the approximation error describing the
discrepancy between the accurate and inaccurate models and
n = ε+ e is the total error.

Using the observation model (10), the likelihood distribution
can be written in an integral form [37]

π(pt|p0) =

∫
πe(pt −K(ϕ0)p0 − n)πε|p0

(ε|p0) dε, (11)

where πε|p0
(·) denotes the conditional probability distribution

of the approximation error ε with respect to the initial pressure
p0. Let us now model the approximation error ε as Gaussian
distributed ε ∼ N (ηε,Γε), where ηε and Γε are the mean and
covariance [14]. According to (11), the approximation error ε
is dependent on the initial pressure p0. In previous studies it
has, however, been shown that ignoring this dependence gener-
ally leads to sufficiently accurate models of the approximation
error [26], [28], [38]. Thus, we ignore the dependence of ε on
p0 i.e. ε|p0 → ε. The likelihood probability distribution (11) is
then a convolution of two Gaussian distributions. Furthermore,
the total error n is also Gaussian distributed n ∼ N (ηn,Γn)
where ηn = ηε + ηe and Γn = Γε + Γe.

Following these assumptions, the likelihood probability den-
sity (11) can be written as

π(pt|p0) ∝ exp

{
−1

2
‖Ln(pt −K(ϕ0)p0 − ηn)‖22

}
, (12)

where Ln is the Cholesky decomposition of the inverse
covariance matrix of the total error Γ−1n = LT

nLn. The error
model described by the likelihood density (12) is referred to
as the enhanced error model (EEM) [14].

In the case of a Gaussian prior, the posterior density using
the EEM can be written as

π(p0|pt) ∝ exp

{
− 1

2
‖Ln(pt −K(ϕ0)p0 − ηn)‖22

− 1

2
‖Lp0

(p0 − ηp0
)‖22
}
.

(13)

This is a Gaussian distribution, i.e.

p0|pt ∼ N (η̃p0|pt
, Γ̃p0|pt

),

where

η̃p0|pt
= Γ̃p0|pt

(K(ϕ0)TΓ−1n (pt − ηn) + Γ−1p0
ηp0) (14)

Γ̃p0|pt
= (Γ−1p0

+K(ϕ0)TΓ−1n K(ϕ0))−1. (15)

Approximation error ε can be determined by, for exam-
ple, using simulations and a sample based approximation as
follows. Let S = {s(1), s(2), · · · , s(N)} be a set of samples
drawn from prior distribution of p0 and ϕ(l) a sampled value
of the uncertain parameter ϕ. Mean and covariance of the
approximation error ε can then be computed using the accurate
and inaccurate forward models as

ηε =
1

N

N∑
l=1

ε(l) (16)

Γε =
1

N − 1

N∑
l=1

ε(l)(ε(l))T − ηεηT
ε , (17)

where
ε(l) = K(ϕ(l))s(l) −K(ϕ0)s(l). (18)

Simulation of the modeling error statistics can be time con-
suming. However, it needs to be computed only once for a
certain measurement geometry and prior distribution.

IV. SIMULATIONS

Effect and compensation of uncertainties in ultrasound
sensor locations were studied with simulations using multiple
sensor geometries and increasing levels of uncertainty. In the
simulations, a circular, 10 mm diameter region was considered.
The speed of sound was set to c = 1500 m/s. The simulated
initial pressure p0 contained seven isotropic Gaussian inclu-
sions of various sizes (standard deviations between 400 and
750 µm, peak amplitude of 1 near the boundary and 0.6 in
the middle) illustrated in Fig. 1.

In the simulations, three sensor geometries were studied.
The geometries consisted of arcs spanning 360◦, 180◦, and
130◦ of the domain boundary with sensor separation of 10◦. In
this work, these sensor geometries are referred to as G360, G180,
and G130 respectively. The sensors were modeled as ideal point
sensors. Sensor positions were defined as cartesian coordinate
pairs. In the cases where the coordinates did not match a
spatial discretization point, the recorded signals were linearly
interpolated using piecewise linear triangular discretization.
Visualization of the sensor geometries is presented in Fig. 1.
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Fig. 1. Simulated initial pressure and sensor geometries. Evenly spaced full-
view sensor geometry is indicated as light blue dots. Subsets of these sensors
used in geometries G360 (dotted line), G180 (dash-dotted line), and G130
(dashed line) are indicated with the arcs spanning 360◦, 180◦, and 130◦

of the target domain. Cross-section used in the visualization of the posterior
distribution is shown with a white dotted line.

A. Data simulation

For data simulation, a square 10.4 mm × 10.4 mm com-
putational domain was discretized in 832× 832 pixels with
a pixel side length of ∆x = 12.5µm. The discretization was
extended by an additional 0.425 mm (34 pixels) thick perfectly
matched layer (PML) to absorb reflections on the boundary of
the domain. Temporal discretization was chosen according to
a Courant–Friedrichs–Lewy (CFL) number 0.3, which corre-
sponded to a time step of ∆t = 2.5 ns and sampling frequency
of 400 MHz. Number of time points was set to Nt = 2767
points resulting in flight time of 6918 ns and propagation
distance of 10.4 mm.

In order to simulate data with uncertainties in sensor lo-
cations, the ultrasound sensor locations were perturbed as
illustrated in Fig. 2. These altered sensor locations were drawn
from generalized uniform distributions of radial and angular
values. For the angular case, the altered sensor locations
were drawn randomly from three angular distributions PANG,1,
PANG,2, and PANG,3 shown in Table I. In the radial case, the
altered sensor locations were drawn from three distributions
PRAD,1, PRAD,2, and PRAD,3 shown in Table I.

Measurement data was simulated using the wave equation
(1) that was numerically solved using the k-space time-
domain method implemented in the k-Wave toolbox. Gaussian
distributed uncorrelated noise with zero mean ηe and standard
deviation σe of 1% of the maximum simulated peak amplitude
was added to the data.

B. Inverse problem

For the reconstructions, the computational domain was
discretized in 135 × 135 pixels of side length ∆x = 78.1µm.
The computational domain was extended with an additional
1.7 mm (22 pixels) thick PML-layer. Temporal discretiza-
tion was chosen according to a CFL-number 0.3, which
corresponded to a time step of ∆t = 15.6 ns and sampling
frequency of 64.0 MHz. Number of time points was set to

PANG

PRAD

DANG

Fig. 2. Visualization of the altered sensor locations in the angular (PANG) and
radial (PRAD) cases. The correct (unaltered) sensor location is indicated as a
light blue rectangle with a dotted outline. Cartesian distance DANG between
the angularly altered and unaltered sensor location is indicated with the red
dotted line.

TABLE I
ANGULAR (PANG,1 , PANG,2 , AND PANG,3 ) AND RADIAL (PRAD,1 , PRAD,2 ,

AND PRAD,3 ) DISTRIBUTIONS USED IN ALTERING OF SENSOR LOCATIONS
IN DATA SIMULATION. MAXIMUM CARTESIAN DISTANCE DANG OF THE

ANGULAR DISTRIBUTIONS IS SHOWN IN SQUARE BRACKETS

Alteration Distribution

PANG,1 Unif([−1◦,−0.5◦] ∪ [0.5◦, 1◦]) [89µm]
PANG,2 Unif([−2◦,−1◦] ∪ [1◦, 2◦]) [177µm]
PANG,3 Unif([−3◦,−1.5◦] ∪ [1.5◦, 3◦]) [266µm]

PRAD,1 Unif([−45.0µm,−22.5µm] ∪ [22.5µm, 45.0µm])
PRAD,2 Unif([−89.0µm,−44.5µm] ∪ [44.5µm, 89.0µm])
PRAD,3 Unif([−177.0µm,−88.5 mm] ∪ [88.5µm, 177.0µm])

Nt = 437 resulting in flight time of 6817 ns and propagation
distance of 10.2 mm. For reconstructions, the simulated mea-
surement data was interpolated to the temporal grid used in
the reconstructions.

Prior model used in the reconstructions was the Gaussian
Ornstein–Uhlenbeck smoothness prior, that is defined by the
covariance function

Γp0,ij = σ2
p0

exp

{
−‖ri − rj‖

`

}
, (19)

where σp0 is the standard deviation, ri,j are locations of pixels,
and ` is the characteristic length [39]. In this work values of
σp0

= 0.25 and ` = 600µm were used. Expected value of the
prior density was set to ηp0

= 0.5.
Measurement error e was modeled as uncorrelated Gaussian

distributed with zero mean. The standard deviation of the
measurement error was set as 1% of the maximum positive
amplitude of the simulated noiseless data.

In this work, the inverse problem of PAT was solved using
three different error models. In the first case, the posterior
distribution was solved with the CEM using (7)–(8) and
accurately modeled sensor locations, i.e. the accurate model
K(ϕ). In the second case, the posterior distribution was solved
with the CEM using (7)–(8) and an inaccurate model K(ϕ0).
This corresponded to a situation, where the modeling errors are
not taken into account, i.e. ε = 0 and K(ϕ0) 6= K(ϕ). Finally,
in the third case, the posterior distribution was solved with the
EEM using (14)–(15), an inaccurate forward model K(ϕ0),
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TABLE II
RELATIVE ERRORS Ep0 (%) WITH RESPECT TO THE SIMULATED INITIAL

PRESSURE FOR SENSOR GEOMETRIES G360 , G180 , AND G130 AND
ANGULAR UNCERTAINTIES PANG,1 , PANG,2 , AND PANG,3

PANG,1 PANG,2 PANG,3

ACEM ICEM EEM ACEM ICEM EEM ACEM ICEM EEM

G360 3.2 15.4 4.6 3.1 28.8 7.7 3.0 31.8 11.1
G180 5.8 25.3 8.6 5.8 51.4 11.8 5.3 110.2 16.4
G130 14.3 32.3 19.8 12.3 78.0 25.9 13.7 102.9 35.6

and approximating the modeling errors as Gaussian. In this
work, these three approaches are referred to as accurate CEM
(ACEM), inaccurate CEM (ICEM), and EEM respectively.

Statistics of the approximation error ε were computed
by simulating forward solutions using the k-Wave toolbox.
Estimates for the mean ηε and covariance Γε were computed
as in (16) – (18) using N = 20000 samples s(l) drawn
from the prior density (19). For these samples, standard
deviation, expected value, and characteristic length were set
at σp0

= 0.25, ηp0
= 0.5, and ` = 600µm respectively. In the

case where the drawn value was negative, which took place
only in few occasions, the value was set to zero. Using the
samples s(l), forward solutions corresponding to K(ϕ0)s(l)

were computed by using the unaltered sensor geometry. Fur-
thermore, the forward solutions corresponding to K(ϕ(l))s(l)

were computed using altered sensor locations drawn from
uniform distributions between the maximum negative and
positive alterations. This meant that, for example, in the case
of uncertainty PANG,1, the sensor locations were drawn from
a uniform distribution U(−1◦, 1◦). The sensor locations were
drawn independently for every sensor and the locations were
drawn repeatedly for each of the samples. Approximation error
statistics were computed separately for the cases of angular
and radial uncertainties. The number of samples required
in teaching the approximation error can be evaluated by
inspecting the spectrum of the error model covariance matrix
with varying number of samples N . Discussion and examples
regarding a suitable number of samples N is presented in the
Appendix.

Solutions of the inverse problem were visualized by plotting
the expected values of the posterior distribution. In addition,
expected values on a cross section (Fig. 1) with 99.7%
confidence intervals (±3 standard deviations of the posterior
distribution) were illustrated. Accuracy of the estimated initial
pressure was evaluated by computing relative errors with
respect to the simulated initial pressure

Ep0 = 100%
‖p0,SIM − p0,REC‖
‖p0,SIM‖

, (20)

where p0,SIM is the simulated (true) initial pressure interpolated
to the spatial grid used in the reconstructions and p0,REC is the
expected value of the posterior density, i.e. the estimated initial
pressure.

C. Results - Angular uncertainty
Expected values of the ACEM-, ICEM-, and EEM-

reconstructions for the sensor geometries G360, G180, and G130

TABLE III
RELATIVE ERRORS Ep0 (%) WITH RESPECT TO THE SIMULATED INITIAL

PRESSURE FOR SENSOR GEOMETRIES G360 , G180 , AND G130 AND
RADIAL UNCERTAINTIES PRAD,1 , PRAD,2 , AND PRAD,3

PRAD,1 PRAD,2 PRAD,3

ACEM ICEM EEM ACEM ICEM EEM ACEM ICEM EEM

G360 3.0 16.9 4.9 4.1 16.4 7.5 3.4 24.1 13.5
G180 5.7 28.8 9.8 5.5 41.1 13.6 5.4 82.4 21.7
G130 13.5 42.8 22.5 14.1 107.9 33.1 13.5 248.8 37.4

and angular uncertainties of PANG,1, PANG,2, and PANG,3 are
shown in Fig 3. Corresponding expected values on a cross
section (Fig. 1) with 99.7% credible intervals are shown in
Fig. 4. Relative errors Ep0 of the estimates are presented in
Table II.

The results show that the errors caused by the uncertainties
in sensor locations grow as a function of increasing level of
uncertainty and reducing number of sensors. As it can be
seen in Fig. 3, the effect of the uncertainty is smallest in the
case of full coverage sensor geometry G360, in which case
the inverse problem of PAT is only mildly ill-posed. However,
even in this case, the errors are not negligible and distortions
can be seen on the boundary of the imaged domain. The
errors caused by the uncertainties are considerably larger in
the cases of limited-view geometries G180 and G130 as the ill-
posedness of the inverse problem increases. In these cases, the
errors due to uncertainties in ultrasound sensor locations can
be seen as wave-like artifacts spanning the imaged domain.
The credible intervals presented in Fig. 4 show that in the
presence of the largest uncertainties, the true values of the
initial pressure lie often outside of the primary support of the
posterior distribution. The errors caused by uncertainties in
sensor locations are, however, well-compensated by Bayesian
error modeling. As it can be seen in Fig. 3, the EEM is able to
restore the locations and shapes of the true initial pressure even
in the case of the largest uncertainty PANG,3. In these situations,
the amplitudes of the targets are, however, somewhat reduced
in the areas of limited sensor coverage. It should also be
noted that, in all of the EEM-reconstructions, the true values
lie well within the 99.7% credible intervals of the posterior
distribution.

Calculated relative errors follow a similar trend. That is,
the relative errors increase with increasing level of uncertainty
and reducing number of sensors. Furthermore, modeling of the
errors decreases the relative errors significantly.

D. Results - Radial uncertainty

Expected values of the ACEM-, ICEM-, and EEM-
reconstructions for the sensor geometries G360, G180, and G130
and radial uncertainties of PRAD,1, PRAD,2, and PRAD,3 are
shown in Fig 5. Corresponding expected values on a cross
section (Fig. 1) with 99.7% credible intervals are shown in
Fig. 6. Relative errors Ep0 of the estimates are presented in
Table III.

As it can be seen, the errors caused by radial uncertainties in
sensor locations follow a similar trend as in the case of angular
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Fig. 3. (a)–(c) Estimated p0 for angular uncertainties PANG,1–PANG,3. For each sub-figure and from left ro right: ACEM, ICEM, EEM, and from top to
bottom G360, G180, and G130.

Fig. 4. (a)–(c) Estimated p0 (dotted line) and 99.7% confidence intervals (gray filled area) for angular uncertainties PANG,1–PANG,3 on a cross section through
the domain (from top to bottom on the cross section indicated in Fig. 1). The simulated (true) p0 is marked with a solid line. For each sub-figure and from
left ro right: ACEM, ICEM, EEM, and from top to bottom G360, G180, and G130.

uncertainties. The errors, which are effectively compensated
by error modeling, grow as a function of increasing uncertainty
and decreasing number of sensors. Furthermore, in the cases
of CEM and EEM, true values of the initial pressure lie within
the primary support of the posterior distribution.

The errors caused by uncertainties in sensor locations are,
however, greater than in the case of angular uncertainties. This
can be seen when comparing the reconstructions for angular
and radial uncertainties of equivalent cartesian distance. For
example in the case of uncertainties PRAD,3 and PANG,2, the
errors caused by radial uncertainty are far greater.

V. EXPERIMENTAL RESULTS

The validity of the approach was studied with experimen-
tal data measured using a measurement setup described in
[40]. The measurement setup comprised of an LED light
source (model SST-90-R, Luminus Devices, MA, USA, wave-
length 617 nm, pulse energy 5.26± 0.02µJ, full-width at half-
maximum pulse duration 280 ns) and an ultrasound sensor
(model V383, Olympus NDT, MA, USA, cylindrically fo-
cused, focal distance 33.0 mm, circular aperture diameter 9.53
mm). The sensor was rotated 184◦ on an arc of radius 33.8 mm
with 1◦ increments. The measured waveforms were averaged
over 1024 consecutive pulses. Measurement data was sampled
at 50 MHz. Schematic of the measurement geometry is shown

Authorized licensed use limited to: University College London. Downloaded on May 20,2020 at 16:12:16 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.2966297, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020 7

Fig. 5. (a)–(c) Estimated p0 for radial uncertainties PRAD,1–PRAD,3. For each sub-figure and from left ro right: ACEM, ICEM, EEM, and from top to bottom
G360, G180, and G130.

Fig. 6. (a)–(c) Estimated p0 (dotted line) and 99.7% confidence intervals (gray filled area) for angular uncertainties PRAD,1–PRAD,3 on a cross section through
the domain (from top to bottom on the cross section indicated in Fig. 1). The simulated (true) p0 is marked with a solid line. For each sub-figure and from
left ro right: ACEM, ICEM, EEM, and from top to bottom G360, G180, and G130.

in Fig. 7.

Imaged target was constructed from three plastic micro-
capillary tubes (polyethylene terephthalate glycol; Globe Sci-
entific, NJ, USA) with inner and outer diameters of 0.85 and
1.55 mm respectively. The tubes were filled with Indian ink
(art. no. 44257000, Royal Talens, Apeldoorn, the Netherlands)
solution. The tubes were placed side by side (separation of 1
mm) on a holder and immersed in water. The target was placed
approximately 1.5 mm towards the measurement arc from the
rotational center, such that it was fully inside the coverage
of the sensor rotation arc to avoid limited view artifacts [41].
Furthermore, the target was aligned with the z-direction and
the sensor was oriented such that the focal line was parallel

to the x-y plane. Sinogram and periodogram of the measured
data are shown in Fig. 8.

In this work, the reconstructions were computed using three
subsets of measurement data sampled from the full dataset.
These datasets corresponded to sensor geometries consisting
of a 0◦ to 180◦ sensor arc with detector separations of 6◦, 8◦,
and 10◦. In this work, these sensor geometries are referred to
as GEXP,6, GEXP,8, and GEXP,10 respectively.

A. Inverse problem

For the inverse problem, a 72.4 mm × 43.3 mm × 9.8 mm
computational domain was discretized into 384 × 230 × 52
pixels with a pixel side length of ∆x = 188.4µm.
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33.8 mm

Rotation

y
x

−2◦ 182◦

Illumination

Fig. 7. Schematic of the measurement geometry. Starting position of the
ultrasound sensor is shown as the light blue solid rectangle. Partial visual-
isation of ultrasound sensor rotations are shown as dotted gray rectangles.
Reconstructed area containing the imaged target (three red dots) is marked
with a gray dash-dotted line.

The spatial discretization was further extended by a
1.5 mm × 2.4 mm × 1.9 mm thick (8 × 13 × 10 pixels)
PML-layer. Temporal discretization was chosen according to
a CFL-number of 0.3, which corresponded to a time step of
∆t = 38.2 ns and sampling frequency of 26.2 MHz. Number
of time points was set to Nt = 897 resulting in flight time of
34.2 µs and propagation distance of 50.8 mm. Speed of sound
was determined according to temperature of the water and set
to c = 1481.7 m/s.

The response of the finite-sized sensor was computed by
integrating over the ultrasound sensor surface. This was per-
formed by discretizing the surface of the ultrasound sensor
into a 124 point equidistant grid with a point separation of
0.8 mm and averaging the waveforms recorded by each of the
points. As in the simulation study, the sensor point locations
were defined using cartesian coordinates.

Discrepancy between the model and the data was created by
altering the sensor locations radially during the computation
of the forward model. The sensor locations were drawn from
a discrete uniform distribution of U(-188 µm, 0 µm, 188 µm).
Furthermore, the forward operator K was assembled by taking
advantage of the z-directional symmetry of the imaged target
and assuming that it was homogeneous in the z-direction. This
assumption allowed for simulation of z-directional impulse
responses i.e. instead of setting one voxel as a source, a
z-directional line was used instead. The assumption of z-
directional homogeneity allowed for accurate modeling of the
concave ultrasound sensor and resulted in a quasi-3D forward
model producing 2D images. The advantage of this approach
was significantly reduced computational time required for the
assembly of the forward operator and the reconstructions.
Using the quasi-3D model, the reconstructions were computed
in a 7.2 × 14.9 mm (38 × 79 pixels) rectangular area (see
Fig. 7). The size and location of this area were chosen such
that the imaged target was located inside the boundaries of the
area.

In the computation of the forward model, the frequency
response of the ultrasound sensor was modeled by filtering
the simulated signals. The filtering was carried out in the
frequency domain using the frequency spectrum provided by

Fig. 8. (left) Sinogram and (right) periodogram of the full measured dataset.

the manufacturer of the ultrasound sensor. The frequency
response of the ultrasound sensor was approximately Gaussian
with a mean frequency of 3.36 MHz and a full width half
maximum of 2.47 MHz.

Prior model used in the reconstructions was the Ornstein–
Uhlenbeck density (19). Standard deviation σp0

, mean ηp0
,

and characteristic length ` of the prior density were set to
σp0 = 0.04, ηp0 = 0.03, and ` = 300µm respectively.
Mean and standard deviation of the measurement error e were
computed from a time window preceding the measured signal.
This time frame of Nt = 263 time points consisted entirely
of noise. Noise statistics were computed separately for each
sensor. Depending on the measurement angle, this resulted
in noise levels (standard deviation divided by the maximum
recorded amplitude) between 3% and 22%.

The inverse problem was solved in three cases (ACEM,
ICEM, and EEM) described in Section IV. For the ACEM-
reconstructions, the accurate forward model K(ϕ) was com-
puted using unaltered sensor locations. Further, the inaccu-
rate forward model K(ϕ0) used in the ICEM- and EEM-
reconstructions was formed using altered sensor locations.

Statistics of the approximation error ε were computed by
simulating forward solutions similarly as in the simulation
study. Estimates for the mean ηε and covariance Γε were
computed as in (16) – (18) using N = 10000 2D-samples
drawn from the prior density (19) extended to the z-direction.
Standard deviation σp0

, expected value ηp0
, and characteristic

length ` for the sampling were set to σp0
= 0.04, ηp0

= 0.25,
and ` = 300µm respectively. For each of the samples, pixel
values of less than zero were set to zero. Computing of
forward solutions K(ϕ(l))s(l) required re-sampling of sensor
positions for each of the N = 10000 samples. In three
dimensions, repeated computation of interpolations resulted in
a considerable increase in computational time when using the
k-Wave toolbox. In order to reduce the computational time,
the samples corresponding to K(ϕ(l))s(l) were computed as
follows. First, the N forward solutions were computed using
three distinct simulation geometries GS1, GS2, and GS3. These
three simulation geometries were constructed using constant
radial displacements of -188 µm (GS1), 0 µm (GS2), and
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Fig. 9. Estimated p0 for sensor geometries GEXP,6 (first row), GEXP,8 (second row), and GEXP,10 (third row) using experimental data. Columns from left to
right: ACEM, ICEM, and EEM. Maximum values of the colormaps are scaled row-wise using the maximum values of the ACEM-reconstructions.

188 µm (GS3). 188 µm corresponds to 43% of the wavelength
of the central frequency of the sensor used in the study. A
sample using altered sensor locations was then computed by
drawing a radial displacement from a uniform distribution
of U(−188.0µm, 188.0µm) and interpolating the waveform
from the forward solution computed using simulation geome-
tries GS1−S3. This was done separately for each sensor used in
the sensor geometry. Samples K(ϕ0)s(l) were computed using
the three simulation geometries GS1−S3 and sensor locations
used in computation of the forward operator K(γ0).

B. Results

Expected values of the posterior densities solved using the
accurate forward model (ACEM), inaccurate forward model
(ICEM), and the inaccurate model with error modeling (EEM)
for the sensor geometries GEXP,6, GEXP,8, and GEXP,10 are shown
in Fig. 9. As it can be seen, the effect of the uncertainty
in sensor locations results in significant errors in the ICEM-
reconstructions. The errors can be seen as wave-like artifacts.
In addition, the severity of the artifacts increases as the number
of sensors decreases.

Regardless of the severity of the artifacts, the effect of
the uncertainty in sensor locations is effectively corrected by
the EEM. In the EEM-reconstructions, the wave-like artifacts
evident in the ICEM-reconstructions are not present and the
backgrounds of the images are restored close to the level
of ACEM-reconstructions. In addition, the three tubes are
clearly visible. Even though the artifacts present in the ICEM-
reconstructions are effectively compensated for, the EEM-
reconstructions suffer a from slight reduction of target values
and blurring of the tube boundaries.

VI. DISCUSSION AND CONCLUSIONS

In this work, compensation of uncertainties in ultrasound
sensor locations in PAT using the Bayesian approximation
error modeling was described. The method was studied using

both simulated and experimental photoacoustic data. Posterior
densities were computed using accurate, inaccurate, and mod-
eling error compensated forward models. The approach was
evaluated using various sensor geometries and varying levels
of uncertainty.

The results show that modeling errors caused by uncertain-
ties in ultrasound sensor locations can result in significant
errors in the solution of the inverse problem. These errors
can appear as major artifacts in the reconstructed images. Un-
certainties in sensor locations were found to cause significant
errors even in the case of smallest studied radial uncertainties
of ±45µm. The errors were especially evident in the cases of
limited-view setups. This is due to the increasing ill-posedness
of the inverse problem compared to the full-view setup.

In the simulation studies, uncertainties in radial sensor
locations were found to cause larger errors compared to the
case of angular uncertainties. Sensitivity to radial uncertainty
can be explained by examining the phase shift and wavelength
of the impulse responses used in the computation of the
forward operator K. In the simulation study, the maximum
simulated frequency was limited to approximately 10 MHz by
the spatial discretization, which corresponded to a wavelength
of 150 µm. Thus, in the case of the smallest radial uncertainty
of ±45µm, the maximum sensor alteration resulted in a shift
of 30% of the wavelength. This effect was not as prevalent
in the case of angular uncertainties. This was due to the fact
that initial pressures at or near the center of the measurement
geometry produce similar signals regardless of the level of
angular uncertainty and are thus less sensitive to uncertainties
in sensor locations.

Regardless of the direction of uncertainty, the approxima-
tion error approach was found to compensate for the errors
caused by the uncertainties. The effects of modeling errors
were effectively corrected even in the cases of the most
significant uncertainties. In addition, the credibility intervals
of the posterior density were wider in the case of error
modeling. Furthermore, the expected values of the simulated
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Fig. 10. (a) – (c) Spectrum (eigenvalues λi) of the covariance matrix Γε with varying number of samples (N = 1000, 2000, · · · , 20000) for sensor
geometries G130 – G360 with uncertainty PANG,3. The eigenvalues have been scaled by λ−1

1 .

initial pressure lied within the credible interval in all of the
posterior densities computed using the approximation error
approach.

In addition to the simulation studies, the approximation error
approach was evaluated using experimental data. Compared
to the simulation study, modeling of the experimental setup
introduces additional possible sources of modeling errors such
as uncertainties in the speed of sound. Furthermore, the errors
due to uncertainties in ultrasound sensor locations vary greatly
depending on the characteristics of the ultrasound sensor and
measurement geometry. Such characteristics include frequency
response, size, directivity, position of the ultrasound sensor,
and number of sensors or measurement angles. That is, ap-
proximation errors are system-specific.

In this work, sources of additional modeling errors due to
sensor shape were minimized by using a quasi-3D model.
This allowed for accurate modeling of the concave ultrasound
sensors in three dimensions while producing computationally
efficient 2D images. Furthermore, the temporal and spatial
discretization were chosen such that the maximum frequency
of ∼2 MHz of the experimental data was well supported
by both the spatial and temporal grids. Even though the
large computational burden of 3D photoacoustic tomography
was circumvented using the quasi-3D model, assumptions for
the z-directional homogeneity cannot be made in a general
situation. Furthermore, when using denser spatial and temporal
discretization in three dimensions, computation and storage
of the discrete operator K may not be feasible. In this case,
iterative approaches utilizing matrix-free modeling could be
utilized [13], [42].

In the results of the experimental studies, the imaged
target was clearly visible in the reconstructions using the
accurate sensor locations even though the image quality was
hindered by the relatively low signal to noise ratio due to
LED-illumination. The results using the inaccurate sensor
locations and the enhanced error model were comparable
to the simulation study. That is, modeling errors due to
the radial uncertainties resulted in significant artifacts in the

reconstructed images. Furthermore, artifacts were significantly
reduced using the Bayesian error modeling.

Results obtained by utilizing modeling of errors show great
promise in compensating uncertainties in ultrasound sensor
locations. In accordance with these results, this method could
be utilized in situations where the measurement of the exact
sensor locations is challenging. This type of measurement
setups include hand-held sensors, setups where the sensors are
manually placed on a boundary of the target, or setups where
movement of the sensors is a problem.

APPENDIX

IMPACT OF THE NUMBER OF SAMPLES N USED IN
COMPUTATION OF THE APPROXIMATION ERROR STATISTICS

The amount of samples N used in computing the approxi-
mation error statistics is an important factor when considering
the performance of the approximation error method. An in-
sufficient amount of samples may result in a situation where
the covariance of the approximation error does not reflect
the error statistics accurately enough. Computing too many
samples can, on the other hand, result in an unnecessarily
heavy computational burden. A suitable value for N can be
estimated, for example, by inspecting the spectrum of the
approximation error covariance matrix Γε. As N increases,
the spectrum will eventually stagnate and only minor changes
are seen with increasing N .

Illustrations of spectra for Γε of the simulation studies with
sensor geometries G130 – G360, uncertainty PANG,3, and varying
number of samples N are shown in Fig. 10. It can be seen that
the spectra stagnate at N which is dependent on the number
of sensors. Furthermore, a sample count of N = 10000 would
be sufficient in the cases of sensor geometries G130 and G180,
whereas N = 20000 samples are required in the case of the
full view geometry G360. This is due to the fact, that the size
and complexity of Γε increases with increasing number of
sensors. Sample counts of N = 20000 (simulation study) and
N = 10000 (experimental study) used in this work were chosen
based on this observation.

Authorized licensed use limited to: University College London. Downloaded on May 20,2020 at 16:12:16 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.2966297, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020 11

REFERENCES

[1] P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, vol. 1,
no. 4, pp. 602–631, Aug. 2011.

[2] C. Li and L. V. Wang, “Photoacoustic tomography and sensing in
biomedicine,” Phys. Med. Biol., vol. 54, no. 19, pp. R59–R97, Sep.
2009.

[3] L. A. Kunyansky, “A series solution and a fast algorithm for the inversion
of the spherical mean Radon transform,” Inverse. Probl., vol. 23, no. 6,
pp. 11–20, Nov. 2007.

[4] S. J. Norton and M. Linzer, “Ultrasonic reflectivity imaging in three
dimensions: Exact inverse scattering solution for plane, cylindrical and
spherical apertures,” IEEE. Trans. Med. Imag., vol. 28, no. 2, pp. 202–
220, Feb. 1981.

[5] M. Xu and L. V. Wang, “Universal back-projection algorithm for
photoacoustic computed tomography,” Phys. Rev. E., vol. 71, no. 1, p.
016706, Jan. 2005.

[6] L. A. Kunyansky, “Explicit inversion formulae for the spherical mean
Radon transform,” Inverse. Probl., vol. 23, no. 1, pp. 373–383, Jan. 2007.

[7] Y. Hristova, P. Kuchment, and L. Nguyen, “Reconstruction and time
reversal in thermoacoustic tomography in acoustically homogeneous and
inhomogeneous media,” Inverse. Probl., vol. 24, no. 5, p. 055006, Aug.
2008.

[8] P. Burgholzer, G. J. Matt, M. Haltmeier, and G. Paltauf, “Exact and
approximative imaging methods for photoacoustic tomography using an
arbitrary detection surface,” Phys. Rev. E., vol. 75, no. 4, p. 046706,
Apr. 2007.

[9] X. L. Deán-Ben, A. Buehler, V. Ntziachristos, and D. Razansky,
“Accurate model-based reconstruction algorithm for three-dimensional
optoacoustic tomography,” IEEE. Trans. Med. Imag., vol. 31, no. 10,
pp. 1922–1928, Oct. 2012.

[10] S. R. Arridge, P. Beard, M. M. Betcke, B. T. Cox, N. Huynh, F. Lucka
et al., “Accelerated high-resolution photoacoustic tomography via com-
pressed sensing,” Phys. Med. Biol., vol. 61, no. 24, pp. 8908–8940, Dec.
2016.

[11] J. Tick, A. Pulkkinen, and T. Tarvainen, “Image reconstruction with
uncertainty quantification in photoacoustic tomography,” J. Acoust. Soc.
Am., vol. 139, no. 4, pp. 1951–1961, Apr. 2016.

[12] M. Sun, N. Feng, Y. Shen, J. Li, L. Ma, and Z. Wu, “Photoacoustic
image reconstruction based on Bayesian compressive sensing algorithm,”
Chinese. Opt. Let., vol. 9, no. 6, p. 061002, Jun. 2011.

[13] J. Tick, A. Pulkkinen, F. Lucka, R. Ellwood, B. T. Cox, J. P. Kaipio et al.,
“Three dimensional photoacoustic tomography in Bayesian framework,”
J. Acoust. Soc. Am., vol. 144, no. 4, pp. 2061–2071, Sep. 2018.

[14] J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse
Problems. New York, NY, USA: Springer, 2005.

[15] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter
Estimation. Philadelphia, PHL, USA: SIAM Society for Industrial and
Applied Mathematics, 2005.

[16] X. Jin and L. V. Wang, “Thermoacoustic tomography with correction
for acoustic speed variations,” Phys. Med. Biol., vol. 51, no. 24, pp.
6437–6448, Nov. 2006.

[17] T. P. Matthews, J. Poudel, L. Li, L. V. Wang, and M. A. Anastasio,
“Parametrized joint reconstruction of the initial pressure and sound speed
distributions for photoacoustic computed tomography,” Soc. Ind. Appl.
Math., vol. 11, no. 2, pp. 1560–1588, Jun. 2018.

[18] J. Tick, A. Pulkkinen, and T. Tarvainen, “Modelling of errors due to
speed of sound variations in photoacoustic tomography using a Bayesian
framework,” Biomed. Phys. Eng. Express, vol. 6, no. 1, p. 015003, Nov.
2019.

[19] K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of
iterative image reconstruction in three-dimensional optoacoustic tomog-
raphy,” Phys. Med. Biol., vol. 57, no. 17, pp. 5399–5423, Dec. 2012.

[20] K. Mitsuhashi, K. Wang, and M. A. Anastasio, “Investigation of the far-
field approximation for modeling a transducer’s spatial impulse response
in photoacoustic computed tomography,” Photoacoustics, vol. 2, no. 1,
pp. 21–32, Mar. 2014.

[21] T. Tarvainen, A. Pulkkinen, B. T. Cox, J. P. Kaipio, and S. R. Arridge,
“Bayesian image reconstruction in quantitative photoacoustic tomogra-
phy,” IEEE Trans. Med. Imag., vol. 32, no. 12, pp. 2287–2298, Aug.
2013.

[22] A. Pulkkinen, V. Kolehmainen, J. P. Kaipio, B. T. Cox, S. R. Arridge, and
T. Tarvainen, “Approximate marginalization of unknown scattering in
quantitative photoacoustic tomography,” Inv. Probl. Imag., vol. 8, no. 3,
pp. 811–829, Aug. 2014.

[23] N. Hänninen, A. Pulkkinen, and T. Tarvainen, “Image reconstruction
with reliability assessment in quantitative photoacoustic tomography,”
J. Imaging., vol. 4, no. 148, Dec. 2018.

[24] S. R. Arridge, J. P. Kaipio, V. Kolehmainen, M. Schweiger, E. Som-
ersalo, T. Tarvainen et al., “Approximation errors and model reduction
with an application in optical diffusion tomography,” Inverse. Probl.,
vol. 22, no. 1, pp. 175–195, Jan. 2006.

[25] T. Tarvainen, V. Kolehmainen, A. Pulkkinen, M. Vauhkonen,
M. Schweiger, S. R. Arridge et al., “An approximation error approach
for compensating for modelling errors between the radiative transfer
equation and the diffusion approximation in diffuse optical tomography,”
Inverse. Probl., vol. 26, no. 1, p. 015005, Dec. 2009.

[26] V. Kolehmainen, M. Schweiger, I. Nissilä, T. Tarvainen, S. R. Arridge,
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