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Abstract: This paper addresses retinal vessel segmentation on optical coherence tomography
angiography (OCT-A) images of the human retina. Our approach is motivated by the need for
high precision image-guided delivery of regenerative therapies in vitreo-retinal surgery. OCT-A
visualizes macular vasculature, the main landmark of the surgically targeted area, at a level of
detail and spatial extent unattainable by other imaging modalities. Thus, automatic extraction of
detailed vessel maps can ultimately inform surgical planning. We address the task of delineation
of the Superficial Vascular Plexus in 2D Maximum Intensity Projections (MIP) of OCT-A
using convolutional neural networks that iteratively refine the quality of the produced vessel
segmentations. We demonstrate that the proposed approach compares favourably to alternative
network baselines and graph-based methodologies through extensive experimental analysis, using
data collected from 50 subjects, including both individuals that underwent surgery for structural
macular abnormalities and healthy subjects. Additionally, we demonstrate generalization to 3D
segmentation and narrower field-of-view OCT-A. In the future, the extracted vessel maps will be
leveraged for surgical planning and semi-automated intraoperative navigation in vitreo-retinal
surgery.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Retinal vessels constitute the most salient anatomical landmark of the fundus and, as such, are
commonly utilized as a biomarker for pathologies such as hypertensive and diabetic retinopathy
[1–3]. Modern imaging systems produce rich visualizations of retinal vasculature, providing a
basis for increasingly detailed automatically segmented vessel maps.

Vitreo-retinal (VR) surgery is currently performed manually, via small-gauge incisions in the
eye through which tools as small as 0.2mm are inserted. The surgeon uses a biomicroscopic
viewing system to afford stereoscopic cues and identify anatomical features at the vitreo-retinal
interface. This level of accuracy is sufficient to yield high success rates in current management
of conditions such as epiretinal membranes and macular holes. However, emergent treatments
in the form of cellular and gene-based therapies, which require precise delivery to specific
retinal layers, challenge the current constraints of manual surgical precision [4,5]. Advancements
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in the development of robotics are likely to provide novel means of semi-automated delivery
of epi-, intra- and sub-retinal therapies [5]. In order for these systems to operate safely and
effectively, they will require highly-precise sensory navigation mechanisms, for which automated
identification of retinal vasculature will prove invaluable.
In VR surgery, the primary region of interest (RoI) is frequently the macula, i.e. the central

retinal area, which is bound by temporal retinal vessels and contains the fovea, responsible for high-
acuity central vision. Despite the high density of retinal vasculature within the macula, there is a
relative paucity of information that can be resolved from color fundus imaging of this region due
to small vessel caliber. To address this, we utilize Optical Coherence Tomography-Angiography
(OCT-A) scans that attain a superior level of detail in comparison to other pre-operative and
intra-operative imaging, especially around the surgical RoI, as exemplified by Fig. 1. Our goal
is to produce a map of the vessels in the vicinity of the macula, with the maximal attainable
detail, preoperatively. This constitutes a key first step towards intra-operatively leveraging this
rich information about the surgical workspace, which can only be visualized and extracted
pre-operatively.

Fig. 1. OCT-A vs Preoperative and Intraoperative Imaging: For several subjects with
retinal pathology we present: (a) An Intraoperative Video Frame (IVF) captured during
vitreo-retinal surgery (b) IVF affinely aligned to OCT-A (c) a preoperative CFP affinely
aligned to OCT-A, (d) the OCT-A and (e) the vessel segmentation obtained by our vessel
segmentation method. In all cases, OCT-A visualizes the maximum level of vasculature
detail around the surgical RoI, the macula, where both CFPs and IVFs tend to provide blurry
information and are susceptible to subretinal pathology, such as choroidal pigmentation (last
column), that impacts retinal vessel visibility.

1.1. OCT-A vs other preoperative modalities

OCT-A is a relatively new, non-invasive, rapidly acquired imaging modality derived from the
amplitude decorrelation and phase variance between sequential OCT B-scans [6], resulting
in a static 3D blood motion map with very high resolutions across all dimensions albeit for
a limited field-of-view (FoV) of up to 8mm by 8mm. The current gold-standard for retinal
vasculature visualization is Fundus Fluorescein Angiography (FFA), which allows dynamic high
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contrast visualization of blood flow, offers a superior FoV and is less susceptible to artefacts.
However, FFA is invasive, requiring the administration of an intravenous contrast agent with
potential systemic adverse effects (including anaphylaxis [7,8]), and has a much longer acquisition
time than OCT-A (at least 20 minutes compared to 10 seconds [9]). FFA is, however, able
to demonstrate dynamic vascular processes, such as leakage and staining, which cannot be
interpreted using OCT-A. Clinically, OCT-A is able to visualize vascular abnormalities such as
choroidal neovascular membranes and capillary non-perfusion in great detail, with comparable
diagnostic yield to FFA. But, unlike FFA, it is also able to provide 3D information about the
level of the pathology, enhancing understanding of retinal vascular disease and guiding treatment
approaches and responses. Consequently, OCT-A is becoming increasingly popular for routine
clinical use and, importantly for our work, it allows for data collection with minimal psychological
and physical burden on participants. An alternative non-invasive method of visualizing the retinal
vasculature would be a preoperatively acquired Color Fundus Photograph (CFP) delivering a
FoV of 45◦ that corresponds to roughly 20% of the retina. Despite the enlarged FoV of CFP,
OCT-A offers superior level of vascular details especially around the macula as shown in Fig. 1.

This discrepancy is also supported by our observation that expert clinicians tended to only detect
the bigger vessels, further from the fovea, when annotating preoperative CFPs or intraoperative
frames, while the same process on OCT-A reveals significantly finer details, as shown in Fig. 2.
This hints on the complementarity of information conveyed by the two modalities, the fusion
of which is likely to produce superior retinal feature localization during surgery. It is therefore
anticipated that vascular information from both pre-operative CFPs and OCT-A can be used to
enhance intra-operative features and improve intraocular navigation and orientation for precise
therapeutic delivery.

Fig. 2. Intraoperative vs OCT-A Vessel Visibility: Vessel map annotations by two expert
clinicians on intraperative video frames revealed that in the vicinity of the macula (outlined
in red) they are unable to detect the level of vasculature details that can be reliably annotated
on OCT-A.

1.2. State-of-the-art retinal vessel segmentation

Vessel segmentation falls within the scope of the more general problem of curvilinear structure
delineation in 2D or 3D images. In this section, we summarize methods that have been applied
on retinal vessel segmentation. The majority of reported methods have been evaluated on
2D CFPs from the publicly available datasets such as DRIVE and STARE [10,11]. Prior to
deep learning, methods consisted of either a hand-crafted feature extraction step [10,12,13] or
the application vessel enhancement filters [14–16], followed by either a supervised classifier
or heuristic post-processing. Subsequent methods attempted to automate feature extraction
via supervised learning of filters learned through sparse coding [17], Gradient Boosting [18],
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Conditional Random Fields (CRF) [19] or regression of the vessel map’s distance transform [20].
Several other works formulate the problem of curvilinear structure segmentation as a two step
process: first generating an overcomplete graph via tubularity filtering [15] and computation of
minimal-cost paths between highly tubular points [21,22], followed by graph pruning that results
in a subgraph that corresponds to the vessel map. The pruning step is treated as an optimization
problem coupled with vessel tree local geometry priors [23] or path-classifiers trained to score
small parts of the graph to facilitate the convergence of the optimization algorithm [24].
Deep learning was first utilized in [25], where feature maps from multiple layers of a

Convolutional Neural Network (CNN), pretrained for large-scale image classification, are
combined through additional convolutional layers and fine-tuned to produce vessel segmentations.
This idea was extended through the use of CRFs [26] to model non-local dependencies in the
image.
Few publications on retinal vessel segmentation in OCT-A exist, which can be attributed to

OCT-A being a recently introduced imaging modality and the complete lack of publicly available
datasets for method comparisons. In [27], a form of Markov Random Field was applied on OCT-A
scans of healthy subjects and subjects with Diabetic Retinopathy. In [28], a CNN operating
on small overlapping 2D patches of narrow FoV OCT-A images, in a sliding window fashion,
was used to classify center pixels as vessels or background with the model being evaluated on 6
healthy volunteers.
Our approach differs from these works in several aspects. Contrary to [28], we use fully

convolutional networks to segment the whole image with each feed-forward pass and employ
OCT-A images of an expanded FoV, thus encompassing more context in the vicinity of the macula
rather than just the fovea. Contrary to [27], we choose to train and test our models on the task of
segmenting all vasculature within the imaged space but omit microvessels (see Fig. 3(c)) that
may be visible but cannot be reliably annotated due to the inherent difficulty in inferring their
shape and connectivity, especially in the 8mm by 8mm scans. Finally, we believe that works that
address the task foveal avascular zone (FAZ) quantification in OCT-A [29] are complimentary to
our vessel segmentation method and potentially there exists a synergy between the two tasks due
to their common spatial and functional support.

1.3. Contributions

This paper demonstrates that Recurrent Fully Convolutional Neural Networks trained with a
perceptual loss are the most effective solution for precise and accurate vessel segmentation in
OCT-A images; our work builds on the contributions of [30–33] and [32,34,35]. Our conclusion
is supported by extensive experimental comparison of CNN architectures on a newly collected,
challenging dataset, the first with manual annotations of vessels (more than existing datasets with
annotated retinal vessels in CFPs) in 8mm×8mm OCT-A, comprising subjects that underwent
VR surgery for structural macular abnormalities. We aim to make this dataset public, through our
collaboration with INSIGHT - the UK’s Health Data Research Hub for Eye Health. Further, we
demonstrate that our network can generalize to 3mm×3mm OCT-A scans that provide a higher
resolution of the macular area but for a narrower FoV. Finally, we demonstrate the recovery of
3D vascular trees from OCT-A volumes. To the best of our knowledge, this gives rise to the first
3D visualization of retinal vasculature derived from OCT-A.
To facilitate computational retinal image understanding research and boost potential use by

practitioners interested in aligned domains, such as diagnostics, the source code of our method as
well as trained models will be available online at https://github.com/RViMLab/BOE2020-OCTA-
vessel-segmentation.

https://github.com/RViMLab/BOE2020-OCTA-vessel-segmentation
https://github.com/RViMLab/BOE2020-OCTA-vessel-segmentation
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Fig. 3. OCT-A data overview: (a) Retina cross section: outlined in blue is the volume
corresponding to the slices used in the dataset. They span the space from the retinal surface
(upper limit of the blue line) to the start of the choroid (outlined in red) where the Superficial
and Deep Vascular Plexuses are located. (b) The imaging device produces geometrically
flattened slices that correspond to curved slices of the retina’s cross-section. (c) Maximum
Intensity Projection is performed on the extracted stack of geometrically flattened slices
along the axis vertical to the plane of the slices. Outlined in red is the (approximate) location
of the macula around which the scans are centered. The zoomed-in patch depicts (in green)
vessels that are considered by our models and areas (in orange) where microvessels are
likely to be located, which however cannot be delineated reliably and the models learn to
ignore. (d) The imaging device locates the limiting surface between the retinal layers (blue
space) and the choroid (red space) allowing us to access geometrically flattened slices thus
separating chroroidal and retinal layers.

2. Materials and methods

This section outlines the process of creating the OCT-A dataset. We provide details on the
location of the 3D retinal space on which we focus on: namely the space between the vitreo-retinal
interface and the choroid. Figure 3 provides an overview of the data extraction process.

2.1. Dataset collection and preparation

The study was conducted in accordance with the tenets of the Declaration of Helsinki (1983
Revision) and the applicable regulatory requirements. After approval of the study and its
procedures by the ethics committees of Moorfields Eye Hospital, London, United Kingdom,
informed consent was obtained from all participating subjects prior to enrollment.
OCT-A Scans were collected from 50 patients using Zeiss Cirrus 5000 with Angioplex.

Motivated by our VR surgery-related application, we selected participants that were referred to
surgery due to structural macular abnormalities. The distribution of pathologies represented in
our dataset is summarized in Table 1.

Table 1. Distribution of types of pathology in the dataset

Pathology Macular hole Epiretinal membrane Choroideremia Optic disk pit maculopathy Floaters Asteroid hyalosis Disclocated IOL Healthy

Subjects 16 9 7 5 3 1 1 8
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Figure 3(a) demonstrates the location of the region of interest on the cross-section of the retina.
The imaging device allows us to view the data as a series of geometrically flattened slices of the
3D volume, allowing separate viewing of the otherwise curved retinal and choroidal layers. More
specifically, it allows curved slicing of the OCT-A data, where the curve shape is an estimate of
the boundary between the choroid and the retina as outlined by 3(b). We use the term flattened
to denote that the curvature of those slices is factored out as they are viewed as planar images,
as shown in 3(d). This view is the one used in clinical practice and we leverage it to manually
extract the set of contiguous slices that correspond to the retina, each corresponding to a surface
of 8mm×8mm. The thickness of the retina is patient- and disease- specific, and therefore the
number of extracted slices may vary. The resulting extracted volume spans the Superficial (SVP)
and Deep (DVP) Vascular Plexuses [36]. Finally, the resulting stack of axial slices is projected to
2D viaMaximum Intensity Projection (referred as MIP) along the axis vertical to the plane of the
slices, as illustrated in Fig. 3(c).

TheMIP of the set of geometrically flattened slices serves as input to all 2D vessel segmentation
methods explored in this work. All MIPs have a pixel count of 416 × 416 representing a FoV
of 8mm×8mm, implying a resolution of approximately 19 µm. Vessel centrelines on each of
the 50 MIP images were manually annotated using the Vampire software, available online at
vampire.computing.dundee.ac.uk. Centreline extractionwas preferred to full-width segmentations
because consistent full-width annotation was difficult to attain due to fading contrast away from
the centreline, in addition to the width of the vessels rarely being larger than a couple of pixels.
The centrelines were annotated by a post-graduate researcher that was trained and advised

by expert clinicians with regards to OCT-A interpretation. A clinical expert annotated a set of
images to produce a metric for inter-rater variability, while a set of images were annotated twice
to estimate intra-rated variability. An annotator was allowed to zoom in and out of the image as
much as required to increase delineation confidence. Further, he/she was allowed to extrapolate
vessel/branch connectivity by examining the region surrounding vessels corrupted at pixel-level
by scanning artefacts. The MIPs also contain microvasculature that is essentially filling up most
of the space between bigger vessels. When blood flow in these microvessels is captured in the
OCT-A images, the regions where these are is brighter 3.c. Their shape, however, cannot be
reliably inferred even by a human observer and their presence is not clinically important to our
overarching aim, which is to provide a vessel map for guiding VR surgical interventions.

2.2. Problem formulation and notation

Vessel segmentation is formulated as a set of binary classification problems, one for each pixel
xi of the input image X ∈ RH ·W , with H,W being the height, and width of the input image,
respectively. For each pixel xi we predict the posterior probability ŷi = P(yi = 1 | X) that it
lies on a vessel. The ground-truth labeling for each pixel is denoted by yi ∈ {0, 1} and has
a value of 1 if the pixel belongs to the vessel and 0 if it belongs to the background. Finally,
f (X; θ) : RH ·W 7→ [ 0, 1]H ·W denotes the function implemented by a convolutional neural network,
which is parameterized by weights θ.

2.3. Base network

In this work, f is implemented by a UNet [31] with a modified architecture. UNet-like networks
have exhibited excellent performance in natural image segmentation [37,38], generation tasks
[39], and medical image segmentation [40]. Importantly, these networks naturally preserve
the input’s resolution to the output. Our modified UNet is herein termed base network and is
schematically depicted in Fig. 4.
Contrary to the original UNet architecture, we employ residual blocks, as described in [41],

instead of simple convolutional layers at each resolution. Each convolution in every residual

http://vampire.computing.dundee.ac.uk
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Fig. 4. Schematic representation of the architecture of the base-network as described in
Sec. 2.3. The base-network follows the architecture paradigm of UNet. The number below
any tensor denotes the number of feature maps at that stage of the network.

block uses a stride of 1 and zero padding such that the resolution of the output feature maps is
equal to the resolution of the input feature maps.
The encoder part of the network is composed of 3 residual blocks, with the first two being

followed by max pooling that subsamples the incoming feature maps by a factor of 2. At each
subsequent residual block, the number of filter kernels (and, thus, feature maps) at all blocks’
convolution layers is double that of the previous block’s.
The decoder part of the network also consists of 3 residual blocks, with the first two being

followed by a transposed convolution layer that increases the resolution of the feature maps by a
factor of 2. The last residual block, which has the same spatial resolution as the input, is followed
by a simple convolution with a 1 × 1 kernel.
ReLU non-linearities are used throughout the network except for the linear output of the last

convolutional layer of the decoder, where the sigmoid function is applied element-wise to produce
the final confidence scores in [ 0, 1].

2.4. Iterative refinement

Most semantic segmentation networks produce their final output in a single forward inference
pass [30,31,42] as does the base-network described in the previous section. For the delineation of
fine structures in noisy images, such as OCT-A, the single pass constraint leads to false positives
and topological inaccuracies, e.g. holes that break the continuity of vessels. We relax this
constraint and seek to improve the quality of delineations by applying and evaluating iterative
refinement using two different approaches. In both cases we utilize the UNet base network.
The first approach employs a Stacked Hourglass Network (SHN), proposed in [38], that

is composed of distinct cascaded UNet modules. The SHN, using multiple encoder-decoder
modules, can learn to infer vessel location in a coarse-to-fine manner by feeding intermediate
predictions to subsequent modules. Additionally, concatenating intermediate predictions with
the input image and feeding them to the subsequent module pushes it to learn to refine the result
by attending to regions of the input image where vessels were previously detected.
The second approach considered is based on the refinement method proposed in [32,33,43],

where a single network, in our case the UNet-like base networks of Sec. 2.3, is employed in a
recurrent manner, by recurrently feeding intermediate predictions in the network to obtain refined
predictions (iUNet). The key element of this model design is that the number of parameters
(model weights), stays constant regardless of the number of refinement iterations performed.
Moreover, the end-to-end model is directly guided to learn to correct its own mistakes, whereas
each module of the SHN learns to resolve mistakes of the modules that preceded it. The two
approaches are illustrated in Fig. 5.
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Fig. 5. Considered CNN architectures: (a) UNet, (b) SHN, and (c) iUNet. For illustration
purposes the SHN, and iUNet, are presented with 2 distinct UNet modules, and 2 iterations,
respectively.

2.5. Loss functions

This section describes the loss functions that were evaluated to conclude as to the combination that
achieves the most promising OCT-A segmentation results. Preliminary experiments suggested
that using the loss of [44], which is balanced according to class frequency, instead of simple
cross-entropy loss stabilizes training and improves performance as has also been demonstrated in
[25]. Using the notation of Sec. 2.2, we have:

Lbce = −β
∑
i∈Y+

log(P(yi = 1 | X; θ) − (1 − β)
∑
i∈Y−

log(P(yi = 0 | X; θ), (1)

where β =| Y− | /| Y | and 1 − β =| Y+ | /| Y |, Y−, and Y+ are the sets of pixels that lie on
vessels, and background, respectively, and | . | denotes a set’s cardinality.

In addition to the classification loss, we also evaluated the effect of the perceptual loss [34,35]
to penalize topological inaccuracies in the network’s predictions, as proposed in [32]. This loss
term utilizes the VGG19 [45] network pretrained on Imagenet [46] to extract feature maps from
the ground truth segmentation and the output segmentation. The loss term is then the L2 norm of
the difference between those feature maps, and is referred to as topological or perceptual loss.
More specifically:

Ltopo =

N∑
n=1

µn
WnHnCn

Cn∑
c=1



Fc
n(f (X; θ)) − Fc

n(Y)


2
2 , (2)

where Fc
n is the c-th channel (from a total of Cn channels) of the Wn × Hn feature maps extracted

at the n-th layer (from the total of N layers) of the VGG19 that are used. In practice, we utilize
N = 3, where the included feature maps are the ReLU activations of conv12, conv22, conv34 of
the VGG19 network. The weighing factor µn controls the importance of the n-th layer’s feature
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maps. Finally, the cross-entropy and topological losses are combined as follows:

Lcomb = Lbce + Ltopo (3)

It is noted that the two terms are weighted through factors µn of (2), contrary to [32] where a
single scalar factor is used.

When training the SHNwe compute the loss of (3) after each of its modules, using its respective
prediction, and sum the resulting terms. This differs from the intermediate supervision proposed
in [38], in that we augment each loss term with the perceptual loss term (3).

To train the iUNet, we again compute the loss of (3) after each iteration, and the final loss is the
weighted sum of the resulting terms. Based on our observations, weighing loss terms originating
from different base network iterations is critical as otherwise training may become unstable. We
adopt the weighing of [32], which weighs later iterations higher while keeping the sum of the
weights equal to 1. This scheme explicitly forces the network to learn to produce a coarse-to-fine
segmentation. Specifically, the overall loss for the iUNet is:

LiUnet =
2

T(T + 1)

T∑
t=1

tL(t)comb, (4)

where T is the number of base network iterations. In our experiments, we set T = 2, 3, 4, 5, as
using more iterations did not significantly improve performance. Finally, we note that contrary
to [32] we train the models for all number iterations T in one go, instead of sequentially and
separately optimizing for T = 1, 2, . . . ,Tmax. End-to-end training avoids the complexity of
running T training stages.

3. Experiments and evaluation

This section describes the experimental protocol that was followed to train and evaluate the
network-loss function combinations that were tested in search of the optimal one. Additionally,
these experiments aim to identify the importance of different loss terms and network hyper-
parameters on performance.

3.1. Evaluation metrics

To evaluate the performance of all methods, we compute the Completeness, Correctness and
Quality, as introduced in [47]. Let a ground truth centerline be Y and the vessel-continuity-
preserving skeletonized [48] binarized prediction (threshold = 0.5) of the algorithm under
evaluation be Ŷ . Additionally, we denote the set of points of skeleton A that match a point of
skeleton B as µB(A, τ) = {α ∈ A|∃β ∈ B : ‖a − b‖ < τ}, where τ is a tolerance factor in pixels
to acknowledge the unavoidable uncertainty entailed in delineating fine structures, such as blood
vessels, occasionally merely a couple of pixels wide. Then:

Completeness =
µŶ (Y , τ)
| Y |

, (5a)

Correctness =
µY (Ŷ , τ)
| Ŷ |

, (5b)

Quality =
µY (Ŷ , τ)

| Ŷ | −µŶ (Y , τ)+ | Y |
. (5c)

Conceptually, Completeness, and Correctness constitute a “relaxed” version of Recall, and
Precision, respectively; Quality summarizes them into a single measure and can be considered
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a “relaxed” version of Intersection over Union. Moreover, we compute the Precision-Recall
break-even point [49], denoted by PR. When Precision equals Recall, the PR corresponds to the
F-score (or DICE). This metric is computed by pixel-to-pixel comparisons between the output of
the network and the ground truth centerline dilated by 1 pixel.
To estimate inter-rater agreement, 10 images were annotated by a second annotator as well.

We computed the Quality metric for one annotator against the other using different tolerance
factors, namely τ = 1, 2, 3, which resulted in Qrater-1,τ=1 = 0.3415, Qrater-1,τ=2 = 0.8016 and
Qrater-1,τ=3 = 0.8253, respectively. Effectively, τ = 1 corresponds to not introducing any tolerance
as the metric is computed on a discretized pixel grid, meaning that the euclidean distance between
points is at least 1. This justifies the very low performance of rater-1 against rater-2. Reasonable
agreement is obtained by introducing a tolerance of 2, which corresponds to allowing matched
points to be at most direct neighbours on the pixel grid. Using this observation we fix the tolerance
factor to τ = 2 for every reported Quality, Correctness, and Completeness. We also estimated
intra-rater agreement over 5 images, which resulted in Qintra,τ=1 = 0.3623, Qintra,τ=2 = 0.8922
and Qintra,τ=3 = 0.9358.

3.2. Training details

We trained all models using the Adam optimizer [50] with a batch size of 2 and an initial learning
rate of 10−4, decayed using inverse time decay scheduling with a rate of 0.5. As our ground truth
annotations are vessel centerlines, we dilate them by 1 pixel to densify the supervision signal.
During training, after each epoch, we evaluate the model on a validation set by computing the
Qualitymetric after first thresholding at 0.5 and skeletonising the predicted probability maps. We
train all models for up to a total of 6K steps, which corresponds to roughly 96 epochs. Preliminary
experiments revealed that, as expected, models with more parameters required more training
steps to converge to their maximum validation performance. Specifically, we experimentally
found that 6k steps were enough for all models to reach their final validation performance.
Following the Early Stopping paradigm, we stop training if for 10 consecutive epochs validation
performance does not improve and if a minimum of 1K training steps have elapsed, with the goal
of maintaining a balance between adequately fitting the training data and not implicitly overfitting
the validation set.

3.3. Data augmentation

Given the limited data available, in comparison with natural image datasets, data augmentation
was essential for regularizing and inducing invariances to the learned model and avoiding
over-fitting. We perform rotations by 90◦, 180◦, 270◦ and append the transformed images to the
original training set. Rotating OCT-A images with naturally occurring horizontally oriented
artefacts [51] produces vertically orientated artefacts that are not plausible. For the task we
consider, however, this does not constitute a hindrance as our models will be trained with the more
general requirement of ignoring both vertical and horizontal artefacts, and importantly on a variety
of rotated, plausible vessel shapes. Prior to each training iteration, we perform scaling, brightness
distortions and contrast distortions by factors uniformly sampled from [0.8, 1.3], [0, 0.2], and
[0.75, 1.25], respectively; deformation by randomly generated smoothed deformation fields as in
[31]; random erasing of multiple small 4 × 4 input regions similar to [52]. Figure 6 demonstrates
Quality evaluated on the validation set after each training epoch with and without on-line data
augmentation. On-line data augmentation significantly limits over-fitting and allows the model to
achieve higher maximum performance.

3.4. Experimental comparisons

We treat the base network, i.e. a single UNet, referred to as unet, with the architecture described
in Sec. 2.3, trained with the loss of (1) as the baseline. Then, we trained the same UNet with the
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Fig. 6. For all models, adding online data augmentation during training (described in 3.4)
prevents overfitting by regularizing training while leading to higher validation Quality. The
presented curves are computed when training and validating on the same cross-validation
fold of the dataset, but this finding was consistent across folds.

combined loss of (3), which is referred to as unet-topo. In all experiments with the loss of (3),
we included the conv12, conv22, conv34 feature maps of the VGG19 network with µ12 = 10−2,
µ22 = 10−3, µ34 = 10−4 as their respective weighing factors chosen experimentally as described
in the appendix.
To compare training from scratch (as proposed here), with fine-tuning a Imagenet-pretrained

model, we also train the network of [25], denoted as DRIU, which is based on a pretrained
VGG16.

Furthermore, we trained the iUNet model using the loss of (4) but without the perceptual
loss setting µ12, µ22, µ34 = 0 and for k = 2, 3, 4 refinement iterations. The resulting models are
termed i-unet-k. Training these models with the perceptual loss term active gives i-unet-k-topo.
Similarly, we trained the SHN model with k = 2, 3, 4, 5 modules using the loss of (3) at each

module’s output, denoted by shn-k-topo, and without the perceptual loss denoted by shn-k.
Finally, we ablate base-network depth by training unet-topo, i-unet-4-topo and shn-4-topo with
a base-network of 5 (vs 3 used in all other cases) residual blocks in both encoder and decoder.
We used the data augmentation scheme of Sec. 3.3 and 4−fold cross validation for all

experiments. Finally, to determine the statistical significance of differences observed between
models, we conducted paired Wilcoxon signed-rank tests on the quality metric derived from
individual subject segmentations obtained from the network trained with the fold for which the
subject is in the held-out test set.

3.5. Cross validation and model selection

To select the optimal model-loss combination we employ 4-fold cross-validation. Specifically,
we utilize stratified sampling to partition our data into 4 folds, each of which is composed of
disjoint training, validation, testing sets. This ensures, that each pathology is represented in all 3
sets. As a result, we use 27, 30, 30, 31 images in the training sets (respectively for each fold), 8
images in the validation sets and 15, 12, 12, 11 images in the test sets (unseen during training).
Testing sets of different folds are disjoint (i.e merging them gives us the whole dataset), meaning
that each subject is in the testing set of only one fold, and is either in the training or validation
sets of all other folds. As described in Sec. 3.3, via fixed rotations the final training set sizes are
108, 120, 120, 124. The mean and the standard deviation of the evaluation metrics on the test
set across the 4 folds is reported. We combine cross-validation with statistical significance tests
to determine whether the observed differences in Quality between models can be attributed to
random effects caused by the stochasticity of the training algorithm (Sec. 3.2, 3.3) and the choice
of dataset fold, or are truly characterising the behaviour of the models.
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4. Results

This section presents the results that were obtained by the experiments outlined in Sec. 3.4,
concludes on the optimal model-loss function and on the importance of depth, refinement
iterations and dataset size on delineation performance.

4.1. Quantitative evaluation and comparisons

Unsurprisingly, weakly supervised graph-based method (described in the appendix), is outper-
formed by all networks trained in a purely supervised manner. Regarding the deep learning
methods, we sought to identify the best model-loss function combination. Table 2 presents our
comparative experimental results for the most important model-loss combinations outlined in
Sec. 3.4.

Table 2. Model/loss-function comparisons using 4-folds cross validation. Mean of metrics on the
test set across folds is reported and standard deviation is in parenthesis. Best of each metric in
bold, Statistical Significance of difference in Quality between the two top competing methods is

indicated.

Model Qtest,τ=2 Corrtest,τ=2 Comptest,τ=2 PRtest

Graph-based 0.7267 0.7884 0.7871 -

unet 0.8230 (0.0348) 0.8583 (0.0417) 0.9529 (0.0165) 0.8535

DRIU [25] 0.8360 (0.0248) 0.8838 (0.0290) 0.9400 (0.0196) 0.8328

i-unet-4 0.8334 (0.0345) 0.8694 (0.0404) 0.9532 (0.0171) 0.8572

shn-4 0.8464 (0.0263) 0.8877 (0.0333) 0.9484 (0.0209) 0.8588

unet-topo 0.8598 (0.0244) 0.9257 (0.0304) 0.9246 (0.0304) 0.8477

shn-4-topo 0.8624 (0.0227) 0.9301 (0.0278) 0.9227 (0.0227) 0.8552

i-unet-4-topo 0.8671∗(0.0226) 0.9373 (0.0266) 0.9214 (0.0251) 0.8540

The results of extensive paired Wilcoxon significance tests are provided in the appendix. A
selection of important significance tests are presented in Tables 2, 3 and 4 where ∗ ∗ ∗, ∗∗, and ∗
denote significant differences with p < 0.001, p < 0.01, and p < 0.05, respectively, while ns
denotes non significant differences with p ≥ 0.05.

Table 3. Effect of iterations (iUNet) and modules (SHN) on quality. Statistically significant
differences between top performing model with iterative refinement and top performing model with

iterative refinement and topological loss. Best of each model is in bold.

Model k=2 k=3 k=4 k=5

i-unet-k 0.8302 (0.0335) 0.8322 (0.0330) 0.8334 (0.0340) 0.8312 (0.0317)

i-unet-k-topo 0.8626 (0.0232) 0.8631 (0.0236) 0.8671∗∗∗(0.0226) 0.8661 (0.0210)

shn-k 0.8310 (0.0264) 0.8314 (0.0268) 0.8464 (0.0263) 0.8452 (0.0274)

shn-k-topo 0.8598 (0.0222) 0.8616 (0.0235) 0.8624∗∗∗ (0.0227) 0.8609 (0.0235)

Table 4. Effect of base network depth on quality. Statistically significant differences between
deeper and shallower base networks are indicated. Best of each model is in bold.

Blocks unet-topo i-unet-4-topo shn-4-topo

5 0.8484 (0.0235) 0.8548 (0.0254) 0.8510 (0.0235)

3 0.8598∗∗ (0.0244) 0.8671∗∗∗ (0.0226) 0.8624∗∗ (0.0227)

The segmentations achieved by the unet constitute a baseline of acceptable quality. The
produced vessel maps, however, suffer from subtle topological inaccuracies, such as discontinuous
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or overly connected branches, and false positives due to image noise or artefacts. This can be
attributed to the cross-entropy loss being oblivious to local context around each pixel, in contrast
to the perceptual loss which attends to local features creating a complementary learning signal.
Combining the perceptual loss term of (2) with the loss function of (3) significantly boosts

performance. Despite not using any form of iterative refinement, unet-topo significantly
outperforms unet, and both iterative and stacked networks that do not make use of this additional
loss term. As can be observed in Table 2, the networks that are trained using the perceptual loss
show a sharp increase in Correctness values counterbalanced by a slight decrease in Completeness,
compared to the same networks trained without it. This leads to improvements in Quality, which
translate to smoother and cleaner predictions, albeit missing some very fine details.
Combining both iterative refinement and the topological loss improves performance even

further. The model/loss-function combinations that demonstrated the highest performance in
terms of Quality were shn-4-topo and i-unet-4-topo. The difference in performance between
i-unet-4-topo and unet-topo is statistically significant, providing evidence that there exists a
synergy between iterative refinement and the incorporation of the topological loss.
According to Table 2, adding iterative refinement (either through stacking or iterations),

translates into a concurrent increase of completeness and correctness and therefore of quality.
Table 3 shows that increasing the number of stacked modules or refinement iterations boosts

performance, respectively for the SHN and iUNet, with or without the perceptual loss. The
optimal number of stacked modules and refinement iteration was 4 while further increasing both
to 5 led to slightly worse performance, possibly due to the fact that performance achieved with
less refinement steps is already quite high, thus leaving small grounds for improvement. Figure 8
showcases the effect of adding iterative refinement to a model trained with the perceptual loss.
Table 5 presents the cross validated improvements in the Quality metric ∆Qj+1−j between

consecutive refinement iterations j and j + 1 for shn-4-topo with i-unet-4-topo. As observed the
second refinement iteration offers a significant boost in performance, while further iterations
offer diminishing gains. Using less iterations, however, performs worse overall according to
Table 3. Furthermore, as presented in Table 4 using a deeper base network leads to worse results
for the top performing networks, a finding that can be attributed to having a limited dataset.

Table 5. Improvements through iterative refinement combined with topological loss.

Model ∆Q2−1
test,τ=2 ∆Q3−2

test,τ=2 ∆Q4−3
test,τ=2

i-unet-4-topo 0.01659 0.0016 0.0002

shn-4-topo 0.01749 0.0008 < 0.0001

Conclusively, i-unet-4-topo marginally outperforms shn-4-topo (with marginal statistical
significance p < 0.05) and is also optimal in terms of parameter efficiency, as it requires 1/4 of
the parameters of the latter. The fact that the more parameter-heavy shn-4-topo is not performing
better than the lighter i-unet-4-topo can possibly be attributed to the lack of a large training set.
Finally, DRIU, which utilizes pretraining on Imagenet, is significantly outperformed by

these two networks trained from scratch. This is not surprising as RGB natural images found
in Imagenet differ substantially from grayscale OCT-A images and therefore fine-tuning the
pretrained weights offers limited gains in performance. This finding is in-line with the empirical
results of [53] that demonstrate very limited gains when using Imagenet weights and architectures
for medical imaging tasks, including retinal image pathology grading. A qualitative comparison
of DRIU and i-unet-4-topo can be found in Fig. 7.

4.2. Dataset size ablation

We evaluated the effect that decreasing training dataset size has on network performance.
Specifically, we retrained our best performing network with less data by randomly removing



Research Article Vol. 11, No. 5 / 1 May 2020 / Biomedical Optics Express 2503

Fig. 7. Qualitative comparison of results from Imagenet pretrained and fine-tuned baseline
DRIU [25] and i-unet-4-topo, trained from scratch. The latter was the top performing
model/loss function combination. The two methods achieve similar recall. However, DRIU
exhibits noisier predictions with a considerable amount of false positives. Columns 4 and 6
present centerline errors (dilated by one pixel to improve visibility) made by the two models,
with false and true positives shown in red and green respectively, while missed segments are
shown in blue.

Fig. 8. Adding iterative refinement to unet-topo: outlined in red are some examples of fine
details that are recovered only by i-unet-4-topo. The outermost column depicts zoomed-in
regions of interest corresponding to the red bounding boxes, and aids with the comparison
of the response of the two models. Columns 3 and 5 present centerline errors (dilated by one
pixel to improve visibility) made by the two models, with false and true positives shown in
red and green respectively, while missed segments are shown in blue.

subjects leaving us with 20, 10, 5 subjects per training set. As in all previous experiments, we
used cross-validation and data augmentation while also keeping the test set of each dataset fold
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the same with previous experiments. This allows us to observe performance decrease solely
caused by having less training data. Results for this experiment for i-unet-4-topo are presented
in Table 6 and indicate that truncating the training set up to 1/3 of the full training set leads
to a small but consistent performance decrease, while a considerable drop of almost 4% in
performance occurs when training with only 1/6 of the full training set.

Table 6. Quality metric when fractions of the full dataset are considered.

Subjects (train set) 5 10 20 30 (full)

i-unet-4-topo 0.8334 0.8601 0.8624 0.8671

5. Discussion

We present two other possible use-cases of our networks, pretrained on 8mm×8mm MIPs, on
other forms of OCT-A data (3D and 3mm×3mm scans) without any retraining. We also discuss
generalization when using a relatively small dataset.

5.1. 3D volume segmentation

The raw (non-geometrically flattened) 3D OCT-A volume can be viewed as a sequence of 2D
slices. We can obtain a metric 3D segmentation by aggregating 2D per-slice segmentations
produced by our models trained on geometrically flattened MIPs. These models, in principle, can
generalize to delineating vessels on each 2D slice of the raw unflattened 3D OCT-A, without any
retraining. Figure 9, and Visualization 1, depict 3D segmentations obtained with this approach.
Due to lack of 3D ground truths the generated 3D segmentation can only be visually evaluated.

Fig. 9. OCT-A 3D segmentation: The 1st row depicts the MIP associated with the raw 3D
volume which is per-slice segmented by shn-4-topo (the model that gave the best, based on
visual inspection, 3D results), with the resulting 3D segmentation displayed below. The 3rd

row displays cross-sections of the segmentation (gray) overlayed on the OCT-A cross-section,
the location of which is denoted by the red dashed line. Finally zoomed in cross-sectional
details are shown (denoted in upper rows by red dots) which reveal the network mistakenly
segments shadowing artefacts (1st, 2nd, 4th columns) below bigger vessels which is normal
due to it being unaware of 3D context. A video demonstration of the 3D segmentations is
provided as supplementary material.

https://doi.org/10.6084/m9.figshare.11362523
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It is acknowledged that the 3D results are less impressive than the 2D segmentations, for which
we provide direct supervision via annotations. However, it is qualitatively demonstrated that our
models are able to produce plausible 3D segmentation without ever being provided with any 3D
supervision.

5.2. Generalization to narrower field of view OCT-A

All models described in this work were trained using MIPs of 8mm×8mm OCT-A. We observed
these networks can generalize to segmenting 3mm×3mm FOV OCT-A without retraining. These
narrower FOV scans are separately captured scans (rather than digitally zoomed-in versions of
wider FoV scans) that focus on details of the center of the macula by trading off size of imaged
region. Figure 10 presents qualitative examples accompanied by a comparison with human
annotations.

Fig. 10. Generalizing to 3mm×3mm scans: Using i-unet-4-topo, we can produce plausible
segmentations of the narrower FoV scans which reveal more details of the central part of the
macula. The 1st and 2nd, and 3rd and 4th columns, demonstrate the correspondence between
the two scans and the two segmentations respectively, while the 5th and 6th presents the
ground truth centerline and errors with respect to it respectively, with false (red), true (green)
positives and missed segments (blue).

5.3. Generalization with limited data and transfer learning

Due to the limited amount of data, in comparison with datasets of natural images, an argument
can be raised that training deep networks may lead to over-fitting. Acknowledging this concern
we initially experimented with adaptive thresholding techniques that proved ineffective as they
constitute purely intensity based methods that are completely unaware of the local geometry of
the vessels. Subsequently we formally compared CNNs against a graph-based weakly-supervised
methodwhich combines hand-crafted filtering, domain assumptions (such as the tree-like structure
of vessels) and simple learning-based classifiers. While this method performed reasonably,
it required extensive fine-tuning of its many settings, and was significantly outperformed by
even the simpler CNNs. Importantly, the fact that the physical principle and goal of OCT-A
as an imaging modality is to highlight vasculature acts as a strong prior embedded into the
data. As a result, the task undertaken by the neural network is appropriately solved under a
low-data regime. We also addressed this by employing early stopping using a validation set and a
wide range of geometric and appearance data augmentation techniques (Sec. 3.3). The latter
induce invariance to inter-subject OCT-A variability pertaining to variations in vessel shape or
density stemming from the type of the underlying retinal pathology or natural morphological
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diversity.Significantly, the experiments of Section 4.2 reveal that our top-performing model, aided
by extensive online-data augmentation, is able to achieve relatively high performance even when
trained on 1/6 of the full training set. Moreover, the usage of the perceptual loss can be interpreted
as an alternative form of transfer learning, which typically, consists of fine-tuning a network
pretrained, usually, on image classification, on the task of interest. We found that was not optimal
for OCT-A vessel delineation as this approach (DRIU) was outperformed by networks trained
from scratch. Instead, the addition of the perceptual loss, transfers the knowledge embedded in
the pretrained network’s feature space, by forcing the predictions and the ground truth to lie close
within it. This enables the network to learn to be aware of low to mid level features regarding
connectivity and shape in the local neighbourhood of each pixel.

6. Conclusion

We presented an effective recurrent CNN for vessel segmentation in OCT-A. Experimentally,
we concluded that iterative refinement with weight sharing coupled with a perceptual loss is a
well-performing solution to the absence of large amounts of data as it naturally separates the
precise curvilinear structure localization into a sequence of increasingly finer delineation steps
and leverages a pretrained convolutional network in the form of an auxiliary feature extractor. Our
model can extract highly detailed vessel maps frommaximum intensity projections of 8mm×8mm
OCT-A scans, and can be reliably utilized even on subjects with vitreo-retinal pathology that
causes structural macular abnormalities. Our futureworkwill involve translating these vessel maps
in VR surgery through registration to the intraoperative video. We anticipate that our methods
can also constitute a first step towards automatically calculating retinal biomarkers, such as vessel
tortuosity or density, by providing a binary segmentation of vessels in OCT-A. Our software and
trained models will be made available online at https://github.com/RViMLab/BOE2020-OCTA-
vessel-segmentation for comparisons and to aid in practical applications. Finally, we plan to
make our annotated dataset public, through our collaboration with INSIGHT - the UK’s Health
Data Research Hub for Eye Health, which to the best of our knowledge will be the first containing
OCT-A scans with human annotated retinal vessels of subjects that underwent vitreo-retinal
surgery and more annotated data than current retinal vessel segmentation benchmark datasets
[10], [11].

Appendix

A.1. Implementation and runtime

All models were implemented within Tensorflow [54] using Python on an NVIDIA Quadro
P6000 GPU. Training time varied for different networks and also for training the same network
using different data folds, due to the utilization of early stopping according to performance on the
validation set. On average, SHN models with 4 modules converged at 2 hour 50 minutes, while
iUNet models with 4 iterations converged at 2 hour and 24 minutes. Inference for an input image
with a pixel count of 416 × 416 for both models was 171 ms. Inference time for UNet was 43 ms.

A.2. Metric 3D OCT/OCT-A data from Zeiss Angioplex

To recover the raw data representing the 3D volume of OCT/OCT-A acquired by Angioplex, a
license 266002 − 1142 − 523 is required. The extracted data is a series of brightness values
assuming isotropic voxels. As isotropy is not the case in OCT/OCT-A acquisitions, the data cannot
be used for metric segmentation. Further, the DICOM files that accompany each acquisition are
encrypted and obscured. Each OCT/OCT-A acquisition corresponds to multiple DICOM files
with occasionally conflicting information. We successfully recovered metric 3D volumes by
combining the raw “isotropic” 3D information with an extensive comparison of all DICOM files
corresponding to a single acquisition. A series of automated sanity checks and OCT/OCT-A

https://github.com/RViMLab/BOE2020-OCTA-vessel-segmentation
https://github.com/RViMLab/BOE2020-OCTA-vessel-segmentation
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DICOM file comparisons allows the extraction of the width/height/length of the voxel, and the
creation of a Nifty volume [55] containing every information required for metric processing of
the acquired volumes.

A.3. Model/loss function comparisons and statistical significance tests

We provide the evaluation metrics of all model/loss function combination in Table 2 and
paired statistical tests in Table 7 that indicate the statistical significance of the differences in
Quality metric between selected model/loss function combinations where ∗ ∗ ∗, ∗∗, and ∗ denote
significant differences with p < 0.001, p < 0.01, and p < 0.05, respectively, while ns denotes
non significant differences with p ≥ 0.05. Figure 11 shows Quality plotted against the number of
trainable parameters.

Fig. 11. Performance as a function of the number of trainable parameters: i-unet-4-topo
constitutes the top performing while requiring the minimum number of parameters.

A.4. Graph-based baseline

We implemented a graph-based method inspired by state-of-the-art algorithms from [23,24]. The
method entails two sequentially applied components.
The first component extracts an over-complete graph Go whose nodes, Vo, lie on vessels and

whose edges, Eo, roughly constitute a superset of the edges of the ground truth vessel map. To
create the graph, the MIP image is filtered using a tubularity filter [15]. Then, the likelihood of a
pixel belonging to a vessel centerline is calculated via a sigmoid function that maps the tubularity
values to the [0, 1] interval. We use a priority queue constructed by the likelihood pi of each
pixel i in the image to iteratively select pixels with high tubularity; these form a set S coined
seeds. Finally, to construct Go(Vo,Eo), we set Vo = S and then compute minimum cost paths
between pixels of S that are up to a certain distance away from each other. For that, we treat the
image as a graph G(VI ,EI) where VI is a set of nodes populated by each pixel on the image and
EI is a set of edges that are formed by connecting each node to its 8 nearest neighbors on the
image grid. Each such edge is assigned a probabilistic cost [23] that is described by:

pij = dij
pilog(pi) + pj(1 − log(pj))

pi − pj
, (6)

where i, j indicate pixel indices on the image grid, dij denotes the euclidean distance between the
two pixels and pi is the likelihood that pixel i lies on a vessel centreline.

The second component prunes Go using an SVM classifier to identify paths in Eo belong to the
true vessel map. Weakly supervised learning is followed to train the classifier, as in [24], using a
set of valid and invalid paths that are mined from a collection of over-complete graphs extracted
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from 20 MIP images. The paths are labeled using heuristic criteria that quantify whether they
can be part of the ground truth. From the neighborhood of each path, Histograms of Gradient
Deviation descriptors are extracted and encoded to a fixed length descriptor vector using the Bag
of Visual Words paradigm. Finally, the paths of Go that are classified as valid, are added to the
final vessel map prediction.

Table 7. Paired Wilcoxon significance tests for cross validated Quality metric.

Models unet DRIU unet-topo i-unet-4 i-unet-4-topo shn-4 shn-4-topo

unet ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

DRIU ∗∗ ∗ ∗ ∗ ns ∗ ∗ ∗ ∗∗ ∗ ∗ ∗

unet-topo ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ns

i-unet-4 ∗∗ ns ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

i-unet-4-topo ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

shn-4 ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

shn-4-topo ∗ ∗ ∗ ∗ ∗ ∗ ns ∗ ∗ ∗ ∗ ∗ ∗ ∗

Qtest,τ=2 0.8230 0.8360 0.8598 0.8334 0.8671 0.8464 0.8624

A.5. Ablation study for VGG-feature loss

Networks trained with the loss of (2) (see main text) require a choice of VGG19 feature maps
and of their respective weighing factors. Therefore, we train and evaluate i-unet-4-topo with
equal weighing by factors µ12 = µ22 = µ34 = 10−2 of the loss terms for conv12, conv22, conv34
and also with unequal weighing factors µ12 = 10−2, µ22 = 10−3, µ34 = 10−4; our hypothesis
was that spatially coarser feature maps matter less for segmentation details. We also evaluated
dropping conv22, conv34. As shown in Table 8, using unequal weighing with all 3 feature maps
gave slightly higher performance, and thus we employed it in all other experiments.

Table 8. Ablation study for the VGG-feature loss on validation sets.

Weighing Feature Maps Qval,τ=2 PRval

10−1 , 10−2 , 10−3 all 0.8650 0.8520

10−2 , 10−3 , 10−4 all 0.8668 0.8538

10−2 all 0.8567 0.8445

10−2 only conv12 0.8603 0.8534
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