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Assessing data linkage quality in cohort studies
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ABSTRACT
Background: Linkage of administrative data sources provides an efficient means of collecting detailed
data on how individuals interact with cross-sectoral services, society, and the environment. These data
can be used to supplement conventional cohort studies, or to create population-level electronic
cohorts generated solely from administrative data. However, errors occurring during linkage (false
matches/missed matches) can lead to bias in results from linked data.
Aim: This paper provides guidance on evaluating linkage quality in cohort studies.
Methods: We provide an overview of methods for linkage, describe mechanisms by which linkage
error can introduce bias, and draw on real-world examples to demonstrate methods for evaluating
linkage quality.
Results: Methods for evaluating linkage quality described in this paper provide guidance on (i) esti-
mating linkage error rates, (ii) understanding the mechanisms by which linkage error might bias
results, and (iii) information that should be shared between data providers, linkers and users, so that
approaches to handling linkage error in analysis can be implemented.
Conclusion: Linked administrative data can enhance conventional cohorts and offers the ability to
answer questions that require large sample sizes or hard-to-reach populations. Care needs to be taken
to evaluate linkage quality in order to provide robust results.
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Introduction

Data linkage is an important tool for generating longitudinal
data that can be used to understand the development and
causes of variation in outcomes across the life course
(Chamberlayne et al. 1998; Jutte et al. 2011). Linkage of
administrative data sources can provide an efficient means
of collecting detailed data on cross-sectoral services (e.g.
health, social care and education), society, and the environ-
ment, as well as augmenting direct data collection through
linkage with biological samples, social media and other
digital sources. Linked data can be used to supplement con-
ventional cohort studies or to create population-level elec-
tronic cohorts generated entirely from administrative data
(Hockley et al. 2008; Ford et al. 2009; Doiron et al. 2013; Ali
et al. 2019; Downs et al. 2019). Such administrative data
cohorts offer the ability to answer questions that require
large sample sizes or detailed data on hard-to-reach popula-
tions, and to generate evidence with a high level of external
validity and applicability for policy-making (Chiu et al. 2016).
There is increasing interest in using these two models of
data collection in conjunction, combining population-level
administrative data with detailed attribute data collected dir-
ectly from participants, in order to provide a deeper insight
into what determines our health (Boyd et al. 2019).

A major challenge to generating reliable linked data that
are fit for purpose is the availability of accurate identifiers
that can be used to link the same person across multiple
data sources (Gilbert et al. 2018). Ideally, a single unique
identifier such as National Health Service (NHS) number or
National Insurance number would be recorded accurately in
all datasets, enabling a straightforward linkage between
sources. In practice, such an identifier is rarely available, par-
ticularly when linking data across sectors (e.g. health to edu-
cation) and nearly always involves some degree of error or
missing data (Ludvigsson et al. 2009). Therefore, linkage
often depends on the use of non-unique identifiers such as
name, postcode and date of birth. Such a set of identifiers
can provide, in combination, sufficient discrimination
between individuals to facilitate linkage but can also lead to
linkage error and uncertainty.

Due to the limitations of available identifiers, errors can
occur during linkage and manifest as false matches (where
records belonging to different individuals are linked
together) or missed matches (where records belonging to
the same individual are not linked) (Table 1). False matches
occur when different individuals share the same identifiers
(e.g. through system errors that have assigned the same NHS
number to a pair of twins), or where identifiers are not suffi-
ciently discriminative (e.g. where two household members
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share the same surname, gender and postcode). Missed
matches can occur due to recording errors (e.g. misspelt
names), genuine changes over time (e.g. when an individual
moves to a new postcode area), or where missing or insuffi-
ciently distinguishing identifiers prevent a link from being
made. The level of linkage error is dependent on the quality
and completeness of the identifying data available within a
dataset, and can occur irrespective of the linkage methods
employed (Doidge and Harron 2018). However, careful data
cleaning and linkage design can help reduce the likelihood
of errors, and linkage strategies can be designed to minimise
false matches or missed matches (or to strike a balance
between the two), depending on the aims of research
(Doidge and Harron 2018).

Despite advances in linkage methods and improvements
in data quality over time, some level of linkage error or
uncertainty is almost always inevitable in linkage of adminis-
trative datasets that were not collected primarily for research
(Harron et al. 2017). There is a large amount of literature
demonstrating that even low levels of linkage errors can
have important implications for analysis, and that if these
errors are not addressed, substantial bias may be introduced
into results derived from linked data (Bohensky et al. 2010;
Lariscy 2011). The impact of such errors depends not only on
the error rates, but also on the distribution of errors in rela-
tion to analysis variables. It also depends on the structure of
the linkage design and the analysis in question. Tolerable
levels of error therefore need to be considered on a case by
case basis, taking all these factors, and the implications for
inferences, into account (Doidge and Harron 2019).

This paper provides an overview of linkage error as it
relates to cohort studies and provides guidance on how to
assess linkage quality and its implications for analysis of
linked cohort data. We first describe relevant methods in
general and then discuss illustrative results from pub-
lished studies.

Methods

Methods for data linkage

Traditional linkage methods fall into two broad and overlap-
ping classes: deterministic (rule-based) algorithms and prob-
abilistic linkage techniques involving “match weights.”
Deterministic methods typically make use of a set of pre-
specified rules for classifying pairs of records as belonging to
the same individual or not. For example in national hospital

data in England (Hospital Episode Statistics), admissions for
the same individual are linked over time using a three-step
algorithm involving NHS number, date of birth, postcode
and sex (Hagger-Johnson et al. 2015). More complex deter-
ministic methods may incorporate the use of partial identi-
fiers (e.g. postcode prefix or first letter of surname), similarity
scores, or transposition of elements of date of birth.
However, as the number of available identifiers increases, the
number of variations can become unmanageable using
deterministic rules.

Probabilistic linkage methods work by assigning a weight
or score to represent the likelihood that two records belong
to the same individual. In effect, this results in a ranking of
all possible deterministic rules for a set of available identifiers
(Doidge and Harron 2018). We note that what is typically
classed as “probabilistic” linkage is effectively a sophisticated
version of deterministic linkage, since match weights will
ultimately be used to define a deterministic classification of
records using one or more thresholds. There are a number of
methods for deriving such probabilistic match weights or
scores but most are based on the Fellegi-Sunter algorithm,
which uses the conditional probability of agreement on an
identifier, given whether two records belong to the same
individual or not (Fellegi and Sunter 1969; Sayers et al. 2016).
However, this approach relies on a number of assumptions
(Goldstein et al. 2017). It also involves an initial estimation of
conditional probabilities either using training data (where
the true match status is known for a sample of records) or
using statistical techniques such as the EM algorithm.

Machine learning approaches to linkage are also being
developed based on computationally predicting the likeli-
hood of records belonging to the same individual (Elfeky
et al. 2003; Christen and Goiser 2007; Pita et al. 2018).
However, suitable training datasets are rarely available to
support these methods (Christen and Pudjijono 2009). An
alternative unsupervised method, employing a scaling algo-
rithm originating from correspondence analysis, has been
developed to overcome this problem but is yet to be imple-
mented outside of simulation studies (Goldstein et al. 2017).
The scaling algorithm assigns scores to discrete categories or
degrees of agreement/disagreement based upon minimisa-
tion of a suitable loss function.

Identifiers used for linkage need not be personal in
nature; any variable that is represented in both records, and
even different variables that are correlated (e.g. the date of
finishing one service and the date of starting another), can
be used to inform linkage (Lawson et al. 2013; Li et al. 2015).
Both deterministic and probabilistic techniques can be tail-
ored towards minimising one type of error or the other, but
deterministic techniques are often designed to minimise
potential for false links, and the greater flexibility of probabil-
istic techniques can often support detection of more true
matches (i.e. fewer missed matches) without accepting
higher rates of false matches (Hagger-Johnson et al. 2017).
Even though probabilistic linkage techniques can often per-
form better, their complexity and computational require-
ments mean that deterministic linkage is often preferred,

Table 1. Linkage accuracy.

True match status

Match
(pair from

same individual)

Non-match
(pair from

different individuals)

Assigned link status
Link True match

a
False match

b
Non-link Missed match

c
True non-match

d

Sensitivity (or recall) ¼ a/(aþ c); specificity ¼ d/(bþ d); positive predictive
value (or precision) ¼ a/(aþ b); negative predictive value ¼ d/(cþ d).
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especially with data that include smaller numbers of high-
quality identifiers.

Methods for using linked data in cohort studies

Use of linked data in cohort studies also falls into two broad
classes: (i) supplementation of primary data collection in con-
ventional cohorts with linked data that has been collected
for other purposes (often population-level administrative and
registry data), and (ii) construction of electronic cohorts
solely from secondary data sources, usually retrospectively
and relying on de-identification in place of consent. Data
linkage is supporting new models of efficient cohort research
such as UK Biobank, in which large-scale collection of bio-
logical specimens provides the main source of primary data
for a cohort, with most other data provided through routine
linkage to population-level datasets (Davis et al. 2019).

There are important differences between cohorts based
on primary data collection supplemented with linked data,
and cohorts derived from linked data alone. These differen-
ces relate to how participants are identified for inclusion in
analysis, and the potential for linkage and linkage error to
influence this process. In conventional cohorts, participants
are a subset of the population that is clearly defined as those
consenting to participate. Each participant is represented
once within the cohort and followed up over time. For any
supplementary linked data, it is apparent which participants
have linked data and which do not (although not always
which participants should have linked data). Most administra-
tive data cohorts are created from event-based datasets (hos-
pital admissions, etc.) and even when only one such dataset
is used, the records within it have to be linked internally to
create a longitudinal record for each individual (Herbert et al.
2015). Even registries (births, deaths, notifiable diseases, etc.)
that aim to record people or events only once can contain
varying levels of duplication depending on the systems used
to collect the data. Thus, when creating a cohort from
administrative data sources, linkage and linkage error have
the potential to affect the specification of the cohort itself.

Methods for assessing linkage quality in cohort studies

There are a number of mechanisms by which linkage errors
can bias analyses based on linked data. In order to understand
these mechanisms, we first need to understand the structure
of the linkage to be performed and the purpose of the linkage.
In practice, it is likely that a given study will aim to link data
from multiple (>2) files. This can either be done using one pri-
mary “spine” dataset (e.g. a cohort) and linking each new file
to the spine, or by sequentially linking pairs of files together.
For simplicity, we start by considering how data from one or
two files can be combined and analysed, and represent these
scenarios using Venn diagrams (for a detailed list, see (Doidge
and Harron 2019)). Even when linking more than two files, this
pairwise approach can still be useful for considering the impli-
cations of linkage error. The target cohort is typically defined
by only one or two files, with remaining files linked to that
cohort. If linkage between the remaining files is also

conducted, then indirect links may be formed with the cohort
(e.g. a link from a record in file A to a record in file B that is
linked to the cohort creates an indirect link between file A and
the cohort), but how linkage errors manifest is unaffected by
whether the links are made directly or indirectly. Perhaps the
most common and relevant to cohort studies are the “Master,”
“Nested” and “Intersection” structures (Table 2).

There are three main reasons to perform linkage: (i) to
define a study sample; (ii) to define a variable of interest when
the value of that variable is inferred through linkage itself (e.g.
linking with a disease registry to infer disease status); or (iii) to
provide information about additional variables of interest
obtained through linkage. Table 2 outlines the implications of
missed matches and false matches for these three purposes. In
general, if the purpose is to define a study population, then
linkage error can lead to erroneous exclusion or inclusion from
the study population (i.e. through missed or false matches
where linkage provides information on inclusion/exclusion cri-
teria). Such errors can lead to bias, or loss of statistical power
and incorrect measures of precision. If the purpose is to define
a variable of interest, or to provide information on additional
variables, false matches can lead to misclassification or meas-
urement error in any of the variables captured through linkage
(i.e. if the wrong records are linked together). In all cases, link-
age errors can result in bias or missing data.

In administrative data cohorts, linkage error can also result
in double-counting (when one individual’s records are
counted multiple times, due to missed matches), or under-
counting (when records for multiple individuals are counted
as one, due to false matches). A detailed discussion of how
linkage error can impact on results from linked data is pro-
vided elsewhere (Doidge and Harron 2019).

Once we have established how linkage error could mani-
fest in a given analysis, the next step is to try to estimate
the extent of error. It is also important to estimate the distri-
bution of linkage errors with respect to variables of interest:
when linkage errors are not distributed randomly, i.e. are
more likely to occur in one subgroup than another, results
can be substantially biased, even when overall error rates are
low. There are many examples of differential linkage quality
in the literature (Bohensky et al. 2010; Bohensky 2015). Data
quality (and therefore linkage quality) can be related to eth-
nicity, age, socio-economic status, or health status, and small
subgroups of individuals (who may be the most interesting
for analysis) are often those most affected by linkage error.
Understanding the distribution of linkage errors is therefore
vital for evaluating potential bias due to linkage error.

Estimation of linkage error rates is useful to both data
linkers and analysts of linked data. Firstly, information about
the likely error rates associated with different patterns of
agreement can help inform decisions about how to classify
links (e.g. the deterministic rules or match weight thresholds
used). Then, once a linkage strategy has been implemented,
we can estimate linkage error rates to help us understand
whether and how linkage error might impact on analysis
results. Available techniques for assessing rates and distribu-
tions of linkage error are discussed in Results, using exam-
ples from published literature.
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Methods for handling linkage error in analysis

Development of methods to handle bias due to linkage error
has been identified as a priority for research (Jorm 2015;
Wellcome’s Longitudinal Population Studies Working Group
2017). There are several practical approaches that can be
taken, including statistical adjustments based on estimated
error rates and distributions (quantitative bias analysis) and
probabilistic techniques involving imputation or weighting.
Quantitative bias analysis aims to address the sensitivity of
the analysis to underlying assumptions about linkage error
by estimating the potential impacts of linkage error in terms
of misclassification, measurement error and selection bias.
Probabilistic techniques go one step further, by attempting
to reflect uncertainty in linkage, as well as bias. These
approaches are discussed further in the following sections.

Results

Assessing linkage quality in cohort studies

A range of methods aiming to assess linkage quality can be
found in the literature, and examples of these are provided
in Table 3. Which of these methods is possible to implement
will depend on the linkage structure (e.g. whether we expect

all records in one file to have a match), and on the level of
access to data or collaboration with data linkers. Often, link-
age is performed by a trusted third party, meaning that ana-
lysts do not have access to identifiers, and data linkers do
not have access to any attribute data (e.g. clinical variables,
survey responses, etc.) (Kelman et al. 2002). Table 3 outlines
the requirements of access to identifiers or de-identified data
for each method: the first three techniques can only be
implemented by those with access to identifiers but the
remaining techniques can be employed by analysts of de-
identified linked data, provided that information about the
quality of links and identifiers is provided by data linkers
(Paix~ao et al. 2019).

Handling linkage error in analysis: quantitative
bias analysis

A simple approach to understanding the impact of linkage
error in analysis is to consider the best- and worst-case scen-
arios: how much of each type of linkage error could there be,
and how strongly might the error be correlated with varia-
bles of interest? This type of quantitative bias analysis can
be sufficient to demonstrate the sensitivity of results to the
range of plausible assumptions that could be made about
linkage error. For example, based on a linked electronic

Table 2. Common linkage structures for combining data from two sources, one of which is a cohort study.�

Linkage structure Example Purpose
Implications of a
missed match Implications of a false match

“Intersection” The large circle represents a national
dataset containing records of school
attainment (e.g. the National Pupil
Database in England) and the small circle
represents a cohort study. The school
database will include records for some
individuals who are not cohort
participants. Not all cohort participants
may be captured in the school database
(e.g. those who moved out of the
country before starting school). Analysis
is restricted to cohort participants with a
linked school record.

To define the
study population.

Exclusion from the study
sample and potential
selection bias (cohort
participants without linked
school records
are excluded).

Measurement error or
misclassification in any
school variables obtained
through linkage.��

“Master” The large circle represents a cohort study
and the small circle represents a disease
registry linkage with the disease registry
will be meaningfully interpreted as a
cohort participant having the disease.
The shaded area indicates that data from
all cohort participants will be analysed.

To define exposure/outcome. Misclassification of disease
status, i.e. a cohort
participant is erroneously
classified as being
disease-free.

Misclassification of disease
status (if a cohort
participant who does not
have the disease is linked
with the
disease registry).���

“Nested” The large circle represents birth registration
data and the small circle represents a
cohort study. All cohort participants are
expected to have a birth registration
record, but the birth registration data will
include some individuals who are not
cohort participants. The cohort defines
the analysis sample; participants who are
linked with a birth registration data have
further information on variables
of interest.

To add further information
on variables of interest.

Missing data: no birth
registration variables will
be available for cohort
participants without a
linked record.

Measurement error or
misclassification in any
birth registration variables
obtained
through linkage.��

Shaded areas represent the study sample for a particular research question. The relative size of the circles does not matter. We assume that the cohort sample
is uniquely identified prior to linkage (i.e. there is only one record per participant) but that the linked data (e.g. administrative data) may contain multiple
records per person.�Although we have used cohort studies as an example here, this is not a general requirement for these linkage structures. ��If a false match is made to a
record that (by chance) holds the same values of analysis variables as the true match, measurement error or misclassification would not occur. ���If a cohort
participant who does have the disease is linked with the wrong registry record, this could lead to measurement error or misclassification in any other variables
captured about the disease (e.g. stage or type of cancer).
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cohort of children with Down’s syndrome, we specified
plausible ranges for a set of “bias parameters” that were rele-
vant to a given analysis, including the numbers of missed
matches and false matches, and the proportion of false
matches that occurred between comparable records (Doidge
et al. 2019). We then tested the robustness of our results to
different specifications of these parameters.

Wherever possible, it is best to inform assumptions about
plausible ranges of error rates with formal assessments of
linkage quality. Moore et al. demonstrate one such example,
in which a cohort of prisoners was linked to a register of
deaths to compare mortality rates between prisoners with
and without psychiatric hospitalisations (Moore et al. 2014).
Links with mortality records were meaningfully interpreted as
implying the vital status (dead or alive) of prisoners, so
missed matches would be expected to lead to false negative
misclassification of death. False matches would be expected
to lead to false positive misclassification if occurring with a
person who was alive, but not if they occurred in people
who had died. It would be possible to adjust mortality rates
if information were available about the rate of missed
matches, and the rate and distribution of false matches with
respect to vital status (i.e. the rates of false matches among
people who were alive and dead, respectively).

Although the expected number of matches was not
known a priori, two useful subsets of records with known
match status were identified: people who were known to be
still in prison at the observational endpoint of the available
death registrations and therefore should not link (“negative
controls”), and people who were known to have died in
prison and therefore should link (“positive controls”). By
examining match rates among the positive controls, the
authors were able to estimate the sensitivity of survival clas-
sification (the proportion of cohort deaths linked) (Table 4).
By examining match rates among the negative controls, they
could estimate the specificity of survival classification (pro-
portion of living cohort linked, i.e. false matches). The
authors use these to adjust estimates of mortality accord-
ingly and, by applying the same estimates of sensitivity and
specificity to patients with and without psychiatric hospital-
isations, demonstrate that even in the absence of differential
linkage error, the relative risk of death was still biased
towards no association. Ideally, estimates of sensitivity
and specificity would have been produced separately for
each subgroup, which could have resulted in different
adjustments.

Handling linkage error in analysis: probabilistic analysis

In complex linkage scenarios, or where there are multiple
variables of interest, estimating linkage error rates across
subgroups may not be straightforward. In these situations,
imputation-based methods can provide a useful approach to
handling linkage error and representing uncertainty in link-
age. In generating one version of a linked dataset in the
presence of imperfect identifiers, errors will be inherent; dif-
ferent versions of a linked dataset could be constructed
according to how data are pre-processed, how linkage is
conducted, and how decisions about thresholds are made.
Imputation based approaches re-frame linkage as a missing
data problem, and the aim moves away from identifying def-
inite links between records, to carrying through the correct
values into analysis, along with appropriate measures of
uncertainty.

Consider a “Nested” design in which we expect all records
in one file to link (usually the cohort), but records with miss-
ing data are excluded from analysis. In this setting, the prob-
lem is analogous to complete case analysis (discussed in
detail in the missing data literature, see for e.g. (Sterne et al.
2009)), where biases may be introduced depending on the
missingness (or linkage) mechanism. Appropriate use of strat-
egies to address missing data (e.g. multiple imputation)
might therefore mitigate the impact of linkage error in this
scenario. Information on the association between covariates
and variables derived through linkage can be obtained from
certain links and certain non-links. This information can then
be used in an imputation model, to impute variables that
were not possible to derive with certainty through linkage.

Table 4. Quantitative bias analysis for linkage error in a cohort linked to a register of deaths.

Subgroups with known vital status

Dead (“positive control”) Alive (“negative control”)

Linked 275 23
Not linked 36 7535
Sensitivity of survival classification 275/(275þ 36) ¼ 0.884
Specificity of survival classification 7535/(7535þ 23) ¼ 0.997

Data reproduced from Moore et al. (2014). Note that sensitivity and specificity of classification are not equivalent to the
sensitivity and specificity of linkage, which is unknown. Also note that, because the positive controls and negative controls
would not be expected to form a representative sample of the cohort, it is not possible to calculate positive or negative
predictive values from this table (i.e. rows cannot be summed).

Table 5. Imputation-based approaches for handling linkage error in analysis:
an example based on 5 cohort records linked with cancer registry records
with varying levels of certainty.

Sex Age SES Cancer Linkage certainty

1 Male 55 Low Yes Certain link
2 Male 45 High Yes Certain link
3 Female 46 High No Certain non-link
4 Male 48 Low ? Match weight ¼ 15
5 Female 52 High ? Match weight ¼ 2

Records 1–3 are considered to have complete data; records 4 and 5 are con-
sidered to have missing or partially observed data. In multiple imputation,
missing data for records 4 and 5 would be imputed based on the observed
characteristics (sex, age, SES) and the relationship between these characteris-
tics and the outcome (Cancer) in the complete records. In prior-informed
imputation, the posterior distribution for the imputation would be informed,
in addition, by the match weights in the candidate linking records (i.e. match
weight ¼ 15 for record 4 would provide more evidence of a match than
match weight ¼ 2 for record 5).
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Estimates of quantities of interest are then combined over a
number of imputed datasets, using Rubin’s rules for multiple
imputation (Rubin 1987).

Multiple imputation has been shown to be an effective
approach for handling linkage error, and specifically missed
matches (Zhang et al. 2016). However, the procedure
described above ignores information that we do have about
the potential values of variables derived through linkage (i.e.
from the candidate linking records). For example, in Table 5
we present linkage of five cohort records with cancer registry
records. For three of these records, we are certain about
whether there is a link or not. For the remaining two records,
there is some uncertainty about whether there should be a
link. We could treat cancer status for these uncertain links as
missing and impute according to standard multiple imput-
ation methods (e.g. based on the available information on
sex, age, SES and any other predictor variables). However,
the uncertainty about whether or not there should be a link
is represented by the associated match weight for each can-
didate linking record. These values are therefore not entirely
missing, but “partially observed” (Goldstein et al. 2009).
Information on the potential values that these variables
could take is given by candidate records and associated
match weights.

We can therefore form a probability distribution that is a
direct function of the set of match weights for each uncer-
tain record (records 4 and 5 in Table 5). This probability dis-
tribution forms a prior distribution for the variable of interest
(in this case, cancer status). The prior distribution is then
combined with the (conditional) likelihood for the variables
of interest based on the certain linked records (records 1–3
in Table 5) to form an updated posterior distribution. Values
can then be sampled from the posterior distribution based
on the standard multiple imputation framework (Goldstein
et al. 2012).

A number of imputed datasets are again produced, with
estimates and standard errors averaged over the imputed
data (Rubin 1987). This method, known as “prior-informed
imputation” has been shown to be effective at avoiding bias
due to linkage error in some settings, and for providing
standard errors that properly account for the uncertainty
arising from linkage error (Harron et al. 2014). Prior-informed
imputation is particularly useful for handling differential link-
age according to subgroups, as this is accounted for within
the imputation.

Discussion

In this paper, we outline some of the challenges in using
data linkage to enhance or create longitudinal cohort stud-
ies. We discuss the mechanisms by which linkage error can
introduce bias into results, describe a number of methods
that are available for estimating linkage error rates, and illus-
trate two approaches for incorporating information on link-
age quality into analysis. In maximising the potential of
linked data in cohort studies, the relationship and communi-
cation between data providers, linkers, and analysts is key.

Firstly, an iterative process can be used to develop a link-
age strategy that is tailored towards a particular research
question or design (including a discussion of trade-offs
between sensitivity and specificity of linkage, if necessary).
This should include input from both those who know how
the data have been generated, and those who know how
the linked data will be analysed. An iterative process, where
initial linked datasets are created and evaluated, allows ana-
lysts to feedback information about any implausible links,
and to understand the balance between false and
missed matches.

Secondly, it is important to retain as much information
about the linkage process as possible. If deterministic linkage
has been used, then a match rank, or description of the link-
age step achieved (i.e. an agreement pattern for a set of
known identifiers), can be provided alongside each record
pair. In probabilistic linkage, match weights can be provided
for each record pair. It is also helpful to provide information
on multiple candidate links, especially where there is a small
margin of certainty about which is the most likely match.
This allows the researcher both to perform quality assurance
(i.e. ensuring that the highest weighted record really is the
best match, based on any other available data) and to
incorporate this uncertainty into analysis (e.g. using imput-
ation-based approaches as described above). Methods and
software to handle linkage error within analysis are currently
being developed under a Wellcome Trust grant (212953/Z/
18/Z). Guidelines are available to provide advice on the infor-
mation that can and should be shared between data pro-
viders, data linkers and data analysts, in order to facilitate
careful evaluation of linkage quality (Gilbert et al. 2018).

Linkage error is one aspect of data quality that should be
considered when using administrative data for research,
when these data were not collected primarily for research
purposes. The expansion of research using administrative
data makes it challenging to identify, a priori, the specific
challenges and potential for bias that might be important for
a given dataset or analysis. The relative importance of link-
age errors should therefore be considered in the context of
other potential causes of bias including inaccurate or incom-
plete recording or coding of exposures and outcomes
(Benchimol et al. 2015).

Linkage of administrative data holds great potential for
maximising the value of existing cohort studies, and for gen-
erating new electronic cohorts on a larger and more detailed
scale than has previously been possible. When conducted
carefully, linkage can generate data that are less subject to
attrition or response bias, in a more efficient and cost-effect-
ive manner that poses less burden on participants. However,
a lack of unique identifiers for linkage means that linkage
strategies need to be developed with care. Methods that
provide a quantitative approach to classifying record pairs
(i.e. using match weights) can help researchers understand
the trade-off between false and missed matches. Regardless
of the linkage methods used, some errors are likely to
remain, reflecting the dynamic and imperfect nature of
administrative data that are generated as individuals interact
with different services over time. It is vital that the
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mechanisms by which these errors might impact on results
are considered, so that potential biases can be identified and
mitigated in analysis.
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