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Abstract

The requirement for efficient second order nonlinear optical materials which are easy to 

produce and form into devices is paramount for the successful application of nonlinear optics to optical 

data storage and signal processing. Mature technologies such as lithium niobate are making some 

progress, but the immense potential of organic materials cannot be ignored. The combination of 

molecular engineering and computer modelling can control many parameters including absorption 

bands, dipole moments and conformation of the molecules, to tailor their properties to the specific 

application.

The self assembling nature of liquid crystal materials has been suggested to offer several 

potential benefits for the engineering of useful bulk materials for nonlinear optical applications. This 

thesis describes the investigation and exploitation of self assembled systems, both in monomeric and 

polymeric form, for such applications, and critically assesses the benefits and drawbacks of these 

materials. Two cases have been studied in detail. The first is the use of poled nematic liquid crystal 

side chain polymers for use in electro-optic and second harmonic generation applications. The second 

is an investigation into the inherent non-centrosymmetry of chiral smectic C liquid crystals.

The potential advantages of using poled liquid crystal side chain polymers over amorphous 

polymers are a five times theoretical improvement in the nonlinear coefficient and improved 

orientational stability to increase device lifetimes. In practice the improvement in the nonlinear 

coefficient was found not significant, and cross-linking the polymer whilst being poled offers even 

greater stability, even at elevated temperatures. A simple experiment was developed to monitor the 

electro-optic coefficient of the polymer as the material was poled. The form of the response gave 

insight into the reorientation mechanisms both in poling and relaxing after the poling field had been 

removed.

Ferroelectric liquid crystals can form a noncentrosymmetric symmetry if their helix can be 

suppressed using surface alignments and/or electric fields. The second order nonlinear coefficients of 

these materials have been measured using second harmonic generation (SHG). Commercial materials 

had relatively small coefficients, but molecular engineering has developed new materials with 

improved nonlinear coefficients by over one order of magnitude, and is continuing to improve. A 

standard material was used to investigate a number of potential device alignment configurations. SHG 

was also used to measure liquid crystal material parameters for application in display technologies.
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1 Introduction.

The increasing amount of information which is transferred from person to person, or computer 

to computer via a communications network has stretched electronics to its limits. The use of digital 

technology to send audio and video information is increasingly becoming limited by the bandwidth of 

the electrical networks which carry the information, typically 10^ Hz maximum. As an example, the 

new high definition TV (HDTV) systems based upon images composed of more than 10^ pixels with 

colour and grey scale approach this limit with a single channel of information. The need for a new 

communications media has driven developments in optical fîbre technology to meet such requirements. 

Success in developing ultra-low loss optical fibres together with compact and efficient light sources 

and detectors has resulted in rapid application of this new technology.

Optical communication systems offer several advantages over electronic systems. The high 

frequency of light radiation offers a potential carrier bandwidth of greater than 10^^ Hz. This increases 

the network capacity by several orders of magnitude, giving spare capacity for future requirements. 

The low losses achieved in optical fibres has surpassed electrical cables and even coaxial cable, 

allowing larger distances between source and detection, with fewer amplification stages. Their 

robustness and immunity from atmospheric and electrical interference has reduced maintenance, 

making them very competitive in cost to alternative technologies. More recent developments such as 

soliton propagation over huge distances and wavelength multiplexing to increase capacity mean that 

optical communication systems will continue to develop in the future.

Simple passive optical devices such as Y splitters have been fabricated in optical fibres and 

waveguides. However, there is a requirement for discrete, active optical elements for efficient optical 

switching and modulation. These devices include amplitude, polarisation and phase modulators, active 

optical routing, polarisation control and frequency shifting. The materials used in these devices require 

efficient nonlinear optical properties which can modify the temporal and spatial properties of the light 

at very high speeds using electrical or optical control. Nonlinear optical materials offer a number of 

properties which can enhance the capability of both optical communication systems and data storage 

devices. Materials currently available to produce these devices are inadequate in several respects, 

including: voltage of operation, bandwidth, insertion losses, cost and processability. An ideal 

specification is shown in table 1.1. One of the most successful materials used to date is the inorganic 

crystal lithium niobate (LiNbOg) [Donaldson, (1991)]. Despite much development, it is still far from 

ideal for large scale exploitation of opto-electronics, which is clearly demonstrated by its limited 

applications.

This thesis will address the development and assessment of materials for two applications: 

electro-optic modulation, and second harmonic generation devices. These two applications can have 

quite different material requirements for optimum device performance. Electro-optical modulators are 

useful for a wide range of applications: they are required in waveguide geometries for communication 

systems, and are also needed in large configurations as fast shutters. These may modulate light



emerging from lasers, or provide ways of gating radiation incident on detectors. If the shutter is 

subdivided into pixels, then the device forms a spatial light modulator for use in parallel optical signal 

processing.

Nonlinear coefficient magnitude: > 50 pm V ^

< IVcm

Modulation bandwidth: > 100 GHz 

Propagation loss: < 0.2 dBcm"^

Unit cost: < £100

Compatible with other optical materials 

Chemical and temperature stability 

Low dielectric and optical coefficients

Table 1.1

An optical modulator is a simple way of superimposing information onto the light to be 

carried to the detector. Information may be carried in a light wave as amplitude, frequency or phase 

modulation. Modulators can be used in a range of device geometries, although the most common is 

optical waveguides for communications systems. It is desirable to carry out signal routing and 

processing whilst the information is in its optical form, thus removing the requirement to convert the 

optical signal to an electrical form and then back again. This would allow the optical system to be used 

to its full potential. Electrical signal routing and processing is becoming the slow link in modem 

communication systems due to the bandwidth limitation of electronic devices (a few GHz). Using 

optical signal processing devices, all-optical communication systems may offer increased bandwidth 

capabilities, lower power consumption and higher signal interference immunity. At present such 

devices are controlled electrically, however direct optical control may be needed in the future. 

Controlling light with light requires a new class of nonlinear material with large third order nonlinear 

effects [Shen, (1984)]. Such devices would remove the need for electronic control and its associated 

limitations, and allow the optical system to work at its full potential. However, this thesis will be 

limited to second order nonlinear optical effects and devices, and their application to current problems 

and requirements.

The second property of nonlinear optical materials was studied is that of frequency doubling, 

or second harmonic generation (SHG). Nonlinear optical processes within the material can be used to 

convert light to different frequencies. The most efficient conversion is to a wavelength half of the value 

of the incident light, with conversion efficiencies over 80% having been demonstrated [Ou et al., 

(1992)] in the laboratory. The inorganic material potassium dihydrogen phosphate (KDP) is often used 

in commercial devices with efficiencies of about 30%. This material has many problems including the



fact that it is hydroscopic, and so degrades when exposed to any form of humidity, and is very difficult 

to grow and polish in high quality. Consequently it is expensive.

There are several applications for devices which change the wavelength of light. The first is to 

obtain small and efficient laser sources in the blue and green region of the visible spectrum. 

Efficiencies greater than 30% are required with materials which are cheap, stable and easy to produce. 

This would enhance the very large market of optical data storage (e.g. compact disks), which has a 

limit to the density of information which can be stored which is related to the size of the spot which the 

reading (and writing) laser beam can be focused. Since the size of the focused spot of light is 

proportional to the wavelength of light, halving the wavelength would allow up to four times the 

information to be stored on the same size disk. Such frequency doubling devices would need to 

compliment semiconductor lasers in terms of size, cost and optical power requirements, for example a 

device would be mm^ in size, cost less than £100 and only require lO’s of mW of optical power for 

efficient conversion. This goal is the primary motivation for many electronics companies to research 

into nonlinear optics, as existing commercial materials do not meet this specification.

Second harmonic generation is not the only frequency shift which can be achieved, as optical 

parametric oscillators (OPO's) can shift radiation to shorter wavelengths (e.g. far IR to near IR) and 

provide tunability of laser radiation over a wide wavelength range e.g. from 0.65 to 3.0 pm [Milomi & 

Eberly, (1988)] using a combination of temperature tuning of the crystal and different pump 

wavelengths. Nonlinear optical devices can produce sources of laser radiation at wavelengths where no 

known lasers operate. These have applications in many fields of research, particularly spectroscopy. 

Replacement of delicate dye lasers with solid state lasers may take tuneable lasers out of research 

laboratories and into commercial applications.

There are many other applications for nonlinear optical materials: optical logic devices for 

optical computing, optical information storage, optical limiters and tuneable filters. Many of these can 

be fulfilled by present nonlinear optical materials, although better materials would be desirable. 

However, there are applications such as dynamic holography to produce 3-d displays which need better 

materials before such devices can be developed. Second harmonic generation has also potential as a 

selective optical probe to measure material and device properties. This has initially been reported in 

the field of liquid crystals [Shen, (1984)], but may also have application in other fields. There will be, 

of course, many other applications which have yet to emerge from this rapidly expanding field of 

nonlinear optics.

1.1 Nonlinear Optical Materials.

New materials are required which are simple and cheap to produce and process into devices, 

have large nonlinear coefficients, and low optical losses. These problems are common to almost all 

crystalline optical materials. There is considerable interest in developing new classes of materials, e.g.



polymers, for nonlinear optical applications which will allow simplified device preparation and 

improve the performance, resulting in more versatile devices and lower operating voltages.

The inorganic crystal lithium niobate has already been discussed as the benchmark for electro­

optic applications. The material has been developed over many years, and has been used successfully 

to produce modulators and waveguide devices. It has an electro-optic coefficient rgg = 30.8 pm V ^, or 

more significantly, requires a voltage of approximately 1 kV to induce a n  phase delay. Much of the 

development work in this material has involved research into the crystal growth to reduce the time and 

cost involved in producing crystals of the required optical quality. However, this material is still 

inadequate for large scale implementation of optical signal processing, due to the difficulty and 

expense of growing and polishing crystalline materials, and its moderate nonlinear coefficients.

An alternative inorganic crystalline material for nonlinear optics is based upon the material 

gallium arsenide (GaAs) [Dorn et al., (1992)]. The principal attraction of this material is that a 

complete optical system can be defined within one material - the semiconductor laser source, 

waveguides, electro-optic modulators, and photo detectors. The processing technology is available, as 

are large high quality crystals, and there would be few additional processing steps to produce such an 

'optical chip'. However, this system would operate at wavelengths of approximately 0.8 pm, and so is 

unsuitable for application in telecommunication systems, which centre on wavelengths of 1.3 and 1.5 

pm for minimum optical fibre losses. Other limitations of this material are that it has a relatively low 

nonlinear coefficient, and the proximity of a large absorption band close to the operating wavelength 

results in high optical losses for such a system.

Organic materials are also promising materials for successful exploitation of nonlinear optics. 

Molecular engineering has resulted in molecules with very large molecular nonlinear coefficients 

(hyperpolarisabilities) [Tweig et al, (1983)]. This has been achieved using the highly delocalised n  

electron systems found particularly with carbon-carbon double bonds and benzene ring structures, and 

has lead to enhancement of the nonlinear optical coefficients compared to inorganic crystals such as 

lithium niobate. These molecules have been developed into bulk nonlinear optical materials as both 

crystals and polymers. Organic crystals have exhibited very large nonlinear coefficients [Beirlein, 

(1990)], but are difficult to grow and process, and it can be difficult to predict which crystal structure 

they will adopt. Many crystal symmetries obey inversion symmetry and do not exhibit bulk second 

order nonlinear optical effects. The simplicity of processing and flexibility in molecular design has 

made polymeric materials very attractive for nonlinear optics. There are a number of additional 

benefits of organic systems which include:

i. limited tuning of refractive indices through established molecular engineering processes.

ii. potential ease of fabrication using polymeric materials in place of large crystals.

iii. compatibility with both semiconductor materials and glass optical fibres.

In combination these benefits are beginning to challenge the established inorganic materials such as 

lithium niobate in waveguide applications. However, despite their great potential, there are still many 

problems with organic materials which have to be solved before these materials will become widely



available for applications, including improved efOciency, reducing optical losses, and cost A 

particular problem associated with polymeric materials is the requirement to induce the required 

noncentrosymmetry by poling. This induced order slowly relaxes over a period of days or months, 

reducing the induced nonlinear coefficient and the overall efficiency of potential devices. This problem 

may be overcome by the natural self ordering ability of liquid crystal materials, and will be 

investigated in this study.

1.2 Liquid Crystal M aterials and Devices.

Liquid crystal devices are probably the most successful type of electro-optic device yet 

developed. Here, the nonlinear effect originates in the reorientation of molecules in response to applied 

electric fields. The optical effect is very large - a phase delay of n  radians can be induced with less 

than 5 volts. However, the effects are relatively slow, with an upper bandwidth limit of approximately 

10^ Hz, and so have limited use in optical communications systems. They have, however, found great 

success as low power, light weight, low cost displays and shutters for low complexity applications such 

as calculators and watches, and are now being developed for complex i.e. video and computer displays. 

They are also one of the most promising technologies for spatial light modulators for optical signal 

processing applications. Technically, they are not nonlinear optical materials in the same sense as 

lithium niobate, although they can exhibit a refractive index which is dependent on an applied electric 

or magnetic field. This is due to the molecules reorienting themselves in response to the applied field 

as opposed to electrons or ions being polarised within the material.

Liquid crystal materials are anisotropic materials which exhibit a combination of liquid and 

crystalline properties. Materials which form these phases generally comprise of long thin rod-shaped 

molecules (mesogens), which as they are cooled may spontaneously condense into one, two or three 

dimensionally ordered systems, reducing the degree of disorder in each case. It is envisaged that these 

materials may have beneficial properties in the field of nonlinear optics, based upon two points. The 

first is the high level of understanding and control in molecular engineering of such anisotropic 

molecules, and the second is their ability to spontaneously form well-ordered bulk materials without 

the need for growing crystalline materials. The asymmetric nature of the nonlinear optical molecules is 

very similar to that of liquid crystal molecules, suggesting that the combination of large nonlinear 

coefficients and liquid crystallinity is achievable in the same molecules. In addition, some of the liquid 

crystal molecules spontaneously form noncentrosymmetric alignments, particularly the chiral smectic 

C phase, thus achieving the requirement of noncentrosymmetry in liquid crystal materials for second 

order nonlinear optics.

The simplest phase is the nematic phase, where on average molecules order along a single axis 

called the director n, as shown in figure 1.1a. This phase is symmetric because molecules have no 

preference as to which way they align - up or down. The molecular co-ordinate system used to describe



Figure 1.1a Nem atic phase

î”

Figure 1.1b Smectic A phase, Sj\.

î

Smectic layer

Figure 1.1c Smectic C phase, S( .̂

qt n

Smectic layer

Figure 1.1. Liquid Crystal Phases.



the nematic phase (x,y,z) is related to the laboratory frame (X ,Y2) by the Euler angles (^, t|, Q is 

shown in figure 1.2. An order parameter S describes the probability of the long axis of a molecule 

aligning with the director. This can be described as the statistical average of the Legendre polynomial 

P2

S = ( P j =  K (3 c o s '< ? - i )  1.1

where ^ is the angle between the long molecular axis and the director, and is averaged over all 

possible molecular directions.

Figure 1.2. The nematic co-ordinate system.

q»
To make an electro-optic device using nematic liquid crystal, a thin layer of nematic material 

is sandwiched between two sheets of glass, as shown in figure 1.3.

Glass ^bstrate A l i m ent layer Tran^p^ent conductor (ITO)

Spacer

Liquid Crystal

Figure 1.3 A typical liquid crystal cell structure.



A typical layer spacing of 2->10|im is achieved by using beads or fibre spacers of the required size in 

the adhesive seal. The alignment of the liquid crystal is obtained by treating the inner surfaces of the 

glass cell with a range of aligning layers. Homeotropic alignment layers such as chrome complex or 

lecithin induce the molecules to orient perpendicular to the cell, whereas rubbed polymers, for example 

polyimide, align the molecules with the director in the plane of the cell and parallel to the direction of 

the rub, as shown in figure 1.4.

Bi Si

>►

Figure 1.4 a, Homeotropic alignment b, Planar alignment.

The most common type of liquid crystal device is the twisted nematic, used in simple displays such as 

watches and calculators. In this device the rubbed polyimide layers are arranged perpendicularly to 

induce a 90® twist in the alignment structure. This twisted structure guides light so that it emerges with 

its polarisation rotated by 90® to the incident light. Application of a voltage destroys the twisted 

structure and the guiding is lost. When used between parallel or perpendicular polarisors with one 

polarisor aligned with the rubbing direction, this device forms an optical shutter with a response time 

of a few milliseconds (ms) and a drive voltage of a few volts. Its low cost, light weight and low power 

consumption have proved very successful for a wide range of display and optical shutter applications.

Some materials, when cooled below the nematic phase, exhibit a^um ber of smectic phases. 

These form layers of molecules as well as having axial ordering. The smectic A (Sa) phase is shown in 

figure 1.1b with a layer spacing dy .̂ Of more interest to nonlinear optics is the smectic C (Sc) phase 

shown in figure 1,1c where the director tends to tilt away from the layer normal. The tilted smectic C 

phase has twofold rotation symmetry about an axis perpendicular to the plane containing the director 

and the layer normal (C2  axis), and reflection symmetry in that same plane. This symmetry obeys 

inversion symmetry. However, the introduction of a chiral centre on the molecule removes the 

reflection in the mirror plane symmetry and as a consequence, permits the presence of a permanent 

transverse dipole moment along the C2  axis. This is able to sum, and so produce a spontaneous 

polarisation across the bulk material. The C2  axis of the molecule possesses noncentrosymmetry, and so 

may exhibit second order nonlinear effects. The symmetry requirements for second order nonlinear 

optics will be discussed in more detail in chapter 2. An example of a chiral molecule is shown in figure

1.5 and has four different groups attached to a carbqn atom.



NC y^Hzm+i

CH
Figure 1 5  A chiral molecule.

In a bulk material the chirality of the molecules encourages the molecules to pack in a  helical 

form, destroying the noncentrosymmetric symmetry, as shown in figure 1.6a. This can be overcome 

using strong surface alignments in thin films to pin the molecules at the surface and force the helix to 

unwind. Alternatively, an electric field can be used to align their permanent dipole moments and 

unwind the helix. Mixing molecules which have opposite twisting power, or introducing a second 

chiral centre into a molecule to counteract the twisting power, can also result in bulk materials with 

noncentrosym metric symmetry.

i-r-

Figure 1.6a. The chiral smectic C helical structure, b. an unwound ferroelectric smectic C

structure.



1.3 Polymers and Polymeric Liquid Crystals.

In the monomer form, liquid crystal materials have limited applications in devices due to the 

necessary requirement to contain them and maintain the molecular alignment. For nonlinear optical 

applications, once the material has been aligned then it will not be re-oriented, and so could be locked 

in place. One way of achieving this is to cool the material further into a crystalline phase, or 

alternatively a polymeric form of the material could be used. Polymeric materials offer similar 

advantages to liquid crystals in that they can be composed of asymmetric mesogenic units with control 

of the chemical structure by established molecular engineering techniques, and that also these 

mesogenic groups can spontaneously form aligned phases. They offer the additional benefits of being 

self supporting, easily processable, robust and low cost.

Polymeric materials are composed of long chains of identical molecular groups linked by 

flexible spacer chains. They can be classified by the way in which the molecular groups are organised. 

Main chain polymers, as shown in figure 1.7a, are of lesser interest to second order nonlinear optics 

because the repeat units are very difficult to align into the required noncentrosymmetric configuration. 

However, the processing technique of extrusion can be used to align main chain polymers into 

structures giving anisotropic thermal and mechanical properties.

Figure 1.7 a. Main Chain Polymer b. Side Chain Polymer

Side chain polymers have groups attached to a backbone as pendants, as shown in figure 1.7b. 

If these side chain groups have dielectric anisotropy and are coupled to the backbone via a flexible 

spacer group (commonly a CH2  chain of 3 to 15 units), then they can be relatively easy to align using 

electric or magnetic fields [Finklemann, (1979)].

Liquid crystalline mesogenic groups can be linked together to form liquid crystal polymers, 

both as main chain and side chain structures. In a side chain liquid crystal polymer the mesogenic side 

groups are linked to a polymer backbone such as poly-methylmethacrylate (PMMA). If these groups 

are sufficiently decoupled from the backbone then the polymer material can exhibit liquid crystalline 

properties such as nematic and smectic phases between their glass phase and liquid phase. Other

10



functional side chain groups, for example nonlinear optical molecules, can be linked onto the polymer 

backbone to produce a copolymer.

Polymeric materials exhibit a plastic phase between the liquid and glass phase. In this phase, 

the polymer retains much of its mechanical integrity, but it is able to permanently deform due to a 

finite viscosity. When the temperature is lowered the material undergoes a second order phase 

transition into the glass phase, freezing in the structure of the polymer at the transition temperature Tg. 

Therefore below Tg the molecular ordering is no longer in thermal equilibrium with its surroundings.

Non-centrosymmetric ordering can be induced by applying a large dc. electric field to a side 

chain polymer containing nonlinear optical molecules, a technique called poling. The relative merits of 

this technique will be discussed in detail in chapters 2 and 3. The poling Held is applied at or above the 

glass transition temperature of the polymer, using the positive dielectric anisotropy to force the side 

groups to reorient. The induced structure is locked in by cooling the polymer below the glass transition 

temperature of the polymer whilst the field is applied. At temperatures well below Tg where 

reorientation by thermal fluctuations is reduced to almost zero, the field can be removed. The induced 

order is frozen into the structure, but a slow relaxation is still present, which limits the lifetimes of 

devices made using this technique. Much work has been carried out to improve the lifetime of the 

induced ordering after the poling field has been removed. This has been achieved by raising the glass 

transition temperature or crosslinking, both with detrimental effects on the induced ordering.

1.4 Overview of the Dissertion.

There has been a great deal of interest in developing materials with improved nonlinear 

properties to meet the requirements of optical communication systems and optical information 

processing. It is believed that materials which naturally occur with some degree of order, and yet 

potentially offer the ease of fabrication of polymeric materials will have several advantages over 

existing inorganic and organic crystalline nonlinear optic materials. The aim of this study is to 

investigate the second order nonlinear optical properties of liquid crystal materials, and to find out 

whether the use of materials which exhibit self assembly can improve the efficiency of nonlinear 

optical devices.

The study has been separated into four parts. Chapter 2 reviews the origin of nonlinear optical 

effects in organic materials, with particular detail of poled polymeric materials. Nonlinear optical 

effects, and some of the more important devices which can be constructed from these materials are 

then summarised, with particular emphasis on identifying useful figures of merit by which different 

materials can be compared. A detailed comparison of different classes of nonlinear optical materials is 

presented with discussions of other device related parameters such as optical damage thresholds and 

losses, as well as ease of fabrication and potential costs.

11



Two alternative approaches to develop improved nonlinear optical materials may be 

considered and were investigated in this project. The first is described in chapter 3, and is the use of 

polymers, which can be designed to exhibit large nonlinear optical properties. The required ordering is 

induced by applying large electric fields to reorient the molecules. The presence of underlying liquid 

crystal phases was intended to give the benefits of high nematic order parameters without the problems 

of scatter usually associated with liquid crystal polymers. A study of the poling process was carried out 

using a simple electro-optic experiment which permitted electro-optic measurements in-situ as the 

poling occurred. The mechanisms of these reorientation processes have been investigated and are 

described together with possible methods of improving the poling process.

The second alternative is to utilise smectic liquid crystal materials, some of which are known 

to form phases with the required noncentrosymmetry for second order nonlinear optical effects. 

Chapter 4 describes this work, and the development of an experiment to measure the second harmonic 

generation efficiency of these materials. Although naturally possessing the required symmetry, early 

ferroelectric liquid crystal materials exhibited very small nonlinear coefficients due to the small 

transverse hyperpolarisability which contribute to the bulk coefficients. An investigation of the SHG 

from a commercial ferroelectric liquid crystal mixture was carried out and its measured coefficients 

compared to that derived from molecular modelling and bulk theory. New liquid crystal molecules 

with enhanced nonlinear coefficients were developed using molecular engineering techniques, and 

their coefficients measured. A review of the success of these materials in comparison to other nonlinear 

materials is discussed.

Chapter 5 describes the use of SHG as a probe into ferroelectric liquid crystal materials and 

devices. Several research groups have used SHG to investigate molecular alignment of liquid crystal 

monolayers on substrates treated with surfactants. However, this work describes a number of 

experiments which probe the bulk liquid crystal material to measure material parameters such as elastic 

constants and refractive indices, and analyse bulk alignment structures.
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2. Nonlinear Optical Materials for Electro-Optic Devices.

The exploitation of nonlinear optics to produce devices to control light requires materials with 

highly specific properties and devices which can be easily fabricated from these materials. In this chapter a 

review of the general theory of non-linear optics will be described, showing how the theory can be 

developed to describe the electro-optic effect and second harmonic generation. The origin of nonlinear 

effects in molecules will be discussed, and how these effects can be translated into bulk materials. These 

two topics in themselves are very large and rapidly growing fields, and there are many detailed texts and so 

it would not be appropriate to reproduce them here.

A range of electro-optic device geometries will be discussed which will highlight the important 

material figures of merit for the performance of these devices. These can be used to judge the material’s 

potential for electro-optic and frequency conversion devices. A critical review of self assembled materials 

in comparison with alternate technologies will be presented, with particular reference to the established 

lithium niobate technology, ending with a discussion of the problems and likely future of liquid crystals in 

both monomer and polymer form.

2.1 Theory of Nonlinear Optics.

When an electromagnetic wave propagates in a medium, the electric field vector E  induces a 

polarisation P in the medium

P.= e. X ifii 2.1

where Eq is the dielectric constant and Xij is the tensor form of the susceptibility of the material. i,j = x,y,z 

and there is an implied sum over j. The refractive indices n of the material can then be found from

n ^ = e „ = ( l + X y )  2 .2

where Eÿ is the component of the dielectric tensor. If the material is isotropic, then £ÿ can be reduced to a 

single term £. However if the material is anisotropic in any way £jj has unequal components, resulting in 

birefringence.

When the applied field becomes sufficiently large that it can significantly perturb the atomic 

electric field (10^®-10^^ Vm‘^) [Zyss & Chelma, (1987)] then equations 2.1 and 2.2 are no longer valid. 

Anharmonic distortions of the induced polarisation on the electric field become important and so the 

induced polarisation P can be rewritten as

~  (%ÿ^ j  ' ^ X i j k ^  k X i j k i ^  k ^  I 2.3

where % jjî  etc. are the nonlinear susceptibilities. This also modifies the refractive indices
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« =  ( l  +  Xi,+X ÿ»Ê»+••••) 2.4

SO that the refractive index is now dependent on the applied field.

The presence of inversion symmetry can have large implications on the induced polarisation P. 

Neumann's Principle states that

" The symmetry elements o f  any physical property o f a crystal must include 

the symmetry elements o f the point group o f  the crystal. "

where the point group of a crystal is the group of macroscopic symmetry elements that its structure 

possesses. Therefore if a crystal (or any material) has inversion symmetry, then any property of that crystal 

must also obey inversion symmetry. Consider equation 2.3, the expansion of the induced polarisation in 

terms of the electric field. Applying an inversion symmetry operator I  to the equation

Noting that /(P/) = -Py and similarly for any vector then

~ ô(Xij ĵ~ Xijk̂ j k̂ —  ) •

It can be seen that the second term involving Xjjk is not invariant under inversion symmetry and 

so must equal zero for centrosymmetric materials. In order to take advantage of this second order non­

linear component it is essential that the material lack a centre of inversion.

In non-centrosymmetric materials, there can be a significant contribution to the induced dipole Pj 

from the second term in the expansion of equation 2.3. This term can be considered as a mixing of the two 

applied electric fields, Ej and Ej .̂ If these fields with frequencies ©j and © 2  respectively are incident on 

the material with the form

Ej.k =  K  R e[ex p i(« ,,2 < -* i,2 -()] 

then the induced non-linear polarisation will exhibit a frequency dependence

P!"-{co) = P"‘- Re[expi((»i ± « 2)']-
In the situation where ©j = © 2  then the non-linear polarisation would oscillate at a frequency 2©j. This 

induced polarisation would then re-radiate light at the new frequency, resulting in frequency doubling or 

second harmonic generation. However, if only one of the applied electric fields originated from a photon at 

frequency ©, and the other was a d.c. electric field applied to the material (©=0 ), then the induced non­

linear polarisation would oscillate at the frequency ©, with some phase delay. This is the principle of the 

electro-optic effect, where an applied electric field modulates the refractive index of the material, resulting 

in a phase modulation of the transmitted light.
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2.2 Nonlinear Optics a t a M olecular Level.

In organic systems, it is the nonlinear optical response of the individual molecules which causes 

the macroscopically observed optical nonlinearity. The induced polarisation of a molecule p  due to the 

presence of an electric field E is

p  = p ^ +  o E + p E ^ +  yE^ . . . .  2.5

where po is the permanent dipole of the molecule, a  is the polarisability and p, y , ... are the second-, third-, 

and higher order molecular hyperpolarisability tensors. This equation can be compared directly with 

equation 2.3.

The polarisability of molecules is dominated by the bond-forming electrons in the molecule. The 

bond-forming electrons in carbon atoms lie in 2s and 2p orbitals. These electrons can form hybrid orbitals 

when bonding with adjacent atoms. Carbon atoms which form four sp^ hybridised orbitals have all their 

bond forming electrons tied into tetrahedral a  bonds, resulting in a saturated structure. In the case of a 

double bond the carbon atom exhibits sp^ hybridisation resulting in three planar a  bonds, and leaving one 

lone electron in a relatively distant p orbital. Because this electron is very distant from the nucleus, it is 

extremely polarisable. In the case of a carbon-carbon double bond two p orbitals overlap resulting in a 

weak n  bond. The two electrons become delocalised and therefore polarisable over the length of the n 

bond. In molecular structures which have repeated multiple bonds such as benzene, the n  electrons are 

delocalised over the length of the unsaturated region, and the structure is described as conjugated. The 

delocalised electron system makes n  electrons highly polarisable, resulting also in large nonlinear 

polarisabilities.

Symmetry considerations require that the molecule must exhibit non-centrosymmetry to permit 

second order nonlinear polarisations (P). This requires the electron wave function of the molecule to be 

asymmetric. A suitable distortion of the n  electron system can be achieved by substituting polar groups 

into the conjugated system. The effect can be increased by substituting electron donating and electron 

accepting groups at either end of the molecule, linked by a conjugated system of electrons - the 'push-pull' 

system. This enhances the asymmetric interaction of the electron cloud distribution with the electric field 

resulting in a large second order hyperpolarisability B. Examples of these molecules are shown in figure 

2.1, together with their hyperpolarisability. The nitro (NO2 ) group is one of the strongest acceptor groups 

used, and amino (NH2 ) or dimethyl amino (N(CHg)2 ) groups are highly electron donating groups. A 

typical example of the push-pull arrangement is the DANS molecule where the nitrogen atom in the amino 

group is electron donating and the nitrogen atom in the nitro group is electron accepting.

The n  electron system exhibits a low energy excitation Molecular hyperpolarisability P

can be described as two components, P^j and P ^ jj, where P̂ .̂  is the contribution from the strong charge
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Figure 2.1 Nonlinear optical molecules.

transfer transition between the ground state tc electron distribution and the first excited state tc*, and p^dd 

is the contribution from all other molecular excitations.

The absorption band due to the 7C->7t* transition is in the near u^ or blue region of the optical 

spectrum. Extending the conjugation length and strength of donor and acceptor groups increases p, but also 

reduces the energy of the transition, increasing absorption to longer wavelengths in the visible spectrum.

The molecular hyperpolarisability can be calculated from two different principles. The derivative 

method expands the energy or molecular dipole moment in terms of a power series, as has been described 

earlier, and then calculates derivatives of this expansion. Consider equation 2.5, and differentiating it with 

respect to the applied electric field gives

— CC +  1 P E  +  3 ‘}E ^  + . . .
dE ^  

and differentiating again gives
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^  = 2 P  + 6 y E + .. . .

Thus the second order polarisability p can be found from the second derivative of the induced polarisation 

(or dipole moment) when E=0. This calculation can be carried out using ab initio or semi-emperical 

techniques, and produces values for p in the low frequency limit Prasad & Williams (1991) describe 

a useful summary of the different modelling methods.

Computer modelling of molecules for this thesis used the semi-empirical MOPAC suite of 

programs using the MNDO (Modified Neglect of Diatomic Overlap) method. This calculation considers 

only the valence electrons of the molecule and takes into account the differential overlap of electron 

orbitals, with the exception of orbitals centred on different atoms. The value of p calculated by this method 

is in atomic units (AU) which can be converted to S.I. where lAU = 3.206 x 10"^^ C^m^J'^. The units 

quoted in the literature are m ^V ^, which is actually P/Eq. For reference, non-S.I. units of esu for P can be 

converted to SI using Icm^esu"^ s  1.9 x 10'^ m"^V^.

The second method of calculating p is the sum over states method which calculates the effect of a 

perturbating electromagnetic field on the wave function of the electrons within the molecule. The result is 

expressions for the polarisability and hyperpolarisabilities in sums of dipole integrals over all excited states 

of the molecule. The dipolar integrals are of the form

When n=n’ then corresponds to the dipole moment of state n, and when n^n' this corresponds to the 

transition dipole moment between the two states. The number of states over which the summation is carried 

out is usually limited to a few molecular levels of the lowest energy, which artificially enhances the 

contribution of these states. In a simple two level quantum model, P^( can be described by the equation 

[Zyss, (1988)1

2 m

where the term F(W,tù ) describes the dispersion as is defined by

2.7

W and A[l are the difference in energy and dipole moment between the two levels, coj is the frequency of 

the electric fields, a n d /is  the oscillator strength of the transition.

The calculated values of P can be compared with experiment using the technique of Electric Field 

Induced Second Harmonic generation (EFISH). This technique uses a liquid or solution form of the 

materials whose molecules are aligned non-centrosymmetrically by the application of large dc electric
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fields to interact with the permanent dipole of the molecule. Pugh & Morley [1987] describe more 

experimental details about the EFISH technique.

2.3 From Molecules to Bulk Properties.

The macroscopic second order susceptibility is related to the molecular hyperpolarisability P

by

X)jK ( “ ^ 3  » ^ 1  » ̂ 2  )  ~  “̂  / /   ̂f j ^  ( “ ^ 3

where there is a summation over all molecules q within the unit cell, V is the volume of the unit cell,/®  are 

the local field factors and a/j are the direction cosines of the molecular frame of reference xyz with respect 

to the bulk material frame XYZ. The local field factors take into account the field experienced by a 

molecule is not necessarily equal to that applied to the bulk material. This may be a result of reorientation 

of polarisation and redistribution of space charge 'masking' the applied field. At optical frequencies the 

main effect is due to dipoles induced in the material by electronic polarisation. This can be described by 

the field factor [Zyss & Chelma (1987)]

//Û) =  1 i^io ~  1=1,2,3

where L j + L2  + L3 = 1. The components of L describe the shape of a small volume within which the 

molecule can rotate. The shape of the volume is determined by the form of the constituent molecule. For an 

isotropic liquid or cubic crystal, L j = L2  = L3 = 1/3, resulting in the familiar Lorentz field factor

fù ) _ ë  (cû) + 2
2.9

For a long cylindrical volume, L j = L2  = 1/2, and L3 = 0. This form is a good approximation for rod 

shaped liquid crystal molecules. In the low frequency limit, the applied electric fields can also reorient 

dipoles in the material, and so the local field factor for dc fields is described by the Onsanger correction 

factor

/" = e o ( f „ + 2 X 2 e „ + e „ ) .  2.10

In summary, the electric field applied to the material may be significantly different to the field 

inside the bulk material. These local field factors are well established in isotropic systems, and are 

adequate approximations in highly anisotropic and dynamic systems.
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2.4 Classes of Bulk Nonlinear Organic M aterials.

There are two independent requirements for a large bulk non-linear coeffîcient - a large 

hyperpolarisability and efficient ordering of the molecules in the bulk material. The condition of an 

absence of a centre of inversion must be fulfilled for each of the two criteria for second order nonlinear 

optical materials. The molecular asymmetry results in a large molecular dipole transition between ground 

and excited states, and the bulk noncentrosymmetry allows the molecular dipole (ground state and/or 

excited state) to combine constructively.

Organic molecules can be assembled in many different physical forms to show bulk optical 

nonlinearities. The only necessary requirement to exhibit second order effects is that the material does not 

posses inversion symmetry. Inherently non-centrosymmetric bulk materials include some crystals, 

ferroelectric liquid crystals and some Langmuir Blodgett films. It is also possible to induce or engineer the 

required symmetry in centrosymmetric materials. This has been most commonly achieved by applying 

large dc electric fields to liquids and polymers to force dipoles to reorient parallel to the applied field. The 

advantages and drawbacks of this poling technique will be discussed later in this section.

2.4.1 Organic Crystals.

Organic crystals have been grown and exhibit some of the highest bulk non-linear effects seen to 

date [Bierlein e tal, (1990)]. Predicting the crystal group from a molecular structure is virtually impossible, 

and of the 32 possible crystalline classes only 21 meet the symmetry requirement Due to the polar nature 

of many molecules with large P, there is a natural tendency of these molecules to align anti parallel, and 

hence result in centrosymmetric crystals. There have been a number of molecules specifically designed or 

modified to grow non-centrosymmetric crystals. One of the earliest was probably the modification of para- 

nitroanaline (pNA) which has a large P but grows in centrosymmetric crystals to 2-methyl-4-nitroanaline 

(MNA), The inclusion of the methyl group into an asymmetric position w at sufficient to change the crystal

group to one which lacks inversion symmetry, whilst retaining the large p. An alternative technique uses

hydrogen bonding to hold adjacent molecules in the energetically unfavourable dipole alignment. There are 

several examples of this technique, one of the earliest is the molecule 2-(a-methylbenzylamino)-3,5- 

dinitropyridine (MBADNAP) [Tweig et al, (1982)], and probably one of the most successful is N-(4- 

nitrophenyl)-(L)-proIinol (NPP) [Zyss et al, (1984)].

It is important that the molecules lies at the correct angle within the unit cell to exploit the largest 

hyperpolarisabilities to produce efficient nlo materials. However, the difference in molecular organisation 

within the unit cell of allowable crystal point groups can have considerable effect. Midwinter and Warner 

[Midwinter & Warner, (1965)] published a table of calculated optimal effective phase-matched 

nonlinearities for second harmonic generation in all permissible crystal point groups. The highest
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efficiency comes from crystal groups 1,2 ^ , 2mm, with the d^ff equal to 2/3V3 (^ .3 8 )  of the largest djji^ 

coefficient The engineering of molecules for optimal crystal properties has been achieved with some 

effect, particularly with NPP where the molecule lies close to the optimum position for phase matching in 

second harmonic generation.

2.4.2 Side Chain Polymers and Poling.

Nonlinear optical molecular groups can be incorporated into polymeric materials to produce 

extremely versatile bulk nonlinear materials. Polymeric materials exhibit a plastic phase between the liquid 

and glass phase. In this phase, the polymer retains some of its mechanical integrity, but it is able to deform 

due to a finite viscosity. When the temperature is lowered the material undergoes a second order phase 

transition into the glass phase, drastically reducing the mobility of groups within the polymer at the glass 

transition temperature Tg. Below Tg the molecular ordering is no longer in thermal equilibrium with its 

surroundings.

Non-centrosymmeU*ic ordering can be induced by applying a large d.c. electric field to a polymer 

containing nonlinear optical molecules. When an electric field is applied to a system composed of 

asymmetric molecules, the molecules reorient to minimise their electrostatic energy. The energy associated 

with this dipole-field interaction will be at a minimum when the molecules align their net dipole in the 

direction of the applied electric field. In most cases nonlinear optical molecules have their net dipole 

parallel to the long axis of the molecule. In this case the molecules will align their long axis parallel to the 

applied electric field in an oomm symmetry, where it is assumed that the molecules are of a long cylindrical 

form such that there is an infinite rotational symmetry about the long axis of the molecule. Whilst a 

material is being poled, thermal disordering mechanisms are in competition with the alignment process. 

The system can be described using Boltzmann statistics, the important term being exp(-jiE/kT), where pE is 

the energy associated with the molecular dipole moment p coupling with tbg applied field E, and kT is the 

thermal energy associated with particles in a gas at temperature T. It should be noted that kT > pE even for 

very large field strengths. Some disordering processes can still occur below Tg and allow the induced order 

to relax, as will be described in more detail in chapter 3.

The earliest and simplest approach of incorporating nonlinear optical molecular groups into poled 

polymeric materials was to dissolve nonlinear optical materials into a side chain polymer [Havinga, 

(1979)]. The rod-shaped molecules follow the alignment of the rod-like side chains using a co-operative 

alignment interaction. There is often a material limit to the solubility of the nonlinear molecules in the 

polymer, typically less than 10%. The packing efficiency of the side chain groups is also reduced slightly, 

increasing the relaxation of the nonlinear molecules from their induced ordering. This results in low 

electro-optic coefficients and poor lifetimes of any device.
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A more successful method is where nonlinear molecules can be attached to the polymer backbone 

to form a copolymer. This increases the stability of the ordering within the polymer, permitting device 

lifetimes of the order of months to years. The number concentration of nonlinear molecules can also be 

increased up to 1 0 0 %, with a direct improvement in the bulk nonlinear optical properties.

If a nematic liquid crystal copolymer is used where up to 50% of the mesogenic groups are 

replaced by nonlinear molecules, the polymer may retain some nematic properties. This can have a twofold 

advantage - the side chains have intrinsic partial ordering, and through improved packing increase the 

number density of side chain groups. Appendix A describes the theoretical prediction of a potential Hvefold 

improvement in ordering due to the inclusion of nematic mesogens, and Amano [1990] described an 

experimentally measured enhancement of 1.6. Increasing the percentage of nonlinear groups to very large 

concentrations can result in the loss of the nematic phase (e.g. > 50 %).

2.4.3 Liquid Crystals.

Liquid crystal phases can exhibit bulk second order nonlinear optical effects. The lowest order 

phases, the nematic and smectic A phases, do not posses the correct inherent symmetry for second order 

effects, but can be poled in a similar manner to polymers using dc electric fields. However, there are liquid 

crystal phases which can exhibit inherent noncentrosymmetry - the chiral tilted smectic phases, Sq* and 

Sj*. Achiral molecules in the tilted smectic phases are forbidden from having any permanent dipole 

moment because of their molecular symmetry group. However, the introduction of a chiral centre on the 

molecule removes one of the symmetry operations (reflection in a mirror plane) and therefore permits the 

presence of a permanent transverse dipole moment which is able to produce a spontaneous polarisation (Pg) 

across the bulk material, as shown in figure 1 .6  earlier.

Within a bulk material the chirality of the molecules encourages the molecules to pack in a helical 

form, destroying the noncentrosymmetric symmetry. This can be overcome using strong surface alignments 

in thin films to pin the molecules at the surface and force the helix to unwind, as exploited in the surface 

stabilised ferroelectric liquid crystal (ssflc) display. Alternatively, as the molecules have a permanent 

transverse dipole moment then an electric field can be used to align their dipole moments and unwind the 

helix. Mixing molecules which have opposite twisting power, or introducing a second chiral centre into a 

molecule to counteract the twisting power, can also result in bulk materials with noncentrosymmetric 

symmetry [Kobayashi etal, (1993)].
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2.4.4 Langmuir Blodgett Films.

Langmuir Blodgett films are built up from individual monolayers of materials and deposited onto 

a substrate. The monolayer is formed by engineering molecules with a polar head group and long aliphatic 

tail, which float on water to form a thin layer. Compressing the layer results in the molecules standing up 

to form a well ordered monolayer with the polar head group at the water interface. This monolayer can 

then be transferred onto a substrate by carefully dipping the substrate through the monolayer. Repeated 

dipping results in additional bilayers being deposited. If only one material is used, the resultant structure is 

centrosymmetric as each molecular layer is inverted (Y-type). Alternately dipping two materials can result 

in structures where the inversion symmetry has been removed. The molecular order within the structure is 

very high, but is limited to geometries where the molecules are deposited normal (or close to the normal) to 

the substrate. As the number of layers is increased, the mechanical stability and order of the film decreases. 

The maximum number of layers deposited is approximately 3000, resulting in a layer about 1 pm thick but 

a film of this type would take many hours to produce [Ashwell, (1992)]. Chemical cross-linking of the 

layers has been used to improve their stability.

2.5 The Linear Electro-Optic Effect.

The linear electro-optic effect describes the way in which an applied d.c. (or low frequency) 

electric field modifies the refractive index of a material in a linear relationship. It is assumed that all terms 

higher than the second order in electric field are sufficiently small to be ignored.

Although the linear electro-optic effect can be described using nonlinear induced polarisations and 

it is conventional to express it as a modification to the inverse dielectric constant matrix

),y =  ^ijk^k 2.11

where rjjj^ are coefficients of the electro-optic tensor and is the applied field.

It can be shown that as a consequence of energy conservation, the dielectric tensor of a lossless 

and magnetically isotropic crystal must be symmetric [Bom & Wolf, (1980)]. This allows the expression 

for the electrical energy stored in the material to be described by an ellipsoid whose normalised surface is 

known as the index ellipsoid and is given by

4- +  lEji^yz +  l£ .^ x z  +  le^^xy  =  const.

It is possible to reduce the dielectric tensor to a diagonal form by rotational transformation of the 

axes, and with respect to the new axes the ellipsoid will have the form
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4 +4 +4 =iHv
2.12

'T

where X ,Y ^  are the new axes called principal axes. This ellipsoid, shown in figure 2.2 for a uniaxial 

material such as lithium niobate, can then be used to determine the properties of an optical wave 

propagating in the material using geometrical constructions.

Figure 2.2 The Index Ellipsoid.

X

For a given direction of propagation s, then a plane normal to s which passes through the origin of the 

ellipsoid, intersects the ellipsoid to form an ellipse called the propagation ellipse. At the points where the 

propagation ellipse intersects the index ellipsoid, the normals to the surface define the directions of E  for 

the two allowed polarisations, whilst the lengths of the ellipse axes are their respective refractive indices. 

From figure 2.2 we can see that for a uniaxial system, where the refractive indices along the X and Y axes 

are equal to Uq and along the Z axis is equal to Ug, then a general wave wiü experience refractive indices 

nQ and n^ for the ordinary and extraordinary polarisations respectively.

Symmetry arguments state that for any material the electro-optic tensor must be invariant under 

the direction of propagation of the light i.e. ryĵ  ̂ = rĵ ĵ  and so a shortened notation of two parameters is 

usual. The suffix k takes x=l, y=2 and z=3, and i and j are combined to give

XX = 1 yy = 2 zz = 3 yz = 4 zx = 5 yx = 6 .

The effect of these off-axis elements on the index ellipsoid is to stretch and/or rotate the ellipsoid. The 

application of electric fields to materials with these coefficients is to modify or modulate particular 

refractive indices within the material. The equation

^ i j = " h j Æ  2.13
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describes the magnitude of the refractive index modulation Aitfj where is the applied electric field and 

rifj is the refractive index experienced by the light and modulated by the applied field. From this equation it 

is simple to collect the material dependent terms together to describe a material figure of merit

«ÿ'Vt 2.14

and is commonly described in units of pmV'^. This clearly indicates the importance of other material 

properties such as the refractive index as well as the nonlinear coefficient when assessing electro-optic 

materials. It is also important to note the tensorial nature of the electro-optic effect. The orientation of the 

material and the polarisation and direction of the light and electric fields must be chosen carefully to 

produce efficient devices.

2.6 Second Harmonic Generation.

The theory of second harmonic generation is described in many books e.g. Shen [1982] or Yariv 

[1985], and will be discussed in detail in chapter 4. The material dependent components of the equation 

describing SHG efficiency are d^ff which describes the contribution of the tensor components of the 

nonlinear tensor coefficient dÿk when the directions and polarisations of the input and second harmonic 

light are considered, and n is the relevant refractive index. The ratio

SHG Power oc 2.15

describes the figure of merit of materials for second harmonic generation and has units of (pmV^)^. There 

is an additional requirement that the fundamental and second harmonic waves remain in phase to allow 

efficient conversion over useful optical path lengths (several mm). This requirement is called phase 

matching. If phase matching is not achieved, then the two waves will move in and out of phase due to 

dispersion in the material, and can result in destructive interference. »

2.7 Requirements for Nonlinear Optical Materials.

There are a number of material criteria which are important for all nonlinear optical applications. 

These include:

i. Very small absorption coefficients for the wavelengths used.

ii. Low scattering losses within the material.

iii. High laser damage thresholds to prevent damage to the material from the optical radiation.
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iv. Mechanical and chemical stability.

V .  Material synthesis and device fabrication.

Absorption can result in thermal damage when large laser powers are applied. Absorption is also 

particularly important in waveguide structures to minimise insertion losses. The optical absorption in 

nonlinear materials is understood sufficiently to be predicted and controlled through established modelling 

techniques of the electron wave functions of the atoms involved. This applies for inorganic crystalline 

systems as well as for organic molecules. The requirement of a large nonlinear coefficient necessitates 

there to be a large number of polarisable electrons in the molecule or unit cell. Unfortunately, this has a 

detrimental effect on the optical absorption, reducing the energy of the transition between ground and 

excited state and encroaching the transmission window of the material. This will be described in more 

detail for the case of molecules with delocalised electrons later in this chapter. Ultimately there has to be a 

compromise between the losses that can be tolerated and the magnitude of the nonlinear effect.

For almost all optical effects in materials it is important to have a high optical quality within the 

material, for example it must be free of inclusions, stresses, and any other defects introduced when the 

material is formed into its solid state. This minimises the losses of the light through scatter, and also 

removes possible sites of laser damage in the device. Liquid crystals and liquid crystalline polymers can 

have particular problems with scatter from local director fluctuations and scattering from domain walls 

within the material unless the material is well aligned.

The stability of materials under prolonged exposure to the atmosphere, to uv radiation from 

sunlight, or from the high laser intensities used in many optical devices (particularly waveguides) must also 

be proven if commercial devices are to be developed. Some material instabilities can be accommodated by 

packaging the final device in some protective manner, e.g. used in hermetically sealed packages to protect 

from water vapour in the case of KD*P crystals. Instabilities due to high light intensities are less acceptable 

and must be engineeredoakfp.he material when it is designed.

It is preferable to use materials which are cheap and simple to synthesise, and to then be able to 

manufacture devices easily from the material. Any devices which use materials in their crystalline form are 

slow and complex to produce in order to achieve high optical quality. This will also impose a limit to the 

size of the device. It has often been claimed that polymers have advantage in that they are easy to process 

and are suitable for simple automated production. This is probably true to the extent that small pre- 

production plant has been developed and is producing useful devices. However, full scale production is still 

some way off.

2.8 Nonlinear Optical Devices.

The principal applications of nonlinear optical devices are the electro-optic modulation of the 

phase and intensity of light, and the generation of new optical frequencies by second harmonic generation
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or optical parametric oscillation. The use of light as the carrier signal for information has increased the 

demand for efficient and high speed modulation of light, particularly in waveguide geometries for 

integrated optical systems. Similarly, the requirements of optical data storage have resulted in a range of 

techniques to produce compact and low power laser sources with wavelengths in the blue region of the 

spectrum. Some of these techniques involve the development of new wide bandgap semiconductor 

materials such as zinc selenide, and have been demonstrated briefly at room temperature [Jeon et al 1992]. 

Most techniques of producing blue laser light are by frequency doubling gallium arsenide semiconductor 

lasers using inorganic or organic crystals.

The principal material requirements of the most common types of nonlinear optical devices will 

now be outlined. The limitations on the performance of these devices due to materials will also be 

discussed.

2.8.1 Through-Plane Electro-Optic Modulators.

Through-plane devices describes a wide range of geometries used for electro-optic modulators and 

frequency modifying devices, including second harmonic generation and optical parametric oscillators. The 

devices are at present being made from inorganic crystals such as LiNbOg or KD*P. The crystals used are 

frequently in excess of (lOmm)^ in size and are defect free resulting in very high costs (£100's). Large 

crystals are very difficult to grow, and ultimately limit the apertures to approximately lOOcm^. Insertion 

losses for these devices must be kept at a minimum, demanding very low scatter and absorption in the 

material. To obtain high contrast switches it is necessary to produce very flat devices, ideally with 

thickness tolerances less than X/10. This is to ensure that light across the whole aperture experiences the 

same degree of retardation or rotation of the polarisation vector. This may prove difficult to achieve 

without polishing the material.

A common geometry for amplitude or phase modulators is to apply the modulating electric field 

parallel to the direction of light propagation and modulate the light through the rgg or r^] coefficient This 

geometry is very similar to that of poled polymers. The voltage required to induce a phase delay of n  

radians is independent of the device thickness, and is given in equation 2.16

For the material KD P, Vjj is calculated to be 2.6 kV. This is inconveniently high and difficult to

switch on or off quickly, with voltage pulse rise times of several nanoseconds. This imposes a limit on the

bandwidth of the device. The development of materials with higher nonlinear coefficients will decrease the 
Vjj voltage to lOO's of volts, thus making the device much easier to modulate and increase the bandwidth

due to the lower drive voltages.
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2.8.2 Transverse Electro-Optic M odulators.

It is possible to select the crystal symmetry group of the material to allow transverse electro-optic 

modulation. The symmetry group 42m of KDP results in an electro-optic tensor component rgg. In this 

geometry an electric field is applied along the crystal z axis to modulate the extraordinary refractive index 

ne, as shown in figure 2.3.

Figure 2.3 A Transverse Modulator.

The modulating field is applied perpendicular to the propagation direction of the light via 

transverse electrodes. When plane polarised light is introduced at an angle of 45® to the material z axis the 

induced phase delay Acp is given by

^  X K d

where / is the modulator length, d is the distance between the electrodes and V is the voltage applied across 

them. ^

In this geometry the optical path length and the spacing of the electrodes are independent. It is 

therefore possible to have long optical path lengths and high voltage gradients, reducing the voltage 

required to induce a k radians phase delay to less than lOV. However, this restricts the modulation 

bandwidth of the device. The long optical path length of these devices places particular emphasis on the 

transmission properties of the materials for use in such devices. Optical fibres have losses in the range of 

dBkm"^ but waveguide devices are at best around 0.5 dB cm 'k This imposes a limit to the path length that 

can be used at present to maintain insertion losses to acceptable levels. It is desirable to improve the 

insertion loss to allow devices to be cascaded for more complex signal processing.
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2.8.3 Bandwidth Limits.

The simple theory of electro-optic modulation used assumes a steady state modulation is induced. 

However, this theory no longer holds when the pulse time of the modulation signal approaches the transit 

time of the light through the modulator. In this situation the modulation signal will change before light, 

which entered the modulator as the signal was applied, leaves the modulator. For a modulator of length / 

then the maximum useful modulation frequency is given by

C
V  =

4l.n
where d n  is the speed of the light through the crystal. For a device 1cm long with a refiractive index of 2.25 

then this limits the modulation frequency to 3.3 GHz. It can be seen that a low refractive index is desirable 

together with a short device length. Organic materials can offer low refractive indices and larger nonlinear 

optical coefficients than equivalent inorganic materials, thereby reducing the device length and increasing 

the modulation frequency limit. The frequency-device length product gives a useful guide to the 

modulation capabilities of a material. Lithium niobate has been calculated to be 8.2x10^ ms'^, and poled 

polymers offer values in the order of 3x10^ ms'^ [Stamatoff et al, (1991)].

One way of overcoming the modulation frequency limit due to transit time is to apply the 

modulation signal as a travelling wave along the transverse electrodes. If it is arranged that the phase 

velocity of the modulation signal along the electrodes is equal to that of the light travelling through the 

modulator, then one portion of light will experience the same instantaneous electric field throughout the 

modulator. In this situation the frequency limit discussed above will not apply. Due to dielectric relaxations 

in materials, it is common to find the phase velocities of signals at gigahertz and optical frequencies are 

very different. In the situation where the phase velocities are not exactly matched, then the limit

_ c 
4 /.« (l-c /n c„)

where Cm is the phase velocity of the modulation signal. At the beginning of this work it was not possible 

to phase match microwave and optical signals in lithium niobate devices due to the large dispersion in the 

material. Organic materials, with their inherent low dielectric coefficients were in a position to offer 

considerable benefits for the maximum bandwidth of devices, and were the only devices likely to operate 

at very high frequencies. Over the period of this study phase velocities in lithium niobate devices have 

been matched through design of the electrode, and so can now compete with organic materials with devices 

at frequencies of lO's of GHz [Haas, (1992)]. Thus one of the strongest arguments supporting organic 

devices has been lost due to developments in competing technologies.

28



2.8.4 Waveguide Modulators.

The demand for efficient optical waveguide modulators has risen with the growth of optical 

communications. The requirement is for optical waveguides which can be integrated onto the 

semiconductor substrate allowing direct launch of the light from a semiconductor laser into the wave guide 

with minimal loss. Within the waveguide, there must be the capability of modulating the light with a data 

signal, and routing the light between waveguides.

Techniques using lithium niobate require a separate crystalline substrate, into which waveguides 

are defined by diffusion or ion bombardment of titanium into the substrate. Electrodes can then be 

deposited using conventional photo-lithography techniques to produce transverse electro-optic modulators. 

The operation of modulators in waveguide structures is identical to that of bulk modulators, including the 

limitations of the modulation bandwidth. An important criteria is the insertion loss of a device - the total 

loss of intensity when an optical fibre is broken and a device inserted. Targets for cascaded systems are 3 

dB. Although much work has been addressing the intrinsic losses in the material, coupling losses between 

the optical fibre and the waveguide are very high and will need to be reduced significantly before 

commercial devices are successful. Organic materials have a slight advantage, having refractive indices 

closer to glass than many crystals.

2.8.5 Waveguides in Poled Polymers.

Poled polymeric materials are particularly suited to waveguide operation. A solution of the

polymer can be spin coated onto the semiconductor substrate with a thickness of l-5pm. Waveguides can

be defined by a number of techniques.

i. The semiconductor substrate is etched with the waveguide pattern before the polymer material is 

deposited. On deposition, the thickness is controlled so that where there is an etched waveguide, the 

polymer layer supports a guided mode. Elsewhere on the substrate, the polymer layer is sufficiently 

thin to stop any wave guiding. Poor planarisation of the substrate by the polymer layer (usually 

deposited by spinning) results in poor quality waveguides.

ii. The polymer material is deposited uniformly over the substrate. Where waveguides are required, the

polymer is bleached using uv radiation. This produces a sufficient variation in refractive index to 

define the waveguide. Problems include uncertainties in the bleaching process as it is not well 

understood. The dye molecules may be destroyed leaving residues in the waveguide and loss of 

nonlinear chromophores. The residues may increase the relaxation of any induced order or form 

centres for laser damage. However, the quality of waveguides is quite good, with losses less than 0.5 

dBcm"^ achievable, and may be reduced further towards the target of 0.1 dBcm"^.
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iii. Ion beam etching can be used to define waveguides in a similar manner to semiconductor structures. 

The etch forms a well defined waveguide structure, but has rough sides which act as scattering 

centres, resulting in losses of approximately 1 dBcm"^. Further processing can be used to reduce this 

problem, and it is anticipated that this technique can also achieve losses in the region 0 .1 -0 .2  dBcm'^* 

Surface electrodes are then deposited by conventional techniques and the polymer within the modulator 

region is poled and the order locked in. After poling, it is extremely important that the substrate is not 

heated excessively as part of any further processing to preserve the induced noncentrosymmetric ordering. 

Scattering losses of waveguides fabricated in poled polymeric materials have been measured at 0.5 dBcm"^ 

[Stamatoff, (1990)].

2.8.6 Second Harmonic Generation Devices.

All materials exhibit dispersion, and consequently when SHG occurs, the fundamental and second 

harmonic waves travel through the material at different speeds. A characteristic distance, the coherence 

length,

i —

can be defined as the distance it takes for the two waves to become significantly different in phase where X 

is the wavelength of the light and n® is the refractive index at frequency co. Path lengths below 1q result in 

SHG power increasing as a function of path length squared. Path lengths greater than Ig result in 

interference between SHG produced at the beginning of the material, and that produced at the end. This 

interference can be destructive, where the second harmonic is reconverted back into the fundamental wave. 

To overcome this problem, it is necessary to arrange that

k2(o — 2kû) _ 2.17

where k^j is the wave vector of the fundamental wave.

Efficient second harmonic generation requires phase matching, and can result in efficiencies in 

excess of 50%. The properties of the material define which phase matching techniques are possible. Type I 

collinear phase matching requires a birefringence with the condition 

no(2 w) = ne(w)

assuming normal dispersion. If this condition is not achieved, then the harmonic beam will suffer 'walk 

off, where the second harmonic is not collinear with the input radiation. Type II phase matching requires 

ne(2 w) = no(w ).
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2.9 Comparison of M aterials for Electro-Optical and SHG Applications.

Table 1 describes a number of nonlinear optical materials together with important optical 

properties. The list is by no means complete, but is intended to give a flavour of the different material 

classes.

2.9.1 Inorganic Crystals.

Many of the inorganic crystals used in second order nonlinear optics were first identified many 

years ago. Quartz was the first crystal to experimentally exhibit SHG in 196/ [Franken et al 1961], it being 

readily available in large high quality crystals. Quartz was used in this work as a reference material against 

which new materials were compared.

The material lithium niobate (LiNbOg) has been the subject of development for many years with 

the aim of improving the crystal quality and size by developing crystal growth techniques. Lithium niobate 

has been developed specifically for electro-optic applications due to its high refractive indices resulting in 

a large figure of merit. It is still subject to much development for the field of integrated optics, where 

waveguides can be produced by indiffusion of metals or protons. Waveguide losses in the region of 0.1 

dBcm'^ have been achieved. Optical damage thresholds are limited by photorefractive damage in the 

material due to the absorption in the green from iron(II) impurities (approx. 0.1 GWcm"^). Adding 5% 

magnesium oxide (Mg0 2 ) has greatly improved its damage threshold and maintained its nonlinear 

coefficients. Lithium niobate has recently demonstrated spatially periodic poling along the waveguide 

which can achieve quasi-phase matching requirements [Khanarian et al, (1990)]. This has the effect of 

periodically modulating such that

( x )  = x T  +  X ? '  cos(G j:) G  =  2 ^

where A is the grating spatial periodicity. If G=Ak then efficient phase matching occurs irrespective of 

birefringence. Using this technique, useful SHG conversion efficiencies have been achieved.

Potassium titanyl phosphate (KT?) has very competitive figures of merit, although there is some 

disagreement over the actual nonlinear coefficients. The material has favourable phase matching conditions 

due to the crystal being biaxial, and SHG efficiencies in excess of 80% have been demonstrated [Brown et 

al (1992)]. It has a low laser damage threshold (-0.65 GWcm"^), and poor transmission in the uv, limiting 

its frequency doubling applications. Similar to LiNbOg, waveguides can be defined using ion exchange 

techniques achieving losses typically 0.1 dBcm"^.

Gallium arsenide can be used in several different manners to produce nonlinear optical devices. 

The nonlinear coefficients quoted for GaAs refer to the bulk material. It is possible to enhance the 

nonlinear coefficients by growing asymmetric GaAs/AlGaAs multiple quantum well structures in the
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U)to

Material Symmetry Refractive Electro-optic n^r Nonlinear Coeff. d^/n^ Wavelength Wavelength Reference

Group Index n Coeff. r (pmV^) d (pmV'l) r coeff. (nm) d coeff. (nm)

Inorganic Crystals.

Quartz 32 n^= 1.5341 r4i=0.195 0.7 dpff=0.32 0.028 589 1064 1,2,3

np=1.55 r<s^=0.93 3.4 1064 1

LiNbO^ 3m np=2.2322 r̂ :̂̂ =3G.8 328 dpff=-4.52 1.84 632.8 1064 2.3

Ufy=2,29 r n = 8 .6 103 d99=2.3 0.44 632.8 1064 1,2

KT? mm2 0^=1.740 r^^^=23.6 80 dpff=-7.34 1 0 .2 2 1064 2

np= 1.830

GaAs 43m 0^1=3.34 r4 i= 1 .6 59 d4i=124 412 632.8 10600 2

Organic Crystals.

Urea 0 ^= 1 .4 r4i=1.9 5 dc^f;=2.3 1.6 1064 3

MNA m n=2.355 ri 1=60 784 d i 1=250 4875 1064 1064 4

r 19=67 875 d 19=38 110

MAP P2 n=2 .0 d99=I8.4 42 1064 3

POM d 14=9.2 1064 5

NPP P2 n=1.8 d9i=84 121 0 1064 3

Poled Polymers.

DRl/PMA oomm n=1.7 206 632.8 6

Xlinked oomm n=1 .68 d^^=13.5 38 1064 7

Table 2.1. Summary of Performance of Materials for Electro-optical and Second Harmonic Generation Applications.
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Ferroelectric Liquid Crystals.

SCE9 2mm 0^=15 d79=0.027 2x10-^ 1064 8

Walba 2mm iio=1.5 d?9 =0 .6  0.1 1064 9

1. Yariv A. Quantum Electronics J Wiley & Sons New York (1989).

2. Landort Bomstein Numerical Data Functional Relationships in Science and Technology Group 3 Vol 2 New York (1971).

3. Sherwood J.N., Phil. Trans. R. Soc. Lond. A 330 (1990) 127.

4. Rao S.M., Batra A.K., Lai R.B., Evans R.A., Loo B.H., Metzger R.M., Lee W.J., J. Appl. Phys 70 (1991) 6674.

5. Nayer B.K. & Winters C.S., Optical & Quantum Electronics 22 (1990) 297.

6 . Described in this work.

7. Eich M., Reck B. et al, J. Appl. Phys. 6 6  (1989) 3241.

8 . Liu J.Y., Robinson M.J. et al. Optics Lett. 15 (1990) 267.

9. Liu J.Y., Robinson M.G., Walba, D.M. et al, J. Appl. Phys. 70 (1991) 3426.

Table 2 .1 contd. Summary of Performance of Materials for Electro-optical and Second Harmonic Generation Applications.



material. By careful design of the conduction band energy levels, it is possible to achieve resonant 

enhancement of the order of 1900 times the bulk material nonlinear coefricients [Boucaud et al, (1990)]. Of 

course this will have a detrimental effect on the absorption coefricient of the material. An alternative mode 

of operation is the use of the Stark effect. This is the modulation of the large absorption edge of the 

material by the application of a voltage. This has been used to produce an efficient amplitude modulation 

device. This effect is often enhanced by using a resonating device structure, for example the Fabry-Perot 

étalon structure.

2.9.2 Organic Crystals.

The organic crystal materials MNA and MAP are well established, having been developed over 14 

years ago. It can be seen that the nonlinear coefficients and figures of merit are competitive with inorganic 

materials. Disadvantages of organic crystals are that they are often mechanically weak and have high 

propagation losses. Novel approaches to overcome some of these problems have been demonstrated in 

MNA using, for example multilayer structures where the active layer is sandwiched in a waveguide 

structure between glass substrates. A DAN crystal 1.7mm thick resulted in an SHG conversion efficiency 

of 33.5% [Huang et al, (1991)].

The material NPP was first reported in [Baden et al, (1985)] as a suitable material for second 

harmonic generation. This material has very attractive nonlinear properties but suffers from difficult crystal 

growth. The material degrades in most organic solvents, forcing crystal growth to occur from the melt. This 

requires a compromise between the optical quality and the growth rate of the crystal.

The problems associated with growing organic crystals are similar to those in growing inorganic 

crystals. There has been a great deal of research in producing crystals which can be grown to sizes of 

several mm^ of the correct crystal orientation and symmetry group. It is often cited that organic materials 

have higher laser damage thresholds than inorganic materials due to lower dielectric constants. This is far 

from a universal rule, although some organic materials synthesised with great care have exhibited very 

high damage thresholds. MAP crystal has a damage threshold of 3 GWcm’^ for 10ns pulses at 1064nm 

[Baden, (1985)]. At these incident powers the quality of the optical faces is also extremely important, as 

these also can suffer laser damage. In practice, laser damage thresholds are often limited by the purity of 

the material and the growth of defect free crystals. The mature technology of crystal growth in inorganic 

materials such as lithium niobate probably still retain a small advantage.

Other problems with organic crystals are that they tend to be soft, making it difficult to polish the 

faces of the crystals, and hygroscopic so the materials degrade in quality on exposure to air. A recent 

development in improving the quality of organic crystals [Rao et al, (1991)] used a mixture of two well 

known nonlinear materials (MNA and MAP) resulting in large transparent crystals which could be readily 

grown with nonlinear coefficients similar to MAP, and also exhibited improved hardness compared to
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crystals from the individual materials. This may offer a way of engineering the mechanical properties of 

organic materials by design, and thus lead to new and robust materials.

2.9.3 Poled Polymeric Materials.

To date, poled polymer systems have achieved nonlinear optical coefficients of dgg = 47pm 

[Swalen, (1992)] by applying electric field strengths close to the breakdown strength. These very large 

field strengths achieve a polar order parameter of about 0 .2  for the side chains due to the low efficiency of 

the poling technique. A study into the processes which occur when poling, and attempts to improve the 

efficiency of the technique will be discussed in chapter 3, and so will not be discussed in detail here.

There are many poled polymeric materials with nonlinear coefficients of the same order of 

magnitude as those which have been quoted [Singer et al, (1988), Eich et al (1989B)]. A large range of 

nonlinear molecules have been co-polymerised into a number of glassy polymers, such as poly 

methylmethacrylate (PMMA) or polystyrene (PS). Further variations arise from the range of concentrations 

of nonlinear dopants used, and the magnitude of poling fields applied. The figures quoted in the table 

above are the long term stable values after any initial relaxation has occurred.

Much work has been carried out to improve device lifetimes to usable levels by reducing the 

relaxation of the induced order. At the beginning of this study devices were being reported with nonlinear 

coefficients of dgg = 20 pmV"^ and projected lifetimes of months. These have now been improved to 

levels of d33  > 40 pm V ^. This has been achieved by many developments in the materials. Glass transition 

temperatures have been raised from approximately <100®C (PMMA) to over 150®C, and are increasing 

further. This improves the stability of the induced order significantly, and allows additional processing to 

occur at moderate elevated temperatures (up to 100®C) without significant loss to the induced order [Man 

et al, (1990)]. A technique of crosslinking the polymer to raise the glass transition and chemically bond felcck, 

lÀtivCorder has been demonstrated [Eich et al, (1989A)]. Reactive groups specifically designed into the polymer 

can be stimulated by either uv or thermal radiation to form a polymer matrix whilst the poling field is 

present, thereby locking the induced order. Some devices produced using this technique offer excellent 

stability, even at elevated temperatures.

Polymeric materials have the potential of being produced in large quantities at low expense. Many 

of the process steps require technology which is readily accessible, and can be automated. The devices 

fabricated from poled polymers are usually in a thin film structure with thicknesses between 1 and 2 0 0 pm. 

The surface roughness can be less than X/10 by using high quality substrates or compression plates, 

removing the requirement for polishing the optical facets. Waveguides are easily fabricated, and although 

waveguide losses at the present time are unacceptable, it is expected that acceptable levels (< 0.1 dBcm'^) 

are achievable.
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2.9.4 Ferroelectric Liquid Crystals.

The nonlinear optical coefficients of the ferroelectric liquid crystal material are preliminary 

values. The material SCE9 is a commercial mixture of liquid crystals developed for display applications of 

which only 10% is chiral material, and has not been optimised for nonlinear properties. The development 

of pure materials which exhibit a chiral smectic C phase immediately improves the number density of 

nonlinear groups, and should be reflected in a large increase in the nonlinear coefficient The ability to 

align the material by having nematic and smectic A phases above the smectic C phase can suffer in these 

single component materials. There is also very little control of the helical pitch of the material which can 

also disrupt alignment.

The largest problem in using ferroelectric liquid crystals is that the only component of the 

molecule which possesses the correct symmetry, and thus.has a non-zero p, is a transverse component 

parallel to the Pg. The long conjugated electron system along the length of the molecules cannot be 

exploited. Transverse groups can be added to the chiral centre to increase Pg or p, but there is a limitation 

to the size of these groups before the smectic phase becomes disrupted. A novel approach pioneered by 

Walba et al [Liu et al, (1991)] was to use overhanging groups from a phenyl ring close to the chiral centre 

to hinder the rotation of the chiral centre with respect to the phenyl ring. This may then maintain the 

phenyl ring at a given angle with respect to the chiral centre and Pg, allowing the delocalised electrons of 

the ring to contribute towards the transverse p. Additional push-pull groups may also be added across the 

phenyl ring to further enhance p. Materials of this type have been developed for this thesis, and will be 

described in chapter 4.

2.10 Overview of Electro-Optic Materials.

Over the past three years organic materials have developed considerably. They are now beginning 

to fulfil their potential in the field of nonlinear optics by demonstrating a range of devices which compare 

well with alternative materials such as inorganic crystals. Molecular engineering techniques have been very 

useful in developing novel molecules with large molecular hyperpolarisabilities.

The ability of liquid crystal molecules to self assemble into partially ordered phases has yet to be 

fully exploited in the field of nonlinear optics. Researchers working with poled polymer materials had 

looked to liquid crystal polymers to improve the bulk nonlinear coefficient without the need to develop 

even higher nonlinear hyperpolarisabilities. Despite a theoretical gain of 5 in the nonlinear coefficient, 

experiments demonstrated gains less than 2. Associated with these gains were additional problems; mainly 

due to the inherent properties of liquid crystals - the large birefringence and high scattering losses, which 

reduce device performance and at the present moment, outweigh the benefits. If these problems can be
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overcome by developments in the material other than for larger nonlinear coefficients, then liquid crystal 

polymers will be competitive.

Chiral smectic C liquid crystal materials are still a long way from challenging current nonlinear 

optical devices. The limitation in this case is not the polar order but the magnitude of the transverse 

molecular hyperpolarisability which is not forbidden by symmetry. This has been improved by several 

orders of magnitude, but is still lower than alternative materials. The device geometries required to align 

these materials are quite limiting for device applications unless additional processing such as cross linking 

is carried out to stabilise the alignment.

It should also be pointed out that developments have also been made in the competing material 

classes, particularly inorganic crystals. There are new materials continually emerging with improved 

nonlinear coefficients or improved physical properties, and excellent device engineering has overcome 

some of the earlier limitations. If organic materials are hoping to displace established materials such as 

lithium niobate, then further developments are necessary, particularly in device fabrication techniques and 

optical losses in the materials.
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3. Dynamics of Poling in Side Chain Polymers.

The low efficiency of the technique of poling suggests the possibility of improvement of the bulk 

nonlinear coefficients without the expense of complex molecular engineering to improve the molecular 

hypeipolarisability. There have been many novel molecules designed and synthesised with very promising 

nonlinear coefficients by increasing the conjugation in the molecule.This has the disadvantage of 

increasing the absorption wavelengths. There has been very little work reported in the literature about the 

poling mechanisms and the dynamics of poling. Any developments to the poling process would probably 

have benefits to all materials and devices currently in use in the field of nonlinear optical polymers. In this 

chapter I shall describe a simple experiment to investigate the dynamics of the poling technique, in order to 

understand the reorientational mechanisms which occur in the material when it is poled. Knowledge of 

these mechanisms will assist in establishing the limitations of the poling technique, and develop possible 

methods of overcoming these problems.

3.1 Measurement of the Induced Non-linear Optical Coefficient.

The linear electro-optical effect, or Pockels effect was used to measure the degree of induced non­

centrosymmetry in side chain polymeric materials when large electric fields were applied. The principle of 

the experiment was to modulate one plane of polarisation with respect to its orthogonal counterpart, and 

measure the induced phase delay between the two polarisations.

Glass 
Substrate.

rro
electrodes, 

y Polymer

Figure 3.1 Device arrangement.
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A planar cell arrangement was used, as shown in figure 3.1. The electric field could most easily be 

applied perpendicular to the cell (designated the z axis) using transparent indium tin oxide (ITO) 

electrodes. The electrodes were used not only to pole the sample and orientate the molecules but also to 

modulate the extroordinary refractive index, which had been induced by poling along the z axis.

The molecules in a nematic phase are approximated to be long, thin, rod-shaped objects. The point 

group oomm describes molecular systems which contain a unique axis (z axis) about which there is an 

infinitefold rotational symmetry (oo) and two mirror symmetries (mm), one parallel to the long axis and 

one perpendicular to it. The dominant hyperpolarisability tensor component is along the long axis of the 

molecule, (3zzz- When an electric field is applied parallel to the z axis, the one dimensional molecule 

approximation reduces the number of non-zero electro-optic coefficients rgg and r^g, which modulate the 

extraordinary refractive index n  ̂ and the ordinary refractive index n^ respectively. The difference in 

modulation from the two coefficients is described by r^ff, the effective (and usuable) non-linear 

coefficient.

Light was passed through the cell at an angle to the cell normal which was chosen to be 45®. 

Incident light polarised in the plane containing the cell normal (TM) would access a combination of the 

ordinary and extraordinary refractive indices, n%, as shown in figure 2,2. Light polarised in the orthogonal 

plane (TE) experienced only the ordinary refractive index, n^.

The light passed through the sample was plane polarised at an angle of 45® to the plane of 

incidence, as shown in figure 3.1. The polarisation can be resolved into two components, one interacting 

with only the ordinary refractive index which had a small degree of modulation, and the other interacting 

with the refractive index n%. This latter component had a larger modulation through its dependence on ng. 

Because the two refractive indices seen by the two polarisations were unequal, then the light emerged from 

the sample with an elliptical polarisation, the phase difference between the two paths being 

Ô = 2 n {n ^ - n J h f X

where h was the thickness of the sample. It can clearly be seen that a difference in modulation between n^ 

and n% would result in the phase delay Ô being modulated.

There is an optimum condition for light to couple from the input polarisation to its orthogonal 

counterpart and hence through the analyser, when the total phase delay is increased to tc/2 , the condition of 

circular polarisation. In this position, the experiment was most sensitive to the modulation of the phase 

delay as illustrated in figure 3.2.

A Babinet Soleil compensator was used to adjust the total phase delay to tc/2. The compensator 

was calibrated so a measurement of the extra phase delay introduced allowed a calculation of the 

birefringence of the material. The details of this measurement are given in section 3.4.2.
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Figure 3.2. Modulation dépendance on phase delay.

3.2 Preparation and Evaluation of Nonlinear Optical Copolymers.

The materials used in this study were developed and synthesised initially by GEC-Marconi Ltd for 

earlier work at GEC-Marconi [Griffith et al, (1991)] to obtain a suitable polymeric material which had 

useful nonlinear optical properties. All poled polymer experiments described in this work used the same 

material, which had been synthesised later in bulk by Merck Ltd.

The material selected was a copolymer of two monomeric compounds, one of which imparted 

liquid crystalline properties, and the other nonlinear optical properties. The nonlinear optical monomer 

was based on Disperse Red 1 (DRl) incorporating a polymerisable acrylate group via an ester linkage. It 

has the code 2/ANAS and its chemical structure is shown in figure 3.3.

CHg

ÇHCOO (CHg); C O O -(^ y -C N

CHg CHgCHg

ÇH COO

Figure 3.3 Chemical structure o f copolymer used.

The liquid crystalline monomer used was A/20CPB or using its full name 4 - ( 2 - acryloyloxyethoxy ) 

benzoic acid - 4' -cyanophenyl ester. The copolymer had an acrylate backbone with two methyl units 

separating the backbone from the mesogenic units.

The polymerisation technique used was a free radical polymerisation using AIBN as the thermal 

initiator. The polymer was purified by column chromatography and recrystallisation from tetra-hydro-furan
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(THF) solvent. The polymer was investigated by GEC-Marconi and Merck (UK) Ltd using the following 

range of techniques.

1.

2.

3.

Differential Scanning Calorimetry (DSC) and Optical Microscopy were used to measure phase 

transition temperatures and identify phases. A DSC trace of the polymer is shown in figure 3.4. 

The glass transition temperature was measured to be 79®C.

Gel Permeation Chromatography was used to characterise the molecular weight and polydispersity 

of the polymer. The polymer had a molecular weight M^y of 5000 units, and its M,  ̂= 3550, giving 

a polydispersity ratio of 1.4. The degree of polymerisation gave a chain length of 10 units. 

Experiments [Hollingshurst, (1992)] have indicated that glass transition temperatures and nematic 

to isotropic transition temperatures do not saturate until chain lengths reach about 100 units or 

more. However it was shown that the material produced had a consistent chain length resulting in 

well defined transition temperatures.

The determination of the polymer composition was estimated from molar extinction coefficients 

using a Perkin Elmer Lambda 9 uv/vis spectrophotometer. A 29% loading of nonlinear optical 

mesogens was measured.
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Figure 3.4 DSC o f NLO polymer.
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3.3 Preparation of Thin Film Samples.

A device structure was developed for the experiments in order to obtain a high optical quality film 

over a reasonable area (several mm^) with a range of uniform thicknesses. The fabrication technique used 

was thermal compression where the polymer was sandwiched between two glass slides and compressed at 

elevated temperatures.

The cell fabrication was undertaken in a clean environment using ultraclean glass substrates. The 

polymer was heated under vacuum for several hours to remove any dissolved gases and solvent. The 

smallest of traces of solvent or gas appeared as voids in the material when the cells were assembled, and
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also later after repeated temperature cycling. These voids prevented the application of very large electric 

fields due to the lowered breakdown threshold, and increased optical scatter in the cells resulting in a lower 

efficiency of the device.

The substrates used for the devices were 3mm thick optical quality glass which was both flat and 

resilient to distortion, onto which indium tin oxide QTO) transparent electrodes had been deposited and 

etched. To ensure that the substrates were parallel on assembly, quartz spacers were distributed over one of 

the substrates. Spacers were sucked from the active area before assembly using a vacuum, as it was found 

that the spacers reduced the breakdown threshold of the device when poled. The polymer in solution was 

deposited over the active area of the other substrate, and the solvent removed by baking under vacuum 

overnight. The thermal compression cells were then assembled taking great care to align the active area, 

and the top substrate was compressed down onto the spacers by applying weights to the device and heating. 

However, even after heating the polymer to 50®C above its glass transition temperature, compression of the 

polymer to give a uniform thickness was difficult.

Solvent based techniques for producing thin films was also investigated. Dipped samples were 

produced by lowering a glass slide into a polymer solution and were then withdrawn carefully. A uniform 

film of high optical quality was produced if it was withdrawn from the solution at a constant rate. However 

repeated dipping to increase the film thickness resulted in a wedge film due to redissolving of the layers. 

This limited the thickness of the dipped films to around l|o.m.

3.4 Measurement of Refractive Indices.

A high quality, uniformly flat device was essential for characterising the material. The device 

chosen was approximately 20 |im thick and had been poled with a voltage of 170 V|im’  ̂ for 1 hour at 75 

T .

3.4.1 Measurement of no.

The optical thickness of the film was measured using a Perkin Elmer Lambda 9 spectrophotometer 

by measuring interference fringes produced from reflections from the front and back faces of the cell as a 

function of wavelength. The interference fringes were enhanced by using partially reflecting silver layers 

on the substrates. These measurements give the thickness from empty areas of the cell with an accuracy of 

±0 .2  pm for a device typically 1 -1 0  pm thick, and refractive indices to an accuracy of ±0 .0 2  at best.

The material was also investigated using a spinning polarisor ellipsometer, which gave refractive

index and thickness information over the wavelength range of 250-850 nm. This measurement required the 

removal of one of the substrates to reveal a bare polymer interface of high optical quality. The
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measurement was made at an angle of incidence of 60^, close to the critical angle to increase the reflection 

signal. Analysis of the data indicated a slight dispersion in ng, its value being 1.62 at 850nm, and rising to 

1.69 at 630nm, as shown in figure 3.5. Accuracy was limited to ±0.01 due to the imperfect model used to 

calculate the refractive index of the film. The thickness measurement gave a value of 18 (im, but was only 

accurate to 1 |xm. An independent measurement of thickness was made using a Tencor Alpha-Step 

thickness measuring instrument which scanned a mechanical stylus across the sample. The thickness of the 

polymer film was measured with an accuracy of 0 .1  jxm, and scatter in the measurements taken at different 

positions on the film suggested a film flatness of ±0.15 pm.

The ordinary refractive index of the copolymer exhibits a small amount of dispersion due to an 

absorption band in the blue/green region of the spectrum with = ^80 nm. The data was fitted to a two 

parameter Sellmeier dispersion formula as given in equation 3.1.

2.0
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Figure 3 5  Dispersion in refractive indices ofNLO polymer.

V - B .
3.1

The Sellmeier equation calculates dispersion based on a two level quantum model. The Sellmeier 

coefficients were calculated by a least squares fitting routine (NAG E04FDF). The coefficients were 

calculated to be

A i = 1.392 

Bi =0.101

and the theoretical curve is also shown in figure 3.5.
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3.4.2 Measurement of n..

The extraordinary refractive index was calculated from the phase delay between light polarised to 

access the ordinary refractive index, and light polarised to access the extraordinary refractive index. Light 

was introduced into the material at an angle i to the normal of the cell along a direction defîned by the unit 

vector s, as shown in figure 3.1, where nx(0x) is the refractive index seen by the extraordinary ray at an 

angle 6* from the optic axis

c o s ^ 8 ,   ̂ sin^8^
3.2

Refraction must be taken into account at the boundaries of the cell structure, and so from Snell’s Law

rt^(8^)sin8_^ = sini 3.3

sin (|)̂  = sin i 3.4

0x is the angle of refraction for the extraordinary ray, <j>o is the angle of refraction for the ordinary ray, and /

is the angle of incidence at the cell surface. Eliminating n* from equations 3.2 and 3.3 gives

tan 8 =
n. sin I

( 2  - 2  .y/z '-s in  I)
3.5

From Bom and Wolf [1980], the phase delay between the extraordinary ray and ordinary ray, after 

travelling through a uniaxial material of thickness h, when light is incident at an angle /, is

5 = {n  ̂cos 8  ̂-  cos (})). 3.6

If the phase delay is increased up to 71/2 by including a Babinet Soleil compensator, the resultant light is 

circularly polarised. The phase delay 6 introduced by the cell can be measured from the shift in null 

positions of the compensator as a fraction of the delay equal to one wavelength. Eliminating 0% and 

rearranging for ng gives

/I. =
sinz

1 -
2nh

+  «„COS(t)„

1/2 3.7

Using equation 3.4 to eliminate (j)o gives

44



n. =
sin I

1/2 3.8

Therefore Og can be calculated from four known variables: i, no, Ô, and h. The extraordinary refractive 

index as a function of wavelength is shown in figure 3.5, together with the fitted curve from the two 

parameter Sellmeier model. The parameters were calculated to be 

A i = 1.745 B i = 0.144.

3.5 The Experimental A rrangem ent to M easure rgfr.

The electro-optic coefficient of the polymer was measured using apparatus shown in figure 3.6. 

The quarter wave plate and polariser were used to produce plane polarised light at any angle defined by the 

polariser in the plane normal to the optic axis of the experiment. This light was then incident on the sample 

in the configuration discussed earlier in section 3.1. A Babinet Soleil compensator was used to measure the 

birefringence of the sample, and also increased the phase delay between the two polarisations to give 

circular polarised light, verified by the analyser.

A sample which had been previously poled was measured with a small a.c. voltage applied 

(squarewave, 5 kHz, 40 Vptp) to induce a modulation of the birefringence of the device. The phase 

modulation was converted to an intensity modulation by the analyser which was then detected by a silicon 

PIN photodiode and lockin amplifier. The modulation signal from the lockin amplifier was divided by the 

average signal from the detector using an electronic divider to normalise the signal.

Polymer 
X / 4  Po la r i so rD e v ic e  S-B 
plate

Analyser
compensator

Photodiode
Vm/Vacw Laser Va Voltage Divider

VmVs

Lock-in AmplifierAC signal gen.

Storage Oscillocope

Figure 3.6 The electro-optic experiment.
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Appendix B derives equation 3.9 whichdescribes how the electro-optic coefficient r^ff is calculated from 

measured parameters.

1/2

3.9

A 1mm thick sample of z-cut lithium niobate was measured to verify the experimental accuracy. It 

was assumed that z-cut lithium niobate was isotropic, and the modulating field was applied along the z 

axis, so making it comparable to the poled polymer materials. Assuming an average refractive index of 

n=2.25 then the rgg coefficient was measured to be 33±3 pm V ^. This is in good agreement with accepted 

values of 31.8 pmV"^ within the scientific literature, taking into account the experimental accuracy of 

10%.

3.6 Dispersion in the Electro-Optic Coefficient.

The electro-optic coefficient was measured in a thermal compression cell filled with the 

copolymer from 2/ANAS and A/20CPB which had earlier been poled at 170 Vpm"^ for one hour at 75®C. 

Table 3.1 shows the measured electro-optic coefficients at a number of wavelengths, illustrating the 

dispersion in the electro-optic coefficient.

Wavelength (nm) Electro-Optic Coefficient (pm V ^)

632.8 43

820 11

1064 8

Table 3.1.

■S'
The dispersion in the electro-optic coefficient arises from the variation in hyperpolarisability p as 

a function of the wavelength of the incident light. In the simple approximation of a two level quantum 

model, the expression describing p is given by [Zyss, (1987)]

p ( - û ) 3 ,w , ,c û j )  =  % - ^ / A | xF ( H ', ( û, , ü)j ,C03)
2m

where /contains the local field factors, A|i is the difference in dipole moments between the two levels, and 

F(W,(ù /) is the dispersion term, defined as
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F (H ^,(B ,,cûj, cû3) =
[ w '  - ( A m , ) ' ]

3.10

where W is the energy àf the excitation, and ©1 .3  are the frequencies of the three interacting electric fields. 

In the electro-optic modulation case, toj = © 3  = ©, and © 2  = 0. Figure 3.7 shows the experimental and 

numerical fitting to the r^ff data using equation 3.10. The numerical fit suggests a value for W of 2.235 eV, 

which corresponds to an absorption at around 550 nm, which is in reasonable agreement with the measured 

absorption at 480 nm, given the few data points.

As the wavelength approaches the absorption band of the molecule, both the polarisability and the 

hyperpolarisability undergo resonant enhancement This resonant enhancement has been seen in many 

organic systems [Singer et al, (1987); Mohlmann et al, (1989)], and is a feature of highly asymmetric
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Figure 3.7 Dispersion and two level theoretical fit to

excited state Tt-electron systems which are the dominent contributor to P in these molecules [Teng & 

Garito, (1983)]. A discussion of these effects was held in chapter 2 and concluded that the resonant 

enhancement in the non-linear coefficient cannot be fully exploited because as the absorption edge is 

approached, the losses in the device increase and laser damage to the material can occur.
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3.7 Dependence of the Non-linear Coefficient with Poling Voltage.

The poling field dependence on the induced electro-optic coefficient in the material used in this 

study is shown in figure 3.8. No nonlinear dependence was detected within the poling field limit 

achievable in this work (75 Vpm"^). An earlier report [Griffith et al, (1991)] had indicated that a 

nominally similar polymer, although amorphous, could exhibit an unusually large order parameter when 

poled. The effect seen on the induced electro-optic coefficient was a non-linear step in the r^ff at a poling 

field strength above 50 Vpm’ .̂

40
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Marconi Data at 
632.8nm
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Polymer 
Inreatlgated 
at 820nm

0

2000 100
Poling field (V/nm)

Figure 3.8 Induced electro-optic Modulation as a junction o f applied poling field.

Other similar copolymers with larger proportions of mesogenic groups had exhibited nematic phases above 

the glass transition. The unusually large degree of order in the nominally identical material was suspected 

to be a result of a nematic to isotropic (N-I) transition which was masked by the glass transition of this 

polymer. The effect of lowering the phase transitions of mesophases in copolymers until they are masked 

by a glass transition has also been seen elsewhere [Kiode et al, (1991)].

To confirm the theory of an underlying mesophase in the material, an attempt was made reveal 

the suspected N-I transition in the polymer by plasticising the glass phase of the polymer and thus 

depressing Tg. This can usually be achieved by mixing the polymer with a monomer of a similar structure 

which allows it to mix well with the polymer structure. However, the monomer could not be fully mixed 

with the polymer either by mixing at elevated temperatures or by using a solvent, resulting in 

unreproducible phase transitions in the DSC traces.

A likely explanation for the difference in poling behaviour between the two polymers is that 

although they had the same chemical structure, the two materials were not identical. To specify a polymer.
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information such as the degree of polymerisation, the number and weight average molecular weight (M^ & 

M ^) and the polydispersity must be specified. This data is often not given in the literature. In this case, it 

was suspected that the polydispersity of the earlier material was greater than the material used here, 

resulting in a slightly lower glass transition (4®C lower) and increased mobility in the polymer below Tg.

If the non-linear dependence on poling fîeld was reproducible, then it may be used to improve the 

efficiency of the poling technique. By applying voltages above and below the nonlinear threshold, it may 

be possible to pole the material whilst minimising charge injection. Charge is usually injected into the 

polymer as it is poled and can result in charge double layers which reduce the internal poling field 

experienced by the polymer. The technique to reduce this effect will be discussed in more detail in section 

3.11.

3.8 Dynamic M easurements of Poling Processes.

An investigation of the poling mechanisms required a study of the dynamics of the system as 

poling occured. The rate at which the noncentrosym metric ordering was induced and then relaxed would 

indicate which components were re orienting, and give information about the re-orientation mechanism. 

The experiment was modified, as shown in figure 3.9, so that whilst the small modulating signal was 

present, a large poling field could also be applied to the device. This poling voltage was mixed with the 

modulation signal, before being amplified to its final amplitude using a high voltage x50 amplifier.

Polymer
X/4 Polarisor Device S B 
plate

Voltage DividerAnalyser Vm/Va
Photodiode Va Vm

cw Laser

Lock-in Amplifier

AC signal gen.High Voltage Amp.

Storage Oscillocope
DC Voltage

Figure 3.9 The dynamic poling experiment.
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A further modification allowed the sample to be contained in a Mettler thermal management system 

(FP80/82) to allow temperature dependence measurements. The voltage used to pole polymer materials to 

achieve maximum non-centrosymmetric alignment can be up to 200 V|im"^. However this is normally 

increased slowly from a moderate level to prevent shorting of the devices due to power surges. In this 

experiment the maximum voltage switched directly onto the cell was 75 Vpm"^ to prevent damage.

A lithium niobate sample was used to evaluate the response times of the experiment The electro­

optic effect in lithium niobate has a bandwidth limited by the RC charging time constant, where C is the 

capacitance of the device ( ~5xl0’^^ F), and R is the resistence in the driving circuit (50 O). The rise and 

decay time was less than 1 ns, which was much faster then the dynamic response of the experiment The 

limiting experimental response time was found to be the lock-in amplirier with 3 ms response, which could 

be improved at the expense of sensitivity. A large, low noise signal such as that from lithium niobate gave 

the minimum experiment response time of 3ms, but smaller signals from polymeric devices required a 

higher sensitivity and limited the response time to 40ms. The time constant associated with charging the 

capacitance of the device was calculated to be less than 1 0 0ns and so assumed to be instantaneous.

A standardised technique was developed to measure the growth and decay of the nonlinear optical 

component reff. It was noticed that the electro-optic response was dependent on the thermal history of the 

device. A shortage of polymer material resulted in it being necessary to recycle samples.

Between each poling cycle the cell was heated to 20 ®C above its glass transition for 10 minutes 

whilst the cell was shorted. This ensured the material was fully relaxed into its isotropic phase and did not 

retain any non-centrosymmetric ordering previously induced. After a large number of temperature cycles 

the magnitude of the electro-optic signal decreased. This was attributed to the formation of microscopic 

voids seen in the polymer material. These have the effect of reducing the effective area of the device and 

increasing scattering losses. The effect was more noticeable in thermal compression cells than for dip 

coated samples where one surface is free for solvent to evaporate. The formation of the voids was probably 

due to residual solvent leaving the polymer, or due to material breakdown. Neither of these effects would 

affect final devices because they would not be temperature cycled. ^

The electro-optic coefficient was monitored by recording the ratio of the modulation signal 

amplitude Vm (from the lockin amplifier) to the mean intensity Va. This ratio was directly proportional to 

the electro-optic coefficient if it was assumed that the induced birefringence is small. This was reasonable 

because the poling voltages applied in this experiment were much smaller than those normally used in 

poling polymers. The ratio V^/Vg was recorded on a digital sampling oscilloscope, permitting a maximum 

record length of 1000 seconds at a sampling rate of 1 sample per second. The data was stored on a personal 

computer for later comparison with numerical data fitting routines. Poling voltages were normally applied 

for a fixed period of 500 seconds.

The modulating voltage applied to the cell was a square wave signal at 5 kHz with a peak to peak 

amplitude of 1 Vpm'^. Early investigations suggested that this frequency was optimum as at lower
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frequencies molecular reorientation occurs and at higher frequencies the sensitivity of the lock-in amplifier 

falls away.

The measurements were usually made at a wavelength of 820 nm, although other wavelengths 

were also used. This choice of this wavelength, and not 632.8 nm was because residual absorption in the 

material resulted in additional modulation effects, which will be described in more detail later in this 

chapter.

3.9 Results of Dynamic Measurements.

Initial studies were carried out to investigate a fast and a slow reorientation mechanism previously 

reported [Hampsh et al, (1990)]. The growth and decay of the electro-optic coefficient is shown in figure

3.10 for a 3pm cell poled at 100 V (-35 Vpm"^) at 75®C. Both the form and the amplitude of the alignment 

and relaxation processes were identical to within experimental resolution for the same temperature. This 

suggests that the same mechanisms are limiting the poling as allowing the induced order to relax.

Poling Field Wold
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15

1.0

0.0

-SO SO ISO 2S0 3S0 4S0
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Figure 3.10. Poling and Relaxation o f Side Chain Polymer at 75^ C.

Wu [1991] points out that the force experienced by a dipole in an applied field is dependent on its 

orientation with respect to the applied field, which is not the case for the relaxation of the alignment. This 

would suggest that the two processes are inherently different. Within the limits of this experiment this was
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not observed, noting in particular the limited size of electric fîeld together with the very high viscosities 

poise, Cohen & Grest, (1979)] of these materials would minimise these effects.

3.9.1 Above the Glass Transition.

Measurements of the electro-optic coefficient as the poling voltage was switched on followed the 

expected two component mechanism which can be modelled by a double exponential equation of the form

1-exp
W  f  (  

1-exp
A y

+ B
J J

3.11

where A, B . 'i  5  are parameters to be fitted. This form of the equation describes two distinct Debye 

type processes which have individual amplitudes A & B, and characteristic time constants A ^  B' 

Sample data is shown in figure 3.11 together with a best fît solution. The amplitudes A & B  exhibited a 

linear dependence on the applied electric fîeld, but the time constants t  ^  & t  5  did not exhibit any 

dependence on the poling field within the limitations of the experimental apparatus (75 Vpm"^). The two 

processes have been attributed to ( 0  a fast reorientation of the side chain groups within the confines of a 

volume defined by the nearest neighbours, and (if) a thermal diffusion type reorientation of the side groups 

in response to the applied electric field [Rusch & Beck, (1969)].

At the molecular level it is proposed that the fast initial rise in the coefficient was a result of the 

side chain groups partially reorienting within the free volume of the group. The free volume of a group 

[Laidler, (1982); Meredith et al, (1982)] describes a volume which the side chain group occupies, defined 

by its surrounding molecular groups. Within it a small amount of motion is possible without disturbing the 

nearest neighbours. The speed of this reorientation was found to be constant within the experimental 

resolution of the experiment The amplitude increased with temperature as expected, in line with the 

increase in the thermal free volume.

The slow component of the rise in electro-optic coeffîcient was explained by the large angle 

reorientation of the side chain groups via thermal diffusion mechanisms [Valley et al, (1990)], disturbing 

the surrounding backbone and side groups. The torque experienced by the side groups in an external field is 

equal to |i.E, where p. is the permanent dipole on the group. This provides a potential energy gradient for 

the side groups, which rotate to realign along this prefered direction via a diffusion mechanism. This 

rotational diffusion mechanism is limited by the viscosity of the polymer. As the temperature was 

increased, the characteristic time constant decreased. Close to the glass transition, viscosity exhibits a 

strong temperature dependence. It varies from approximately t |  ~ 1 0 ^  poise above Tg to q  > 1 0 ^ ^  poise 

below the transition [Cohen & Grest, (1979)], diverging from Arrhenious behaviour.
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3.9.2 Below the Glass Transition.

Polymers in the glass phase are not in thermal equilibrium. The free volume model of a polymer 

[Rusch & Beck, (1969)] describes a volume Wf which is in excess of the free volume at thermodynamic 

equilibrium Vf and is available for redistribution. The volume Wf represents the portion of the total free 

volume Vf which will relax out of the polymer given a sufficiently long period of time.

When the polymer enters the glass phase, polymer backbone mobilities are reduced by several 

orders of magnitude (or 'frozen out') . However, very close to the glass transition the side chain groups 

have a limited degree of mobility, and can be reoriented by applying large electric fields. It has been 

reported [Esselin et al, (1988)] that the optimal temperature for poling is at several degrees below Tg, 

where thermal disordering mechanisms are lower, but there is sufficient mobility to allow the side chains to 

align. When trying to model the dynamics of the poling process at temperatures below Tg, it was found 

that the experimental data deviated from the double exponential function described earlier, particularly 

over the longer time periods, as shown in figure 3.12. The data suggested a Kohlrausch-Williams-Watts 

(KWW) [Williams & Watts, (1970)] stretched exponential function of the form

y = A 1-exp
\  ' ^ A  J J

0 ^ < 1 3.12

2.0 n

1.5 -

A-1.1827
Ta-0.708
B-0.4142
Tb-17.78

•a 1.0 -
CO

0.0

0 100 200 300
time (s)

12 -1

1.0 -

a 0.8 -

•gO.6 -
A-J.044
Ta-23.18
B-0.2106

0.4

0.2

0.0

0 100 200 300
time (•)

F igures.]] Poling at 85^ C and numerial fit o f  the 

form  in equation 3. U.
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where A, B 8l i  ^  are parameters to be fitted. This function has been used to describe non-Debye type 

relaxation processes, for example a system which has a distribution of transition energy levels. This is 

unlike classical Debye type processes which are based upon single transitions. The parameter B  is reported 

to exhibit a temperature dependence [Dattagupta, (1987)], and our data exhibits this as shown in figure 

3.13. This illustrates that as the temperature is reduced below the glass transition, the polymer moves 

farther away from thermal equilibrium.
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Figure 3.13 Parameter B as a function o f temperature.

A model for the polymer glass which can account for the temporal data following the form of the 

KWW stretched exponential is outlined here. The transition into the glass phase is a second order 

transition, and is spread over approximately 10®C, as shown in the DSC trace in figure 3.4. It is possible 

that this temperature range results in molecules having slightly different thermal organisations when they 

enter the glass phase, at which time their ordering is quenched. Any applied field to induce order in the 

material would then compete against a distribution of thermal energies, and the poled polymer glass would 

exhibit a distribution of relaxation energies and times. ^

3.9.3 Poling Effiency as a Function of Tem perature.

The dependence of the degree of poling on the thermal free volume of the polymer can be 

measured by varing the electro-optic coefficient as a function of temperature. In this experiment, a polymer 

device was heated to 85®C and poled at 50 Vpm'^. The electro-optic coefficient was monitored and seen to 

saturate. Once the maximum coefficient was attained, then the temperature of the device was reduced at a 

steady rate of 1®C min'^ whilst maintaining the poling field. The non-linear coefficient induced in the 

polymer was monitored as the polymer was cooled through its glass transition. The amplitude of the 

modulation was seen to decrease, as shown in figure 3.14. This is due to the reduction of the thermal free
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volume in the polymer as the temperature is reduced, forcing the induced alignment into a slightly less 

oriented configuration.
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Figure 3.14 Reduction in r^ ^a s  the temperature is reduced.

3.10 Fast Amplitude Modulation.

For normal electro-optic device operations it is desirable to minimise any losses of the device. 

One common feature of the molecular side groups which exhibit very high non-linear coefficients is an 

absorption towards the blue end of the spectrum. There has been much work to move this absoiption to 

shorter wavelengths. The material used in this study was based on Disperse Red 1, which exhibited a peak 

absorption at 480 nm, but had an absorption tail which extended into the red part of the spectrum. At the 

HeNe wavelength of 632.8nm, the real part of the second order susceptibility exhibited strong dispersion, 

as indicated by the electro-optic coefficient rising to over 40 pm V ^. At this wavelength, a fast amplitude 

modulation was also measured at temperatures below the glass transition. The absorption only occured in 

non-centrosymmetric structures i.e. when a dc poling field was present or in previously poled samples, and 

exhibited a polar dependence with the poling field. The amplitude of the modulation rose very quickly (less 

than the response time of the detector of 1 |is) to a level which was proportional to the amplitude of the 

modulation voltage. The amplitude was also dependent on the degree of poling, increasing as poling 

occured. The maximum modulation measured in a poled device was 1.4% of the intensity incident on the 

detector when a modulation voltage of 15 V|i.m"^ was applied to the device.

Kramers Kronig relations predict that every modification to the real component of a electro­

magnetic wave has a corresponding effect to its imaginary component. It is this relationship which links the 

dispersion of the refractive indices of a medium with its absorption. The polymer used in this study 

exhibited an absorption at “  ^80 nm. Dispersion in the real component of the was observed.
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Correspondingly there must be an imaginary (and thus absorbing) component associated with it. Therefore 

it is proposed here that the modulated absorption was the imaginary component of

In proposing the origin of the absorption modulation, a range of possible alternative mechanisms 

for electro-optic modulation in étalon type structures were considered and discounted. Eldering and co­

workers [Eldering et al, (1991)] suggests that the largest modulation effects are due to (0 modulation of the 

thickness of the device due to compressive forces between attractive charge layers on the electrodes, and 

(//■). the converse piezoelectric effect [Nye, (1964)]. The first effect exhibits a dependence on the applied 

electric field which is independent of its direction and any modulation would occur at a frequency of twice 

the drive voltage frequency. This was measured to be less than 1% of the amplitude modulation at the 

fundamental frequency. The second effect occurs when modulating voltages are applied to piezoelectric 

materials, resulting in a modulation in thickness of the device. A piezoelectric constant of approximately 1 

nC/Newton would be required to account for the measured intensity modulation. This is three orders of 

magnitude greater than quartz, and therefore unlikely to be wholy responsible. However, it is possible that 

this effect contributed towards the total intensity modulation measured.

3.11 Limitations to the Poling Technique.

A process called charge double layer formation has been observed in monomeric liquid crystal 

devices. It occurs in devices when d.c. electric fields are applied to the device, and has the effect of 

creating a reverse electric field within the device, thus reducing the internal field applied. It occurs because 

residual ions in the liquid crystal material are attracted to the oppositely charged electrode, but are 

prevented from being conducted away by an insulating layer. It is common to use a thin insulating layer on 

top of the ITO electrodes to prevent ions moving from the ITO into the liquid crystal and lowering its 

resistivity. In this way, the trapped charge can create a reverse electric field which can be sufficiently large 

to reverse switch the device once the applied d.c. field has been removed. This problem might also be 

expected in poled polymer devices, where extremely large dc electric fields are applied to the device for 

relatively long periods of time.

Polymeric materials used for non-linear optics are of high purity to allow the maximum poling 

field possible to be applied to the devices. However, they are not as pure as commercial liquid crystal 

materials, which can have resistivities as high as 10^^ Hm"^. In this study, no insulating layer was used 

between the electrode and the polymer to act as a barrier for ions attracted to the electrodes from within the 

bulk of the material. It is known that ITO injects holes into the polymer layer, and therefore this process 

cannot be prevented. It was hoped that the absence of a barrier layer would allow injected charge to be 

conducted away via the other electrode. However it is possible for ions to become trapped within the 

polymer material due to the presence of defects or charge traps in the material. These occur at interfaces of
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materials and are due to the internal stresses originating from the material not matching the adjacent layer, 

or if the adjacent layer has surface topography. It is known that the ITO surface can be quite rough and was 

measured using the Tencor Alpha-step to have a roughness of 40 A.

Several experiments were used to try and detect the presence of charge double layers in the 

polymer devices after they had been poled. The first was to measure the poling efficiency as a function of 

device thickness. If the defect region near the interface and thus the charge double layers are as thick as 1 

tim, then it may be possible to detect a non-linear poling efficiency as a function of device thickness. A 

number of devices were made with thicknesses in the range of 2 to 12 |iim. Due to the viscosity of the 

polymer, it was not possible to fabricate thermal compression cells less than 2 pm in thickness. A plot of 

poling efficiency as a function of thickness is shown in figure 3.15. The large variation in results was 

believed to be due to poor control in the flatness of the cells. This also has a direct effect on the efficiency 

of the device as a modulator, as discussed in the previous chapter. It was noticed that flatter cells exhibited 

significantly larger modulation amplitudes.

Attempts were made to monitor the charge flowing into and out of these devices whilst the poling 

took place. It was hoped that measurement of the current would give information about any charge double 

layer formation and relaxation, by detecting ion current flow after the cell had been charged and discharged 

respectively. The current was measured using a Keithley picoammeter connected in series with the cell. 

Unfortunately any ion currents were below the noise level and therefore unmeasurable. The noise was due 

to pickup in the leads and difficulty in isolating the sensitive picoammeter.
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Figure 3.15 Electro-optic modulation amplitude as a function o f devict thickness.

A technique to overcome the problem of charge double layer formation whilst poling may have 

significant benefits to increase the poling effiency. A novel poling scheme based on an asymmetric 

rectangular wave voltage which had no net dc component was investigated, as shown in figure 3.16.
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Figure 3.16, Novel Poling Scheme.

This was intended to exploit the earlier reported non-linear dependence of the induced optical 

nonlinear coefficient on poling field strength [Griffith et al, (1991)], and thus any difference in the voltage 

dependence of the reorientation and charge build up. A possible scenario would be where the large positive 

pulse partially orientates the molecules, together with a build up of ionic charge. The low negative pulse 

will then remove the charge double layers, but does not fully reorient the side chains, resulting in a net 

alignment. It was hoped that this simple solution would overcome the problem of charge double layer 

formation. Unfortunately, this could not be tested as the new polymer material synthesised for this work 

did not exhibit the same nonlinear dependendence as reported earlier. In the 'linear' material used in all of 

the experiments for this study, no net ordering could be obtained using this technique.

3.12 Discussions and Further Work.

This chapter described work investigating the technique of poling side chain polymers for electro- 

optical applications. This study has involved the use of a wide range of measurement techniques to 

characterise the selected polymeric material. A novel experiment was described which probed the 

dynamics of poling and relaxation of polymers. The results of this work are comparable with other 

techniques such as SHG and dielectric relaxation. It offers the same selectivity of the non-centrosymmetric 

ordering as SHG, but only requires simple lasers and optics. The device configurations used are the same as
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through plane Pockels cell devices, offering a technique to investigate materials and poling in-situ. The 

measurements can be carried out at a wide range of wavelengths.

The dynamic response to poling has been investigated and described with particular emphasis at 

the molecular level. The rise in induced electro-optic coefficient was discussed in terms of fast molecular 

reorientation within the thermal free volume of the side chain group, followed by side chain reorientation 

via a rotational diffusion mechanism. Below the glass transition, these two mechanisms were found to 

merge, resulting in a stretched exponential function, which is becoming increasingly common in the 

dynamics of glassy systems, in both the increasingly popular study of poling dynamics and in dielectric 

relaxation studies, from which the function first originated.

The work on the electro-optic measurement of poled polymers is by no means complete. The lack 

of retention of the induced order persists as a problem for device manufacturers where processing at 

elevated temperatures is required. Minimising the relaxation of the induced order when the poling field is 

removed is also important, and has not been eliminated even in cross-linked systems [Allan et al, (1991)]. 

If the model which is described here is correct, then it will be very diffrcult to prevent the relaxation within 

the thermal free volume. Annealling the samples whilst the poling field is present would be one possible 

route. Several groups have described annealing before or after poling has occured to minimise the thermal 

free volume [McL. Smith & Coles, (1992)].

The question as to whether charge double layers are limiting the efficiency of the poling 

mechanism has not been fully answered. The effect is in all likelyhood present, but will vary in its 

magnitude from material to material. It would be possible to overcome the problem using the novel poling 

scheme, but this requires a non-linear dependence of the induced electro-optic coefficient as a function of 

the poling voltage. This effect has been reported in the literature, but attempts to reproduce those results in 

the present work failed. Indeed the origin of the nonlinear dependence of the induced nonlinear coefficient 

upon poling field is still unclear. The suspected cause was probably due to the higher polydispersity in the 

earlier material, although this has not been investigated. Complicating issues such as the presence of 

unreacted monomer and other impurities may also contribute to the anomolous effect. To investigate and 

account fully for the effect, considerable synthetic effort would be required to isolate the cause.

Although control and characterisation of polymer synthesis is becoming increasingly important for 

nonlinear optical polymers, it is important to balance this particular study against the possible benefits from 

exploiting the nonlinear dependence which is as yet unproven. Unless the nonlinear effect can be induced 

in a range of polymeric materials, it may not result in devices with higher nonlinear coefficients, as 

optimisation of other aspects of the materials may result in a similar increase in performance of the device.
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4. Second Harmonic Generation in Liquid Crystal Materials.

The requirement for compact laser sources of radiation in the blue and green regions of the 

spectrum has resulted in considerable interest in all classes of materials which exhibit potential for 

frequency doubling. The benefits to be gained from developing such light sources are considerable for the 

data storage and display markets. The use of shorter wavelength radiation will allow an increase in the 

density of information stored on optical disks, for both computing and entertainment applications. 

Typically, halving the wavelength would lead to a fourfold increase in information density. The 

development of blue and green laser sources based on semiconductor laser technology may also produce a 

new, highly efficient type of colour display, principally for projection applications without the requiring 

powerful and inefficient light sources. The potential size of the markets for such devices are very large, and 

the technology is sufficiently realistic to persuade many groups around the world to try and develop blue 

and green semiconductor laser sources.

The most common technique for producing blue and green compact lasers is to double the 

frequency of existing semiconductor lasers operating in the red and near infra-red region of the spectrum. 

The demand for compact and efficient devices places very high requirements on the nonlinear optical 

material to be used for frequency doubling. There are alternative techniques to produce green and blue 

compact lasers which also show promise. Within the last couple of years there has been a number of 

successes in using zinc selenide (ZnSe) as a wide band direct semiconductor material. Light emitting 

diodes have been demonstrated in the blue region when cooled to liquid nitrogen temperatures, and green 

at room temperature. Within the last year, lasing has also been demonstrated at room temperature, albeit 

for a short period [Jeon et al, (1992)]. The problems of device lifetimes and cooling are limited by the 

quality of the material, particularly associated with doping the material with donors and acceptors. There is 

still a long way to go before ZnSe will be a competitive technology at room temperature. However, it has 

clearly demonstrated that direct production of short wavelength radiation is possible in semiconductor 

materials, and can challenge techniques such as frequency doubling.

Chapter 2 discussed the requirements from optical materials for large nonlinear coefficients, with 

particular emphasis on the electro-optic effect and devices. In this chapter the nonlinear effect to be 

discussed is frequency doubling or second harmonic generation (SHG). The theory of SHG will be 

developed more fully, with particular emphasis on device requirements for frequency doubling. The 

relatively new class of chiral smectic liquid crystal materials for SHG shall be described, with discussions 

of their relative advantages and drawbacks. An experiment to measure the SHG efficiency of these 

materials, and theoretical analysis to account for the data will be fully described.
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4.1 Theory of Second Harmonic Generation.

Second harmonic generation is the process where two identical optical electric fields are coupled 

by the nonlinear susceptibility of a material and light at double the incident frequency is re-radiated. 

Section 2.1 discussed the requirement of lack of inversion symmetry for second order nonlinear processes 

to occur in a material. This is also a necessary condition for second harmonic generation (SHG) and must 

be taken into account when the theory of second harmonic generation is derived.

A simple derivation of the electric field of the second harmonic wave is based upon Maxwell's 

equations and the formulation of electromagnetic waves. Including a nonlinear component to the 

polarisation P, gives

^ i ~ ^ o X  ij )/

and

(  ),• “  ^oXi jk

To simplify the analysis and yet remain valid for experimental situations, solutions to the new wave 

equation are sought in the form of plane waves propagating along the z axis with frequencies coj 2 ,3 . where 

0)1 = (Ù2 0)3 = 2 (0 1 . The solution, described for example by Yariv [Yariv, 1989] predicts an electric

field oscillating at twice the frequency of the driving force (the incident radiation) of the form

£^(z) = - ico 2 l^ \e f“:d,j,:eJe“\E (̂z)e‘ 
V ^2(0

iloM ^  4 2
iAk

where O ) is the frequency o f  the fundamental electric field, Ak is the difference between the wave vectors at 
0) and 2 o), iig is the permitivity of free space, G2 o) the dielectric permitivity at frequency 2 o) and dÿk is

the nonlinear coefficient. The nonlinear coefficient is defined in tensor notation as

(Pi)NL = 2dijk Ej Ek or 2dijk = Xijk £o 4.3

where is the nonlinear component of the induced polarisation, and xijk is the second order nonlinear 

susceptibility tensor. The factor isolated between the vertical lines is the effective nonlinear coefficient 

dçff. This can be found from the product of the nonlinear tensor and the unit vectors of the three electric 

fields, Cj and ej^^.

The approximations used in this simple derivation leading to equation 4.2 include:
i. The incident electromagnetic wave E(o(z) is planar. This is satisfactory, even for gaussian wave fronts,

providing that the material thickness is less than the confocal parameter of the beam.

ii. The nonlinear polarisation is small compared with the linear component. Large nonlinear effects 

cannot be described by a perturbation theory type derivation. However, this is satisfactory for almost 

all materials.
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iii. Depletion of the fundamental beam does not occur i.e. second harmonic generation is sufficiently 

weak not to reduce the intensity of the incident wave. Depletion can be taken into account using a 

more advanced theory, as can the effect of non-planar wave fronts. Yariv [Yariv, (1989)] or Shen 

[Shen, (1984)] develop these advanced theories in more detail than is required here.

iv. At distance z=0 there is no second harmonic electric field. This defines a simple starting condition for 

the nonlinear wave.

The expression for the second harmonic power output P2 q) per unit area (or irradience) is given by 

the relation

which can then be used to define the conversion efficiency ( c s h g )  a s

^sHG -  -  8
Mo

^ r e a (^20, - ' ^ K ) Y 2
4.4

Pcù is the incident power at frequency co, L is the thickness of the material, and n is the refractive index of 

the material at the specified frequency. The expression for Ak can be replaced by one containing 

measurable parameters, the refractive indices and the wavelength.

M  = - 2 k ^  =  ̂ («20, - )  4.5

From 4.4 it can be seen that efficiency cshg is dependent on the device thickness L squared. However, this 

is modulated by the final term - a sinc^x function. The origin of this final term is the phase mismatch 

which develops between the fundamental and second harmonic waves as the two waves propagate through 

the material at different speeds, and can reduce the SHG output to zero in certain circumstances.

4.1.1 Phase Matching.

Equation 4.4 indicates that a requirement for efficient second harmonic generation is that Ak = 0,

or

k2(û — ^kci)

which would increase the final term of equation 4.4 to unity, and so SHG efficiency would rise as a 

function of thickness L squared. This is a very desirable but impossible situation as SHG efficiency cannot 

increase indefinitely. All materials have absorption which results in dispersion in the real part of the 

refractive index, as described by Kramers Kronig relations. Waves of different frequencies therefore travel 

through the material at different speeds. It is possible for the thickness of the device to be such that second
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harmonic generated at the beginning of the material is anti-phase with the second harmonic generated later 

in the material. In this condition the distribution of second harmonic waves generated through the material 

interfere with each other with the result that no net second harmonic emerges from the material.

A characteristic length called the coherence length [Yariv, (1989)] can be defined by

Ic = 2tc /  Ak. 4.6

The coherence length is a measure of the maximum length of a material that can produce second harmonic 

light efficiently without phase matching, and before destructive interference reduces the output. It can be 

written in an alternative form shown in equation 4.7 involving the refractive indices which are easily

measured. Typical values of Ic are of the order 50 pm for X;= 1 pm and An = 0.01.

The condition of Ak=0 is called phase matched which can be achieved in a number of ways often using the 

birefringence of the material. Rotating the orientation of the crystal or changing its temperature can 'tune' 

the material to the phase matched condition, resulting in efficient conversion from the fundamental to 

second harmonic frequency. In these circumstances other limits prevent infinite SHG efficiency, and for 

example depletion of the fundamental beam can no longer be ignored.

In a positive uniaxial material (n^ > no), co-linear phase matching can be achieved if the 

refractive index at ng at angle and at frequency o) is equal to that for Uq at 2co. This is type I phase 

matching (o+o —> e; e+e o). An alternative type of phase matching can be achieved if the two 

fundamental beams are polarised orthogonal to one another, and the harmonic is polarised at an

intermediate angle with respect to the fundamental. This is type II phase matching (o+e e).

A range of alternative phase matching techniques can be used in waveguide structures. 

Waveguides appear to be ideal for second harmonic generation due to the high light intensities and long 

interaction lengths. There are many variations of phase matching based on the idea that the waveguide 

sustains the fundamental and second harmonic in different guided modes [Hewig & Jain, (1983)]. One may 

be guided in the core, and the other in the cladding layer, for example. These geometries are usually 

troubled by the poor spatial overlap of the fundamental and harmonic radiation mode structures which 

reduces the efficiency of the device. A technique which overcomes this drawback involves modifying the 

waveguide (or nonlinear medium) in a periodic manner which is matched to the coherence length of the 

harmonic generation. This allows the constructive SHG over a coherence length, but suppresses SHG for 

the period which would normally result in destructive interference. This technique of quasi-phase matching 

has been demonstrated both in inorganic materials [Ishigame et al, (1991)] and poled polymeric materials 

[Khanarian et al, (1990)].
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4.2 M aterials and Device Requirements for Second Harmonic Generation.

Many of the material requirements for efficient second harmonic generation are common for all 

nonlinear optical materials, and were discussed in detail in section 2.11 earlier. There are, of course 

specific material requirements for second harmonic generation, and equation 4.4 suggested the important 

material parameters for efficient conversion are contained in the ratio

4.8
n f n r n ' ;

together with the condition for phase matching given in equation 4.5. It is important that the material be 

stable to the fundamental and second harmonic radiation, as very high intensities are used, and indeed 

desired to improve the conversion efficiency of the device. The ability to phase match the fundamental and 

second harmonic radiations is also of great importance for producing usable devices. The condition of 

phase matching must be stable and easily maintained. The alignment angle tolerance (acceptance angle) of 

the material may be narrow, requiring careful and stable alignment. If the refractive indices of the material 

exhibit a strong temperature dependence, then the control of temperature may be required to be better than 

1®C, forcing the device to be used in a temperature stabilised environment. Some of these properties are 

now being controlled by materials engineering, resulting in a new range of nonlinear materials optimised 

for specific applications.

The inorganic material potassium titanyl phosphate (KTP) is becoming widespread in its use for 

frequency doubling, and displacing some of the earlier inorganic materials such as potassium dihydrogen 

phosphate (KDP) or lithium niobate (LiNbOg). Its success is due to its wide transmission band (0.35 - 4.5 |i 

m), the high laser damage threshold (15 GWcm"^ @ 1.064 pm) and competitive nonlinear coefficients 

(dgff = 3.2 pmV‘1) in comparison to KDP, together with the ability for type II phase matching. It also has 

wide acceptance angles and thermally stable phase matching properties [Bierlein & Vanherzeele, (1989)]. 

It can be grown in good quality crystals up to 6x5x2 cm in size in a period of weeks.

The nonlinear coefficients of organic crystals are frequently measured by the technique of SHG, 

but very few materials have been developed into devices. Those devices which have been developed have 

been based upon well known crystals such as DAN [Huang et al, (1991)] but many of the device critical 

parameters are frequently not published. Organic crystals suffer from many of the same problems as 

inorganics, particularly the problems associated with growing large high quality crystals with high damage 

thresholds. This is the likely cause for the lack of device studies. The incentive for developing this class of 

material is that they offer amongst the highest nonlinear coefficients yet reported in nonlinear materials 

[Bierlein et al, (1990)]. The problems of stability of these materials on exposure to the atmosphere or high 

laser intensities are beginning to be addressed at the level required to make reliable devices.
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The developments in polymeric materials for electro-optic devices has also improved their SHG 

device potential. This is particularly true in integrated optics geometries, where techniques for derining low 

loss waveguides and coupling to semiconductor laser sources is being developed. The materials used at 

present have acceptable nonlinear coefficients, and this situation is constantly being improved by 

developments in the materials. One of the main limitations of poled polymers is the problem of relaxation 

of the poled order into a centrosymmetric state which is of no use for second order nonlinear effects. This 

problem has been discussed in great detail in chapters 2 and 3.

Ferroelectric liquid crystals possess a transverse axis which can self assemble into a 

noncentrosymmetric alignment and therefore exhibit SHG [Shytkov et al, (1985)]. The following section 

describes how the presence of chiral molecules in the tilted smectic C phase can give rise to this axis which 

lacks inversion symmetry. Ferroelectric liquid crystal materials are being developed primarily for a new 

class of liquid crystal display, due to their exhibit fast molecular reorientation effects on application of 

electric fields together with their inherent bistability. Molecular engineering techniques are now being used 

to improve the optical nonlinearities in these materials for nonlinear optical applications.

4.3 Ferroelectric Liquid Crystals.

Liquid crystal molecules which form the tilted smectic C (Sc) phase and lack a centre of inversion 

have the potential for noncentrosymmetric ordering within the bulk material. This ordering is never seen in 

a free material, because the chirality of the molecules results in them packing in a helical form, as shown 

schematically in figure 1.6. External forces can be applied to unwind the helix and obtain the desired 

molecular ordering. These forces may be electrical or magnetic in origin, or may be due to surface 

alignment layers which influence the direction in which the molecules lie at the surfaces of the device. 

These surface forces can result in the helix unwinding in thin devices (-2  p.m), and so result in a surface 

stabilised ferroelectric liquid crystal structure (ssflc) [Clark & Lagerwall, (W80)]. However, surface effects 

are relatively weak and alignment of thick layers usually requires the application of electric or magnetic 

fields.

The symmetry of the smectic C phase is dominated by the shape of the molecules and the tilt, as 

shown in figure 4.1. The angles 0, (p, and \|/ describe the tilt within the layer, rotation around the cone and 

rotation about the director respectively. If the molecule is symmetric, the liquid crystal phase possesses 

twofold rotational symmetry about the C2  axis together with mirror symmetry in the plane containing the 

director n and is perpendicular to the C2  axis, which combine to describe inversion symmetry. The only 

well defined molecular axes are the director n and the C2  axis. If the molecule contains a chiral group then 

the reflection symmetry operation is forbidden, and the remaining C2  rotation axis is no longer inverted 

under the remaining symmetry operations.

65



s m e c t ic
l a y Œ s

Figure 4.1 The molecular co-ordinate system fo r  a Smectic C molecule.

A molecular dipole moment along this C2  transverse axis cannot be inverted and cancelled, and so can 

combine together to form a bulk permanent dipole or spontaneous polarisation. The C2  axis is the direction 

of the molecular spontaneous polarisation, Pg. The transverse component of the molecular 

hyperpolarisability along this axis is also no longer inverted under the symmetry operations of the bulk 

phase, and so can give rise to SHG from the bulk material.

When an external electric field is applied to a smectic C material, the coupling energy between the 

field and the permanent transverse dipole moment is minimised when the dipole is oriented parallel to the 

electric field. The molecules can align themselves in response to the electric field by rotating around the 

cone shown in figure 4.1. It is energetically unfavourable for the molecules to move outside this restricted 

path because the layer spacing would change. The alignment in an electric field can be enhanced because 

many of the molecules which form smectic C phases have negative dielectric anisotropy. This means it is 

more energetically favourable for molecules to align their long molecular axis perpendicular to the applied 

electric field than parallel to it.

The nematic liquid crystal phase was described in chapter 1 by the Euler angles ^ and q. These 

angles described the tilt of the molecular long axis relative to the director, n, the rotation of the molecule 

about the long molecular axis, and the direction of the molecular fluctuation in the plane transverse to n 

respectively. From these angles two order parameters can be defined where

5  =  -^ (3 c o s ^ (^ - l )  4.8

describes the order parameter of the longitudinal molecular axis with respect to the director n, and

D  =  y^sin^<^ c o s 2 ^ ^  4.9
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which is the order parameter for the transverse principal axis of the molecule projected onto n. In the 

nematic (and smectic A phase) all values of “n are equally likely, and so the angle is not used in the nematic 

order parameters. In the smectic C phase, there is now an additional axis to which molecular fluctuations 

can be referenced, the C2  axis. This results in two new order parameters, P and C. P is the order parameter 

of the long molecular axis with respect to the C2  axis, and is given by

P = I  (sin cos 277). 4.10

The order parameter of the short molecular axis with respect to the C2  axis is C and is described by

C = (y(l + cos^ <?)cos2f cos277-cos<Jsin2f sinT]^ 4.11

which represents the hindered rotation about the long molecular axis, and results in biaxiality.

The four order parameters used to describe the smectic C phase are very complex, and so a 

simplified geometry will be considered. The new geometry assumes perfect nematic order, i.e. S=1 and 

D=0. This is reasonable as the smectic C phase is quite well ordered, with less liquid-like properties. The 

approximation reduces C to

C = (cos 2 0  4.12

and C and \j/ become equal as the molecular axis and the director become co-incidenL The hindered 

rotation of the molecule about the director order parameter is

Q =  ( c o s 2 i / a )  4.13

where v  is the orientation about the director, as shown in figure 4.1. This described the biaxiality of the 

phase, and may be referred to as the biaxial order parameter. Typical values of A are in the range 0.09 -»  

0.19 [Jones, (1991)]. If the molecules are assumed to be perfectly rigid, then a ferroelectric or polar order 

parameter can be defined as

n  = (cos I / )  4.14

which describes the tendency for the molecular transverse axis to be distributed about \|/ = 0  rather than 

y  = ± 7t. and IT are shown graphically in figure 4.2. The order parameter O, shown in figure 4.2a may be

thought of as describing the biaxiality found in a non-chiral smectic C phase. In the chiral form of the

phase at temperatures close to the C—>A transition, the rotation about the director is dominated by the polar 

order parameter IT, as shown in figure 4.2b. If the material is cooled lower into the smectic C phase then 

the molecular transverse axis is described by a combination of the polar and biaxial order parameters, as 

shown in figure 4.2c. The polar order parameter is of great importance in nonlinear optical 

measurements. This describes the degree of noncentrosymmetry found in the material which has a very 

strong influence upon the bulk nonlinear coefficient The biaxial order parameter has very much less 

significance, but may affect phase matching conditions.
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Figure 4.2 The polar and biaxial order parameters.

4.3.1 Alignment of Ferroelectric Liquid Crystals.

The unwinding of the molecular helix in the chiral smectic C phase can be achieved in one of two 

molecular orientations within a device. Homeotropic alignment describes where the molecules tend to align 

their long axis perpendicular to the device substrates, and homogeneous alignment is where the molecules 

lay in the plane of the device.

Surface treatments such as lecithin or chrome complex on the glass substrates (or in fact very 

clean glass) can induce homeotropic alignment. This arises because of a preferential bond formation 

between one of the ends of the molecule and the surface alignment layer. It is possible for this first layer to 

be highly noncentrosymmetric, for example by having different chemical end groups, only one of which 

forms a strong interaction with the surface alignment. However, the second layer frequently packs anti 

parallel with the first, resulting in no bulk asymmetry. As the smectic layers form with their planes parallel 

to the device substrates, there is no preferential direction for the Pg and so the helical structure as found in 

the bulk is formed. This helical structure destroys the bulk noncentrosymmetry. It has recently been 

demonstrated that circular polarised light matched to the helical pitch can give enhanced SHG compared to 

plane polarised light incident, although the level is still very low [Kajikawa et al, (1992)].

An electric field applied parallel to the plane of the cell using transverse electrodes within the cell 

can be used to unwind the helix, as shown in figure 4.3. This will induce noncentrosymmetry of the 

transverse hyperpolarisability in the plane of the cell which can then be accessed by light normally incident 

on the cell. This alignment can be easily achieved in many smectic C materials, and results in a well 

understood uniform structure through the cell. It is therefore one of the most favoured smectic C 

alignments for SHG studies.
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Figure 4.3 H omeotropic alignment unwound with electric field.

Hom ogeneous alignm ent layers encourage the liquid crystal m olecules to lay in the plane o f the 

interface. These polyim ide or nylon layers are unidirectionally rubbed with a cloth to im part a  preferential 

alignm ent direction. The action o f rubbing is thought to align the polym er backbones in the alignm ent layer 

and/or form micro grooves in the alignm ent surface. The liquid crystal m olecules adopt a preferential 

alignm ent with their long m olecular axis along the rubbing direction to m inim ise the elastic forces in the 

m aterial. The planar alignm ent layers can give the m olecules an out o f plane tilt, called the surface pretilt, 

^g. This pretilt is usually quite sm all, typically 0 - 6® for rubbed polym er surfaces.

The idealised alignm ent o f the sm ectic layers in this geom etry is to form vertical planes between 

the substrates, and the m olecules to lie horizontally between them. This is called the bookshelf geom etry, 

first proposed by Clark and Lagerwall [Clark & Lagerwall, (1980)] and is shown in figure 4.4 in one o f its 

switched states. To prevent the m olecules from forming a helix in this geom etry, it is necessary for the 

thickness of the device to be significantly less than the m olecular pitch length.

Figure 4.4 The idealised bookshelf geom etry fo r  p lanar alignment.
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U nfortunately, without the application o f large electric or m agnetic fields, the bookshelf alignm ent is not 

energetically favourable. In its place, the layers spontaneously form a chevron structure [Rieker et al, 

(1987)] shown in figure 4.5.

C h e y r o n J _ _ _
In te r fa c e !

Figure 4.5 The chevron interface and alignment.

It has been found that on cooling from the smectic A to the sm ectic C phase, the layer spacing in the 

smectic C phase, Ûq is sm aller than in the smectic A phase, d^ , due to the tilt of the m olecules within the 

layer. A chevron structure forms because of many factors, including the smectic layers are pinned at the 

surface of the device, pretilt o f the rubbed polyim ide alignm ent layer and the m inim isation o f splay, twist 

and bend energies. There is also a requirem ent that the director m ust be continuous across the cell. 

Preventing the layers from moving at the surfaces forces the layers to tilt by an angle given by 0(- given by 

cosÔç^ = d ^ / d ^ .  4.15
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A typical ferroelectric display material has a cone angle of about 22.5®, and therefore is about 18®.

In one half of the chevron, the molecule sits at one side o f the cone with its Pg pointing at an angle 

(pQ towards the substrate. Across the chevron interface in the other side of the device, the molecules sit on 

the other side of the cone with the vertical component of Pg pointing opposite the first direction. The 

horizontal component of Pg remains constant through the cell. At the chevron interface, the two 

spontaneous polarisations almost cancel, leaving only a small component in the plane of the chevron 

interface. The outcome of this alignment for nonlinear applications is that Pg is partially cancelled across 

the device. There would be a similar effect for the bulk optical nonlinearity due to the reversal of the 

alignment.

If a voltage is applied across the cell, the molecules rotate around their cone to try and align their 

Pg with the applied field. This is limited by surface anchoring at the interfaces and continuity of the 

director at the chevron interface, where the molecules are unable to move. Within the two sides of the 

chevron the molecules rotate around the cone to approach the condition %  = tc/2 , which is only attainable 

for infinite fields. Any net alignment of the Pg of the molecules in this geometry would be normal to the 

cell substrates, and would not be easily accessible for nonlinear applications. To couple light with the 

transverse hyperpolarisability device geometries are required where light passes through the device at an 

angle to the normal, or is waveguided through the sample.

4.4 Experiment to M easure SHG Efficiency.

Measurement of the electronic nonlinear optical coefficients can be achieved at optical 

frequencies using the technique of second harmonic frequency generation [Franken et al, (1961)]. These 

frequencies are well above the limit of molecular reorientation, and so any nonlinear effects measured must 

be due only to electronic processes. This technique is therefore suitable for investigating the nonlinear 

optical properties of monomeric liquid crystal materials, where molecules can reorient in response to 

applied dc and low frequency electric fields.

It is possible to calculate the magnitude of dijk from equation 4.4 by measuring the second 
harmonic output P2ca as a function of Akz. Variation in Akz can be achieved by rotating the sample away

from the experimental optic axis, increasing z from L to L/cos0, where 0 is the angle of rotation between

the material normal and the beam propagation direction and L is the sample thickness. This will result in

Maker fringes [Maker et al, (1962)], and from these fringes it is possible to calculate the nonlinear

coefficients of the material. To eliminate variations due to the laser beam, the measurement is normalised

against SHG from a quartz reference crystal. This results in a parallel optical beam experiment, shown in

figure 4.6, where the laser energy is divided equally between a sample arm and a reference arm. For every

measurement, the ratio of SHG energies is calculated, eliminating problems such as pulse to pulse energy
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variations and removing laser dependent parameters from the equation to calculate the efficiency. These 

parameters include the beam spot size and additional correction factors for gaussian spatial and temporal 

profiles of the laser pulses. The parameters which remain in the calculation are now mostly material 

dependent, as shown in equation 4.16.

p2o)

p2(0
* L C  
poi

\ Q ^
4.16

- " L c ) )

Aq is a constant calculated for quartz, taking into account its angle, refractive indices, thickness etc. which 

remain constant for each measurement From this equation it is possible to calculate the d^ff for a test 

material in a particular alignment.

The laser source was a Nd' ’̂YAG laser producing pulsed radiation at a wavelength of 1.064 pm 

with a pulse duration of 10 ns, and pulse energies up to 100  mJ. The beam characteristics were TEMqo, 

with approximately single longitudinal mode temporal profile. The beam was initially horizontally 

polarised, but could be changed using a half wave plate to give vertical polarisation, or quarter wave plate 

and polarisor combination to give any desired polarisation. High laser energy Glan-Taylor polarisors were 

used throughout the experiment to define the polarisation of the light.

Dispersion
Prism

Beamsplitter
Polarisor

:YAG Laser *
co+ 2 q)

2 q)

Apertun
Filter

Attenuator 
+ Filter

PMT

Quartz
Reference

Figure 4.6. The SHG Experimental Configuration.
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The requirement that liquid crystal materials be contained in a thin layer within a glass structure 

resulted in problems which had not been encountered in earlier SHG experiments. The source beam energy 

was attenuated to prevent damage to the samples and electrodes through absorption. It was found that 

Indium Tin Oxide (ITO), used as a transparent electrode in cells, was the most susceptible to damage and 

caused local heating and vaporisation of the liquid crystal material. Below damage energy levels, SHG 

could be detected from the ITO layer. Although very small (just above noise levels), the resonant cavity 

formed by the cell could increase this signal. Further attenuation of the beam energy reduced this signal to 

below noise levels. An visible cut-off edge filter (Schott RG830) was used to remove any radiation at the 

second harmonic frequency before the sample. Possible sources of this light include light from the laser 

flashlamps and second harmonic generation from optical components. This is particularly important for 

quartz wave plates which produce strong second harmonic radiation which must be removed from the beam 

before the sample or reference crystal.

The requirement for temperature control within the optical experiment was achieved using a 

temperature controlled microscope hotstage (Mettler FP82) which had been modified to transmit light with 

angles of incidence in the range -50® —> +50® in a horizontal plane. To maintain temperature stability, the 

vertical aperture was 2mm, slightly larger than the beam diameter of the laser at that point Whilst in the 

hotstage, dc or ac electric fields could be applied to the material via electrodes in the cell. The hotstage 

was then mounted upon a computer controlled turntable which rotated about a vertical axis, and was used 

to vary the angle of incidence of light through the device for Maker fringe studies. A translation stage 

allowed movement of the axis of rotation across the beam path to ensure the rotation axis was coincident 

with the laser beam.

Before detecting the second harmonic energy, it was very important to remove all of the residual 

light at the fundamental frequency. A combination of dispersion prisms and apertures removed any 

fundamental light before the remaining second harmonic light was collected by photomultiplier tubes 

(PMT). At the detector, the spatial separation of the fundamental and harmonic beams was greater than 10 

mm, and so the two wavelegnths were well resolved for spatial filtering. A final interference filter directly 

in front of the photomultiplier tube served to both eliminate any stray light from entering the PMT, and 

also offer some protection if the PMT was accidentally exposed to room lights. Both detectors were Thom 

EMI side window PMTs (978IR) with 9 stage amplification. The response time of the detectors was 2 ns, 

and a typical laser pulse had a detected width of 14 ns. Monitoring of increases in the detected pulse width 

gave an indication of the detector saturating. The energy of the input beam was attenuated to prevent this. 

A fast digitising oscilloscope (Tektronics DSA602) measured the photomultiplier signal and displayed it 

with a temporal resolution of 0.5ns. Very careful earthing of the detectors and their power supplies was 

required to minimise electrical noise from the laser.

The experiment was controlled by a desk top computer using the IBEE488 interface. The angle of 

the sample could be selected by the computer using the stepper motor turntable. The oscilloscope was
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armed and then the laser was triggered. Each measurement was averaged 10 times before the height was 

measured and stored on the computer for further evaluation. Averaging helped reduce noise levels and 

improve signal strength. The sample was then automatically rotated by a fixed angle and the measurement 

repeated. The rotation step size and the number of pulses averaged could be easily varied for particularly 

sensitive measurements using the computer software. This system enabled many automatic and reliable 

measurements of second harmonic generation to be made, allowing time to be devoted to aligning the 

material within the test cells for subsequent measurement.

4.4.1 Maker Fringes.

Before measuring the nonlinear optical coefficients for liquid crystal materials, the experiment 

was tested by measuring the Maker fringes from the quartz reference sample. Jeiphagnon & Kurtz [1970] 

have formulated a detailed analysis of Maker fringes in quartz for two given conHgurations, one of which 

was used in this experiment A numerical fit to the Maker fringes using this analysis produces values for 

the sample thickness and refractive indices, as well as the optimum angle for phase matched SHG.

The symmetry of quartz crystal is described by the point group 32, where z is a threefold rotation 

axis, and x is a twofold axis. From symmetry arguments, the nonlinear optical tensor can be reduced to two 

independent coefficients, d j j  and d^^, shown in equation 4.17.

— Quartz

fd,, - ^ 1 1 0 ^14 0 0

0 0 0 0 - ^ 1 4 -d,
. 0 0 0 0 0 0

4.17

The quartz crystal was cut in a 'y' form, where the normal to the input and output faces is parallel to the y 

axis of the crystal. The edges of these faces were parallel to the x and z axes, and the sample was mounted 

with the z axis vertical, and the crystal was rotated about this axis.

The sample was irradiated by the fundamental wave with horizontal input polarisation. Second 

harmonic radiation with horizontal polarisation was measured. All of these waves experience the ordinary 

refractive index, and can be resolved into vector components

^ sin (j> ^ 

- C O S 0

V 0
4.18

y
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where <|> is the angle between the electric field vector and the x axis of the crystal (after refraction), and 6  is 

the angle between the electric field vector and the z axis, which was 90® in all of these measurements. The 

nonlinear optical coefficient d^ff can be calculated to be

r  , 4.19
= cf,,[sin ^ - 3 cos 0sin0j.

The full analysis of Maker fringes must take into account the variation of the refractive indices 

with angle, together with the reflections and refractions which occur at the interfaces. This calculation is 

described in detail by Jerphagnon & Kurtz, and I shall only repeat the result. The amplitude of normalised 

fringes is given by equation 4.20

cos % + cos 0'^ ) cos" 0  cos 0 [^ ( <  + 1)' + 1)' cos' (3% ) . ^
Pn = ------------ 7------------------------- \ 3T-------------------------------------------- \-------------sin^ Y  4.20

cose + cos% ) (cos020, + < ) cose) [ n ^ + n lJ

where n^^, and n°2 co the ordinary refractive indices at each given optical frequency, 0  is the angle of 

incidence, and 0 '2 q) are the angles of refraction at each given optical frequency, and Y  is calculated

from

Y  = («ù / 2)(4 / A)(«° cos %  -  cos 0 ^ ) .  4.21

This equation was fitted to the experimental data in several stages. The first step was to find 

values for L using the standard refractive indices by fitting to the minima, i.e. sin^Y = 0, and to the 

amplitude at 0 = 0. The values of L and n° for the best fit were:

L = 2.0268 X 10-3 m = 1.53413

n®2o) = 1-54702.

The full Maker fringes were then calculated and compared to the experimental data, as shown in figure 4.7.
»

The correlation between the two curves is very good, and gave a high degree of confidence in the 

experimental configuration.

When used as a reference source of second harmonic generation, the quartz was rotated from 

normal incidence to its first maximum condition, at an angle of incidence i = 10.8®. At this angle, d^ff = 

0.467 pm V 'l, and the effective path length L = 2.042 x 10"3 m. Using this data, equation 4.4 for quartz is 

reduced to

Ipo, V
^ 2 _ 2 _ L x i .3 2 9 x lO ''.  4.22.

Area
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This equation can be substituted into equation 4.16 to calculate the efficiency and d^ff of the liquid crystal 

test materials.
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Figure 4.7 Maker fringes for Quartz with theoretical fit.
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4.5 Investigation of a Standard FLC material - SCE13(*).

Most of the nonlinear optical investigations of the chiral smectic C liquid crystal phase have been 

carried out using the homeotropically aligned cell configuration described earlier which is fast becoming a 

standard in this field [Taguchi et al, (1989)]. The liquid crystal alignment is relatively simple to achieve, 

and produces a uniform structure through the cell with the c% axis in the plane of the cell. This compares 

well against the widely used planar cells with surface stabilised alignment used in display type 

applications, where a complex chevron structure is known to form in place of the simple bookshelf 

geometry initially expected. These cell structures are limited in thickness to a maximum of a few microns 

to achieve the desired surface stabilisation of the spontaneous twist in the smectic C phase. The C2  axis in 

this geometry is usually pointing into the cell substrates, and is not in an accessible direction for 

transmissive devices.

There are a number of different surface stabilised alignments which can be achieved by varying 

the surface alignment layers. Some of these may result in uniform structures without the presence of a 

chevron interface, and have a component of the C2  axis in the plane of the cell. These geometries would be 

of considerable interest as they may result in efficient configurations with phase matching abilities without 

the requirement for aligning voltages to stabilise the molecular structure. To investigate SHG in 

ferroelectric liquid crystals the commercial material SCE13(*) from Merck Ltd was chosen as a standard 

material. It has a useful range of overlying liquid crystal phases and has had many of its optical, dielectric 

and alignment properties characterised by other techniques including refractive index data, Pg and tilt angle 

data. SCE13 is actually composed of a mixture of materials, some of which impart smectic C behaviour, 

and others which introduce chirality, but are not liquid crystalline themselves. The overall result is a chiral 

smectic C liquid crystal which is ferroelectric with Ps dominated by the chiral dopants.

4.5.1 Analysis of SCE13(*) using Homeotropic Cells.

The homeotropic cell geometry is shown in figure 4.8 in cross-section. Surface treatments such as 

solutions of chrome complex, HEMAB, lecithin or silanes may be spun down or dip coated onto clean 

glass substrates to produce homeotropic alignment. These surface alignment agents tend to have a polar 

head group and a hydrophobic tail. The polar group bonds strongly to the glass substrate, leaving the 

hydrophobic tail standing up to interact with any similar group on the liquid crystal molecules. These 

molecules would then have a preference to stand up on end at the interface, influencing the direction of 

molecular layers above. With both internal surfaces of a cell treated, quite good alignment can be achieved 

in relatively thick cells, up to 100  |xm in cases.
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Figure 4.8 Homeotropic cell geometry in cross section.

The molecular chirality which is required to remove inversion symmetry and produce a polar C2  

axis also results in a tendency for the molecules to twist into a helical structure in the bulk material. The 

homeotropic surface alignment is not able to prevent the formation of a helix in the cell. The helix can be 

unwound by the application of external electric Held which couples to the Pg of the material, or magnetic 

field which couples to the biaxiality in the magnetic susceptibility of the material. A uniform untwisted 

structure can be produced by applying transverse electric fields (along y) in the plane of the cell using in­

plane electrodes. This electric field rotates all the molecules to one side of the cone. It is preferable that 

these electrodes extend all the way across the thickness of the device to produce a uniform electric field, 

and consequently uniform alignment. As the transverse electric field is increased from zero, then the SHG 

intensity increases until at a critical value the helix is fully unwound, and the Pg is aligned parallel to the

electric field. Close investigation of this unwinding effect is described in chapter 5.
»

The cell used was 6  |im thick and filled with chiral SCE13, a standard ferroelectric mixture from 

Merck (UK) Ltd. The measurement was made at 50°C, which is 10° below the smectic C - A transition. At 

this temperature the pitch length of SCE13(*) was the order of 3 pm. The field required to fully unwind the 

helix was 8  V m m "\ or 16 V across a 2 mm electrode spacing. This critical field strength depends upon 

elastic constants of the material and the size of the Pg, and will obviously vary from material to material.

The structure and co-ordinate system for the fully unwound material is shown in figure 4.9. The 

electric field was applied along the y axis, rotating the molecules to lie on one side of the cone, which has a 

half angle 0. The normal to the smectic layers and the cell is parallel to the Z axis, and the incident beam 

makes an angle of incidence a  to this axis. The cell was rotated about the Y axis, allowing variation in a  

from -50° to +50°. The sign of 0 could be changed by reversing the polarity of the electrodes.
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Figure 4.9 Untwisted homeotropic material geometry.

The symmetry of the ferroelectric liquid crystal material in this alignment has a 2 fold rotation 

axis parallel to y and two mirror planes in the xy and yz planes (class 2 symmetry or 2mm). Symmetry 

arguments reduce the nonlinear tensor of this alignment to

" 0 0 0 ^4 0 d , e ]

d  = 2̂1 4z2 2̂3 0 44 0

l o 0 0 4z3 0 ^4>

4.23

using the assumptions of Kleinmann symmetry [Kleinmann, (1962)]. By using different combinations of 

input polarisation and polarisation of the second harmonic radiation, two independent combinations of 

nonlinear coefficients can be investigated. In the case of both input and second harmonic light being 

polarised parallel to the y axis

4.24

where

£ “ = (sin ( |)  -cost} ) 0 ) 4.18

relative to the molecular frame, and (|) is the angle between the electric field vector of the light and the y 

axis. Thus dgff can be calculated to be

^ c f f = - ^ 2 2  COS^0.

In this configuration (j) is constant at a value of 0 ®, therefore 

=  -^22

4.25

4.26

for this combination of polarisations. It is expected that this component of the nonlinear tensor is one of the 

largest as it couples electric fields from the input and second harmonic polarised along the C2  axis of the 

molecules. Unfortunately, in this geometry it is not possible to achieve the phase matching criteria of
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equation 4.5, as each wave only experiences the y component of the refractive index, and ny® ^  ny^^ and 

so it is not suitable for effîcient SHG device configurations.

The second combination of polarisations is when the input beam is polarised in the plane of 

incidence (an extraordinary ray) and the second harmonic is again polarised parallel to the y axis. In this 

geometry type I phase matching can be achieved by angle tuning the device about the y axis. For this 

combination of polarisations the effective nonlinear coefficient was calculated to be

= -t/ji cos^ ( 6 - a ) - d ^  sin^ { 6 - a ) + sin  2(0 -  a ) . 4.27

The special case of 6 = a  results in d^ff reducing to d2 i (which is equal to d%  ̂under Kleinmann symmetry 

conditions). However, before the Maker fringes for these configurations can be calculated using equation 

4.4, the refractive indices, cell thickness and tilt angle must be measured.

The device thickness was measured when the cell was empty using interference fringes produced 

from a Perkin Elmar X9 spectro-photometer, as described in chapter 3. It was assumed that the cell 

thickness did not vary before and after filling. The cone angle of the material was measured as a function 

of temperature using a planar cell geometry and a polarising microscope. After achieving good planar 

alignment, the device was switched between its two fully switched states using a square wave voltage with 

a frequency of a few hertz. Rotation of the cell between crossed polarisors can achieve extinction of each 

of the two fully switched states. The angle through which the cell must be rotated to move from one 

extinction condition to the other is equal to twice the cone angle 0  if the alignment is approximated to be 

bookshelf. The error in the cone angle measurement due to the chevron structure is virtually insignificant. 

The cone angle at 50®C was measured to be 16.4 ± 0.4®; at 40®C was equal to 20®; and at 25®C was equal 

to 23®.

The refractive indices of the material at co and 2© were measured using a wedge cell. This is a 

liquid crystal cell with the same alignment layers and electrodes as the homeotropic cell described above, 

but it is assembled to have a linear variation in thickness across the cell. The measurement of refractive 

indices by this method is described in detail in chapter 5, and in summary the values for SCE13* at 50®C 

were:

=  1.479 ±  0 .002  =  1.622 ±  0 .004

Azf = 1 .4 8 9  ± 0 .0 0 2  = 1 .4 7 8  ± 0 .0 0 2

y

Maker fringes produced from the eg^^ e^^ e^® polarisation configuration are shown in figure 

4.10 with a numerical fit to equation 4.4 using the refractive index data above. A thick cell (L = 46 pm) 

was used to give a number of fringes over the measurable angle range. An electric field of 0.025 Vpm"^ 

was used to unwind the helix, and the sample measured at 50®C. The quality of the fit is surprisingly good 

given the non-perfect alignment when viewed under a polarising microscope.
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Figure 4.10 Maker fringes in homeotropically aligned SCE13.

Wedge cell measurements of SCE13* using horizontally polarised fundamental radiation at the 

angle of incidence 24.28® (refracted angle = 16.4®) resulted in phase matched SHG from variation in device 

thickness across the wedge, as shown in figure 4.11. This configuration accessed only the d2 i  coefficient, 

and from the amplitude of the maximum, an estimate of the coefficient was made.
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Figure 4.I I  Wedge fringes for eeo polarisations at a  =24.28^
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4.5.2 Molecular and Bulk Nonlinear CoefTicients.

A measurement of the bulk nonlinear coefficient d^ff for SCE13 at 50®C can be made from the 

amplitude of the phase-matched peak in graph 4.10 using equations 4.16 and 4.22. At the angle of 

incidence of -6.5®, the value of dgff was calculated to be 0.0008 pm V ^ for eeo polarisations. The &2\ 

coefficient, which had not been directly measured in ferroelectric liquid crystal materials before, was 

estimated from figure 4.11 to be 0.0001 pmV'^. Similarly, a value of d2 % was also calculated from the 

SHG data measured using ooo polarisations, and was equal to 0.0031 pmV"^. Both of these values are very 

small in comparison to other types of materials used for second harmonic generation. However, this is not 

surprising, as SCE13* was not developed for nonlinear optical applications, and only about 10% of the 

material contained in the mixture is chiral.

In crystalline or even polymer materials for SHG, there has been a great deal of success in relating 

values of the molecular hyperpolarisability to the bulk nonlinear coefficient The values for the 

hyperpolarisabilies have been calculated using ab-initio or semi-empirical models [Prasad & Williams, 

(1991)]. The molecular orientation may be calculated within the unit cell of the material, and combined 

with the volume of the unit cell, it is possible to produce values for the nonlinear d coefficients which 

correlate with the measured values. This should also be possible in liquid crystal materials.

Equation 2.8 in chapter 2 described the translation from the molecular nonlinear 

hyperpolarisability to the bulk coefficient for a crystalline material. This equation has also been adapted to 

describe poled polymers and EFISH measurements by changing the unit of material for calculation from 

the crystal unit cell to the number density of molecules (N) in a non-crystalline material [Zyss & Gudar, 

(1982)]. Equation 2.8 then becomes

X u l  (-û> 3 ;û>„û )2 ) =  W /“* / " 7 j r  { Put (-0 ),]W „ û )^  4.28

and the orientational average of the hyperpolarisabilities is calculated using Euler angles from

~  \  P i jk  ^

where axx are the direction cosines and G(G) is a distribution function.

It would be impossible to calculate the orientation for each molecule within the liquid crystal 

phase, and so to simplify the calculation I shall make a number of approximations about the molecules and 

the chiral smectic C phase they form. The approach shall follow the theory of Zeks et al [1988], and its 

application by Buka et al [1989]. The microscopic model of Zeks et al assumed that the hindered rotation 

of the molecules around their long molecular axis can be described by a single particle potential U(\y)

t / ( i / r )  = t / ,  +U 2  = -a^d cosy/ - 0 2 6  ̂c o s ly / . 4.30

where \j/ = 0  when the C2  axis is perpendicular to the plane of the tilt (0 ) and parallel to the direction of Pg. 

The first term describes the polar nature of the potential and the second term is due to the biaxiality of the
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molecules. Generally the second term is much larger than the first, and so the combined potential has two 

minima and two preferred orientations exist at \j/ = 0 and n. The minimum at \|f = 0 is deeper than at \|f = 

71, and so it is more likely that the molecules will be found at this orientation.

Buka describes how the spontaneous polarisation can be related to the polar order parameter II for 

rigid molecules which have perfect nematic order (S=l)

P, = pli^{cosy/) 4.31

where p is the number density and |Ij^ is the transverse component of the molecular dipole moment along 

the C2  axis. This expression ignores any contributions to |I^  from the longitudinal dipole moment due to 

molecules not having perfect order. Both the ferroelectric polarisation and the second order nonlinear 

coefficient have a similar requirement of noncentrosymmetry, and so have only non-zero components 

involving the C2  transverse polar axis of the molecules. From equation 4.28 and 4.29, the nonlinear 

coefficient can be found from

d,jK UK
4.32

In the case of input and output polarisations being parallel to the y axis, then equation 4.32 is reduced to 

dyyy = f ? f } “ v ) -  4.33

There is experimental evidence to suggest that the second order nonlinear coefficient has a similar 

dependence on the temperature as the Pg of the bulk material. This temperature dependence was measured 

in the homeotropic geometry for the coefficient d2 2  of SCE13, and is shown in figure 4.12.
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Figure 4.12 Temperature dependence ofd22 cind in the smectic C phase ofSCElS*.
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The potential U(\|/) can be used to calculate the polar order parameter from

I n
J cosxi/ Qxp{-U I kT)d\if

{ c o s \i/)  = ^ ------------------------------- . 4.34

I  exp(-C/1 kT)d\i/
0

Expanding exp(-U/kT) up to second order terms and integrating between the limits shown, the equation 

describing Pg becomes

2 1 0 ' +

A i k T f + ( a f i f + { a ^ e ^ ) ‘
P . =  , : û ' , . , ' 2 '- 4 .3 5

To obtain the complete temperature dependence of <cos\|/>, the temperature dependence of the cone angle 

0  can be found from

9  =  4.36

where T(>^ is the temperature of the smectic C to smectic A transition, and Gq and a  were be found from 

fitting cone angle versus temperature data to equation 4.38 to be

0 0  = 5.0°

a  =0.4.

Equation 4.35 then becomes

B T + B C jA T )^
T̂  + B̂ ê (ATf“ +c\Ar)‘P . = 4 .3 7

where AT = (Tq^- T), A = pnx®0 ’ ® ”  a%/2k and C = a2 0 Q^/2 k. When fitting this equation to P j vs

temperature data (using NAG routine E04FDF) as shown in figure 4.13, it was noticed that there were 

several sets of values for A, B and C which fitted the data equally well. Therefore it was not possible to 

calculate a value for <cos\j/> from this data and numerical fit alone. A value for the parameter A was 

calculated from the number density of the molecules together with a value for the transverse dipole 

moment from molecular modelling, and so the numerical fit was reduced to two variables. The values for 

A, B and C were

A = 180.1 nCradcm-2; B = 105.7 K; C = 11.11 K
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Figure 4.13 Temperature dependence ofP ^ and numerical f i t  using equation 4.36. 

from which the amplitudes for the potential U(v) were calculated to be 

ajGcosY = 5.5 x 10"^^ J and a2 0 ^cos2 \|/ = 1.9 x 10"^^ J.

The amplitudes of the potential wells are less than the thermal energy kT (4.5 x 10"^^ J). The 

amplitude of the polar component is smaller than the non-polar term, close to the ratio of two hundred as 

reported elsewhere [Buka et al., (1989)]. There will be a small additional contribution to the polar term due 

to the coupling of the Pg with the electric unwinding field. Initial thoughts expected this contribution to be 

significant, but in fact the potential energy for a dipole of 5 Debye in a field strength of 50 Vmm"^ is only 

1 X 10*2'  ̂J, and so has little significance.

The theoretical values for the bulk nonlinear coefficient were calculated using the value of <cos^ 

\|/>, using a similar derivation to the polar order parameter

(cos^ =

I n
J cos^ t//" exp(-f/1  kT)d\j/

I n
je x p (-f /  fkT)d\{/

4.38

After some algebra, together with the substitution of equation 4.35 to describe the temperature dependence 

of the tilt angle, equation 4.38 becomes

( c o s ^ y / )  =
Q .g„(A 7T ( 3 / : r + 2 a j 0 / ( A r ) ^ )

2 4(tr)'+ (a ,eJ '(A rf (A rr
4.39
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Substituting values for the various parameters found from fitting Pg data to equation 4.36, then 

= 0.066.
This value can now be substituted into equation 4.32 to calculate a value for the bulk nonlinear coefficient, 

together with molecular values for the transverse hyperpolarisability calculated using molecular modelling 

packages. It was not the intention of this work programme to be involved significantly in the field of 

computer modelling of molecules. However, it is often useful to have access to such techniques to enhance 

a work programme. For this study, the molecular dipole moments and hyperpolarisabilities of the chiral 

components of the SCE13 mixture, and also other novel materials showing interesting properties were 

modelled by Dr David Dunmur at Sheffield University. Dr Dunmur has considerable expertise in molecular 

modelling of liquid crystal systems [Dunmur & Wilson, (1989); Wilson & Dunmur, (1989)].

The modelling technique initially calculated the minimum energy conformation of the molecule 

when isolated in free space using MM2 molecular mechanics package. Inside a liquid crystal phase the 

molecular potential will have a characteristic form, resulting in a slightly different shape of molecule. This 

effect is expected to be small for typical liquid crystals. Once the molecular conformation has been 

calculated, the electron distribution within the molecule can be modelled using the semi-emperical 

electronic structure MOPAC 5 & 6  packages [Kurtz et al, (1990)]. These programs use two techniques to 

calculate the polarisabilities and hyperpolarisabilities. The first calculates the energy of a molecular system 

within a uniform electric field, using the conventional polarisability expansion, and truncating at the 

(field)^ terms. This results in four unknowns, and so solving four field strengths (±F, ±2F) simultaneously 

gives equations for the dipole moment, polarisability and second order hyperpolarisability terms. The 

second method calculated the induced dipole moment in place of the energy, and isolated terms using 

different field strengths similar to the previous method. The calculations used the Modified Neglect of 

Diatomic Overlap (MNDO) method which was described in chapter 2. The results of both methods were 

very similar.

The principle axes of the molecules for these calculations are the principal inertial axes of the 

molecule. One of these axes (the z axis) lies approximately along the lo n g ^ is  of the molecule. However, 

it is difficult to relate the remaining two axes with the 0 3  axis of the molecules. One simple approximation 

is to only use two dimensional molecules. This approximation is a very simple model which still accounts 

for polar order and biaxiality in the material. Geometrically, the molecules may be considered as flat 

rectangles in the plane containing the director and the c% axis, and the tilt is out of the plane of the 

rectangle. The component of the desired molecular property along the C2  axis is approximated to be the 

average of the two calculated transverse components, and remaining component in the xy plane is equal to 

zero.

When mixtures of materials, for example SCE13, are investigated then it will be assumed that the 

chiral dopant dominates all polar characteristics of the material, and the liquid crystal host does not
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contribute to the Pg or This is satisfactory under the conditions that the concentration of chiral 

dopants is small ( - 1 0 %) and the transverse dipole of the chiral molecules is larger than the non-chiral host 

[Pikin & Osipov, (1991)]. The composition of the commercial ferroelectric mixture SCE13 has not been 

published, and so cannot be described here. However, the transverse dipole moment and the 

hyperpolarisability were calculated from modelling to be 1.12 x 10"^® Cm and 1.57 x 10"^^ m ^V ^ at 

1.064 |im respectively.

From the value for jlj^, <cos\|/> can be calculated as a function of temperature. The value of <cos 

\|/> was 0.086 at 50 ®C. Assuming an average molecular weight of 370 atomic units for the liquid crystal 

molecules, the number density of the chiral components was approximately 1.62x10^^ m"^ for a 1 0% 

concentration. The d2 % coefficient was calculated from this data to be 0.(XX)4 pm V ^, which is 

significantly lower than the measured value of 0.003 pmV"^. The factor of 10 discrepancy must be 

accounted for within the model for the bulk nonlinear coefficients, as experimental values have been 

confirmed for similar ferroelectric mixtures [Liu et al, (1991)].

There are a number of possible sources of error in the model proposed to link microscopic and

macroscopic values of nonlinear coefficients in ferroelectric liquid crystals. The largest uncertainty is

associated with the calculated value of transverse hyperpolarisability for the chiral dopant molecules. The

value from modelling was approximately 1 .6  x 1 0"^^ m ^V ^, which is very small in comparison to the

value for nitrobenzene at 9 x 10"^® m ^V ^. It is difficult to associate an error with the calculated values of

hyperpolarisabilites, particularly for a system which is relatively unknown in the nonlinear optics field (e.g.

liquid crystals), and where there is no work published in modelling these systems. A similar uncertainty is 
associated with which value of Pjl to use, as the modelling frames of reference in isolated molecules do not

necessarily coincide with those used experimentally in the liquid crystal phase. The value used was the 

resultant of the two principal transverse components

where x is the long axis of the molecule. Including the value of a very large off-axis term (Pyxx) 

addition to pyyy and terms could reduce the discrepancy between modelling and experiment to within 

a factor of 2 .

Another possible source of error is that the molecules do have very large polarisabilities and 

hyperpolarisabilities along the long axis of the molecule (z). It may be possible that the unwinding field is 

inducing a longitudinal dipole which is then tending to align the long axis in a noncentrosymmetric 

manner, so that the longitudinal hyperpolarisability can contribute to the bulk nonlinear coefficient The 

deviation of the system away from a perfect nematic order parameter may introduce fluctuations which 

contribute to this effect.

Other sources of discrepancy between the theoretical model and experimental values would be 

some of the simplifying approximations used in the model. The assumption that the non-mesogenic chiral
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dopants have the same polar order parameter as the smectic C host molecules may be inadequate. It is well 

known that guest-host systems can exhibit two order parameters, where the order of the host differs slightly 

from the pure material by the presence of the guest, and the guest has a different order parameter to the 

host. There may also be a disrupting influence of anti-parallel order of the transverse dipole, however 

evidence of this would be expected to be seen in the value of Pg.

In many liquid crystal device structures, it is believed that the molecular orientation is not 

constant through the device. The chevron interface or splayed alignments are common, and it is suspected 

that the molecular order and alignment may change at the surfaces of the device due to the influence of the 

alignment layers. Any small variations in alignment was ignored in this work, and the alignment in these 

cases approximated to be uniform. However, large changes such as the chevron interface must be included 

in the model if planar cell geometries are used.

In summary, the comparison between experimental values of d2 2  and those calculated from 

modelling are close, but there are discrepancies. It is not unusual for modelling and experiment to have 

inconsistencies in the values of nonlinear coefficients, even for well defined crystalline systems [Kurtz et 

al, (1979)], The assumptions used in the modelling to reduce the calculation to a manageable form will 

affect the accuracy of the result, e.g. the number of polarisable electrons included, and the degree of 

wavefunction overlap.

4.6 Novel FLC M aterials with High Nonlinear Optical Coefficients.

The ferroelectric liquid crystal mixture SCE13 used in previous sections to investigate different 

alignment geometries is far from ideal as a nonlinear optical material. Although it has a room temperature 

ferroelectric phase, its nonlinear optical coefficients are very small in comparison with other classes of 

nonlinear optical materials. The reasons why the nonlinear coefficients are small are well understood. 

Firstly, the material is a mixture of chiral molecules and a non-chiral smectic C host material. The 

percentage of chiral molecules will be about 10%. The chiral molecules are typically cyano mesogens 

[Walba et al, (1991 A)], and have transverse molecular hyperpolarisabilities of the order of 2 xlO"^^ m^V" 

These values are relatively low, but it must be pointed out that these molecules were not developed for 

nonlinear optical applications. The second order polar order parameter was measured to be 

<cos^Y> = 0.066.

This suggests that very few of the molecular C2  axes are aligned to contribute towards dgff. Taking these 

three factors together, one would only expect very low nonlinear optical coefficients from SCE13, as the 

experimental measurements of dgff = 0.0008 pm V ^ have verified.

For ferroelectric liquid crystals to be competitive as nonlinear media, the values of the bulk 

nonlinear coefficients must be increased from the values for SCE13 by at least two orders of magnitude.



and if possible three or more. If this were expected to be achieved solely by increasing the molecular 

hyperpolarisability, then this problem would probably be impossible. However, improvements in the 

molecular values, number density of active molecules and alignment suggest that this task is achievable.

The easiest improvement in the nonlinear coefficient was achieved by increasing the number 

density of chiral molecules in the material. Using a single component material where the chiral molecules 

alone form a smectic C phase would increase the number density from approximately 10% to 100%, giving 

an improvement in the bulk nonlinear coefficient of one order of magnitude. The molecular 

hyperpolarisability and the polar order parameter are the other two factors which may be used to increase 

the bulk nonlinear coefficient, but it is less obvious how to achieve this.

A new approach to the design of molecules with improved functional groups oriented along the 

polar (C2 ) axis has been reported recently [Furukawa et al, (1988); Walba et al, (1991)B]. This work was 

aimed at producing molecules which possess smectic C phases and which have orientation of groups with 

large hyperpolarisabilities along the C2  axis. It is well known that phenyl rings with donor and acceptor 

groups substituted in ortho or para positions can result in large hyperpolarisabilities (e.g. pNA, mNA, 

M N A ), and it was the intention of this work to combine such groups into a ferroelectric liquid crystal such 

that the large P was oriented along the C2  axis.

For conventional ferroelectric liquid crystals the position of the chiral centre in the chiral 

molecules used was of minor importance. It was usually positioned part way along an alkyl chain towards 

one end of the molecule. The Pg which resulted from the chiral centre was due to groups rigidly attached to 

the chiral atom and perpendicular to the long axis of the molecule. In most cases the Pg was quite small 

(<10nCcm"^), but could be improved by attaching a polar group to the chiral centre (<40nCcm‘^). The 

approach taken by Walba et al and Furukawa et al was to move the position of the chiral centre very close 

to the rigid aromatic core of the molecules. Attempts to hinder the rotation of the chiral group relative to 

the adjacent phenyl ring allowed the ring to contribute towards the transverse dipole along the C2  axis. This 

hindered rotation was achieved by attaching large groups into positions overhanging the chiral group (2  or 

4 positions), which encroach into the space occupied by the previously freely rotating chiral group, as 

shown in figure 4.15.

C H 3

Figure 4.15 A typical molecular structure exhibiting hindered rotation o f the chiral group.
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The nitro group was selected as the hindering group because of its size, and because it is also a 

good electron acceptor which resulted in increased hyperpolarisabilities for the molecule. In fact the nitro 

group and the delocalised electron system of the phenyl ring result in a transverse hyperpolarisability 

which overwhelms the contribution from the methyl group attached to the chiral centre. This technique of 

increasing the transverse molecular hyperpolarisability can be developed further by including an electron 

donating group opposite the electron acceptor (e.g. NH2 ), producing a push-pull' system across the 

molecule, with a molecular hyperpolarisability comparable to para-nitroanaline. Unfortunately, these bulky 

side groups have a detrimental effect on the stability of the smectic C phase of the material, and frequently 

destroy the C phase.

The coupling of the large functionalised phenyl ring to the chiral centre may also have an effect 

on the polar order parameter. This large system will probably be more difficult to rotate about its long 

molecular axis, and so the amplitudes a%and a2  of the molecular potential U(\|/) are probably larger than for 

simpler molecules. This effect will directly improve the bulk nonlinear coefficient from the value found in 

conventional ferroelectric materials.

4.7 Evaluation of New M aterials for Nonlinear Optics.

A range of new molecules were designed and synthesised based on the ideas described above. 

Unfortunately, accurate prediction of liquid crystal phase sequences and phase temperatures from 

molecular structures is almost impossible, and so the materials must be synthesised to assess their 

suitability. The skills of liquid crystal synthetic chemists can be used to modify molecular structures to 

enhance the likelihood of producing materials with stable smectic C phases.

The materials synthesised for this study are shown in table 4.1 with their phase transitions and 

measured values of Pg and d2 2 - The materials were synthesised at Hull University by the liquid crystal 

synthesis group lead by Professor J.G. Goodby. The synthesis of these materials will be the subject of a 

thesis by S.J. Cross, and the details will not be described here.

The materials were investigated by DSC and optical microscopy to measure and identify the phase 

transitions. Pg measurements were made in planar cells of 6  pm thickness by the triangular wave method 

preferably in the pure material, and where possible at 10®C below the smectic C-A transition. Where the 

material did not exhibit a smectic C phase, the material was mixed with a racemic version of SCE13 host 

material with approximately 10% nonlinear material added. The values measured were then extrapolated to 

100% concentration. This extrapolation is quite crude and the measured value of Pg dependent on the host 

used, but is satisfactory to obtain a guide to the values of Pg. Blank spaces in the table usually indicate that 

a measurement was attempted but the value was below the noise level.
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Working Structure Phase Quality of Ps at -10®C 6 2 2

name transitions alignment (nCcm"^) (pmV*^)

SCE13 Commercial Mixture S{<-20 60.8 Excellent. 27.8 0.003

Sa 86.3 N 100.81

0 % p
SJ42 K 3 8 . lS f . 6 2 S a  Quite good. 14 0.003

^  134.41

P
SJ54 K 36.3 S^ 56.9 Moderate. 405 0.04

^  Sa 63 .11 (max. 550)

ncT  (9.5%)

0.0006SJ87 c^cn^o^o-c-@ -© -oq(rt, K 60.5 Sp 91.1 Quite good.

Sa 145.9 I

S194 cÿ 3̂* ^ o ^o -o @ -© -o q (;^  ^  ^
(y  (5.2%)

SJ97 K (59.5 S .) 62.3 Good. 230 0.015

NcT Sa 100.71 (@ 55‘>C)

SJ98 c^ ^ o ^o ^ p -c -^ )-^ cq c ^ 7  K 95.1 Sp 115.2 Quite good. 7 0.001

^  Sa 1701

SJlOl K 57.5 Sp 62.8 Very poor. 0.021

NC Sa 65 .21

SJ115 c y ^ ^ ^ > -o -c -© - ^ o q ^ ,  K 66.5 Sp 100.2 Good. 310 0.046

Sa 119.7 I (max. 480)

Table 4.1 Nonlinear optical smectic C liquid crystal materials.
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The measurement of the nonlinear coefficient was made using the homeotropic cell geometry 

using sufficient in-plane electric Held to unwind the molecular helix. This configuration gave direct access 

to the d2 2  coefficient Due to poor alignment, the refractive indices and dispersion for these materials 

could not be measured, but was approximated to be equal to SCE13 for the calculation of d2 2 - It was also 

assumed that the largest SHG intensity measured from these materials was in the phase matched condition. 

This approximation gave a minimum estimation of d2 2  - the true values for the materials may be higher 

than those reported in table 4.1 above.

The data in table 4.1 illustrates a number of correlations between the molecular structure and the 

values of Pg and d2 2 - Firstly, the presence of a CH2  spacer in addition to the oxy- linkage between the 

chiral centre and the functionalised phenyl group has a large detrimental effect on the bulk values. This 

suggests that the spacer is sufficient to separate and decouple the chiral and phenyl groups so that no 

hindered rotation occurs. The Pg and d2 2  values measured in these cases originate from the chiral centre 

with its transverse methyl group, which has poor coefficients due to the lack of polarisable electrons.

Probably the next largest effect on the values is the ability of the material to form a stable and 

well aligned structure for measurement This factor is very difficult to eliminate or account for in 

calculations, and so makes comparisons between two molecules (e.g. SJ54 & SJlOl) difficult It is 

however, a factor which must be taken into account when evaluating materials for potential device 

applications and so is useful to note. Strong influences on the alignment quality are the pitch length of the 

smectic C helix, the type of liquid crystal phases above the smectic C phase, and the width of the smectic C 

phase. Materials with short pitches tend to 'wind up' easily, making it difficult for the surface forces to 

align the molecules in a uniform structure. This may be compensated by mixing with other materials which 

have an opposite winding sense. It was found from Pg and SHG measurements that mixing molecules with 

a standard host (SCE13 Racemic) had a detrimental effect on the polar order and the value of p beyond the 

simple number density factor. It was believed the high concentration of host molecules disrupted the 

hindered rotation system, thus reducing the value of P and IT. Miscibility studies between two or more 

materials of the same type e.g. materials from table 4.1 may improve the smectic C phase without 

destroying the hindered rotation of the molecules, or the number density if both are chiral.

The presence of nematic and/or smectic A phases above the smectic C phase can assist alignment 

by reducing the enthalpy change at the phase transition into smaller amounts, and giving the molecules an 

opportunity to align in each phase so that only small molecular reorientations are required on changing 

phase. All of the materials in this study had an overlying smectic A phase which was useful when aligning 

the material. It was found that several narrow smectic C phases were not stable, but slowly crystallised. 

Measurements may be made in the smectic C phase for these materials (e.g. SJ97), but the alignment 

deteriorated as a function of time (< 1 hour) as the material crystallised.

Detailed comparison of Pg and d2 2  with molecular structure was limited due to the strong 

dependence upon the quality of the alignment. Most of the modifications to the molecules were targeted at
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improving the smectic C phase alignment by varying the alkyl tail lengths, inclusion of ester groups or 

tollane linkages etc. using techniques developed over many years of synthesis of ferroelectric liquid 

crystals. Relatively small modifications to the molecules could have a dramatic affect on the phases and 

alignment quality (compare SJlOl & SJ115). Modifications which were expected to affect the transverse 

hyperpolarisability were the use of nitro and cyano groups on the phenyl rings, and the effect of different 

groups (e.g. ester, tolane, biphenyl) attached to the other side of the functionalised phenyl ring. The range 

of useful materials (ones with Sg phases) limited an attempt of such a comparison due to the varied 

structures and alignment qualities.

Future molecular designs which may improve the nonlinear coefficients of this class of material 

are restricted because of the requirement to retain the smectic C phase. This limits the size of donor and 

acceptor groups which can be attached transversely to the chiral centre or coupled groups. Early reports of 

combining a para-nitroanaline functionalised group into the molecule have resulted in the destruction of 

almost all mesogenic properties [Walba et al, (1991)]. It will be a difficult challenge to synthetic chemists 

to recover the smectic C phase in these molecules.

The hindered rotation system has been demonstrated to work, and results in a degree of coupling 

between the chiral centre and the functionalised phenyl ring. Figure 4.15 shows some of the possible bond 

rotations which are hindered. The degree of hindrance is far from perfect - the functionalised phenyl ring is 

still free to rotate through large angles relative to the chiral centre, reducing the polar order parameter for 

the phenyl ring. If this coupling could be made more rigid, then the polar order parameter would be 

increased, with a corresponding increase in the bulk nonlinear coefficient This may be achieved using a 

single bond between the chiral group and the functionalised phenyl ring, or using hydrogen bonding 

between the transverse group on the chiral centre and the phenyl ring. Materials to test this theory are being 

synthesised at present, and so the results will be reported elsewhere.

Another technique to improve the bulk nonlinear coefficient still further is to increase the number 

density of the chiral groups by incorporating more than one into each molecule. This technique has been 

attempted with chiral molecules [Kobayashi, (1993)], but is fraught with difficulties. The synthesis of such 

materials is possible, but the largest problem is ensuring that the polar axes align parallel and so combine 

additively. It is more energetically favourable that the polar axes align antiparallel within each molecule, 

and so reduce the bulk coefficients in comparison with single chiral materials. Another problem associated 

with these materials is that each chiral centre produces a twisted structure, with double chirals often the 

structure is even more tightly twisted, causing difficulties in aligning the material. Loss of overlying 

nematic and smectic A phases can also reduce alignment quality.

As the understanding of these structures develops, more complex and elegant molecules will be 

designed and synthesised, producing further improvements in the bulk nonlinear coefficients. These values 

are already beginning to challenge conventional inorganic materials, and will probably surpass them in the 

next few years. It is doubtful that the coefficients will challenge those found in some of the organic crystals
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due to the limitation that smectic C properties must be retained for these materials to offer advantage over 

crystals for processing. The final step in the development of these materials will probably be their 

incorporation into polymeric structures. This is most likely to be achieved by photo cross-linking the 

material whilst it is in an aligned state. This compares well with poled polymeric materials as discussed in 

chapters 2 and 3, but whilst the molecular hyperpolarisabilities will be smaller in ferroelectric materials, 

the degree of order will be higher, and without any tendency to relax due to the material being in thermal 

equilibrium. It is not clear at this moment which technique will be the most successful.
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5 Using SHG as a Measurement Probe in Liquid Crystals.

The experimental measurement of second harmonic generation has principally found 

application in characterising and developing new materials with improved nonlinear optical 

coefficients. This technique has been used successfully with probably all phases of m atter solid, liquid 

and gas, and liquid crystals. Some of the benefits of this technique are that many non-crystalline or 

multi-domain forms of materials can be probed, enabling quick and early evaluation of new materials, 

and that SHG is very specific to the absence of inversion symmetry in the material.

The specific symmetry requirements of second order nonlinear optical effects can make SHG 

a very selective optical probe to investigate optical materials, and particularly liquid crystals. In the 

absence of applied electric fields, then very few situations can give rise to SHG in organic materials: 

bulk noncentrosymmetry, and interfaces which induce polar molecular alignment. One common 

application of SHG as a probe in organic systems is to investigate dynamics of the poling process in 

amorphous and nematic side chain polymers [Singer & King, (1991)], as discussed in chapter 3.

The measurement of SHG at interfaces or from monolayers deposited on a substrate, has been 

used as a probe of the molecular orientation at the interface. The use of surfactants and rubbed 

alignment layers to preferentially align liquid crystal molecules is extremely important for liquid 

crystal technology. The orientation of liquid crystal molecules on these alignments has been 

investigated using SHG by Shen [Shen et al, (1991)], giving excellent information about how the 

molecules align on these treated substrates. Several other groups have also recently begun to use SHG 

to investigate liquid crystal alignment layers [Kurata et al, (1992)]. The main drawback of much of this 

work is that the surface alignment of a ferroelectric liquid crystal material cannot be studied whilst the 

bulk is present, as the SHG from the bulk material is significantly larger than that from the first 

monolayer. This has been partially overcome by depositing only a monolayer of material, but it is 

expected that the presence of bulk material will have a significant effect on the way molecules align on 

these layers due to the effects of elastic forces and the short range order due to the liquid crystal 

potential.

It is the intention of this final chapter to describe how the technique of SHG may be used to 

obtain information about the liquid crystal materials and structures in the bulk material. The material 

characterised in the previous chapter (SCE13*) was used, so that other parameters such as the 

alignment structure and order parameters may be evaluated. A technique to measure the refractive 

indices, and particularly the optical biaxiality of smectic C materials as a function of temperature will 

be described. This is of importance for calculating the numerical fit to Maker fringes as described in 

the previous chapter, but is also important for materials assessment for ferroelectric display 

applications and calculating device performance. A similar experimental geometry was also used to 

measure the twist elastic constant of the smectic C material. This is very important in supporting the 

theoretical understanding of smectic C materials. A smectic C continuum theory [Carlsson et al, 

(1991)] has predicted the existence of 21  elastic constants needed to fully describe the smectic C phase.
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Application of the continuum theory is greatly helped by the measurement of some of these elastic 

constants.

A novel alignment structure of smectic C materials which is potentially phase matchable will 

also be assessed. This geometry is surface stabilised and so does not require the presence of a electric 

Held as used in homeotropic alignments. It will form a uniform alignment with a component of the 0 3  

axis in the plane of the device, unlike the chevron structure. This device geometry would be of interest 

for large area transmission second harmonic generation devices, and for liquid crystal device studies.

5.1 M easurement of Smectic C Refractive Indices and Optical Biaxiality.

The evaluation of SCE13* in section 4.5.1 required the measurement of the refractive indices 

with sufficient accuracy to fit the Maker fringe data shown in figure 4.10. This measurement is also of 

interest to liquid crystal scientists as a technique of measuring the refractive indices of the material in 

the Sg* phase as a function of temperature. This experiment has the potential for measuring the optical 

biaxiality of the material and the order parameters of the three principal molecular axes.

The optical arrangement to measure the refractive indices is shown in figure 5.1. This used a 

liquid crystal cell with the same alignment layers and electrodes as the homeotropic cell described in 

chapter 4, but it was assembled to have a linear variation in thickness across the cell. The wedge angle 

6  was measured to be 0.27 ± 0.03® by reflection, which was small and so did not significantly disrupt 

the homeotropic alignment of the smectic C material.

Homeotropic Sc Layer

E®

e-ray

.'X
■ 5 ;

Figure 5.1 Wedge cell measurement configuration.
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The smectic C helix was fully unwound by applying sufficient dc electric field in the Y direction. The 

cell could be rotated to the desired angle of incidence, and then translated along the X axis across the 

optical beam. This permitted variation of the cell thickness whilst keeping all other parameters 

constant, and so the interference fringes detected originated from the modulation from the sin^'P 

function in the equation 4.4 describing SHG intensity where

sin^ Y  =  sin^ 5.1

and

A

Measurement of the y component of the refractive index was achieved using vertically 

polarised (ordinary ray) input radiation and detecting only vertically polarised second harmonic signal. 

This was measured at normal incidence (a  = 0) so that the relative thickness is simply 

L ' =  X /s in 5

where X is the position along the X axis. As only the difference in thickness was of interest, it was 

assumed that the thinnest accessible part of the cell was zero for convenience.

Interference fringes from the wedge cells containing SCE13* at 50®C using Cq® Cq® 

polarisations are shown in figure 5.2a. A numerical fit using NAG routines calculated the best values 

for constants A, B and C using the equation

i (  TtL
SHG Intensity = A sin  ̂  + C  j  5.3

where A is the amplitude, B is equal to the coherence length as defined in equation 5.2 earlier, and C 

is a zero offset necessary for fitting the data. The best fit is shown by the solid line in each figure. From 

equation 5.2 and the value of B it was possible to calculate the dispersion in the y refractive index 

0.0103.

The X component of the refractive index was measured using e^® polarisations and

directing the light along the z axis of the material, i.e. along the director. Refraction at the air-glass- 

liquid crystal interface was taken into account assuming the material was approximately uniaxial and 

thus n^ was approximately equal to Uy. The results were relatively insensitive to the refracted angle, 

but if more accuracy was required, the angle of incidence could be varied and the maximum value of 1q 

used. For an angle of refraction equal to the tilt angle of 16.4° (refer to section 4.5.1 for the 

measurement and discussion), the angle of incidence at the glass-air interface must be 24.6°. The 

fringes from this angle are shown in figure 5.2b, and from the numerical fit 

= 0 .0 1 0 9 .
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The z component of the refractive index was calculated from a combination of x and z 

refractive indices at a different angles of incidence using eQ^® e^® e^^  polarisations. The angles at 

which measurements were made were -30.5® and -24.6®, corresponding to refracted angles in the 

material of -19.7® and -16.5® respectively. The fringes at -30.5® are shown in figure 5.2c together with 

a numerical fit, giving

a)  = 0.0320.

where 0 -a  is the angle between the refracted beam and the director. The value of n^*  ̂ may be 

calculated from

1 cos^{d-a)  s in ^ (0 -a )
[ « ( e - a ) ]  n l

From this interference data alone it is impossible to calculate the absolute values of the 

refractive indices. An independent value for one of the four refractive indices is required and was 

found from approximating the value of (532 nm) to equal the value of riy at 589 nm which has

been measured using the Abbé refractometer. The error associated with the dispersion of was 

not significant. The refractive indices of SCE13 are given in table 5.1 for several temperatures.

The errors in the refractive indices were dominated by the errors associated with the 

measurement of . The source of this error was most likely the quality of the liquid crystal

alignment that can be obtained between the Abbé prisms. The wedge cell measurement is an 

interference method and is capable of high accuracy, but again was limited by the quality of the 

material alignment. The absolute measurements indicated there to be a very small biaxiality (5^ = ny - 

n^) which was difficult to resolve within the experimental error, was equal to

6 n = 0.0006 ±0.0005

at 50®C. The error is an indication of the low signal in graph 5.2b and consequent poor fit. The 

maximum shown in this graph is only 3 times the noise level of 0.03 arbitrary units. This SHG arose 

directly from the small d2 \ coefficient, measured in chapter 4.

The optical biaxiality of SCE13* was measured at a number of temperatures. It was expected 

that as the material was cooled further into the smectic C phase, the optical biaxiality would increase 

from zero at the transition from the smectic A phase. It has been predicted that the biaxiality will be 

small [Takezoe et al, (1984)], and less than 0.01.

The wedge fringes from configurations at 40®C and 27.5®C are shown in

figure 5.3. The refractive indices calculated from these fringes are also given in table 5.1 together with 

the values of n^^y measured using an Abbé refractometer at the different temperatures. The data used 

to calculate n^ is shown in figure 5.4 for the same temperatures.

Clearly the measured biaxiality of SCE13 given in table 5.1 is small. The values at 

temperatures near the c-a transition are very close to zero within the accuracy of the measurement The 

change from positive to negative is probably due to scatter in the data. Only at the lower temperature
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50*C 40*C 27.5*C

Cone Angle (deg.) 16.4 2 0 23

n2 ®y (±0 .0 0 2 ) 1.489 1.492 1.496

n® y (±0 .0 0 2 ) 1.479 1.481 1.484

(±0 .0 0 2 ) 1.478 1.481 1.486

Biaxiality (±0.0005) 0.0006 -0.0004 -0.0019

Table 5.1 Refractive indices ofSCE13*.
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does the value become significant, where the phase is known to become biaxial dielectrically [Jones et 

al, (1990)]. The accuracy of the measurement was disappointing, but would have been difficult to 

foresee due to the previously unmeasured small d2 \ coefficient. Many more measurements at different 

temperatures would be required to fully characterise a material and obtain its temperature dependence. 

Initial comparisons to other techniques of measuring optical biaxiality e.g. Abbé refractometer, suggest 

it to be a slight improvement. It is unlikely that optical refractive indices can be measured with
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significantly greater accuracy due to the limitation in quality of the liquid crystal alignment, which will 

change the molecular orientations locally. One exception to this is the guided wave and surface 

plasmon techniques. These techniques measure the intensity of reflected light firom a high index glass - 

liquid crystal interface at angles close to the critical angle. Waveguiding manifests itself by a fall in the 

reflected signal as a function of angle of incidence. Surface plasmon-polaritons can also be excited 

when a thin silver layer is deposited at the interface. Modelling of the waveguiding conditions can give 

accurate information about the refractive indices of the liquid crystal layer. Elston [1991] has measured 

the biaxiality in a similar material (SCE3) using surface plasmons to be less than 0.0015.

5.2 The Critical Unwinding Field and the 6 3  elastic constant.

Chiral liquid crystal molecules have a natural tendency to form a helical bulk structure, as 

described in chapter 1 in both the cholosteric and smectic C phases. This helical structure must be 

unwound for the material to posess bulk noncentrosymmetry. This has been achieved using surface 

stabilisation [Clark & Lagerwall, (1980)] or coupling of the permanent transverse dipole moment (Pg) 

with an applied electric field. The size of electric field required to unwind the structure has been 

predicted to have a threshold [Meyer, (1977)], with a critical unwinding field value Eg. From the 

measurement of these critical field strengths it is possible to calculate values for some of the many 

elastic constants in these materials. The smectic C continuum theory describes the chiral smectic C 

phase in terms of 21 elastic constants. The ferroelectric C2  axis has three principal elastic deformations: 

in-layer splay of c%; in-layer bend of the c% axis, and twist of C2  through the planes. The smectic C 

continuum theory in Carlsson notation [Carlsson et al, (1991)] describes these deformations as B2 , B j, 

and B3 respectively. The continuum theory is of importance to describe and predict the structure of the 

molecular alignment in ferroelectric liquid crystal devices. It is only through understanding of the 

molecular alignment that improvements in liquid crystal displays and optical information processing 

technology will be achieved.

All of the SHG studies described earlier have used the assumption that the helix had been fully 

unwound by the application of a transverse electric field, and so the material formed a monodomain 

with a well defined molecular alignment. The field required to achieve this is quite small, 50 V applied 

across the 2 mm electrode gap was sufficient. The amount of SHG from the cell is very dependent on 

the alignment quality, and particular the requirement of bulk noncentrosmmetry, and so should prove a 

selective probe to determine the threshold when the structure starts to re-form a helix, and thus degrade 

its symmetry.

5.2.1 Derivation of the Critical Unwinding Field.

The bulk free energy of the chiral smectic C phase can be described by the free energy density
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S (z ) =  « o + « £  5-5

where go can be found from the Landau expansion of the two smectic C order parameters and their 

derivatives in a direction perpendicular to the layers (z), and gg  is the energy associated with the 

dipole interaction between the transverse spontaneous polarisation Pg and an electric field E applied 

perpendicular to the helical axis. A more complete description of the derivation that follows can be 

found in Zeks et al [1991].

The classical model used by Meyer assumed that the critical unwinding field is proportional to 

the tilt angle for all temperatures in the smectic C phase. This is not in agreement with experiments 

[Zeks, (1991)], and so for this calculation a generalised Landau model for the free energy density was 

used. This included additional terms giving a quadratic coupling the molecular tilt % and the 

polarisation Pg. The tilt angle and spontaneous polarisation are described by an amplitude and 

azimuthal twist angle (p dependence

^ i= 6 c o s ( p

P j ^ = - P s i n ( p  P y = P c o s ( P  

It is assumed that the amplitudes of the tilt and polarisation are constant through the device (0 and P), 

and that only the twist angle (p(z) can vary as a function of z (the helical axis). It can be shown that the 

twist angle dependent part of the free energy density can be expressed as

dz,  ,  2  '  y d z ^

where Bg is the twist elastic constant of the c% axis, and A is a coefficient in the Landau expansion 

responsible for the heliciodal structure. In the absence of an applied electric field, the energy density is 

minimised when the value of the gradient of the twist

which represents the undisturbed helix with helical pitch vector (=2 n/p).

The application of a transverse electric field prefers the azimuthal angles

(p =  - ^  +  2 ;m

where n is an integer, which deforms the helix. This may be thought of as unwinding the helix, as 

shown in figure 5.5. Minimising the energy density in equation 5.7 gives a second order differential 

equation in terms of the twist angle, from which there are periodic solutions. As the applied electric 

field E is increased, the period of the solution for the twist increases and goes to infinity at the critical 

field Eq. At infinite period of helical pitch, the critical field can be calculated to be

5.9
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Figure 5.5 Schematic diagram to illustrate the response o f the helix to an electric field. The lines 

correspond to the C2  axis o f  the molecules (reproduced from  Meyer, 1977).

Taking the amplitudes of 0 and P to be equal to the zero field values, and using the expression for the 

zero field helical wave vector Qq and the pitch of the helix p = Zn/q, then equation 5.9 reduces to

.4
E = — B.

4  ̂ p^P
5.10

Given values of the helical pitch p, the tilt angle 0 and spontaneous polarisation P for zero field, then a 

measurement of the critical unwinding field can be used to measure the Bg elastic constant

In experiments, it was much easier to start with a uniform untwisted alignment, achieved by 

cooling into the smectic C phase whilst applying sufficient electric field to ensure the helix is fully 

unwound. The field was then reduced, and at a critical field strength the uniform unwound alignment 

began to distort and twist. The threshold occurs because of a degeneracy^n the direction in which a 

molecule will start to twist. Although a molecule will prefer to twist in a particular direction relative to 

one of its neighbours corresponding to the handedness of the chiral centre, it will be in the 

unfavourable direction relative to the opposite neighbouring molecule. Therefore in uniform 

alignments there cannot be any preference as to which layer the twist will grow from, and thus the 

threshold occurs. Of course in cells where defects exist in the alignment, then this threshold may not be 

seen.

5.2.2 M easurem ent of the Critical Unwinding Field.

It is very important to have uniform alignment and to apply the electric field perpendicular to 

the helical axis. This is ususally achieved in the planar cell geometry with the helical axis in the plane 

of the cell, and the electric field applied perpendicular to the cell. To minimise any surface effects, the
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cell would preferably be very thick (typically 2 (X)|4.m), but this is counter-productive as the alignment 

is difficult to achieve in such cells.

The experiment described here used the homeotropic cell geometry and in-plane electrodes to 

arrange the helical axis perpendicular to the cell. This geometry has the potential benefit that there is 

no azimuthal surface anchoring energy which would otherwise distort the helix and affect the 

threshold. To eliminate any memory effects at the surface, the material was fully unwound in the 

smectic A phase before being cooled into the smectic C phase in the presence of an electric field 

greater than the critical field along the y axis. When at the appropriate temperature, the field was 

slowly reduced and the SHG from the sample measured. Both input and second harmonic polarisations 

were parallel to the Y axis, thus accessing the 6 2 2  nonlinear coefficient.

0.9
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Figure 5.6 Response ofSC ElS* to an electric unwinding voltage across 2mm as it is removed.

Figure 5.6 shows the measured second harmonic signal as the material reforms the helix as a function 

of temperaure as the unwinding field was reduced. The cells were about 50 jim thick, and the in-plane 

electrode spacing was 2 mm. The electrodes were about 6  |im thick, and so were not all the way 

through the cell, resulting in a small non-uniformity in the electric field across the thickness of the cell. 

Approximating the electrodes to parallel thin wires [Rosenblatt, (1978)], the electric unwinding field 

strength in the central region is

IV 5:11

kI
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for this geometry. Moving 50 tim away from the centre line of the electrode pattern does not have a 

significant effect on the electric field strength at that point.

On analysing the data in figure 5.6, the first point to note is that there was no plateau region 

where the alignment was undistorted, or an identifiable sharp threshold field. This may have been 

because the alignment was not perfect, and so the degeneracy between the two twisted states was 

removed. However, the non-uniform electric field may also contribute to this effect, although the 

distortion was small. The variation in maximum signal was due to the change in alignment quality 

between heating and re-cooling into the smectic C phase. The alignment used was chrome complex 

which started to degrade through repeated temperature cycling and laser damage.

The small step seen in each of the traces about half way down the steepest part of the curve 

was attributed to the formation of the first twist reforming the helix. This stabilised the structure and 

lead to constant or even increased SHG intensity for a limited range of unwinding field. The SHG 

intensity at this region was about one half of the maximum measured, suggesting the presence of one 

'twist' in the helix. The voltage at which this twist occured exhibited a temperature dependence, with 

the lower temperatures twisting up earlier at higher electric field strengths as expected. The 

identification of further 'twists' were prevented by the low signal and the low twisting power of the 

material. The material was probably not the most favourable to demonstrate this measurement, but 

illustrates the sensitivity of the experiment.

The experiment raised a question about the identification of the critical field strength. Theory 

describes it as the beginning of a first distortion from the uniform alignment, but how is this 

measurable? The value measured and quoted in this work is related to the formation of the first 2n 

twist in the structure. In the ideal alignment case, then these two values may be the same, but in a 

typical cell then the first distortion may not result in a measurable effect (or even exist). As both 

criteria must be well defined in theory, and the formation of the first twist is easily measurable, then 

the work here defines the strength of the electric field at which the formation of the first twist occurs 

as the critical field E^.

Figure 5.7 illustrates the unwinding of the helix in the Sq phase at 50®C after the material had 

been cooled to that temperature with no field applied. There was a considerable difference between 

both the form of the curve and the voltage required to produce an untwisted alignment. The difference 

was accounted for by assuming that although there was no variation in the azimuthal surface energy, 

the molecules could be weakly anchored in azimuthal position when the material was cooled into the 

smectic C phase. This surface anchoring is due to a finite coupling at the surface, possibly due to the 

intertwining of hydrocarbon tails from the liquid crystal molecules and the surfactant molecules.When 

the liquid crystal material was cooled into the phase with excess unwinding field present, then the 

molecules at both surfaces were pinned in a position where the C2  axis was parallel to the electric field. 

These molecules remained pinned as the field was reduced and the helix began to reform.
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Figure 5.7 Response ofSCE13* ta an electric unwinding field  as it is applied at 50® C.

When the liquid crystal was cooled into the smectic C phase without any unwinding field, 

then the molecules at the surface could be pinned at any azimuthal position, which may not be 

identical at either surface. When the unwinding field was then applied, then helix would begin to 

unwind, but could not do so fully until the molecules at the surface were rotated to align their C2  axis 

parallel with the applied field. Switching the surface pinned molecules required much larger electric 

field strengths than to simply untwist the helix in the bulk. The difference in field strengths observed 

may give an indication of the strength of the surface pinning or memory effect in homeotropic 

alignment agents.

The twist elastic constant Bg was measured for SCE13* at the temperatures 50, 40 and 25®C, 

which were 10,20 and 35 ®C below the smectic C- A phase transition. The layer tilt 0 was measured at 

these temperatures, and the pitch length of approximately 3 |im has been measured from laser beam 

diffraction. Substitution into equation 5 .10 yields values for the elastic constant, as given in table 5.2 

below.

Reduced temperature (®C) Bg (Nm”^)

-10

-20

-35

2.0 X 10-12 

2.9 X 10-12 

5.3 X 10-12

Table 5.2 Temperatur ? dependence o fB ^ ofSCE13*.

These values of Bg are similar in size to other elastic constants measured in smectic C liquid 

crystals. However, there are no known measured or theoretical values with which this data can be
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compared. The errors associated with these values are probably limited by the accuracy of the 

measurement of the helical pitch, which had an accuracy of ± 1 nm [Jones, (1993)]. The pitch of 3 [im 

was inconveniently long for most measurement techniques, but had been designed to simplify 

alignment of the material in thin planar cells. Using a material with a pitch length of the order of the 

wavelength of light would probably improve accuracy if the required alignment could be achieved.

In summary, the twist elastic constant Bg was measured as a function of temperature in 

SCE13*. It has been shown that the homeotropic cell geometry with in-plane electrodes is suitable for 

this measurement as the surface effects are relatively small. It is proposed that the difference in critical 

field strengths between unwinding the helix and allowing it to wind up was a result of weak surface 

pinning which needed the application of higher electric Helds to re-orient the molecules at the surface. 

This may may yield information about the azimuthal anchoring energy of these alignments.

5.3 Uniform Planar FLC Alignment Geometry.

The work in the previous sections was based on the experimental geometry of homeotropic 

alignment with in plane' electrodes for measurement of the d2 2  coefficient This configuration has 

been reported in the literature as a SHG measurement configuration as it allows direct access to the d2 2  

coefficient using input and harmonic polarisations along the C2  axis, and also type I phase matching 

can be achieved using input light polarised perpendicular to the C2  axis. The alignment which can be 

achieved using the transverse unwinding field is very uniform, and readily attainable for most liquid 

crystal materials. However, the geometry suffers from the limitation that there must be a dc electric 

field applied to the material to unwind the helix. This is not desirable for device applications, where 

passive devices are available and preferred. The dc field also has detrimental effects on the liquid 

crystal materials. It is well known that liquid crystal materials can suffer electrolysis effects in dc 

electric fields (liquid crystal displays always use fully ac balanced drive voltages). It may be possible 

to syncronise the drive voltage to pulsed laser sources, but this is inconvenient and unsuitable for some 

applications eg. frequency doubling of continuous wave lasers.

An additional disadvantage of the in-plane electrode cells is their fabrication. In order to use 

the geometry to characterise materials the cells must have very accurately aligned parallel electrodes to 

produce a uniform electric field through the active area. To achieve the parallelism required, cells for 

this work had electrodes defined by a lithographic technique and then electroplated through a 

photoresist mask onto a substrate. However, it was difficult to produce thick electrodes (>10|im) whilst 

maintaining a rectangular cross section, as thicker electrodes developed a tapered cross section due to 

the etching process. It was believed that this deviation in cross section was acceptable in preference to 

using individual thin metal sheets for the electrodes, where the required parallelism is very difficult to 

achieve.
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The conventional planar alignment in liquid crystal devices, achieved using rubbed polymer 

alignment layers, results in a chevron structure described earlier, and not the uniform bookshelf 

alignment initially expected. This is a complex, non-uniform liquid crystal structure where the 

direction of the C2  axis changes significantly between the two halves of the device. Such a structure is 

of little interest for nonlinear optical device applications or as a geometry to evaluate new materials. 

The ideal would be to achieve surface stabilised uniform alignment of both the C2  and director axes 

using simple cell configurations, preferably without the presence of 'holding' electric fields.

It should be possible to achieve uniform alignments within planar cell structures using 

alignment layers which give very high surface pretilts. This would combine the simple and efficient 

uniform alignment of homeotropic cells without the need for in-plane electrodes, with the C2  axis 

rotated away from the cell normal. There has been no previous reports of exploiting this alignment for 

nonlinear optical applications.

Anti-parallel aligned substrates produce layers which are tilted in the smectic A phase. The 

angle of tilt of the layers, is equal to the surface pretilt On cooling into the smectic C phase, the 

Sg layer tilt can be found from

r. d r  COS 5 .  
COS d c  =  — ----------— 5.12

Silicon monoxide (SiO) evaporated at 85® to the substrate normal can produce surface pretilts of about 

25®. Equation 5.12 predicted that was 31® for an anti-parallel 85® SiO cell. The layer tilt in this 

situation was greater than the cone angle of the material, and the chevron interface does not form, as 

the condition of director continuity cannot be met. A uniformly tilted structure may form as illustrated 

in figure 5.8, which will result in the C2  axis at an angle to the cell normal without any reversals as 

seen across the chevron interface.

Ô

Top View

'

Direction of 
Evaporation

Figure 5.8 Tilted planar Sr alignment.
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The alignment in the smectic C phase was found to be fairly poor for cells of 6  pm thickness 

filled with SCE13. From polarised microscope studies, the alignment comprised of many small 

domains with what were believed to be a twisted structure. These domains were smaller than the spot 

size of the laser beam, and so could not be probed individually. Reducing the cell thickness to 

between 2 and 3 |xm improved the alignment quality, with uniform domains forming which were 

seperated by the twisted structure. The uniform domains produced black states between crossed 

polarisors, and appeared to be in one of two orientations, separated approximately by 30^ - an angle 

close to double the cone angle as expected. The domains were still too small to be individually probed 

by the SHG experiment The alignment became quite good when the cell thickness was reduced to 

between 1.5 and 2.0 p.m. The smectic C phase produced alignment which was again dominated by two 

uniform domains seperated by an angle of 30®, however no evidence of the twisted domains was seen. 

Application of an electric field (2 Vpm"^) readily switched the liquid crystal molecules between the 

two states. The alignment was bistable as the molecules could be switched into one of the two states 

and when the voltage was removed, the alignment would remain switched for periods of minutes.

For the experimental investigation of this structure, the molecules were switched into one of 

the uniform states by the application of a small dc voltage. This voltage was applied throughout the 

experiment as a precaution to ensure none of the material relaxed into the alternative alignment. The 

cell was rotated about its normal by an angle equal to the cone angle of the material to align the z axis 

of the molecules in the horizontal plane. The incident radiation was horizontally polarised, as was the 

detected harmonic radiation. The cell was then rotated about the molecular x axis (vertical) and the 

SHG intensity measured as a function of angle of incidence.

In this geometry, both the input and output polarisations access a combination of the ordinary 

(y axis) and extraordinary (z axis) refractive indices, and so are called extraordinary rays. The effective 

nonlinear coefficient may be calculated for this geometry from

and was calculated to be ^

= - d 2 2 COS  ̂O - d j j C O s O s i n ^  0  5.13

where 0  is the angle between the incident radiation (after refraction) and the z axis of the molecular 

alignment. It was assumed that (j) = 90® for this geometry. Modelling suggested that this geometry was 

phase matchable, but for SCE13* the phase matching condition required a device thickness greater 

than 100 |xm, as shown in figure 5.9.

Initial measurements of empty cells with the 85® SiO alignment layers found that the one 

phase matchable configuration of eee polarisations also gave rise to measurable SHG from the SiO. 

Other polarisation configurations did not detect any SHG above the background noise level. The SHG 

signal as a function of angle of incidence had the form of interference fringes as illustrated in figure 

5.10. It was not unexpected that the SiO was SHG active - the alignment layer was deposited by 

thermally evaporating SiO under vacuum i. As the crystalline layer formed, some of it probably

formed Si0 2  or quartz, which is well known as a nonlinear optical crystal. The very thin coatings gave
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rise to significant SHG because of the resonent étalon type cell structure. Angle tuning of this étalon 

resulted in the observed fringes, as verified by modelling the transmission of the étalon which is shown 

as the solid line in figure 5.10.
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Figure 5.9 Theoretical phase matched SHG in tilted planar alignment.
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Figure 5.10 SHG from  empty high tilt SiO cell and modelled étalon transmission.

110



When SCE13* was included in the cell, the measured SHG intensity changed, as shown in 

figure 5.11. The increased SHG signal and its asymmetric form may be interpreted as the combination 

of both the interference fringes from the SiO, and the phase matching curve predicted for SCE13*. 

Because it was not possible to obtain uniform alignment in this geometry for cell thicknesses greater 

than 2  |xm, then the measured cell could not achieve full phase matching conditions.
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Figure 5.11 SHG from SCE13* in high tilt SiO cell 1.43um thick.

For this alignment configuration to be successful in nonlinear optics, then alternative high 

surface pretilt alignments are required, and the ability to align thicker cells is necessary. At present the 

SHG signal is unfortunately dominated by that from the SiO alignment layer. There are a range of 

rubbed polymer planar alignment treatments with large values of pretilt, which may be suitable 

alignment agents for this geometry. The pretilt depends upon the length of time and temperature that 

the polymer was baked, as well as whether the polymer was rubbed before or after baking. Pretilts as 

high as 15® have been obtained with some materials [Jones, (1993)], although even higher pretilts may 

need to obtain this particular alignment. The use of rubbed polymer surface treatment would supress 

the étalon transmission interference pattern found at present in the SiO cells, and allow the SHG from 

the ferroelectric liquid crystal test material to be detected and analysed.
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5.4 O ther SHG Probe M easurements.

SHG has potential for probing liquid crystal devices in more detail than has been described 

above. However, before more sophisticated measurements are made, then many of the problems 

identified in these simple experiments must be overcome. Much of this centres on the key role of 

alignment quality, whose importance cannot be underestimated. The ability to produce high quality, 

uniform and reproducible alignment layers which are themselves not SHG active, but are resilient 

against laser damage is fundamental for this study. Alignment layers are beginning to be adequately 

understood and controlled, partly due to the work pioneered by Shen using SHG to probe the 

interaction between the alignment layer and liquid crystal molecules, and partly by a range of other 

optical and dielectric probes. As the quality and control of alignment layers is improved, more refined 

measurements will become possible, which will further enhance the understanding of liquid crystal 

devices.

The high tilt planar geometry described in the previous section is also of interest to investigate 

the structure of the liquid crystal alignment in display devices. The predicted molecular alignment is 

similar to one half of the chevron in a display-type low tilt planar cell [see figure 4,5]. Once the 

difficulties with SiO alignment have been overcome, this geometry may help in modelling the chevron 

structure by measuring SHG from two cells in series, where the layer tilts are arranged to simulate a 

chevron type structure, as shown in figure 5.12. The chevron structure has been measured using optical 

and X ray probes, both of which are sensitive to the orientation of the long axis of the molecule. The 

SHG probe is sensitive to the C2  axis of the molecules, and so will provide information about the 

direction of the Pg of the molecules through the structure. This would greatly assist development of 

theories and models of the chevron structure.

The very short pulse length of the Nd^+iYAG laser (10 ns) may prove useful in time resolved 

measurements as a ferroelectric device is switched electrically. This may yield useful information 

about the reorientation of the C2  axis in response to the applied field. Due t» energy considerations, it is 

believed that the molecules reorient by rotating around the smectic C cone, rather than across it. 

Measuring the SHG as the device is switched may be the first experiment to confirm this theory. Using 

a material which switches in the 10 ps regime, then the 10  ns laser pulses offer up to 1 0 0 0  time slots 

within the material switching regime. A very advanced timing and triggering system would be needed 

to obtain such resolution as the measurement would have to be carried out stroboscopically i.e. only 

one 10 ns slot may be measured each time the device was switched, and signal averaging over the same 

time slot would also be needed to improve the signal to noise ratio of the data. This measurement is of 

interest to ferroelectric liquid crystal device engineers to support modelling of the device as it is 

switched, and to understand the effects of different drive schemes on the switching behaviour. This 

may then lead to improved drive schemes and consequently faster and more complex displays.
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Figure 5.12 Two high tilt cells arranged to simulate a chevron structure.

5.5 Summary of Chapter.
mi

The contents of this chapter have covered a wide range o f experim ents designed to support the 

ferroelectric liquid crystal science com m unity and advance the understanding of this exciting class of 

liquid crystals and devices. Some of the measurem ents described are not unique to SHG probes, for 

exam ple the m easurem ent o f the refractive indices or the B 3  elastic constant. These m easurem ents 

have been made by other techniques , for exam ple using the Abbe refractom eter to measure refractive 

indices, or light scattering to m easure the critical field needed to unw ind the m olecular helix. However, 

each of the previous m easurem ents have many difficulties, and so the search for sim pler and im proved 

measurem ent techniques has continued. In both of the exam ples m entioned, the m easurem ents using 

SHG have proved useful, and often raised more questions than answers. This is the nature o f science 

and is the process o f how an understanding o f a system develops.

As the technique of SHG is developed and refined, then more inform ation will be extracted 

about the liquid crystal structure, and in particular the alignm ent o f the C2  axis o f the m olecules. This

1 1 3



will be of great use to complement the other liquid crystal measurement techniques, including optical 

probes e.g. guided waves and surface plasmons, Abbe refractometer, transmission as a function of 

wavelength; and other probes such as X-rays and dielectric data. Almost all measurement techniques 

until now have been sensitive primarily to the long axis of the molecule, due to the anisotropic shape of 

the molecules. SHG offers a highly selective probe of the C2  axis of the molecular alignment. The 

combination of information about the director configuration and the C2  axis configuration are needed to 

describe fully the smectic C* phase, which is of great importance to provide experimental data to 

support the development of the smectic C* continuum theory and ferroelectric liquid crystal device 

modelling to further exploit this unique class of material.
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6. Conclusions.

The successful implementation of nonlinear optical devices into optical information systems and 

optical data storage has been limited by the lack of suitable materials. A successful material needs many 

attributes including: nonlinear optical coefficients, low optical losses, ease of processing, low cost, photo­

chemical and temporal stability and high laser damage thresholds, before being widely adopted. For some 

applications lithium niobate has been used, however its limitations make it far from ideal due to its cost 

and requirement to grow large, high quality crystals, its moderate nonlinear optical coefficients, high 

refractive index and low laser damage threshold. Several other classes of materials have addressed specific 

requirements of applications, but none have yet achieved all of the requirements requested in table 1.1 

simultaneously.

The aim of this study was twofold: firstly to investigate the potential advantages of self assembled 

organic materials to enhance the nonlinear coefficients and stability of poled polymeric materials and to 

investigate ways of improving the poling technique efficiency; and secondly to develop new ferroelectric 

liquid crystalline materials which exhibit spontaneous noncentrosymmetry and therefore remove the 

requirement of poling and its inherent problems for second order nonlinear optical applications. This work 

involved developing two optical experiments to measure the nonlinear optical coefficients of these 

materials, an electro-optical measurement and the measurement of second harmonic generation (SHG).

The result of this work was an increased understanding of the poling mechanisms of side chain 

polymeric materials through measurement of the temporal dependence of poling and relaxation. Different 

mechanisms were identified above and below the glass transition. This information is essential when 

optimising the poling technique for specific materials, and can lead to improved nonlinear coefficients and 

increased lifetimes. This work developed a new and simple experiment to measure the poling efficiency as 

a function of time without the requirement for expensive second harmonic generation experiments. The 

second part of this study developed and measured second harmonic generation in ferroelectric liquid 

crystals. A commercial material (SCE13*) was assessed and its coefficients compared well with results 

from molecular modelling and structural information. This is the first time a comparison has been reported 

for ferroelectric liquid crystal materials. New uniform planar cell geometries were modelled and evaluated 

for nonlinear optical applications. The measurement of SHG in ferroelectric liquid crystal materials also 

demonstrated the application of SHG as a highly selective optical probe to measure refractive indices, 

optical order parameters, and elastic constants of ferroelectric materials and device structures to support 

ferroelectric liquid crystal display technology.

The search for efficient nonlinear optical organic materials can be broken down into two 

requirements: the development of molecules with large nonlinear polarisabilities (|3 coefficients), and the 

organisation of these molecules into a highly ordered, noncentrosymmetrically aligned bulk material. Side 

chain polymeric materials have used molecular groups with large molecular coefficients, but required
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poling to achieve noncentrosymmetric alignment. The status of poled polymeric devices at the beginning 

of this work was promising, offering ease of processing with moderate nonlinear coefficients, but low 

poling efficiency and lack of poled stability prevented adoption of this technology. Over the period of this 

study, development of new materials coupled with the investigation of the relaxation processes in these 

materials has resulted in nonlinear coefficients which now surpass lithium niobate, which are stable and 

have achieved low optical losses (< 0.5 dBcm'^). These successes have lead to automated production 

facilities for integrated electro-optic devices based on this technology to be developed.

A study of the temporal behaviour of poled materials was carried out to investigate the poling 

technique and its limitations. The induced nonlinear coefficient r^ff (rgg-r^g) was measured using a new 

simple technique as poling occured, followed by its relaxation. The importance of optimising the poling 

parameters of temperature relative to the polymer glass transition temperature, voltage and time period, 

was emphasised by the different side chain reorientation mechanisms which were identified above and 

below the polymer glass transition. The poling process was optimised by poling at temperatures about 10®C 

below the glass transition temperature of the material. Understanding the temporal dependence of the 

poling processes is essential to determine the length of time for which the poling field must be applied, to 

achieve maximum poling efficiency. It is important that the poling period gives sufficient time for the 

nonlinear groups to reorient, but must be limited to minimise the formation of charge double layers due to 

charge trapping of ionic impurities close to the device electrodes. In place of the arbitrary periods 

previously used, an optimum period can now be identified using this technique, which is a function of 

individual materials, the temperature and poling field strength, and the material purity.

The theoretical enhancement of the nonlinear optical coefficient by a factor of 5 by using perfectly 

ordered liquid crystalline polymers in place of amorphous materials has not been achieved in practice. 

There has been reported a small improvement in the nonlinear coefficient and stability of the 

noncentrosymmetric alignment after the field was removed. However, device considerations offset these 

benefits. The more complex chemical synthesis often results in liquid crystal polymers with lower 

dielectric breakdown strengths due to the presence of impurities, thus reducing the maximum poling field, 

and hence the maximum nonlinear coefficient that can be obtained. The very high birefringence of liquid 

crystal polymers can result in tighter device flatness tolerances in electro-optical switching applications. 

Increased optical losses due to scatter is also a problems with high birefringence liquid crystalline 

materials. It has been reported that chemical cross-linking whilst poling has resulted in significantly 

improved device lifetimes without inhibiting other aspects of device performance. In summary, the benefits 

of using liquid crystal side chain polymers for nonlinear optical materials have not been significant, and are 

now being surpassed by the application of new processing techniques. These improvements have allowed 

poled polymeric materials to become established as a competitive technology to lithium niobate, and many 

of the device related issues are being overcome as materials and processing techniques become established 

and understood.
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Ferroelectric liquid crystal materials exhibit spontaneous noncentrosymmetry without the 

requirement of poling. These materials at the beginning of this work had not been exploited for nonlinear 

optical applications. Measurements made on materials developed for ferroelectric liquid crystal displays 

showed they had molecular and bulk nonlinear coefficients several orders of magnitude lower than that 

required for useful application. This class of materials does offer considerable potential due to the ease in 

which noncentrosymmetric alignment could be achieved, the stability of this alignment, and the high 

degree of control of the molecular properties possible through established molecular engineering 

techniques. This study developed a new class of ferroelectric liquid crystal material specifically for 

nonlinear optical applications, which showed improvements of over a factor of 10  increase nonlinear 

coefficient than the previous best materials. Further improvements in the molecular coefficients are 

required before these materials can compete with lithium niobate and poled polymer technology, however 

given the short history of these materials in comparison with the other technologies, there is still a high 

potential that ferroelectric liquid crystal nonlinear optical materials can become a competitive technology. 

There are two essential steps before this becomes possible. Firstly, more sophisticated molecular designs 

exploiting hydrogen bonding and other intramolecular effects must be developed, and secondly, these 

materials must be polymerised to form stable, self supporting materials. This work is already in progress, 

but it must be bom in mind that some of the limitations of competing technologies are at the same time 

being overcome, making the demands for any new technology even greater.

The development and characterisation of chiral smectic C liquid crystal materials for nonlinear 

optical applications also illustrated the sensitivity of second harmonic generation as a useful and selective 

optical probe in ferroelectric liquid crystals. The selectivity of SHG to the C2  axis of the molecules is 

almost unique, and has enabled measurement of the optical biaxiality of these materials with improved 

accuracy and measurement of the B3 twist elastic constant of the c% axis with sufficient accuracy to 

question the definition of critical unwinding field strengths and the effects of surfaces.

Assessment of the interaction between the liquid crystal molecules and the aligning layers has 

previously been reported in nematic liquid crystals and monolayers of amectic C materials using SHG. 

From the insight of this study, an experiment has been proposed which may allow the selective probing of 

the surface layer of a bulk chiral smectic C material whilst the bulk is present but is not SHG active. This is 

an important measurement for evaluating ferroelectric materials and surface interactions in a conventional 

display geometry. Structural information about the organisation of the molecules through the cells may also 

be obtained from bulk measurements within different cell geometries. A number of different alignment 

geometries were assessed, with particular emphasis on a new cell geometry suitable for nonlinear optical 

devices which did not require in-plane electric fields to unwind the natural helix of chiral smectic C 

materials, but can be phase matched. This new and valuable role of second harmonic generation as an 

optical probe in chiral smectic C liquid crystal materials will provide new insight into this exceptional class 

of material and support a highly promising new display technology.
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Appendix A.

A l The Relationship between the Microscopic HyperpolarisabUity and the Bulk Susceptibility.

The macroscopic second order susceptibility is related to the molecular hyperpolarisability P

by

^ ?

where there is a summation over all molecules q within the unit cell, V is the volume of the unit cell,/®  are 

the local field factors and a// are the direction cosines of the molecular frame of reference xyz with respect 

to the bulk material frame XYZ. To simplify the form of a suitable symmetry group is applied which 

describes the symmetry of the bulk material.

The noncentrosymmetric point group oomm is applicable to systems which lack any positional 

ordering, but which contain a unique axis, about which there is infinitefold rotation. This point group 

describes the poled nematic and smectic A liquid crystal systems, to which we will restrict the following 

arguments. The effect of applying the oomm point group on the tensor is to limit the number of non­

zero components [Nye, (1964)] to four: X3 3 3 , X1 1 3  = X223’ %131 = X232’ %311 = X322- Th® superscript (2) 

is omitted for clarity.

There are a number of theoretical models for the electric field poling of hyperpolarisable 

molecules. These are the isotropic model, the Ising model [Meredith et al, (1985)], the Singer Kuzyk and 

Sohn model (SKS) [Singer et al, (1987)] and the Maier-Saupe model extended by van der Vorst and Pinken 

(MSVP) [Mohlmann & van der Vorst, (1989)]. The isotropic model assumes no preferential packing of 

molecules in a material, whereas the Ising model assumes molecules are cylindrical and pack perfectly to 

give an order parameter S equal to unity. The real life situation lies somewhere between the two models 

and can be described by either the SKS or MSVP models.

The SKS model utilises the axial order parameters <P2 > and <P^> of the liquid crystalline host to 

describe the ordering and it is assumed they are insensitive to the applied field. The MSVP model is a self 

consistent calculation of the ordering of a system using three energy terms for the constituent molecules. 

These are the potential energy of a single molecule in a self ordering system described by <P2 >, the energy 

of the permanent dipole inside a field, and the energy of the induced dipole inside a field. The SKS and 

MSVP models give almost identical results for poled nematic systems, the only difference being the 

starting conditions. The SKS model requiring independent measurements of <P2 > and <P4 >, and the 

MSVP model requiring the magnitude of the three energy terms. I shall concentrate on the SKS model.
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A2 Calculation of the Orientational Ordering.

The bulk susceptibility of the material will be calculated for an orientated material at the elevated 

temperature at which the material was poled. When the material was cooled to lock in the induced 

alignment, the thermal disorder associated with the elevated temperature was also stored. It must be 

remembered that the energy associated with ordering is a combination of the short range intermolecular 

interaction as seen in nematic phases, and the externally applied Held, which is comparable to the thermal 

energy kT. It is assumed that the molecular nonlinear optical properties were not significantly perturbed by 

the neighbouring molecules. The bulk susceptibility can then be described as the statistical average of the 

molecular hyperpolarisability

XlJK ( -® 3  ; (-Û), ; Û), , (Bj A2

where N  is the number density of the nonlinear optical molecules and is the hyperpolarisability 

including local field effects. The molecular and bulk coordinate systems are related by the Euler angles (p, 

0 , and y , which can be transformed using the matrix a

cos 0 cos (p cos i/A -  sin (p sin !//■ cos 0 sin çî cos y/" -  cos ç) sin -s in ^ cosv '’ 
-co s^ co s(p sin i/ -s in tp co si/ -c o s  ^ sin sin i /  -  cos ç) cos i// sin ̂  sin ^  

sin 6 cos (p sin 6 sin y/ sin 0

The orientational average of the hyperpolarisabilities in the presence of a poling field Bp is of the

form

( )//x ~  J  )Pijk ^

where the volume element is given by

2 t i  I n  + 1

j  clQ.= j d ç  j d y / j  d { c o s 6 )  A4
0 0 - 1

and ,Ep ) is a distribution function. If the poling field couples with the molecular dipole moment m* 

which has been corrected for local field factors, and U describes the short range interaction potential 

between molecules which is significant in liquid crystal phases, then G(Q ,Ep ) is described by

It is assumed the molecular interactions described by the potential U are only dependent on 0 for 

materials with uniaxial symmetry, and it is noted that U does not distinguish between alignment parallel or
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antiparallel with respect to the director n. In the case where the interaction between the applied field and 

the molecular dipole is smaller than the thermal energy, then the exponential can be expanded to

exp[-(t/ -  m*. /) tr  )] = [l + (m*. £  J  / t r ]  exp[-(//tT ]

The function G(f2,Ep) can be expanded in terms of Legendre polynomials

G(e,E^) = f^i^A,P,(cose) A6
/=0

with

+1A, = j d(cosd)G{6,Ep)Pi{cos6).
-1

The Aj are the orientational average of Pj , denoted <P|> , and are defined as the microscopic order 

parameters. It is assumed that <P;> can be independently measured. The product of the transformation 

components and the distribution function shown in equation A3 can also be expanded in Legendre 

polynomials. Integrating this over cp and \|/, within the limits from A4, then the macroscopic second order 

susceptibility becomes 

N F
X u .  = - ^ [ <  + < ( f 2 > +  C ( / ^ ) ]  A7

where the order parameter coefficients are expressed in terms of the molecular hyperpolarisability b*jjj  ̂

and the molecular dipole moments Singer et al [1987] describe the full expansion of u(^) for all 

components allowed within the <»mm symmetry.

Physical insight can be gained by considering the simplified situation of a one dimensional 

molecule, where only and are nonzero. This approximation is not unreasonable for the rod 

shaped molecular systems likely to be encountered. Equation A6  can be written

N F
^333 = " ^ ^ z l ' ” z [5  +  7 - ( ^ 2 ) + ^ ( ^ 4 ) ]  ^  ^ 8

and

NE
Xm =Xm =X}n A9

The local field factor can be isolated in this approximation as

where is the molecular dipole moment. The local field factors have been discussed in section 2.3 for 

the particular case of liquid crystal materials using the long thin cylinder approximation for molecules. In
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the isotropic phase the local fields at optical frequencies can be described by the Lorenz- Lorentz 

expression

fw = (n * 2  + 2)/3

but in the case of liquid crystal materials, the equation must be modifîed to take into account the shape of 

the molecules and the difriculty in reorienting these molecules. The equation

- 1 ) 4

where L^+L2= l /2  and Lg=0 has been found to be a good approximation. The dipole in the presence of the 

local poling field can be described by the Onsager expression

r  =
e {nl+2)
n l + 2 e

where e is the d.c. field dielectric constant and n̂ Q is the optical refractive indices.

In an isotropic system <?2> and <P^> —> 0 and so equations A8  and A9 give the nonlinear 

susceptibilities as

n f e  ̂ o 1
%333 =  '  -j^— P z n F z -

where the local field factors are collected under a common term F. The nonlinear susceptibility along the 

poling direction is a factor of three higher than the transverse component. It is also assumed that the poling 

field is small in the condition |iE < kT so that there is no induced order in the material to significantly 

increase <?2> and <P^>. This is known as the low field approximation.

For a perfectly ordered system (the Ising limit) then <?2 > and <?4 > —» 1 and equations A8  and 

A9 become

kT

X  113 = 0 .

The potential for a fivefold increase in the susceptibility along the poling direction exists if one moves 

from an isotropic system to a perfectly ordered system. Of course liquid crystal phases are not perfectly 

ordered - in a typical nematic phase <?2> = 0.6 and <?4 > = 0.25 which gives approximately a three fold 

increase in c(^) . For more highly ordered smectic phases then <?2 > = 0.9 and <?4 > *  0.8 giving an 

increase of 4.5,
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Appendix B.

Theory for Electro-Optic Experiment.

Consider a uniaxial material which is aligned homeotropically in a glass cell of thickness h. The 

material has an optic axis defined by the extraordinary refractive index and an ordinary refractive index 

no. Light was introduced into the material at an angle 6 % to the normal of the cell along a direction defined 

by the unit vector s. Figure 2.2 shows the refractive index ellipsoid for the material and defines axes. 

Refraction must also be taken into account at the boundaries of the cell structure, and so from Snell’s Law

« ^ (0 ^ )s in 0 ^  =  s in /  B1

sin (|)̂  =  sin / B2

where nx(0 x) is the refractive index seen by the extraordinary ray at an angle 0 x from the optic axis, 0 x is 

the angle of refraction for the extraordinary ray, <j)o is the angle of refraction for the ordinary ray, and i is 

the angle of incidence at the cell surface.

Eliminating nx from equations B1 and B2 gives

n /z. sin /
t a n 9 , = - - 7 - - ^ ;   ̂ B3

-  sin i)

From Principles o f Optics Bom and Wolf p697, the phase delay between the extraordinary ray and 

ordinary ray, after travelling through a uniaxial material of thickness h, when light is incident at an angle i, 

is

6  =  (n^ cos 0  ̂ -  cos (j)).
A.

B4

If the phase delay is increased up to V2 by including a Babinet Soleil compensator, so that the resultant 

light is circularly polarised, then the extra phase delay introduced A is given by

5 + A =  7 c / 2 .  B5

Eliminating 0x and rearranging for ne gives

S i n t

<  \2nh

Using equation B2 to eliminate (j>o gives

B6
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ô.. = 1 - sin^ i . B14

The experiment was designed so that plane polarised light is coupled into its orthogonal 

component by using the sample and Babinet Soleil compensator as a quarter wave plate combination. Any 

small modulation in the retardation of one component can then be converted into an intensity variation by 

using a polariser.

The fraction of light coupled into the orthogonal polarisation, T, is

T = sin'
5 + A

B15

B16

Differentiating with respect to 6  gives

dT _ sin(5 + A)
3 5  "  2  ■

The experiment was arranged to have circularly polarised light out when the light source is linearly 

polarised light at an angle of 45® to the vertical. From equation B5, T=0.5 and equation B16 is also equal 

to 0.5. For small modulations, then

B17

The modulation amplitude from the detector was measured using a lock-in amplifier. This was calibrated 

against a known signal to obtain the conversion factor to give peak to peak (ptp) values. Rearranging 

equation B14 and substituting equation B17 gives

y  - m X s i n  i ^
1 - B18
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