
Econometrics Journal (2020), volume 23, pp. 1–31.
doi: 10.1093/ectj/utz020

Optimal data collection for randomized control trials

PEDRO CARNEIRO*,†,‡, SOKBAE LEE§,†,‡ AND DANIEL WILHELM*,†,‡

*University College London, Gower Street, London WC1E 6BT, UK.
E-mail: p.carneiro@ucl.ac.uk, d.wilhelm@ucl.ac.uk

†Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE, UK.
‡Centre for Microdata Methods and Practice, 7 Ridgmount Street, London WC1E 7AE, U.K.

§Columbia University, 420 West 118th Street, New York, NY 10027, USA.
E-mail: sl3841@columbia.edu

First version received: 10 January 2019; final version accepted: 4 May 2019.

Summary: In a randomized control trial, the precision of an average treatment effect estimator
and the power of the corresponding t-test can be improved either by collecting data on additional
individuals, or by collecting additional covariates that predict the outcome variable. To design
the experiment, a researcher needs to solve this trade-off subject to her budget constraint.
We show that this optimization problem is equivalent to optimally predicting outcomes by
the covariates, which in turn can be solved using existing machine learning techniques using
pre-experimental data such as other similar studies, a census, or a household survey. In two
empirical applications, we show that our procedure can lead to reductions of up to 58% in
the costs of data collection, or improvements of the same magnitude in the precision of the
treatment effect estimator.
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1. INTRODUCTION

This paper is motivated by the observation that empirical research in economics increasingly
involves the collection of original data through laboratory or field experiments (see, e.g., Duflo
et al., 2007; Banerjee and Duflo, 2009; Bandiera et al., 2011; List, 2011; List and Rasul, 2011;
Hamermesh, 2013, among others). This observation carries with it a call and an opportunity for
research to provide econometrically sound guidelines for data collection.

We analyse the decision problem faced by a researcher designing the survey for a randomized
control trial (RCT) in the presence of a budget constraint. We assume that the goal of the
researcher is to obtain precise estimates of the average treatment effect and/or a powerful t-test of
the hypothesis of no treatment effect, using the experimental data.1 Data collection is costly, and
the research budget limits how much data can be collected. We ask how the researcher optimally
trades off the number of individuals included in the RCT against the choice of covariates included
in the survey.

1 Tetenov (2016) provides a decision-theory-based rationale for using hypothesis tests in the RCT, and Banerjee et al.
(2017) develop a theory of experimenters, focusing on the motivation of randomization among other things. Kasy (2016)
uses the setup of a statistical decision problem to study experimental design.
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2 P. Carneiro et al.

For example, consider an RCT for studying the impact of an education intervention on students’
test scores. This is a typical case where controlling for covariates, namely pre-intervention test
scores, leads to improvements in the precision of experimental treatment effects. This is because
pre-intervention test scores are highly predictive of post-intervention test scores.

In this context, we can ask whether one achieves more precise estimates of the treatment effect
by spending the entire budget collecting the outcome (post-intervention test scores) on a large
sample of students ignoring any baseline covariates; or by spending the budget on a smaller
sample of students who are tested twice, pre- and post-intervention.

We show below how a rigorous analysis of this problem can potentially lead to first-order
improvements in the precision of treatment effect estimates, and to large reductions in the costs
of collecting data in these studies. In two realistic empirical applications, it is possible to achieve
reductions of 58% in data collection costs, and similar decreases in the variance of the treatment
effect estimates.

There are, of course, other factors potentially influencing the choice of covariates to be collected
in a survey for an RCT. For example, one may wish to learn about the mechanisms through which
the RCT is operating, check whether treatment or control groups are balanced, or measure
heterogeneity in the impacts of the intervention being tested. In practice, researchers place
implicit weights on each of the objectives they consider when designing surveys, and informally
work out the different trade-offs involved in their choices. We show that there is substantial
value to making this decision process more rigorous and transparent through the use of data-
driven tools that optimize a well-defined objective. Instead of attempting to formalize the whole
research design process, we focus on one particular trade-off that is of first-order importance and
particularly conducive to data-driven procedures.

We begin by assuming that the researcher has access to pre-experimental data from the popu-
lation from which the experimental data will be drawn, or at least from a population that shares
similar second moments of the variables to be collected. The data set includes the outcome and
all potentially relevant covariates that one would consider collecting for the analysis of the ex-
periment. This assumption may be reasonable in many different contexts. Table 1 lists some of
these examples.2 At the top of the table we have several RCTs in education, all taking place in
Kenya and examining the impact of particular interventions on test scores and other outcomes. At
the bottom we have several RCTs3 examining the impact of access to microcredit on investment,
expenditure, consumption, and other outcomes, conducted across multiple countries.4 In standard
power calculations, researchers informally rely on their knowledge of other existing studies when
choosing parameters of the data-generating process. We formalize this link by directly including
the data from such prior studies into our process of designing the experiment.

Our procedure might also be useful in the design of (experimental and quasi-experimental)
studies based on administrative records, such as the recent study of the Oregon Health Insurance
Experiment (Finkelstein et al., 2012). These are cases where administrative records are already
available, but need to be assembled, organized and interlinked, at a cost.5

2 See also the Abdul Latif Jamil Poverty Action Lab (JPAL) website (https://www.povertyactionlab.org), which lists
several RCTs by topic conducted with multiple datasets.

3 The entire January issue of American Economic Journal: Applied Economics consists of six randomized Evaluations
of Microcredit (Banerjee et al., 2015). See also Meager (2019) for evaluating the external validity of microcredit.

4 There are several other papers we could add to the table. We chose these either because they focused on a specific
area and concerned a similar topic, or because they were on exactly the same issue but took place in different settings.

5 In the case of Finkelstein et al. (2012), it is plausible that there are multiple important determinants of hospital
utilization in the affected population (potential covariates), other than winning the lottery offered in this experiment, such
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Data collection for RCTs 3

Table 1. Examples of RCTs by intervention and region.

Topic: education

Flip charts Kenya Duflo et al. (2011); Glewwe et al. (2009); Duflo et al.
(2015); Kremer et al. (2009); Miguel and Kremer
(2004)

Class size Kenya Duflo et al. (2015)
Girls’ scholarships Kenya Willa et al. (2016)
Teacher incentives Kenya Glewwe et al. (2010)
Tracking Kenya Duflo et al. (2011)
Deworming Kenya Miguel and Kremer (2004)
Textbooks Kenya Glewwe et al. (2009)
School meals Kenya Vermeersch and Kremer (2004)

Topic: micro-finance
Access to microcredit India Banerjee et al. (2015)

Ethiopia Tarozzi et al. (2015)
Mongolia Attanasio et al. (2015)
Morocco Crépon et al. (2015)
Mexico Angelucci et al. (2015)
Bosnia and Herzegovina Augsburg et al. (2015)

The researcher faces a fixed budget for implementing the survey for the RCT. Given this
budget, she chooses the survey’s sample size and set of covariates to optimize the resulting
treatment effect estimator’s precision and/or the corresponding t-test’s power.6 The trade-offs
involved in this choice involve basic economic reasoning. For each possible covariate, one should
be comparing the marginal benefit and marginal cost of including it in the survey, which, in
turn, depends on all the other covariates included in the survey. As we discuss below, in simple
settings it is possible to derive analytic and intuitive solutions to this problem. Although these are
insightful, they only apply in unrealistic formulations of the problem.

In general, it is necessary to consider all possible combinations of covariates and sample sizes
and then to check which combination optimizes the treatment effect estimator’s precision and/or
the corresponding t-test’s power. This is a computationally difficult combinatorial optimization
problem, particularly so when there are a large number of potential covariates to choose from.
Our approach is first to show that the optimization problem can be rewritten as the problem of
optimally predicting the outcome by the covariates subject to the budget constraint. We assume
that the treatment is randomly assigned. Two aspects of the equivalent prediction problem are
crucial: first, it does not depend on the treatment allocation, so pre-experimental data on outcomes
and covariates suffice to find the optimal combination of covariates and sample size;7 second,

as education, income, past hospital utilization, or distance to hospitals. It is possible that this additional information exists
in other administrative records, which, at a cost, can be assembled and linked to the original records used in Finkelstein
et al. (2012). In order to understand which of these records would be most useful to collect for the purposes of this study,
one can rely on a large public health literature on the determinants of hospital utilization.

6 This choice takes place before the implementation of the RCT and could, for example, be part of a pre-analysis plan
in which, among other things, the researcher specifies outcomes of interest, covariates to be selected, and econometric
techniques to be used.

7 For this purpose, we rely on the homoskedasticity assumption that requires the residual variance to be the same
across the treatment and control group. This assumption allows us to optimally choose covariates and the sample size.
The homoskedasticity assumption is not needed to carry out valid inference with collected experimental data.
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4 P. Carneiro et al.

prediction problems can easily be solved by existing machine learning techniques, making the
implementation of our approach practically attractive.

To illustrate the application of our method we examine two recent experiments for which
we have detailed knowledge of the process and costs of data collection. We ask two questions.
First, if there is a single hypothesis one wants to test in the experiment, concerning the impact
of the experimental treatment on one outcome of interest, what is the optimal combination of
covariate selection and sample size given by our method, and how much of an improvement in the
precision of the impact estimate can we obtain as a result? Second, what would be minimum costs
of obtaining the same precision of the treatment effect as in the actual experiment, if one were to
select covariates and sample size optimally (what we call the ’equivalent budget’)? Analogously,
by considering alternative hypothetical cost functions or regression coefficients, we examine how
inexpensive or how predictive of the outcome a particular covariate would need to be for it to be
worth collecting.

We find from these two applications that by adopting optimal data collection rules, not only
can we achieve substantial increases in the precision of the estimates (statistical importance) for a
given budget, but we can also accomplish sizeable reductions in the equivalent budget (economic
importance). To illustrate the quantitative importance of the latter, we show that the optimal
selection of the set of covariates and the sample size leads to a reduction of about 45% (up to
58%) of the original budget in the first (second) example we consider, while maintaining the same
level of statistical significance as in the original experiment.

Although this paper focuses on the important case of RCTs with complete randomization, our
procedure can be extended to many other data collection efforts and other modes of randomization.
One important extension we discuss in Section 6 is that to treatment assignment through re-
randomization or stratification.

There is a large and important body of literature on the design of experiments, starting with
Fisher (1925, 1935). There also exists an extensive body of literature on sample size (power)
calculations; see, for example, McConnell and Vera-Hernandez (2015) for a practical guide. Both
bodies of literature are concerned with the precision of treatment effect estimates, but neither
addresses the problem that concerns us. For instance, McConnell and Vera-Hernandez (2015)
have developed methods to choose the sample size when cost constraints are binding, but they do
not consider the issue of collecting covariates, nor its trade-off with selecting the sample size.

In fact, to the best of our knowledge, no paper in the literature directly considers our data
collection problem. Some papers address related but very different problems (see Hahn et al.,
2011; List et al., 2011; Bhattacharya and Dupas, 2012; McKenzie, 2012; Dominitz and Manski,
2017). They study some issues of data measurement, budget allocation or efficient estimation;
however, they do not consider the simultaneous selection of the sample size and covariates for the
RCTs as in this paper. Because our problem is distinct from the problems studied in these papers,
we give a detailed comparison between our paper and the aforementioned papers in Section 7.

More broadly, this paper is related to a recent emerging literature in economics that emphasizes
the importance of micro-level predictions and the usefulness of machine learning for that purpose.
For example, Kleinberg et al. (2015) argue that prediction problems are abundant in economic
policy analysis, and recent advances in machine learning can be used to tackle those problems.
Furthermore, our paper is related to the contemporaneous debates on pre-analysis plans which
demand, for example, the selection of sample sizes and covariates before the implementation of
an RCT; see, for example, Coffman and Niederle (2015) and Olken (2015) for the advantages
and limitations of the pre-analysis plans.
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Data collection for RCTs 5

Table 2. Impact of incentives to learn on test scores with and without controls for lagged test scores (from
Kremer et al., 2009).

Avg. school controls Individual controls

Without With Without With
Treatment effect 0.18 0.15*** 0.19 0.12

(0.12) (0.06) (0.14) (0.09)
* Significant at 10%, ** Significant at 5%, *** Significant at 1%

Note: Robust standard errors are in parentheses.

Table 3. Costs and benefits for different alternatives.

Alternative 1 Alternative 2

Number of surveys 1 2
Number of covariates 0 1
Budget B B
Cost per observation λ 2λ

Sample size n1 = B

λ
n2 = B

2λ

AV ar(β̂)
σ 2
V

n1V ar(D)
σ 2
U

n2V ar(D)

Table 4. Gains in precision and cost from optimal covariate choice.

Ryx

√
AV ar(β̂1)
AV ar(β̂2)

Percentage
gain B1

B2

Percentage
gain

0.45 0.95 5 0.91 9
0.25 0.82 18 0.67 33
0.10 0.75 25 0.56 44
0.05 0.73 27 0.53 47

The remainder of the paper is organized as follows. In Section 2 we present the simplest
version of our data collection problem, which illustrates the main issues discussed in this paper.
A more general description of the problem is presented in Section 3. In Section 4, we discuss the
costs of data collection in experiments. In Section 5, we present two empirical applications; in
Section 6, we discuss some of the conceptual and practical properties of our proposed method; in
Section 7, we discuss the existing related literature; and in Section 8, we give concluding remarks.
In Appendix A, we describe an orthogonal greedy algorithm (OGA) that is used in our procedure;
and in Appendix B, we show that this algorithm possesses desirable theoretical properties. The
proofs for theoretical results are given in Appendix C. Online appendices provide details that are
omitted from the main text.

2. A STYLIZED SPECIAL CASE

Consider the case in which a researcher is designing the survey for an RCT, with a limited budget,
B. Her goal is to obtain a precise estimate of the average treatment effect. Take the simplest
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6 P. Carneiro et al.

version of the problem, in which the researcher faces a choice between only two scenarios: (i)
collect a single variable, the outcome used to measure the treatment effect, on a sample of size
n1; or (ii) collect two variables, the outcome and a single covariate, on a sample of size n2, with
n1 > n2. A typically useful covariate is the pre-intervention outcome, because it is often highly
predictive of the post-intervention value of the outcome, but we could consider any other type of
predictor.

To illustrate, take Table 4 in Kremer et al. (2009), part of which we reproduce in Table 2.
This table compares estimates of the effect of a merit scholarship on test scores, in models
with and without controls. The first two columns compare estimates with and without school-
average lagged test score, while the third and fourth columns compare estimates with and without
individual lagged test scores. Introducing the covariate has a large impact on the standard errors,
which decline from 0.12 to 0.06 when we use school-level controls, and from 0.14 to 0.09 when
we use individual-level controls (the difference between the first and the third column is due to
small differences in sample size).8

Suppose the researcher is interested in collecting data for an evaluation of a new education
intervention in a similar population. She is deciding between collecting only the post-intervention
test score on a large sample (Case (i)), or collecting both pre- and post-intervention scores on a
smaller sample (Case (ii)). These two cases result in two specifications for estimating the average
treatment effect β:

Y = α1 + βD + V, (2.1)

Y = α2 + βD + γ2X + U, (2.2)

where Y and X are post- and pre-intervention test scores, respectively, and D is the treatment
indicator, which is randomly assigned to individuals. V and U are mean zero homoskedastic
residuals, with variances equal to σ 2

V and σ 2
U , respectively. Assuming U is uncorrelated with X,

we have σ 2
V = σ 2

U + γ 2
2 σ 2

X, where σ 2
X is the variance of pre-intervention test scores.

Let λ be the cost per wave per student of the survey (so the cost of collecting two waves is 2λ

per student). β̂1 and β̂2 denote the ordinary least squares (OLS) estimators of β in (2.1) and (2.2),
and AV ar(β̂) is the asymptotic variance of β̂ divided by the sample size. Table 3 shows the main
quantities influencing the researcher’s decision.

Suppose the researcher measures the precision of the treatment effect estimators by their
asymptotic variances9 relative to the sample size and, thus, decides to collect the baseline covariate
with a small sample size if it leads to a more precise estimator: AV ar(β̂1) > AV ar(β̂2), or

equivalently, n2
n1

> 1 − Ryx , where Ryx = γ 2
2 σ 2

X

σ 2
V

is the (population) R-squared of a regression of Y

on X (using data from only the treatment or only the control group). In this simple case n2
n1

= 1
2 ,

so one decides to collect the covariate and to choose a smaller sample size only if Ryx > 0.5.
Going back to the example of Table 2, suppose we start with columns 3 and 4. The standard

errors of the estimated treatment effect decline from 0.14 to 0.09 (roughly a 35% decline) when
one controls for the lagged test score of each individual. This means that σ 2

U = (
0.09
0.14

)2
σ 2

V , so Ryx

8 There are also changes in the point estimates but we abstract from those now. We also abstract from the fact that
standard errors account for correlation between students in the same school, although it is possible that the inclusion of
lagged test scores also helps absorb part of this correlation.

9 In Section 3, we consider the finite-sample mean-squared error as a criterion, but since the estimator we consider in
that section is unbiased, its variance is equal to the mean-squared error. In Online Appendix S1, we justify this criterion
in a decision-theoretic framework.
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Data collection for RCTs 7

≈ 0.59, so the decision is to collect the pre-intervention covariate and to choose a smaller sample
size. For columns 1 and 2, the implied Ryx is even larger.

The decision would be different if Ryx were below 50%, or if the cost of collecting the
pre-intervention outcome (λpre) were at least 44% higher than the cost of collecting the post-
intervention outcome (λpost).10 This latter case is not realistic in the example we consider, since
there is no reason why collecting a variable before the intervention would cost so much more than
collecting the same variable after the intervention. However, it is more plausible in cases where
X and Y are not the same variable (whether or not they are collected in the same survey wave).

Within this framework, one can easily evaluate the statistical and economic gains from choosing
the optimal combination of covariates and sample size. Imagine, for example, that Ryx ≈ 0.45
instead of Ryx ≈ 0.59 as above, and assume λpre = λpost = λ. In this case, choosing to collect both
the pre- and the post-intervention outcome with a small sample size (n2) is not optimal. We can
evaluate the gains of moving from this suboptimal choice to the optimal one (collecting only the
post-intervention outcome and choosing the larger sample size n1) by answering the following
two questions:

1. Statistical gains: Keeping the budget fixed, how much would AV ar(β̂) fall if we
collected only the post-intervention outcome, with a larger sample size (n1)?

2. Economic gains: Keeping AV ar(β̂) fixed, how much would the budget fall (from B2

= 2λn2 to B1 = λn1) if we collected only the post-intervention outcome, with a larger
sample size?

In response to the first question, notice that σ 2
U = (1 − 0.45)σ 2

V . In addition, the budget being

fixed implies that n2 = n1
2 . Then

√
AV ar(β̂1)
AV ar(β̂2)

=
√

n2σ
2
V

n1σ
2
U

≈ 0.95: the standard error of the estimated

treatment effect would fall by 5 percentage points.

In response to the second question, notice that AV ar(β̂1) = AV ar(β̂2) implies that n1
n2

= σ 2
V

σ 2
U

=
1

1−0.45 . Then, B1
B2

= n1
2n2

= 0.91: the cost of the survey would fall by 9 percentage points. Table 4
shows the gains in precision and costs for other typical Ryx values.11 As Rxy decreases, both
the statistical and the economic gains from choosing the optimal covariates and sample size
increase. For example, if Ryx = 0.10, then the statistical gains in precision of the treatment effect
estimator are 25% and the costs of data collection decrease by 44%. In our empirical applications
in Section 5, we will find possible gains that are even larger.

Although this is a useful example, reality is more complex. In general, there are many potential
covariates that can be collected (which typically are not uncorrelated), and the cost of data
collection may be a complicated function of sample size and the set of chosen covariates (e.g.,
containing fixed costs, heterogeneous prices across covariates, components that depend on the

10 In order to see this notice that, in this case, n1 = B
λpost

and n2 = B
λpre+λpost

, i.e., n2
n1

= λpost

λpre+λpost
. The researcher

chooses to collect post-intervention test scores if n2 is larger than
( 0.09

0.14

)2
n1 ≈ 0.41n1, i.e., λpost

λpre+λpost
> 0.41, or λpre <

0.59
0.41 λpost ≈ 1.44λpost .

11 If we measured the gains in precision in terms of variances instead of standard deviations we would look at AV ar(β̂1)
AV ar(β̂2)

instead of

√
AV ar(β̂1)
AV ar(β̂2)

. In that case these ratios would be the following in each of the four cases we consider for Rxy: 0.91,

0.67, 0.56, and 0.53. Notice that these are exactly the same as the budget gains we obtain in each case, keeping precision
constant. Although this exact correspondence is not true in the more general framing of the problem discussed in the next
section, it is interesting that it is not far from the truth in the two empirical applications presented below.
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8 P. Carneiro et al.

size of the survey, etc.). Typically it is not possible to derive analytical decision rules as in
the stylized example presented here. The next sections present the general formulation and our
proposed solution.

3. GENERAL DATA COLLECTION PROBLEM

Suppose we are planning an RCT in which we randomly assign individuals to either a treatment
(D = 1) or a control group (D = 0) with corresponding potential outcomes Y1 and Y0, respectively.
After administering the treatment to the treatment group, we collect data on outcomes Y for both
groups so that Y = DY1 + (1 − D)Y0. We also conduct a survey to collect data on a potentially very
high-dimensional vector of covariates Z (e.g., from a household survey covering demographics,
social background, income etc.) that predicts potential outcomes. These covariates are a subset of
the universe of predictors of potential outcomes, denoted by X. Random assignment of D means
that D is independent of potential outcomes and of X.

Our goal is to estimate the average treatment effect β0 := E[Y1 − Y0] as precisely as possible. In
the previous section, for the sake of simplicity, we measured precision by the asymptotic variance
of the OLS estimator. In this section, we consider the arguably more relevant measure of the
finite-sample mean-squared error (MSE) of the treatment effect estimator. Since our estimator is
unbiased, the finite-sample MSE corresponds to the estimator’s finite-sample variance.

Instead of simply regressing Y on D, we want to make use of the available covariates Z
to improve the precision of the resulting treatment effect estimator. Therefore, we consider
estimating β0 in the regression

Y = α0 + β0D + γ ′
0Z + U, (3.1)

where (α0, β0, γ
′
0)′ is a vector of parameters to be estimated and U is an error term. The imple-

mentation of the RCT requires us to make two decisions that may have a significant impact on
the estimation of and inference on the average treatment effect:

1. Which covariates Z should we select from the universe of potential predictors X?
2. From how many individuals (n) should we collect data on (Y, D, Z)?

Obviously, a large experimental sample size n reduces the variance of the treatment effect esti-
mator. Similarly, collecting more covariates, in particular strong predictors of potential outcomes,
reduces the variance of the residual U, which, in turn, also improves the variance of the estimator.
At the same time, collecting data from more individuals and on more covariates is costly so that,
given a finite budget, we want to find a combination of sample size n and covariate selection Z
that leads to the most precise treatment effect estimator possible.

In this section, we propose a procedure to make this choice based on a pre-experimental data
set on Y and X, such as a pilot study or a census from which we plan to draw the RCT sample.
The combined data collection and estimation procedure can be summarized as follows.

1. Obtain pre-experimental data Spre on (Y, X).
2. Use data in Spre to select the covariates Z and sample size n.
3. Collect the experimental data Sexp on (Y, D, Z).
4. Estimate the average treatment effect using Sexp. Compute standard errors.
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Data collection for RCTs 9

We now describe the five steps listed above in more detail. The main component of our
procedure consists of a proposal for the optimal choice of n and Z in Step 2.

3.1. Step 1: Obtain pre-experimental data

We assume the availability of data on outcomes Y ∈ R and covariates X ∈ RM for the population
from which we plan to draw the experimental data. We denote the pre-experimental sample of
size N by Spre := {Yi,Xi}Ni=1. Our framework allows the number of potential covariates, M, to
be very large (possibly much larger than the sample size N). In many contexts, such data could
come from similar, existing studies. The Introduction provided several examples and showed
that the availability of such datasets is much more common than might appear to be the case at
first glance. Other possible candidates for pre-experimental samples are census data, household
surveys, or a pilot experiment that was carried out before the larger-scale roll-out of the main
experiment.

3.2. Step 2: Optimal selection of covariates and sample size

We want to use the pre-experimental data to choose the sample size, and which covariates should
be in our survey. Let S ∈ {0, 1}M be a vector of ones and zeros of the same dimension as X.
We say that the jth covariate (X(j)) is selected if Sj = 1, and denote by XS the subvector of X
containing elements that are selected by S. For example, consider X = (X(1), X(2), X(3)) and S =
(1, 0, 1). Then XS = (X(1), X(3)). For any vector of coefficients γ ∈ RM , let I(γ ) ∈ {0, 1}M denote
the nonzero elements of γ such that 1 and 0, respectively, denote nonzero and zero elements. In
addition, let γI(γ ) denote the sub-vector of γ such that only nonzero elements of γ are included.
For instance, if γ = (1, 0.5, 0), then I(γ ) = (1, 1, 0), XI(γ ) = (X(1), X(2)) and γI(γ ) = (1, 0.5).
Define Y (γ ) := Y − γ ′

I(γ )XI(γ ). We can then rewrite (3.1) as

Y (γ ) = α0 + β0D + U (γ ), (3.2)

where γ ∈ RM and U (γ ) := Y − α0 − β0D − γ ′
I(γ )XI(γ ). For a given γ and sample size n, we

denote by β̂(γ, n) the OLS estimator of β0 in a regression of Y(γ ) on a constant and D, using a
random sample {Yi,Di,Xi}ni=1. We also consider the two-sided12 t-test of

H0 : β0 = 0 vs. H1 : β0 �= 0

using the t-statistic

t̂(γ, n) := β̂(γ, n)

σ (γ )/
√

nD̄n(1 − D̄n)
,

where σ 2(γ ) := Var(U(γ )) is the residual variance and D̄n := ∑n
i=1 Di/n is the number of

individuals in the treatment group divided by the sample size n.
Data collection is costly and therefore constrained by a budget of the form c(S, n) ≤ B, where

c(S, n) are the costs of collecting the variables given by selection S from n individuals, and B is
the researcher’s budget.

We assume that the researcher is interested in collecting data so as to ensure good statistical
properties of the resulting treatment effect estimator and the corresponding t-test. We consider

12 The same arguments in this paper straightforwardly carry over to a one-sided t-test.
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10 P. Carneiro et al.

two criteria: the MSE of β̂(γ, n) and the power of the t-test that employs t̂(γ, n). This objective
can be rationalized in a decision-theoretic framework as shown in Online Appendix S1.

We now briefly argue that minimizing the MSE of β̂(γ, n) and maximizing the power of the t-
test lead to equivalent optimization problems for selecting the optimal collection of covariates and
sample size. The key idea is to find the optimal combination (γ , n) by rewriting the minimization of
MSE and the maximization of power equivalently as a prediction problem of predicting outcomes
Y by covariates X. These kinds of prediction problems can easily be solved with modern machine
learning techniques. Crucially, the prediction problem does not involve D, so pre-experimental
data on Y and X suffice to make the optimal choice of (γ , n) for the experiment.

First, consider choosing the experimental sample size n and the covariate selection S so as to
minimize the finite-sample MSE of β̂(γ, n), i.e., we want to choose n and γ to minimize

MSE
(
β̂(γ, n)

∣∣D1, . . . , Dn

)
:= E

[(
β̂(γ, n) − β0

)2
∣∣∣D1, . . . , Dn

]
subject to the budget constraint.

ASSUMPTION 3.1 (i) {(Yi,Xi,Di)}ni=1 is an i.i.d. sample from the distribution of (Y, X, D) such
that D is completely randomized. (ii) Var(U(γ )|D = 1) = Var(U(γ )|D = 0) for all γ ∈ RM .

Part (i) of this assumption states that D is randomly assigned. Part (ii) is a homoskedasticity
assumption that requires the residual variance to be the same across the treatment and control
group. This assumption is satisfied, for example, when the treatment effect is constant across
individuals in the experiment. Similarly to in any type of power calculation for experiments,
the random assignment of D together with a homoskedastic variance allows us to express the
MSE of the estimator and power of the t-test in ways that do not depend on the actual treatment
assignment. This is the key to being able to choose covariates and the sample size before seeing the
experimental data. In Section 6, we explain possible extensions to other forms of randomization
and deviations from the homoskedastic variance.

Denote by cα and �( · ) the α-quantile and cumulative distribution function of the standard
normal distribution, respectively. The following lemma characterizes the finite-sample MSE of
the estimator and the power of the t-test under the above assumption.

LEMMA 3.1 Suppose Assumption 3.1 holds. Then, for any γ ∈ RM ,

MSE
(
β̂(γ, n)

∣∣D1, . . . , Dn

) = σ 2(γ )

nD̄n(1 − D̄n)
. (3.3)

If, in addition, (Y, X) are jointly normal, then, for any α ∈ (0, 1), β �= 0, and γ ∈ RM ,

Pβ

(∣∣t̂(γ, n)
∣∣ > c1−α/2

∣∣D1, . . . , Dn

)
= 1 + �

(
β

σ (γ )/
√

nD̄n(1 − D̄n)
− c1−α/2

)
− �

(
β

σ (γ )/
√

nD̄n(1 − D̄n)
+ c1−α/2

)
,

where Pβ denotes probabilities under the assumption that β is the true coefficient in front of D.

Furthermore, Pβ(|t̂(γ, n)| > c1−α/2|D1, . . . , Dn) is decreasing in the term σ (γ )/
√

nD̄n(1 − D̄n),
which is the square-root of the MSE.

The proof of this Lemma can be found in Appendix C. Note that for each (γ , n), the MSE is
minimized by the equal splitting between the treatment and control groups. Hence, suppose that
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Data collection for RCTs 11

the treatment and control groups are of exactly the same size (i.e., D̄n = 0.5). By Lemma 3.1,
minimizing the MSE of the treatment effect estimator subject to the budget constraint,

min
n∈N+, γ∈RM

MSE
(
β̂(γ, n)

∣∣D1, . . . , Dn

)
s.t. c(I(γ ), n) ≤ B, (3.4)

is equivalent to minimizing the residual variance σ 2(γ ), divided by the sample size,

min
n∈N+, γ∈RM

σ 2(γ )

n
s.t. c(I(γ ), n) ≤ B. (3.5)

Here, for a given γ , c(I(γ ), n) are the costs of collecting the variables whose regression coef-
ficients (γ ) are nonzero from n individuals, and B is the researcher’s budget. Note that by the
homoskedastic error assumption,

σ 2(γ ) = V ar(U (γ )) = Var
(
Y − α0 − β0D − γ ′

I(γ )XI(γ )

∣∣D = 0
)

= Var
(
Y − γ ′

I(γ )XI(γ )

∣∣D = 0
) = Var

(
Y − γ ′X

∣∣D = 0
)
,

which equals the residual variance in a regression of Y on X.
Now, consider choosing the experimental sample size n and the covariate selection S so as

to maximize power of the two-sided t-test based on t̂(γ, n). Lemma 3.1 shows that, under the
normality assumption and for any alternative β �= 0 and size α, the power of the two-sided
t-test is a decreasing transformation of σ 2(γ )

nD̄n(1−D̄n) . Therefore, assigning as many individuals to
the treatment as to the control group, besides minimizing the MSE above also maximizes power.
Therefore, assuming again D̄n = 0.5, maximizing power subject to the budget constraint,

max
n∈N+, γ∈RM

Pβ

(∣∣t̂(γ, n)
∣∣ > c1−α/2

∣∣D1, . . . , Dn

)
s.t. c(I(γ ), n) ≤ B,

is also equivalent to minimizing the residual variance in a regression of Y on X, divided by the
sample size, as in (3.7). Notice that even when (Y, X) are not jointly normal, the power expression
in Lemma 3.1 may be approximately correct because the Berry–Esseen bound guarantees that
the t-statistic’s distribution is close to normal as long as n is not too small.

Having motivated the optimization problem in (3.7) in terms of minimization of the MSE of
the treatment effect estimator as well as in terms of maximization of power of the corresponding
t-test, we now discuss how to approximate the solution to (3.7) in a given finite sample.

Importantly, notice that the optimization problem (3.7) depends on the data only through the
residual variance σ 2(γ ), which, under Assumption 3.1, can be estimated before the randomization
takes place, i.e., using the pre-experimental sample Spre. Therefore, employing the standard
sample variance estimator of σ 2(γ ), the sample counterpart of our population optimization
problem (3.7) is

min
n∈N+, γ∈RM

1

nN

N∑
i=1

(Yi − γ ′Xi)
2 s.t. c(I(γ ), n) ≤ B. (3.6)

The problem (3.8), which is based on the pre-experimental sample, approximates the population
problem (3.7) for the experiment if the second moments in the pre-experimental sample are close
to the second moments in the experiment (which holds, for example, if the population in the
pre-experimental sample is the same as the population in the experiment).

The important feature of (3.8) is that it is a prediction problem of Y by X, subject to the
budget constraint. Since the budget constraint depends on the nonzero elements of γ and the cost
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12 P. Carneiro et al.

function can be highly nonlinear, it is computationally challenging to obtain an exact solution
to (3.8). Instead, we obtain an approximate solution using modern machine learning techniques
(e.g., LASSO—least absolute shrinkage and selection operator, or OGA—orthogonal greedy
algorithm) that are readily available. The LASSO is well known in the economics literature,
whereas the OGA is much less known. In Appendix A, we therefore describe in more detail an
OGA that is adapted to the data collection problem. In Appendix B, we show that it possesses
desirable theoretical properties in the following sense. We derive the finite-sample bound on the
MSE of the average treatment effect estimator resulting from the OGA method. The natural target
for this MSE is an infeasible MSE when γ 0 is known a priori. Theorem C.2 establishes conditions
under which the difference between the MSE resulting from our method and the infeasible MSE
decreases at a rate of 1/k as k increases, where k is the number of the steps in the OGA. It is known
in a simpler setting than ours that this rate 1/k cannot generally be improved (see, e.g., Barron
et al., 2008). In Online Appendix S4, we provide simulations to show that the OGA works well
in finite samples.

The two machine learning methods, LASSO and OGA, are complementary to each other; no
one method dominates the other in simulations, and both are well motivated computationally
and theoretically in the machine learning literature. One practical advantage of using the OGA
relative to the LASSO is that the former can select among overlapping groups of covariates, unlike
the latter. Denote by (n̂, γ̂ ) the machine learning algorithm’s solution to (3.8) and let Î := I(γ̂ )
denote the selected covariates.13

3.3. Step 3: Experiment and data collection

Given the optimal selection of covariates Î and sample size n̂, we collect the covariates Z := XÎ
from individuals in the experimental sample, randomly assign n̂ individuals to either the treatment
or the control group (with equal probability), and then collect the outcome Y from them. This
yields the experimental data Sexp := {Yi,Di, Zi}n̂i=1 from (Y,D,XÎ ).

3.4. Step 4: Estimation of the average treatment effect

We regress Yi − γ̂ Zi on (1, Di) using the experimental sample Sexp, where γ̂ is obtained in Step
2 with the pre-experimental data Spre. The OLS estimator of the coefficient on Di is the average
treatment effect estimator β̂. It is important to note that this estimator is different from that of
running an OLS regression of Y onto a constant, D, and Z.

3.5. Step 5: Computation of standard errors

Assuming the two samplesSpre andSexp are independent, and that treatment is randomly assigned,
the presence of the covariate selection in Step 2 does not affect the asymptotic validity of the
standard errors that one would use in the absence of Step 2. Therefore, asymptotically valid
standard errors of β̂ can be computed in the usual fashion (see, e.g., Imbens and Rubin, 2015).

13 In the paper, we are mainly concerned with the situation where the sample size N in the pre-experimental sample is
large and the budget B is small, so that the possibility of overfitting is of secondary concern. One may consider a penalized
version of (3.8) if N is relatively small compared with B. See Appendix B for a detailed discussion on this issue.
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Data collection for RCTs 13

4. THE COSTS OF DATA COLLECTION

Our proposed data collection procedure could employ any researcher-chosen cost function c(S,
n) that defines the budget constraint of the researcher. However, in this section, we propose a
particular specification that we believe captures the typical costs incurred in RCTs in economics
and is the one we use in the empirical part of Section 5.

In principle, it is possible to construct a matrix containing the value of the costs of data
collection for every possible combination of S and n without assuming any particular form of
relationship between the individual entries. However, determination of the costs for every possible
combination of S and n is a cumbersome and, in practice, probably infeasible exercise. Therefore,
we consider the specification of cost functions that capture the costs of all stages of the data
collection process in a more parsimonious fashion.

We propose to decompose the overall costs of data collection into three components: adminis-
tration costs cadmin(S), training costs ctrain(S, n), and interview costs cinterv(S, n), so that

c(S, n) = cadmin(S) + ctrain(S, n) + cinterv(S, n). (4.1)

In the remainder of this section, we discuss possible specifications of the three types of costs
by considering fixed and variable cost components corresponding to the different stages of the
data collection process. The exact functional form assumptions are based on the researcher’s
knowledge about the operational details of the survey process. Even though this section’s general
discussion is driven by our experience in the empirical applications of Section 5, the operational
details are likely to be similar for many surveys, so we expect the following discussion to provide
a useful starting point for other data collection projects.

We start by specifying survey time costs. Let τ j, j = 1, . . . , M, be the costs of collecting
variable j for one individual, measured in units of survey time. Similarly, let τ 0 denote the costs
of collecting the outcome variable, measured in units of survey time. Then, the total time costs
of surveying one individual to elicit the variables indicated by S are

T (S) := τ0 +
M∑

j=1

τjSj .

4.1. Administration and training costs

A data collection process typically incurs costs due to administrative work and training prior to
the start of the actual survey. Examples of such tasks are developing the questionnaire and the
program for data entry, piloting the questionnaire, developing the manual for administration of
the survey, and organizing the training required for the enumerators.

Fixed costs, which depend neither on the size of the survey nor on the sample size of survey
participants, can simply be subtracted from the budget. We assume that B is already net of such
fixed costs.

Most administrative and training costs tend to vary with the size of the questionnaire and the
number of survey participants. Administrative tasks such as development of the questionnaire,
data entry, and training protocols are independent of the number of survey participants, but depend
on the size of the questionnaire (measured by the number of positive entries in S), as smaller
questionnaires are less expensive to prepare than larger ones. We model those costs by

cadmin(S) := φT (S)α, (4.2)
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14 P. Carneiro et al.

where φ and α are scalars to be chosen by the researcher. We assume 0 < α < 1, which means
that marginal costs are positive but decline with survey size.

Training of the enumerators depends on the survey size, because a longer survey requires more
training, and on the number of survey participants, because surveying more individuals usually
requires more enumerators (which, in turn, may raise the costs of training), especially when there
are limits on the duration of the fieldwork. We therefore specify training costs as

ctrain(S, n) := κ(n) T (S), (4.3)

where κ(n) is some function of the number of survey participants.14Training costs are typically
lumpy because, for example, there exists only a limited set of room sizes one can rent for the
training, so we model κ(n) as a step function:

κ (n) =

⎧⎪⎨⎪⎩
κ1 if 0 < n ≤ n1

κ2 if n1 < n ≤ n2
...

.

Here, κ1, κ2, . . . is a sequence of scalars describing the costs of sample sizes in the ranges defined
by the cut-off sequence n1, n2, . . ..

4.2. Interview costs

Enumerators are often paid by the number of interviews conducted, and the payment increases
with the size of the questionnaire. Let η denote fixed costs per interview that are independent
of the size of the questionnaire and of the number of participants. These are often due to travel
costs and can account for a substantive fraction of the total interview costs. Suppose the variable
component of the interview costs is linear so that total interview costs can be written as

cinterv(S, n) := nη + np T (S), (4.4)

where T(S) should now be interpreted as the average time spent per interview, and p is the average
price of one unit of survey time. We employ the specification (4.9) with (4.10)–(4.12) when
studying the impact of free day-care on child development in Section 5.1.

REMARK 4.1 Because we always collect the outcome variable, we incur the fixed costs nη and
the variable costs npτ 0 even when no covariates are collected.

REMARK 4.2 Non-financial costs are difficult to model, but could in principle be added. They
are primarily related to the impact of sample and survey size on data quality. For example, if we
design a survey that takes more than four hours to complete, the quality of the resulting data is
likely to be affected by interviewer and interviewee fatigue. Similarly, conducting the training of
enumerators becomes more difficult as the survey size grows. Hiring high-quality enumerators
may be particularly important in that case, which could result in even higher costs (although this
latter observation could be explicitly considered in our framework).

14 It is of course possible that κ depends not only on n but also on T(S). We model it this way for simplicity, and
because it is a sensible choice in the applications we discuss below.
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Data collection for RCTs 15

4.3. Clusters

In many experiments, randomization is carried out at a cluster level (e.g., school level), rather
than at an individual level (e.g., student level). In this case, training costs may depend not only on
the ultimate sample size n = c nc, where c and nc denote the number of clusters and the number
of participants per cluster, respectively, but also on a particular combination (c, nc), because the
number of required enumerators may be different for different (c, nc) combinations. Therefore,
training costs (which now also depend on c and nc) may be modelled as

ctrain(S, nc, c) := κ(c, nc) T (S). (4.5)

The interaction of cluster and sample size in determining the number of required enumerators
and, thus, the quantity κ(c, nc), complicates the modelling of this quantity relative to the case
without clustering. Let μ(c, nc) denote the number of required survey enumerators for c clusters
of size nc. As in the case without clustering, we assume that the training costs is lumpy in the
number of enumerators used:

κ(c, nc) :=

⎧⎪⎨⎪⎩
κ1 if 0 < μ(c, nc) ≤ μ1
κ2 if μ1 < μ(c, nc) ≤ μ2

...

.

The number of enumerators required, μ(c, nc), may also be lumpy in the number of interviewees
per cluster, nc, because there are bounds to how many interviews each enumerator can carry out.
Also, the number of enumerators needed for the survey typically increases with in the number of
clusters in the experiment. Therefore, we model μ(c, nc) as

μ(c, nc) := �μc(c) · μn(nc)	,
where � · 	 denotes the integer part, μc(u) := λu for some constant λ (i.e., u
→μc(u) is assumed
to be linear in the argument), and

μn(nc) :=

⎧⎪⎨⎪⎩
μn,1 if 0 < nc ≤ n1

μn,2 if n1 < nc ≤ n2
...

.

In addition, while the variable interview costs component continues to depend on the overall
sample size n as in (4.12), the fixed part of the interview costs is determined by the number of
clusters c rather than by n. Therefore, the total costs per interview become

cinterv(S, nc, c) := ψ(c)η + cncp T (S), (4.6)

where ψ(c) is some function of the number of clusters c.15

4.4. Covariates with heterogeneous prices

In randomized experiments, the data collection process often differs across blocks of covariates.
For example, the researcher may want to collect outcomes of psychological tests for the members

15 One issue we have not yet explicitly addressed concerns the implications for inference of a clustered randomized
design. It is well known that intra-cluster correlation in residuals has large effects on the standard errors of treatment
effect estimates. It is possible that covariates contribute to changes in the MSE of treatment effect estimators not only by
absorbing part of the residual variance, but also by absorbing part of the intra-cluster correlation.
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16 P. Carneiro et al.

of the household that is visited. These tests may need to be administered by trained psychol-
ogists, whereas administering a questionnaire about background variables such as household
income, number of children, or parental education, may not require any particular set of skills or
qualifications other than the training provided as part of the data collection project.

Partition the covariates into two blocks, a high-cost block (e.g., outcomes of psychological
tests) and a low-cost block (e.g., standard questionnaire). Order the covariates such that the first
Mlow covariates belong to the low-cost block, and the remaining Mhigh := M − Mlow together with
the outcome variable belong to the high-cost block. Let

Tlow(S) :=
Mlow∑
j=1

τjSj and Thigh(S) := τ0 +
M∑

j=Mlow+1

τjSj

be the total time costs per individual of surveying all low-cost and high-cost covariates, respec-
tively. Then, the total time costs for all variables can be written as T(S) = Tlow(S) + Thigh(S).

Because we require two types of enumerators, one for the high-cost covariates and one for the
low-cost covariates, the financial costs of each interview (fixed and variable) may be different
for the two blocks of covariates. Denote these by ψ low(c, nc)ηlow + cncplowTlow(S) and ψhigh(c,
nc)ηhigh + cncphighThigh(S), respectively.

The fixed costs for the high-cost block are incurred regardless of whether high-cost covariates
are selected or not, because we always collect the outcome variable, which here is assumed to
belong to this block. The fixed costs for the low-cost block, however, are incurred only when at
least one low-cost covariate is selected (i.e., when

∑Mlow
j=1 Sj > 0). Therefore, the total interview

costs for all covariates can be written as

cinterv(S, n) := 1
{Mlow∑

j=1

Sj > 0
}

(ψlow(c, nc)ηlow + cncplowTlow(S)) (4.7)

+ ψhigh(c, nc)ηhigh + cncphighThigh(S). (4.8)

The administration and training costs can also be assumed to differ for the two types of enumer-
ators. In that case,

cadmin(S) := φlowTlow(S)αlow + φhighThigh(S)αhigh , (4.9)

ctrain(S, n) := κlow(c, nc) Tlow(S) + κhigh(c, nc) Thigh(S). (4.10)

We employ specification (4.9) with (4.14)–(4.18) when, in Section 5.2, we study the impact on
student learning of cash grants which are provided to schools.

5. EMPIRICAL APPLICATIONS

5.1. Access to free day-care in Rio de Janeiro

In this section, we re-examine the experimental design of Attanasio et al. (2014), who evaluate
the impact of access to free day-care on child development and household resources in Rio de
Janeiro. In their dataset, access to care in public day-care centres, most of which are located in
slums, is allocated through a lottery, administered to children in the waiting lists for each day-care
centre.
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Data collection for RCTs 17

Just before the 2008 school year, children applying for a slot at a public day-care centre were
put on a waiting list. At this time, children were between the ages of 0 and 3. For each centre,
when the demand for day-care slots in a given age range exceeded the supply, the slots were
allocated using a lottery (for that particular age range). The use of such an allocation mechanism
means that we can analyse this intervention as if it were an RCT, where the offer of free day-care
slots is randomly allocated across potentially eligible recipients. Attanasio et al. (2014) compare
the outcomes of children and their families who were awarded a day-care slot through the lottery,
with the outcomes of those not awarded a slot.

The data for the study were collected mainly during the second half of 2012, four and a half
years after the randomization took place. Most children were between the ages of 5 and 8.16 A
survey was conducted, which had two components: a household questionnaire, administered to
the mother or guardian of the child; and a battery of health and child development assessments,
administered to children. Each household was visited by a team of two field workers, one for
each component of the survey.

The child assessments took a little less than one hour to administer, and included five tests per
child, plus the measurement of height and weight. The household survey took between one and
a half and two hours, and included about 190 items, in addition to a long module asking about
day-care history, and the administration of a vocabulary test to the main carer of each child.

As we explain below, we use the original sample, with the full set of items collected in the
survey, to calibrate the cost function for this example. However, when solving the survey design
problem described in this paper we consider only a subset of items of these data, with the original
budget being scaled down properly. This is done for simplicity, so that we can essentially ignore
the fact that some variables are missing for part of the sample, either because some items are not
applicable to everyone in the sample, or because of item non-response. We organize the child
assessments into three indices: cognitive tests, executive function tests, and anthropometrics
(height and weight). These three indices are the main outcome variables in the analysis. However,
we use only the cognitive tests and anthropometrics indices in our analysis, as we have fewer
observations for executive function tests.

We consider only 40 covariates out of the total set of items on the questionnaire. The variables
not included can be arranged into four groups: (a) variables that can be seen as final outcomes,
such as questions about the development and the behaviour of the children in the household; (b)
variables that can be seen as intermediate outcomes, such as labour supply, income, expenditure,
and investments in children; (c) variables for which there is an unusually large number of missing
values; and (d) variables that are either part of the day-care history module, or the vocabulary
test for the child’s carer (because these could have been affected by the lottery assigning children
to day-care vacancies). We then drop four of the 40 covariates chosen, because their variance is
zero in the sample. The remaining M = 36 covariates are related to the respondent’s age, liter-
acy, educational attainment, household size, safety, burglary at home, day-care, neighbourhood,
characteristics of the respondent’s home and its surroundings (the number of rooms, garbage
collection service, water filter, stove, refrigerator, freezer, washer, TV, computer, Internet, phone,
car, type of roof, public light in the street, pavement, etc.). We drop individuals for whom at least
one value in each of these covariates is missing, which leads us to use a subsample with 1,330
individuals from the original experimental sample, which included 1,466 individuals.

16 An additional wave on an expanded sample was collected in 2015, but we abstract from it here.
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18 P. Carneiro et al.

Calibration of the cost function

We specify the cost function (4.9) with components (4.10)–(4.12) to model the data collection
procedure as implemented in Attanasio et al. (2014). We calibrate the parameters using the actual
budgets for training, administrative, and interview costs in the authors’ implementation. The
contracted total budget of the data collection process was R$665,000.17

For the calibration of the cost function, we use the originally planned budget of R$665,000, and
the original sample size of 1,466. As mentioned above, there were 190 variables collected in the
household survey, together with a day-care module and a vocabulary test. In total, this translates
into a total of roughly 240 variables.18 Online Appendix S2 provides a detailed description of all
components of the calibrated cost function.

Implementation

We studentized all covariates to have variance one. We use the OGA to solve the optimization
problem in (3.8). The basic idea of the OGA (in its simplest form) is straightforward. Fix a sample
size n. Start by finding the covariate that has the highest correlation with the outcome. Regress
the outcome on that variable, and keep the residual. Then, among the remaining covariates, find
the one that has the highest correlation with the residual. Regress the outcome onto both selected
covariates, and keep the residual. Again, among the remaining covariates, find the one that has the
highest correlation with the new residual, and proceed as before. We iteratively select additional
covariates up to the point when the budget constraint is no longer satisfied. Finally, we repeat this
search process for alternative sample sizes, and search for the combination of sample size and
covariate selection that minimizes the residual variance. See Appendix A for more details.

To compare the OGA with alternative approaches, we also consider LASSO and POST-LASSO
for the inner optimization problem in Step 2 of our procedure. The LASSO solves

min
γ

1

N

N∑
i=1

(
Yi − γ ′Xi

)2 + λ
∑

j

|γj | (5.1)

with a tuning parameter λ > 0 that ensures that the budget constraint is satisfied (more details
below). The POST-LASSO procedure runs an OLS regression of Yi on the selected covariates
(nonzero entries of γ ) in (5.19). Belloni and Chernozhukov (2013), for example, provide a
detailed description of the two algorithms. It is known that LASSO yields biased regression
coefficient estimates and that POST-LASSO can mitigate this bias problem. Together with the
outer optimization over the sample size, using the LASSO or POST-LASSO solutions in the
inner loop may lead to different selections of covariate-sample size combinations. This is because
POST-LASSO re-estimates the regression equation, which may lead to more precise estimates of
γ and thus result in a different estimate for the MSE of the treatment effect estimator.

In both LASSO implementations, the penalization parameter λ is chosen so as to satisfy the
budget constraint as close to equality as possible. We start with a large value for λ, which leads to
a large penalty for nonzero entries in γ , so that few or no covariates are selected and the budget
constraint holds. Similarly, we consider a very small value for λ, which leads to the selection

17 There were some adjustments to the budget during the period of fieldwork.
18 The budget is for the 240 variables (or so) actually collected. In spite of that, we only use 36 of these as covariates in

this paper, as the remaining variables in the survey were not so much covariates as they were measuring other intermediate
and final outcomes of the experiment, as we have explained before. The actual budget used in solving the survey design
problem is scaled down to match the use of only 36 covariates.
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Data collection for RCTs 19

Table 5. Day-care (outcome: cognitive test).

Method n̂ |Î | Cost/B RMSE EQB Relative EQB

Experiment 1,330 36 1 0.025285 R$562,323 1
OGA 2,677 1 0.9939 0.018776 R$312,363 0.555
LASSO 2,762 0 0.99475 0.018789 R$313,853 0.558
POST-LASSO 2,677 1 0.9939 0.018719 R$312,363 0.555

Table 6. Day-care (outcome: health assessment).

Method n̂ |Î | Cost/B RMSE EQB Relative EQB

Experiment 1,330 36 1 0.025442 R$562,323 1
OGA 2,762 0 0.99475 0.018799 R$308,201 0.548
LASSO 2,762 0 0.99475 0.018799 R$308,201 0.548
POST-
LASSO

2,677 1 0.9939 0.018735 R$306,557 0.545

of many covariates and violation of the budget. Then, we use a bisection algorithm to find the
λ-value in this interval for which the budget is satisfied within some pre-specified tolerance.

OGA, LASSO and POST-LASSO are three alternative procedures, and all of them provide
approximate solutions to the problem we study in this paper. Of the three, OGA is easier to
implement and is computationally more attractive, but in theory we could use any of the three.
We show below that, in the applications we present, these three methods deliver very similar
solutions.

Results

Tables 5 and 6 summarize the results of the covariate selection procedures. For the cognitive test
outcome, OGA and POST-LASSO select one covariate (’|Î |’),19 whereas LASSO does not select
any covariate. The selected sample sizes (’n̂’) are 2,677 for OGA and POST-LASSO, and 2,762
for LASSO, which are almost twice as large as the actual sample size in the experiment. The
performance of the three covariate selection methods in terms of the precision of the resulting
treatment effect estimator is measured by the square-root value of the minimized MSE criterion
function (’RMSE’) from Step 2 of our procedure. We focus on the MSE, but notice that gains
in MSE translate into gains in the power of the corresponding t-test, as discussed in Section 3.
The three methods perform similarly well and improve precision by about 25% relative to the
experiment. Also, all three methods manage to exhaust the budget, as indicated by the cost-to-
budget ratios (’Cost/B’) close to one. We do not put any strong emphasis on the selected covariates,
as the improvement of the criterion function is minimal relative to the case that no covariate is
selected (i.e., the selection with LASSO). The results for the health assessment outcome are very
similar to those of the cognitive test with POST-LASSO selecting one variable (the number of
rooms in the house), whereas OGA and LASSO do not select any covariate.

19 For OGA, it is an indicator variable whether the respondent has finished secondary education, which is an important
predictor of outcomes; for POST-LASSO, it is the number of rooms in the house, which can be considered as a proxy for
wealth of the household, and again, an important predictor of outcomes.
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20 P. Carneiro et al.

To assess the economic gain of having performed the covariate selection procedure after the
first wave, we include the column ’EQB’ (abbreviation of ’equivalent budget’) in Tables 5 and
6. The first entry of this column in Table 5 reports the budget necessary for the selection of n̂ =
1,330 and all covariates, as was carried out in the experiment. For the three covariate selection
procedures, the column shows the budget that would have sufficed to achieve the same precision
as the actual experiment in terms of the minimum value of the MSE criterion function in Step 2.
For example, for the cognitive test outcome, using the OGA to select the sample size and the
covariates, a budget of R$312,363 would have sufficed to achieve the experimental RMSE of
0.025285. This is a huge reduction of costs by about 45%, as shown in the last column called
’Relative EQB’. Similar reductions in costs are possible when using the LASSO procedures and
also when considering the health assessment outcome.

In Online Appendix S6, we perform an out-of-sample evaluation by splitting the dataset into
training samples for the covariate selection step and evaluation samples for the computation of
the performance measures RMSE and EQB. The results are very similar to those in Tables 5 and
6.

Online Appendix S4 presents the results of Monte Carlo simulations that mimic this dataset,
and shows that all three methods select more covariates and smaller sample sizes as we increase
the predictive power of some covariates. This finding suggests that the covariates collected in the
survey were not predicting the outcome very well, and, therefore, in the next wave the researcher
should spend more of the available budget to collect data on more individuals, with no (or only
a minimal) household survey. Alternatively, the researcher may want to redesign the household
survey to include questions whose answers are likely better predictors of the outcome.

5.2. Provision of school grants in Senegal

In this subsection, we consider the study by Carneiro et al. (2015), who evaluate, using an RCT,
the impact of school grants on student learning in Senegal. The authors collect original data not
only on the treatment status of schools (treatment and control) and on student learning, but also on
a variety of household, principal, and teacher characteristics that could potentially affect learning.

The dataset contains two waves, a baseline and a follow-up, which we use for the study of
two different hypothetical scenarios.20 In the first scenario, the researcher has access to a pre-
experimental dataset consisting of all outcomes and covariates collected in the baseline survey
of this experiment, but not the follow-up data. The researcher applies the covariate selection
procedure to this pre-experimental dataset to find the optimal sample size and set of covariates
for the randomized control trial to be carried out after the first wave. In the second scenario, in
addition to the pre-experimental sample from the first wave the researcher now also has access to
the post-experimental outcomes collected in the follow-up (second wave). In this second scenario,
we treat the follow-up outcomes as the outcomes of interest and include baseline outcomes in the
pool of covariates that predict follow-up outcomes.

As in the previous subsection, we calibrate the cost function based on the full dataset from the
experiment, but for solving the survey design problem we focus on a subset of individuals and
variables from the original questionnaire. For simplicity, we exclude all household variables from
the analysis, because they were only collected for 4 out of the 12 students tested in each school,
and we remove covariates whose sample variance is equal to zero. Again, for simplicity, of the four
outcomes (maths test, French test, oral test, and receptive vocabulary) in the original experiment,

20 There is also a third wave of data from which we abstract in this paper.
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Data collection for RCTs 21

we only consider the first one (maths test) as our outcome variable. We drop individuals for
whom at least one answer in the survey or the outcome variable is missing. This sample selection
procedure leads to sample size of N = 2,280 for the baseline maths test outcome. For the second
scenario discussed above, where we use also the follow-up outcome, the sample size is smaller (N
= 762) because of non-response in the follow-up outcome and because we restrict the sample to
the control group of the follow-up. In the first scenario in which we predict the baseline outcome,
dropping household variables reduces the original number of covariates in the survey from 255 to
M = 142. The remaining covariates are school- and teacher-level variables. In the second scenario
in which we predict follow-up outcomes, we add the three baseline outcomes to the covariate
pool, but at the same time remove two covariates because they have sample variance zero when
restricted to the control group. Therefore, there are M = 143 covariates in the second scenario.

Calibration of the cost function

We specify the cost function (4.9) with components (4.15)–(4.18) to model the data collection
procedure as implemented in Carneiro et al. (2015). Each school forms a cluster. We calibrate
the parameters using the costs faced by the researchers and their actual budgets for training,
administrative, and interview costs. The total budget for one wave of data collection in this
experiment, excluding the costs of the household survey, was approximately $192,200.

For the calibration of the cost function, we use the original sample size, the original number
of covariates in the survey (except those in the household survey), and the original number of
outcomes collected at baseline. The three baseline outcomes were much more expensive to collect
than the remaining covariates. In the second scenario, we therefore group the former together
as high-cost variables, and all remaining covariates as low-cost variables. Online Appendix S2
provides a detailed description of all components of the calibrated cost function.

Implementation

The implementation of the covariate selection procedures is identical to the one in the previous
subsection, except that we consider here two different specifications of the pre-experimental
sample Spre, depending on whether the outcome of interest is the baseline or follow-up outcome.

Results

Table 7 summarizes the results of the covariate selection procedures. Panel (a) shows the results of
the first scenario in which the baseline maths test is used as the outcome variable to be predicted.
Panel (b) shows the corresponding results for the second scenario in which the baseline outcomes
are treated as high-cost covariates and the follow-up maths test is used as the outcome to be
predicted.

For the case where baseline maths is the outcome of interest in panel (a), the OGA selects only
|Î | = 14 out of the 145 covariates with a selected sample size of n̂ = 3, 018, which is about 32%
larger than the actual sample size in the experiment. The results for the LASSO and POST-LASSO
methods are similar. These two methods, as mentioned above, also provide good approximations
to the solution of the problem we are studying, but are computationally less attractive than OGA.

As before, we measure the performance of the three covariate selection methods by the esti-
mated precision of the resulting treatment effect estimator (’RMSE’). Our focus is on the MSE,
but notice that gains in MSE translate into gains in the power of the corresponding t-test, as
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22 P. Carneiro et al.

Table 7. School grants (outcome: maths test).

Method n̂ |Î | Cost/B RMSE EQB Relative EQB

(a) Baseline outcome
Experiment 2,280 142 1 0.0042272 $30,767 1
OGA 3,018 14 0.99966 0.003916 $28,141 0.91
LASSO 2,985 18 0.99968 0.0039727 $28,669 0.93
POST-
LASSO

2,985 18 0.99968 0.0038931 $27,990 0.91

(b) Follow-up outcome
Experiment 762 143 1 0.0051298 $52,604 1
OGA 6,755 0 0.99961 0.0027047 $22,761 0.43
LASSO 6,755 0 0.99961 0.0027047 $22,761 0.43
POST-
LASSO

6,755 0 0.99961 0.0027047 $22,761 0.43

(c) Follow-up outcome, no high-cost covariates
Experiment 762 143 1 0.0051298 $52,604 1
OGA 5,411 140 0.99879 0.0024969 $21,740 0.41
LASSO 5,444 136 0.99908 0.00249 $22,082 0.42
POST-
LASSO

6,197 43 0.99933 0.0024624 $21,636 0.41

(d) Follow-up outcome, force baseline outcome
Experiment 762 143 1 0.0051298 $52,604 1
OGA 1,314 133 0.99963 0.0040293 $41,256 0.78
LASSO 2,789 1 0.9929 0.0043604 $42,815 0.81
POST-
LASSO

2,789 1 0.9929 0.0032823 $32,190 0.61

discussed in Section 3. The three methods improve the precision by about 7% relative to the
experiment. Also, all three methods manage to essentially exhaust the budget, as indicated by
cost-to-budget ratios (’Cost/B’) close to one. As in the previous subsection, we measure the
economic gains from using the covariate selection procedures by the equivalent budget (’EQB’)
that each of the methods requires to achieve the precision of the experiment. All three methods
require equivalent budgets that are 7–9% lower than that of the experiment.

All variables that the OGA selects as strong predictors of baseline outcome are plausibly related
to student performance on a maths test.21 They are related to important aspects of the community
surrounding the school (e.g., distance to the nearest city), school equipment (e.g., number of
computers), school infrastructure (e.g., number of temporary structures), human resources (e.g.,
teacher–student ratio, teacher training), and teacher and principal perceptions about which factors
are central for success in the school and about which factors are the most important obstacles to
school success.

For the case where the follow-up maths score is the outcome to be predicted in panel (b), the
budget used in the experiment increases owing to the addition of the three expensive baseline
outcomes to the pool of covariates. All three methods select no covariates and exhaust the budget
by using the maximum feasible sample size of 6,755, which is almost nine times larger than the
sample size in the experiment. The implied precision of the treatment effect estimator improves

21 Online Appendix S5 shows the full list and definitions of selected covariates for the baseline outcome.
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Data collection for RCTs 23

by about 47% relative to the experiment, which translates into the covariate selection methods
requiring less than half of the experimental budget to achieve the same precision as in the
experiment. These are striking statistical and economic gains from using our proposed procedure
to choose covariates (in the case where covariates are mainly useful to improve the precision of
the treatment effect estimator).

In the remainder of this section, we present sensitivity checks and counterfactual experiments
that provide insights into why the covariate selection procedures do not recommend the inclusion
of any covariates, not even baseline outcomes.

Sensitivity checks

In RCT’s, baseline outcomes tend to be strong predictors of the follow-up outcome. One may
therefore be concerned that, because the OGA first selects the most predictive covariates, which
in this application are also much more expensive than the remaining low-cost covariates, the
algorithm never examines what would happen to the estimator’s MSE if it first selected the most
predictive low-cost covariates instead. In principle, such selection could lead to a lower MSE
than any selection that includes the very expensive baseline outcomes. As a sensitivity check,
we therefore perform the covariate selection procedures on the pool of covariates that excludes
the three baseline outcomes. Panel (c) shows the corresponding results. In this case, all methods
indeed select more covariates and smaller sample sizes than in panel (b), and achieve a slightly
smaller MSE. The budget reductions relative to the experiment as measured by EQB are also
almost identical to those in panel (b). Therefore, selecting no covariates and large sample size
(panel (b)) or many low-cost covariates with somewhat smaller sample size (panel (c)) yield very
similar and significant improvements in precision or significant reductions in the experimental
budget, respectively.22

One may want to ensure balance of the control and the treatment group, especially in terms
of strong predictors such as baseline outcomes. Checking balance requires collection of the
relevant covariates. Therefore, we also perform the three covariate selection procedures when
we force each of them to include the baseline maths outcome as a covariate. In the OGA, we
can force the selection of a covariate by performing group OGA as described in Appendix A,
where each group contains a low-cost covariate together with the baseline maths outcome. For the
LASSO procedures, we simply perform the LASSO algorithms after partialling out the baseline
maths outcome from the follow-up outcome. The corresponding results are reported in panel
(d). Since baseline outcomes are very expensive covariates, the selected sample sizes relative
to those in panels (b) and (c) are much smaller. OGA selects a sample size of 1,314, which is
almost twice as large as the experimental sample size, but about 4–5 times smaller than the OGA
selections in panels (b) and (c). In contrast to OGA, the two LASSO procedures do not select
any other covariates beyond the baseline maths outcome. As a result of forcing the selection of
the baseline outcome, all three methods achieve an improvement in precision, or reduction of
budgets respectively, of around 20% relative to the experiment. These are still substantial gains,
but the requirement of checking balance on the expensive baseline outcome comes at the cost of
smaller improvements in precision owing to our procedure.

22 Note that there is no sense in which we need to be concerned about identification of the optimal set of covariates.
There may indeed exist several combinations of covariates that yield similar precision of the resulting treatment effect
estimator. Our objective is the highest possible precision without any direct interest in the identities of the covariates that
achieve this optimum.
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24 P. Carneiro et al.

Table 8. School grants (outcome: maths test): varying the costs or predictive power of expensive covariates.

Method n̂ |Î | Cost/B RMSE EQB Relative EQB

(a) Reduce price of high-cost covariates by 50%
Experiment 762 143 1 0.00513 $31,948 1
OGA 14,569 0 0.99666 0.00184 $12,816 0.40
LASSO 14,569 0 0.99666 0.00184 $12,816 0.40
POST-LASSO 14,569 0 0.99666 0.00184 $12,816 0.40

(b) Reduce price of high-cost covariates by 60%
Experiment 762 143 1 0.00513 $27,461 1
OGA 8,623 1 0.99864 0.00187 $10,632 0.39
LASSO 8,623 1 0.99864 0.00214 $10,632 0.39
POST-LASSO 8,623 1 0.99864 0.00187 $10,632 0.39

(c) Increase predictive power of baseline outcome by 20%
Experiment 762 143 1 0.00434 $52,604 1
OGA 6,755 0 0.99961 0.00270 $27,304 0.52
LASSO 6,755 0 0.99961 0.00270 $27,304 0.52
POST-LASSO 6,755 0 0.99961 0.00270 $27,304 0.52

(d) Increase predictive power of baseline outcome by 30%
Experiment 762 143 1 0.00382 $52,604 1
OGA 2,789 1 0.99290 0.00245 $32,058 0.61
LASSO 6,755 0 0.99961 0.00270 $32,058 0.61
POST-LASSO 2,789 1 0.99290 0.00245 $32,058 0.61

In Online Appendix S6, we also perform an out-of-sample evaluation for this application by
splitting the dataset into training samples for the covariate selection step and evaluation samples
for the computation of the performance measures RMSE and EQB. The results are qualitatively
similar to those in Table 7.

Counterfactual costs and predictive power of baseline outcomes

It is well known that in education interventions such as the one we study, pre-intervention test
scores are expensive covariates but strong predictors of post-intervention test scores. In our data,
about 25% of the variance of the follow-up maths score can be accounted for by the variance in
the baseline maths score. The main reason why our procedure does not select it is because of
its high cost. Therefore, it is worth considering the following two questions. First, by how much
would we need to reduce the cost of the high-cost covariate for it to be worth collecting? Second,
keeping costs unaltered, by how much would we need to improve the predictive power of the
high-cost covariate in order for it to be worth collecting.

To answer the first question, we compute solutions to the covariate choice problem under
different counterfactual cost functions. In particular, we examine what happens to the results when
we consider hypothetical values of prices τ j for the baseline test scores. There are three high-cost
covariates, namely the three baseline outcomes. We reduce their prices τ j simultaneously, all by
the same factor. In panel (a) of Table 8, they all have price 0.5 times the actual price τ j, and in
panel (b) of Table 8, the factor is 0.4. All other aspects of the problem are kept identical to those
in panel (b) of Table 7. In panel (b) of Table 8, the selected covariate is the same for all three
selection procedures: the baseline outcome for the maths test.
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Panel (a) of Table 8 shows that even if we reduce the cost of baseline outcomes by 50%,
our procedure still provides a solution in which no covariates are chosen, just as in panel (b) of
Table 7. However, if we reduce the cost by 60% (panel (b)) then the baseline maths test score
is chosen. Therefore, in order to make it worthwhile to ever collect the baseline outcome as a
covariate its cost would have to be substantially low.

To answer the second question, we examine what happens to our results when we consider
hypothetical values of the predictive power of the baseline maths score. To this end we increase
the correlation of the baseline score with the follow-up score as described in Online Appendix S8.

In panels (c) and (d) of Table 8, we increase the predictive power by 20% and 30%, respectively.
All other aspects of the problem are identical to those in panel (b) of Table 7. In panel (d), the
covariate selected by OGA and POST-LASSO is the same: the baseline outcome for the maths
test. Panel (c) of Table 8 shows that even if we increase the predictive power of this variable by
20%, our procedure opts for not collecting it. In fact, it will only start choosing this covariate
when its predictive power on the outcome is 30% higher than what we currently observe in the
data. Therefore, in order to make it worthwhile to ever collect the baseline outcome as a covariate
at its current cost, its predictive power on the outcome would have to be considerably high.

6. DISCUSSION

In this section, we discuss some of conceptual and practical properties of our proposed data
collection procedure.

Availability of pre-experimental data

As in standard power calculations, pre-experimental data provide essential information for our
procedure. The availability of such data is commonly available very high, ranging from census
datasets and other household surveys to studies that were conducted in a similar context to the
RCT we are planning to implement. In addition, if no such dataset is available, one may consider
running a pilot project that collects pre-experimental data. We recognize that in some cases it
might be difficult to have the required information readily available. However, this is a problem
that affects any attempt at a data-driven design of surveys, including standard power calculations.
Even when pre-experimental data are imperfect, such calculations provide a valuable guide to
survey design, as long as the available pre-experimental data are not very different from the ideal
data. In particular, our procedure only requires second moments of the pre-experimental variables
to be similar to those in the population of interest.

The optimization problem in a simplified setup

In general, the problem in (3.8) does not have a simple solution and requires a joint optimization
problem over the sample size n and the coefficient γ . To gain some intuition about the trade-offs
in this problem, in Online Appendix S3 we consider a simplified setup in which all covariates
are orthogonal to each other, and the budget constraint has a very simple form. In this case,
the constraint can be substituted into the objective, and the optimization becomes univariate and
unconstrained. We show that if all covariates have the same price, then one wants to choose
covariates up to the point where the percentage increase in survey costs equals the percentage
reduction in the residual variance from the last covariate. Furthermore, the elasticity of the residual
variance with respect to changes in sample size should equal the elasticity of the residual variance
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26 P. Carneiro et al.

with respect to an additional covariate. If the costs of data collection vary with covariates, then this
conclusion is slightly modified. If we organize variables by type according to their contribution
to the residual variance, then we want to choose variables of each type up to the point where the
percentage marginal contribution of each variable to the residual variance equals its percentage
marginal contribution to survey costs.

Imbalance, re-randomization, stratification

In RCTs, covariates typically do not serve only as a means to improving the precision of treatment
effect estimators, but also for checking whether the control and treatment groups are balanced.
See, for example, Bruhn and McKenzie (2009) for practical issues concerning randomization and
balance. To rule out large biases due to imbalance, it is important to carry out balance checks for
strong predictors of potential outcomes. Our procedure selects the strongest predictors as long
as they are not too expensive (e.g., household survey questions such as gender, race, number of
children etc.) and we can check balance for these covariates.

An alternative approach to avoiding imbalance considers re-randomization until some criterion
capturing the degree of balance is met (e.g., Bruhn and McKenzie, 2009; Morgan and Rubin,
2012, 2015; Li et al., 2018). Our criterion for the covariate selection procedure in Step 2 can
readily be adapted to this case; however, the details are not worked out here. It is an interesting
future research topic to fully develop a data collection method for re-randomization based on the
modified variance formulae in Morgan and Rubin (2012) and Li et al. (2018), which account for
the effect of re-randomization on the treatment effect estimator. Similarly, we could incorporate
stratified random sampling through re-randomization with preset clusters (Morgan and Rubin,
2012). It would also be interesting to extend our data collection procedure to include stratification
trees, as proposed in Tabord-Mehan (2018).

Expensive, strong predictors

When some covariates have similar predictive power, but respective prices that are substantially
different, our covariate selection procedure may produce a suboptimal choice. For example, if
the covariate with the highest price is also the most predictive, OGA selects it first even when
there are other covariates that are much cheaper but only slightly less predictive. In Section 5.2,
we encounter an example of such a situation and propose a simple robustness check for whether
removing an expensive, strong predictor may be beneficial.

Heteroskedasticity and robust standard errors

Recall that, in Step 2, we assumed that errors are homoskedastic with respect to treatment. We
needed this assumption in order to derive the finite-sample MSE of the OLS estimator and provide
a tractable solution to our data collection problem when D is not observed in the pre-experimental
sample. Should one be concerned about common unobserved shocks among individuals in the
experimental sample, robust (e.g., clustered or Eicker–Huber–White) standard errors can be
employed in Step 5 and are valid.

Heteroskedasticity in the pre-experimental sample, however, may cause our data collection
procedure in Step 2 to produce a suboptimal selection of covariates. Without observing the
treatment indicator in the pre-experimental sample, a strong homogeneity assumption like our
homoskedasticity condition allows us to express the MSE of the treatment effect estimator in a
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way that can be estimated solely based on Y and X. This is similar to standard power calculations
which require much stronger assumptions, including the assumption that potential outcomes have
the same variance. Should the treatment indicator be observed in the pre-experimental sample,
then one could exploit the observed dependence structure between D and X to estimate the
treatment effect estimator’s MSE even in the presence of heteroskedasticity. For example, one
may extend our framework by introducing an additional sampling step as in Hahn et al. (2011).

Multivariate outcomes

It is straightforward to extend our data collection method to the case when there are multivariate
outcomes. Online Appendix S7 provides details regarding how to deal with a vector of outcomes
when we select the common set of regressors for all outcomes.

7. RELATION TO THE EXISTING LITERATURE

In this section, we discuss related papers in the literature. We emphasize that the research question
in our paper is different from those studied in the literature and that our paper is a complement to
the existing work.

In the context of experimental economics, List et al. (2011) suggest several simple rules of
thumb that researchers can apply to improve the efficiency of their experimental designs. They
discuss the issue of experimental costs and estimation efficiency but do not consider the problem
of selecting covariates.

Hahn et al. (2011) consider the design of a two-stage experiment for estimating an average
treatment effect, and propose to select the propensity score that minimizes the asymptotic variance
bound for estimating the average treatment effect. Their recommendation is to assign individuals
randomly between the treatment and control groups in the second stage, according to the optimized
propensity score. They use the covariate information collected in the first stage to compute the
optimized propensity score.

Bhattacharya and Dupas (2012) consider the problem of allocating a binary treatment under a
budget constraint. Their budget constraint limits what fraction of the population can be treated,
and hence is different from our budget constraint. They discuss the costs of using a large number
of covariates in the context of treatment assignment.

McKenzie (2012) demonstrates that taking multiple measurements of the outcomes after an
experiment can improve power under the budget constraint. His choice problem is how to allocate
a fixed budget over multiple surveys between a baseline and follow-ups. The main source of the
improvement in his case comes from taking repeated measures of outcomes; see Frison and
Pocock (1992) for this point in the context of clinical trials. In the setup of McKenzie (2012), a
baseline survey measuring the outcome is especially useful when there is high autocorrelation in
outcomes. This would be analogous in our paper to devoting part of the budget to the collection
of a baseline covariate, which is highly correlated with the outcome (in this case, the baseline
value of the outcome), instead of just selecting a post-treatment sample size that is as large as the
budget allows for. In this way, McKenzie (2012) is perhaps closest to our paper in spirit.

In a recent paper, Dominitz and Manski (2017) proposed the use of statistical decision theory
to study allocation of a predetermined budget between two sampling processes of outcomes: a
high-cost process of good data quality and a low-cost process with non-response or low-resolution
interval measurement of outcomes. Their main concern is data quality between two sampling
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processes and is distinct from our main focus, namely the simultaneous selection of the set of
covariates and the sample size.

8. CONCLUDING REMARKS

We have developed data-driven methods for designing a survey in a randomized experiment using
information from a pre-existing dataset. Our procedure is optimal in the sense that it minimizes
the mean squared error of the average treatment effect estimator and maximizes the power of the
corresponding t-test, and can handle a large number of potential covariates as well as complex
budget constraints faced by the researcher. We have illustrated the usefulness of our approach by
showing substantial improvements in precision of the resulting estimator or substantial reductions
in the researcher’s budget in two empirical applications.

We recognize that there are many potential reasons guiding the choice of covariates in a survey.
These may be as important as the one we focus on, which is the precision of the treatment effect
estimator. We show that it is possible and important to develop practical tools to help researchers
make such decisions. We regard our paper as part of the broader task of making the research
design process more rigorous and transparent.

Some important issues remain as interesting future research topics. For example, we have
assumed that the pre-experimental sample Spre is large, and therefore the difference between the
minimization of the sample average and that of the population expectation is negligible. However,
if the sample size of Spre is small (e.g., in a pilot study), one may be concerned about over-fitting,
in the sense of selecting too many covariates. A straightforward solution would be to add a term
to the objective function that penalizes a large number of covariates via some information criteria
(e.g., the Akaike information criterion or the Bayesian information criterion). Another possibility
is to consider data collection for the RCTs that are likely to suffer from partial compliance.
One may focus on the local average treatment effect in this setup and investigate the problem
of optimal data collection by combining the insights from this paper with those from using
Neyman-orthogonal moment conditions (e.g., Chernozhukov et al., 2018).
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