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Abstract

The use of machine learning (ML) algorithms has significantly increased in neurosci-

ence. However, from the vast extent of possible ML algorithms, which one is the

optimal model to predict the target variable? What are the hyperparameters for such

a model? Given the plethora of possible answers to these questions, in the last years,

automated ML (autoML) has been gaining attention. Here, we apply an autoML

library called Tree-based Pipeline Optimisation Tool (TPOT) which uses a tree-based

representation of ML pipelines and conducts a genetic programming-based approach

to find the model and its hyperparameters that more closely predicts the subject's

true age. To explore autoML and evaluate its efficacy within neuroimaging data sets,

we chose a problem that has been the focus of previous extensive study: brain age

prediction. Without any prior knowledge, TPOT was able to scan through the model

space and create pipelines that outperformed the state-of-the-art accuracy for

Freesurfer-based models using only thickness and volume information for anatomical

structure. In particular, we compared the performance of TPOT (mean absolute error

[MAE]: 4.612 ± .124 years) and a relevance vector regression (MAE

5.474 ± .140 years). TPOT also suggested interesting combinations of models that do

not match the current most used models for brain prediction but generalise well to

unseen data. AutoML showed promising results as a data-driven approach to find

optimal models for neuroimaging applications.
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age prediction, automated machine learning, cortical features, neuroimaging, predictive

modelling, structural imaging

1 | INTRODUCTION

The last few decades have seen significant progress in neuroimaging

methodologies and techniques focused on identifying structural and

functional features of the brain associated with the behaviour. How-

ever, only a few of the newly developed methods have been trans-

ferred to the clinics. One of the principal reasons for this gap is that,

so far most of the findings in the neuroscience field have been
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obtained by assessing differences at the group level (e.g., analysed the

difference in brain activation in healthy controls compared to schizo-

phrenia patients); however, decisions in the clinics need to be done at

the individual level. Machine learning (ML) has been recently gaining

attention as it promises to bridge the gap between group-level analy-

sis and individual inference. In fact, with the advance of ML algorithms

and their increased application in neuroimaging, the field is rapidly

becoming more focused on developing clinically relevant biomarkers,

as well as, exploring relationships between individual differences and

behaviour (Bzdok & Ioannidis, 2019; Pereira, Mitchell, &

Botvinick, 2009; Shen et al., 2017; Yarkoni & Westfall, 2017).

One of the most promising uses of the brain age prediction is its

relevance and use as a biomarker to assess the risk of an individual to

develop cognitive decline and propensity to neurodegenerative dis-

eases (Cole, Franke, & Cherbuin, 2019; Franke & Gaser, 2019). The

main idea is that brains that are predicted to be older than their chrono-

logical age have aberrant age changes accumulation and that this accu-

mulation might be a marker for disease and its progression. Supporting

this idea, the brain-age gap (i.e., the difference between brain-age

predicted and chronological age) has been shown to be higher in mild

cognitive impairment who progress to Alzheimer's disease (Franke &

Gaser, 2012), traumatic brain injury (Cole et al., 2018) and schizophre-

nia (Koutsouleris et al., 2014) patients when compared to controls.

Predictive modelling approaches, which consist of using ML algo-

rithms to learn patterns from features in a data set and to build an

accurate model to predict an independent variable of interest in

unseen data, are gaining increasing attention in the neuroscience field.

However, choosing a model which is unsuitable for the statistical dis-

tribution the underlying data leads to significant problems with over-

estimation of the model and loss of generalisation. Second, the sheer

mass of learning approaches that are available with a vast array of dif-

ferent properties provides a bewildering set of choices for the practi-

tioner; each with advantages and disadvantages both in terms of

generalisation and computational complexity. This issue results in the

occurrence of both Type I and II errors, simply as a result of picking an

inappropriate analysis technique for the underlying data. This is partic-

ularly problematic as new fields adopt ML approaches, and the choice

of the methodology is often based on applications in other fields

where data may have quite different statistical properties—or indeed

simply be the product of whichever technique is currently in the zeit-

geist. A similar problem has been described and extensively studied in

motion correction in resting state fMRI. Power et al. (2014) and

Power, Schlaggar, and Petersen (2015) analysed the effect of different

commonly used motion correction steps and how they change the

statistical structure of the data set. These transformations not only

have a significant effect on voxel-level inference (Power

et al., 2014, 2015) but also on cluster correction (Eklund, Nichols, &

Knutsson, 2016). Interestingly, Eklund et al. (2016) showed that by

violating the statistical properties of the data, the analysed parametric

methods resulted in a very high degree (up to 70% instead of the usu-

ally assumed 5%) of false positives.

The no free lunch principle (Wolpert & Macready, 1997) applied to

ML suggests that there are no single estimator and parameter

combinations that will always perform well on every data set. The

selection of preprocessing steps, the choice of the algorithm, the

selection of features and the model's hyperparameters are crucial and

will vary with the task and data. Hence, the optimal application of ML

technology requires the answer to at least three questions: What are

the necessary preprocessing steps that should be performed to pre-

pare the data? Is there a way of reducing the feature space to only

the relevant features? Among the many available ML algorithms,

which one is the most appropriate for the data under analysis? That

these choices are often arbitrary and defined only on prior wisdom is a

challenge for neuroimaging which continues to face a significant repli-

cation crisis (Open Science Collaboration, 2015).

ML algorithms vary greatly in their properties, complexity and the

assumptions they make about the data they are applied to. They can

be linear, non-linear and optimise different functions to predict con-

tinuous (regression) or categorical (classification) variables. Moreover,

the performance of all ML algorithms depends on the fine-tuning of

its hyperparameters (Jordan & Mitchell, 2015). In addition, feature

extraction and feature selection methods are often used in series to

reduce or enhance data complexity during the preprocessing stages of

analysis. The consequence is that there are potentially infinite combi-

nations of approaches that can be taken to identify relationships out

of data. To cut through this complexity requires the development of

tools that can automatically select the appropriate (combination of)

preprocessing and ML techniques to apply to a data set to highlight

relationships that are both generalisable and computationally

efficient.

In recent years, automated ML (autoML) has been gaining atten-

tion. The aim of autoML is to take advantage of complexity in the

underlying data set to help guide and identify the most appropriate

model (and their associated hyperparameters), optimising perfor-

mance, whilst simultaneously attempting to maximise the reliability of

resulting predictions. In this context, many different autoML libraries

have been developed. Auto-WEKA (Thornton, Hutter, Hoos, &

Leyton-Brown, 2013), Auto-Sklearn (Feurer et al., 2015) and Tree-

based Pipeline Optimisation Tool (TPOT; Olson, Bartley,

Urbanowicz, & Moore, 2016) are just a few examples. Although the

first two implement a hierarchical Bayesian method, the latter uses a

tree-based genetic programming algorithm. Due to its user-friendly

interface and the pipeline flexibility offered by the optimisation of a

tree-based approach (Hutter, Kotthoff, & Vanschoren, 2019), we have

chosen to evaluate TPOT's performance on this problem. The main

idea behind the tree-based genetic programming is to explore differ-

ent pipelines (i.e., combination of different operators that perform fea-

tures selection, feature generation and model analysis) for solving a

classification or regression problem. This is done through a multi-

generation approach, starting from a collection of random models.

Based on the performance and reliability of predictions at each gener-

ation those with the highest performance will be bred (i.e., combined

or crossed-over), whilst random mutations of these models are also

introduced. Therefore combinations of models that maximise both

performance and have lower complexity survive and the “best” candi-

date pipeline yielded by TPOT will consist of a combination of models
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and preprocessing methods that are best suited to the relationship

being probed. Figure 1 presents a high-level schematics of our

approach.

In this article, we explore the application of TPOT as an autoML

approach to structural neuroimaging data. As a test case, we evalu-

ated its efficacy to predict chronological age using structural brain

data. Ageing is one factor inducing major variability in brain structure.

Grey matter atrophy, increase in the ventricle sizes and cortical thin-

ning are a few examples of structures that alter whilst we age (Cole &

Franke, 2017; Hogstrom, Westlye, Walhovd, & Fjell, 2013). As age-

related changes can be detected with structural MRI, different ML

models have been trained to learn the relationship between age and

brain structure (Aycheh et al., 2018; Becker, Klein, Wachinger, Initia-

tive, et al., 2018; Cole, Leech, Sharp, & Initiative, 2015; Franke

et al., 2010; Liem et al., 2017; Madan & Kensinger, 2018; Valizadeh,

Hänggi, Mérillat, & Jäncke, 2017). The main idea behind brain age

studies is to find discrepancies between the predicted and chronologi-

cal age, which might be used as biomarkers (Cole & Franke, 2017). As

brain-age prediction has been extensively studied and its accuracy can

be evaluated against the reported model accuracies the existing brain-
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F IGURE 1 Overview of experimental design. The subject's structural MRI is used to create a parcellation of cortical and subcortical regions. The
data set was split into two independent sets: TPOT training set and evaluation set. The TPOT training set was passed to TPOT, which depending on
the specified configuration performed feature selection, feature transformation, feature generation or a combination of those and evaluated the
model's performance. For each generation, a 10-fold cross-validation was performed and the best models for that specific generation were
identified, crossed-over/mutated and passed to the next generation. At the last generation, the pipeline with the lowest mean absolute error (MAE)
was identified and returned by TPOT. We then retrained the optimised pipeline on the independent evaluation set and tested its performance using
a 10-fold cross-validation. Finally, we compared the MAEs between different TPOT configurations and between TPOT and RVR
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age corpus (Aycheh et al., 2018; Cole et al., 2017; Franke et al., 2010;

Valizadeh et al., 2017), we used this problem to test the settings,

validity and limitations of autoML for imaging applications in using a

regression approach. In this study, we demonstrate that: (a) the

model's performance is highly dependent on the initial model popula-

tion defined by the initial model pool passed as a configuration and

the population size; (b) there is no single analysis model that predicts

age with the highest performance from the underlying structural

imaging data and (c) models suggested by TPOT outperforms rele-

vance vector regressor (RVR), a state-of-the-art model used to predict

brain age. Therefore, TPOT can be used as a data-driven approach to

learn patterns in the data, to automatically select the best hyper-

parameters and models in a researcher unbiased fashion to avoid

common pitfalls from ML algorithms such as overfitting.

2 | MATERIALS AND METHODS

2.1 | Subjects and data sets

In this analysis, T1-weighted MRI scans from N = 10,307 healthy sub-

jects (age range 18–89 years, mean age = 59.40) were obtained from

13 publicly available data sets where each data set used one or more

scanners to acquire the data. A summary of the demographics and

imaging information can be found in Table 1 (for more details about

the BANC data set, see Cole et al., 2017) and for the UK Biobank

(Alfaro-Almagro et al., 2018; Sudlow et al., 2015; https://biobank.

ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). From the original

n = 2,001 subjects present on the BANC data set, we only used 1,227

subjects and excluded all subjects from the WUSL Cohort. The WUSL

Cohort, in particular Cohort 3 that contained 26 adult subjects

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), was excluded

after performing Freesurfer quality control checks. The exclusions

were made based on poor quality automated labelling, whereby non-

brain tissue was included in the grey matter segmentation. This was

likely driven by noise or artefacts in the original images.

2.2 | MRI preprocessing

Using the recon-all pipeline in Freesurfer version v6.0 (Dale, Fischl, &

Sereno, 1999), individual T1-weighted MRI images were preprocessed

and parcelled into 116 thickness and volume information for anatomi-

cal structures (for the full list of features, see Table S2), according to

the Desikan-Killiany atlas and ASEG Freesurfer atlas (Desikan

et al., 2006). From these segmented regions, we extracted the cortical

thickness and volume to be the input data for our further analysis.

2.3 | TPOT automated analysis

TPOT (Olson, Bartley, et al., 2016; Olson, Urbanowicz, et al., 2016)

uses genetic programming to search through different operators

(i.e., preprocessing approaches, ML models, and their associated

hyperparameters) to iteratively evolve the most suitable pipeline with

high accuracy. It does so by (a) generating a pool of random analysis

models sampled from a dictionary of preprocessing approaches and

analysis models (see Table S1 for a list of the models used); (b) evaluat-

ing these models using 10-fold cross-validation, to identify the most

accurate pipeline with the lowest amount of operators; (c) breeding

the top 20 selected pipelines and applying local perturbations

(e.g., mutation and crossover) and (d) re-evaluating the pipeline in the

next generation. This process is repeated for a specified number of

generations before settling on a final optimal pipeline that has high

accuracy and low complexity (i.e., lowest number of pipeline opera-

tors). To make sure that the operators are combined in a flexible way,

TPOT uses a tree-based approach. That means that every pipeline is

represented as a tree where the nodes represented by the different

operators. Every tree-based pipeline starts with one or more copies of

the data set and every time the data are passed through a node, the

resulting prediction is saved as a new feature. In particular, TPOT uses

a genetic programming algorithm as implemented in the Python pack-

age DEAP (Fortin, Rainville, Gardner, Parizeau, & Gagné, 2012; for a

more detailed description of the TPOT implementation, see Olson,

Bartley, et al., 2016). The models used for TPOT included a combina-

tion of linear (interpretable) and non-linear models (non-interpretable).

A list of all models for feature selection, feature generation and

regression used for the TPOT analysis and their scikit-learn implemen-

tation can be found in Table S1.

2.3.1 | Regression

TPOT hyperparameters exploration

We used TPOT to find the “best” pipeline to predict brain age, where

the fitness of the pipeline is defined by a low mean absolute error

(MAE) between the predicted and the subject's chronological age. To

do this, we randomly selected 1,546 subjects from the data set (TPOT

training set), and we applied TPOT on them for 10 generations to find

the most fitted ML pipeline—the pipelines with the highest accuracy.

The optimal pipeline suggested by TPOT was then used to train an

independent (n = 8,761) data set and its performance was evaluated

using a 10-fold cross-validation. Both RVR and the optimal model

suggested by TPOT were trained using the same number of subjects.

The TPOT analysis and the evaluation of the model in an independent

training set were repeated 10 times. As a result, we obtained 100 per-

formance scores for each configuration that were used to evaluate

the impact of manipulating (a) the types of model preprocessing,

(b) number of models tested on the first generation and (c) mutation

and crossover rate.

2.4 | Relevance vector regression

RVR was first introduced by (Tipping, Solla, & Leen, 2000) and uses a

general linear model based on Bayesian inference and therefore, in
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contrast to most commonly used models, it returns probabilistic pre-

dictions instead of deterministic predictions. In addition, for the usage

of this algorithm, the only hyperparameter that needs to be defined

by the researcher is what type of kernel to use. In this experiment, we

have used a linear kernel. All the other parameters are estimated by

the model during the learning procedure. This avoids the need of

cross-validation that can increase the computational expenses for

training the model. Another advantage is that RVR normally leads to

sparser models resulting in a good generalisation error whilst having a

faster prediction performance on the test data. However, the algo-

rithm is more prone to local minima as its optimisation is non-convex

(Tipping et al., 2000).

2.5 | Comparison between TPOT and RVR

We also performed a 10 times repetition with 10-fold cross-validation

(as described above) to assess the difference in performance between

the “best” pipelines yielded by TPOT and the RVR, a standard model

used in brain-age prediction (Franke et al., 2010; Kondo et al., 2015;

Madan & Kensinger, 2018; Wang et al., 2014). In addition, to check if

the underlying age distribution would have an effect on the models

yielded by TPOT, we repeated the analysis using 784 subjects whose

age was uniformly distributed between 18 and 77 years old. In this

case, we used n = 117 subjects to train TPOT and obtain the best

pipeline. The remaining subjects (n = 667) were used to train the best

pipeline using a 10-fold cross-validation. Similarly to the other ana-

lyses, this evaluation process was also repeated 10 times resulting in

100 MAE values for each condition.

Although a Student's t test is often used to check the difference

in performance between two models, Student's test assumes that

samples are independent, an assumption that is violated when per-

forming a k-fold cross-validation. As part of the k-fold cross-

validation procedure, one subject will be used in the training set k−1

times. Therefore, the estimated scores will be dependent on each

other, and there is a higher risk of Type I error. In fact, Nadeau and

Bengio (2003) observed that he increase of Type I error is given by

an underestimation of the variance as the samples are not indepen-

dent. The corrected ttest is defined as following Nadeau and

Bengio (2003):

t=

1
n

Pn
j=1

a j−b jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n +

n2
n1

� �bσ2r ð1Þ

where aj and bj are the accuracy of the two algorithms being com-

pared, n1 are the instances used for training and n2 the instances for

testing. The major difference is that the 1
n factor in the denominator

has been replaced by the factor 1
n +

n2
n1
. For this reason, we used a

corrected version of the t test that accounts for this dependency

(Nadeau & Bengio, 2003) when comparing the performance of TPOT

and RVR and the Friedman test when comparing different hyper-

parameters from TPOT (Demšar, 2006).

3 | RESULTS

We firstly investigated which models survived through the different

generations. Figure 2 shows the counts of the different models in one

of the repetitions. Random forests and extra-trees regressors are the

most popular models followed by Elastic Nets. Decision trees and k-

nearest neighbours also have a high popularity for the feature selec-

tion configuration.

3.1 | TPOT parameter exploration

We then explored if the changes in the TPOT configuration are asso-

ciated with a different performance (Figure 3b). We observed that

Gaussian Process Regression

Relevance Vector Regression

Support Vector Regression

Random Forest Regression

K-Nearest Neighbours Regression

Linear Regression

Ridge Regression

Elastic Nets

Extra Trees Regressor

Lasso Lars 

Decision Tree Regression

75

50

25

0

125

100

Full AnalysisNo Preprocessing

Generations

Feature Selection Feature Generation

F IGURE 2 Overview of the models count for each generation from one repetition for the different configurations experiments. Models with
a darker colour were more popular then models with lighter colour. Across the four experiments, random forest, K-nearest neighbours, linear
regression and extra trees regressors are the models with the highest count per generation. To make sure that all models were represented, we
had 1,000 models in the first generation and 100 models were passed on for the following generations
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independent of the preprocessing, the analysis choses the perfor-

mance varied between 4.3 and 4.9 years. If there was a single best

model to predict brain age, we would expect this model to always be

identified by the automated pipeline and included in the ensembles.

However, what we observed was that for every repetition, TPOT

found a different pipeline which was considered to be the most accu-

rate and none of the models were consistently identified throughout

the repetitions. Nevertheless, some of the models such as linear

regression, lasso lars and random forest regression seem to be popular

choices. (Figure 3a). Similarly, we analysed the change in performance

when varying the initial population of pipelines (Figure 3c). If a model

was not selected on the initial population, it will never be present in

future generations; therefore, we expected that a larger initial popula-

tion would lead to a more diverse pool and be associated with higher

performances. We also explored the effect of mutation and crossover

rate on the performance of the derived pipelines. For a combination

of high (0.9), low (0.1), mid-ranges (0.5) mutation and cross-over rates,

see Figure 3d. Another key factor suggesting that there is not a best

model to predict brain age is that for all tested configurations, the per-

formance of the best models yielded by TPOT oscillated between 4.3

and 4.9 years (Figure 3b–d).

These suggest that there is not one single model that best

describes the data set but a combination of many models leads to a

higher performance, and independent of the of the underlying data

structure, TPOT was able to a pipeline that yielded high

performance.

3.2 | Comparison between TPOT and RVR

To assess the efficacy of the TPOT approach applied to neuroimaging

data, we compared the performance of the TPOT's pipelines using the

full analysis configuration with RVR. When using the entire data set,

TPOT had a lower MAE and higher Pearson's correlation between

true and predicted age (Figure 4). However, when we applied TPOT

to a uniformly distributed data set, there was no significant difference

between the models yielded by TPOT and RVR (Table 3). As the per-

formance of the algorithms strongly depends on the number of sam-

ples used to train it, it is hard to disentangle if the observed decrease

in accuracy was due to the enforced uniform distribution of the data

or because of its reduced sample size. Nevertheless, the models

suggested by TPOT using both data sets with the different age distri-

bution were similar. Both Figure S1 and Figure 2, which depict the

count of the most common models in the uniform and unchanged dis-

tribution respectively, illustrate that the most commonly selected

models included random forest regressions, elastic nets and extra-

trees regressors. Together, these results suggest that the models

suggested by TPOT for brain age prediction were invariant to the data

sampling bias for the current data set.

To facilitate the comparison between the models, we also provide

the computational time for the different methods in Table 2. The anal-

ysis was performed using an Intel Xeon CPU E5-2640 v4 (2.40 GHz).

The TPOT training, that is the process in which TPOT is searching for

the optimised pipeline, is by far the most consuming step taking
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F IGURE 3 Overview of the ensembles for the different analysis configurations at each repetition and their performance. (a) Schematic
overview of the models composing the ‘best’ ensembles yielded by TPOT at each repetition. A darker colour represents models with higher
counts. Random forest regression, extra trees regressors, lasso lars and linear regression were the most frequently represented. Despite the
different models combinations among the different preprocessing analysis (b), initial population size (c) and mutation/cross-over rate (d), there
was no difference in the yielded performance
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approximately 6 hr to find the optimal pipeline. However, it should be

noted that these values represent the time needed to run 10 genera-

tions of the genetic algorithm with five cross-fold validation, and we

did not use any parallelisation strategies. Retraining the best TPOT,

pipeline in an independent data set then takes about 5 min and the

inference another 0.174 s. On the other hand, the RVR models takes

about 8 min to train and 0.001 s to perform the inference on an exter-

nal data set.

4 | DISCUSSION

The successful choice of an ML pipeline to predict variables of interest

(such as age) from neuroimaging data is driven by the statistical char-

acteristics and distribution of the data set under analysis. In most

cases, the choice of ML model applied in multivariate analysis of

neuroimaging data is rather arbitrary—based on prior models that

“have worked,” or by selecting whichever model is most novel in the

eyes of the analysis community. To explore an alternative approach to

model selection for a relatively simple problem, in this work, we inves-

tigated the application of an automated analysis technique: TPOT.

The TPOT approach is a data-driven methodology which is agnostic

to statistical model and prepossessing of the data set—aiming to find

the best pipeline available to fit the statistical properties of the under-

lying data set, whilst simultaneously controlling for overfit and reliabil-

ity. We showed that: (a) the performance of the models suggested by

TPOT is highly dependent on the specified model pool (i.e., algorithms

and hyperparameters) that TPOT has available to use. However, fea-

ture selection, feature generation, initial population size the mutation

rate and cross-values rate do not have a substantial effect on the

TPOT's performance. (b) There is not one single ML algorithm that

performs the best, but good performance is achieved by a combina-

tion of models. (c) The pipelines suggested by TPOT performed signifi-

cantly better than commonly used methods when performing a brain

age regression from brain MRI scans.

Different neuroimaging methodologies functional MRI

(Dosenbach et al., 2010), diffusion MRI (Richard et al., 2018) and

structural MRI (Cole et al., 2017; Corps & Rekik, 2019; Franke

et al., 2010) have been used to study the association between the

changes in brain structure and ageing. Commonly used algorithms to

predict brain age include a combination of linear and non-linear ML
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F IGURE 4 Comparison of model's
performance between TPOT and
RVR. We compared the MAE (top
panel left) and Pearson's correlation
(top panel right) between true and
predicted age of the optimised model
suggested by TPOT with and RVR on
the test set. The lower panels show
the predicted versus the true age for

one of the optimal pipelines
suggested by TPOT (left) and RVR
(right). Note that although both
models use the same subject to make
prediction, the scales of the TPOT
and RVR predictions are different, and
the RVR model predicts young subject
to be younger and old as older.
Asterisks show differences that are
statistically significant at p < .01 (t-
test corrected); error bars
indicate ±1SD

TABLE 2 Comparison between TPOT and RVR time-complexity

RVR TPOT

TPOT training - About 6 hr

(6.61 ± 0.39 hr)

Training About 8 min

(519.37 ± 2.62 s)

About 5 min

(276.02 ± 2.51 s)

Inference 0.001 ± 3.85e−05s 0.174 ± 0.06 s
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algorithms such as: multiple linear regression (Valizadeh et al., 2017),

Gaussian process regressors (Becker et al., 2018; Cole et al., 2015), K-

nearest neighbours (Valizadeh et al., 2017), RVR (Franke et al., 2010;

Valizadeh et al., 2017; Wang et al., 2014), random forests (Valizadeh

et al., 2017), connectome-based predictive modelling (Corps and

Rekik (2019) and neural networks (Cole et al., 2017; Valizadeh

et al., 2017). In this study, we used an autoML approach that searched

for the most accurate pipeline over a pool of the commonly used algo-

rithms and compared its performance to RVR. We observed that the

variance in the predicted accuracy is very low on the test data set for

the pipelines suggested by TPOT but also for the RVR model. This

suggests that the models are not fitting to noise but are finding inter-

esting patterns in the data. Nevertheless, it is interesting to note that

for every analysis's repetition, a different pipeline was yielded by

TPOT which had the lowest MAE (i.e., “best” pipeline; Figure 3a). This

is likely because there exists no single model that always performs

better for this type of regression problem.

Similarly, when analysing age prediction using voxel-wise data

Varikuti et al. (2018) showed that the pattern of “important” voxels is

different across different training sets. Given the strength of the asso-

ciation between brain structure and age, and high levels of correlation

between different brain regions, it seems that multiple different

approaches can achieve high levels of prediction accuracy. As it seems

that different weighting on the brain could reach a similar level of per-

formance, interpretation of model weights or coefficients should be

done with caution. Inference on which brain regions are most associ-

ated with ageing is better conducted using a longitudinal within-

subjects study design, rather than a multivariate predictive model such

as those used in TPOT. Our results also highlight that all models

yielded a similar MAE and were composed by a combination of linear

and non-linear models (random forest regression, extra tree regres-

sion, K-nearest neighbours and ridge or lasso regression; Figures 2

and 3). In accordance with our results, Valizadeh et al. (2017) also

reported similar brain-age prediction accuracy when comparing ran-

dom forest and multiple linear regression. One of the main advantages

of random forests is that it can deal with correlated predictors, whilst

in a linear regression, correlated predictors might bias the results.

Therefore, by combining both algorithms in an ensemble, TPOT com-

bines the strengths of both algorithms. Random forests have also

been used by Liem et al. (2017) to combine multi-modal brain imaging

data and generate brain-age prediction. In particular, Liem et al. (2017)

used a linear support vector regression to predict age and stacked

these models with random forests. This combined approach was able

to improve brain-age prediction. Our interpretation of these observa-

tions is that the use of random forests and the hyperparameters found

by TPOT “better fit” the non-trival non-linearities present in the data

set, transforming them within an n-dimensional manifold which can

then be fed trivially into a linear classifier. A similar observation has

been described by Aycheh et al. (2018), where a combination of

sparse group lasso and Gaussian process regression was used to pre-

dict brain age. On the other hand, whilst stable, and able to generalise,

this non-linear transformation and combinations of different models

into a pipeline makes interpretation of important features within the

data set impossible.

We also noted that when using a subsample of the data set that

has a uniform distribution, similar models were used by TPOT to build

ensembles, nevertheless the difference in performance between

TPOT and RVR was not significant (Table 3). We hypothesise that by

using a uniform distribution, we make the problem of age regression

easier and therefore obtained similar performance between the TPOT

and RVR approach, or that the reduced sample used to pre-train

TPOT was not sufficient to obtain an accurate fit. It would be interest-

ing for future research to explore these hypotheses further.

In the context of other literature, it is important to note that more

accurate brain-age prediction models do exist. As shown by Cole

et al. (2017), convolutional neural networks can predict brain age with

an MAE of 4.16 years using a similar age range (18–90 years, mean

age = 36.95). In addition, Peng, Gong, Beckmann, Vedaldi, and

Smith (2019) also developed a simple fully convolutional network that

could predict age in the UK Biobank data (44–80 years, mean age

52.7 years) with MAE of 2.14 years. As developing neural networks

require in-depth knowledge of architecture engineering, it would be

interesting to use autoML approaches to explore and select the most

appropriate network architecture. In the specific case of deep-neural

network approaches to the brain age problem, whilst improvements

can be made on the accuracy of the model, often this is at the cost of

reliability. As TPOT can accommodate a wider set of models, it would

be interesting to include neural networks on the model pool and com-

pare its performance against the range of selected models or to use

other autoML toolboxes like autokeras (Jin, Song, & Hu, 2019) or effi-

cient neural architecture search via parameter sharing (Pham, Guan,

Zoph, Le, & Dean, 2018). In a very interesting and innovative work,

Xie and Yuille (2017) explored the possibility of constructing deep

learning networks structures automatically using a genetic algorithm

approach to explore a vast search space. Although their algorithm did

not explore all possible network structures, their results showed good

TABLE 3 Comparison between TPOT and RVR. Although TPOT has a significant higher accuracy and Pearson's correlation when using the
original data distribution, when using the uniformly distributed data set both models had a similar performance (the values represent ±SD)

MAE p Value t Pearson's correlation p Value t

TPOT 4.612 ± .124 <.01 −6.441 .874 ± .012 <.01 3.745

RVR 5.474 ± 0.140 .813 ± .0102

TPOT (uniform distribution) 5.594 ± .0706 >.5 −0.616 .917 ± .027 >.5 0.007

RVR (uniform distribution) 5.975 ± .525 .919 ± .013

Note. The bold values correspond to analysis with a significant p-value (p < 0.05).
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performance on traditional ML data sets and highlight the promising

advances we will see in this field. Similar automated approaches will

allow an extensive search of models and parameters and might also

shed light into the question if deep learning is beneficial to neuroim-

aging analysis. Recently, Schulz et al. (2019) showed that linear, ker-

nels and deep learning models show very similar performance in

brain-imaging data sets. Combining the potential power of deep learn-

ing with a model-agnostic technique, such as employed by TPOT,

offers a potentially interesting route for further research.

One of the main limitations of our study is feature interpretability.

The pipelines built by TPOT are formed by concatenating different

algorithms, and therefore by using TPOT it becomes very difficult to

track the importance of the features of the algorithms. We conse-

quently did not explore the relevance of the different features in this

study. At the same time that the ensembled approach is one of the

main limitations of our current analysis, it is also one of its biggest

strengths. The combination of multiple models allows for the compen-

sation of different weaknesses and strengths of the models, and

therefore combining different models leads to an improvement on the

pipeline performances.

For our analysis, we choose to use the RVR as a benchmark for

the TPOT performance not only because this is the most commonly

used model to predict brain age (Franke et al., 2010; Franke &

Gaser, 2019), but also because the algorithm does not require any

parameter optimisation (Tipping et al., 2000). Some recent studies car-

ried out with large data sets showed that, independent of the model,

the achieved performance to predict brain age is similar. For example,

Han et al. (2019) showed that after a 10-fold cross-validation Gauss-

ian process regression, ridge regression, generalised additive models

and SVR all showed similar performances. Therefore, we did not

benchmark the performance of all 11 models used on the TPOT

model pool as it would be computational and resources costly and the

results would not add significance to the article.

We would also like to point out that the problem of finding the

best algorithm for a specific problem depends not only on the data set

under analysis but also on the algorithm of choice. Regarding the

impact of the data set (i.e., age range and distribution) on this article,

we discuss how different data sets lead to different results. First, we

used our approach and compared the entire data set to a uniform dis-

tribution. We observed that by changing the distribution of our data

set, we obtained a worse performance (Table 3). In addition, when

comparing the accuracy of different studies, it is important to take

into account the age range of the analysed sample, as age prediction

in a small range has less variability than in a large range. In fact, using

a sample with subjects aged 45 to 91, Aycheh et al. (2018) obtained a

MAE of 4.02 years. Although Valizadeh et al. (2017) had a similar age

range as that described in our project, they do not report the MAE for

the entire sample and use instead three age groups (8–18, 18–65 and

65–96 years) to test the accuracy of different models. In general,

Valizadeh et al. (2017) reported lower accuracy for the older group

with MAE ranging between 4.90 and 14.23 years, when using only

the thickness information. On the other hand, Liem et al. (2017) using

only the cortical thickness reported a MAE of 5.95 years (analysed

age range 18–89 years, mean = 58.68). The second point to take into

account when finding the best algorithm is the performance and tun-

ing of the algorithm which will be specific to the training data set. As

we know from the adaptive statistics literature (Turkheimer, Pet-

tigrew, Sokoloff, & Schmidt, 1999), it may well be that certain algo-

rithms will fit better certain data distribution; however in practice, one

generally does not know the statistical distribution of the data hence

adopting one model only is very likely to lead to a worse performance.

The power of the currently used method relies on the fact that the

researcher does not need to know the data set statistical distribution

in order to find the most appropriate model. All is done automatically

by TPOT.

In addition, with this article, we do not want to find the most

accurate model to predict brain age. We want to test how well a

completely automated pipeline can be in finding the most appropriate

model for the data set under analysis and how well it performs com-

pared to the most commonly used model. The main idea behind this is

to extend the usage of ML to many researchers that are not familiar

with the underlying statistical properties of different models and allow

them to find good algorithms that generalise well.

5 | CONCLUSION

Overall, our results show that the TPOT approach can be used as a

data-driven approach to find ML models that accurately predict brain

age. The models yielded by TPOT were able to generalise to unseen

data set and had a significantly better performance than RVR. This

suggests that the autoML approach is able to adapt efficiently to the

statistical distribution of the data. Although more accurate brain-age

prediction models have been reported (Cole et al., 2017), the

approach in the present study uses a wide age range (18–89 years

old), uses only cortical anatomical measures, but most of all, it does

not make any assumptions about the underlying statistics of the data

set and does not require any fine-tuning of the model of choice. By

extensively testing different models and its hyperparameters, TPOT

will suggest the optimal model for the training data set. This approach

removes possible introduced bias out of the loop and allows decisions

about the model to be made in an automated, data-driven and

reliable way.
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