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Abstract: A comprehensive theoretical investigation on the bit-error ratio (BER) performance
of multi-channel photonic interconnects operating in pulsed regimes is presented. Specifically, the
optical link contains either a silicon photonic crystal (SiPhC) or a SiPhC-graphene (SiPhC-GRA)
waveguide, possessing slow-light (SL) and fast-light (FL) regimes. A series of Gaussian pulses
plus complex white noise are placed at input of each channel, with output signals demultiplexed
and analyzed by a direct-detection receiver. Moreover, a rigorous theoretical model is proposed
to measure signal propagation in SiPhC and SiPhC-GRA, which incorporates all crucial linear
and nonlinear optical effects, as well as influences of free-carriers and SL effects. BER results of
multi-channel systems are evaluated by utilizing the Fourier series Karhunen-Loeve expansion
method. Our findings reveal that good BER performance is acquired at SiPhCs and SiPhC-GRAs
in SL regimes but with their footprint about 2.5-fold smaller than FL waveguides. Moreover, the
enhanced nonlinearity in SiPhC-GRAs induced by strong graphene-SiPhC coupling causes extra
signal degradation than SiPhCs at the same length. This work provides additional insights into
the coupling effect between SiPhCs operating in SL regimes and graphene, and their influence on
WDM signal transmission, highlighting the potential applications of SiPhC-GRA interconnects
in next-generation super-computing systems.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photonic networks with small footprint and low power consumption have established as a
promising and appealing solution for the rapidly increasing bandwidth demands created by
supercomputers, cloud data centers and internet-related industries [1–3]. After showing great
potentials in replacing copper wires [4], optical interconnects with ultrawide bandwidth and
extremely fast processing speed are envisioned to play more significant role in communications
at extremely small scale, including the infrastructures of board-to-board, node-to-node and even
chip-to-chip [5]. Silicon-on-insulator (SOI) material platform is viewed as one of the most
successful techniques to seamlessly implement optics into the chip-level communication networks
[6]. Especially, silicon (Si) photonic crystal (SiPhC) waveguide [7], which contains a line defect
in its periodic dielectric matrix, has exhibited distinguished optical properties encompassing high
index contrast [8], broadband transparency window [9], large dispersion and nonlinearity [10],
and good compatibility with CMOS electric circuitries [11].

#392907 https://doi.org/10.1364/OE.392907
Journal © 2020 Received 17 Mar 2020; revised 3 May 2020; accepted 13 May 2020; published 26 May 2020

https://orcid.org/0000-0003-3343-5548
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.392907&amp;domain=pdf&amp;date_stamp=2020-05-26


Research Article Vol. 28, No. 12 / 8 June 2020 / Optics Express 17287

Apart from the direct application of optical waveguides [12,13], SiPhCs also enable various
nonlinear functionalities, such as opticalmodulators [14], amplifiers [15], receivers [16], frequency
converters [17], and optical switches [18,19]. Moreover, SiPhCs allow for the engineering of
group-velocity (GV) of the propagating optical signals from the fast-light (FL) to slow-light (SL)
[20] regimes, causing a significant change in the waveguide dispersion and nonlinearity. More
specifically, optical losses [21], GV dispersion (GVD) [22], self-phase modulation (SPM) [23],
cross-phase modulation (XPM) [24], and two-photon absorption (TPA) [25], are enhanced in SL
regimes, leading to the degradation of signal quality, which in turn reduces the characteristic
lengths of dispersion and nonlinearity, as well as the device footprint. In multi-channel SiPhCs,
free-carriers (FCs) induce additional signal cross-talk, whose detrimental strength is further
enhanced in SL regions [26]. However, the advancement of SL effects in multi-channel photonic
systems is still not clear and worthy of scholar attention.
The one-atom-thick graphene, serving as an important family of two-dimensional (2D)

materials, has gained vast popularity in many fields, including electronics [27], membranes [28],
biomedical devices [29], sensors [30], energy harvesting and storage [31], beam manipulation
[32,33], phase resonance tuning [34], and composites and coatings [35], which is attributed to its
distinguished mechanical, thermal, electronic, and optical properties [36,37]. Specifically, zero
bandgap [38], large thermal conductivity [39], high carrier mobility [40], and tunable chemical
potentials [41] grant graphene great potentials for applications in active, ultrafast photonic
devices and electronic circuits at an extremely small scale. From a new aspect, graphene has
been theoretically and experimentally proved to own an exceedingly large nonlinear refractive
index [42,43], facilitating enormous possibilities for the innovations of graphene-based nonlinear
nanodevices. Thus, the integration of graphene with semiconductors or other 2D materials has
established as an exciting and intriguing route for chip-level device fundamentals and applications.
Despite graphene-Si hybrid waveguides being intensively explored in the last decade [44,45],
it is still not transparent how the interaction between graphene and SiPhC in SL regime would
affect practical applications of Si-graphene hybrid devices, especially in the case of WDM data
transmission whose signal is modulated by the return-to-zero (RZ) format. RZ refers to a format
of signal transmission where the low and high states are represented by “0” and “1”, whose
resting state during the second half of each bit is usually zero. Notably, RZ signals are more
often used in communication systems than the nonreturn-to-zero format, since the former is more
tolerant to optical nonlinearity and dispersion [46].

Herein, a theoretical investigation is conducted to study the transmission bit-error ratio (BER)
of multi-channel RZ photonic systems. Importantly, BER represents the number of bit errors
divided by the total transmitted bit number in a time interval. The investigated system consists
of an array of lasers serving as optical sources for Ñ communication channels, a multiplexer,
a Si-based photonic interconnect consisting of either a SiPhC waveguide or a SiPhC-graphene
(SiPhC-GRA) hybrid waveguide, a demultiplexer, and a direct-detection receiver for the central
channel (see Fig. 1). The input is a superimposition of Ñ-channel ON-OFF keying (OOK) RZ
modulated Gaussian pulses in a 512-bit pseudorandom binary sequence (PRBS) pattern, with
the ON and OFF power states of P and zero, accompanied by complex white noise. In order to
describe the signal evolution, a rigorous theoretical model based on the nonlinear Schrodinger
equations (NLSEs) is introduced, which measures all key linear and nonlinear optical effects, as
well as the FCs’ influences. Furthermore, the transmitted BERs in the central channel is evaluated
by utilizing the Fourier series Karhunen-Loeve series expansion (KLSE) method in coupled with
a perturbation theory. This work addresses a neglected aspect of SL effect in SiPhC-GRA and its
advantages for the multi-channel signal processing, promoting SiPhC-GRAs’ practicability in
chip-level device fundamentals and applications.
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Fig. 1. Schematic illustration of a multi-channel photonic system, which contains multiple
lasers with different wavelengths, a multiplexer, a photonic interconnect, a demultiplexer
and a direct-detection receiver for the central channel. Specifically, both a SiPhC waveguide
possessing the FL and SL regimes, and a SiPhC-GRA hybrid waveguide are utilized in this
system. The receiver consists of a bandpass optical filter Ho, a photodiode, and an electrical
lowpass filter He.

2. Theoretical models

2.1. Signal propagation in Si-based photonic waveguides

A rigorous theoretical model consisting of an array of coupled NLSEs and a rate equation
governing the FC dynamics is introduced to characterize the multi-wavelength optical pulse
propagation in SiPhC and SiPhC-GRA, as well as the mutual interaction between optical pulses
and FCs, which is explicitly expressed as [26],
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Unless other places are specified, all the simulations are taken from the 1st to Ñth channel. Here,
Am (z, T) is the pulse envelop for the mth wavelength, in unit of

√
W, where z and T are the

propagation length and the time in the central channel moving with velocity vg,c, respectively.
Notably, T= t-z/vg,c, with t to be the physical time. Take the mth channel for instance, β2,m is the
GVD coefficient, ωm is the carrier frequency, κm is the overlap between the optical mode and
waveguide active area and αin=50 dB/cm is the intrinsic loss [47–49]. Additionally, γm and γmj
are the third order nonlinear coefficients, with γmj capturing the coupling effect between mode m
and mode j. In terms of FCs, δnfc and αfc are the FC-induced refractive index change and FC
absorption (FCA) coefficient, respectively, τ0 is the FC relaxation time, which is assumed to be
0.5 ns [50]. Furthermore, the key parameters Dmj describe the transfer rate of the energy from
the optical field to FCs, which are given by,
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Here, Aeff is the effective mode area where FCs are generated, which is set to Aeff=a× h for
SiPhCs and SiPhC-GRAs. More rigorous definitions regarding Aeff can be found in [51]. It is
important to stress that the model in Eq. (1) is appliable to both SiPhC and SiPhC-GRA, since
the core of SiPhC-GRA is basically Si, in which the signal propagation is in presence of FCs. In
this context, the symbol ζ′(ζ′′) stands for the real (imaginary) part of the complex number ζ.

2.2. Characterization of photonic waveguides

In this work, two types of photonic waveguides are investigated, with their schematics being
illustrated in the central section of Fig. 1. More specifically, the first waveguide is a SiPhC
containing a line defect in a 2D hexagonal lattice of air holes in a Si slab, as shown in Fig. 1. Its
typical dimensional parameters include the lattice constant a, the thickness h, and the hole radius
of r=0.22a. The other one is a SiPhC-GRA waveguide, which contains a monolayer graphene
covering the surface of SiPhC. This enables the exploration of strong interaction between SiPhC
and graphene, and the nonlinearity enhancement. Though the core material of Si photonic
waveguides makes the dominant contribution to the nonlinear effects, it is no longer suitable to
characterize the optical nonlinearity inside SiPhC-GRAs. This is because graphene possesses
the one-atom-thickness and large nonlinear refractive index. In this context, the SiPhC-GRA
waveguides are proposed to maximize the waveguide nonlinear parameters, allowing for new
applications that require strong third-harmonics generation, four-wave mixing, Kerr effects, and
pulse compression at a significantly reduced power level.
The photonic band structure of SiPhC is shown in Fig. 2(a), where two guiding modes are

observed. Notably, all shaded areas in Fig. 2 represent the SL spectral regions. Particularly,
the mode A owns two SL spectral regimes while mode B only possesses one. The third order
nonlinearity of SiPhCs is determined by γ, which is mathematically expressed as,

γ =
3ωε0a
16v2g

Γ

W2 (3)

where Γ is the mode mediated scalar third order nonlinear susceptibility, and W is the optical
energy of the optical mode contained in the unit cell of SiPhC waveguides [26].

Fig. 2. (a) Mode dispersion diagram of the SiPhC waveguide. Notably, the yellow and green
areas represent the leaky and guiding modes, respectively. (b)-(c) Wavelength dependence
of ng, β2, γ′ and γ′′calculated for mode A (red curves) and mode B (blue curves). Here, all
shaded areas indicate the SL spectral domains defined as ng>20.

Obviously, it is seen from Figs. 2(b) and 2(c) that in the SL region, the group index, ng=c/vg,
the GVD coefficient β2, the nonlinear coefficients γ′ and γ′′ are much larger compared to the FL
region, indicating that the linear and nonlinear optical responses are strongly enhanced in SL
regime. This is because the GVD and waveguide nonlinearity are proportional to the quantities
of vg−1 and vg−2, respectively. Furthermore, as indicated in Fig. 2(a), it is possible to tailor the
dispersion of mode A from normal to anomalous regions by changing the lattice constant but
keeping ωa/2πc= a/λ constant. Based on this, we designed the SiPhC waveguides that possess
either normal or anomalous dispersion at the telecommunication wavelength 1550 nm (i.e., central
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channel), as well as the FL and SL spectral regions, which allows for the exploration of dispersion
influence on the system performance. Thus, in all investigated multi-channel systems, SiPhC
waveguides are divided into two categories, namely the type 1 waveguide (λc=1550 nm, β2<0)
and type 2 waveguide (λc=1550 nm, β2>0). All relative parameters for SiPhC waveguides in the
central channel are described in Table 1, which are derived by using the MPB algorithm [52].

Table 1. Linear and nonlinear optical parameters for investigated photonic waveguides

Waveguide Type λc [nm] a [nm] ng β2 [ps2m−1] κ γ′ [W−1m−1] γ′′ [W−1m−1]

SiPhC-FL-1 1550 412 8.91 -330.75 0.9937 724.26 220.7

SiPhC-FL-2 1550 406 9.28 368.30 0.9919 1102.9 336.1

SiPhC-GRA-FL-1 1550 412 8.91 -330.75 0.9937 1336.2 336.8

SiPhC-GRA-FL-2 1550 406 9.28 368.30 0.9919 2080.5 513

SiPhC-SL-1 1550 419 22.40 -1.76 ×104 0.9954 4388.1 1337

SiPhC-SL-2 1550 400 20.19 6.36 ×104 0.9902 6608.6 2014

SiPhC-GRA-SL-1 1550 419 22.40 -1.76 ×104 0.9954 8208.3 2019.7

SiPhC-GRA-SL-2 1550 400 20.19 6.36 ×104 0.9902 1.24 ×104 3041.7

In order to characterize optical properties of SiPhC-GRA waveguides, we should first proceed
with the surface quantities of graphene. Particularly, the sheet conductivity σs can be used to
depict the light-graphene interaction, which is expressed as [53],
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Here, σ0=e2/(4~) represents the universal dynamic conductivity of graphene, e is the single
charge, ~ denotes the reduced Planck constant, θ is a Heaviside step function, εF = 0.6 eV is the
Fermi level, and τ = 0.25 ps/2π is the relaxation time [39,54,55]. Notably, such settings ensure
the graphene sheet in the plasmonic regime, allowing for the coupling effect between surface
plasmonic polaritons of graphene and the SiPhC. Thus, the graphene’s wavelength dependence
of σs is shown in Fig. 3(a). Precisely, σs is composed of the intraband (Drude) part corresponding
to the first term on the right of Eq. (4), and the interband part relative to the following two terms.
Considering that the nonlinear effects in SiPhC-GRAs are affected by the optical nonlinearity of
graphene, the nonlinear optical conductivity of graphene is worthy of studying. Assuming that
electron-electron and electron-photon scattering as well as thermal effects are neglectable, the
nonlinear optical conductivity of graphene σ3 is defined as [39,56],
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iσ0(~vFe)2

48π(~ω)4
R

(
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)
(5)

Here, R(x)= 17G(x)-64G(2x)+ 45G(3x), G(x)=ln|(1+x)/(1-x)|+iπθ(|x|-1), vF=3a0r0/(2~) is the
Fermi velocity, a0=1.42 Å is the distance between the two adjacent carbon atoms in graphene, and
r0=2.7 eV is the nearest-neighbor coupling constant. The curves of σ3 is presented in Fig. 3(b),
which is directly related to the effective third-order nonlinear susceptibility of graphene.

To this point, the third order nonlinearity of SiPhC-GRA waveguides can be calculated using
the following relation [44],

γ =
2π
λ

∫∫
D s2z χ(3)(x, y)dxdy(∫∫

D szdxdy
)2 (6)

Here, sz denotes the time-averaged Poynting vector, D represents the core and cladding areas that
contain a propagating electrical field intensity, and χ(3) is the third-order nonlinear susceptibility.
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Fig. 3. (a) Spectral dependence of the complex sheet conductance of graphene, σs, with
the wavelength ranging from visible to mid-Infrared regions. (b) The third-order nonlinear
surface conductivity of graphene, σ3. The red curves represent the real part, while the blue
ones are the imaginary part for all cases.

Thus, the nonlinear parameters of SiPhC-GRA can be computed according to Eq. (6), with
waveguide coefficients of SiPhC-GRA at 1550 nm being presented in Table 1.

A vivid illustration of the time evolution for 10-channel noise-free optical signals propagating
in the type 2 waveguides of SiPhC and SiPhC-GRA that possess normal dispersion, is presented
in Fig. 4, with the bit sequence being “10001011” for each channel. One remarkable but
not surprising finding is that the optical signals exhibit a more significant degradation in SL
waveguides than the FL ones at the same length, in cases of SiPhCs and SiPhC-GRAs. This is
because the SL waveguide possesses larger nonlinearity than the FL waveguide, which would
induce the enhanced FCA, TPA and cross-absorption modulation that are responsible for the
severe signal degradation. Though not that obvious, the SiPhC-GRAs induce additional signal
distortion when compared to SiPhCs, which is caused by the strong coupling effect between
monolayer graphene and SiPhCs and the resulting enlarged nonlinear parameters. Alternatively,
the signal quality at the output of type 2 SL waveguides (L=200 µm, P=0.41P0 or P=0.38P0) are
comparable to that in type 2 FL waveguides (L=500 µm, P=0.42P0 or P=0.40P0), in cases of
with and without graphene monolayer integrated. The dynamics of FC carriers for SiPhC-FL-2,
SiPhC-GRA-FL-2, SiPhC-SL-2, and SiPhC-GRA-SL-2 are shown in Figs. 4(e), 4(f), 4(g), and
4(h), respectively. It is seen form these figures that approximately 2-fold of FCs densities are
generated in SiPhC-GRAs when compared with SiPhCs, valid for both FL and SL regimes.
Moreover, due to the enhanced nonlinear optical effects in the SL regions, their densities of FCs
are about 7-fold larger than FL regions, accounting for both SiPhC and SiPhC-GRAs.

Fig. 4. (a)-(d) Time domain and (e)-(h) carrier density evolution of a 8-bit noisy-free
Gaussian pulsed signal with average power P=10mW and bit window Tb=100 ps in 10-
channel photonic waveguides operating in FL and SL regimes. From left to right, the
panels correspond to waveguides of SiPhC-FL-2, SiPhC-GRA-FL-2, SiPhC-SL-2, and
SiPhC-GRA-SL-2.
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2.3. BER calculation for multi-channel RZ pulsed signals

A Fourier series KLSE approach [57] is proposed to calculate system BER for multi-channel
photonic systems, similar to the single channel detection case [58]. Additionally, a perturbation
theory is utilized to quantify the transmission matrix and the noise correlation matrix [59] in
the central channel. Here, input signals are a train of OOK modulated Gaussian pulses in a
512-bit PRBS pattern, in presence of complex additive white noise. Notably, the central channel
is referred as the qth channel for Ñ-channel systems, with q equaling to (Ñ+1)/2 (Ñ/2) when Ñ is
odd (even). This algorithm is also applicable to single-channel case, under condition of q= Ñ=1.
To start with, the optical pulsed field of qth channel at the front-end of the waveguide is

expressed as uq(t)=sq(t)+aq(t), with sq(t) and aq(t) to be noise-free Gaussian pulses and complex
additive white noise. Particularly, by using the Fourier series expansion, the noise term is written
in aq=

∑
nq,p·exp(iΩpt), where Ωp=2πp/Tc and Tc=Nb·Tb, with p ∈ [-Nb/2, Nb/2-1], Nb to be total

number of transmitted bits, and Tb being the bit window. Next, the real noise Fourier vector is
acquired, which is denoted as ãq=(n′q,−M ,. . . ,n′q,M , n′′q,−M ,. . . , n′′q,M)T, where the symbol T

represents transposition. The relatively small value ofM compared to Nb is selected to relieve the
computational burdens. Regarding the noise covariance matrix =<ãqãqT>, it can be computed
by combining the transmission matrix H with the initial covariance matrix (0), namely, (L)=

H (0) HT . Then, our emphasis shifts to the derivation of H via a perturbation theory. We
assume that the coupling effects between the noise in the central channel and that in the rest
channels can be neglected, so we only compute the covariance matrix for the central channel.
Specifically, in the central channel of waveguides, the noise free Gaussian pulses sq0(t,0) is
perturbed by a small quantity η·exp(iΩ$−M−1t) at the $-th frequency, where η � 1 and $ ∈ [1,
2M+1]. Thus, the perturbed pulsed signal is given by,

s$q (t, 0) = s0q(t, 0) + η exp(iΩ$−M−1t) (7)

After propagating through the photonic waveguides using Eq. (1), the output Gaussian pulse in
the central channel, sq$ (t, L), is obtained. What follows is to compute the Fourier coefficients
vector υ$ for the quantity ∆sq$ (t)= sq$ (t, L)−sq0 (t, L). This allows for the extraction of the
transmission matrix H, whose element is expressed as follows:

Hξ$ = υ$ξ

/
η (8)

where ξ ∈ [1, 4M+2]. Please note that η is a real positive number if ξ ≤ (2M+1), otherwise
η is a positive imaginary number. Thus, the (4M+2) ×(4M+2) real transmission matrix Ĥ is
acquired by expanding the (4M+2) ×(2M+1) complex matrix [H to Ĥ] = H′, H′′. Finally, the

noise covariance matrix (L) is addressed, since its initial matrix (0) can be directly computed
from the input white noise. Particularly, the interaction between the noises in the central channel
with the noise-free signal in all channels is considered, since the noise evolution at each frequency
is calculated in presence of Ñ channels.
Another important aspect is utilizing the Fourier series KLSE approach to compute system

BER at the output of the receiver. One key point of this detection strategy is that the surrounding
Ñ-1 (Ñ >1) channels are filtered out before entering the receiver, since they would otherwise
cause the phase distortion in the central channel [60], coincided with the receiver setup in Fig. 1.
The first step is to describe photocurrent yq(t) in a double Fourier transform,

yq(t) =
∫∫
∞

U∗q(ωm)Θ(ωm,ωk)Uq(ωk)ei(ωk−ωm)tdωmdωk (9)

Here, Uq(ω) is the Fourier transform of the input pulsed signals for the receiver, and Θ(ωm,ωk)=
Ho*(ωm) He(ωm-ωk) Ho(ωk) is the Hermitian kernel, with Ho(ω) and He(ω) to be the Fourier
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transform of optical and electric filters. Next, the receiver matrix is written in a new form of Ξ
=[Θ′, Θ′′; Θ′′, Θ′], ensuring that all elements are real. Moreover, the moment-generating function
(MGF) of yq(t) is calculated, in which the Cholesky factorization is utilized to decompose the
noise covariance matrix and then an orthogonal matrix is employed to diagonalize the correlation
matrix consisting of receiver matrix and noise covariance matrix [58]. Importantly, the dimension
of the correlation matrix is (4M+2) ×(4M+2). Thus, the MGF of yq(t) is mathematically
expressed as,

Ψyq (s) =
4M+2∏
k=1

exp( ρk |ϑm |
2s

√
1−2ρks

)√
1 − 2ρks

(10)

where ρk are the eigenvalues of the correlation matrix, and ϑm are the transformed signals for
yq(t), detected at the middle of each bit interval tm. Finally, the system BER is computed via the
following relation,

P =
1
2

[
P(yq>yth,q |uq = 0) + P(yq<yth,q |uq =

√
Pq)

]
(11)

where the first (second) term stands for the error occurrence probability when “0” (“1”) bits
are transmitted in the qth channel, and yth,q is the corresponding threshold for detection. These
probability density functions are obtained by performing Riemann-Fourier inversion [61] on the
MGFs, which can be further simplified by utilizing the saddle-point approximation [57]. More
details for signal detection algorithm are reported in [58].

3. Results and discussion

For a better illustration for the application of our theoretical models in the practical communication
systems, we consider a Ñ-channel (Ñ = 1-8) OOK system (λc=1550 nm) operating in the RZ
regime, with the signal bit rate remaining unchanged at Br = 10 Gb/s (bit window Tb=100 ps)
and the signal pulsewidth of Tp=20 ps. A PRBS of Gaussian pulses with 29-1 bits and a zero bit
are utilized in this work, encompassing all possible patterns for 9-bit sequence. Additionally,
we select the average power of P=10mW for the input pulses, which is in a similar power level
as the recent experimental study of the multi-channel Si-based waveguides [22]. Two types of
photonic waveguides, SiPhC and SiPhC-GRA, which possess both FL and SL regions, as well as
normal and anomalous dispersions, are investigated in this work (see Table 1), with the length of
FL and SL waveguides to be L=500 µm and L=200 µm, unless otherwise specified. Regarding
the direct-detection receiver, the 3-dB bandwidth of an electrical filter is Be=10 Gb/s, while the
optical filter is equipped with a 3-dB bandwidth Bo that satisfies Bo=4Be.

One important factor that most influences the transmission BER is the GV, since it determines
the strength of linear and nonlinear optical effects that affect the propagating signals. As shown
in Fig. 2(a), it is feasible to alter vg from the FL to SL regime by simply changing the signal
frequency. Thus, we begin to investigate the system performance in the multi-channel SiPhC-FLs
and SiPhC-GRA-FLs interconnects with both normal and anomalous dispersion, accounting
for the various number of channels and input signal-to-noise ratio (SNR). Note that SNR is
defined as the ratio between the power of Gaussian pulses and the average of the powers of
the complex white noise in this work. In Fig. 5, we plot the BERs in the central channel of
various FL systems whose number of channels changes from 1 to 8. One significant finding of
the WDM photonic systems is that the BER increases significantly with the number of channels,
which is more obvious in cases of SiPhC-GRA-FLs. This phenomenon is expected, since the
influence of inter-channel interactions induced by nonlinear effects and FCs is enhanced when the
number of channels turns larger. In terms of the SiPhC-FL waveguides, the BER performance in
anomalous dispersion (type 1, left) region is much better than that in normal dispersion (type 2,
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right) regime, which can be explained by the fact that the nonlinearity of SiPhC-FL-2 is almost
2-fold larger than SiPhC-FL-1. This conclusion is also applicable to the SiPhC-GRA-FLs with
these two dispersion regimes. Furthermore, in comparison with the SiPhC-FL waveguides, the
SiPhC-GRA-FL waveguides have a far worse system BERs, which is attributed to the coupling
effect between the surface plasmonic polaritons of graphene and the optical modes of SiPhC-FLs
and the resulting enhanced optical nonlinearity.

Fig. 5. System BER versus SNR, calculated for two types of multi-channel Si-based
photonic systems operating in FL spectral regions. Here, the number of channels varies
from 1 to 8. The investigated waveguides and their lengths are SiPhC-FL (top, 500 µm) and
SiPhC-GRA-FL (bottom, 500 µm). The left panels correspond to the type 1 waveguides,
whereas the right ones represent type 2 waveguides. In all simulations, P=10mW, Br=10
Gb/s, Tp= 20 ps.

Alternative insights into the contribution of nonlinear effects to the system performance are
furnished by the BER evaluation in the multi-channel SL waveguides. As presented in Fig. 6,
apparently, the BERs in both SiPhCs and SiPhC-GRAs operating in SL regimes are comparable
to the cases of FL regions shown in Fig. 5 to some extent, which indicates that an excellent
system performance can be obtained in the multi-channel SL interconnects provided that their
length is properly reduced. Moreover, the difference between BER curves in the normal (type 2)
and anomalous (type 1) regions is much larger than that in SiPhC-FLs and SiPhC-GRA-FLs,
which is caused by the enhancement of the dispersion and optical nonlinearity, leading to a larger
BER variation with number of channels. On the other hand, it is found that transmission BERs
in the normal dispersion regions (type 2) of SiPhC-SLs and SiPhC-GRA-SLs are significantly
smaller than the anomalous regions (type 1), while the opposite situation is observed in the FL
cases, accounting for different number of channels. Particularly, due to the enlarged optical
nonlinearity in the SiPhC-GRA-SLs, the overall BER is not as good as SiPhC-SLs. Also, it
should stress that transmission BER exhibits the strongest variation with number of channels in
cases of SiPhC-GRA-SLs.

In other aspect, it is noticeable that the type 1 and type 2 of SiPhC-FL and SiPhC-SLwaveguides
in Table 1 are associated with different dispersion regimes and different GV. As mentioned earlier,
it is achievable to tune the waveguide from the FL to SL regimes by moving the point (fixed
at a/λ) from the un-shaded regions to the shaded areas of Mode A. Hence, if the wavelength
remains at 1550 nm, the lattice constant would vary accordingly. Moreover, it is easily validated
that in SiPhCs β2 and γ are proportional to a and a−3, respectively. This means that for a specific
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Fig. 6. System BER versus SNR, calculated for two types of Si-based photonic systems
operating in SL regimes, accounting for the number of channels changing from 1 to 8. From
top to bottom, the panels correspond to SiPhC-SL (200 µm) and SiPhC-GRA-SL (200 µm),
respectively. Here, the solid lines in left panels stand for the type 1 waveguides, while the
curves in right panels represent type 2 waveguides. In all cases, P=10mW, Br=10 Gb/s,
Tp= 20 ps.

wavelength, β2 increases with a larger a, while the opposite case is true for γ. The degradation
rate of γ with a is much faster than the increase rate of β2, and vice versa. When considering
the waveguides of SiPhC-GRAs, their GVD and partial nonlinearity from SiPhC contributions
also satisfy the above relation pertaining to lattice constant. Thus, the waveguide nonlinearity of
SiPhC-GRA waveguides will increase significantly with a smaller lattice constant, especially
under the coupling effect between graphene and SiPhCs. These facts are responsible for the
variation of BER in different multi-channel systems presented in Fig. 5 and Fig. 6.

4. Summary

In conclusion, we have established a complicated theoretical and numerical study of the BER
performance for multi-channel photonic systems working in the pulse regime. We have included
two types of Si-based photonic waveguides, which are a SiPhC waveguide a a monolayer
graphene-SiPhC integrated waveguide, providing efficient communication platforms for multi-
wavelength Gaussian pulses in a 512-bit PRBS pattern. Our results reveals that both the SiPhC
and SiPhC-GRA waveguides possess the FL and SL spectral regimes, whose dispersion and
nonlinearity are enhanced in SL regions, allowing for quantifying the contribution of GV to
BER in presence of different number of channels. Meanwhile, the dependence of BER on
the waveguide dispersion regimes, namely the normal and anomalous dispersions, has also
been addressed in this work. Furthermore, due to the enlarged nonlinear optical parameters in
SiPhC-GRA waveguides, their overall BERs are larger than SiPhCs at the same length. Equally
important, the acceptable and commensurate BER performance can be achieved in the SiPhCs
and SiPhC-GRAs, but with the waveguide length 2.5 times shorter in SL regimes compared to
the FL regions. The theoretical models and numerical techniques introduced here can be utilized
to explore other optical interconnects or more sophisticated devices in practical applications,
paving the ways for the design and construction of the next-generation graphene-based chip-level
photonic networks.
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