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Abstract

In the recent years, there has been an impressive advance in the study of models in which 
(boundedly rational) economic agents adjust their behavior over time, in reaction to the 
additional information they acquire as time progresses.

Some of these models involve the use of autonomous continuous-time dynamical systems, 
known in the literature as selection dynamics, in which the adjustment process is directly linked 
to the relative performance of each strategy at each given point in time.

The aim of the thesis is to contribute to this line of research exploring the formal properties 
of these dynamics, as well as modeling suitable economic environments in which these dynamics 
can be applied.

In particular, the thesis explores the behavior of selection dynamics in three different game- 
theoretic frameworks: (game-form) mechanisms, extensive form games and games with pre-play 
communication.

A (game-form) mechanism is a game whose equilibria satisfies certain desirable properties but 
which does not necessitate vast amount of knowledge by the authorities {'the planner") to put 
it in place. Instead, this social arrangement should basically self police itself, and the planner 
should only make sure that the rules of the game are correctly followed by the agents.

An extensive form game is a game in which players move sequentially, and make use of the 
information they acquire as the game proceeds to improve their performance.

A game with pre-play communication is a game which is preceded by a stage in which the 
agents are allowed to send costless signals to their opponent, in order to influence their 
behavior.

In all these situations, the analysis of the learning dynamics we described leads to conclusions 
which contradict traditional game theoretic analysis, but seem to suit more closely the empirical 
and experimental evidence in the field.
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C o n t in u o u s -T im e S elec t io n  D y n a m ic s  

AND T h eir  E c o n o m ic  A p p u c a t io n s



C h apter  1 
In t r o d u c t io n

1 .1 .  E v o l u t io n a r y  D y n a m ic s  a n d  E q u i u b r i u m  A n a l y s is

Since Adam Smith [1776] introduced the notion of natural price, as "...the central price, to 
which the prices of all commodities are continually gravitating..." it is difficult to think of an 
idea that has been more widely applied in economic theory than the concept of an equilibrium. 
Yet, it is even more difficult to name another concept about whose interpretation has evolved so 
sharply along the years. Consider, for example, the alternative equilibrium notions proposed by 
Walras [1874], Cournot [1838], Marshall [1916], Keynes [1936], Arrow and Debreu [1954], Hahn 
[1973], Lucas [1972], Cass and Shell [1983]...

Despite its pervasive use in economic modeling, serious questions concerning the 
foundational aspects of equilibrium analysis remain, questions that are too serious to be 
dismissed as mere academic puzzles. Market fluctuations and imperfections are endemic in real- 
life economics. From the unemployment equilibria of Keynesian memory, to the various real 
business cycle and disequilibrium theories proposed in later literature, the focus on equilibrium 
analysis has been continuously challenged, on various grounds and from different perspectives.^

Clearly, game theory cannot avoid considering the foundational aspects of equilibrium 
analysis, since it is an equilibrium concept, namely Nash equilibrium, which has made its 
fortune. In this respect, we shall follow Binmore [1987-8] in distinguishing between two 
alternative justifications of equilibrium analysis which have been maintained by the game- 
theoretic tradition:

• an eductive justification, which relies on the agents’ ability to reach equilibrium through 
careful reasoning. Since agents are fully rational, they can always correctly predict their 
opponents’ behavior and maximise against it;

^For a synthetic survey on disequilibrium theories, see Benassy [1987].



• an evolutive justification, which relies on the possibility that (partially rational) agents reach 
equilibrium by means on some adjustment processes.

The aim of this dissertation is to contribute to the latter methodological approach with the 
aid of evolutionary dynamics, which are meant to describe how imperfectly rational economic 
agents may adjust their behavior over time, in reaction to the additional information they 
acquire as time progresses. In other words, the evolutive approach we pursue tries to answer 
the following (apparently simple) question:

how do we learn to play games?

We shall break this grand question into smaller pieces. By doing so, we will introduce the 
main methodological assumptions on which the evolutionary paradigm (or, at least, the 
evolutionary paradigm we follow in this dissertation) is based.

• Where do we leam? That is: which are the institutional (strategic) features of the 
environment in which our agents are assumed to operate? In this respect, the literature to 
which we refer makes the following assumption: in formalising how people’s behavior 
changes over time it considers models in which the interaction structure is exogenously 
given and fixed, in the form of an (infinitely) repeated game.2 Moreover, and perhaps more 
crucially, the strategy space (i.e. the set of possible behaviors our agents may adopt) 
coincides with the strategy space of the stage game. In this respect, evolutionary games 
differ from other strategic frameworks like differential games (in which the current payoff is 
a function of time) ot supergames (in which strategies are defined over time-paths).

It may be worthwhile noting that any justification of this (drastic) assumption, apart from 
mathematical tractability, contains serious weaknesses. It is impossible to consider two 
situations as being absolutely identical, or in which we totally neglect the future 
consequences of our actions. However, when interaction is anonymous (i.e. takes place 
among a large population of agents who have no prior knowledge of the identity, the 
history, or any other relevant characteristics of their opponents), this framework appears to 
be more reasonable (and this is the reason why the literature has focused almost entirely on 
this case).

• What do we leam  (from)? In this respect, we follow Selten [1991] by distinguishing three 
class of learning models:

(i) rote (individual) learning models, i.e. models in which success and failure directly influence 
choice probabilities;

(ii) imitation (social) learning models, in which success and failure of others directly influence 
choice probabilities;

^Exceptions that develop models of learning when games are similar are those of Li Calzi [1993] and Romaldo [ 1995].



(iii) belief \ t 2inm% models, in which experience has only a direct effect on players’ beliefs, 
usually characterised as probability distributions over the possible states of play.)

In the dissertation, we will mainly deal with models of the first two categories, in which 
players need not know (or care) a great deal about the game they play, other than the payoff 
they (or other agents in the population) obtain.^

A related question along these lines could be the following:

• Do we leam  only from current states of events, or do we remember, making constant use 
of the information acquired in the past? In formalising how people’s behavior changes over 
time, we shall consider models in which there is no memory. The quantitative features of 
the adjustment process (i.e. the vector field) are in fact completely determined by the 
behavior of the system at each point in time.)

Numerous other questions could be asked^, but we shall stop here. To address these 
problems correctly, we need a theory of the mind which accounts for the cognitive processes by 
which agents make their decisions, in games as well as in other circumstances. Unfortunately, no 
such a theory exists, and perhaps, never will. All we have is a set of conflicting paradigms, which 
one can use to shed some partial light on one of aspect of the problem.

The behavioral paradigm we shall follow is that of evolutionary game theory. In their 
standard formulation, evolutionary models are based on the assumption that agents’ behavior is 
genetically programmed, i.e. encoded in the genes which characterize each agent’s type. If 
such a representation is to be applied to study economic environments, it has been argued, this 
can only be at a metaphorical level. Borgers [1996] provides three good reasons why it should 
be SO:

• it is not practically feasible, given the state-of-the art knowledge in genetics, to derive 
predictions of human behavior by appealing to its genetic determination;

• the way in which genetic codes determine behavior seems to be very complicated;

• the adaptation of human genes appears to occur so slowly that predictions which rely on this 
mechanism appear to be problematic.

)A typical example of a belief learning model is the classic fictitious play dynamics, first introduced by Brown [1951]. According to 
fictitious play, the agent select, at each point in time, the pure strategy which maximises utility against the mixed strategy in 
which probabilities equal the relative frequency with which each pure strategy has been observed in the past. Recent papers in his 
research field include Jordan [1991], Fudenberg and Kreps [1988], Kalai and Lehrer [1191], Milgrom and Roberts [1990]. See 
Battigalli et a/. [1992] and Fudenberg and Levine [1997] provide comprehensive surveys on this research field.

'̂ A noticeable exception is the model contained in Chapter 4, in which belief learning will also be considered.
)Some might regard also this assumption as unreasonable. Take for example, the case in which the dynamics exhibit limit cycles 

like, for example, the model of chapter 3 of this dissertation. This would imply that the agents are not able to recognise this cyclic 
pattern and modify their response in reaction to it. As Fudenberg and Levine [1997] argue: "we suspect that i f  cycles persisted long 
enough the agent would eventually use more sophisticated inference rules that detected them; fo r  this reason we are not convinced 
that models o f cycles in learning are useful descriptions o f actual behavior... ” (p. 3). The fact that the system is autonomous simply 
discards this possibility: whenever the agents find themselves in the same state (i.e. play a mixed strategy in the limit cycle set), 
the adjustment process (i.e. the vector field of / )  is the same, and therefore, leads to an infinite repetition of that cyclic behavior. 

% ke, for example, when {or how fast) do we leam  ?



Such criticisms take for granted that evolution is to be understood in a strictly biological 
sense. However, social evolution is also worthy of study, and evolutionary dynamic models have 
been justified by some recent literature which derives dynamic adjustment processes similar to 
those studied here starting from concrete models of social interaction.^ But before we look at 
these models in more detail, it will be instructive to examine some simple examples from a 
biological perspective.

1 .2  S o m e  S im p l e  E x a m p l e s

Consider the following 2x2 game:

C D

X C 

l - x D

3 ,3 2 ,4

4 ,2 1,1

Figure l . l  
The game Chicken

known in the literature as the game Chicken. In a biological context (see Maynard Smith 
[1982]), this payoff structure can be used to model the interaction between two animals 
contesting a resource of fixed value (6, in our example), which is efficiently distributed only if at 
least one of the two contestants “cooperates” (i.e. does not fight) Alternatively, following 
Schelling [I960], one can think of Chicken as a tacit bargaining situation: given that the players 
differ in their ranking of the various equilibrium outcomes, the choice of a particular equilibrium 
has clear distributional effects, since a better bargain for a player always corresponds to less for 
the opponent.

Let “Anna” (A) denote the row player, and “Beppe” (B) the column player. First notice that 
the game has two asymmetric Nash equilibria in pure strategies, namely (C,D) and (D,C), and 

a symmetric Nash equilibrium in mixed strategies in which both strategies are played with equal 
probability. We start by assuming that Anna and Beppe are drawn from a single (large) 
population of agents whose behavior is genetically encoded. Let x (resp. 1-%) denote the 
relative frequency of agents programmed to play strategy C (D). Suppose that the game’s payoffs 
represent the fitness, measured as the number of offspring per time unit. Each individual 
offspring is absolutely identical to its single parent. Under the above assumptions, it can be 
shown9 that the fraction x  of the population playing strategy C can be approximated by the 
following differential equation:

X = x{{2 + x ) - ((2 + x)x + (1 + 3x)(l -  x))) = x(l -  x)(l -  2x) (1.2.1)

7See § 1.4.
^Following a well-established tradition, throughout the dissertation we shall label the two strategies C (for cooperate) and D  (for 

defect), the latter identifying the m inm ax  strategy of the game.
%ee, for example, Binmore [1992], Chapter 9.

10



x ( t )
in which the growth rate equals the difference in payoffs between the pure strategy C and

the mixed strategy in which the pure strategy C (D) is played with probability x  (\-x). We call 
the latter the population strategy. We will make constant reference, throughout the 
dissertation, to dynamic processes of this kind, known in the literature as Replicator Dynamics, 
which have been regarded as stereotypical natural selection processes.

We shall start by looking at the dynamics (1.2.1) in more detail. First note that (1.2.1) has 
three restpoints, i.e. solutions of the equation i  = 0. These restpoints are % = 0, x = l and 

a: = - .  If the system starts at any of these points, it will remain there forever. We shall be

interested in the evolution of (1.2.1) when %(0)e(0,l), that is, when both strategies are 

present in the initial population:

• Proposition l . l .  Any interior solution %(x(0),f) of (1.2.1) converges to 1 / 2 .

To see why, look at the following figure 1.2. In figure l.2a) we plot x'(t) as a function of 
x(t), while in figure 1.2b) we trace some interior trajectories of (1.2.1).

X [ t ]

0 . 05

x [ t ]

- 0 . 05

x [ t ]

0
0
0
0

t
10 15  200 5

a) b)

FIGURE 1.2
The Replicator Dynamics and the game Chicken in a single-population environment

As figure 12a) shows, %%f) is positive (negative) for any x{t) below (above) 1/2. Therefore, 

any interior trajectory must converge to the point which corresponds to the (symmetric) mixed 
strategy equilibrium.

Consider now an alternative scenario. Assume instead that the agents are drawn from two 
distinct populations; one population of Annas and one population of Beppes. matched at random 
to play the game of figure 1.1. Since there are now two reference populations, it is no longer 
true that the relative frequency of Annas who cooperate should equalise (in expected terms) the 
relative frequency of Beppes who cooperate. Other things being equal (i.e. we shall maintain

more complex framework, which allows for intra-specific interaction, is analysed in the works of Selten [1983] and Cressman 
[1992,1995].

11



the assumptions about the reproductive process, which now takes place in the two separate 
populations) we look at the dynamic properties of this new setting:

0

0

0

0

0 . 2 0 . 4 0 . 6 0 .8 1

Figure 1.3
Replicator Dynamics and Chicken in a 2-population environment.

Let X be the relative frequency of Beppes who defect, and y  be the relative frequency of 
Annas who cooperate. Figure 1.3 displays a phase diagram of the Chicken game given this new 
two-population setting. The picture is now quite different: the two asymmetric (strict) Nash 
equilibria in pure strategies attract any interior trajectory other than the one which corresponds 
to the Nash equilibrium in mixed strategies at (1/2,1/2).

•  Pr o po sitio n  1.2. Any generic interior trajectory of the Replicator Dynamics, in the two- 
population case, converges either to (C,D) or to (D,C).

Pr o o f . See Weibull [1995], Chapter 5. #

Consider now another modification of the strategic interaction proposed above. Assume that 
now players move sequentially: Anna moves first, deciding whether to cooperate or to defect. If 
Anna cooperates, the games ends; if Anna defects, then Beppe has to decide whether to 
reciprocate defection or to cooperate in return. Under this new assumption, the strategic 
scheme can be represented by means of the following extensive-form game of perfect 
information:

[ . 1
2 j

l - x X

C D

y C 2 ,4 2 ,4

l - y D 4 ,2 1,1

12



F ig u r e  1 .4  
V[\t Entry %2mt

known in the literature as the Entry game^i. The latter can be interpreted as a situation in 
which Anna (the potential entrant) has to decide whether to challenge Beppe (i.e. to play D) 
under the threat that Beppe (the incumbent) may fight back (and this would lead to an 
inefficient outcome for both players). On the other hand, she also knows that she can credibly 
commit herself to defection, since her action is perfectly observed by Beppe before he is asked 
to move.

We will analyse this game in more detail later in this chapter; 12 at this point we simply note 
that the game of figure 1.4 has a Nash (subgame-perfect) equilibrium in pure strategies, namely 
(D,C), and a com ponent (that is, a closed and connected set) of Nash equilibria with the 
common property that Anna opts out with probability 1 and Beppe plays his (weakly dominated) 
strategy D with some positive probability . Let the symbol ./^ d en ote  this component. In the 
following figure 1.5 we trace some interior trajectories of the Replicator dynamics of the Entry 

game.-

0

0

0

0

0. 8 10 . 2 0 . 4 0 . 6

FIGURE 1.5
The Replicator Dynamics and the Entry game

Note that there are interior trajectories which lead to the Nash equilibrium component 
I n  other words, the players’ limiting behavior may fail to eliminate strategies which are weakly 
dominated:

•  P ro p o s i t io n  1.3. Any interior trajectory of the Replicator Dynamics converges to a Nash 
equilibrium of ihe Entry game, with each (x.y) e ./^ b ein g  the limit point of some interior

solution.
Pr o o f . See Binmore etal. [1995], Proposition 1. é

^^See Selten [1978]. 
12See § 1.7
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We conclude this brief overview by returning to coming back to our original example, the 
game Chicken played by a single population. One might argue that the reason why, in 
equilibrium, the agents get (on average) less than the full share of the cake )̂ is that the game is 
symmetric, but has with asymmetric (efficient) equilibria. Given that players are drawn from a 
single population, only symmetric mixed strategy profile are possible, therefore the possibility of 
a convergence toward one of the two efficient asymmetric equilbria is excluded.

However, even if payoffs are distributed in a symmetric fashion, it is difficult to think of a real- 
life situation in which the position of the two players is absolutely interchangeable. As Maynard 
Smith [1982] points out; “..Most actual contests, however are asymmetric. They might be 
between a male and a female, between an old and a young or a small and large individual, 
or between the owner of a resource and a non-owner. An asymmetry may be perceived 
beforehand by the contestant; if so, it can and usually will influence the choice of action.

One might then argue, along these lines, that if the agents’ possibilities were somehow 
enlarged, to allow some kind of “communication” before the game is played (or simply to 
condition their choice to some signal they receive, without any explicit communication actually 
taking place), this new feature of the game might solve their (anti)coordination problem, 
providing the (anti)coordination device they need to play efficiently in the stage game. In the 
terminology of game theory, such costless pre-play communication is often termed as cheap 

talk.
Following Maynard Smith [1982], assume that the (unmodeled) matching process is such that 

the stage game is always played between a female (Anna) and a male (Beppe), with Annas and 
Beppes present in the population in equal number. i5Now introduce a new type B to the 
cooperators and the defectors labeled C and D. The bourgeois type which can condition its 
behavior on its own gender. In particular, any bourgeois will play D if Anna, and C if Beppe.

X C 
y D  

l - x - y B

3 ,3 2 ,4
5 7 

2 ’ 2

4 ,2 1,1
5 3 

2 ’ 2
7  5 

2 ’ 2

3 5 

2 ’ 2
3 ,3 x [ t ]

0 . 2  0 . 4  0 . 6  0 . 8  1 C
FIGURE 1.6
Maynard Smith’s “Hawk-Dove-Bourgeois” Game

^^Since the expected payoff, for each player, in the case of the mixed strategy equilibrium is equal to 2.5.
^^See Maynard Smith [1982], p. 22.
^^This assumption can be easily justified if such asymmetry comes naturally from the strategic setting (buyer vs. seller, 

incumbent vs entrant, and so on).
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• Pro positio n  1.4. Any interior solution of the Replicator Dynamics in the case of the “Hawk- 
Dove-Bourgeois” Game evolves to B.

PROOF. See the Appendix, é

In other words, only the agents who are able to condition their strategy on their player 
position in the stage game will eventually survive.i^ We have here an evolutionary explanation 
for the emergence of asocial norm of chivalry!

To summarise: we are now in possession of new techniques which allow us to develop more 
sophisticated evolutionary models (both with respect to the stage game and the dynamics) in 
which asymmetric and sequential structures of various forms can be analysed.i^ As our brief 
overview suggests, these specifications matter, as they do indeed in traditional game-theoretic 
analysis. However, evolutionary models seem to provide answers to these problems which are 
closer to our intuition, and to the experimental evidence. The aim of this dissertation is to 
contribute to this line of research, both on the theoretical side (exploring the formal properties 
of these dynamics), and by providing interesting economic problems to which this methodology 
can be fruitfully applied.

1 .3 .  C o n t i n u o u s -T im e  E v o l u t io n a r y  D y n a m i c s . H i s t o r y a n d  M a i n  R e s u l t s

This section provides a summary of the theoretical results which will be used in subsequent 
analysis.

Before doing so, we choose the notation. Let 3  denote a (finite) set of players, whose 
generic element will be denoted by i. The players repeatedly interact, playing a given (finite) 
normal form game r  = {3 ,S'.,»,}. A player’s behavior is formalised as the mixed strategy she 

adopts at each point in time. Denote with r^{t), i e  3 , the probability at time t with which 
player i, selects her pure strategy 6 S,., with r f t )  = {r.(t))  denoting the vector collecting 

such probabilities. Thus, we have rft) e  A,., with A. denoting the |S, -  l|-dimensional simplex 
which describes player i ’s mixed strategy space. We also consider the vector r(t) = {/;(0},i e  3  
as \he state of the system, defined over the state space A = x^A,., with A” denoting the relative

interior of A , that is, the set of completely mixed strategy profiles.^®

•  Assum ption  l.l. The evolution of r(t) is given by the following system of continuous-time 

differential equations:

similar approach has been proposed in the analysis of coordination games in which pure strategy equilibria are Pareto 
rankable. In this case cheap talk acts as a coordination device for those who can condition their actions on such costless signal. See 
Robson [1990], Blume, Kim and Sobel [1993], Schlag [1993].

clear signal is the growing literature which reviews and organise, in the form of monographs if not textbooks, the state-of-the- 
art research in the field. Among others, see Fudenberg and Kreps [????], Fudenberg and Levine [1997], Samuelson [1997], Weibull 
[1995], together with the classic Hofbauer and Sigmund [1988].

^^By analogy. A*] will denote the set of completely mixed strategies of i .

15



(1.3.1)

We refer to the autonomous system /  =(/;) = ( ( / ; ' , . . . , as these/ecr/ow

dynamics, i. e. the term that captures the relevant forces that govern the players’ strategy 
revisions.. 19 Some terminology is needed to specify the set of assumptions on f\

•  D e f in i t io n  l . l .  f  is said to yield a (continuous-time) regular dynamic if the following
conditions are satisfied:

• Lipschitz continuity2o
• £ /;* (r (0 )= 0 ;/G 3

keS,

lim exists and is finite.

This regularity assumption has the implication of making the growth rates
 ̂ (0

continuous over the state space A, and that (1.3.1) has a unique solution through any initial 
state which leaves A, as well as A", invariant: any solution path starting from (the relative 

interior of) A does not leave (the relative interior of) A :

r*(0)>0<3>/}*(0>0;Vr>0

We have here a “no creation/no extinction” property: any pure strategy which is played with 
positive probability at time zero will also be played in any finite time interval. On the other 
hand, if a strategy is not played at time zero, it will never be used.

To complete the description of the dynamics we need to establish a formal link between the 
selection dynamics and the game payoffs. We do so by introducing what are probably the most 
popular evolutionary dynamics, that is, the Replicator Dynamics (Taylor and Jonker [1978]).

F* (t)
According to the Replicator Dynamics the growth rate of strategy s f , yf(KO) = ~i— , equals

 ̂ (0
the (expected) payoff difference between strategy sf and the mixed strategy /;.(r):

r^(t) = r^(t)(u.(sf,r_.(0) ~ (1-3.2)

Taylor and Jonker [1978] propose two alternative interpretations for (1.3.2):

^^Note that, as we noted earlier, there is an implicit “Markov” assumption in (1.3-1); the strategy revision process undertaken by 
the players is only affected by the current state r(t).

2®Sometime, (see, e. g. Cressman [1997]) the condition of Lipschitz continuity is replaced by the stronger requirement of 
continuous differentiability. In this latter case the dynamics are defined smooth regular.

16



• there is a single agent for each player’s position i, who selects her pure strategy at time t 
starting from a probability distribution which follows the dynamics (1.3.2) as a result of some 
(unmodeled) learning adjustment process;

• there is a population of agents who are genetically programmed to play a particular 
strategy. An (unmodeled) natural selection mechanism governs the relative shares of each 
type in the population, whose law of motion evolves according with (1.3.2).

While the latter interpretation seems to suit more closely the biological evolutionary  
metaphor we used earlier in this chapter, the former considers the evolutionary dynamics as a 
proxy of an individual learning process. In the following § 1.4 both these interpretations will be 
derived formally. î

Since the introduction of the Replicator Dynamics by Taylor and Jonker [1978], a plethora of 
alternative definition has been proposed, in order to capture within a more general framework 
the "success breeds success” intuition implicit in the dynamics (1.3.2). The first noticeable 
attempt in this direction leads to the notion oiselection dynamics due to Nachbar [1990]. In his 
paper, he defines a selection dynamics as a regular dynamics which satisfies the condition of 
monotonicity:

• Definition 1.2. A regular selection dynamics is said to satisfy the property of monotonicity 
(MS hereafter) if:

; M,.(5*,r_,.(0)> ,.(0) <=> 7,*(KO)^ 7,*'(KO) (13.3)

The condition of payoff monotonicity tries to capture an appealing property of the Replicator 
Dynamics: given the mixed strategy profile played at each point in time, more successful pure 
strategies grow at a higher rate, compared to poorly performing ones. Samuelson and Zhang 
[1992] extend the condition of mono tonicity to mixed strategies, introducing the notion of 
aggregate monotonicity:

• Definition 1.3. A regular selection dynamics is said to satisfy the property of aggregate

monotonicity (AMS) if:

V(t,.,(t; g a ,. ; M,.((j,.,r_,.(0) > M,(t7;,r_.(0) <=> ^  yf (K0)<7f ^ %  7f(K 0)<* (13.4)
keS,  keSj

that is, if a mixed strategy cr,. yields a higher expected payoff than against the mixed strategy 
played by i ‘s opponents at time t, the vector field induced by /(KO) should point “more” in

2^0ne of the aims of Taylor and Jonker’s [1978] article was indeed to establish a link between the equilibrium concept of 
Evolutionary Stable Strategy (Maynard Smith and Price [1973]) and an evolutionary dynamics which did converge to it. Cressman 
[1992] provides an excellent survey of the theoretical findings in the field.

17



the direction of the former. The following condition of payoff positivity, also due to Nachbar 
[1990] 22, generalises the Replicator Dynamics in a different direction:

• Definition 1.4. A regular selection dynamics is said to satisfy the property of payoff positivity
(PPS) if:

Vj* g5,. ; rf(K O )^0 (1.3.5)

that is, only pure strategies which perform “better than the average” have a positive growth 
rate. The condition of payoff positivity can be relaxed by requiring instead that there is at least 
one pure strategy, among those which yield more than the average payoff, which has a positive 
growth rate.

• Definition 2.2. A regular selection dynamics is said to satisfy the property of weak payoff
positivity (WPPS) if for any r g A and i g 3 , there exists a jf g 5,. such that:

u f s ’l , r_f t ) )  > uf r f t ) )  <=> y,*(KO) ^  0  (1 .3 .6)

It follows from the definitions that A M S  c  M S  and WPPS  c  {MS  u  PPS)  .23 It also turns 

out that WPPS is the more general class of continuous-time selection dynamics which satisfies 
the following property, to which we will make constant use throughout the dissertation:

• Proposition 1.5. Suppose f  is a WPPS dynamics. Then, if t g  A is the limit to some interior 
solution, then r is a Nash equilibrium of T.

Proof. See Weibull [1995], Theorem 5 2 (c).û

1 .4  E con om ic  M ic r o fo u n d a t io n s

In this section, we shall review the literature which derives the evolutionary dynamics 
starting from an explicit model of social interaction. As we noticed earlier, the extent to which 
these (or similar) models capture the essence of concrete economic environments provides the 
limits within which the use of such dynamics can be applied in economic modeling.

There are basic two alternative “stories” which have been proposed to justify the use of 
selection dynamics in the context of economic learning. Not surprisingly, each story is based on 
one of the “informal” justifications provided by Taylor and Jonker [1978] for the case of the 
Replicator Dynamics. We shall look at each justification in more detail in the remainder of the 
section.

1.4.1. The “Individual Learning” Story: Learning by Reinforcement

22îhe terminology of “payoff positivity” is due to Weibull [1995], while Nachbar [1990] refers to this dynamics as sign-preserving. 
23see Weibull [1995], chapter 5-
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To present this first class of models, we shall use as a reference the paper by Borgers and 
Sarin [1993]. In their model, two agents, Anna and Beppe, repeatedly interact to play a fixed 
normal form game. Their behavior is not fixed (as we assumed in § 1.2), but instead changes 
over time according to a very simple updating rule, which links the outcome of the stage game 
with the mixed strategy which will be used in the subsequent round. In particular, pure 
strategies which perform well against the opponents’ actions are reinforced, and the probability 
with which they are selected grows accordingly.

As one may notice, there is a clear shift in the reference framework from § 1.2. In Borgers 
and Sarin [1993] alternative strategies compete within the mind of the agents, as populations of 
ideas. As the authors observe «..Decision makers are usually not completely committed to just 
one set o f ideas, orjust one way of behaving. Rather, several system of ideas, or several possible 
ways of behaving are present in their mind simultaneously. Which of these predominate, and  
which are given less attention, depends on the experience which an individual makes...

This approach is not new, as it follows the tradition of Estes’ [1950] “stimulus sampling 
theory” of behavioral psychology, subsequently formalised in Bush and Mosteller’s [1951], 
[1955] stochastic learning theory, and in the theory of “adaptive economic behavior” proposed 
by Cross [1973], [1983] .25

Before summarising Borgers and Sarin findings on the relationship between the (stochastic) 
adjustment process they analyse and the (deterministic) dynamics studied in this dissertation, we 
shall describe the reference model more in detail. While the authors are mainly concerned with 
the relationship between their learning process and the Replicator Dynamics, we will modify
slightly their assumptions to allow a higher degree of flexibility in defining the evolutionary
dynamics.

Anna and Beppe are two individual players, who are engaged in a (possibly infinitely) 
repeated game r  = ( 3 , 5 , interaction. Both players select, at each point in (discrete) time 

n e (0,1,2,...), an action i'* g5;,i = A ,5 , starting from a probability distribution (mixed 
strategy) r fn ) .  It is assumed that, at each round, Anna/Beppe observes only the action s/he 

plays, and the payoff s/he obtains. Suppose that, at round n, Anna has played her pure strategy 
s{ and Beppe has played his pure strategy 5*; then Anna will update her mixed strategy as 

follows:

ri(n + l) = v  ̂(f  ̂,4 )  + (1 -  (4  A ))r i  (n) (1.4.1)

/;{'(n + l) = ( l - v ^ ( 4 ,4 ) W  ('î).fo '̂a^^y (1.4.2)

where v,.:a,.(r) + ̂ ,.(r)M,., with and both Lipschitz continuous functions
satisfying the following condition: v,.(.)g(0,1). In words: the change in probability 
Ar^(n) = (4 (n  +1) -  ^(n)) is proportional to a given affine transformation of the payoff Anna 

received in the stage game, with coefficients which may depend on the state variable r{n), up 
to a rescaling which constrains (n +1) to be in the unit simplex.26

2'^See Borgers and Sarin [1993], p. 1.
25Models of reinforcement learning are also those by Bendor etal. [1991], Borgers and Sarin [1996], Sarin [1995] and the 

experimental studies conducted by Mookerjee and Sopher [1994] and Roth and Erev [1983], [1995].
^^An analogous expression holds for Beppe also.
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If the dynamics lie in the relative interior of the state space, (1.4.1-2) imply that, no matter 
how performed against Sg compared to other strategies in Anna’s support, r { in  + l)  will 
always be bigger than (n)  since Arĵ  (n ) = (.ŷ  )(1 -  r{ (n)) > 0, although the strength of
the reinforcement is sensitive to the absolute magnitude of From (1.4.1-2) we
derive the following expression

E[Ar{ (n)] =  ,5* )](l -  ri (n)))/^ (n ) -  , 4 ) ] d  (»)
(1.4.3)

= d  (n){v^ K , rgin)) -  (r(n )))

which implies the following:

• Proposition 1.6. For each player / g 3 ,  the expected m otion of the discrete-time dynamics 

is aggregate monotonie.

1.4.2. The “Cultural evolution” Story: Learning by Imitation.

The models which fall into this category will be said to represent cultural (or social) 
evolution, since they rely on the ability of agents to observe (and successfully imitate) behaviors 
from other agents in the population. In other words, these model follow the “biological 
metaphor” more closely, since they look at the aggregate behavior of a population of agents. To 
present this second class of models, we shall use as a reference the model proposed by Schlag
[1994]. Suppose there are two (large) populations of agents, one population of Annas and one 
population of Beppes, involved in a repeated situation (either a game, or simply a decision 
problem). In each round each agent selects an action, and is then randomly matched with an 
agent of the opposite role, obtaining a payoff as a result of the encounter (in the absence of 
knowledge of both the action and the payoff of the opponent). Between rounds each agent 
receives information about another individual of the same population, via a symmetric random 
sampling procedure.^^ Each player then adjusts her current strategy according to an updating 
rule, which is a function that maps from current payoffs and actions of both sampling and 
sampled agents to the action which is to be played in the following round. Following the 
stationary assumption typical of this literature, only updating rules which condition on the 
current period information are considered.

In his analysis, Schlag [1994] first proposes a class of updating rules that agents might 
eventually select, if allowed to choose among those rules, once and for all, before entering into 
the matching and sampling scenario. He defend this class on the basis of a set of axioms intended 
to characterise a particular type of bounded rationality Such rules exhibit the following common 
properties:

2^Ihe information is the payoff obtained, together with the action played. By “symmetric” sampling the author means a 
sampling scheme in which the probability of agent .x of sampling agent y equals the probability with which x  may be sampled byy.
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• they are imitative, in the sense that an agent will never switch to an action which has not 
been observed in the current period;

• the probability of switching to an action which performed better is proportional to the 
difference in payoffs, between the action of the sampled agent compared with the action 
currently used by the sampling agent.

We will refer to these rules as proportional imitation rules. Under these rules, at each 
round n, agent i, after having played strategy s] and sampled agent i' who played strategyjf'will 
revise her strategy from sf to sf' with probability j3, (u.(sf,-)-u.(sf',-)) if u^(s f , - )<u.(s f ' , - ) ,  

and will not revise her strategy otherwise. By analogy with § 1.4.1, we shall assume p.: A  -> 
Lipschitz continuous, with /!,. (.) e  (0,1).

The next step will be to consider an environment in which agents of the same population use 
the same (proportional imitation) updating rule and to look at the expected motion of the 
frequencies with which the various actions are played. Denote by rf^in) the frequency with 
which sf  is played at time n  e (0,1,2,...). Straightforward calculations lead to the following:

E[Arf  (n))  =  Pi[u.[s f , /-_,(«)) -  M,(r (« ))];/ = A , B .  (1.4.3)

which in turn implies

• Pro po sitio n  1.7. For each population I G 3 , the expected motion of the frequencies with 
which each pure strategy is played is aggregate monotonie.

As for the related literature on social evolution, Binmore and Samuelson [1993] set up 
another model in which agents may switch their strategy as a result of imitative behavior. 
However, their model has also some similarities with the “individual learning” approach 
proposed in § 1.4.1, since agents change their pure strategy only if the current payoff is lower 
than the payoff they received in the previous round (in this respect, their updating rule is 
governed by an endogenous aspiration level, which is set equal to the previous round payoff). 
Under these assumptions, they show that the expected motion the expected motion of the 
frequencies with which each pure strategy is played over time follows, by analogy with 
Proposition 1.7, the Replicator Dynamics. Bjornerstedt and Weibull [1995] consider a model in 
which the agents receives a signal, which summarises the realised payoff of a sample of other 
agents in the population. However, this signal is perturbed and might distort the information 
delivered. Under these assumptions, they show that if the support of the noise is sufficiently 
large, the resulting dynamics satisfies the monotonicity condition (1.3.1). Cabrales [1993] also 
derives the Replicator Dynamics starting from a model which is similar to those presented in this 
section. Experimental evidence on games in which agents can imitate others can be found in 

Malawski [1989].

similar use of the notion of aspiration level is proposed by Bjornerstedt [ 1995] • See also Banerjee and Fudenberg [1995] and 
the model contained in Chapter 4 of this dissertation.
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1.4.3. Expected  m otion  v5. Asymptotic Behavior

We conclude this section with a remark. We derived evolutionary dynamics as expected  
motion of two alternative stochastic processes, based on quite different models of social 
interaction. Moreover, it can be shown that, in both cases, the same evolutionary dynamics well 
approximates the stochastic process as the time scale gets to its continuous limit, since both 
stochastic processes converge in probability to the corresponding (aggregate monotonie) 
deterministic dynamics.^? However, it turns out that the above results hold only for any finite  
time, i.e. they do not refer to asymptotics. Which may well differ whether we look at the 
stochastic process or at its (either continuous or discrete) deterministic approximation. Borgers 
and Sarin [1993] provides an useful example to clarify this point, considering the asymptotic 
behavior of their learning dynamics in the case of zero-sum games.

l - x X

L R

T T 1,0 0,1

l - y B 0,1 1,0

a) b)

Figure 1.7
Discrete-vs. Continuous -Time Replicator Dynamics and Zero -Sum-Games

Figure 1.7b) traces some orbits of the continuous-time Replicator Dynamics in the case of the 
(constant-sum) game of figure l.la). The dotted arrows of figure 1.769 represent the (expected) 
jump of the discrete time dynamics (1.4.1-2). In other words, while the continuous time process 
cycles around the (unique) equilibrium in mixed strategies, the discrete time (deterministic) 
process does not converge, approaching the boundaries of the state space. Moreover, we also 
know that the stochastic dynamics will eventually end up in one of the four absorbing states of 
the system, i.e. one of the four pure strategy profiles. As a result of that, even if the (stochastic) 
learning dynamics is well approximated by the continuous-time deterministic process within any 
finite time interval, the asymptotic properties of the two processes may differ in a substantial 
way.3o

1 .5 .  S e l e c t io n  D y n a m ic s  a n d  D o m in a t e d  S t r a t e g ie s

29See Borgers and Sarin [1993], Proposition 4, and Schlag [1994], Theorem 6.
3®However, this does not mean that the asymptotics of the two processes are necessarily so different. In the following chapter 4 

we will provide conditions under which the continuous-time limit of the deterministic dynamics can be considered a good 
approximation of the asymptotic behavior of the stochastic dynamics (see also Boylan [1991], [1992]).
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We have already found an example Entry game) in which the Replicator Dynamics fails to 
eliminate weakly dominated strategies. This result, which contrasts a well-established tradition 
in standard game-theoretic analysis î, is also somehow counterintuitive if observed from an 
evolutionary perspective. In fact, if initial conditions lie in the relative interior of the (mixed 
strategy) state space, as it is commonly assumed by this literature, weakly dominated strategies 
will always yield strictly lower payoffs than those which dominate them, at least within any 
finite time, and this is essentially because, by forward invariance, the system will never reach (if 
not in the limit) one of the faces of the state space in which the dominant and the dominated 
strategy yield the same payoff.

Given this preliminary consideration, it may be interesting to investigate how general the 
above result is, and if it can also be extended to the case of strategies which are even strictly 
dominated. This is the aim of this section, in which we summarise some theoretical results 
concerning the relation between evolutionary dynamics and dominated strategies.

We shall consider strict dominance first. In this respect, it turns out to be crucial how the 
concept is formally defined. Conventionally, we say that a pure strategy s. is strictly dominated if 
it exists another (pure or mixed) strategy <r' g A, which yields a (strictly) higher payoff against 

any mixed strategy in the support of the opponent(s):

< m,.((t;,ct_,.);Vo-_, g A_. (1.5.1)

Otherwise, to consider 5 strictly dominated, one might ask for the stronger requirement of 
a[ G A,, being a pure strategy itself. If strict dominance is interpreted in this more restrictive 

sense, we then know that, under any monotonie selection dynamics, not only strategies which 
are strictly dominated)^, but also strategies which do not survive the iterated deletion of strictly 
dominated strategies, will eventually vanish:

• P ro p o s it io n  1.8. Let r{r{0),t) be the interior solution of a regular MS dynamics (1.3.1). If 
does not survive the iterated deletion of pure strategies strictly dominated by pure 

strategies, then lim rf{t)  =  0 .

Pr o o f . See Samuelson and Zhang [1992], Theorem 1.

Things are different if we also consider mixed strategies. To obtain the same result as in 
Proposition 1.8, we then need to impose some more stringent conditions on the dynamics than 
monotonicity alone.)) To clarify this point, we provide an example, adapted from Dekel and 
Scotchmer [1992], who first addressed the problem of elimination of strictly dominated 
strategies (by mixed strategies) in the context of (discrete-time) selection dynamics:

) ^Theoretical justifications of the (iterated) deletion of weakly dominated strategies, have been provided (among others) by 
Kohlberg and Mertens [1986], Moulin [1986], Dekel and Fudenberg [1991].

)^This result is due to Nachbar [1990].
))po r example. Akin [1980] had shown that strictly dominated strategies vanish along any interior solution of the single­

population Replicator Dynamics.
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Figure 1.8

An adaptation of Dekel and Scotchmer’s [1992] counterexample

Note that the game of figure 1.8 differs from the game of figure 1.7 only by the fact that Anna 
has now an additional strategy (M) which yields a payoff equal to .4 to both players, regardless of 
what Beppe does. Moreover, strategy B, although it is not strictly dominated by any other pure 
strategy in Anna’s support, is strictly dominated by any mixed strategy “sufficiently close” to the 
(unique Nash equilibrium) strategy, which attaches probability .5 to both strategies T and B.

a)

FIGURE 1.9
Monotonie Dynamics and Strictly Dominated Strategies

b)

Figure 1.9a) traces some trajectories of the standard Replicator Dynamics for the game of 
figure 1.8. The orbits of figure \.lb )  are now limit cycles for the trajectories of figure 1.9aj., 
once the strictly dominated strategy B has been eliminated. Figure \.% ) shows instead 
trajectories of the following MS dynamics:

( 1.5 .2)

in which the growth rate 7 *(AO) equals the difference between the square roots of 
,r ,.(0) and n,(AO). In this latter case, the system cycles in the interior of A . In 

consequence, the strictly dominated strategy B fails to be eliminated.
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In a recent paper, Hofbauer and Weibull [1996] show how this behavior is not peculiar to the 
functional form (1.5.2). In their paper, they consider a class of regular selection dynamics 
(which they call functional selection dynamics) in which all growth rate functions yf (KO) are 

as follows:

rf(KO) = a,.(KO)+A(K0)<p[M,(-y?,r_,.(0)] (1.5.3)

with a, and A as in (1.4.1-2), and Lipschitz continuous. In (1.5.3) the evolutionary dynamics 
are described by means of a function in which the utility of each pure strategy enters

explicitly, instead of appearing as a side constraint, as in § 1.3. Although the class of evolutionary 
dynamics described by (1.5.3) is more restrictive than the class we introduced in § 1.3, all the 
conditions defined in § 1.3 have a natural counterpart as special cases of (1.5.3).^^

The relation between the asymptotic behavior of strictly dominated strategies and functional 
selection dynamics of the form (1.5.3) is stated in the following proposition:

•  Pro po sitio n  1.9. Let KKO),-) be the interior solution of a functional selection dynamics
(1.5.3). If .y-does not survive the iterated deletion of pure strategies strictly dominated by 
mixed strategies and q> is strictly increasing and convex, then lim rf(t) = 0.

Pr o o f . See Hofbauer and Weibull [1996], Theorem 1.

The authors note that convex functional selection dynamics heuristically represent agents 
whose reaction to higher payoff is at least proportional (in other words, their utility exhibits risk 
aversion with respect to fitness)

We now move to weak dominance. We will only consider here the case of pure strategies 
which are weakly dominated by other pure strategies. We already know, from the dynamic 
analysis of the Entry game,, that weakly dominated strategies may fail to be eliminated by the 
Replicator Dynamics, that is, by an evolutionary dynamics which satisfies all the conditions (1.3.1- 
6). This result might suggest that weak dominance considerations have no role in determining 
the limiting play under any selection dynamics. However, it turns out this not to be the case. In 
particular, if a weakly dominated strategy does not vanish, this implies the extinction of all the 
pure strategies in the support of the opponents against which the dominated strategy yields the 
same payoff as the dominant strategy. This result, first proved by Nachbar [1990] in the case of 
monotonie dynamics which converge to a Nash equilibrium, has now been also proved by 
Cressman [1996] for the case of the Replicator Dynamics without the need to assume that the 
process converges:

5^For example, it is sufficient to assume Ç  strictly increasing to obtain a monotonie dynamics, or to assume 

05. =  —A ( K D ) 9 ^ [ w ,( K D ) ] .  with cp still strictly increasing, to have a payoff positive dynamics, and so on.

35ff the difference in growth rates is exactly proportional to the difference in payoffs the dynamic is then aggregate monotonie. 
In this respect, the result in Proposition 1.9 extends the result of Samuelson and Zhang [1992], who provided a sufficient condition 
(aggregate monotonicity) for the iterated deletion of pure strategies strictly dominated by mbted strategies.
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• P ro p o sitio n  l . i o .  Let r(r(0),-) be the interior solution of the Replicator Dynamics (1.3.2).
If a pure strategy j* is weakly dominated hy another pure strategy then at least one of

the following statements are true:

lim a;*(0  = 0 (1.5.4)

lim/XO = 0 ,V / .  s.t. M,(J*, *̂,) < (1.5.5)

• Proof. See Cressman [1996] Proposition 3.1.#

The above result will play a key role in our analysis and will he generalised to the class of 
monotonie selection dynamics (1.3.3). 3̂

1 .6 .  S e le c t io n  Dynam ics an d  Games o f  P e r fe c t  In fo rm a tio n

One of the standard rationality principles in the game-theoretic analysis of games with perfect 
information appeals to the notion of backward induction, first introduced hy Zermelo [1913]. 
According to this principle, Anna should defect in the Entry game, because she can rely on the 
fact that Beppe will cooperate in return. This is because, if Anna plays D, Beppe is strictly better 
off if he cooperates, as cooperating yields him a higher payoff. In other words, any threat of 
defecting hy Beppe is rendered incredible hy the assumption that he is rational (and his, as well 
as Anna’s rationality are common knowledge).

This conclusion has been repeatedly challenged on the grounds that, as with any solution 
concept based on an equilibrium notion, the backward induction principle leads is often ill- 
defined when applied q^the equilibrium path {what if Anna cooperates?) , as it may well 
happen that it would he advantageous for all the players to violate the backward induction 
prescription. Far from proposing an alternative view on such a controversial matter,37 we merely 
acknowledge that dynamic processes analogous to those proposed here have been used to 
analyse games of perfect information, precisely because the player behavior is completely 
specified under all contingencies. The study of the asymptotic behavior of some evolutionary 
dynamic may therefore provide a further argument in favour (or against) the backward induction 
principle (or any other rationality principle, for what matters).

In this respect, we mention here a recent contribution which has solved some unanswered 
questions on the dynamic properties of these games. Cressman and Schlag [1995] apply 
Cressman’s [1996] technique in the analysis of two-player games of perfect information with no 
relevant payoff ties. In this class of games, the use of backward-induction (or alternatively, the 
iterative deletion of weakly dominated strategies) selects a unique Nash equilibrium, which is 
the subgame-perfect equilibrium of the game. They restrict their analysis to the Replicator 
Dynamics, for which they prove (among other properties) the following:

3%ee Proposition 3-4.1.
37Among the recent papers which explore the logic and the rationale behind the backward induction procedure, we make 

reference to Aumann [1995], Battigalli [1995], Ben Porath [1994], Binmore [1995] and Reny [1993].
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• every interior path converges to a Nash equilibrium (Theorem 2);
• for “simple” games, (games of perfect information in which at most three consecutive 

decisions are made), the Nash equilibrium component which contains (i.e. is outcome- 
equivalent to) the backward induction solution is the unique interior asymptotically stable 
set (theorem 5).

The first result is relevant, as it identifies a class of games for which an equilibrium notion 
(namely, Nash equilibrium) accurately describes the asymptotic play of a particular selection 
dynamics (namely, the Replicator Dynamics). However, this result does not support more 
stringent equilibrium requirements like, for example, subgame-perfection, since Nash equilibria 
which are not subgame-perfect may well be limit points of (a non-zero measure set of) interior 
trajectories, as we know from our analysis o lih t Entry game.

In this respect, theorem 5 tells us that, although the Nash equilibrium component . / ^ o f  
figure 1.5 is interior-attracting under the Replicator Dynamics, it cannot be asymptotically 
stable: trajectories starting arbitrarily close to will move away from it and never come back 
(whereas the same phenomenon cannot occur when we consider the subgame-perfect 
equilibrium of the game, namely the strategy profile (D,C)).

However, by theorem 5, the asymptotic stability of the backward induction solution is not 
guaranteed if games are not simple in Cressman and Schlag’s terminology; for more complex 
games such an asymptotically stable set may even fail to exist.

As the authors comment, the predictive power of backward induction is supported only 
partially by the results contained in the paper, which they entitle The Dynamic (In)stability of 
Backward Induction.

1 .7 .  S e le c t io n  D ynam ics WITH D r i f t

Binmore et a l  [1995] explore the dynamic properties of the Replicator Dynamics in the case 
of another game of perfect information with no relevant ties, that is, the Ultimatum Game. In 
this game Anna proposes to Beppe a particular division of a cake; subsequently, Beppe has to 
decide whether to accept Anna’s proposal or not. If Beppe accepts, the pie is shared as agreed; if 
Beppe rejects the offer, nobody gets anything. This game has a unique subgame-perfect 
equilibrium in which Anna offers (an e more than) nothing and Beppe accepts. The intuition is 
the same as in the Entry game: if Beppe’s rationality is common knowledge, Anna can rely on 
the fact that Beppe will accept anything no matter how little it is. As a matter of fact, there is a 
clear analogy between the two games: if we restrict the possible offers to two {high or low), 
assuming that a high offer is automatically accepted by Beppe, the Ultimatum Game collapses 
to a much simpler form which is absolutely analogous to the Entry game of figure 1.4 (and 
therefore has the same asymptotics under the Replicator Dynamics)^ .̂

^®This is the reason why Binmore et al. refer to the game of figure 1.4 as the Ultimatum Minigame.
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The Ultimatum Game is an example in which the backward induction hypothesis is 
universally rejected by the experimental evidence, although the various experimental results 
provide no clear alternative hypothesis.)^

To explain the fundamental weaknesses of the backward induction hypothesis in the context 
of the Ultimatum Game, Binmore et a l  [1995] propose the following dynamics:

= + (1.7.1)

We will refer to the dynamics (1.7.1) as the Replicator Dynamics with drift. In Binmore et a l
[1995] the dynamic (1.7.1) is derived from a population game in which agents die (or leave the 
game, or experiment new ways of playing) at a fixed rate equal to A,.dr. Those who die are 
replaced by novices (or experimenters) who play each strategy s] with probability p f ., while 

the rest of the population aggregate behavior follows the Replicator Dynamics. The relative 
importance of the drift is measured by A , which we refer to as the drift level We assume A to 
be “very small”, reflecting the fact that all the major forces which govern the dynamics should 
be captured by the evolutionary dynamics (1.3.1), which here takes the form of the Replicator 
Dynamics. In figure 1.10 we trace some trajectories of (1.7.1) for the Entry game, under 
different realizations of A,, (setting /I* = 1 / 2, Vi,â:):
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Phase diagrams of the 1-stage Ultimatum Game
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c)A  ̂ =0.005; Ag=0.05

Figure l.lQa) shows trajectories of the unperturbed Replicator Dynamics that mimic the 
behavior already shown in the phase diagram of figure 1.5. Figure 1.1069 shows trajectories of
(1.7.1) when both Â  and Ag are “negligible”. In this case, the drift against Beppe’s (weakly 
dominated) strategy D is sufficient to push the system away from the v/^com ponent. In figure 
1.10c) Ag is substantially higher than Â  : in this case the system (1.7.1) has two restpoints 
close to the component, one of which is asymptotically stable. In other words, although 
the drift points toward the relative interior of the state space (since pf g (0,1)) it may not be

)^Among the experimental studies on the Ultimatum Game, we make reference to Guth etal. [1982] and Binmore, e ta l  [1985], 
together with the surveys by Bolton and Zwick [1995], Guth and Tietz [1990] and Roth [1995] and Thaler [1988]
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sufficient to destabilize the ./^com ponent in which a suboptimal action is played with positive 

probability.
In the following proposition, we shall replicate Binmore e ta l  [1995] results fixing 
= 1 / = p,pg = 1 -/1  = Ag = A, and letting A ^  0  (we do so to be consistent with

the rest of the dissertation)^ :̂

• Proposition l . l l .  Let RE(P) be the set of restpoints of (1.7.1) for A sufficiently close to 0. 

The following properties hold:

a )  for all /3g(0,I), RE(p) contains the subgame-perfect equilibrium (D,C) which is also 

asymptotically stable.

b) when p  is sufficiently large, RE{p) contains also two additional restpoints, both belonging to

one of which is asymptotically stable.

Proof. See the Appendix.#

The authors comment: “...the question whether the subgame-perfect equilibrium should be 
regarded as the one and only game-theoretic prediction for the Ultimatum Game ... [has] a 
convincing and firmly negative answer..

We postpone any comment on such controversial matters to chapter 3, in which we provide a 
similar analysis for another game of perfect information with no relevant ties, that is Rosenthal’s 
[1981] Centipede Game. What remains to be said at this stage is only that the analysis of (1.7.1) 
(or similar dynamics) may be used to test the robustness of any theoretical prediction based on 
the asymptotic properties of our continuous-time evolutionary dynamics. This is the reason why 
in chapters 2 and 3 of this dissertation the analysis of the Replicator Dynamics with drift (1.7.1) 
will complement the analysis of the pure evolutionary dynamics studied elsewhere.

1 .8 .  P l a n  OF THE T h e s is

This dissertation consists of four chapters (including this introductory survey), followed by the 
reference index. In what follows, we shall briefly summarise the content of the other three main 
chapters.

1.8.1. EVOLUTIONARY DYNAMICS AND “THE IMPLEMENTATION PROBLEM”

In chapter 2, we try to understand the effect of taking an evolutionary approach to the study 
of implementation theory. The theory of implementation is that branch of game theory which 
addresses the problem of designing games, or mechanisms, whose equilibria satisfy certain 
socially desirable properties, but which do not necessitate vast amounts of knowledge by the

'^^See § 2.5 for a more detailed account of this parameter choice. 
^fSee Binmoree/fl/. [1995], p. 88.
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authorities to put them in place. As the theory applies equilibrium concepts from non- 
cooperative game theory, it is implicitly assumed that these social arrangements should police 
themselves, and the authority should only make sure that the rules of the game are followed by 
the players.

In the last few years there has been impressive progress in the theory of implementation. As 
Sjostrom [1994] points out “With enough ingenuity the planner can implement “anything””. This 
ingenuity often involves the design of complicated games and/or the use of highly “refined” 
equilibrium notions.

However, little attention has been paid to the issue of how equilibrium is reached, and 
whether it is stable. The only exceptions of which we know are the papers of Muench and 
Walker [1984] and De Trenqualye [1988] who study local stability in the Groves and Ledyard 
[1977] mechanism. This situation is worrisome. Given the fact that the theory makes normative 
recommendations, it does not seem sensible to apply such social engineering devices without 
thinking about whether real people will achieve the desired outcomes.

To approach these issues we study, as an example, the convergence and stability properties of 
Sjostrom's [1994] mechanism relative to two alternative adjustment processes. In particular, we 
study the convergence and stability properties of the mechanism on the assumption that 
boundedly rational players find their way to equilibrium either using the monotonie learning 
dynamics (1.3.3) or with fictitious play.^2 The (conflicting) results we obtain from this 
comparison suggest that a) convergence to the solution of mechanisms (even of the simplest 
structure) should not be taken for granted and b) it may be necessary to do further empirical 
and experimental studies that reveal how people adjust their play in mechanisms if we really 
want to provide an empirical content to implementation theory.

1.8.2 EVOLUTIONARY DYNAMICS AND GAMES OF PERFECT INFORMATION

As we pointed out earlier in this chapter, the backward-induction procedure (Zermelo 
[1 9 1 3 ]) is one of the fundamental solution concepts of traditional game-theoretic analysis of 
games in extensive form. However, its applicability has been repeatedly challenged, especially 
for games with long chains of decision nodes off the equilibrium path. Such controversy is 
confirmed by the experimental evidence in the field; for example, in Rosenthal’s [1981] 
Centipede Game, experiments show that subjects’ behavior significantly differs from the 

theoretical prediction.
The Centipede Game is the object of chapter 3, in which we study its dynamic properties 

when the evolutionary dynamic satisfies the monotonicity condition (1 .3 .3).
Consistently with Crossman and Schlag [1996], our analysis of the Centipede Game does not 

provide a full justification for the backward induction procedure. An evolutionary argument in 
favour of backward induction surely comes from our Theorem 3.4.1, in which we prove 
convergence to the subgame-perfect equilibrium outcome for any monotonie continuous-time 
selection dynamics. However, in § 3.5, by introducing perturbations as in (1.7.1), we also show 
that these adjustment processes are intrinsically unstable, as the perturbed dynamics may easily

footnote 3 in this chapter.
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give rise to limit cycles. Moreover, we show that this instability is also positively related to the 
length of the game.

1.8.3. Evolutionary Dynamics and Social Norms: Conventions and Social Mobility.

The analysis of Maynard Smith’s [1982] “Hawk-Dove-Bourgeois” game shows that when 
interaction is anonymous and repeated over time people may resolve their conflicts by 
conditioning their behavior on some (public) signal, which reflects some asymmetry in the 
players’ position. One might identify such a signal with the players’ reputation (as in Rosenthal 
and Landau [1979]), ov status (as in Okuno-Fujiwara and Postlewaite [1995]); it may be the 
players’ gender (as in our simple example), or in their race (as in Kaneko and Kimura [1992]).

Whatever their source, or nature, the existence of such signals may help the agents to 
coordinate their actions on an equilibrium of the game they are playing. We are now 
accustomed to call these equilibria conventions.

There is a distinction to be made at this stage. In the two examples just presented, the signal 

is essentially exogenous: we do not determine (up to a certain extent!) our own gender o r race. 

In the first two examples, however, the signal is instead endogenous, as it conveys information 

on how the agents reacted in the past when facing the same strategic situation.

Following the seminal contribution of Rosenthal [1979], the literature we just referred to 
explores the relationship between these signals and the convention which may be eventually 
selected by the population as a whole. The strategic framework employed by this literature is 
that of a supergame: in deciding whether to follow -or to challenge- the prevailing convention 
(i.e. the signal-extracting device which everybody uses in the population) each agent evaluates 
ex ante the expected payoff streams associated with the superstrategy (that is, the full 
contingent plan of actions under any possible history) associated with the use of such a 
convention.

In the model chapter 4 we follow an alternative route, tackling the problem with the aid of 
evolutionary techniques. In particular, we study the evolution of a population whose members 
use their soda/ class to coordinate their actions in the Chicken game of figure 1.1. Essentially, 
the class of a player is the payoff she obtained the last time she was called to play; therefore, 
social promotions and failures depend entirely on the outcome of the stage game.

Following Rosenthal and Landau [1979], we interpret the equilibrium behaviours that the 
players may adopt, as a function of their class, as customs. However, in contrast with the 
literature we just referred to, we let a custom determine only the players’ actions in the current 
period. Moreover (and more crucially), our analysis differs from that literature in that we allow 
people to change their custom during the course of the repeated game, as a result of some 
learning process.

Two alternative (and complementary) learning protocols are considered. First we consider a 
coordination learning procedure, which leads the players to revise their custom as a result of a 
disequilibrium play. We also consider an aspiration learning procedure, which leads the players

^^Recent papers include Anderlini and lanni [1996], Binmore ef«/. [1994], Crawford [1992], Ellison [1993], Kandori e r«/. [1993], 
Oechssler [1993], Vega Redondo [1993] and Young [1993],.

31



to revise their custom if the outcome of the stage game is below a certain threshold value which 
we take to be a proxy of a "satisfactory" outcome of the strategic interaction.

Given that the signal the players receive is directly linked with the outcome of the game 
(and therefore, with the evolutionary success of each custom), we can evaluate all the 
alternative customs in terms of their efficiency, i.e. their ability to minimise the probability of an 
inefficient resolution of the contest. Moreover, since we prove that, when it operates alone, 
each custom induces a unique (ergodic) class distribution, we can compare the (equilibrium) 
distributions associated with each custom in terms of their (social) mobility properties. As we 
will show, social mobility plays in fact a major role in shaping the evolutionary selection process 
among the alternative conventions.
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Appendix

P r o o f  o f  P ro p o s it io n  1.2.2. Denote by JC* ( 0  the probability with which strategy k  is played at 

time t. We evaluate ^  + x °  -  Ax ^x^ ) ,  which is positive in any interior point, and this
X" 2

implies limx^(r) = ic® > 0 . We also know that:^

x ‘̂ {t) x^{t)
(Al.l)

which in turn implies limz^(f) =limx^(r) =x  < - .  Thus

X^it)
%'(f)

= - (2 x ^ (0 -1 ) :

lim  log (A1.2)

lim% ^(f) =  0

By a symmetric argument, lim% (̂r) = 0  , which implies the résulté

Pro o f  o f  Pro positio n  1.2.2. The proof follows the same technique used to prove Proposition 
2 .6  in this dissertation, to which we refer for a more comprehensive account of the 
methodology. The Replicator Dynamics with drift (1.7.1) in the case of the game of Figure 1.4 
is as follows.

ÿ = y ( l - y ) ( 3 x - 2 )  + X ( ^ - y )  

X = x ( \ - x ) { y - l )  + À , { P - x )

(A1.3)

(A1.4)

Denote by R E ( T )  the set of restpoints of (Al.3-4) when 1  = 0, that is, the set of respoints of 
the unperturbed Replicator Dynamics. It is straightforward to show that R E ( T )  contains 

(together with all the pure strategy profiles) only the following component: 

/ ? £ ' = { ( x , y ) e A ^ = U  etO ,l]}

We know, from Binmore and Samuelson [1996], Proposition 1, that every limiting rest point 
of (Al.3-4) as 1  ^  0  must lie in RE(T). Only two cases have to be discussed:

• CASE 0: 1  0  and y ^  0 . This yields (0,0) and (1,0) as possible candidates for the limit

points in R E( p ) .  The first (second) point is (not) a limiting restpoint of (Al.3-4) since it is a 

sink (source) of the unperturbed dynamics.. We also know, from Binmore and Samuelson

^See the proof of Proposition 3-4.1.
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[1996], Proposition 2, that (0,0) is asymptotically stable, since it is a sink of the perturbed 
dynamics. This completes part a) of the proof.
CASE 1. A - ^ 0  and y ^ l ,  (that is ( l - y ) ^ O ) .  Setting ÿ = 0  yields the following 

equation:

1 - j  _  y - 1 / 2
A y{2>x -  2)

Denote by a limiting value forx in a rest point, if a limit exists, when y -> 1 . It must be

(A1.5)

(A1.6)

Setting substituting ^  with the expression in (A1.6) and taking limits leads to the 

following solutions for jc’o.

3 + 6j3 + V9-44/? + 36g  ̂ ^ 3 + 6^~V 9-44/? + 36ff^

10 10

Note that, from (A1.4), we know t h a t m u s t  be a real, positive number, with 2 1 3<x^ < p .  

For the expression under the square root at the numerator to be nonnegative, it must be that 
^ G [(1 1  -  2 VÎÔ) /18,1], which determines the feasible range for both roots..

We now move to establish the stability properties of these two limiting restpoints. The 
Jacobian matrix for the dynamic system is as follows:

y(x,y,A) =
(3 % -2 ) ( l -2 y ) - A 3 y ( l - y )

x { l - x ) (1 — 2x)(y — 1) — A

We evaluate the limiting values of trace and determinant of J{x,y,X),  factorising for X and 

substituting X, with their limiting values. The limiting trace of J{x,y,X)  equals to

2 jc' -  3 which is negative for any feasible . The sign of the limiting determinant of J(x,y,X)  

coincides with the sign of the following:

f(%°) = (3%° -  2)(4%° -  3) -  3 /(1 -% ° ) (A1.7)

which is positive only in the domain of %'. As a result of that, %' is asymptotically stable whereas 

%' is not. This completes part b) of the proof.#
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C h a pter  2

Implementation, Elimination of W eakly D ominated Strategies 

AND Evolutionary D ynamics

2 .0 . Abstract

This paper is concerned with the realism of mechanisms that implement social choice 
functions in the traditional sense. Will agents actually play the equilibrium assumed by the 
analysis? As an example, we study the convergence and stability properties of Sjostrom’s [1994] 
mechanism, on the assumption that boundedly rational players find their way to equilibrium 
using monotonie learning dynamics and also with fictitious play. This mechanism implements 
most social choice functions in economic environments using as a solution concept the iterated 
elimination of weakly dominated strategies (only one round of deletion of weakly dominated 
strategies is needed). There are, however, many sets of Nash equilibria whose payoffs may be 
very different from those desired by the social choice function. With monotonie dynamics we 
show that many equilibria in all the sets of equilibria we describe are the limit points of 
trajectories that have completely mixed initial conditions. The initial conditions that lead to 
these equilibria need not be very close to the limiting point. Furthermore, even if the dynamics 
converge to the “right” set of equilibria, it still can converge to quite a poor outcome in welfare 
terms. With fictitious play, if the agents have completely mixed prior beliefs, beliefs and play 
converge to the outcome the planner wants to implement.

2 . 1. Introduction

The theory of implementation studies the problem of designing decentralized institutions 
through which certain socially desirable objectives can be achieved. These social arrangements 
should be able to operate without extensive knowledge by the principal about the agents, and 
in a variety of environments. The principal should ensure that the rules of the game are
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respected by the agents, and such rules should be designed so that it is in the best interest of 
the agents to take actions that lead to the socially desirable outcome, given the environment.

More precisely, a social choice rule is implemented by a mechanism (game-form) if for every 
possible environment (preference profile) the solution (set of equilibrium outcomes) of the 
mechanism coincides with the set of outcomes of the social choice rule for every possible 
environment.

One of the problems that are faced by the implementation theorist is the choice of a solution 
concept. This is no trivial matter because for different solution concepts the range of social 
choice rules that can be implemented varies dramatically. As Moore [1990] points out “choice 
rules are unlikely to be implementable in dominant strategy equilibrium if the domain is very 
rich and/or the choice rule is efficient”. In the case of single-valued choice rules he also notes 
that “the move from dominant strategy to Nash may not help at all: only the restricted class of 
strategy-proof choice may be Nash implementable”. If the solution concept is more refined, 
then the domain of the social choice rule can be much larger. In fact, the social choice rule 
domains are considerably enlarged for subgame-perfect implementation (Moore and Repullo 
[1 9 8 8 ]), and even more so when the solution concept is the iterative deletion of weakly 
dominated strategies (Abreu and Matsushima [1994], Jackson etal. [1994], Sjostrom [1994]). In 
fact, as Sjostrom [1994] says: “With enough ingenuity the planner can implement “anything”’.

The question that arises then is whether the equilibrium concept chosen is a good one for 
the game in object. One way to answer the question is to assume that agents are boundedly 
rational and that they adjust their actions over time through some trial and error learning 
procedure. One can then analyze under which conditions the actions that lead to the socially 
desirable outcomes are played asymptotically, if at all. Research in implementation theory has 
paid little attention to the problem of how an equilibrium is reached. Some exceptions are the 
papers of Muench and Walker [1984] and De Trenqualye [1988] who study the conditions for 
local stability of the Groves and Ledyard [1977] mechanism. Walker [1984] proposes a stable 
mechanism yielding nearly Walrasian allocations in large economies. Jordan [1985] shows that 
for any mechanism which implements the Walrasian correspondence in Nash equilibria with 
agents that are uninformed about other agents characteristics and any dynamic adjustment 
process there is an environment for which the equilibria are unstable with respect to the 
dynamics. Vega-Redondo [1989] proposes a mechanism for which a best-response dynamic 
adjustment process is globally convergent to the Lindahl equilibrium outcome in an economy 
which has one private good, one public good and a linear production technology for the public 
good. De Trenqualye [1989] proposes a mechanism that is locally stable for the implementation 
of Lindahl equilibria in an economy with multiple private goods one public good, a linear 
production technology for the public good and quasi-linear preferences. Cabrales [1995] studies 
the global convergence of the canonical mechanism (Maskin [1977], Repullo [1987]) of Nash 
implementation and the mechanisms of Abreu and Matsushima [1992,1994]. In this paper we 
study the convergence and stability properties of Sjostrom’s [1994] mechanism^ when one 
assumes that the players are boundedly rational.

^Sjostrom's [1994] mechanism and the one that Jackson, Palfrey and Srivastava [1994] study for separable environments are very 
similar and most of our results would generalize easily for that mechanism as well.
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Our approach is twofold. First we study dynamics that are monotonie (Nachbar [1990]). One 
particularly well known member of the family of monotonie dynamics is the Replicator Dynamics 
of evolutionary game theory (Taylor and Jonker, [1978]). These dynamics have been given a 
learning theoretic foundation by Borgers and Sarin [1993], and they can also be interpreted as a 
model of imitation (Schlag, [1994]).

We also study the dynamic properties of this mechanism under fictitious play. Under these 
dynamics agents are assumed to understand the game well enough to be able to choose a 
strategy which is a best response to their beliefs. Beliefs are then assumed to be a time average 
of their past observations and their prior beliefs.

We concentrate on Sjostrom’s mechanism for several reasons. One is that the conditions for 
implementation are quite weak. Although the environments that are permitted are not 
universal, they are rich enough for most economic problems. Furthermore, this reduction in the 
domain permits the author to implement the social choice rule with a “bounded” game and thus 
makes it immune to the criticisms of Jackson [1992]. Finally, although the solution concept is 
the iterated elimination of (weakly) dominated strategies (it also implements in undominated 
Nash equilibria), it only needs one round of deletion of weakly dominated strategies (the first). 
This last feature of the mechanism makes it particularly attractive since under some assumptions 
of imperfect knowledge of agents (either because of payoff uncertainty as in Dekel and 
Fudenberg, [1990], or through lack of perfect common knowledge of rationality as in Borgers, 
[1994]) the appropriate solution concept implies one round of deletion of weakly dominated 
strategies and then the iterated deletion of strictly dominated strategies.

In Sjostrom’s [1994] mechanism the agents are arranged to announce their preferences and 
those of their two closest neighbors. The mechanism is designed in such a way that a truthful 
report of one’s own preferences is weakly dominant (it does not affect one’s payoff, except in a 
set of states which is called totally inconsistent, and in those states it is preferable to report 
them truthfully). Since in this mechanism it is advantageous to report the same preferences 
about your neighbors that they are reporting about themselves, it is clear that the only 
equilibrium that survives the first round of deletion of weakly dominated strategies is the truth- 
telling one.

There are, however, many other Nash equilibria. For every preference profile R, there is a 
component (i.e. a closed and connected set) of equilibria in which all agents report the 
preferences for their neighbors indicated in R and they report the preferences about themselves 
indicated in R with high enough (this need not be very high) probability. The reason for this is 
that the mechanism makes it important that all agents match their neighbors’ announcements 
about themselves, but the report about oneself is only important in some unlikely (totally 
inconsistent) state.

For the monotonie dynamics we show that many equilibria in all the components of equilibria 
we have described are the limit points of trajectories of the learning dynamics that have 
completely mixed initial conditions (that is, initial conditions that give strictly positive weights 
to all possible messages). Although the general results are local, we can show by example (the 
game in Figure 1, Sjostrom, [1994]) that the initial conditions that lead to these equilibria need 
not be close to the limiting point. Furthermore, and perhaps more worrying, the equilibria
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which belong to the same component as the completely truthful report are not outcome 
equivalent to such equilibrium, as they yield payoffs that are significantly different (lower) to the 
payoffs of the social choice functions outcome. Therefore, even if the dynamics converge to the 
“right” component of equilibria, it still can converge to quite a poor outcome in welfare terms.

One could naively expect that evolution would eliminate weakly dominated strategies. The 
reason why this doesn’t happen is that the weakly dominant strategy grows faster than the 
dominated one only if the totally inconsistent states are met often enough by the players. But 
the weight of the totally inconsistent states is also decreasing over time since people are 
learning to avoid such states. It may be that they decrease fast enough so that the push towards 
the weakly dominant strategy is not enough to make the dominated strategy disappear.

The fact that evolution does not eliminate weakly dominated strategies has been known 
since at least Nachbar [1990]. Samuelson [1993] discusses the issue of elimination of weakly 
dominated strategies in evolutionary games. Binmore et a l  [1995] have shown the implications 
of these findings for the Ultimatum game. In particular, they provide a numerical example, 
based on the classic Entry game, in which a) there are trajectories of the Replicator Dynamics 
which converge to the Nash equilibrium component in which the players choose a weakly 
dominated strategy with positive probability and b) in the presence of mutations, such 
component may even exhibit asymptotic stability properties.2 These results are more than a 
theoretical curiosity. Binmore and Samuelson [1995] note that: “the experimental evidence is 
now strong that one cannot rely on predictions that depend on deleting weakly dominated 
strategies”.

In the context of implementation theory, Cabrales [1996] studies the mechanism of Abreu 
and Matsushima [1994], which also uses as a solution concept the iterated deletion of weakly 
dominated strategies. He shows that, although convergence to the undominated solution of 
these games can be achieved, these solutions are not stable. The problem is that drift between 
strategies that have the same payoff as the equilibrium payoff can destabilize the equilibrium 
outcome. This result has an additional interest because it allows him to discuss the mechanism of 
Abreu and Matsushima [1992]. This mechanism virtually implements the social choice function 
(that is, it implements the social choice function with arbitrarily high probability) in strategies 
that survive the iterative deletion of strictly dominated strategies. This would seem to be a good 
mechanism from an evolutionary perspective, given that iteratively strictly dominated strategies 
are asymptotically eliminated for most adaptive dynamics.) The problem is that if the mechanism 
implements with very high probability the social choice function, then it will do so in iteratively 
strictly e-undominated strategies, for e very small. This implies that as the mechanism becomes 

more effective in doing its job, it becomes closer to the one in Abreu and Matsushima [1994] 
and thus it becomes open to the sort of instability problems which that mechanism has. More 
precisely, if the dynamics are not sensitive to e  differences (just as the planner is not sensitive to 

them) they converge to the right solution but they are not stable.
For fictitious play we show that as long as agents have completely mixed prior beliefs, their 

actions and beliefs converge to the unique equilibrium whose outcome is the one that the

2See § 1.7. 
)See § 1.5
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planner wants to implement. This is so because completely mixed initial beliefs make the 
weakly dominated strategies in which the agent lies about her own type suboptimal. 
Furthermore, because the initial beliefs are completely mixed, beliefs will always be completely 
mixed, so the weakly dominated strategies will always remain suboptimal, will never be played 
and their weight in beliefs will eventually vanish. Once their weight is sufficiently small the 
other nonequilibrium strategies become suboptimal as well and so they will never be played and 
their weight in beliefs will vanish asymptotically.

It is important to understand the limitations of this result. For example, it is crucial that 
beliefs remain totally mixed for all time. If an agent became convinced that the other agents 
would tell the truth about her type then she would not be hurt by lying about her own type. 
This is the same logic that underlies the instability result in Cabrales [1996]. Also notice that 
strategies that are not exact best responses get played with probability zero. If small differences 
in payoffs did not lead to such a large effect on probabilities of play (or proportions of the 
population playing them), then the results about monotonie dynamics could still hold.

Despite these theoretical considerations, the question about which of the dynamics 
assumptions is correct should have mainly an empirical content. In this sense, there is already 
some evidence on mechanism design and learning algorithms. Chen and Tang [1996] have done 
experiments with the Basic Quadratic mechanism by Groves and Ledyard [1977] and the Paired- 
Difference mechanism by Walker [1981]. They estimate different dynamic learning models using 
the experimental data and they show that variants of stimulus response learning algorithms 
(whose expected law of motion is the Replicator Dynamics' )̂ outperform the generalized 
fictitious play model. This is consistent with the good performance that Roth and Erev [1995] 
show for stimulus response learning algorithms in mimicking the behavior of a range of 
experimental data which includes other weak dominance solvable games, like the Ultimatum 
game. By comparison, fictitious play would predict, contrary to the experimental evidence, 
convergence to the subgame perfect equilibrium of the ultimatum game.

The remainder of the paper is arranged as follows. In section 2.2 we introduce some 
notation, we describe the mechanism and we make the assumptions about the dynamics. In 
section 2 .3  we fully characterize (for all interior initial conditions) the set of limit points of the 
dynamics for the game in Figure 1, Sjostrom 1994, to be considered a simplified version of the 
mechanism. In section 2.4 we give local results (for some interior initial conditions) for the set 
of limit points of the dynamics for the general game. In section 2.5 we describe the asymptotic 
stability properties of the sets of limit points in the presence of mutations. Section 2.6 analyzes 
fictitious play in this game. Finally, section 2.7 concludes, together with an appendix containing 
the proofs of the relevant propositions.

2 .2  T h e  m o d e l  a n d  t h e  d y n a m i c s .

The only important change we make in Sjostrom’s [1994] approach is to employ a Von 
Neumann-Morgenstern utility function instead of a preference relation. We do this because we

^See Roth and Erev [1995] for the use of these dynamics with experimental data and Borgers and Sarin [1996] for their 
connection with the Replicator dynamics.
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need to specify the payoff functions for mixed strategies, since the dynamics are defined on the 
mixed strategy simplex.

There is a set 3  = n}, «>3, of agents and a set A c  91+of feasible consumption plans.
The preferences of agent i e  3  are represented with a (Von Neumann-Morgenstern) utility 
function v,.;A x C>,. -> 9Î, where 0 ,  specifies a finite set of possible preference parameters. An 
element /?,. e  O,. represents the preferences of agent i over A. kpreference profile is a vector 
R = where 7?,. e  O,.. The preference profiles will be common knowledge among

the agents. The following assumptions are made concerning preferences and feasible 
consumption profiles.

• Assumption P.I. The set of feasible consumption profiles is convex. For all a,a' g A and for 
all A G [0,1] then ka + ( l -  X)a' eA  .

• Assumption P.2. The preferences represented by /?,. g 0 ,  are complete and transitive.

• Assumption P.3. The preferences represented by /?,. g  0 , are strictly convex. That is, for any
a ,a 'eA  and for all A g (0 ,1) if a ^ a '  and v,.(a,/?,.)> v,.(a',/?,.) then  
V,.(Aa H -(1 -  A)a',/?,.) >  V (a',7?,.) .

• Assumption P.4. For any e o .  if a > O and a # O then v,.(a,/?,.) > v,.(0,7?,.).

• A ssum ption  P.5. Preference reversal. For any 7 ? g  O,. if 7?,. # R' then there are a,a' e  A
such that vfa ,R .) > v fa \R i)  and v,(a',7?;) > v,(a,7?').

For any set B e  91+ and any 7?,. gO,., choice correspondence is defined as follows: 
c{B,Ri) = {aG B|V7? e B ,v fa ,R ) > v,.(7>,7?,)}.

Asocial choice function is a mapping -> A where f{R )  = {/)(7?)};i e  7. A mechanism  is 
a pair r  = (M,a),  where M = a :M -^ A , where a(M ) = {a,.(m )}iG3. M, is the

message space of agent i and a  is the outcome function. A mechanism and a preference profile 
define a game.

We now construct a mechanism.
Let M,. = 0 ,._, X 0 ,._, X 0 ;+,, so that each individual announces her own preferences as well as 

the preferences of her two neighbors, and let members of M, and M be denoted m,. and m 
respectively. A generic strategy is therefore m ^=[R‘l_^,Ri,R‘■̂ )̂. AK-iup\e of messages 

\s totally consistent if whenever agents i,kE {ji,... ,jĵ } both announce the

preference of player Je 3 , then Rj=Rf. On the other hand, a iC-tuple of messages {m .̂,.....

is totally inconsistent if whenever agents i,kE both announce the preference of player

7g 3,  then7^9^7^ .̂
Consider 7?,•,/?,• G Op where Rf^Rf. By assumption p .6  there are â,<2 gA , such that 

v fa ,R )>  v,.(â,7?  ̂and v,.(a,/?,’) >  v,.(«,7?/ .̂ We can choose a  and a so that v.(a ,R )>  Vi(a’,R) 

for all a ’ in the line segment between a  and a. Given this pair (a ,a )  le t  
?,’)={T7g 91;̂  |7i=A/a! +  (l-X,)â, for Ag [0,1]}. By construction, for all 7?j7?/eO^

40



c(P{RiRi),R) i (RiRl),R’i). Let 9  (i,m)={R{^^^,...,R'- ,̂ and for every i
and define

fj((p{i,m) if  m_. is totally consistent

if m_. is totally inconsistent 

—f.((t>(i,m) otherwise

Now we can define a

a
I 0 otherwise

Let R  be the true preference profile and R* an arbitrary preference profile. To understand 
the mechanism notice that the only time when the choice of an announcement R\  has any 
effect on payoffs is when m_.  is totally inconsistent. In that case, the outcome is the optimal 
choice within the set according to the announced R\.  For this reason announcing
the true preference R̂  can never hurt. Furthermore, for every alternative announcement 
R\  =  R] ,  there is some totally inconsistent m.,. with 7?'"' =  R]  and /?'■"' =  R^ and the set p 

is constructed in such a way that is strictly preferred to ,.),/?*).
Therefore, a message m,. is weakly dominated by a message
m,. =(/?'_,, , 7?' ,̂), that is, untruthful announcements about oneself are weakly dominated.

Once these weakly dominated strategies are eliminated and all agents announce the true 
preferences about themselves, R j= R *, it is strictly dominated to announce untruthful 

preferences about the neighbors, R\̂  ̂ ^ R.^J=R._^,/^^^ or R]_̂  ^ R._j=R./^, since

disagreeing with the neighbors is punished with the 0  consumption bundle.
These two facts establish the main theorem in Sjostrom [1994].

• Proposition  2.0. Let/  be an arbitrary social choice function. The mechanism described 
above implements / in  undominated Nash equilibrium and in iterated deletion of weakly 
dominated strategies.

It is important to notice, for the discussion we will undertake below, that the set of states for 
which not announcing the true preferences about oneself is weakly dominated are themselves 
states that typically produce very bad outcomes for the opponents (at least one of them will 
have 0 consumption, and probably many). If agents learn to avoid totally inconsistent states very 
fast, there is no incentive to tell the truth about oneself. The mechanism we have described 
puts a lot of emphasis in consensus announcements, since disagreement is punished with 0  

consumption, and truth-telling is only rewarded in a set of states which need not be very 
prominent in the minds of the players. That is precisely the reason why convergence to 
outcomes of the social choice function may fail to occur. This conflict is typical of other

41



mechanisms that implement in the iterated deletion of weakly dominated strategies, like Abreu 
and Matsushima [1994].

We now move on to the characterization of the evolutionary dynamics we analyze.

• Assum ption  D.I. The evolution of X( 0  is given by a system of continuous-time differential 

equations:

x = D{x(t)) (2.1)

We require that the autonomous system (2.1) satisfies the standard regularity condition as in 
definition 1.1. Furthermore, D must also satisfy the following requirements:

• Assumption D.2. D is a monotonie selection dynamic.^

• Assumption D.3. Let Y(m^,m-) =  {x_i \ (m,., (o ) -M, . (m, ' , (O)= 0 } .  Then, for all 
6>1:

I y!™ Ml sup[g,(m,,:t_,(0 )-g,(m;,x_,(0 )]

Assumption d.3 is less standard in the evolutionary literature and we will expand on it when 
we discuss Proposition 2.4 because it will be helpful to understand why weakly dominated 
strategies need not disappear in the limit. What assumption d.3 says is that if the difference in 
payoffs between two strategies is going to zero at rate exp[-w], the difference in growth rates 
has to go to zero at a rate of at least 1/n .̂

Continuity and assumption d.2 demand that strategies that have the same payoff grow at the 
same rate, but they impose no requirements on the speed at which the difference in growth 
rates goes to zero as the difference in payoff go to zero. Assumption d.3 can be satisfied even if 
the sensitivity of growth rates to payoffs is much higher than linear around zero (as would be 
implied, for example, by the Replicator Dynamics and other aggregate monotonie dynamics).

• Assumption d.4. x ( 0 )  e a° .

Finally, Assumption d.4, which is also standard in the evolutionary literature, is necessary 
because it excludes the possibility that the selection dynamic acts only on a subset of the 
strategy space. This possibility arises because the system is forward invariant, and therefore a 
strategy that has zero weight at time zero would also have zero weight at all subsequent times. 
We want to avoid this possibility because the selection dynamics would be operating on a game 
which might be qualitatively different from the game we are trying to analyze.

2 .3  A n  E x a m p l e

%ee Definition 1.2.
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We prefix the analysis of the dynamics of the mechanism with the following example, taken 
from Sjostrom [1994], p. 504, which is intended to convey the essence of our results. A unit of a 
good has to be divided among three players: 1,2 and 3. The (Von-Neumann Morgenstern) utility 
functions of players 1 and 2 are linear in the amount of good consumed, and this is common 
knowledge among the players and the planner. The utility function of player 3 may have one of 
two possible types: either it is linear in the amount of good consumed (we index these 
preferences by the number 1) or linear until the amount of good consumed is 1/ 3 , for 
consumptions larger than 1 /3  the utility decreases, (in other words, preferences peak at 
consumption 1/4). The index for these latter preferences is 0; the true preferences of player 3 
are common knowledge among the players, but the planner does not know them.

The social choice function recommends the consumption vector (1/3,1/3,1/3) for preferences 
of type 1 and (1/4,1/4,1/2) for preferences of type 0. Notice that this social choice function is 
such that agent 3  would like to conceal her preferences, and therefore the planner needs a 
nontrivial mechanism to elicit the true preferences.

The mechanism proposed by Sjostrom requires the three players to make a simultaneous 
statement about the preferences of player 3. Let m| , /G3  represent the message in which 
preferences of type 1 are announced, with m° denoting the announcement of type 0  

preferences. Figure 2.1 illustrates the outcome function. We will assume for the analysis that the 
true preferences are of type 1 and therefore Figure 2.1 is also the payoff function of a game, 
which we call F :

771̂ — I7I4 7TI4 — 77I4

ml m\ ml

1 1 1  
4 ' 4 2

QO.-
2 “• ? 2

m\ 0.0.^ m\ i  i  i
3 '3 '3

F ig u r e  2 .1
Sjostrom’s Example: game F .

Player 1 picks a row, player 2 a column, and player 3 picks a matrix. We first notice that the 
mechanism leads to a game which is weakly dominance solvable, in the sense that it can be 
reduced to a single cell, corresponding to the truth-telling equilibrium outcome, by the iterated 
deletion of weakly dominated strategies. Unlike other weakly solvable games, this procedure 
yields, when applied to F, a unique outcome, independently of the order of removal of 
strategies. Player 3 first deletes her (weakly) dominated strategy (the other agents have no 
dominated strategies at this stage). Once m” is removed, the strategies m” and m” for players

1 and 2 become strictly dominated. The unique strategy profile selected in this way is 
Notice, however, that the strategy profile { m ° i s  also an equilibrium, and 

that this equilibrium yields a higher payoff for agent 3  than
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Given that each player has only two strategies in her support, with an abuse of notation we 
set = x f  We first characterize the set of Nash equilibria of the game:

• PROPOSITION 2.1. The s e tc /^ o f  Nash equilibria of F is the union of precisely two disjoint 

components NE° and N E \ where:

NE° = e  A[x, = JCj = 0,%) < 3 /  7 |

NE  ̂ = e  A|x, = % 2  = 1 .^3  ^ 1 / 2 }

Proof. See the Appendix.é

D e n o te  the set of restpoints o f F  under som e m onotonie dynamic by RE(T). It is 

straightforward to show that RE(T) contains (together with all the pure strategy profiles) only

the following two com ponents: = { x e  A|jc, = x ^  = h,x^  g [0 ,1]},/i =  0,1. O ur task is to

study the asymptotics of a monotonie selection dynamic whose initial state lies in the relative 
interior of the state space:

• Proposition  2.2. Any interior solution x{t,x(0)) of a monotonie selection dynamics 
X = D{x) converges t o . / ^

Proof. See the Appendix.#

If initial conditions are completely mixed, we then know that the evolutionary dynamics will 
eventually converge to a Nash equilibrium of the game. In the following section we extend the 
result to the more general setting of Sjostrom’s mechanism.

2 .4  L o ca l r e s u lts  f o r  t h e  g e n e r a l game

In this section we show that the results of the previous section generalize locally. Proposition
2.3 characterizes some components of Nash equilibria for the game induced by the mechanism 
in Sjostrom [1994], which we described in section 2. Any message profile in which the agents 
are unanimous in the (arbitrary) preference profile they announce, R*, (or, more appropriately,

the preferences they announce about their neighbors and themselves are taken from the profile 
R*) is an equilibrium. Furthermore, a mixed strategy profile in which every agent mixes 

between messages consistent with R* and other preference profiles that only differ in the 

announcement they make about their own preferences is also an equilibrium, as long as i?* is 

given a high enough weight. As we showed in the example, the weight given to R* need not be 

very high. The equilibria in a component are not payoff equivalent, since disagreeing with a 
neighbor (an event with nonzero probability in the mixed strategy equilibria) results in a

fact that each player has only two available options will also allow us to express the dynamics in terms of the payoff 
d ifference  b e tw een  p layer ; "s tru thfu l and un tru th fu l strategy, which we call A n , ( x ^ ( 0 )  (i e.

A n , . ( x ( 0 )  =  Ui{m\,x_i(t)) -
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punishment. Proposition 2.4 shows that any of the previous equilibria that gives enough weight 
to R* is the limit point of some interior path for a monotonie selection dynamic. Figure 2.2

shows that the initial condition need not be very close to the limit point.

Let =  M,. =  max^ and f/,.„ =  max^ • The

message m* is a consensus announcement by agent i, m,. is the utility associated to the most 
preferred outcome from the social choice function for agent i with true preferences and f/,.„ 

is the utility associated to the most preferred consumption bundle among those that result from 
dividing the bundles assigned by the social choice function by n. Let

S ~ { m , e  M,| R X  =  R*_^,Rli =  R]^J

and S i=  { m,.e M, | m,. gS,} The set S, is the set of all mixed strategies in which announcements 
about the neighbors agrees with R* , and 5,- is the complement of S, with respect toM,. Also let

Sf' =  {x,| =0, for all m. g S, and > k ^ ,

where we assume

( A , ) . , --------------

for all i and all The set 5*' is the set of all mixed strategies in which announcements about 
the neighbors agrees with /?*, and the probability of announcing R]  is higher than

• Proposition 2.3. For all k , R * e  O andx,€ 5**, .x is a Nash equilibrium of (a , ^).

Proof. See the Appendix.#

Now we prove that not only are there other Nash equilibria, but that elements in those 
components can be reached by paths starting in the interior to the simplex. By assumption d.2 
we know that for all h^ > 0  with w , . ( m , . ( r ) ) - w , . (m , - , ( r ) ) < - 6  ̂ there is h > ^ ,  such that 

(r))-g,(m;,x_, (f))<-hg.
Let be a constant such that 0 ^ „ < m i n  v ,.( f ,{ (p ( i ,/? * )) ,^ ,.) -v ,.(0 ,^ ,.) . Let the corresponding 

6  and

Af =  m a x
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Note that by definition H e  [0,1]. By Assumption d.3 we know that there exists Q,{m. , n i i ) > 0  

such that if | |

>1

Let 0  < 0  < min [9.(m  ,m ')]. For any set M„ let = V  and

L = exp

h A S - l) -In H
x7‘(0)

The following proposition holds:

• Proposition  2.4. Assume that for all i ,  (0) is big enough so that, x ”' ( 0 ) L > H  and

( 0 ) U ,n  (0) (^ /x 7 ‘ (0)) < 0 . Under these conditions we have that
J*i j* i

a) For all m,. e 5 j„ { t ) / x 7 ‘ (0) <exp [-h ]̂ {H/x7 ‘ (0)) for all t and all i;

b) x f  ( 0  >  H  for all t;

c) ( x f  ( t ) / x 7 ‘ ( t ) ) < { x 7 ‘ {0)/x7<(0))LfoT2à\ tmdd\ \  m.  E Si 

Proof. See the Appendix.#

Part a) of the Proposition says that the weight of any strategy in 5 ,• decreases over time at a 
rate higher than This is important because the strategies for which not telling the truth 

about oneself is dominated are all in Sj, so if the weight of these strategies decrease over time, 

the payoff advantage of the dominating strategy disappears over time, and makes it possible for a 
dominated strategy to have positive limiting weight.

Part b) ensures that the weight of m* is always high enough. If the weight of m* is high 
enough, then the strategies in the sets Sj have a lower payoff than strategies in Sy since an 

announcement about your neighbor that does not coincide with her announcement about 
herself is punished.

In fact parts a) and b) reinforce each other. While m* keeps having a high enough weight, 
the weight of strategies in Sj decreases, and if strategies in Sj decrease fast enough the weight 
of m* does not go below a certain bound. All of this provided that m* started with high enough 

weight, which as Figure 2.2 demonstrates, need not be very high.
Notice that part b) guarantees that pure strategy equilibria in the “wrong” component are 

attractors of interior paths. Part c) says that the weight of m* in the limit is less than 1, and 

therefore some mixed strategy equilibria are attractors as well if the initial conditions give
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sufficiently little weight to strategies in Sj. This guarantees that even if there is convergence to 

the “right” component it need not be to the pure strategy equilibrium, and remember that the 
equilibria are not payoff equivalent (the mixed strategy equilibria have lower expected payoff 
because agents are punished for announcing discordant preferences).

The convergence to the mixed equilibria can happen because the payoffs to all strategies in 
S j are similar if the weight of strategies in Sj is small, and by a) the weight of strategies in Sj is 
decreasing. So even though m* has a payoff advantage, the advantage goes to zero over time, 

and assumption d .3 guarantee that it does not accumulate fast enough.
If d.3 didn’t hold, equilibria which do not implement the social choice function may fail to be 

a limit point for the dynamics. Convergence to the “wrong” equilibrium obtains only if a weakly 
dominated strategy for player i (call it m, and call m ’ the strategy that weakly dominates m) 
gets positive weight in the limit. But along the way to the limit the strategy against which m 
and m' differ (call it } )  has also positive weight (since the system is regular, and therefore 
forward invariant). So by assumption d.2 the growth rate of m ’ is larger than the growth rate of 
m. The weight o îm ’im is the integral of the difference in growth rates of m' and m. If the 
limiting value of this integral is infinite the limiting value of would be zero. But the 

weight o f} (and thus the difference in payoffs) may be going to zero, thus the weight of m ’lm is 
an integral of a function that goes to zero, which may be finite.

Assumption d.3 describes how the growth rates have to relate to payoffs (when differences in 
payoffs are small) so that the limiting value of a dominated strategy is not zero. Assumption d.3 
would hold, for example, if the growth rates were linear in the payoffs, as it happens with the 
Replicator Dynamics. But the requirement is much weaker than that, because it is only a local 
requirement around zero, and because the rate at which growth rates go to zero with payoffs 
can be much higher than linear. In other words, even if the growth rates were much more 
sensitive to payoff differences (around zero) than the Replicator Dynamics allow, assumption d.3 
could still be satisfied.

The elimination of a weakly dominated strategy in an evolutionary context requires that the 
strategy against which the dominated strategy gives a lower payoff than the dominating strategy 
has to appear sufficiently often or that its appearance has to provoke a dramatic enough 
reduction in the dominated strategy.

2.5. M ore o n  the example (stability with/ out  drift)

In the previous section, we have extended the convergence result contained in Proposition
2 .2 , and we have shown that the limit points of the dynamics for interior initial conditions are 
generally different from the outcomes intended by the planner. We now go back to the example 
in order to test the stability properties To do so, some further terminology is needed:
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DEFINITION 2.1. Let x(t,xiO)) be the solution of a differential equation on state space A 
given initial condition x(0 ). Let also C denote a closed set of restpoints in A of the same 

differential equation. Then:
(i)C is  (interior) stable if, for every neighbourhood 0  of C, there is another neighbourhood 
U of C, with U cO , such that, for any x(0) e U n A  ( U n  A°), we have x(r,z(0 )) eO;
(ii) C is (interior) attracting if is contained in an open set 0  such for any %(0 ) e  O n  A 
(O  n  A°) we have limx(r,x(0)) g C.;

(iii)C \s globally (interior) attracting if for any z(0) g  A (A°) we have limz(r,x(0)) g  C;

(iv) C (interior) asymptotically stable if it is (interior) attracting and (interior) stable.



To simplify the analysis, we set additional conditions on the dynamics, which is the purpose of 
the following assumption, (which replaces assumptions d.1-5):

• Assumption D.5. The evolution of %(f) is given by the following system of continuous-time 

differential equations:

(2 .2)

with A, >0, p i= p  2= 1/^ and p 3= p  G (0,1). We will make reference to the Dynamic (2.2) as 

the Replicator Dynamic with drift.̂
We check how the model reacts to the introduction of such a perturbation. The stability 

analysis of the Replicator Dynamics with drift will give us information about the effects of small 
changes in the vector field on the equilibria of the system defined by the Replicator Dynamic (in 
other words, it will test the structural stability of such equilibria). To simplify the exposition, we 

have fixed /?, = = ^ , since only the value of turns out to be genuinely significant.

We start our analysis on the stability properties of ./^ lo o k in g  at the case of the Replicator 
Dynamic without drift (i.e. when A = 0 ). We know from Proposition 2.2, that is globally 

interior attracting, since it attracts every interior path under any monotonie selection dynamic 
(of which the Replicator Dynamic is a special case). We now take a closer look at the stability 
properties of each component of Nash equilibria separately (i.e. NE  ̂ and NE^)\

0 . 6

Figure 2.2

The Replicator Dynamic and game F

Figure 2.2 shows a phase diagram describing trajectories of the Replicator Dynamic starting 
from some interior initial conditions. The Nash equilibrium component NE'̂  {NE^) is

7See § 1.7.
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represented by a bold segment in the bottom-left (top-right) corner of the state space A. First 

notice that, as we know from Proposition 2.2, all trajectories converge to a Nash equilibrium of 
the game. Moreover, the diagram shows (consistently with Proposition 2.4) that there are some 
trajectories of the Replicator Dynamics which converge to NE' ,̂ the Nash equilibrium 
component in which both players 1 and 2 deliver the false message with probability 1. However, 
this latter component is not asymptotically stable, as can be easily spotted from the diagram. 

Trajectories starting arbitrarily close to NE°, provided x ^ > -  will eventually converge to the

truth-telling component NE\  We summarize the key properties of these trajectories in the 
following proposition:

• P ro p o s i t io n  2.5. U nder the unpertu rbed  Replicator Dynamic (i) NE  ̂ is in te rio r 

asymptotically stable, whereas (ii) NE^ is not.

PROOF. See the Appendix.#

We now move to the analysis of the Replicator Dynamic with drift when A > 0 :

0 . 4  0- 6  _ - J .

0 . 6  0 . 8  1

0. 8

0 . 6  ■

0. 4

0 . 2

a) p  =.001
Figure 2.3
The dynamic with drift and game F

b)P =.5

Let p  e  (0 ,1) be a generic element of the space of the feasible perturbations. Figure 2.3 
shows the trajectories of (2.2) when A = .0 0 1  under two different specifications of p .  Diagram 3 
represents a situation in which, in the proximity of NE°, the drift against m” is uniform across 
players, where in diagram 23a) the drift against m” is significantly lower. As the figures show, 

there is a local attractor close to A®' in both cases. Moreover, none of the elements of NE° is a 
restpoint of the dynamic with drift in Figure 23b), while Figure 23a) shows that there is an
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additional local attractor which belongs to NE°: trajectories starting close to NE'̂ \ converge to 
it, as it happens in the case of the unperturbed Replicator Dynamics.

We are interested in the convergence and stability properties of (2.2) when A 0 , 
considering two different configurations of the drift parameter p  :

CASEAijSelO,^^""^^

CASEB: pG

4 9

2 3 - 4 V 3 Ô

4 9

Given «0222673, CASE A depicts a situation in which, for small values of the

drift against the untruth-telling strategy is significantly lower for player 3  than for her 
opponents. In the following proposition we characterize the set of restpoints of the dynamic 
with drift, together with their stability properties:

• PROPOSITION 2.6. Let RE(p) be the set of restpoints of (2.2) for A sufficiently close to 0. 

The following properties hold:

a) for all p  e  (0 ,1 )  RE(P) contains an element of NE  ̂which is also asymptotically stable.

b) under CASE A RE(p) contains also two additional restpoints, both belonging to NE°, one of 

which is asymptotically stable.

Proof. See the Appendix.#

There is a striking similarity between the content of Proposition 2.6 and the findings of 
Binmore et al. [1995], as we pointed out in the introduction. They analyze the Entry game, in 
one of whose equilibrium components a player selects a weakly dominated strategy with 
positive probability. This component is interior attracting. Moreover, like our NE^, such 
component fails to be interior asymptotically stable, but for certain parameter values it may be 
asymptotically stable when the system is slightly perturbed.® Given the failure of asymptotic 
stability without perturbations, one would expect any perturbation to move the system away 
from the unstable component and the weakly dominated strategy to become extinct. 
Proposition 2.6 tells us that evolutionary game theory does not provide a ground for such claim. 
The intuition is similar to the one in Binmore et al. [1995]. When there is drift, the strategies 
against which the weakly dominated strategy does poorly will have positive weight at all times 
and therefore the part of the dynamics that depend on payoffs pushes against the dominated 
strategy. But the drift may provide a direct push in favour of the dominated strategy (and more 
crucially, in favour of those strategies of the other players which do well against such dominated

®See § 1.7.

51



strategy). When the balance between these two forces is right, one gets a stable equilibrium 
with positive weight for the dominated strategy, as it happens in our example.

2 .6 .  F ic t it io u s  play an d  S jo stro m ’s m echanism

In this section we shall consider an alternative scenario. Suppose that the players are now 
endowed with some about their opponents’ strategies, which are constantly updated along 
the sequence of plays ^{t) =  {m (l) ,m(2),...,m{t)) which defines the (discrete-time) history of 

the game. In particular, we shall assume that each player i, after having put initial (arbitrary) 
weights X ,{0): M..-> ( 0, «>) to any pure strategy profile of the opponents (which constitutes her

initial non-normalized beliefs), will update these beliefs as follows:

with X*'"-' (^(0 ) denoting the number of times the pure strategy profile has been observed 

for a given history ((f).  In other words, no matter how these initial beliefs are set, they tend 

asymptotically toward the empirical frequencies with which each pure strategy profile has been 
played (and perfectly observed) in the past.

Furthermore, we shall assume that each player selects, at each point in time, the pure 
strategy which maximizes her expected payoff, given her current beliefs (with ties broken at 
random), that is m, (f)e a r g m a x ]^ v , .(m ,. ,m _ ,.)

M-!
This alternative set of assumptions specifies a (discrete-time) version of the d?iSS\z fictitious 

p la y  dynamics, often proposed as an approximation of a learning model when agents are 
boundedly rational alternative to the evolutionary dynamics studied hereto.^The aim of this 
section is to study the asymptotics of this alternative dynamics, where now (r)e A i s  to be

interpreted as the vector collecting, at each point in time, player i ’s beliefs about their 
opponents’ strategies. The analysis of fictitious play will be restricted, to be consistent with the 
rest of the paper, to the case of only completely mixed initial beliefs (since I"-' (0 ) > 0 , for all 
m..eMj.). We shall begin by characterizing the asymptotics of fictitious play in the case of 

Sjdstrom’s example, that is, game F:

• P ro p o s itio n  2.7. For any possible history ( ( f)  o fF,  if players behave according with 

fictitious play and initial beliefs are completely mixed, there will be a time T after which 
m (t) =  m f)  for alU>7!

Proof. See the Appendix.

so-called fictitious-play dynamics, firstly introduced by Brown [1951] as an algorithm to compute Nash equilibria, has been 
recently re-interpreted as a learning model in the works of Fudenberg and Kreps [1992],. Milgorm and Roberts [1990] extend some 
of the properties of fictitious play to the more general class of adaptive learning dynamics. The results contained in this section 
come as straightforward applications of the findings of this literature [see, e.g., Fudenberg and Kreps [1992], Proposition 2.2]. We 
prefer the standard version in discrete-time (as opposed to the rest of the paper) for the sake of simplicity, although it can be 
shown that the same results proved here still hold if the dynamics is defined in continuous-time.
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The argument used to prove Proposition 2.7 can be extended, in a straightforward way, to 
the case of the general mechanism. Let 5 ,=  { m, G M, |  Ri =  R j}  denote the set of pure 
strategies in which each player reveals her true preferences, with î  =  { î j ,  ie  3 , being the 

Nash equilibrium in which the true preferences of all players are consistently revealed (i.e. the 
“solution”). The following proposition holds:

• P ro p o s i t io n  2.8. For any possible history ^(r) of the game (ol, R ) ,  if players behave 

according with fictitious play and initial beliefs are completely mixed, there will be a time T 
after which m {t) =  {  î j  3 , for all t>T.

Pr o o f . See the Appendix.

Since the results obtained here are so different from the ones in the previous sections it 
would be interesting to know what are the main reasons behind this difference. In this respect it 
is interesting to note that fictitious play (a suitably modified version for continuous time) does 
not satisfy assumption D.3. The reason is that the growth rate of a strategy reacts very strongly 
to changes in payoffs. The only strategies whose weight in beliefs increase are the best 
responses, while the weight of the remaining strategies decreases. This implies that there is an 
infinite response of growth rates to changes in the sign of the differences in payoffs, which is 
precisely what assumption D.3 rules out. Another key difference is that fictitious play rules out 
the possibility that the weight of a strategy which has initial positive weight becomes zero. This 
is important because what keeps an agent from lying about herself is the possibility that the 
neighbors also lie about her type. But suppose an agent never sees (or has only seen very long 
ago) her neighbors lying about her type and becomes convinced that they will always tell the 
truth about her. Then she could start lying about her type with positive probability, which 
doesn’t hurt her (but hurts the other players)and this would be stable, or at least it can go on 
for a very long time, provided that the neighbors don’t lie about her type, which is optimal for 
them as long as she doesn’t lie too often about herself. This situation is very negative from the 
point of view of the planner, who will be punishing, possibly quite harshly, the truth-tellers a 
non-negligible portion of the time. The final answer to which dynamic system (and therefore 
which implied limit outcomes and a verdict on the usefulness of the mechanism in the presence 
of boundedly rational players) is a better model for the situation is empirical. Chen and Tang 
[1996] have done experiments with the Basic Quadratic mechanism by Groves and Ledyard 
[1977] and the Paired-Difference mechanism by Walker [1981]. They evaluate the performance 
of different dynamic learning models in explaining the experimental data by computing the 
quadratic deviation measure and some other scoring rules, like the absolute deviation measure 
and the proportion of inaccuracy scores. They try variants of stimulus response learning 
algorithms, which make the probability with which an individual chooses a strategy a function of 
the relative payoffs obtained by that strategy and the other strategies in the past.ii They try a

^^Anyone who has lived In a condominium knows that residents often derive pleasure from actions that hurt their neighbors, 
which would make this mechanism somewhat dangerous in such an environment. There is also some evidence that “spite" is a 
factor in experimental findings about ultimatum bargaining (see Camerer and Thaler [1995], and Abbink, Bolton, Sadrieh and 
Tang [1996])

^^See Roth and Erev [1995] for the use of these dynamics with experimental data and Borgers and Sarin [1996] for their 
relationship with the Replicator dynamics.
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linear version similar to the one of Roth and Erev [1995] but modified to accommodate for 
negative payoffs and some non-linear versions like the ones proposed by Tang [1996], Chen, 
Friedman and Thisse [1996] and Mookherjee and Sopher [1996]. They show that these 
dynamics explain the data significantly better, according to quadratic deviation measures and 
others, than a generalized fictitious play model which can accommodate behaviors ranging from 
fictitious play to best response dynamics by the estimation of a "forgetfulness parameter” which 
weights past information.

2 .7 .  C o n c lu s io n s

We have argued that there is room for doubt about the practicability of one the of the 
leading examples of implementation with iterated deletion of weakly dominated strategies 
when agents are boundedly rational. This result complements that obtained by Cabrales [1996] 
for the Abreu and Matsushima [1994] mechanism. Since Cabrales [1996] uses dynamics that are 
different from those used here, it would be interesting to check if the results we obtain here 
extend to Abreu and Matsushima [1994] games. More generally, a deeper study with 
evolutionary tools of other mechanisms studied in the literature would enhance our 
understanding of the performance of these mechanisms with boundedly rational agents, a 
necessary step before mechanisms are used in real life.

Ideally one would like to design a game for which convergence to the preferred social 
outcome could be guaranteed for the learning protocols that agents use. To achieve this goal, it 
is necessary to do further empirical and experimental studies that reveal how people adjust their 
play in games like that studied in detail in this paper. We intend to perform such experimental 
studies in the future. The history of actual social arrangements may also give clues as to how 
people learn in such environments. Different mechanisms for public good provision have existed 
for centuries in many countries. These considerations imply the need for a substantial program 
of future research.
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A p p e n d ix

P ro o f  o f  P ro p o s itio n  2.1. We have already noticed that agent 3 has a weakly dominated 
strategy (namely, m”). In particular, m\ (truth-telling) makes agent 3 (strictly) better off than 
m l (lying), unless agents 1 and 2  coordinate their actions completely, that is, unless they play 

with probability 1 or they play m / i = l ,2  with probability 1 , (in which case, 3  is 

completely indifferent). This leads to the following lemma:

• Lemma 2.1. No strategy profile in which (0,1) can be a Nash equilibrium unless 
X i=X 2= l  or :Vi=X2= 0 , that is, unless agents 1 and 2  play the same strategy with 

probability 1 .

With this consideration in mind, we construct the proof as follows: we fix the mixed strategy 
of player 3 and check which mixed strategies for player 1 and 2 can sustain a Nash equilibrium. 
Noting that

An^=ui{mi^pcyui{mi^pc) =  ^ ( x2(x ,-1 )+ 7  x,-5) (2.3)

An2=U2{m2^pc)-U2{m2°pc) =  +  7 Xy5) (2.4)

we can make the following observations:

a) when x^i/7, (lying) yields a strictly higher payoff than for i = 1 ,2 , independently of

what the other player does. Therefore, the strategy profiles in (and only those) will be 
Nash equilibria;
b) when =3/7 , yields a strictly higher payoff than m\ unless ^2 = 0 , and ^2 = 0  makes 

player 1 indifferent between and m\ (a symmetric argument holds for player 2 ). This 

excludes the possibility of (1,1,3/7) being a Nash equilibrium of the game, leaving 
(0,0,3/7)e NE^ as the unique Nash equilibrium when =3/7;
c) when ( 3/7,1/^) there are no Nash equilibria. This happens because in this case ifxi =  1, 
the best response of player 2 is ^2 = 0  and if X i= 0 , the best response for player 2  is X2= l .  
However, neither (0 , l , x j  nor (1,0,Xj) can be Nash equilibria when XjG ( 3/7,1/2) by Lemma 

2 . 1 ;

d) X3 =  1/2. By analogy with the case Xj =3/7, it is an implication of Lemma 2.1 that ( l,l,l/2 )  
E NE  ̂ is the unique Nash equilibrium when X3 =  1/2;
e) when X3 >  1 /2  announcing m/ (truth-telling) is optimal for i = \  and 2 , independently of what 

the other player does. Thus, the strategy profiles in NE  ̂ (and only those) will be Nash 
equilibria.
Since this exhausts all cases the result follows, é
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Proof of Proposition 2.2. To prove the proposition, it is enough to show that any interior 
trajectory converges. This is because, once convergence has been proved, we can apply the 
standard result “convergence implies Nash under any monotonie selection dynamics” (see, e.g. 
WeibuU, 1995, Theorem 5.2 (in)) to obtain the result.

We start by observing that the fact that the dynamic is forward invariant implies that is 
always defined and positive, for any nonnegative t. By monotonicity, (t) is also a positive, 
increasing function of t and bounded above by 1 (since ml, is a weakly dominant strategy),

therefore it must converge. This already implies convergence of player 3’s mixed strategy. Let us 
denote x,*= limx,(r), when such a limit exists. Three alternative cases have to be discussed:

a)x.^*=Q. If there must be a time t' such that x̂  (03/7 for t >  t'. This implies that 

there is a ^ > 0  such that for all t '> t ,  A U i{x(t))<-k  for i=l ,2.  This implies, by monotonicity, 
lim Xj( 0  = 0  for / = 1 ,2 , thus x*=  (0 ,0 ,0 ).

b) JC3*=1. By a similar argument, monotonicity implies x*= (1,1,1).
c) ,( 0,1). We want to prove that x^* cannot converge to a value within this range unless

the system converges to a Nash equilibrium. To do so, given the special features of our example, 
it is enough to show that, if x^*e (0 ,1) it then must be that both players 1 and 2 select, in the

limit, the same pure strategy. Given that this result implies convergence of the entire mixed 
strategy profile, the result follows. More formally, what we have to prove is contained in the 
following lemma:

• LEMMA 2.2. If%3*e (0,1) then:

either
x / = 0 , i = l , 2  (CASE 0 hereafter) 

or
%/=l , i=l ,2 .  (CASE 1)

P ro o f . Let’s assume, for the purpose of contradiction, that neither of the above statements is 
true. In that case, there must exist a sequence and a positive constant e > 0  such that 

either x.(t,^)> e , i = l ,2  or 1-e , i = l ,2  for all k (in other words, the system must stay
infinitely often an e away from the faces of A in which player 1 and 2 play the same pure 
strategy). We already noticed that these are the only faces of A in which both pure strategies for 

player 3  yield the same payoff: if the system stays away from them infinitely often along the 
solution path, it then must be that the cumulative payoff difference will grow unbounded as 
time goes to infinity. As we will see, this in turn implies (by monotonicity) that ( 0  will also 
reach, in the limit, its highest value, that is, x^*=\, as a result of the extinction of the weakly 
dominated strategy m”, which is a contradiction.

To show this, we first notice that the payoff difference A n,(x(0) is a continuous function of 
x (t)  defined over a compact set (A ). In the case of player 3, such function takes the following 

form:
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An^{x(t))=-({Xi( t )-X2(t) )^+X^(t)( l -Xi( t ))+X2U)(l -X2(t) ) )
6 (2 .5)

Take g^= ^max [| gj(w,.,x_,(0) | ], i.e. the highest possible growth rate (in absolute

value) over all strategies and players (we know a max exists, since also g,(.) is continuous in A). 
Then define t  j,t 2,'̂  3 and t  4 as follows:

T 1 solves e exp[ -g^x J =  (e/2) [i.e. X] =  (ln[ 2 ]/g^]
X 2 solves (1-e)exp[ -g^x j  = (e /2)  [i.e. x 2= In [ - 2 + (2 /e)] / g j  
X 3 solves e exp[ g^x 3 ] =  1- (e/2 ) [i.e. x 3=ln[ -(1/2 ) +  ( l/e )]/g j  
X4 Solves (1-e) exp [ g^^xj = l-(e /2) [i.e. x^= ln[(2 -e)/(2 -2 e)]/gJ

and take dr  =min [x j,x 2,% 3,x 4 ] , that is, set a lower bound for the time interval in which, after 
each tf., (e/2 )< x;,< l-(e /2), ( =  1 ,2  and therefore Ari3(x(r)) still remains bounded away from 0  

(i.e ATl3(x:(0 ) > ( e  (1-e/2))/3>0, foralUe [ r*, t̂  + d z ]  ). Denote by

A n.(x) >
g g - f )

Now define:

X ,(r )

i.e. the time derivative of the log of the ratio between the probabilities with which each of 
player i’s pure strategies are played, which can be expressed in terms of the difference in the 
growth rates. Notice that also y-i(x{t)) will be a positive number bounded away from 0 infinitely 

often since, by assumption d.l, the difference in growth rates is a continuous function ofx(r)  
defined on a compact set, which preserves the same sign of An 3(^(0 ). This implies that we can 
always define a constant = min /^(^(f)), with > 0  by assumption d.2. Also by assumption

c g - $ )
d.2 , Y3(x( f ))> gg <=> ATl3(x(0 ) >  — If we integrate the value of Y3(x(0 ) over time we 

then obtain:

tu+d-c /j+5t

k=\ *=1

which implies that x / = l ,  which leads to a contradiction.#
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To summarize, Lemma 2.2 shows that, if (0,1), and ^ 2 ( 0  must converge (and 

therefore x (0  must converge to a Nash equilibrium). Since this exhausts all cases the result 

follows.#

Proof of proposition 2 .3 . For all X . , such that > 0  only if m,. g S,- we have,

u,{x,.,j:_,)> n  +  < 0 ^ ,(0 ,^ ,) .

For all ,

i , x ^  x;)u.{Xi,x_.)+ ^  X iiY l
m^eSj m/eSi  j ^ i  j * i

Then

^  X ,[ f |  JcJ'(v,.(/;<Cp('/,^*)), ,̂.)-V,.(G,.R.))
m ,eS , j * i

which is greater than zero since by the definition of kj,

n  n  v ,(0 ,« ,))/(v ,(/;{(p ftR ‘)),fi,)-v ,(0 ,R ,)+ U ,„ -v ,(0 ,.R ,)).

PROOF OF PROPOSITION 2.4. By contradiction.

Suppose that aj is the statement that stops being true earliest, that it does it for agent i and 
strategy m ,.G  5,-and that the boundary time is t'. Then it must be true that

,1 H
<  (0) ^  ' ^xr(o)

Notice that for all t,

(0,x_,(f))-w,(%r' (t),x_i(t))<vXO,Ri)Yl xj' (t)+Ul\-Yl xp (0)
7V1 j * i

w ))
J*i i * i

=(y,-v,(o,fi,)-n 4' œ(v,(rM«‘)),«,)+t/.-2v,(0,fi,))l
i* i

But since b) is true for r< t'
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M,.{x'l“ (t) ,X_.  (t))-U. (%r ( 0 , JC-, (0 )  <  [Uf V,.( 0 , V,.( / ; { ( p ( i , ) +  Uf2 v,.( 0 , ) ) ]

So we have that ( 0 , ( 0 ) -  w . ( 0 ,x_. ( f ) ) < w h i c h  by assumption d.2 and the 
definition of and 6 implies that^,{m,. ,x_,. which integrating from 0

to /' and given that (r')<//im plies that

This is a contradiction.

Suppose that b) is the statement that stops being true earliest, that it does it for agent i and 
that the boundary time is t' . Then it must be true that x”' (t') =H.
First notice that for all m,. e  S,\{ m*} since the payoffs of strategy m* and other strategies in S,- 
differ only when playing against strategies not in S..

j*i
since holds for t'

' (U) î i

HSince f/,{ x]‘ (0) <  0, this implies by assumption d.3 that

So by integration we have that

x r-(O x r '(0 )

% r(n % r(o)
> exp

V ^ - 1 ) -In U
H

'< ' ( 0 )

\ 5—1 = L

Adding over all strategies in S,-we have

I - x f i o

< ' ( 0 )  i-x f'(O )
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But this implies that x^' (using the assumption that (0) L > H ), which is a

contradiction.
Suppose that c) is the statement that stops being true earliest, that it does it for agent i and

x'"‘ (t') y'"'
that the boundary time is t'. Then it must be true that ' = L '.

As before, notice that for all m, e the payoffs of strategy m* and m. differ only
when playing against strategies not in S.,., so

(t),x_i(t))-u^{x1‘̂ (t),x_iit))<  U iYl x /̂ (0

which by part a) of the proposition implies that for all ?< r'

u. (%r ( 0 , ( 0> w, (%r' (f),x_i (0 )<  U,{ exp [ -hfi ?  n  (0))
X i  ' ( U )  j * i

Since U,( (0)) <  8, this implies by assumption d.3 that

( (0)-g,(m ,,z_, (t))) > -(  -ln[U, n  x'/ (0)] + h f i  ^
X i  ( 8 )

So by integration we have that

x f ( t ' )

< ' ( / )  xr'(o)

which is a contradiction.
Since this exhausts all cases the result follows.#

P ro o f  o f  p ro p o sitio n  2.5. (i) We know, from Proposition 2.2, that > 0  in any interior point. 
This implies that if there is a time t such that x̂  (t) >  1/2, then x̂  {t') >  1/2 for all t' >t. From 
equations (2.3-4) we have that, whenever (r) > 1 /2 , A n ,(x)> 0  for /= 1 ,2 . This implies that 
if there is a time t such that x  ̂(t) >  1/2, then x ,->0 for all t' >  t for i =1,2 and therefore x  (t) 
converges. Since convergence must be to a Nash equilibrium and Xj and X2 have been 

increasing, x  converges to NE .̂ To show the stability of NE  ̂ it suffices to show that there is a 
neighbourhood of NE  ̂ such that, for all a:(0) in this neighbourhood, there is a time t such that 

(0  >  1/2. Let .x,(0) =  1-e , for i = 1,2 and x^(0) =  l/2 -ô  , with e ,->0, Ô > 0 . From (2.3-4) we 

also have that -1 <  A n (x )  < 1  for z =  1,2 , thus

exp[-f](l -  e,) < x,.(0 < exp[f](l -  e,) (2.6)

Since AH^^v)^! (l-Xj)/6 we have by equation (2.6):
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thus

This implies that

x^jt)  ̂ exp[-r](l -  £,.)(! - exp[f](l -  £,)) 
x M )  6

^3(^)  ̂  ̂ ( l - £ , ) ( - f + £ ) )
x J t )  6 6

%3(f)>exp

Note that for^=e

exp
( l - ^ i X - y  + /̂O

exp

r

6
>1

and therefore x̂  (t) >  1/2 for ô small enough, which is what we wanted to show.
(ii). Assume that x^{Q)>^/l. Since >0 for all t, x̂  (t) is an increasing function of t, therefore 
it must converge. Since the initial condition ^ (̂O) is larger than 3/7 it must converge to a 

number larger than 3/7. We know that A: (r) converges to a Nash equilibrium by Proposition 2.2. 
Since there is no equilibrium in NE° with >3/7, x{t)  cannot converge to a point in 
Since ^ (̂O) can be arbitrarily close to 3/7 and therefore to the set A/E", this set must be 

unstable.#

Pro o f  o f  pro po sitio n  2.6. The proof is constructed as follows. We first characterize the limit of 

the set of rest points RE(p), and then analyze the stability properties of each of its elements.

We start by observing that, given pe (0,1), any rest point must be completely mixed, and it also 
must be x  ̂>  p, as is always positive in the interior of the state space A (because m" is a 

weakly dominated strategy). We also know, by the continuity of the vectorfield with respect to 
X, that every limiting rest point of the dynamic, as X goes to zero, must lie in the set of 
restpoints of the unperturbed dynamic RE(T).

We analyze first the limit set of rest points under CASE 0. In this case, both players 1 and 2 play 
their strategy mf with probability 1, that is:vf=G, for z =  l,2. Setting yields the following

equation:
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x /̂% =12( y i-x ^ /{  l-Xj) ( 3+:vi-x3(7-X2)) (2.7)

and an analogous expression can be obtained for %/A.. Denote by a limiting value in a rest 
point, if a limit exists, for When the limiting values for jCj and ̂ 2  are zero we have:

lim xA  =l/(2(5-7x3%  (2 .8 )
A —> 0

Notice that in this case if a rest point exists it must be x 3° < 3 / 7 , since x /X > 0 . We then set 

^  = 0, substitute ^  with the expression in (2.8), solve for X3 , and substitute x̂ , i= l ,2  and X
A  A

by their limiting value of zero. The solutions for X3O take the following form:

, 0  3 + 4j3 + V 9-16j3(l-j3) l + 7 j3 -V l-j3 (4 6 ft
 ̂ 10  ̂ 10

Remember that X3O must be a real, positive number, with For the expression

under the square root at the numerator to be nonnegative, it must be that
e [0,(23 -  4 VÏÔ) / 49], which determines the feasible range for both roots. Within this

interval of values for p ,  x° (x®) is a strictly decreasing (increasing) function of p ,  which has a 

minimum and a maximum, whose values are (15 -  2V3Ô) / 35 (0) and 2/10 ((15 -  2V3Ô) / 35) 
respectively. As p  -> (23 -  4V3Ô) / 49 both solutions converge to (15 -  2 V ^ ) / 35.

We now deal with the subset of limiting rest points under CASE 1, i.e. with limiting values for 
x f= l  for i= l,2 . The equations corresponding to (2.7-8) are now the following:

(l-A ;^ A = (l/2 -xO /(A ;i(l^ + (l-JC 3)((l/12)(W -(2 /3))) (2.9)
Hm {l-x^/X = 1 /2 (1 /3 - (2 /3 ) (1 -X 3 ) )  (2.10)
A-4O

Denote by X3 1 a limiting value in a rest point for X3 in this latter case. By analogy with CASE 0, 
we know from (2.9) that, if a rest point exists, it must be x 3 ^ > l/2 . There is a unique feasible 
solution for X3I, for all p e  ( 0 ,1) with the following form:

3 + ^P + ̂ 9 - l6 P ( l - P )
10

Following the same procedure for the remaining rest points of the unperturbed dynamics 
(i.e. the pure strategy profiles which belong to RE{ r) and do not satisfy either CASE 0 or CASE 

1) does not add any element to the limiting set of rest points of the perturbed dynamics. This 
should not be surprising, as any other rest point of the unperturbed Replicator Dynamics is 
unstable with respect to the interior. Since this exhausts all cases, the result follows.

We now move to establish the stability properties of each limiting restpoint separately. The 
Jacobian matrix for the dynamic system is as follows:
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7(x,A) =

(1 — 2X] )A n , — A - ( l - X ,) x , ( l - J C 3 )
12

( 1 - x ,)j:,(7  +  X2) 
12

-(1 -X 2 )X 2 (1 -X 3 )
12 (1 — 2%2)Ari2 ~  A

( \ - x ^ ) x ^ ( l  + x, )  

12
(1 — 2%2)^3(l ~ ^ a )  

6
( l - 2 x J x 3 ( l - % 3 )

6
(1 — 2x3)A ri3 — A

We analyze CASE 0 first. We know that, in this case, we have two restpoints, which we call 
x"=(0 ,0 ,%3) and jc”=(0 ,0 ,3c3). We evaluate the Jacobian whenxi,X 2 and X are equal to their 

limiting value (i.e. 0). The corresponding eigenvalues are: {0,(-3+7% 3°)/12,(-3+7z3yi2}. 
There are then two (identical) negative eigenvalues (since any limiting jc3° < 3 / 7  for CASE 0), 

while the third eigenvalue is equal to zero. To determine the stability properties of the 
perturbed system, the sign of the eigenvalue whose limit is zero becomes crucial given that the 
continuity of/(.) ensures that the other two will be negative, for any X sufficiently small. We 
now linearize the rest points (as a function of X, ) around NE^. We set 3c(A)=(ôiX ,Ô2X 
, x 3 0 + Ô 3 X  ), where ô  = (  ô  i , 6  2 , S  3 )  denotes the vector collecting the coefficients of the 

linearised system. We then evaluate the following expression:

^det(7(x,A))
dX

We do so because det(J(x,X)), which is equal to zero for all.xe NE' ,̂ will preserve the sign of 

the third eigenvalue, given that the sign of the other two will stay constant (and negative) when 
X is sufficiently close to NE^ and X is sufficiently small. For CASE 0 we get the following result:

^0(x30,5)=(-54+x30(252+294x;30)4-(5i+52)(9-39% 30+63(x30)M 9(x30)")/864 (2.11)

We first notice that (2.11) does not depend on 63 . To evaluate sign{^%x^°,S)) we only need to 
get estimates of and 8 2 , the linear coefficients which measure the responsiveness of the

equilibrium values ofx^ i=l,2  to small changes in X . We do so setting h m -^ D (x,A )|.^  g)= 0

and solving for { 81,8 2 , X3O}. There are two alternative set of solutions, each of them corresponds 

to each of the restpoints. In particular:
g. |o  23 -  49)3-7V l-)3(46  -  49)3)

So _  s o  23-49^  + 7^1-^(46 -  49^)
'  ̂ 8 

We evaluate the numerator of (2.11) for both sets of solutions, and we get the following 
expressions::
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n P ) =
3 ( - 7  +  322p -  343/3^ +  (49p -  2 3 ) ^ 1 - 4 6 ^ 3 - 4 9 ^ 3 ')

10

3 ( - 7  +  322)3  -  3 4 3 )3 ' -  (49)3  -  2 3 ) ^ 1 - 4 6 ) 3 - 4 9 ) 3 ' )
(2 .12)

10

Both ÿ()3) and ÿ()3)are plotted in Figure 2.4. As the diagram shows, ÿ(j8 ) is always negative in 
the domain [0,(23 -  4 V M )/49], whereas ÿ()3)is not. As a result of that, 0()3) is asymptotically 
stable whereas 0{p) is not.

CASE A CASES

-2 0

-4 0

-6 0

FIGURE 24
Asymptotic stability o f the dynamic with drift

We now move on to CASE 1. Here we have a unique rest point, which we call 
Jci=(l,l,Jc3 i).The eigenvalues of the unperturbed dynamics are as follows: { 0 ,(l-2 %3)/3 ,(l- 
2 x 3)7 3 } . As in CASE 0, there are two (identical) negative eigenvalues (given that x 3 > l / 2 ), 
and the remaining eigenvalue equal to zero. By analogy with CASE 0, we now define x(A)=(l-

ÔiA,,1-Ô2A. ,x 3°+Ô3A ) and solve lim-^D(x,A)|j(;^ ^ ^ = 0  to get estimates of ô. The unique

feasible solution (corresponding to the unique limiting equilibrium), takes the following form:

.  .  3 ( 2 - 4 ) 3  +  ^ 9 - 1 6 ) 3  +  1 6 ) 3 ']
<5° = 6»=-^ ------------ ---------------------

2

The function corresponding to (2.12) takes now the following form:

0 ,( ^ )= 2 4 (-«  + P - 4 W Æ
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with a  = 9-16/3 . The function is also plotted in Figure 2.4. As the diagram shows, 
0'()8)is negative for all pe (0,1). As a result of that, Jc' is asymptotically stable under any drift 

configuration.#

Pro o f  o f  Pro po sitio n  2.7. Given m” is weakly dominated by mji, it will never be played if 

player 3’s initial beliefs are completely mixed. As a consequence of that, its weight will decrease 
monotonically in player 3 ‘s opponents beliefs as Take the role of player 1 and define:

T. = min 
( 6 ( 1. 2 ....

We know, from (2.3), that for all t>T^, player 1 has an optimal strategy (namely, mji), 
regardless of what player 2 does (since (2.3) will stay positive from Tj on). Therefore, for all 
r>T], player 1 will follow player 3 in delivering the true message, independently of player 2’s 
choice. A symmetric argument for player 2 completes the proof (setting T = max[7;, 7^])#

Pro o f  o f  pr o po sit io n  2.8. By analogy with Proposition 2.7, if beliefs are completely mixed, 
only strategies in 5,- will be selected, since this set corresponds, for each player, to the set of

undominated strategies. Let T, = min ^ ,that is, the point in time in which the
A/_,65_,.

set 5.. accumulates enough weight in player i's belief to make î,- the unique best response. We 
know that m,.(0 = p,.}, for all r>T; and this completes the proof (setting T = niax[7l]).#
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C h a p t e r s  
Cycles OF Lea r n in g  

IN THE C e n t ip e d e  G am e

3 .0 .  A b s t r a c t

Traditional game theoretic analysis proposes backward induction as a model of rational 
behavior in games with perfect information. However, counterintuitive results have cast doubt 
on the predictive power of the theory. For example, in the Centipede Game, experimental 
evidence shows that subjects’ behavior significatively differs from what the theory expects.

In our paper, we construct a dynamic model based on the Centipede Game. Our claim is that 
the source of these discrepancies between theory and experimental evidence can be explained 
by appealing to some form of bounded rationality. Traditional game theoretical analysis could 
then still accurately predict the players’ behavior, provided that they are given time enough to 
appreciate the strategic environment in which they operate. We prove convergence to the 
subgame-perfect equilibrium outcome for any monotonie continuous-time selection dynamics 
(Nachbar [1990]). By introducing perturbations, we also show that such adjustment processes 
are intrinsically unstable, and study how this instability is positively related with the length of 
the game.

3 .1 .  In t r o d u c t i o n

Inspired by Nachbar [1990] and Cressman [1996] works on the Prisoner’s Dilemma, this 
paper explores the properties of an evolutionary model based on the Centipede Game, first 
introduced by Rosenthal [1981]. Its extensive form is shown in Figure 3.1.1.

In the class of games we investigate, the use of backward induction (or alternatively, the 
iterative deletion of weakly dominated strategies) selects a unique Nash equilibrium, which is 
the subgame perfect equilibrium of the game. This equilibrium requires the two players to 
adopt the strategy of opting out at each information set. Since the game is characterized by a 
unique subgame perfect equilibrium, the latter is also trembling-hand perfect (Selten [1975])
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and proper (Myerson [1978]) when you consider the appropriate normal forms. Moreover, every 
other Nash equilibrium of the game is outcome-equivalent to the subgame perfect strategy 
profile. All the most popular solution concepts therefore appear (for once!) to agree on a unique 
outcome. However, there are clear benefits to the players if, for some reason, they deviate from 
this prediction: both are always better off if the game continues for at least two more stages.

'I o \  o \  o \  o \  o \  0 \  o \  0 \  o \
w V V  V v V w  W W W[-;] 0  0  [:] 0  [:] 0  a a

Figure 3.1.1
Rosenthal’s Centipede Game

This backward induction paradox  has been the focus of a debate about the logic and the 
rationale of backward induction. Recent papers include Aumann [1995], Battigalli [1997], Ben 
Porath [1994], Binmore [1996] and Reny [1993]. The urgency of this debate is underlined by 
the experimental literature which confirms that subjects deviate substantially from subgame- 
perfection when the number of stages is sufficiently large. Recent papers include, among others, 
McKelvey and Palfrey [1992], Nagel and Tang [1995] and Roth and Erev [1995].^

How to justify such discrepancy between theory and the more natural intuition? Rosenthal’s 
[1981] original approach to the problem can be summarized as follows: finite, non-cooperative 
games with both complete and perfect information should be treated, from the players’ 
viewpoint, as stylized single-person decision problems. The rationality criterion he proposes is, 
indeed, backward induction, which, nevertheless, should be subject to some modification by the 
players whenever they recognize that the game actually played is characterized by some degree 
of incomplete information, the exact characterization of which would be to render the game 
unmanageably complex for them. Instead of modeling such incomplete information directly, 
they modify their equilibrium calculations in a way they feel is intuitively appealing. In 
Rosenthal’s example, the players assign a given probability that, at each information set, a 
suboptimal action is chosen, this probability being negatively related to the payoff difference 
between the optimal and the suboptimal action. If so, the players may well decide to select a 
strategy which does not require to opt always out, at least for the first stages.

The aim of this paper is to explore the backward induction paradox in the Centipede Game 
with evolutionary techniques. In the model, the two players are assumed to adjust their (mixed)

[ l o j

^McKelvey and Palfrey [1992] analyse their data with a static model based on the “incomplete information” approached of Kreps 
etal. [1982], but their experiment results strongly support the learning hypothesis we pursue in the paper. Commenting their 
results, the authors notice in fact that: “ there are some differences between the earlier a nd  later plays o f the game in a  given 
treatment which are supportive o f the proposition that as subjects gain more experience with the game, their behavior appears “more 
rational." (p. 809). The experimental studies of Nagel and Tang [1995] and Roth and Erev [1995] also propose, analysing their 
results, adaptive learning models which has some similarities with the approach pursued here.
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strategies according to a conûm o\is-\m t Monotonie Selection dynamics (Nachbar [1990]). This 
condition requires that the relative frequency of fitter strategies should increase at the expenses 

of less fit competitors.^
The remainder of the paper is arranged as follows. Section 3.2 provides a formal description 

of i)\tN-legged Centipede Game. Section 3 3 sets up the dynamical system as a continuous-time 
Monotonie Selection dynamics. Section 3.4 explores the asymptotic properties of such dynamics 
for theÆ-legged Centipede Game. If the initial conditions lie in the relative interior of the state 
space, any Monotonie Selection dynamics converges to a Nash equilibrium (Theorem 3.4.1). 
Since all Nash equilibria of this game are outcome-equivalent to the unique subgame perfect 
equilibrium, players adjusting their behavior according to any Monotonie Selection dynamics will 
therefore eventually behave as though using backward induction, regardless of their initial 
behavior.

The proof of Theorem 3-4.1 is an application of Nachbar [1990] and Cressman’s [1996] results 
on the finitely-repeated Prisoner’s Dilemma, which show that the Replicator Dynamics (probably 
the most commonly known and studied Monotonie Selection dynamics) converge to one of the 
Nash equilibria of the game from any interior initial condition. Like the finitely-repeated 
Prisoner’s Dilemma, the Centipede Game is weakly dominance solvable. Samuelson and Zhang 
[1992] have shown that any Monotonie Selection dynamics converges to the solution o ï strictly 
dominance solvable games from any interior initial condition, whereas we know of 
counterexamples which show that same property does not generally hold for games which are 
only weakly dominance solvable.) Our paper describes a class of games in which the iterated 
deletion of weakly dominated strategies leads to a solution which is outcome equivalent to the 
strategy profile selected by a commonly popular class of evolutionary selection dynamics.

Section 3.5 is devoted to simulations based on the type of dynamics studied here. In the 3- 
legged Centipede Game, we see orbits that start close to the Nash equilibrium component, 
then move away from it and eventually come back. In other words, even though Theorem 3-4.1 
guarantees convergence, we show cases in which it is not monotonie. Borrowing the term from 
Binmore et a l [1989] we interpret this phenomenon in terms o î unlearning. Although the 
players seem to understand backward induction initially, because they mostly opt out 
immediately, they gradually learn that they can earn more by opting in at the first move, and it 
is only after they have learned to opt out at the third and then the second stage, that they 
return opting out at the first stage.

Is such mimicking of the backward induction procedure more likely to occur the longer is the 
Centipede? This is one of the questions one would address, given these first simulation results. 
The problem is clearly related to the local stability properties of the subgame perfect 
equilibrium outcome, that is, the properties of the vector field characterizing the dynamic 
process sufficiently “close” to the subgame perfect strategy profile. In an independently 
conducted study, Cressman and Schlag [1995] analyse conditions for convergence and stability 
for the subgame perfect equilibrium outcome of games with perfect information without

^There is a growing literature which explores the conditions under which dynamics analogous to the one studied here can 
approximate a learning adjustment process. See, among others, Borgers and Sarin [1993], Cabrales [1993], and Schlag [1994].

)As it will be explained later -see (3-4.2)- we only consider dominance relations between pure strategies. On the behavior of pure 
strategies strictly dominated by mixed  strategies, see Hofbauer and Weibull [1996].
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relevant ties, of which the Centipede is a special case. In the case of the Replicator Dynamics 
they provide a sufficient condition for local (asymptotic) stability of the backward induction 
outcome which they call simplicity. In their terminology, a simple Centipede Game must have at 
most three legs. The intuition they provide is the following: if the Centipede is longer, then 
learning how to select the subgame perfect outcome might be difficult, and boundedly rational 
players might persist in playing strategies that are not justified if the backward induction 
procedure is applied correctly, even if this sort of behavior disappears in the long run.

Their analysis leaves open the qualitative features of the adjustment process (i) when the 
learning dynamics are slightly “perturbed” and (ii) in the case of longer Centipede Games. We 
tackle this problem in the following way. We run simulations of a modified version of the 
dynamics analysed in Section 4 using a perturbed version of the Replicator Dynamics which 
“forces” the players to adopt a completely mixed strategy, regardless of their initial behavior, 
and no matter how each strategy performs against the current opponent’s profile. Following 
Binmore and Samuelson [1995], this perturbation is called drift. Its role is to open the model to 
the possibility of a heterogeneity of behaviors, which we think reasonable in every social 
environment populated by boundedly rational agents.'  ̂The source of this heterogeneity is left 
unmodeled here; following the standard literature in the field, we attribute the drift to 
unexplained mutations, and simply check how the model reacts to the introduction of such a 
perturbation.

In the three-legged Centipede Game, when drift is reinforced the unlearning phenomenon 
is enhanced, as the dynamics exhibit limit cycles. Moreover, even with a relatively small amount 
of drift, we find that the cyclic behavior described for the three-legged Centipede Game gets 
repeated over time, and the longer the game, the more it gets repeated. Increasing the length 
of the game also has the effect of increasing the average payoff of the players. This effect, which 
is inconsistent with the backward induction prediction, is again supported by the experimental 
evidence in the field. We interpret such trajectories as cycles of learning. The existence of such 
cycles would seem to support Rosenthal’s intuition that backward induction will not predict the 
play of agents who do not reason perfectly. Finally, Section 3-6 concludes.

3 .2 .  T h e  C e n t ip e d e  G a m e .

The aim of this section is to provide a simple characterization of the N-legged Centipede 
Game. It is a 2-player game with perfect information and N  moves that alternate between 
players. The formal condition associated with the so-called “centipede structure” is that there 
exists an information set such that the set of its predecessors (including itself) coincides with the 
set of decision nodes of the game. This particular feature allows us to adopt the following 

notation:

I G 3  = {/,//} denotes a generic player, with - i  indicating her opponent;
N  is the number of ‘legs’ of the centipede (we assume N > 1);

'^The notion of stability we appeal is therefore stability with respect of small perturbation of the vector field, conventionally 
defined as structural stability.
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0  is the set of stages of the game, i. e. 0  = + 1}5;
w.:0->5R is the payoff function for player i , that is the reward she receives when the game 

ends at stage 0; 0 e 0 .

We now look at the payoff ranking. We require that, at any stage, both players are better off if 
the game continues for more than one stage:

M,.(0 + n) >  -1 ); n > 1 (3.2.1)

Condition (3.2.1) formalizes a natural property of the Centipede Game: the player who is 
entitled to move has always an incentive to opt in, conditional on the opponent doing the same 
in the following round. However, opting out is always optimal if the opponent is doing the same 
in the following stage:

u-(6) > w,(0 +1) when = 1 

Uj{6) < u. (9 + 1) when S f  = 0
« _  (32.2)

where 6. is a Kronecker delta function that takes the value 1 when i and 6 have the same 

parity, and 0 otherwise. To complete the description of the game, we need to define the 
strategy set for both players. We introduce the following restriction: we group together all the 
equivalent pure strategies, i.e. the strategies that lead, for each player, to the same probability 
distribution over the terminal nodes for all the pure strategies of the opponent. In other words, 
we shall consider only the strategies of the reduced normal form, i. e. the following:

s,^{s] , s] ....

with S = S ,x S „ . For any i = 1,11, jf e  5,. denotes the pure strategy that player i adopts when 

she opts out at stage 9 . With an abuse of notation, we identify, for both players, the strategy 
as the «always opt in» behavior. Analogously, the symbol <r,. identifies, for player I, a mixed 

strategy, with o f  denoting the probability attached to the pure strategy under o’,..

We also need to specify the relation between a generic (pure) strategy profile, and the 
corresponding outcome. This is formalized by means of the outcome function v:5 -> 0  which 
has the following properties:

1 0 'otherwise

5We prefer the terminology of stages to indicate the terminal nodes simply to stress the natural ordering provided by the 
sequential structure of the game.
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in fact, as can be seen by looking at the extensive form of Figure 3.2.1, the outcome of the 
game is determined by the player who decides to opt out first.̂

I

O

I I J

o \ o

r UjiM+l )1

) J

Figure 3.2.1
The -legged Centipede Game

We quote, for the sake of reference, the following standard results, the proofs of which are 
omitted:

• Pr o po sitio n  3.2.1. The -legged Centipede Game exhibits the following properties:

• A unique subgame perfect equilibrium, namely [s\

• A (unique) component, that is a closed and connected set, of Nash equilibria with the 
common property that player/ plays strategy with probability 1.

Throughout the paper, the symbol will denote such a component, the exact 

characterization of which clearly depends on the length of the Centipede, N.
The game has another property of interest which can be summarized as follows. If J is the 

player who is asked to move last (i. e. 7 = {/ e  = l}), then J  has an incentive to opt out

at stage N . Hence, opting in at stage N, i.e. Sj*\ is a weakly dominated strategy. A clear 

implication of this property is that the game is (weakly) dominance solvable, in the sense that it 
can be reduced to a single cell (the subgame perfect outcome) by the iterated deletion of 
weakly dominated strategies. Unlike other weakly solvable games, this latter procedure is 
unique here and correctly reproduces the backward induction argument: at each stage, only the 
player which is asked to move last has a weakly dominated strategy that can be deleted, actually 
reducing the game to the -1  Centipede Game, where the same argument can be re-applied, 
in a recursive fashion.

3 .3 .  T h e Dynam ics

^Wiih another abuse of notation, we will use the symbol W, ( )  not only for the function M, : 0  —> 9 Î ,  but also the compound 

function V °  M,.. In this latter case, the symbol will indicate the payoff received by player i given the strategy profile
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We now move on to the characterization of the evolutionary dynamics we analyze. We 
formalize players’ behavior in terms of the mixed strategy they adopt at each point in time. 
Denote with r.{t)  the probability with which player i selects her pure strategy jf at time t, 

with = denoting the vector collecting such probabilities. We

then have r.(t) e  A,., with A,, denoting |5. - 1|-dimensional simplex which describes player i ’s 
mixed strategy space. We also interpret the vector r{t) = r„(t)) as the state of the system

at time t, defined over the state space A = A ,xA ,„  with A“ denoting the relative interior of 
A. By analogy, A° will denote the set of completely mixed strategies of i .

•  Assum ption 3.3.1. The evolution of r{t) is given by the following system of continuous-time 

differential equations:

We refer to the autonomous system /  = = as the selection

dynamics, i. e. the term that captures the relevant forces that govern the players’ strategy 
revisions. As in chapter 2, we will require that (3.3.1) satisfies the monotonicity condition 

(1.3.3):

• Assum ption  3.3.1. f  is a regular Monotonie Selection dynamics (MS hereafter).

In the following section, we shall explore the asymptotic properties of any MS in the case of 
the TV-legged Centipede Game.

3.4. T h e MS Dynam ics a n d  t h e  C entipede Game

In this section, we examine the asymptotic properties of any MS when initial conditions lie in 
the relative interior of the state space A:

• Assumption 3.4.1. r(0 )eA °

Assumption 3.4.1 excludes the possibility that the selection dynamics, given that the system is 
forward invariant, act only on a subset of the strategy set S  (i.e. acts on a game which might be 
qualitatively different from the game object of study).

As noted previously, the Centipede Game is weakly dominance-solvable. We shall therefore 
begin by specifying the relation between weak dominance and the asymptotic behavior of any 
MS dynamics. Before we proceed, some further terminology is needed. Consider a finite 
normalform game r  = {3,5,,u,.}. We say that a pure strategy .sf eS", is said to be strictly  

dominated by some pure strategy jf' if it yields a smaller payoff against any mixed strategy in 

the support of the opponent:

ufs%G_^)< ufsf,G_,y,yG_i E  A_,. (3.4.1)
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Analogously, jf is dominated by if g A_. with strict
inequality holding for some (j_, g A_,. and, a fortiori, for any completely mixed strategy of the 

opponent:

M,. ( f̂ ,(%_,)< M,. (jf', <7_,. ); VC7_,. G A°_,. (3.4.2)

The following definition makes use of this property and applies the notion of dominance 
under weaker conditions, that is, along the solution path:

• Definition  3.4.1. Let r(r(0),r) be the interior solution of a MS dynamics 'r=f{r(t)). A pure 
strategy is said to be strictly r-dominated by some pure strategy s f  (sf s f  hereafter) if 

we can identify a time r and a non-empty compact set C_̂  c  A_,. s. t.:

r_,.(OeC_,.;Vr> t ; (3.4.3)
u,(sf,CT_,.) < CT_,.);V(T_, G C_. ; (3.4.4)

Moreover, is said to be weakly r-dominated by s f  (jf s f  hereafter), if (3.4.3) holds and 

we substitute (3.4.4) with the following:

M,.(jf, (T_,.) < M,.(jf',(T_,.);V<T_,. G C_, (3.4.5)
U. (jf , (T_,. ) < u. ( s f , CT_,. ); V G  c !, (3.4.6)

where, by analogy, C2. denotes the relative interior of C_,..
Let cofr(0)) the o)-lim it set for player i of an interior solution r(r(0),r); i.e. 

cô  = {(J; G A,.|/;(KO), t) -> (7, for some sequence oo}. The following proposition holds:

• Proposition 3.4.1. Let r{r{0),t) be the interior solution of a MS dynamics r= f{r(t)). If
s f  then:

A T t lM  < 0 ; V / > T  (3.4.7)

• i i m 4 ^  = L a o  (3.4.8)
(0  

• If L > 0 then:

ufs f ( j_ i )  = M,.(.sf',(7_,.);V(T_,. G £0_,.(r(0)). (3.4.9)

• if sf" , then s f  s f  (3.4.10)
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Pro o f . We start by observing that, since r(0)eA”, forward invariance implies that

> 0 .

(3.4.7). V f>  T, -^logf 4 ^ 1  = ■ ^ 4 ^ ^ - ■ ^ - 4 ^  < 0  by monotonicity.
' dt \ r f { t ) )  r f { t )  r f ( t )

(3.4.8). Vf > T, -^7̂  is a positive, continuous, decreasing function of t and bounded
 ̂ (0

below by 0, so it must converge.
(3.4.9). First notice that (3.4.3) implies that <o_,-(r(0)) c  C_j-; thus «.(j'f.o-.,) <

V(T_,- e  CD-i(r(0)). Assume, for the purpose of contradiction, that there exists some 

<T_. e  CD-i(r(0)) such that u,(sf,a_,)<u,.(^s.',cr_,'). If so, by regularity of / ( . )  and 

(absolute) continuity of (u^(sf,r_.(t))-Uj(sf',r_/(0)} in C_,., there must be a sequence 

, and some positive constants e  and Ar such that (M,.(5f,r,.(f))-u,.(jf',r_,.(f)))> e 

within each interval +Af].7 Now recall that, Vf > r ,  also

- l o g |
rf j t) will be a negative number bounded away from 0

infinitely often, since also the difference of growth rates is a Lipschitz continuous function of 
r{t) defined over a compact set (C_.), which preserves the same sign of

This implies that there must be another positive constant

such that:

< £

which in turn implies
y  ja

lim log
=  1 dt

(3.4.11)

which leads to a contradiction, as the improper integral (3.4.11) does not exist.^

• (3.4.10). Let V ( t") and C'_. (C" ) be the parameters which describe, following Definition
3.4.1, the T-dominance relation between jf and s f  {sf' and j f ) .  Take T = max[r',T"] 

and C_,. = C \ n  C ". Then, the result follows, since, by (3.4.3-5):

r,.(f)E C _.;V f> T;

M,.(5f",(T_,.) < M,.(jf,(J_,.) < M,.(5f',<7_,.);V<T_. e  C_,.
(3.4.12)

(3.4.13)

^The argument follows, by analogy, the proof of Lemma 2.2.
®We omit to consider the constant of integration in the improper integral (3.4.11), as the integral does not exist.
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6 c!,. (3.4.14)

é

Proposition 3.4.1, which generalises similar results in the literature,9 can be rephrased as 
follows: given interior initial conditions, if is weakly r-dominated by 5*', its relative weight 

will eventually fall, no matter how the weakly T-dominant strategy performs compared with

O t h e r  strategies in player i ‘s support. Moreover, according to (3.4.8), the ratio must
 ̂ (f)

r^(t)converge, whether player i ’s mixed strategy converges or not. By (3.4.9), if g, converges to
 ̂ (0

a positive constant, this implies that both pure strategies must yield the same payoff against any 
mixed strategy in the œ  -limit set of the opponent. Finally, (3.4.10) ensures that the weak t -  

dominance relation is transitive, as it is the “classic” one.
Proposition 3.4.1 tells us that the extent to which the intuition “domination implies

extinction” holds is related to the relative performance of the two strategies in the limit, that is, 
when oo.io in particular, to ensure extinction, we need strict dominance, even if in the 
weaker form of r-dominance:

• P ro p o s itio n  3.4.2. Let r{iiQ),t) be the interior solution of a MS dynamics r=f{r(t)).  If

s f  then:

lim-^^^ = limA;.®(0 = 0 (3.4.15)
(t)

• P r o o f . Since C_. is a com pact se t, th e re  exists som e ^ ^ > 0  such  th a t

fi (.r{t)) T. We can therefore apply, by analogy, (3.4.11) to show
 ̂ (0  ̂ (0

that lim-^—  = lim rf(t) = 0.
(r)

Proposition 3.4.2 generalizes the standard result of extinction of strictly dominated strategies 
to the case of pure strategies which are only strictly r-dominated. The intuition behind the two 
results is exactly the same: if the relative performance of a pure strategy is uniformly worse than 
another, and this property still holds in the limit, this implies the extinction of the dominated 
strategy, regardless of any further consideration. We apply Propositions 3.4.1-2 in the case of the 
N-legged Centipede Game:

9We make reference to Cressman [1996], Theorem 3.1, and the Lemma in Nachbar [1990]. 

r®(f)
^®It is important to notice that lim - p  = L > 0  is only a necessary condition for the weakly dominated strategy to be in

(0
r^{t)

the support of the limiting distribution, whilst l i m - ^  =  0  is sufficient for extinction.
(0
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• Theorem  3.4.1. Any interior solution r(r(0),r) of a MS dynamic r= f{r{t))  converges to

Before proving the theorem, we need an additional lemma. We know from (3.4.10) that the 
relation is transitive. This result, as well as any other result proved so far, is not peculiar of 

the Centipede Game, as it holds for any finite normal form game. However, if we restrict our 
attention to the Centipede Game, we can can prove the following:

• Lemma 3.4.1. For any interior solution, r(KO),r), of a MS dynamics r= f{r{t))  the relation

strictly orders the sets S, and S^.

Proof. The proof is by induction on 0 , as we will show that, for any i g 3  and 0 g {1,...,//}  

strictly orders the sets ^ ( 0 )  = {-sf

Let J be the player who is required to move last. When G = N , ^ ( 0 )  = {jy and 

c / ) ( 0 )  s  and the lemma is obviously true, since is weakly dominated by j y .

• Step 1. 0  = A- 1 .  In this case, ^ ( 0 )  = {j'y ,jy^'} and = To prove the

lemma, it is sufficient to show that - \ )  can be ordered by < ,̂ since

^ { N - \ )  = ^ {N ) .  We evaluate the payoff difference [u_j(s‘̂ j\r j( t))-u _ j(s ‘! j\r j(t)))  

explicitly, factorising tj'it) out :

= « /(« .,(W +1) -  u_,(.N -1 ))-^!^  -  -1) -  j

with, by (3.3.2.1-2), both {u _ j(N -l)-u _ j(N ))  and {u_j(N+ l) -u _ j(N -I ) )  positive. Only the 

payoffs u _ j(N -l) , u_j{N) and M_y(Â  + l) enter in the evaluation of (3.4.16), since s’̂ ĵ  and 
yield the same payoff against any pure strategy in which J opts out before stage M- 1 .

Moreover, the sign of (3.4.16) depends only on the sign of the term into round brackets of the 
right hand side of (3.4.16), since, by forward invariance, r f ( t ) > 0 ,\ / t> 0 .  Define x->0 by

K=  that is, the threshold value of - that makes player -J
{u_j{N + \ ) - u _ j { N - \ ) y  r^it)

indifferent between and î̂î'y '. Taking limits of (3.4.16) we obtain the following;

limsign[w_y(/;', />(r)) -  M _y(//, />(0)]

r ,  \  1 0 4 ^ % )
=  sign[((«_y(A^ + 1) -  u_j(N -  D)L^"' -  {u_j(N - 1 )  -  u_j(N)))  Ihn (Oj

with l y  = lim \  . There are only two possible alternatives:
r^it)
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• CASE A. > K. Then ' (with t  =  0  and = jo-  ̂g | , since, by

(3.4.7), ^  is continuously decreasing in t\. 
0 vO

CASE B. Then (with t  solving ^
• j  (0

= and

C, = i ( T, eA, S i r  )

Since this exhausts all cases, the result follows. î

• STEP 2. 1 < 0 < . Assume that the lemma is true for 1 < 0 < 7/. Let / be the player who is 
required to move at stage 0. When ! < 0 < N ,  ^ 0 )  = and

(0) = r }- To prove the lemma, is sufficient to show that ^ , .( 0 -1 )  is an 

ordered set, since ^ ( 0  -1 )  = ^ (0 ) . For a fixed 0, let û(Ô) index the pure strategy of player i 

which weakly r-dominates all other strategies in ^ ( 0 )  (i.e. s f  s f  for any s f  g ^ ( 0 ) ,  with 

e ' ^ û ) .  When ! < 0 < N ,  for any g ^ ,.(0 ) , the payoff difference
takes the following form:

-  « - M t r . -K O )= r f  X  -  »). ‘ = r  g I

(3.4.18)

with all (u_i(k) -  w_,(0 -1)) strictly positive, except for (m_,(0) -  u_.(0 -1 )) < 0. If ^ ( 0 )  is an

ordered set, then (3.4.8) implies that ^  . (m_,(â: ) - m_,(0 -1 ))  must converge
r. (t)

to some constant L®. There are two possible cases:

• L® > (<)0. Then jf:' (jfj / : ' ) ,  by anakogy with CASE B.

• L® = 0. Then jf:' j!'. . To show this, notice that the result is obviously true if è  = 6, since 

this would make (/) strictly decreasing in t.

Assume instead # # 0 .  Then, it must be:

lim rfitX
lim

e"€̂ (.e)\e
(«.,(0 (0))

> 0 . (3.4.19)

might be argued that we are not allowed to determine the limiting sign of (3.4.17) looking only at the term into round

brackets of the right hand side, since (t) might go to zero fester than 

out by the feet that, by (3.4.7), L y ’*’' is finite.

if*'(I) -> L j  . However, this possibility is ruled
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r^(t)
Given that converges to a positive constant, (3.4.10) implies that:

C7_,.) = for any C7_,. e  co_,(r(G)). (3.4.20)

In other words, the relative performance of sf must eventually improve, compared with any 
other strategy in ^ (9 ) .  Thus, for t sufficiently large, also jf:' must improve compared to 

since sf is the only strategy in u>f{9) against which af:' does better than j!'.. From the above 
consideration we have that ^f(t) must converge to 0 from above, which in turn implies, by 
analogy with CASE A, / j .

Since this exhausts all cases, the result follows. #

We are now in the position to prove Theorem 3.4.1.

• Proof OF Theorem 3.4.1. Since S, and S„ are strictly ordered by < ,̂ (3.4.8) implies that 

lim exists for any i,9  and 9'. If all the ratios converge, then also the mixed strategy

profile must converge. We can therefore apply the standard result “convergence implies Nash” in 

the case of MS dynamics (see, e. g. Weibull [1995], Theorem 5.2 (c)) to complete the proof.#

Another way to rephrase the content of Theorem 3.4.1 and its corollary could be the 
following. The theorem shows that the Nash equilibrium component denoted globally

interior attracting that is, it attracts every interior path under any MS dynamics. Note that the 
above result is not directly linked with any local stability property of the s e t v ^  it may well 
happen that trajectories starting close t o . / ^  move away and then, eventually, come back. This 

is exactly what happens in the Centipede Game. In the next section, we shall explore this 
phenomenon through simulations.

3.5. «Cycles OF LEARNING»: some simulation results

This section is devoted to simulations of the dynamics studied hitherto. To perform this task, 
we shall begin by specifying the payoff structure, as well as the dynamics:

• Assumption 3.5.1. The payoff function is as follows:

Mf(9) = ^ > 1; (3.5.1)

u„{9) = Uj{9 + \) (3.5.2)

In words: the payoff of player i is multiplied by some positive constant a  after every other 
round. We can therefore interpret a  as a measure of the increasing returns to cooperation in 
the Centipede Game, since it reflects how much the payoffs increase as the game ends further
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away from the beginning of the tree. The assumption for the dynamics (which replaces 
Assumption 3.3.1) is the following:

• Assumption 3.5.2. The evolution of r{t) is given by the following system of continuous-time 

differential equations:

rf{t)  = rf{t)(ui (j*, r_,.(0) -  M,(r(f))) + A,.(/If -  rf{t)) (3.5.3)

with A > 0  and p f  €(0,1). These dynamics are a linear combination between the standard 

Replicator Dynamics and a perturbation term which ensures that, at each point in time, every 
pure strategy is played with positive probability, no matter how it performs against the 
opponent’s mixed strategy. Following Binmore and Samuelson [1995] we call the latter drift. 
Such a deterministic perturbation term can serve as a high probability approximation to a 
stochastic noise term in a model in which time is discrete and the population size is finitê ,̂ as 
we approach the limiting case of continuous-time and infinite population suitably. The relative 
importance of the drift is measured by Â , which we refer to as the drift level. We assume A, to 

be “small”, since the major forces which govern the adjustment process should be captured by 
the unperturbed dynamics.

We shall analyze the 2-legged Centipede Game of Figure 3.5.1 first.

I I

4

U ’J

a
y 1 

( i - y ) 3

( l - x )  X
2  3

a , l a , \

W

Figure 3.5.1
A 2-legged Centipede Game.

strategies are played and Æ ’ = ] (x,y) e  Ay = 1,XG 0 ,-

In Figure 3 5.1 x and y denote the probabilities with which the corresponding pure
J  ■

- I - a -1-1.

In the phase diagrams of Figure 3.5.2 we trace some interior solutions of the unperturbed 
Replicator Dynamics (i.e. when X, = Ay/ = 0) under two different realizations of the payoff 

parameter a .

^^Model which fail in this category are, for example, those of Kandori e t a l . [1993] and Young [1993]- In a biological context, this 
noise may be interpreted as a m utation, i. e. a random alteration of the agents’ genetic code. In a learning context, it can be 
interpreted as a mistake, i. e. a random alteration of the agents’ behavior, or as an effect of the players’ experimentation. We prefer 
the terminology of drift (as opposed to noise) because the latter is usually modeled as a genuine random variable, whereas the 
former takes the form of a purely deterministic dynamics. For a general discussion on motivations and general properties of 
evolutionary dynamics with drift, see Samuelson [1997], Chapter 6.
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Figure 3.5.2 gives a good description of the content of Propositions 3.4.1-2. First note that
(t')

weak domination of s], implies that and therefore x ,  is strictly decreasing in t ,  for any
/̂/(O

f>0. Whenever x  falls below ■ , the threshold level of x  which makes player /
+ a +  \

indifferent between her two pure strategies, rf(t) starts to fall, until it vanishes in the limit. For 
any interior solution, is in fact a strictly r-dominated under the Replicator Dynamics (even if 

it is not strictly dominated in the conventional sense) and this implies, as we know from 
Proposition 3.4.2, lim/f(r) = 0.

0

0

0

0

0 . 2  0 . 4  0 . 6  0 . 8 1 0 . 2  0 . 4  0 . 6  0 . 8 1

a) a  = 2 b) a  = 4

Figure 3.5.2
The 2-legged Centipede Game and the Replicator Dynamics.

As the (expected) payoff difference between s i  and s], tends to zero, as both
strategies yield the same payoff against s]. In consequence, the evolutionary pressure against 
the weakly dominated strategy s], vanishes, and this is why s], remains in the support of the 

limiting play.
Consistently with Theorem 3.4.1 and its corollary, every interior trajectory converges to the 

corresponding Nash-equilibrium component Æ ’, highlighted by a bold segment in the upper- 
left corner of the two diagrams. Increasing the payoff parameter a  has the following effects:

• ./^ shrinks, i.e. the measure of states compatible with the Nash prediction is reduced;

• the dynamics speed up (this is because in the Replicator Dynamics, as well as in any MS, 
growth rates are increasing functions of payoff differences).

It is interesting to note that both effects are qualitatively consistent with McKelvey and 
Palfrey [1992] ’s experimental results on the Centipede Game, for which our model may provide 
a theoretical account.

compare the two sessions of comparable length and number of observations characterized by a “LOW” payoff treatment 
(Sessions 1 and 3), with the unique session characterized by a “HIGH” payoff treatment (Session 4) of McKelvey and Palfrey’s
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We move on to the 3-legged Centipede Game of Figure 3 5 3.

/ II  
■ >  • •

-\ o|
r « i r n  u i

Figure 3 .5 . 3

A 3-legged Centipede Game

L ’ J

La -I
X G-x)
2 4

y - z ) \ a,I a ,l
z 3 l,a' a \a ^
y 4 a \o ^

In Figure 3.5.4 we show the phase diagrams for the dynamics (3.5.3) in this game under two 
different realizations of the drift parameters

à) X = 0
FIGURE 3.5.4
Unlearning in the 3-legged Centipede Game

b) A =.001

Figure 'i5A(a) refers to the unperturbed Replicator Dynamics. As we know from Theorem 
3 .4 .1  and its corollary, any interior path converges to (the bold segment in the bottom-

experiments on the 4-legged Centipede Game. In their Table HA, p. 808, they call f g  the observed frequency of games ended at 

stage 0 .  If Fg is the corresponding cumulative distribution over the terminal nodes, then they show that such distribution, in 

the case of the HIGH treatment, stochastically dominates the distribution derived from the LOW treatments. In other words, 
when payoffs are higher, the game ends, on average, “closer” to the subgame perfect outcome. However, if we look at the data in 
more detail, we discover that this evidence is due to the fact that in the last five repetitions (out of a series of ten) the cumulative 
distributions of the HIGH treatment consistently dominate the corresponding distributions derived from both the LOW payoff 
sessions, whereas this never happens if we look at any of the first five repetitions. In other words, not only higher payoffs produce 
more learning, but also at a faster rate. We obtain a similar result if we estimate the mixed strategies, for both players, consistent 
with the observed frequencies at each node. In the last five repetitions, the cumulative distributions of the HIGH treatment 
stochastically dominate the relative distributions of both the LOW payoff treatments, showing a less dispersed behavior compared 
with the subgame perfect strategy profile.

' ‘̂ Hereafter all the simulations are characterized by a = 2.
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right corner of the diagram). Whenever % is sufficiently high (see, for example, the point A ' in 
the diagram) the system converges to monotonically . This happens whenever player II 

adopts an initial behavior which is sufficiently close to the subgame-perfect prediction (that is, 
when rf,(Q) is sufficiently high). Otherwise, as with the trajectory starting from the point 

labelled A in the diagram, we can observe the following pattern:
• A \ player II opts in often enough to induce player /  to increase the probability of 
playing both strategies s] and which yield a higher payoff. Player// then has a clear incentive 
to play which is the reason why x  decreases significantly. At the point labelled B,  the 
system is sufficiently close to the pure strategy profile (jJ ,J//) to consider this as the cooperative 

phase;
• B -^ C :  this is the beginning of what we may consider as the backward induction phase. 
Nowx is too small for player /  not to discriminate between and s]. The probability of playing 

the latter increases gradually at the expenses of the alternative options (and the system moves 
toward the point C in the diagram, corresponding to the pure strategy profile

• C -^ D :  now it is player II who modifies her behavior significantly, given the fact that, 
whenever the last node is reached, player /  is now opting out with a sufficiently high probability. 
The system moves gradually toward a position characterized by the strategy profile (s],sl)

(point D in the diagram);
• D ^ E .  X is sufficiently high to make .s) optimal compared with any alternative option: 
7}'(f)is therefore bound to increase until the process eventually converges

The behavior of the dynamics with drift is reported in Figure i.5A(b). In this first example 

we set A,. =.001 and for any i,e. In other words, drift is “negligible” and uniformly

distributed across players and strategies. The only significant difference between Figures 3.5.4 
(a) and 53A(b) is that, whenever the system gets sufficiently close t o * /^  the drift component 

overcomes the selection dynamics, pushing the system toward the (unique) restpoint denoted 
by In other words, the dynamics with drift of Figure 3.5.4 (b) is characterized by an 
additional phase:

• £  ^  F: the system eventually reaches the unique restpoint, in which I  plays s\ with (almost) 

probability 1 and I I  mixes (although not sufficiently to induce I  to come back into a new 
cooperative phase). In our interpretation, this latter phase is driven by a pure drift effect, which 
does not have, in this first example, a significant impact on the play in the limit (in fact, 
whenever I  opts out at the first stage almost with sufficiently high probability, I I ’s behavior is 
completely irrelevant to determine the outcome of the play).

In Figure 3.5.5 we perturb the system (3.5.3) differently. In particular, we keep the same 
parameter setting as in Figure 3.5.4(2?) for player II, enhancing the drift in favour of player I’s 
“more cooperative” strategies, setting A, =.1, p ] = \ / l 2 ,  pj  = l / 6  and p^ = 2 / 3 .  Under

’5in a subsequent paper (see Ponti [1996] we prove in fact uniqueness of the restpoint of the dynamics (3.5.3] in the case of the 2 
and 3-legged Centipede Games when A,. > 0 .
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these conditions, the cyclic pattern exhibited by Figure 3.5.4 gets repeated over time, as the 
dynamics settle down to a limit cycle around the (unique) restpoint, F.

For this phenomenon to appear, we do not need the special parameter setting of Figure 
3 .5 .5 , although we need a drift against subgame-perfect equilibrium strategy that is stronger for 
player I  than for player II. Why should it be so? If drift reflects players’ experimentation, it is 
then reasonable to assume this effect to be stronger in the case of player I, whose subgame- 
perfect equilibrium strategy precludes any observation of the opponent’s reaction. If drifts 
reflects the fact that players make mistakes (or misperceive the game) a similar argument 
applies: as in Rosenthal [1981], it may well be that the probability of a mistake is higher for 
actions which stop the game further away from the end of the tree.

FIGURE 3.5.5
Cydes of learning in the 3-legged Centipede Game

What happens when (the length of the Centipede) increases? Figure 3 5.6 shows different 
diagrams summarizing the behavior of (3.5 3) under different specifications of the parameters N 
and As can be easily spotted in the diagrams, raising the drift level A has the following 

effects:

• cycles persist, and are more frequent, the longer is the Centipede;
• the average length of play (and therefore, the average payoff) increases.

When the drift is no longer to be considered "negligible” (though “small”) for both players, 
the cyclic behavior observed in the three-leg case persists over time. Not being able to provide

All the diagrams in figure 3.5.6 are characterised by Xj = Xjj = X and p f  =  |— r. However, a much wider range of
p. I

simulations for Centipede Games of various length has been carried out, varying payoffs, drift parameters and initial conditions. 
Results are analogous and available on request.
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a formal analysis of these dynamics, our simulations leave open the question whether such 
qualitative behavior is bound to disappear in the long run. If it does not disappear, we may be 
observing limit cycle behavior equivalent to the one of Figure 3.5.5.

T h e  4 -l e g g e d  CG

PlAYER 1 PlAYERll PlAYER 1 PlAYER U

X=.00 1 A ,= .  1

T he 8 -le g g e d  CG

•  T h e  10-l e g g e d  CG

F igure 3 .5 .6
Cycles of learning in longer Centipede Games

5 .6 .  CONCLUSIONS

The results contained in the paper suggest two different (and possibly antithetical) 
conclusions. Theorem 3.4.1 establishes a strong link between the dynamic outcome of a popular 
class of evolutionary dynamics and the traditional game-theoretical analysis of games with 
perfect information. Moreover, in the special case of the Replicator Dynamics, our simulations 
suggest that the actual learning path might resemble the backward induction procedure in a 
closer way. If the initial conditions are sufficiently “mixed” (i.e. if the players’ initial behavior 
gives sufficient weight to the pure strategies which require to opt out at the latter stages) the 
adjustment process replicates closely the iterative deletion of weakly dominated strategies 
prescribed by the backward induction procedure, and the players act as if they experience the 
procedure step by step, until equilibrium is achieved. On the other hand, as the simulations on
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longer Centipede Games suggest, you need only a small perturbation of the adjustment process 
to produce a cyclic behavior (this latter effect being stronger the longer is the centipede).

As pointed out in the introduction, these results are to be compared with to the approach 
proposed by Cressman and Schlag [1995], to which our paper relates in several ways. In their 
Theorem 2, Cressman’s [1996] technique is applied to show that, in the case of games with 
perfect information and no relevant ties (of which the Centipede Game is a special case), every 
interior path of the Replicator Dynamics asymptotically converges to a Nash equilibrium. The 
key argument is contained in their Theorem 1, which our Proposition 3.4.1 generalizes to any 
MS dynamics, as both results rely only on weak-dominance considerations. Moreover, their result 
on the (in)stability of the subgame perfect outcome in “complex” games is consistent with our 
simulation results of the Replicator Dynamics with drift.

In addition, our simulations may provide an evolutionary account of Rosenthal’s [1981] 
original analysis of the Centipede Game. The drift modeled in our simulations has similar effects 
of the “tremble” each player considers in her calculations: it is negligible when the selection 
dynamics are in action, but it becomes crucial in shaping the adjustment process as the latter 
approaches the component. A (more remote) analogy could be also established with the 

treatment of the finitely-repeated Prisoner’s Dilemma proposed by Kreps et al. [1982]. In their 
model, the players consider an enriched model, by means of a game with imperfect information, 
where some other view of what is rational is taken into account, including possible scenarios off 
the equilibrium path. In our case, the assumption of a completely mixed drift term makes A” 
forward invariant: at any point in time (as well as in the limit) every pure strategy must be 
played with positive probability.
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C h apter  4

Conventions and  Social Mobiuty  

IN Bargaining Situations

The force of many rules of etiquette and 
social restraint... seems to depend on their 
having become “solutions” to a coordination 
game.

Schelling [1963]

4.0. A b s tr a c t

This paper studies the evolution of a population whose members use their social class to 
coordinate their actions in a simple tacit bargaining game. In the spirit of Rosenthal and Landau 
[1979], we interpret the equilibrium behaviours that the players may adopt, as a function of 
their class, as customs. Players may change their class depending on the outcome of the game, 
and may also change their custom, as a result of some learning process. We are interested in the 
characterization of the fixed points of the adjustment process over the space of classes and 
customs from a distributional point of view. We find that, although any custom (when it operates 
alone) generates the same limiting class distribution as any other, these limiting distributions 
can be ranked with respect of their mobility. If players are allowed to change their custom when 
they find it unsatisfactory, then social mobility appears to be the key variable to predict the type 
of custom which will predominate in the long run even though, in general, no one custom is 
dominant. In particular, customs which promote social mobility appear to exhibit, in all the cases 
we have analysed, stronger stability properties.

4.1. I n t r o d u c t io n

There are many economic situations in which informal means are employed to execute 
mutually beneficial agreements. In such cases, some social variable (call it class, or reputation) 
may help the agents to coordinate their actions on an equilibrium of the game they are playing. 
The notion of convention, often used to describe these equilibria, may then involve some 
sociological background: a particular behaviour may have no intrinsic merit, but is selected on 
the basis of some social or cultural link among the players. The role of these social variables may 
be even more important in those situations where, for such an equilibrium to be implemented.

86



different agents are required to adopt different behaviours (and receive, in return, different 

rewards). In this case, the social context may in fact determine who is supposed to do what (and, 

consequently, who deserves the lion’s share).

The society we have in mind is modelled by a constant utility flow which is to be allocated, in 
each time period, by means of a simple bargaining scheme between two players, randomly 
selected from the population. Each player has to choose, simultaneously, whether to defect 
(requiring the biggest share for herself) or to cooperate (accepting the division proposed by the 
opponent). If both players cooperate, then the pie is equally divided; if both defect, then the 
size of the pie will be substantially reduced, as a result of the negotiation breakdown. The only 
information available to each player is the opponent’s class, that is, a signal from which it can be 
partially deduced the opponent’s past behaviour in the stage game. We shall assume that the 
strategic choice of the two players is conditioned only on this information. The outcome of the 
stage game may modify the class of the players, who are then placed back in the original 
population. In the following time period, other two players will be paired at random, and so on.

Rosenthal and Landau [1979] (R&L hereafter) explore, under similar conditions,^ how some 
behavioural patterns, which they call customs, may influence the long-run distribution of plays of 
the population game. In their paper, these customs are described as ''..possible decision rules 
which members of the society might unanimously employ to determine their moves in the 
gamg...”̂ .Two properties characterize a custom under their perspective:

• it uniquely determines the players’ behaviour in the stage game;
• such behaviour must be self-enforcing, in the sense that it must be justified, from the

players’ viewpoint, on the ground of some rationality assumption.

This definition clearly recalls what economists are now accustomed to call conventions, with 
reference to the flourishing stream of research in the recent game-theoretic literature which 
studies coordination games.3 Behind this analogy stands the fact that each player faces a 
symmetric situation characterized by multiple equilibria. However, unlike a pure coordination 
setting, in the stage game we have just described, the players rank the various equilibrium 
outcomes differently: the selection of a particular custom can then be observed from a 
distributional point of view, since a better bargain for a player implies less for the opponent.

In R&L’s model, the social variable upon which players condition their choice is termed 
reputation (higher reputation signifying tendency to defect). Moreover, they assume that each 
individual in the population follows the same custom: different customs generate different 
limiting distributions, which are then compared in terms of their efficiency properties. Intuition 
suggests, the authors claim, that customs which prescribe cooperating against a player with 
higher reputation (seemingly more prevalent in real-life bargaining situations) might also be 
justified on efficiency grounds, once they minimised the social loss generated in equilibrium.

^See Rosenthal [1979] for a formal description of the general framework. 
^See Rosenthal and Landau [1979], p. 234.
3See, among others, Kandori etal. [1993] and Young [1993]
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However, commenting on their results, R&L admit that, in their model '\Jhis has proved not to 
he the case.." (p. 234), since the social ranking of the equilibrium customs depends crucially on 
how reputation is formally defined.

Our model differs from R&L’s original formulation in (at least) two respects. First, we assume 
that the social variable (we call it class) is directly linked to the payoffs received during the past 
history of the game. In particular, we shall assume that the class of a player is simply the payoff 
she received the last time she was called to play. We justify this assumption by interpreting the 
class as a signal of each individual’s wealth.

Moreover (and more crucially), we do not necessarily assume that a unique custom is 
commonly shared in the society. Instead, we allow the possibility that the agents hold different 
customs. This feature of our model opens the possibility of modelling a learning process: players 
may in fact change their custom if they find it somehow unsatisfactory.

We design the learning process at two different, and somehow complementary, levels. We 
consider first what we call coordination learning: players holding different customs may fail to 
coordinate their actions. We therefore model a procedure which leads the players to revise their 
custom as a result of a disequilibrium play. In addition, we introduce a further type of learning, 
which we call aspiration learning. After the stage game has been played, each player compares 
her own payoff to some threshold value by which we take to be an estimate of a “satisfactory” 
outcome of the strategic interaction. Whenever this aspiration level is not reached, a player is 
assumed to modify her custom with positive probability.

Our coordination and aspiration learning schemes allow some individual feed-back to the 
social outcome induced by each custom; one of the aims of the paper is to explore how this 
feed-back interacts with the social pressures generated by our custom society.^

The remainder of the paper is arranged as follows. Section 2 describes the main features of 
the model. Section 3 develops the formal theory on which our analysis is based. Following R&L, 
section 4 assumes that only one custom is adopted by the entire population, and explores the 
asymptotic properties of the limiting class distribution, under different customs. In this respect, 
we find (consistently with R&L) that the limiting class distribution under any particular custom is 
exactly the same. We interpret this result as follows. If a custom allows the players to coordinate 
on one of the Nash equilibria of the game, and the class of a player is the payoff received, the 
limiting class distribution will concentrate most of its mass on the classes which correspond to 
the payoffs that the players get when a pure strategy Nash equilibrium is played, no matter how 
this coordination takes place (i.e. regardless of the custom which is actually established).

It is important to notice that it does not follow from the above result that, once the 
equilibrium distribution has been reached, the same players will stay in the same class forever 
after. On the contrary, each custom is characterised in equilibrium by a complex, but balanced, 
network of flows among classes. Section 5 explores the properties of a society in which only on 
custom is available from this perspective, interpreting these flows as measures oi social mobility.

'h liere  are many references, in the macroeconomic littérature on income distribution, which stress the role of social variables in 
the determination of the income distribution in society. Becker and Tomes [1979], for example, point out that; “...The concept of 
endowment is also a fundamental part of our analysis. Children are assumed to receive endowments of capital that are 
determined by the reputations and “connections" of their families, the contribution to the abilities, race, and other characteristics 
of children from the genetic constitutions of their families, and the learning, skills, goals, and other “family commodities" acquired 
through belonging to a particular family culture..." (p. 1158).



We then move to a situation where different customs are present at the same time within the 
population. Section 6  explore the simplest possible case (that is, a two-custom society); section 
7 considers the case of a society in which all possible customs may be present. If players are 
allowed to change their custom through learning processes in the way we described, then social 
mobility appears to be the key variable for predicting the type of custom which will 
predominate in the long run. In particular, even though no custom is dominant, customs which 
promote social mobility appear to exhibit stronger stability properties in all the cases we have 
analysed. A final section devoted to additional remarks concludes, followed by four sections of 
appendix containing the most elaborate proofs.

4 . 2  T he Basic M od el

We deal with a market economy characterized by a constant utility flow which is to be 
allocated in each time period within a large, but finite population of N players. At each point in 
time two individuals are drawn at random and sequentially from the population to play the 
symmetric normalform game of figure 2.1, known in the literature as Chicken, which tries to 
capture the intuition of a simple tacit bargaining situation. The game is characterized by two 
asymmetric Nash equilibria in pure strategies, namely (C,D) and (D,C), and a symmetric Nash 
equilibrium in which each pure strategy is played with equal probability:

1 , 1

Figure 4.1.

Payoff matrix and cooperative payoff region of the Class Game

At any given time, the type of each player is characterized by a class} and a custom} as 
explained in the following two definitions.

• Definition  4.1. The class of a player is simply the payoff received in the last round she was 
called to play.

We interpret the class as a measure of the stock of wealth inherited from the past history of 
the game. Let {1,2,3,4} be the set of classes and 5= {C,D} the strategy set in the Class 
Game. The custom of a player determines her behaviour in the Class Game:
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• DEFINITION 4.2. A generic custom k & K  is a function k -.ifx if  => A(5)which satisfies the 

following conditions:

k{c,c') = Q,\ when c # c '

k{c,c) = \ l 2  (4.2.1)

k(c,c') = 1 -  k(c',c) = 0 ,1

In words: if two players follow the same custom, they are able to coordinate their actions on 
one of the Nash equilibria of the Class Game.5 In particular, if they belong to different classes, 
the custom tells them who is supposed to cooperate and who is supposed to defect. In the case 
of a play between two players of the same class, given the fact that they are absolutely 
indistinguishable for each other, the custom still assures that an optimal behaviour, even if only 
ex ante, is selected; namely the symmetric mixed-strategy Nash equilibrium. The interpretation 
is the following: the players aim to maximize their class (and therefore their share of the utility 
pie), and use their current class as a signal for their opponents, who condition (via the custom 
they follow) their behaviour on that signal. Each player can observe the class of her opponent 
(but not his custom), and reacts according to the dictate of her own custom, which acts as a 
signal extracting device.^

Definition 4.2.2 allows for the possibility of 64 different customs, since there are 6 possible 
encounters between players of a different class, and two choices for each player (and therefore 
there are 2^=64 different customs). From Definition 4.2.2, it is clear that each of the 64 

possible customs is completely specified by the list of six numbers, either zero or one,

Kr = {t(l,2),t(l,3),t(l,4),t(2,3),^(2,4),^(3,4)}

indicating the pure strategy selected by the row player in the event of being matched with an 
opponent belonging to a different class. Taking as alphabet the pair {0,1}, we may therefore 
number the customs in their lexicographic ordering, as shown in Table 4.2.1.

^Given each player can choose only between two pure strategies in the Class Game, Definition 2.2 interprets the mixed strategy 
k(c,c') as the probability of defecting. The probability of cooperating is then uniquely determined as \-k(c,c).

% e  confine our attention to the range of possible behaviours represented by the set of customs, as described in Definition 2.2. 
This restriction is not innocent: we do not consider here a wide range of alternative behaviours which may affect the dynamics of 
the system. We justify this focus by arguing that a behaviour which is internally coherent (represented by a custom) may not be 
consistent, given the fact that the custom followed by each agent is not publicly known, and the customs used by different players 
may be lead to a non-Nash outcome. In this way we introduce non-equilibrium behaviour in the model, while keeping its 
complexity under control.
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# # K # # K
1 {0,0,0,0,0,0} 17 {0,1,0,0,0,0} 33 {1,0,0,0,0,0} 49 {1,1 ,0 .0 ,0 ,0}

2 {0,0,0,0,0,1} 18 {0,1,0,0,0,1} 34 {1,0,0,0,0,1} 50 {1,1 ,0 ,0 ,0 ,1}

3 {0,0,0,0,1,0} 19 {0,1,0,0,1,0} 35 {1,0,0,0,1,0} 51 {1 ,1 ,0 ,0 ,1 ,0}

4 {0,0,0,0,1,1} 20 {0,1,0,0,1,1} 36 {1,0,0,0,1,1} 52 (1 ,1 ,0 ,0 ,1 ,1}

5 {0,0,0,1,0,0} 21 {0,1,0,1,0,0} 37 {1,0,0,1,0,0} 53 {1.1,0.1,0.0}

6 {0,0,0,1,0,1} 22 {0,1,0,1,0,1} 38 {1,0,0,1,0,1} 54 {1,1,0.1.0.1}

7 {0,0,0,1,1,0} 23 {0,1,0,1,1,0} 39 {1,0,0,1,1,0} 55 {1,1,0.1,1,0}

8 {0,0,0,1,1,1} 24 {0,1,0,1,1,1} 40 {1,0,0,1,1,1} 56 {1,1 ,0 ,1 ,1 ,1}

9 {0,0,1,0,0,0} 25 {0,1,1,0,0,0} 41 {1,0,1,0,0,0} 57 {1,1,1,0,0,0}

10 10,0,1,0,0,1} 26 {0,1,1,0,0,1} 42 {1,0,1,0,0,1} 58 {1,1 ,1 ,0 ,0 ,1}

11 {0,0,1,0,1,0} 27 {0,1,1,0,1,0} 43 {1,0,1,0,1,0} 59 {1,1 ,1 ,0 ,1 ,0}

12 {0,0.1,0,1,1} 28 {0,1,1,0,1,1} 44 {1,0,1,0,1,1} 60 {1,1 ,1 ,0 ,1 ,1}

13 {0,0,1,1,0,0} 29 {0,1,1,1,0,0} 45 {1,0,1,1,0,0} 61 {1,1 ,1 ,1 ,0 ,0}

14 {0,0,1,1,0,1} 30 {0,1,1,1.0,1} 46 {1,0,1,1,0,1} 62 {1,1,1,1,0,1}

15 {0,0,1,1,1,0} 31 {0,1,1,1,1,0} 47 {1,0,1,1,1,0} 63 {1,1,1,1,1,0}

16 {0,0.1,1,1,1} 32 10,1.4,1,LU ._ 48 {1,_0D ,.1,1,1L_ 64 {1,1,1,1,1,1}

Ta b l e 4.2 .1 .
N u m b erin g  cu sto m s.

Table 4.2.1 lists every possible behaviour allowed by Definition 4.2.2: from which always 
prescribes the lower class player to cooperate against a higher class opponent, to the opposite 
extreme in which the lower class player always defect, together with every possible

combination between the two.
We assume that all the players follow a custom (not necessarily the same) that completely 

characterizes their strategic behaviour in the Class Game, which in turn determines their 
current payoff and, therefore, their new class when they are then placed back in the original 
population. At the beginning of the following round, two new players will be paired at random, 
and so on. Loosely speaking, the above mechanism generates a dynamic over the set of classes 

ie for each agent a in the population, there is generated a class history, in the form of a 
sequence c ^ ^{ à ) , c ^ { à ) , . . . , c „ { a ) , ,  with C;(a)eC, and c„ { a )  agent a's class in round n. In the

remainder of the paper, we will refer to this as the Class Dynamic.
Given our assumptions, at each point in time, the state of the system is identified by the 

vector x{t) = of proportions of players characterized by the class c and the custom k at

time t. Denote by the set of such states, i. e. the state space of the system. Notice that 

is a finite set: the underlying dynamic is therefore a stochastic process defined over a finite state 
space, the properties of which will be formally explored in the following sections.

91



4.3 Som e G eneral T h eory

Our analysis of the system described above will be based on the general theory developed in 
Seymour (1994). In this section we give a brief synopsis of those features of the theory we 
require. We consider a (large) population of N  agents, each of whom can be any one of m 
possible “types”, { l,2 ,...,m}, at any given time.^

Let x  = (x i ) , i  = l , . . . ,m  be the vector of proportions of the population in each type. We 

assume that during each small time interval of length At,  two individuals are chosen at random 
(without replacement) from the population. These individuals (and no others) then interact in 
some way (eg by playing the 2 -player game described in section 2 ), the effect of which is to 
change their type.

Thus, if the agents have types (i,j) before the interaction, then the interaction results in a 
transition with some specified probability, p ( i ' , f \ i , j ) .  After the interaction, the

agents return to the population, and the process is repeated in the next time interval. The 
transition probabilities are assumed to satisfy

G 3  (43.1a)
i'.j'

p ( i ' J % j )  = p ( / . »■'[/. i) (symmetry) (4.3.16)

The symmetry condition simply means that the interaction outcome is unaffected by
whichever of the two participants is chosen first. Condition (4.3.1a) also implies that the
repeated process is a discrete-time Markov process on the rational lattice

0 ^ .< l,and  %  %,= 1 } (4.3.2)
I

consisting of those points x: for which A^.=x/^ is an integer. Here, A^'^ is the (m-i^-dimensional 

simplex in its standard embedding in In fact, each interaction results in a state transition, 
x-^x', between points in which, if the participants have initial types has the form

x ’= x + e ^ A x , (4.3.3)

where A x= l/N , and ev=(eVi,e^2 , -,E^^), is a vector-valued random variable, with each 
e'̂ ê { 0 ,± 1± 2 }, such that is the change in the number of individuals of type a which 
results from an interaction between agents of types (i,j). Thus, the possible values of are 

given by:

ef = gf((%/):= (6 f  + ) - ( J j  + Si) with probability p(i'J'\i,j) (4.3.4)

^As already mentioned, in the framework of section 2, a type is simply a pair (c,k), denoting the class and the custom of an 
individual.
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where 6 *̂  is the Kronecker-delta function: 5^^=1 ifa=b, and 6*^=0 otherwise. From (4.3.4) we 
can easily compute the expected value of

-  (5' + 5 )̂ (4.3.5)

We shall be interested in the limiting, continuous-time process as / /  -> <» and Ar -> 0. We 
may think of Ax=l/A^ as the probability that a particular individual will be picked at random 

from the population, so that, for large N, the probability that a particular individual will 
participate in an interaction is 2Ax (to first order in Ax).^ It follows that Ax/At is the (number) 

frequency with which a specified individual participates in an interaction. We shall take the 
above limits while keeping this frequency constant; ie keeping A x/At=c, constant. For 

convenience we assume that the time scale is chosen so that c = l .  The result is a deterministic 
system on given by the system of differential equations:

(4.3.6)

Equations (4.3.6) are derived formally in Seymour (1994), but the intuition is clear: the rate 
of change in x  ̂ is the sum, for all possible type pairs, of the expected changes to type a resulting

from interactions between players of types (i,j), the probability with which such an interaction 
occurs being

Now suppose that Pj^(x) is a probability distribution on the finite lattice . In general, this 
distribution will change under the discrete-time Markov process on If the Markov process is 

ergodic, then there is a unique stationary (ergodic) distribution, f^(%), such that

P^(x,wAt)-^P^(x) as n^oo. Now, as explained in Seymour (1994), if limP^ is represented by

a density^, 7r(x,t), on A^"^, then n satisfies the continuity equation

+ div\e{x)K{x,t)\ = 0  (4.3.7)
ot

where e (x) is the vector field on A^'^ given by the right hand side of (4.3.6). In particular, if 
the limiting ergodic distribution is represented by the density k , then

div[e(x)7t{x, 0] = 0 (4.3.8)

From this we can prove

®An individual has two chances of being picked, one as player-I, with probability A x  and the other as player-U, with probability 
Ax /(1-Ax ).

^The limit keeps Ax /A t= l ,  so that A t goes to 0 as AT goes to infinity, yielding a continuous-time model. Also, it is not strictly 
necessary to assume that the limit of densities is a density, we can work with measures instead. We assume densities here only to 
avoid uninteresting technicalities (see Seymour (1994)).
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• Pro positio n  4.3.1^°Suppose the Markov process on is ergodic for each N ^ q ,  and that

the system (4.3.6) has a unique, globally asymptotically attracting equilibrium, x . Then the 
limiting ergodic distribution on asÆ-^ «o, is represented by the mass-point density, 
7r(x)=ô[x-Jc].

Pr o o f . It suffices to show that the mass-point density is the unique solution of (4.3.8). By 
Proposition 4.52 of Seymour (1994), the hypotheses on ê  (x) imply that any solution of (4.3.7) 
satisfies, 7i:(x,t)-> 6 [x-Jc ] as ^-x». But, Tt(x) is a stationary solution of (4.3.7), and so ir(x)=6 [x- 

x ] . é

4.4. O n e-cu sto m  s o c ie ty

The aim of this (and the next) section is to analyze the asymptotic properties of the model 
described in Section 2 when only one generic custom k is followed by the entire society. In this 
section, therefore, the dynamic will act only on a subset of states Q* c  with the following 
properties: = 0  when A:' #  A: and = 1 , for all t.

c e C

Let k e K  be the custom used by everyone in the population. If player-I and player-II have 
classes i and j ,  respectively, then k(i,j) is the probability (either 0 ,1  or 1/ 2 , see (4.2.1)) that 
player-I will defect, and k(i,j) is the probability that player-II will defect. As discussed in section 
4.3, the game results in class transitions ( / ' , / ) ,  and we denote by p ( i ' , f  | i j )  the 

probability for such a pairwise transition. These transition probabilities are easy to specify in this 
single custom case, and are

p ( r , /  |(0=l(ô\.,6Y-P82.,ô4^., +  83..6T.4-ô4..6:..) (4.4.1a)

P {i'J  I (ij£j) (4.4.1b)
I w ) = 0  otherwise (4.4.1c)

Thus, the only possible transitions are: 6^9-> ( I ' , /)e  {(1,1),(2,4),(3,3),(4,2)}, each with 

probability and, if (;J)->(2,4) iïk (j,i)= l (player-I Cooperates and player-II Defects), or

(i,;)-^(4,2) if^ fijj= l (player-I Defects and player-II Cooperates). As explained in the previous 
section, these probabilities determine a Markov process on the rational lattice contained in 

the 3-dimensional simplex A^={x=(xipc2 /̂ 3 r̂ 4) 10^.<1 and = 1 }. Here, .Xj.=N/N is the
I

proportion of the total population (of sizeN) in class i.

• Pro positio n  4.4.1.For//>4 the one-custom Markov process defined on is ergodic. 

Pr o o f . See Appendix D. é

similar result, expressed in the language of sample paths, is obtained by Boylan, [1991], corollary 2.3.
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It now follows from Proposition 4.3.1 and Proposition 4.4.1 that if the derived continuous­
time, deterministic system (4.3.6) admits a globally stable equilibrium, x , then the limiting 
ergodic distribution is represented by the mass-point density, We are interested in the

asymptotic properties of the class dynamic when all the individuals follow the same custom:

•  PROPOSITION 4.4.2. The system (4.3.6) is independent of the custom k and has a unique 
equilibrium,

' 3 - V 7  ^^7- l  3 - V 7  ^^7- lX = ■
4 4 4 4

which is globally asymptotically stable.

Pr o o f . The coefficients in equations (4.3.6) are given by (4.3.5), and, using equations (4.4.1), 
we have

£'■',.=-3 / 2  (4.4.2a)

£'■',.= i  (4.4.2b)

gU =  (8 2 + g 4 ) . ( 5 , + 5 ,) ( ,.^ ;)  (4.4.2c)

Note in particular, that these coefficients are independent of the custom, k [this is true in 
equation (4.4.2c) because k (i,j)+ k (j,i)  = \],Vcvws, so is the deterministic dynamic (4.3.6), and 

hence, so is the equilibrium, x . In fact, we shall show in Appendix D that the Markov process on 
is independent of k. We can now obtain an explicit form for the equations (4.3.6). Thus,

^  =  ë " ' W +
i*a

= - (3 /2 K " + i( |  1*1 I +  k l

= A + ^ l  w i F + ( 8 l + 8 " j a - l l * l P )

where, as usual, | \x\ |^=x.A :=]^  x,.̂ . Explicitely,

1 * 1  p (4.4.3a)

1 ^ 1  P (4.4.3b)

|%| |2 (4.4.3c)

1 * 1  P (4.4.3d)
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We are now in a position to prove Proposition 4.4.2. Let mà'X\=X2-x .̂ From

equations (4.4.3),

^  = - 2  ̂ and —  = - 2 t]
at at

Thus, (t),T|(t) )=  {^o,r\o so that (^(t),T|(t) )->(0,0) as ?->«>. It follows that, for any 
equilibrium Jc, we have jci =  Jc3 and X2=x^. Furthermore, the subspace, is

invariant under the dynamic (4.3), and is globally attracting. It remains to show that there is a 
unique attracting equilibrium inside this subspace.

Under the above constraints we have, | \x \ |^ = 2 (%î 4-%2 )̂. Also, ^  X t = l ,  reduces to
I

+X 2=  Thus, the dynamic inside the invariant subspace is 1-dimensional, and is determined 

by equation (4.4.3a),

^ = - 2 x i +  {x ^ ^ + {Y x {f-) = ~ ^ ^  +  2x^  ̂ (4.4.4)

The equilibria of (4.4.4) are, Jci(±)=-^(3±V7). However, only the minus sign lies in the 

interval [0,1], and is therefore the only allowable solution. Clearly then, Jci =  Jc3 = Jci(-) and 

Jc2 = ic 4 =-^-jci = i(V 7 -l). Also note that (4.4.4) may be written

^ = 2  | î , (-)■*, I ( i ,(+ )-* ,!

The second bracket is always positive forxiG [0,1], and the first bracket is positive ifxi <  Jc i ,  

and negative i f x i>  Jcj. This shows that x is globally asymptotically attracting, and therefore 

completes the proof of Proposition 4.4.2. #

Proposition 4.4.2 tells us that the limiting class distributions of the 64 customs coincide, and 
concentrate most of their mass between classes 2 and 4, the payoffs of the pure strategy Nash 
equilibrium. We provide, for illustrative purposes, the following histogram:
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Class 1 Class 2 Class 3 Class 4

FIGURE 4.4.3.
The limiting class distribution under a generic custom  k.

F r o m  P r o p o s i t io n  4 .4 .2 , w e  c a n  e a s ily  c a lc u la te  t h e  e x p e c te d  p a y o f f  ti o f  a  s in g le  C las s  G a m e , 
g iv e n  t h e  e q u i l ib r iu m  d is t r ib u t io n  jc :

Ti = Y , cx,  = { < !  + '}>)/2 = 2.82288 (4.4.5)

4 .5 . S o c i a l  M O BILITY .

W e  c a n  r e a d  t h e  r e s u l ts  o f  t h e  p r e v io u s  s e c t i o n  in  t h e  fo llo w in g  w ay . In  t h e  s p i r i t  o f  S c h o t te r  
[1 9 8 1 ], w e  c a n  i n te r p r e t  t h e  g a m e  Chicken a s  a n  inequality preserving s o c ia l  in s t i t u t io n ,  g iv e n  
t h e  d i s t r ib u t io n a l  e f f e c ts  a s s o c ia te d  w i th  a n y  s e l f - e n fo rc in g  c la s s  p ro f i le . “  F r o m  th is  s t a n d p o in t ,  
i t  w o u ld  b e  s u r p r i s in g  if t h e  l im itin g  c la s s  d i s t r ib u t io n  d id  n o t  r e f le c t  t h e  s t r a te g ic  f e a tu r e s  o f  t h e  
s t a g e  g a m e  w h ic h  g e n e r a t e s  it. O n  t h e  o t h e r  h a n d ,  l i t t le  is l o s t  in  e q u i l i b r iu m  ( s in c e  t h e  
p r o p o r t i o n  o f  p la y s  in  w h ic h  t h e  u t il i ty  p ie  is n o t  a l lo c a te d  in  fu ll is r e la tiv e ly  s m a ll ) ;  f ro m  th is  
p e r s p e c t iv e ,  t h e  ( e x p e c te d )  e q u i l ib r iu m  p a y o f f  ü c a n  h e n c e  b e  c o n s i d e r e d  a s  a  m e a s u r e  o f  t h e  
e f f ic ie n c y  g e n e r a te d  b y  t h e  a d o p t io n  o f  a  c u s to m  (w h a te v e r  it  i s ) .

H o w e v e r ,  it is im p o r t a n t  to  n o t e  th a t ,  e v e n  if  t h e  l im itin g  d i s t r ib u t io n  is t h e  s a m e  u n d e r  e a c h  
c u s to m ,  it  d o e s  n o t  fo l lo w  th a t ,  a t  e a c h  p o in t  in  t im e , t h e  same in d iv id u a ls  b e lo n g  to  t h e  s a m e  
c la ss . O n  t h e  c o n tr a r y ,  t h e  e q u i l ib r iu m  flo w s b e tw e e n  c la s s e s  m a y  w e ll  d i f fe r  in  m a g n i tu d e  f ro m  
c u s to m  to  c u s to m ,  w i th  o n ly  t h e  o v e ra l l  p r o p o r t i o n  r e m a in in g ,  o n  a v e r a g e ,  c o n s t a n t .  In  fa c t , 
e a c h  c u s t o m  is c h a r a c t e r i s e d ,  in  e q u i l ib r iu m ,  b y  a  c o m p le x ,  b u t  b a la n c e d ,  n e tw o r k  o f  f lo w s  
a m o n g  c la s s e s . In  th is  s e c t io n ,  w e  s h a ll  i n te r p r e t  th e s e  flo w s in  t e r m s  o ïsocial mobility.

A f irs t  d i s t in c t io n  h a s  to  b e  m a d e  a t  th is  s ta g e .  D if f e re n t  m o b i l i ty  s t r u c tu r e s  m a y , f irs t  o f  a ll, 
d e t e r m i n e  d i f f e r e n t  e q u i l ib r iu m  c la s s  d i s t r ib u t io n s :  th is  is w h a t  s o c io lo g is t s  la b e l  a s  structural 
m o b il i ty .  T h is  n o t io n  r e f e r s  to  t h e  id e a  t h a t ,  v ia  t h e  e q u i l i b r iu m  d i s t r i b u t i o n  t h e y  p r o d u c e ,  
d i f f e r e n t  m o b il i ty  s t r u c tu r e s  im p ly  d i f f e r e n t  a v a ila b ili ty  o f  p o s i t io n s  in  h i g h e r  o r  l o w e r  s o c ia l  
c la s s e s . T h is  is n o t ,  h o w e v e r ,  t h e  o n ly  w a y  to  lo o k  a t  m o b ilit) ':  d i f f e r e n t  m o b il i ty  s t r u c tu r e s  a ls o  
in f lu e n c e  t h e  i n t e r t e m p o r a l  m o v e m e n t  o f  in d iv id u a ls  a m o n g  t h e  s o c ia l  c la s s e s ,  f o r  a  g iv e n

^htere we restrict our attention to pure strategy Nash equilibria, for which the coordinating role of a custom is fully effective.
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equilibrium distribution. This latter effect, known as exchange (or pure) mobility can be 
regarded as the dynamic counterpart of the comparative statics on different income distributions 
characterized by the same average income. It is this effect which we examine in this paper.

First some notation. Let denote the (not necessarily equilibrium) transition probability 
for an individual initially in class i to move to class i ’ after participation in a game. If the 
population is using a custom, k, and the prior state of the system isajE 1 2 ,̂ then it follows from 
(4.3.1a) that

(4.5.1)

Note that is independent of whether the player is player-I or player-II, and is the same 
in either case by the symmetry condition (4.3.1b). Using the formulae in equations (4.1), we 

therefore obtain

q(i’I i) =  2 (4.5.2)

Denote by Q(k) the (state dependent) matrix of transition probabilities, with i
labelling rows and i ’ columns. Then, for example, the transition matrices for customs and

(that is, the two extremes in the spectrum of customs shown in Table 2.1):

<3(1) =

1 1

4 " '

1

1
\ - X ^  - - % 2

1

r
Xj + - X 2

1

4 " ^

1 , 3

1 1

4 " *

1

4 * ‘

(4.5.3a)

0 ( 6 4 ) =

1

T '

1 1
4 " '

1

r
X . + - X 2

1

r

, 3
l - J C j  - —^2

1 , 3
1 - ^ 4 - 4 ^ 3

1
4 " ^

X , + - X ,

1
4 " ^

1
4 " ^

1

4 " '

(4.5.36)

Notice that Columns 1 and 3 are equal, and that g  (64) is obtained from Q (l) by 
interchanging columns 2 and 4. Of course, Q(k) is the (conditional) transition matrix which 
characterises the stochastic process faced by a single player in a society operating custom k, 
conditional on the class distribution being x. From this individual perspective, x̂  must be

interpreted as the probability that an individual chosen at random from the population, belongs 
to class i. We call this the individual process. Note that these transition probabilities are the
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same for each player belonging to the same class. If we consider these probabilities as 
proportions, the same transition matrix Q(k) expresses, at a population  level, the expected 
motion of a population in which the proportion in class i is represented bŷ r̂ Ĵ  The (expected)

class distribution in the next time period will then be:

x(t+ l)= x(()Q (k). (4.5.4)

A caveat here. In analysing the mobility structure of our society, we will make constant 
reference to these transition matrixes Q(k), as is customary practise in the literature on social 
mobility. The transition matrix Q(k) describes a well-defined stochastic process over the set of 
classes which is not, however, the one described in section 2. In particular, if we describe the 
transition from class to class by means of the individual process Q(k), we notwithstand the fact 
that the actual transition process comes as a result of a game being played between two agents 
randomly paired (as a matter of fact, we have always considered transition probabilities of the 
form ( i , ; ) ^ ( i ' , / ) ) .  Nonetheless, given that Q(k) is, by construction, the transition matrix which 

characterises the stochastic process faced by a single player before she has been paired, and 
there is no correlation between the random matching and the (possibly mixed) strategy profile 
that may be played, it would be surprising if the population process described by Q(k) produced 
a different limiting class distribution than the one we constructed in the previous section.

Therefore, for consistency with the development in section 4, we expect (and obtain) the 
following;

• Proposition 4.51. For the equilibrium distribution, x, given by Proposition 4.2, we have 
x = x Q (k ), where Q(k) is the transition matrix at x. That is, x is an equilibrium of the 

(non-linear) discrete-time dynamic (4.54). In fact, Jc is the unique global attractor for this 
dynamic.

Proof. See Appendix A. é

We now move to social mobility, and compare the universal equilibrium Jc with respect to its 
exchange structure under different customs. Following a well established tradition, we do this 
with the aid of a mobility index. Among the various alternative indices proposed in the 
literature, we choose the Bartholomew [1973] index, defined as follows:

• Definition 4.5.1. The Bartholomew mobility index for custom k is defined by

(4.5.5)

^^See Kemeny and Snell [1976], sec. 6.
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where q ( i ’ | i) is the entry in the equilibrium transition matrix Q(k).

This index is, of course, just the expected value in equilibrium of the possible (non- 
directional) class changes, | i-i’ | , representing the possible changes in individual class resulting 
from a play of the game. The mobility index is easily calculated for each of the 64 possible 
customs, and we obtain:

• PROPOSITION 4 .5 .2 . The mobility index B induces a linear ordering on the set of customs. 
This ordering identifies k̂  as having the minimum mobility, and k^as having the maximum

mobility.

PROOF. See Appendix A.#

The intuition behind the result is not difficult to understand. What follows is the transition 
matrix Q(l) evaluated when the society is at equilibrium, x , given by Proposition 4.2:

0.0221405 0.933578 0.0221405 0.0221405

0.102859 0.602859 0.102859 0.191422

0.0221405 0.433578 0.0221405 0.522141

0.102859 0.102859 0.102859 0.691422

(4.5.6)

Note that q ( i  14)=0.69 and q { 2 12)=0.6. This means that an agent who belongs to one of 

the most represented classes (in equilibrium) at time t, will stay in the same class at time t + 1  
with a fairly high probability. The reason is that a player of class 2  under custom k̂  always 

cooperates against higher-class opponents (while a player of class 4 will defect in return). 
Therefore, after the encounter, each will find herself in the same class as before the play. 
Consider instead what happens under custom ^^4 :

0.0221405 0.0221405 0.0221405 0.933578

0.102859 0.191422 0.102859 0.602859

0.0221405 0.522141 0.0221405 0.433578

0.102859 0.691422 0.102859 0.102859

(4.5.7)

Now ^ (4 14) has gone down to 0.1 and ^ (2 12)=0.19 (while q ( 2 \ i )  and ^ (4 |2 ) have 

moved up from 0.19 to 0.6 and from 0.1 to 0.69 respectively). This is because, under custom 
k^, the social ranking is always reversed after the play, enhancing the overall mobility of the

society.
It might be worth noting that the intuitive appeal of Proposition 4.52 is not to be taken for 

granted. Alternative indices do not produce the same clear-cut result, as is well known in the
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literature which focuses on social mobility. The results of this section specify, in a formal way, 
why we think of&^ O-G. a code of behaviour which consistently favors the lower class player in 

the division of the pie) as a code of conduct which promotes social mobility, and custom 

(where the opposite holds) as a code which discourages it. For this reason, we will hereafter 
refer to A:, as the Immobile Custom and to as \h t Mobile Custom.

4.6 . Tw o-custom  SOCIETY

Up to this point, we have studied the case of a society which unanimously agrees on a unique 
custom. We now move to a setting in which we allow the possibility of an heterogeneous 
society. In this section we analyse the simplest possible case, in which agents use one of two 
possible customs. In the following section the analysis will be extended to a society in which all 
64 customs may be present.

Different codes of behaviour are followed by different players who, occasionally, interact. The 
first, intuitive, implication is that coordination on one of the possible Nash equilibria of the Class 
Game is no longer guaranteed when agents belonging to different classes meet.i'  ̂It may happen 
that both customs prescribe the same pure strategy; so that people fail to play optimally. If 
guaranteeing an optimal play is what a custom is for, the simple coexistence of multiple customs 
creates, within the constraints of our simple model, a clear inefficiency, due to the fact that 
players now miscoordinate much more often. The extent to which this problem can arise 
depends, of course, upon the relative frequencies of the different customs. Think, for example, 
of a custom which is comparatively rare: people who follow it are more likely to mismatch their 
behaviour compared to those who follow “more popular” customs (this is, essentially, because 
the “rare” custom fails to act as a coordinating device). If so, it is reasonable to assume that, 
when multiple customs coexist, some kind of coordination learning might take place in the 
population; i.e. agents modify their custom in the light of experience, with a view to finding 
better coordination devices.

In addition, we consider a further source of learning, which we label aspiration learning. 
According to this, an agent will change her custom with positive probability only if her realised 
payoff lies below  a threshold value, which partially depends on her class (and is therefore 
endogenous), and partly on some exogenous constant, which is fixed and common for all the 
individuals in the population. In both cases, we shall assume that the probability with which an 
agent may switch her custom will be proportional to the difference between these threshold 
values and the game payoffs, as will be specified explicitly shortly.

We now give a formal description of this two-custom society. There are two customs, and 

^g. A player’s (instantaneous) state is represented by a pair (i,a), with ie {1,2,3,4} and 

a e  {A,B}. We denote by â  the complementary custom to a  in {A,B}. Thus, A =B and =A.

^^See, for example, Dardanoni [1993].
^^Remember that when two players belonging to the same class meet, any custom prescribes the same mixed stratey (i.e. 

k(i,i) =  1/2, for any k  in K.
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If player-I has state (/,a )  and player-II has state (/'p), then the game results in state 
transitions, and This transition occurs with probability

p (i',/;a ’,P’| ij;a ,P ). (4.6.1)

Our first aim is to compute ail the possible non-zero transition probabilities (4.6.1). First note 
that the possible transitions are not completely determined by the game alone, because now 
each player may change her custom by applying either a coordination test, with probability (1- 
1 ), or an aspiration test, with probability 1 , where Xe (0 ,1) is some exogenous constant, after 

the Class Game has been played:

• The coordination test. We say that the customs used by the two players coordinate at 

(w )  if

^a(U )=^p(w )- (4.6.2)

The customs therefore fail to coordinate at {i,j)  if ̂ «(i.y) #^p( i,j). Of course, when there

are only two possible customs, this can only happen if P =  â .  Note also that, if i= j  the two 
customs always coordinate at (/,;).

When player-1 applies a coordination test, then a ’= a  if a  and p coordinate at and 

a ’=  cë otherwise. Note that a failure to coordinate is detected by player-1 from her subsequent 
class i\ The public information available to both players prior to the game is the pair of class 
numbers (i,;); information about the other player’s custom is not available. Thus, if the customs 
coordinate at (i,;) with i^j, then ( / ' , / )  =  (2,4) if^ „ (i,; )  =  0 (player-1 Cooperates), and 
( i',/)= (4 ,2 ) ï ïk ^ {i,j)= l  (player-1 Defects). However, if there is a failure of coordination, then

(i" ./)=(3,3) if^ a(w )= 0 , and (i',/ ) = ( ! , ! )  if^ a (w )= l.
The intuition is the following. If the main function of a custom is to lead to coordination, this 

is what one should check first. In this respect, we should expect each custom to work as well as 
any other. We confine our attention to pure strategy outcomes for the following reason. As 
already noticed, a custom operates effectively only when two players from different classes 
meet, exactly the situation where a player would expect to be guided by the custom toward an 
optimal play. If this does not happen, then it is reasonable to assume that players may cast doubt 
on the validity of the custom they follow. We interpret this process as taking place on an 
individual level. Thus, there is a positive probability (1-A,), which we assume to be the same for 

each player, that, after the game has been played, each agent applies a test of this kind, and 
updates her custom accordingly. As mentioned previously, with the remaining probability X, 

each agent will judge the performance of her custom from a different perspective, as follows.

• The aspiration test, if player-l applies an aspiration test, then she will change her custom 
with a probability Yjj., which depends only on her class change i ^  i\
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The particular form of the aspiration test probabilities we shall consider is an amalgam of two 
complementary tests, whose relative weight is measured by an exogenous constant rje (0 ,1), 

which is assumed to be the same for all individuals in the population. These are defined as 
follows:

•  The  en d o g en o u s  aspiration test . Under this test, each individual compares her relative 
position before and after the encounter. We assume that this part of the test will lead to a 
change in the custom only when there is a status loss, i.e. when and that the 
probability of such a change is proportional to this loss.

•  T h e  ex og eno us  aspiration test . Under this test, each individual compares the game 
outcome with some exogenous constant o e  [1,4], here meant to represent a commonly 

shared “social standard” of what should be considered a fa ir  split of the cake. Given that this 
comparison could be performed equally with the prior class i, or with the posterior class i ’, 
and we have no definite criterion for preferring one over the other (given that each 
alternative has its pros and cons), we assume that each individual will average out the class 
transition, comparing the social standard a  with ( i+ i ’)l2. As for the case of the endogenous 

aspiration test, we assume that this part of the test will lead to a change in the custom only 
when a player’s averaged position is still below what is considered socially fair, i.e. when (a- 

( i + i ’)/2 )> 0 . Moreover, we will assume that this probability also will be proportional to the 
difference (a-(i +  i ’J/2). The exact form in which the two parts of the aspiration test, 

exogenous and endogenous, are combined together to determine the transition 
probabilities y... is given by

Y»'=(l/3)n^[G<f+n/2] +  (l/3 )(l-n )^ [H l, (4.6.3)

where rje (0 ,1) measures the relative weight of the exogenous aspiration test and h [x]= x  if 

x> 0 , h[x]=Q otherwise. [The factor 1/3 is for normalization purposes].

We provide a justification for this structure of the updating process, which is driven by two 
(rather different) forces. While coordination learning implicitly assumes that the agents are well 
aware of the fact that the outcome of the Class Game is the product of some interactive 
decision, those who update their custom according to the aspiration test need not know 
anything about the strategic features of situation in which they are involved (apart from the 
share of the pie they obtain). Otherwise, they simply do not care. While coordination learning 
recalls the classic “best-reply dynamics” over the space of customs (given that such a learning 
protocol is active only if an agent has not played a best response against the opponent’s move), 
with our aspiration test we try to model some form of “learning through reinforcement”, the 
object of recent interest both in the learning and experimental literature. These are the two 
learning models which have been given most attention by economists, as both learning schemes
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seem to provide a suitable framework in the economic modelling of boundedly rational agents, 
and their predictions have both empirical and experimental supportd^

While coordination learning suits environments in which the agents play strategically (though 
not in a very sophisticated way), our aspiration learning seems to be more appropriate in 
situations in which people know or care very little of the strategic aspects of the environment in 
which they act. We do not have, in principle, any reason to favor one learning protocol over the 
other, and we are actually interested in testing the predictions of our model in the presence of 
both these effects, using X, that is, the probability with which an agent will choose one test or 

the other, as a control variable in our simulations. As people hold different customs, they can 
also react in different ways, and we allow some degree of freedom in modelling the updating 
process, appealing to the two most influential candidates learning theory has provided so far.

To summarise, in a two-custom society, if player-I applies an aspiration test (with probability 
X), then a ’= a  in (4.6.1) with probability (1-%..) (i.e. there is no change of custom), and a ’= a  
with probability y,.,.. (i.e. there is a change of custom).

In appendix B we compute the transition probabilities (4.6.1) for general y..,. We also prove 

the following.

• Pr o p o sit io n  4.6.1. For 0 < A . , r i < l  and N > 2 x 4 = 8 , the two-custom Markov process 
defined on the lattice cA"̂  is ergodic.

Proof. See Appendix D.#

For custom A, let%^=(V(^^),%(2,A)'̂ (3,A)'̂ (4 ,A) ) be the vector of proportions in each of the 
four classes, and let%g= (%(i,B)*̂ (2.B)*̂ (3.B)'̂ (4 ,A) ) be the vector of proportions for custom B. 
Thus, the total vector, x =  (x^, Xg)e A’ The deterministic equations (4.3.6) now have the 

form

(4.6.4)
U.a) (j.p)

where the coefficients (4.3.5) are given by

gO.ai.u.̂ ) = ^  p (i',/;p ,a  I i,;;a,P) +p(s,r;c,p  | ij';a,P)}-{ +  g g g }  (4.6.5)
(j.ff)

Substituting from (4.6.5) into (4.6.4) and using the symmetry condition (4.3.1b), we obtain

(i.a) U.P) U,o)

l^Here we consider best-reply dynamics as a special case of a broader class of adjustment process, namely adaptive learning  
dynamics, following the terminology of Milgrom and Roberts [1991]- Learning procedures similar to our aspiration test have been 
studied recently by, among others, Bendor et al. [1991] and Borgers and Sarin [1994]. For the experimental evidence, see Mookerjee 
and Sopher [1994] and Roth and Erev [1983]. Proportional learning rules have been proposed by Cabrales [1993], and Schlag 
[1994], who also provides conditions under which a similar adjustment process can be justified on normative grounds.
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(4.6.6)

An explicit form for these equations is computed in Appendix B. We cannot provide a formal 
analysis of the solutions of the system (4.6.6), whose properties will be derived by simulation. 
Nonetheless, before we proceed, it may be interesting to analyse how the learning protocols we 
have designed would operate if they were applied to the exchange structure defined by Q (k) 

considered in the previous section. In other words, as an exercise, we try to gain intuition about 
the selection process over the custom space looking at the probabilities with which, given that a 
one-custom society has reached the equilibrium distribution jc, our coordination and aspiration 
tests would lead to an individual changing her custom.

It is already obvious that such an exercise can be carried out only for the aspiration test, since 
our coordination test, by construction, will never fail when everybody follows the same custom. 
In what follows, we will therefore calculate the effects of the various parts of the aspiration test 
if it were to be applied in a one-custom society. This should be seen as a measure of the ease 
with which a one-custom society at equilibrium could be invaded by mutants who apply an 
aspiration test with some probability. This is therefore a measure oi social stability.

Suppose we are given a matrix of real numbers, a =  {a.,.. 11<^"<4}. Then we can define an

a-mobility index on the set of customs, by

(4.6.7)
ij'

where, as usual, the ' hat’ refers to evaluation at the equilibrium Jc. An a-mobility index of the 
form (1) induces an ordering on the set of customs by:

^i<„^ 2q if 2ndonly if /a(^i)<  (4.6.8)

We shall be concerned with ordering customs according to various indices of this type. If we 
think of a .., as a “reward” (if a . . ,> 0 ), or a “penalty” (if a . . ,< 0 ), payable on an agent’s 

transition from class i to class i ’ after playing the stage game, then I j k )  is just the expected

reward, at equilibrium, when everyone uses custom k. A custom which has a high a-mobility 
index, therefore, has a high expected a-reward. For example, when a .. ,=  \ i-i’ \, then 

If^{k)=B(k) is just the Bartholomew mobility index, and a custom with a high 'expected 

reward’ corresponds to a more mobile society. In this section, we shall be mainly interested in 
the case in which the a...=y..,, the aspiration test probabilities for a custom change. Thus,

is just the expected probability, at equilibrium, that an application of the aspiration test will lead 
to a change of custom.

Now recall that Y,-,-.='ny,-,-^^+(l-'n)Y,r^", splits into two components, an exogenous part, 
Y-. (1/3)6 [ o - ( ;+ Q /2], and an endogenous part, y , (1/3)^ [h ’]. Hence, we may write,

L{k) =T| I j k )  +  (1-T|) /_(^ ), (4.6.9)
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where I^J^) is the /^-mobility index, and is the ^'"-mobility index. Clearly, Tj is 

just the expected probability that the exogenous part of the aspiration test will lead to a change 
of custom, and similarly, (l-r|) is the expected probability for the endogenous part of the 

test. We aim to prove:

•  Pr o p o s it io n  4.6.2. induces the same ordering on the set of customs as the

Bartholomew index.

(zY)When a =3, /g^( ) induces the reverse of the Bartholomew index ordering on the set of 

customs.
(Hi) When a=4, is independent of k, and so induces the uniform ordering on the set of

customs.

Before proving the proposition, we first need some lemmas.

• LEMMA 4.6.1. For a matrix a , define an index by

Ja(k) =  Z  (C ĵ2' ĵ4) (̂ ^ (4.6.10)
ij

Then /„(.) induces the same ordering on the set of customs as /„(•).

Pr o o f . Recall that

q(i’ I i) = j x , +  £  1 (1 -8 ,2 -5 ,.% +  X  |^ K ,)5 ,;4 -^ (U )8 ,.%
^  i *j  ^  J

Thus,

â(̂ ) “ t S   ̂̂  [Otj2̂ (/,0 + OĈ , (̂1,7)] .Î
^  ^  '  i,j

=  { —^  (Otjj+ 0Cj3)Xj.^+^ (( Î̂2'( î4) (̂/' 0  ^;
I f i J

where Â „ is independent of the custom k. It therefore follows from the definition (2) (and the 

corresponding definition for }„), that /„  and induce the same ordering on the set of 

customs.#

LEMMA 4.6.2. For any custom k, ^  k{i,j)x{>c.= ^ .
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Pr o o f . ^  k{i,j)xpCj='^ [l-k(j,i)]xpCj=l-'^ Now interchange dummy indices in
iJ iJ ij

the right hand sum to obtain the result.#

• LEMMA 4 .6 .3 . Let a =  {a ...}  and P = {p ..,}  be matrixes. Suppose there are real numbers, a 

and b, such that a(a-2-a.^) +^(Pi2-Pi4) = 1 for each /. Then /„(•) and /p(-) induce the same 

(resp. reverse) ordering on the set of customs i îa b < 0  (resp. ab> 0).

Pr o o f  By Lemma 4.6.1, it suffices to prove the result for }„ (•) and 7p(*)- But, a(aj2-

ttj4) +b(Pj2-Pj4) =1, together with Lemma 4.6.2, implies that a +bJ^(k) = ^ .

Suppose ab^O. Then ^ 2  if ^od only if ^a(^2)'^a(^i)^ 0; if and only if

)>0; if and only \ïab  (^a(^z)’^p(^i) if and only if, either a b < ^  and ^i<p ^2 , or 
ab> ^  and^i>p

Proof of Proposition  4.6.2 (i)\jex. ot,•,■.= \ so that Ia(k)=B(k) is the Bartholomew 
index, and p.,..=3y,-,-^"=h[H’]. Then,

{«i2-«i4} = -t-2,-2,0,2},

{Pi2-Pi4} = {0 A l,2 } .

Hence, ~ ( 0 tj2-0 Ci4) +  (Pi2'Pi4) = 1 for each i. Since - ^ x  1 = ~ < 0, it follows from Lemma

4 .6 .3  that a  and P induce the same ordering on the set of customs. This proves (i). é

(il). Let a ..,=  | h ’| , as above, and p..,=3Y,-,-.^''=/7[3-6''+0/2]. Then, {Pi2'Pi4 } =  { f ,1,^,0}- 

Hence, ^(aj2-otj4)+2(pj2-Pi4)=l for each z. Since 2 = 1 > 0 , it follows from Lemma 4.6.3 

that a  and p induce the reverse ordering on the set of customs. This proves (ii). é

(in). When a  = 4, set P » .= 3 Y » '''= (4 -r* + 0 /2 ). Then, {Pj2-Pi4 } =  Thus,

}p(^)=-^ by Lemma 4.6.2, which is independent of the custom k. It follows that 7p(*), and

hence induces the uniform ordering on the set of customs. This proves (in), é

For a given matrix a , the a-ordering is determined by the J„-index (4.6.10). We therefore 

attempt to give an interpretation of this index.. First note that, given that player-II has class j, 
P j(P )= '^  k {i,j)x . is the probability (at equilibrium) that player-I will Defect. If, on this

event, and after having played his own strategy (dictated by ̂ (/,;)), player-II moves into class 2, 
then he receives a “reward” a-̂ 2- On the other hand, if he moves into class 4 he receives a 
reward a j4 . If he does ' better’ (in terms of the a-reward scheme) in the former case, then
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aj2 > a j 4 , whereas the reverse is true if he does better in the latter case. Thus, if moving into 

class 2 is more advantageous to player-II, as measured by the reward scheme a , than moving 
into class 4, then it is advantageous to player-II that player-I should Defect (i.e. P̂ .(D) should be 

high). Conversely, if it is more advantageous to move into class 4, then it is advantageous to 
player-II that player-I should Cooperate. In terms of the reward scheme for the endogenous part 
of the aspiration learning rule, we have

{ctj2} “  — {0,0,0,0}.

Thus, for7 = 3 ,4  it is advantageous for player-II that player-I should Defect, and for7 = 1 ,2 , 
player-II is indifferent to player-Ts strategy. Thus, ^^(D) and ^^(D) should be high. The former 

has its maximum when ^ ( 1 ,3 ) =  ^ ( 2 , 3 ) =  ^ (4 ,3 )  =  1 , and the latter when 
/^(1,4)=^(2,4)=^(3,4)=1. These requirements are incompatible at (3,4). However, the relevant 
terms in }„ (^ )= ]^  (aj2-aj4)Jĉ .P̂ .(D), are ^ (4 ,3 )% 4  and 2 % 4  ^(3,4)%). Thus, since

j
2 x 4 %3 >% 3 %4 it is more advantageous for the overall index that ^(3,4) =  1 rather than 

^(4,3)=1. If we write

Kr = { t(l,2 ),t(l,3 ),t(l,4 ),t(2 ,3 ),A (2 ,4 ),t(3 ,4 )}

we therefore find that customs with the highest /g„(/^)-mobility index, satisfy

K (^) = {*,1,1,1,1,1}, (4.6.11)

where * can be either 0 or 1. In particular, the Mobile Custom, k(^^4) = {1,1,1,1,1,1}, has the 

highest possible /^„(^)-mobility index, as does k(^32) = {0,1,1,1,1,1}. A similar analysis shows 

that the Immobile custom, k ( ^ i )  = {0,0,0,0,0,0}, has the lowest possible /g^(^)-mobility index, 
as does k ( ^ 3 3 )  =  {1,0,0,0,0,0}.

We can play the same game with the exogenous part of the aspiration test learning rule, 
a...=3Y,j.®^=h[3-(î'+/!)/2], when o= 3. In this case,

{ a g }  =  { ) / 2 ,1 ,1 ,0 }, {a j4 } = { l , 0 ,0 ,0 >.

Thus, to ensure a high expectation of custom change from the exogenous part of the 
aspiration test, we require P̂ .(D) to be large for7 = 1,2,3, which in turn requires that

^(2 ,1) =^(3 ,1) =^(4,1)= 1 , and ^(1 ,2) =^(3 ,2) = k(i,2 )= 1 , and ^(1 ,3 ) =^(2 ,3 ) =^(4,3)= 1 .
The incompatibilities here occur at (1 ,2 ), (1,3), (2,3), and the relevant choices are between 

the pairs of terms in the J„-index, {x 2 k (l,2 )x i,x ik (2 ,l)x 2  }, { Y ^ 3^ (l,3 )%i,%i^(3 ,l )% 3  }

and {^% 3^(2 ,3 )%2 ,%2^(3 ,2)Jc3 }. For the first pair, it is a matter of indifference whether we 

take ^(1 ,2 ) =  1 or ^(2 ,1) = 1 ; for the second pair, it is more advantageous to take ^(3 ,1) =  1 ; and
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for the third pair, it is more advantageous to take k(^ ,2)= l. Thus, to achieve a maximum of 
Iex(^)i we require K{k) to have the form,

K(^)={*,0,0,0,0,0}.

In particular, this occurs when k = k^. Conversely, is a minimum when
k (^ )  = {*,1,1,1,1,1>; eg when ^=^64.

The content of Proposition 4.6.2 can be rephrased as follows. If people mainly look at their 
class change to determine whether to keep their custom or not (Proposition A£2(i)), then less 
mobile customs exhibit stronger stability properties (in the sense that, given they are already 
established, they minimize the probability of a failure in the aspiration test). On the other hand, 
if people mainly care about fairness considerations (Proposition 4.6.2(i;'z)), the opposite will 
occur, and we can expect more mobile customs to be predominant.^  ̂We test our (preliminary) 
conclusions by simulations, evaluating numerical solutions of the system (4.6.6). It seems 
somehow natural to start looking at the case in which people follow the two “extreme” customs, 
i.e. when ^^=1 and ^g=64. In this case, the society is split into two subgroups which follow,

respectively, the Immobile and the Mobile Custom.

RGUEE 4 ,6 .1 ,
Mobile vs. Immobile Custom,

The diagrams of Figure 4,6.1 show the limiting class distributions under both customs, as well 
as population shares and average payoffs under four different configurations of the parameter 
pair {A,,r|}.i7 In the last column of the matrix associated with each diagram, the Bartholomew 

indexes for the one-custom case are to be compared with the one exhibited by the (equilibrium) 
two-custom society.

First notice that the population share of those who follow the Immobile Custom never 
exceeds 1/2, while it is substantially smaller than this value when Tj is high (i.e. when the 
exogenous aspiration test is performed with sufficiently high probability). When X is also high 

(i.e. when the aspiration test is applied much more frequently than the coordination test) the 
proportion of the population which follows the Mobile Custom is almost as twice as much as the 
proportion which follows the Immobile Custom.

While this latter result is consistent with the content of Proposition 4.6.2(ii) (since the 
conjunction of X and Tj high, with a = 3 provides in principle the “best of the possible 

environments” for the Mobile Custom), the overall poor performance (in terms of limiting 
population share) of the Immobile Custom under any parameter configuration is puzzling.

One reason for this outcome might be the somehow arbitrary choice of the two contestants, 
placed at the opposite extremes of the custom space. To test this, we stage a Round Robin

l^Even if the "social standard" a  could take, in principle, any value within the interval [1,4], we restricted our analysis to the 
cases a = 3  and c —A for the following reasons. The choice of c t= 4  describes a situation in which an individual aims to reach the 
top of the social ranking, regardless of her current status (since 4 is the maximum payoff she can achieve in the Class Game), The 
choice c t= 3  can be justified on fairness grounds, since, when ct= 3  the utility pie is equally divided,

^^In the simulation displayed in Figures 6,1-2, we fixed (J= 3 , although (somewhat surprisingly) this choice does not seem to 
affect substantially the essence of the results (see Table 6,1 below).
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tournament among all the customs, in which each custom is paired against each of the other 6 3  

to form a two-custom society. Table 4.6.1 summarises the relevant summary statistics of the 
performance of the Mobile and Immobile customs in the tournament described above, under 
the same parameter settings as the previous example:

Table 4.6.1.
A Round Robin tournament.

Once again, while it seems to be true that an environment characterised by both X and T| 

small favours the Immobile Custom^s, it is also true that the Mobile Custom obtains a (much) 
larger share of the population in all the other cases, especially in the case when 
{A,,T|} =  {.999,.001}, where we should still expect a good performance of the Immobile 

Custom against any possible contestant (given that r\ is relatively “small”).
Our tournament suggests that there is something missing if we look at the data relying only 

on the conclusions of Proposition 4.6.2. Moreover, intuition suggests that the missing factor is to 
be found in the effects of the aspiration test, since, in a two-custom society, whenever 
coordination does not take place, there is an equal push against both customs (and therefore 
these opposite pushes should in principle cancel out). To proceed with the analysis, we display a 
detailed summary of the encounter between the two least mobile customs, i.e. k̂  and ^̂33;

Figure 4.6.2.
The two least mobile customs (1 vs. 33)

Once again, the limiting population share of the Immobile Custom never exceeds 1/2, with 
the gap increasing with r\ and X, as it happened in vs. case.

Remember that both customs, k̂  and ^^33 exhibit the same mobility in the one-custom 

society, at least when mobility is measured with the aid of the equilibrium Bartholomew index. 
In other words, one cannot appeal to mobility alone to explain why our dynamic seems to work 
against the Immobile Custom, as this also happens when is paired with a custom which 

exhibits the same mobility.
Note that the only difference between and ^ 3 3  is that â:,(1,2)=0 while ^33(1 ,2 ) =  1. In 

other words, ^^33 prescribes the same behaviour as the Immobile Custom, under all 

contingencies except when an individual of class 1 meets an opponent of class 2 .
We shall look at this encounter in more detail. To do so, some further terminology is needed. 

For a e  {A,B}, let ({)...(«;() denote the conditional probability that player-I changes her custom 
by application of the aspiration test, given that (i) she has class i, (ii) her prior custom is k^, (Hi) 

player-II has class j, and (iv) the (not necessarily equilibrium) state of society is x  =

(• (̂l,A) (̂2,A)>-r (̂4,A))-

Let ^ — . Thus, given that a player has class j, X? is the probability that he uses
^U.a)

custom We then have

^^Notice, however, that when X and n are both small, the relative performance of the various customs tends to converge, as in 
the simulations shown in Figure 6.1.
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^ ii 'M =  Z  iJ ] a ,a ) + p { i 'J ; a ,a  | i,j;a,a)]X^.
i'J'
+  \p ( i ' ,f ;a ,a  I i j \ a , â ) + p ( / ' , / ; â , â  | â )  ] X j

where the transition probabilities, p(* | •)> are taken as conditional on player-I using an aspiration 

test. The relevant formulae for these conditional probabilities are given in Appendix B, 
(BlAb,d), and (Bl.5,b,b,d,d). Using these formulae, together with (B1.2) and (B1.8), we 
obtain

‘Y»’

W)+ [YiiV w) tgM +Yi2̂ a(/:o +

We shall compute the net flow of these custom transition probabilities =
(t)...(B,x)) in the context of our example, that is, when (/,;) =  (1,2) and {A,B} =  {1,33}. 
Remember that, when {A,B} = {1,33}, we have ^^(1,2)=0 and ^ g(l,2 )= l. Thus,

‘t’l2 (^ '^ )“ Yl2^^2"*"Yi3^^2;

<l> 12(3 3 ;^)=Yi4^^2+ Yi 1̂ 2;
^21  (^1̂ ) ~  Y24 '̂ 1 "h Y21"̂  ̂1 !

<t>2l(33,^) =  Y22^^1 "h 723^^^-

from which we obtain:

A f i2 W = |n

The above analysis refers to the out of equilibrium behaviour of the two-custom society, 
which has been completely neglected in our considerations so far. Note that if then

A(1)j2 (^ )= 0 . On the other hand, if then A(t>2 i(.x}>0 , for any rje (0,1). We have
here a way to discriminate between the Immobile Custom and k-^y Although ^ 3 3  exhibits the 

same mobility in equilibrium in the one-custom case, (and prescribes the same behaviour in five 
out of six cases), out of equilibrium (i.e. when a player of class 2  meets an opponent of class 1), it 
prescribes a more efficient behaviour for the higher-class player. The latter is in fact the one 
who is more likely to change her custom, since she has more to loose in the encounter; if she 
cooperates against a lower-class opponent, she can avoid the inefficient outcome (1,1). This in 
turn will reduce the probability of changing her custom (measured by <|)2 ^(^,x)), producing the 
slight preference for custom ^33  exhibited by our simulations.
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4 .7 . The full 64- c u s t o m  s o c i e t y

In this final section we consider the case of a society in which any of the 64 possible customs 
may be present. As in the two-custom case, we suppose that players apply a coordination test or 
an aspiration test. However, whereas in the two custom case, an agent changing her custom 
must change to the only other alternative available, in the full system there are many possible 
choices. We shall assume that custom changes (for whatever reason) are effected only by local 
modification. Thus, if player-Ts state prior to the game is (i,kj), and player-ITs is ( z '^ ,  then 
player-Ts strategy in the game is to Defect with probability k j{i,j) . If player-I has cause to 

change her custom as a result of this experience, then she only modifies her {ijyresponse and  
nothing else; ie the change of custom is kj-^ k f  where

(4.7.1)[ k,(r,s)  otherwise

Notice that kj.=kj if i=j, so that two players of the same class never modify their customs in 

response to the game outcome. This is in contrast to the two-custom case discussed previously.
We call such a change a local modification because it depends only on the information 

available to player-I in the particular game, namely the prior class types of the players, (i,;), and 
the posterior class type of player-I. For example, if there is a failure of coordination at { i,j)  (see

(4.6.2)), then, necessarily and player-II will make an unexpected move (Cooperate instead 
of Defect, or vice-versa). If player-I applies a coordination test, then she will attempt to 
coordinate with player-II in future by coordinating with whatever strategy player-II played when 
the same (/,;) situation arises again. Similarly, if the custom change is the result of an aspiration 

test, then player-I reasons that, in order to do better in a similar situation next time, she should 
play the alternative strategy. This leads to the rule (4.7.1). In doing this, player-I does not make 
any assumption about what player-II will do in response to a coordination failure. This is because 
she only ever knows player-ITs class, and not what custom he might be using. Her prior working 
assumption is always that player-ITs custom is the same as hers. If she didn’t make this 
assumption, then the notion of a custom as a coordinating device would lose its force; she might 
just as well pick a strategy at random.

The result of a game, together with the application of coordination or aspiration tests and 
local modification with per-player probabilities (1-1) and X, respectively, is a transition of the 
form, ((i,^;),(j,y  ) ^  ((i'W , (j W )  )• denote by

p(f J  I i,j]kj,kjy (4.7.2)

the probability with which such a transition occurs. We compute the transition probabilities
(4.7.2) in Appendix C. Again we have

• Pro po sitio n  4.7.1. For 0<A., T | < 1  and # > 6 4  x 4=256, the 64-custom Markov process 
defined on the lattice is ergodic.
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Pr o o f . See Appendix D .#

For simulation purposes in this section, we use the form (4.6.3) for y..,. We are mainly 

interested in cheo^ing whether the push in favour of “more mobile” customs we observed in the 
two-custom case still operates in the full 64-custom society. Figure 4.7.1 displays graphically the 
summary statistics of a set of 400 simulations, 100 for each of the parameter settings {1,T|}, 

which we used for the two-custom society:

Figure 4.7.1.
The full 64-custom society

Customs are ordered with respect of their mobility index B(k) evaluated at the estimated 
equilibrium class distribution of the corresponding 64-custom simulation. As can be spotted from 
the graphs, the trend toward more mobile customs is evident in all cases. Moreover, this 
preference increases with both X and T) as in the two-custom case.

4 . 8 .  C o n c lu s io n s

Our research program is clearly at a preliminary stage, and the reader may feel uncomfortable 
finding ad  hoc assumptions every now and then. Our first (and cheap-talk) justification invokes 
simplicity and mathematical tractability: the model appears to be complicated enough, even 
with all these (some would argue) quite implausible short-cuts.

Still, we claim to have some ground for further defence. This is why we tried to justify each 
assumption on the basis of some plausible intuition (this is, at least, the authors' hope). 
However, we devote these concluding remarks to point out some critical points, which should 
be interpreted as guidelines for future research.
Non-equilibrium behaviours. We restrict our attention to the set of behaviours specified in 
definition 2.2 as “customs”. This assumptions is, of course, not innocent, and we have no reason 
to conjecture that, once we allowed a larger set of possible behaviours, our conclusions would 
not differ in a substantial way. Think, for example, of a sub-population of ‘die-harders’, prone to 
defect regardless of the identity of their opponents: to what extent would their presence affect 
the dynamics of the system? Or, alternatively, think of sub-populations of ‘mixers’, playing a 
mixed strategy all the time, or ‘doves’, cooperating with anybody, etc... All these possibilities are 
ruled out by Definition 4.2.2, and we simply do not attempt to predict what would happen if the 
set of possible behaviours were enlarged substantially.

“Smoother” class ranking In our model, the class of a player is simply the payoff received the 
last round she was called to play. In other words, we allow the possibility that a player moves 
from the top of the social ranking to the bottom (or vice versa) within a single period. This 
feature of the model is indeed unrealistic, and it could be modified, for example, if we defined 
the class as some weighted average of the last n payoffs received in the Class Game.
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The role of memory. A similar remark can be addressed to the structure of the learning process. 
Our players have no memory, and every comparison is made with respect to current payoffs: a 
grain of ‘bad luck’ could completely upset the weltansbaung of a player, regardless any other 
consideration. Alternative sets of assumptions could design the learning process in a more 
realistic way; for instance, we might let players apply our coordination and aspiration tests on a 
longer string of outcomes (“don’t let your choices be driven by your last impression!”). Our 
conjecture is that a modification in this direction should not change our conclusions in a 
substantial way, but we are not able, at this stage, to provide a formal justification of this claim.

More complex Class Games. One could argue that some of our results crucially depend upon 
the particular features of the Class Game we have chosen, namely: Chicken. It would be 
interesting to apply the same analysis to more complex strategic frameworks. For example, a 
natural extension of the model would be to the classic Nash Demand Game, where the 
strategic framework of the Chicken game is extended to a much richer strategy space for each 
player.
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A ppendix  A  
O ne-custom  SOCIETY

A l ,  P r o o f  OF P r o p o s it io n  4.5.1

From equations (4.5.1), we obtain the explicit form for the discrete dynamic (4.5.4):

I 1̂ 1 1̂  (Al.la)

"^2 =^4'— I 1̂ 1 1̂  (A1.16)

where we have written a:=%(() andx'= x ( t+ 1), and | ] x  | | =  J ,  l^ote that this dynamic is
I

independent of the custom k, and so any equilibria will be universal.
Clearly, after at most one time step, the dynamic is confined to the invariant subspace, 

X i= x-i,X 2 =X 4 . We also have the constraint, ^  x .=  1. Thus, in this constarined space,
i

I |x  I I ^=2 (X]^+(^ixJ^ )=  “ 2xi+4xi^. The resulting constrained dynamic is therefore 1- 

dimensional, and can be written in the form

x'-x=l/8-(3/2)x+x2, (A1.2)

where x=Xi. The quadratic factorizes as, (x-Jc^) (x-Jc ), where x±  = -^(3±V7). The first factor

is always negative since x  ̂>  1 , and the second factor is negative if 0 ^ <  x_, and positive if x
< x < l .  It follows that X is the unique global attractor for this dynamic, and hence that

x= (i(3 -V 7),^ (V 7-l),j(3 -V 7),^ (V 7-l)) is the unique global attractor for the dynamic 

(A l.l).*

A2 Pro o f  o f  Pro po sitio n  4.5.2. Using the formula (4.5.1) for the transition probabilities, we 
can compute the Bartholemew mobility index for each custom, and order the customs by 
increasing mobility. The resulting order is shown in Table A.I. Note that the custom it, 
(together with custom ^ 3 3  has mobility index which is strictly less than any other custom, and 

the Liberal custom has an index which is strictly greater than any other. Table A.1 therefore 
constitutes a proof of Proposition 4.5.2#
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K B(k) 'K " B(K) K B(k) K B(k)
0.677124 2 2 0 .8 3 8 5 6 2 3 1.35425 2 4 1 . 5 1 5 6 9
0.677124 2 5 0 .8 3 8 5 6 2 3 5 1.35425 2 7 1.51569
0 . 6 9 2 8 1 1 5 4 0 .8 3 8 5 6 2 19 1.36994 5 6 1.51569
0 .6 9 2 8 1 1 5 7 0 .8 3 8 5 6 2 5 1 1.36994 5 9 1.51569

0 . 7 5 10 0.895751 4 1.42712 12 1.57288

0 . 7 5 13 0.895751 7 1.42712 15 1.57288

0 . 7 5 42 0.895751 3 6 1 . 4 2 7 1 2 4 4 1.57288

0 . 7 5 4 5 0.895751 3 9 1.42712 4 7 1.57288

0.765687 2 6 0.911438 2 0 1.44281 28 1.58856
0.765687 2 9 0.911438 2 3 1.44281 3 1 1.58856
0.765687 58 0.911438 51 1.44281 6 0 1.58856
0.765687 6 1 0.911438 5 5 1.44281 6 3 1.58856

0.822876 1 4 0.968627 8 1.5 16 1.64575
0 .8 2 2 8 7 6 4 6 0.968627 11 1.5 48 1.64575
0.822876 3 0 0.984313 4 0 1.5 3 2 1 . 6 6 1 4 4
0.822876 62 0.984313 4 3 1.5 6 4 1 . 6 6 1 4 4

TABLE A. 1.

Custom s ordered  by increasing Bartholomew mobility index.
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Appendix  B. Tw o-Custom  Society

B l. EXPLICIT FORMS FOR TRANSITION PROBABILITIES AND DETERMINISTIC EQUATIONS. 

To compute the transition probabilities (4.6.1), we must consider four cases.

•  Case 1. Both players apply a coordination test. This occurs with probability (1-1)^. In this 

case the possible non-zero transition probabilities are:

p (i',/;a ,p  I i,7;a,P)=S„p(i,;)Pa(^'j'' I iJ )  (Bl.l^:)
w ;a ,P )=  S | i,j) (Bl.lb)

Here, p is the coordination index function: = l  if a  and p coordinate at (iJ ),

and 8g^_p(U)=0 otherwise. Also, ^a,p(w )=l-5a,p(L;), so that a  and p fail to coordinate at 

(/,;) if and only if 5„ p (ij')  = l. Clearly, 0„p(i,;)=S„_p(/;0- The probabilities P a (r ,/  | i,j)  and 
PaU'J' I Ly), are the coordinated and uncoordinated transition prbabilities, respectively; i.e.

P a ii'J  IM) = (l/4)(ô\.,ôi.,-f ô2.,ô^ .̂,-LôU^3.,-hô4.^2 .̂,) (B1.2a)

P a (( \ /  I (B1 .2 b)
P a ( w ' |  w )=0 (B1.2C)

P a i^ 'j  I  L;)=^a(^;)S\'5h,-l-^a(/^05^'5T, (i^) (B1.2d)

• Case 2. Player-I uses a coordination test and player-II uses an aspiration test. This occurs with 
probability (1-X,)X. The possible non-zero transition probabilities are

p (i',/;a ,p  I i,;;a,P) =  0„p(i,;)(l'Y^')Pa(^'>/ I (B1.3a)

p { i ' ,f ;a ,p  I L;;a,P)=ô„p(i,;)Yj,Pa(î'./ I iJ )  (B1.3b)
p (i" ,/;â ,p  I ij';a,P)= ^a,p(U)(l-Y^)Pa(f% / I  iJ )  (B1.3c)

P( i ' J  ; â , ?  I ij';a,p) =  5 „ p( i,;)Yj,'Pa( i ' J  I iJ )  (B1.3d)

• Case 3. Player-I uses an aspiration test and player-II uses a coordination test. This occurs with 
probability A(l-X). The possible non-zero transition probabilities are

p (i',/;a ,p  I iJ;a,p)=ô„p(iJ)(l-Y â')Pa(îV  I iJ )  (B1.4a)
p (i',/:  â ,p  I i,;;a,p) = 0„ p(ij)Y ,..p„(i',/ | i,j)  (B1.4b)

p (i'J - ,a ,p  I ij ;a ,p )=  S ^ ^ { i j ) { \ - y ^ - ) p j i ' j  | iJ )  (B1.4c)

P(i ' J w;a,P) = 5 „ p(i,j)yn-Pa(i'J  I U )  (B1.4d)
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• Case 4. Both players use an aspiration test. This occurs with probability The possible non­

zero transition probabilities are

p (i',/;a ,p  I ij;a,p)=5„p(iJ)(l-y...)(l-Y^..,)p„(i',/ | i,j)  (B1.5a)

p(i',/;a,|31 ij;a ,P )=  | iJ )  (B1.5â)

p ( r , / ; â ,( 3 1 /j> ,P)=5_„_p(U )X r(H ')Pa(*^/ I i J )  (B1.5b)
p ( / ' , / ; â ,p  I i j;a ,^ )=  ^o, p(* P a ( I U )  (Bl.5^)

p ( i ' , / ; a ,^  I ^7;a.P)=8a,p(*’>)(H«')Tj/'Pa(*'./ I U )  (B1.5c)
p ( i ' , / ; a ,^  I jj;a ,P )=  I U )  (B1.5c)

p( i ' J  ; « , ?  I  p)= 6 „ p( (j')Y»Y^Pa( i ' J  | i,j)  (B1.5d)
P( i ' J  ] â , p \  ij';a,p) =  5 „ p( i ' J  I iJ )  (B1.5 d)

We can now compute the unconditional transition probabilities (4.6.1). For example,

p ( r , / ; a ,p I ij;a ,P ) =  (l-A)2(Bl.la)-f (l-A)A(B1.3a)-l-A(l-A)(B1.4a)+A2 (B1.5a).

We obtain thus, 

p (/' ,/ ;a ,p | ij;a ,p ) =
(l-Ay..,)(l-Ay^^.,)0a_p(i,;)Pa(t',/ | ( j )  +  A^(l-Y„)(1-y^) 6  ^ p ( | i J )  (B1.6a) 

p ( i ' , / ; a ,?  I /j;a ,P ) =

( l-A y ..,)A y ^ ^ .,0 „  p ( i , ; ) P a ( j ' . /  I (J ) + ^ ( l - Y , , ) ^ a . p ( ' J ) ^ a ( I  iJ)  ( B 1 .6 b )

p ( / ' , / ; â ,p |  ij;a ,p ) =

^ Y ü ' ( l - ^ l ) ÿ ' ) S a ,p ( (j ' ) P a ( I ( J )  +  ^ a , p ( *J ) P a ( I  iJ)  ( B l  6 c )

p ( i ' , / ; â , ^ |  ij;a ,P ) =

^̂ Y»'Yy)'Ba,p( (j)P a( i ' J  I  i J )  +  (l-^(l-Yü'))(l-^(l-Yjÿ')) ^ a , p (  i J ) P a (  i ' J  I  i J )  (B1 .6 d)

We now compute an explicit form for the deterministic equations (4.6.4). Note from 
equations (B1.2) that

I Pa('V|M)=;j (B1.7a)
I Pa(-'./ I U)=kS()Ŝ r+K(U)S\ N (Bl.Tb)

Z  P a ( ' V l W = 0  (B1.7C)

X  P a J J  I : J ) =^a( ( M  (B1.7d)

Also, noting that^„(i,;)^=^„(i,)) 2 i n d k j i , j ) k ç ^ ( j , i ) = 0 ,  for it is easy to check that, for

i^,
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S«,p( ( j )  =  Sa,p( j ( j )  =^a( *j)^p( ( j )  (Bl -8 a)

^ a.p( ' j )  =  ^ o,p( * J)^p(/  ̂0  =^a( * j)^p^ 0  (B1.8b)

It therefore follows from equations (B1.7) and (B1.8) that

Z W:W'Vlo')=:̂ (Bi.9a)

Z ̂a,p(*J)Pa(*''/ I j )^ p ( ' j )5 \  0̂) (B1.9b)

Z  ^ o , p ( 4 0 P « ( ' V  1 ( 0 = 0  ( B 1 .9 C )

Z ̂a.p((;)Pa(fV I (;)=̂a(U)̂p(/)05̂+W0̂p((;)5̂r 0'̂) (Bl-9d)

Using equations (B1.6) and (B1.9), we first obtain an explicit form for equations (4.6.4) with 
p=A. Thus, equations (4.6.4) can be written

+ 2 Z  ( Z  [ p ( I  w A A )+ p ( i \ f  -ABI /j-;A ,A )]\^.
i J  s

+ 2 1  {%  [ p ( iV A A |i , ; A f i ) + p ( O 'A 5 |i .M B ) |} W 0 ' .« )
i J  s 

i J  s

+ 2 %  { %  [p (.V A ^ |;,7 ;B ,B )+ p (.V ;A B |-jA 5 )1 K ,-,s;* (/,6 )
i ,j  s

(Bl.lO)
Now, from (B1.6a,b) and (B1.3c) we have

P ( r , / A A  I i ,iA A )+ p (i',fA B  I O ' A A )
= [(1- W ( 1- W + ( 1 ' W %  ]^(A.A)OJ)PA(i'J' 1 ( 0

= ( i - % ) 5 K A / ( ; ) P A ( ' V  I ( 0

Thus, from (B1.9a) we obtain

Z [p(iVÂ|M'>̂A)+p(;',/v4,B|!;iAA)] = ;j(l-XY,,) (Bl.lla)

Similar calculations yield

Z [p('",/yt/l|vKg)+p('VKB|vAB) 1 = ̂(1-%) (Bl.llb)
Z |p(''./A/l|v'A4+P('VAB|v'AA) ]=!% (Bl.llc)
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z  W . r - M  I i ,m B )+ V i< ^ .ïA B  I 1 =  ( B l . l l d )

From equations (B l.ll) we can now pull out the term in the summations on the right hand side 
of (Bl.lO) for which to obtain

2  I I I I 2  2  ^  ] (B1 .1 2)

where u -v=  ^  up^ and | | w | p =  w- m.
I

We now turn to the off-diagonal cases, i?ÿ. From (B1.6a,b), we have

p (  i ' J  ' A ^  I w A ^ ) + p (  A ^  I
=  (1- fj)PA(f' . /  I (A .A )^ iJpJi^J  I ( j )

and using (B1.7b,d) gives

X  W J A A \  i , j A A ) + v { i ' J A B \  i J A A ) ] = { l - X y i J k J j f y ^ \ + k J i J h \ ]  (B1.13a)

Remember that k J i j y = k A i J )  and k ji , j ) k j j , i ) = i ) .  Similar calculations yield 

X  W J A A  \ i,iA B )+ '^ {i'J A B  \ iJAB)] =

+^(1-Y,r) [^A(W%(/;05'r+^A(/;*A(W)S^ ] (Bl-Db)

X  [ p ( i ' J A A \ i J A A ) + p i i ' J A B \ I M A ) ]  =

+  ( i - ^ ( w  ) [^B(u')v;o5^+^B(/;o^A(w)83r ] ( B i .%

X  [ P J J A A I i J A , B ) + p i i ' J A B  I i J A B )  ] =̂ Y,> ]

(B1.13d)

Now multiply (B1.13b) and sum over then multiply (B1.13c)

sum over and interchange the dummy indices, i <r̂ j, to obtain

X  ( X  [ P J J A A I iJ A B )+ p ( i 'J A B  I iJA B )]
i* j  s

+  X  Œ  [ p J J A A  I i J A A ) +  p J J A B  I i J A , A )  ] }X(iBpC(j,A)
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i*j

- ^ S  ^ ( V Y p  [ ^ A ( ( J % ( / ' 0 ^ \  + ^ A ( / ; O ^ B ( ^ ' j ' ) ^ ^  ]
î J

+ [YA(/;*A(/;0"^A(fj')^B((J) ]s^+ [YA('j')^B((j)-Y/A(/;o^B(/:o ]s\Hu;^(/,s;
(B1.14)

Finally, multiplying (B1.13a) (B1.13d) b y x ^ .^ .^ , and summing over i^ , we

obtain terms

X  Œ  [P( I : J A A ) + P( i ' J  'AB I i , M ^ ) ]
i>y s

=  I  (1 -W I^ A & 0& ^ +^ A (U ) « M  ^  ( / . a ; *  ( ^ , a ; ( B 1 . 1 5 )
i* j

X  ( X  [p( ' " ' /  A ^  I + p (  i ' J  A B  I
i* j  s

~ ^ X  Y;r[ B̂( / ' 0 ^B( ' ' g; (B1.16)
i* j

By combining (B1.12), (B1.14), (B1.15) and (B1.16), we can now write down explicit forms 
for equations (Bl.lO), to obtain:

dx
— ^ ( l . A ) " b  .  I I ^ a I  . ,^ A * ^ B " ^ ^ X  ^A(i'j)^B(f>0^(i,Af^(j,B)dt

^(2,A)

Y <it% A ?% «/]+^Z  [Yii-Yji)^A(‘’.')^B(/»M)*(;,«A (Bl.lVa)
^  i i*J

d t^  ~  '^ ( 2 .A)"'” 2 I P aI P “*" 2 ‘̂ a*'̂ b

+  2 X  ^A(/’0 (̂’i,Aî (/,A;“̂ 2 X, ^A(/;O^B(/'
i* i  i* i

Yi2 ] "*” ^ X  Yi2 [ ^ J j ’^^(i,Aj’̂ (j,A)'^B^>^^{i,Bj^(j,B)\
^  i i* j

”I”2 X  [Y i2 ^ A ( / ' (/'0"^2^A('j ) ^ B ( (i.Aj^(j.B)^ (Bl.lTb)

dx
^ = - 2 ^ ( 3 ,A ) + | |  P aI P + |^ a -^ b  +  2 Ç  kSl)kBiiJ)X(i.Af^(j,B)

" ^ {  2  X  Yi3 [ (̂i,A)̂ '̂ (i,B)  ̂ 2 ^  [Yi3‘Yj3 ] ^ A ( / '0 ^ B ( * ’- / ) - ^ ( ' i ,A / ' ( / ,B ; K b l - 1 7 c )
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■ (̂4,A)"*' 2  I I' âI 2 ‘̂ a*'̂ b

+  2  ̂  ^a( ̂ 'j) (̂i,A) (̂j.A) " 2̂ %  ^a( ̂ 'j)^B(^’j)^(i,Af^(j,B)
i*j i*j

Yi4 %4 [ ^ A ( ^ ^ ]
■4 i I#;

■I" 2 ^  [yi4^A( ̂   ̂j)"lj4^A(/' (/' 0  ̂ (B1.17d)
i*i

Similarly, the equations forXg are:

-^^=-2X(i B)+-  I |-%B I P"*" ■7̂ a*̂ b"*"2X ^A(' ( / '

+  ^  Yii [•^(j,a/''^(^ï,b/] 2 ^  [YiI'Tj 1 ]^A( '̂7)^B( / ; A/"0 ,Bĵ  (Bl.lSa)
■4 i î j

d t

2^(23)“̂  7  I Î b I T^A*-^B'^2  ̂ B̂ (/; 2 ̂4 4 />y

T X  Yi2 [^((.A/'-^n.B/] 2 ^  Yi2 I^a O’ ŷ^(i,A?^(j,A)^BO'0^f;,B/'(/3)]
 ̂ i

2 ^  [Yi2^A(/' Ô B O' 0"llj2^A( ̂ j)^B(  ̂ (B 1.18b)

dx
— - 2 x : ( 3 B ) +  2  I I ^ b I  P"*" 2 " ^ A '^ B " ^ 2 %  ^A^>^^Bi^'j)^(i,Af^U,B)

+  ̂ { —X  Yi3 [^(,,A/-'^(;,g/] +  2 ^  [Yi3'Yj3]^AO'O^B(*’7 ^UJ^(/.B;^ (Bl.lBc)

^ ( 4 ,A ) “*“ 2  I I'^b I 2^^*'^®

+  2  ^  ^ b (  *’7 )^ fi,B y ^ (/,B .)  ^  X  ^ a O 'O ^ b O '  ^ŷ (i,A}̂ (j,B)
i*j i*j

" ^ ^ { % X  Yi4 [%A/''^ti,B/] " ^ 2 ^  Yi4[^A('’7)^ri,A/''(/',A/^B(*’7)^ti.B/‘'(/,B;]
4 / î j

"h 2 ^  [Yi4^A(*'7)^B(^’7)"Yj4^AO'O^BO'0]^('j,Aj^(/,B;} ( B l . lS d )
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A p p en d ix  C - T h e  6 4 -C u s t o m  S o c i e t y

C l. Transition probabilities for the 64-custom  case

We compute the transition probabilities (4.7.2). First note that, because the local 
modification rule (4.7.1) can have no effect on customs when i=j, we have

(C U )
[ 0 otherwise

where p ( i ' , /  | i, i) is the elementary (one custom) transition probability given by (4.3.1a). Now 
suppose Let a = k j{ i,j)  and ^=kjj{j,i) be the probabilities with which player-I and player-II 
will Defect. The a ,pe {0,1}. By the local modification rule (4.7.1), kj. and kjj depend only on 
a  and (3, and not on the values of kj or at any other class-pair. Also, kj. or kj! can differ from 
i^yOn^y;Onlyat {i,j)  and Denote by the custom obtained from k by local modification 

at ( i j ) ;  i.e.

\ if (r,j) = (i,7) or (J,i)
!  ^A.^)Cherwise

Clearly Then kj,=kj or and kjj'=kjj or It follows that a possible
transition ((z,^^), Q,k,j) ) ^  ((i',^/'),(j',^//') ) is completely specified by the local transition, 
((z,a),(j,P) ) ^  ((i',ot'),(j',(3') ), where a '= k j{ i,j)  and ft=kjj'(J,i). In fact, if

p ( i' ,/;a ',p ' |ij ;a ,p )  (C1.3)

is the probability of this latter transition, then the possible non-zero probabilities (2 0 ) with 
are given by

p( i ' J  ]kj,kj, I iJ,kj,kn) =p( z'j" ;a,p | i j ‘;a,p) (C1.4a)
p( i ' J  ; I iJkjJSj,)=p{ i ' J  ; l-a ,p  | i j ’;a,p) (C1.4b)
p(C/;^/,^^’'^ /̂/| i,j-,k j,k jj)=p(i'J-a ,l-^ \ ij;a ,p ) (C1.4c)

p J J ] ^ ‘-'^kjJ‘̂ kjj\ ijk jJS jj)= p{i'J -,l-a ,l-^  I ij;a ,p ) (C1.4d)

It therefore remains to compute the probabilities (Cl.3). There are four cases.

•  Case 1. Both players apply a coordination test. This occurs with probability (1-X,)̂ . Note that 

a coordination failure can occur only if a = p ,  and in this case a '= p '= l - a .  Otherwise, 
a '= a  and p '= P = l-a . For a e  {0,1}, define elementary transition probabilities

( C15a)
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P a ii'J 'l (,;)=(%8 \.,6 ^y+ (C1.5b)

We then have

p ( i ' , / ; l - a , l - a  I | i j )  ( C 1 .6 a )
p ( i ' , / ; a , l - a |  i j ’; a , l - a ) = p „ ( i ' , /  | i,j)  ( C 1 .6 b )

Case 2 Player-I applies a coordination test and player-II applies an aspiration test. This occurs 
with probability (1-A,)A,. The possible non-zero transition probabilities are

P( i'J' ; l-ct,a I i j , a , a ) = (1-ŷ .,) p„( i'J' I iJ )  (C1.7a)
p ( / ' , / ; l -a ,l -a  I i,j',a ,a )= yjj.p^ {i',f | iJ )  (Cl.Tb)

p (i'J';CLj-a I i ,; ;a ,l-a )= (l-y^-)Pa(i'J' I iJ )  (C1.7c)

p( i'J' I * =y -̂pa( i'J' I iJ )  (C1.7d)

Case 3 Player-I applies an aspiration test and player-II applies a coordination test. This occurs 
with probability A,(l-X,). The possible non-zero transition probabilities are

p(i"j";cc,l-a I i,;;ct,a)= (1- y . , . , ) i'J' I iJ )  (C1 .8 a)
p ( i ' , / ; l - a , l - a |  iJ-,CL,a)=yi-,pa{i'J' | iJ )  (C1.8b)

P(i'J ';ct,l-a I i ,; ;a ,l-a )= (l% .)Pa(i'J' | iJ )  (C1.8c)
p ( i ' ,/ ; l -a ,l-a  I /,;;a ,l-a )= y ..,p „(i',/ | iJ )  (C1.8d)

Case 4 Both players apply an aspiration test. This occurs with probability The possible 

non-zero transition probabilities are

P (  i ' , /  ; o t , a  I i j - ,a ,a )= ( l - y ,y )  i 'J '  I iJ )  ( C 1 . 9 a l )
p ( r , / ; a , l - a |  iJ-,CL,CL)=il-yii)yjj.pa(i'J' | iJ )  ( C 1 .9 a 2 )
p ( i " , / ; l - a , a |  i j ' ; a , a ) = y . . , ( l - y ^ ^ . , ) p „ ( i " , /  j iJ )  ( C 1 .9 a 3 )
p ( i V ; l - a , l - a |  iJ-,a,a)=y...yjj.pa{i'J'  | iJ )  ( C 1 .9 a 4 )

p ( / ' , / ; a , l - a I  / j - ; a , l - a ) = ( l - y . , ) ( l - y ^ . . )  p „ ( / ' , /  | iJ )  ( C 1 . 9 b l )
p (  i ' J ' , a , a  I i, j ,a ,  1 - a ) = ( l - % y ) y ^ P a (  i 'J '  I iJ )  ( C 1 .9 b 2 )

p ( i ' j " ; l - a , l - a  I i , ; ; a , l - a ) = y , . j , ( l - y ^ ^ . , ) p „ ( t ' j "  | iJ )  ( C 1 .9 b 3 )
p ( i ' , ; " ; l - a , a |  = y , y y ^ 'P a (  T j "  | iJ )  ( C 1 .9 b 4 )

We can now obtain the unconditional transition probabilities (Cl.3). Thus,

p(i',;";a,a I I,;;a,a)=A.2(l-y..,)(l-y^„)p ^ J 'J ' | iJ) (Cl.lOal)
p ( 1-a  I /,;;a,a)=A.(l-y...) (l-X{l-yjj) )P a(i'J ' I iJ )  (C1 .1 0 a2)
P ( i ' , / ; l - a ,a |  i , j ,a ,a )=  (l-A,(l-y.,.) )X(l-yjj)p„_{i',j' j iJ )  (C1.10a3)

p(i',7'; l - a ,l -a | i j- ,a ,a )=  (l-A.(l-y..,) ) (l-A,(l-ŷ .̂,) )P a(i'J ' I iJ ) (C1.10a4)
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p ( 'V ;a ,a | iJ ;a .l-a )= (l-X Y i; .)X Y ^ ,p „ (i',/1 i,j) (Cl.lObl)
P ( i ' , / ; a , l - a |  i,;;a,l-a)=(l-XY,r)(l-XY^.)p„(iV I i.j) (C1.10b2)

p ( i ' , / ; l - a , a |  i,;;a,l-a)=X^i,.Yj/'Pa(''./1 >j) (C1.10b3)
p ( ; ' , / ; l - a , l - a  I i,;;a ,l-a)=> ,Y „.(l-X .Y j^ .)p„(i',/1 i,j) (C1.10b4)

This completes the derivation of the transition probabilities.
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Appendix D. E r g o d ic ity  r e s u lt s

Dl. Proof of Proposition 4.1. We begin by computing the possible coefficients,

By considering all the possible transitions, and using the transition probabiEties

(4.1), it is straightforward to show:

£"(1,1) = (0,0,0,0) ' 

£ " ( 2 , 4 )  =  ( - 2 ,1 ,0 , ! )  

£ " ( 3 ,3 )  =  ( - 2 , 0 , 2 , 0 )  

£ " ( 4 , 2 )  =  ( - 2 ,1 ,0 , ! )

each with probability - (Dl.la)

^22 —

£ ''(1,1) = (2, - 2,0,0) 
£ " ( 2 , 4 )  =  ( 0 , - 1 ,0 ,1 )

£ " ( 3 , 3 )  =  ( 0 , - 2 , 2 , 0 )  

£ " ( 4 , 2 )  =  ( 0 , - 1 ,0 ,1 )

each with probability (Dl.lb)

£"(1,1) = (2,0, - 2,0) 
£ " ( 2 , 4 )  =  ( 0 ,1 , - 2 ,1 )

£ " ( 3 ,3 )  =  ( 0 ,0 ,0 ,0 )  

£ " ( 4 , 2 )  =  ( 0 ,1 ,- 2 ,1 )

each with probability - (Dl.lc)

£44 =

£^(1,1) = (2,0,0 , - 2) 
£ ^ ( 2 , 4 )  =  ( 0 ,1 ,0 , - 1 )  

£ " ( 3 , 3 )  =  ( 0 , 0 , 2 , - 2 )  

£ " ( 4 , 2 )  =  ( 0 ,1 ,0 , - 1 )

each with probability (Dl.ld)

and, for £')=£v(2,4)=£% 2), with probability p(2,41 i,;)+p(4,21 using (4.3.1b)
and the fact that k {i,j)  + k(j,f)= l. Thus,

£ ’2 = £ ^ '= ( - 1,0 ,0 ,1)

£'̂  = £ 1̂ = ( - 1,1,0 ,0 ) 
£23 _ g32 = ( 0 ,0 , - 1,1) 

£24 = £42 = ( 0 ,0 ,0 ,0 ) 
£24 =£42^(0,0,0,0)

each with probability 1 . (D1.2)
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Note that, since each one-step transition on is of the formx->x-f e'̂ Ax, it follows from 

the above calculations that the corresponding state transition probabilities are independent of 
the custom k. Thus, the Markov process is independent of

Let e i= ( l ,0 ,0 ,-l),e2 = ( 0 ,l,0 ,-l), and 6 ^=(0,0,1,-1) be vectors in 91̂ , and let Ax=l/N . Then, 
forxe we may define the set of nearest neighbours ofx  in to be

M x )= {x± àxe^ I l < r < 3 ( D 1 . 3 )

Let intA  ̂be the interior of Â , and intü*^=intA^nQ^y .̂ Then, forxe intn*^, set

in t/^ x)= ^ x)n in t£ 2*  ̂ (D1.4)

Let ^A  ̂ be the boundary of Â  and dQ} ĵ^= <9Â nQ̂ yy. In order to prove Proposition A, it 
suffices to show that, for eachxe there are paths of finite length and positive probability in 

joining x to each point of \nlAix). From this it follows that there is a finite, positive 
probability path joining any two points in intQ^ ,̂ and that any point on eventually moves 
into int̂ l̂ yy.

Let x e  en the single step transition, x -> x  +  ey'(/',/)A x, occurs with probability 
p(T,y I ;j)f^.(x,Ax), where

1- Ax

is the without replacement probability of choosing players of classes i and j. We first show that, 
forxG intn*^,there is a finite sequence of single step transitions, each of positive probability, 
linking X tox± Axe ,̂ whenever this latter point is also in int[Q^ .̂ ]

Since x e  intn^^ ,̂ we have that x.>Ax for each i. Such points exist since N>4. Then, using 

(D1.2) and (Dl.lb), a possible path is

X—^^^x-Ax^i—^ ^ ^ x+ A xej (D1.5)

where — means that the transition is due to a game between players of classes i and j .
Here, the first transition occurs with positive probability CxiX2 , and the second with positive

probability ^C(x4 -f Ax)x4, where C=l/(1-Ax). Similarly, a possible path is

X—^^^x-Axei +  Ax6 2 —^^^x-Axej (D1.6)

with positive step probabilities CX1X4 and ^C(x2 + A x)x 2- The other nearest neighbour 

transitions may be effected as follows. Ifx4>2 Ax,

X - ^ X  +  àX62 (D1.7)
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with positive step probability If%2^2 A%,

X — ( D 1.8)

with positive step probability Also,

X———>x-Axe3 — (D1. 9)  

with positive step probabilities 0 X2X3 and ^C(x4 +Ax)x4 , and

X —^ ^ ^ x + Axe2'Axe3 —^^^x-Axe3 (D1 .1 0 )

with positive step probabilities 0 X3X4 and ^ 0 (x2 +Ax)x2 . Note that the assumption X4>2 Ax in

(D1.7) is without loss of generality. For, if X4<Ax, tbenx+A xe2r|otin intQ*^, so we don't

need to effect this transition. A similar remark applies to (Dl.B).
It remains to show that there is a finite, positive probability path from anyxe into 

intQ*^. To do this, first suppose that N>7. Then, ifx^=0, there is at least one for which 
x .̂>3Ax. Thus, we can effect a transition, ( j ,j)^ (r ,f)e  {(1,1),(2,4),(3,3),(4,2)}, with positive

probability ■^Ox .̂(x .̂-Ax). It follows that there is a positive probability transition after which x^

increases to x/>A x, x. decreases to x^.'^.-2Ax>Ax, and x^.^^ for or j .  Then x  can be 
moved into intQ^^ after at most 3 such transitions. In fact, by a careful consideration of the 

various possibilities, this result can also be shown to hold for Æ=4, 5 and 6 . We omit the 
laborious detatils. This completes the proof of Proposition A. #

P r o o f  o f  P ro p o s i t io n  4.6.1 Let Oe be the zero vector, and define vectors = e^ x  0, 
e®^=Ox e^e91^, for l<r<3, and f=(0,0,0,-l)x(0,0,0,l)e91^ Then any two points in the lattice 

.*:« ) ç-A? (-g^8 yg joined by a sequence of elementary transitions of the form

X  >x±Axe^  ̂ (D2.1a)
X  >x+Axe®̂  (D2.1b)

X  >x±Axf (D2.1c)

We first show that each of the transitions (D2.1) can be effected with positive probability 
whenever both x  and the terminal point lie in into{y"

Ifx= x^xxg e intnSî''’*''̂  thenx^.^^,x^.^\>Ax for each i. Hence, the transitions (D2.1a) 

can be effected by interactions with players who also use custom A, as in (D1.5)-(D1.10). 
Similarly for the transitions (D2.1b). Now suppose player-I has state (4,A) and player-II has state 
(4,B). Then, from (B1.6c), a transition ((4,A),(4,B))^((2,B),(4,B)) occurs with probability
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p(2,4;5,514,4;^5) = ^>-7 4 2 (1-^744)=  A. using the form (4.6.3) for 7 ..,. This is positive when 

>,>0. In the notation of (D2.1), this transition is

X > x'=x+ ^f+ âae^2-  (D2.2)

Now, since X(2 B) -  the transition (D1.8) may be performed on Xg' with positive 
probability. Composing this with (D2.2) then effects the transition Ax/with positive 
probability. The move x^ x-A xf may be constructed in a similar manner by considering the 
possible transitions ((4,A),(4,B) )-> ((4,A),(2,A) ).

Finally, ifxe  d then e i t h e r o r x g  has a zero component. But, as discussed for the
one custom case, provided /^= X  X|..^j>4Ax, all the components ofx^ may be made non-zero

I

by a sequence of positive probability interactions with players who also use custom A. These 
interactions leave Xg unaffected. Similarly for the components ofxg. If, on the other hand, /^ <  
4Ax, then /g> 4A x (because N>8), and there is at least one i for which x .̂ ^^>2Ax. We may 
therefore increase and decrease /g by Ax, without reducing any component ofXg to zero, via 

a transition of the form ((z^B),((B) )^((i\A), with probability

Z  P ('V ;A 5 |M ';5 ,^ )= 7^ {Y ii(l-^ i)+ Y i2 (l-^ 4 )+ Y i3 (l-^ 3 )+ Y i4 (l-^ 2 )>  
i'.r ^

(see B1.6c). With the form (4.6.3) for 7 ..,, this is positive for 0<X<1 and 0<T| < 1 . Thus, by a 
finite sequence of such maneuvers, we may ensure that both and /g> 4Ax.

We have now shown that any point in may be joined to any point in intflijj''’*"̂  by a

finite, positive probability path. This proves Proposition 4.6.1. #

D3. Pr o o f  o f  Pr o p o s it io n  4.7.1 Represent a point x e  as a product,
x =  with x^e 91"̂  the state vector for custom k. Here, k runs over the full set of the 64

k
possible customs. Denote by ê ê vector with components x^,=0 for k'yik, and x^=e^.
Also, for a pair of customs, (kje'), with W ,  denote by f  the vector with components

(0 ,0 ,0 ,-l);m  = k
(0 ,0 ,0 ,iy ,m =k' (D3.1)

0  otherwise

Then, since f ^  any two points in the lattice may be joined by a sequence of 

elementary transitions of the form

X  >x±Axe^  ̂ (D3.2a)
X  >x-f Axf^*’*’̂  (D3.2b)
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for which k' differs from  ̂by a single local modification of the form (19). We first show that each 
of the transitions (D3.2) can be effected with positive probability whenever both x  and the 
terminal point lie in ïniÇl .̂

Ifjjce intO^, thenx^.^^>Ax for each (i,k). Hence, the transitions (D3.2a) can be effected by 

interactions with players who also use custom as in (D1.5)-(D1.10).
For (D3.2b), suppose that^'= for some i < j  (see (C1.2)), and set a = k { i , j ) .  Consider a 

transition {{i,k'),Q,k))-^((i\k'),ff,k')). By (C1.4c), (C1.10a2) and (C1.5b), a transition of this form 

occurs with probability

P (^ -^ ')= %  p ( / ' . / ; l - a ,a |  /,;;l-a,l-a);i{(l-a)(l-Y,i)[l-X(l-Yji)] +a(l-Yi3)[l-2i(l-Yj3)]
i’.r

Here, ae  {0,1} and ( i j ) g  {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}. Using the form (4.6.3) for 
Y„., one easily checks that P (k ^  k') is non-zero in all these cases, provided 0<A,, T) <  1. Such a 

positive probability transition results in a state change of the form

X----- >.%'=%4-  ̂+  {l-a)Ax(2e‘‘\-e^\) +  aAx  ) (D3.3)

(note that i<3). Providing x \ .e  intQ^'^ (e.g. if ,̂^>2Ax) we may compose (D3.3) with

transitions of the form (D3.2a) to effect (D3.2b) with positive probability. On the other hand, if 
x̂ ,' has a zero component, then, providing /^,= ^  x _ {  (j, '̂) }>4Ax , we may connect this point

j
to any interior point by a positive probability path, as in the one custom case, without affecting 
any of the other components of x. In particular, we may connect x' to the interior point 

x-t-Axf
It remains to show that we can arrange for any point x e  to satisfy lj> iA x  for each k. 

Suppose /^,< 4Ax for some k \  Then, since N>2%, there exists such that l^>  4Ax. We 
may then choose a sequence, k=kQ-^ ^q.]^  such that k. is obtained from k._j
by a single local modification. Furthermore, we may assume that /*, =4A x  for l< i< q .  For, if 

/ j .  < 4 Ax , we may take k'=k. and if k .> iA x , we may take k=k.. It suffices to show therefore,

that if is obtained from  ̂ by a single local modification, then there is a positive probability 
transition having the effect /^->/^-Ax and Ax.

Suppose that)^'= with i< j.  We may assume that x .̂ and x^^^ \̂>Ax. For, if not, then 
/^>4Ax means that, as described for the one custom case, a preliminary shuffling amongst the 
components of x^ can effect this with positive probability, while leaving the other components 

ofx unchanged. We now consider a transition of the form ). By (Cl.4c),

(Cl.lObl) and (C1.5a), such a transition occurs with probability

P(^-> k) =  X  P ( I  i j ‘;a ,l-a)
i'.r

= X {  (1-a) (l-lYi2)ïi4+ a ( l - ^ 4 )  Yjz}
= ocA.Yj2
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using the form (4.6.3) for y..,. This is non-zero provided X, T |>0 and a - k { i , j )  =  \. Similarly for 

transitions of the form {(i,k),(],k) )->  ((i',^'),(j',^) ), we have, from (Cl.4b), (C1.10b4) and 

(C1.5a),

P(^->^') = S  p ( i ', / ; l - o t , l - a l  i j ; a , l - a )
i'J'

= X{ (l-a)7i2(l-^4) +  ayj4(l-^2) >

= ( l-a ) ^ 2

which is non-zero provided 1, T|>0 and a=0.  We have therefore completed the proof of 

Proposition 4.7.1.#
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