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A bstract

The m ost im po rtan t p a rt of an in ternet protocol is its addressing inform ation— th a t is, the infor­

m ation th a t affects routing of an in ternet packet. W hile there has been m uch research of routing 

in internetw orks, there has not been a comprehensive study  of addressing inform ation in in ternet 

protocols per se. In this thesis, we examine the use of addresses in in ternet protocols. We s ta rt 

w ith a taxonom y of addressing functions. Using this taxonom y, we then  give a  comprehensive 

description of addressing modes in internetw ork protocols. Finally, we present two designs for ad­

dressing in internetw ork protocols, one based on current in ternet protocol syn tax  (S IP P ), and one 

based on a new syntax  (SPip). Both of these designs exploit the notion th a t v irtually  all routing 

and addressing sem antics can be achieved through the loose source route m echanism , though SPip 

does this more generally th an  SIPP. We analyze the capabilities and costs of S IPP  and  SPip, and 

com pare them  w ith those of OSPs internetw ork protocol, CLNP. We show th a t the  general use 

of the  loose source route m echanism  is the best way to  achieve flexible, efficient, and evolvable 

routing  and addressing.
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C hapter 1

In tro d u ctio n

In the mid to  late 1970’s, there was a flurry of creative activ ity  th a t gave us the basic underpinnings 

for the connectionless in ternet. A lm ost 20 years later, this in ternet arch itectu re  is dom inating the 

d a ta  netw orking world. A t the tim e the in ternet arch itecture  was being invented, a  lot of thought 

went into the design of the in ternet protocol (see C hap ter 12). T his work culm inated  in X erox’s 

P up  protocol [9], and shortly  afterw ards in IP  (the In ternet Protocol) [86, 87].

Since then, much work has been done related to internetw ork protocols, in rou ting  algorithm s, 

rou ter perform ance, network m anagem ent, and the like. U ntil recently, however, v irtually  no 

work had been done on internetw ork protocol header design per se. T h a t is to  say, nobody had 

asked the question “given w hat we’ve learned in the last 20 odd years, w hat fundam enta l general 

s ta tem en ts can we make abou t the natu re  of internetw ork protocol header design, and how m ight 

th is lead to a b e tte r internetw ork protocol?”

T his is not to  say th a t there has not been work in internetw ork protocol design in the  intervening 

years. For instance, during th a t time CLNP was developed in ISO [55]. However, these works 

m ainly codified existing practice in a standards or p roprietary  fram ework, m aking small bu t 

increm ental im provem ents (though some m ight say the progress was backw ards).

W ith  the recent explosion in growth of the IP  in ternet, IP  has been found w anting (through no 

fault of the original designers—IP has far exceeded its expected useful lifetim e). IP ’s address 

is simply not big enough [45]. This has resulted in a recent flurry of ac tiv ity  to  define IP ’s 

replacem ent [64, 30, 37].

Given the lack of work on fundam ental in ternet header design and th e  renewed in terest in a  new 

internetw ork protocol, this is a good tim e to revisit, in general term s, the topic of routing  and 

addressing in internetw ork protocol design. T h a t is the topic of this thesis.

More specifically, we ask “w hat inform ation m ust be in an internetw ork protocol header to  support
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routing , and how is th a t inform ation best encoded?”  ̂ In particu lar, we present two new designs 

for encoding routing inform ation. B oth designs exploit the  use of the  loose source route as a 

general m echanism  for a  wide range of routing and  addressing functions. One design, SIPP, is 

based on current in ternet protocol syntax. The o ther design, SPip, uses a new syntax  designed 

around the loose source route m echanism . We show th a t bo th  designs satisfy a wide range of 

requirem ents, and th a t bo th  are superior to existing approaches.

We assum e th a t the reader has a basic understanding of internetw orking and internetw orking 

term inology—for example, as described in [68].

1.1 O u tlin e

This thesis has two parts. The first p a rt presents a  taxonom y of routing inform ation, particularly  

addresses, and discusses internetw ork protocol routing  functionality  in the context of th a t taxon­

omy. The second p a rt describes the two new in ternet protocol designs. These protocols, plus an 

existing internetw ork protocol (CLN P) are analyzed and com pared.

P a rt I contains C hapters 2 th rough 6. C hapter 2 concerns taxonom y. It describes two previous 

taxonom ies, discusses their shortcom ings, proposes a new taxonom y, and shows how the new 

taxonom y cleanly describes existing routing  and addressing functionality. C hapters 3 th rough 6 

describe in detail various routing  and addressing functions, in the language of the taxonom y of 

C hapter 2. P art I provides the underpinning from  which the protocol designs of P a rt II can be 

discussed and understood. P a rt I also serves as a  broad survey of the state-of-the-art.

P a rt II contains C hapters 7 through 11. C hapter 7 presents the criteria  by which the three proto­

cols are analyzed. C hapter 8 describes the three protocols. C hapter 9 analyzes the capabilities of 

the three protocols. C hapter 10 analyzes the costs of the  three protocols. C hapter 11 sum m arizes 

P a r t II and presents the conclusions reached.

C hapters 1 and 12 fall outside of the two P arts . C hap ter 1 is the in troduction , and C hapter 12 is 

the epilogue.

^N ote th a t we do not address other asp ects o f in ternetw ork p rotocol header design, such  as checksum m ing, 

fragm entation , hop  cou n t, and  con gestion  control.

13



Part I

In tern et P ro to co l T axon om y and

Funct ion a lity
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C hapter 2

T axonom y

This chapter first describes previous taxonom ies of routing  and addressing and  discusses their 

shortcom ings. It then suggests a  new taxonomy, and shows how th a t taxonom y supports existing 

routing and addressing functionality.

2.1 P re v io u s  T a x o n o m ies

It is impossible to discuss the definition of address w ithout introducing the taxonom y of names, 

addresses, and routes discussed by Shoch in 1978 [99], and further discussed by Saltzer in 1982 [96]. 

Shoch sta tes th a t the nam e, address, and route represent the fundam ental com ponents of network­

ing. Specifically, Shoch makes the following definitions:

• The nam e of a  resource indicates w hat we seek,

• an  address indicates where it is, and

• a route tells us how to  get there.

The notion here is th a t a  name is som ething w ith which a  hum an can deal com fortably, such as 

a character string. The nam e is m apped into an address, which is som ething less com fortable to 

hum ans bu t more useful to  machines, such as routers. The address then  m aps in to  a route, which 

defines the p a th  from  one host to another.

The notion  of an address indicating ‘w here’ satisfies our common usage of the word address. Hosts 

(or telephones, or people in houses) th a t are in the  same locale tend  to  have sim ilar addresses. 

W hen a  host (or phone, or person) moves, it gets a new address. By and  large, netw ork addresses 

have these characteristics.
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However, the  notion of an address indicating where som ething is can also be misleading. For 

instance, an E thernet address (or any flat address), seems not to  convey m uch of a  notion of 

location. If an E thernet interface is moved from  an E thernet in New Jersey to  an E thernet in 

Tokyo, it keeps the same address. Thus, the  E thernet address behaves more like an identifier ( th a t 

uniquely identifies the E thernet interface am ong all E thernet interfaces) th an  an  address.

The notion of an address indicating location is also misleading when an address is hierarchical 

and the addressing hierarchy is not a  stric t tree (th a t is, a single elem ent of the  hierarchy falls 

under m ultiple higher elem ents). An example of th is is provider-rooted addressing. This is a  form 

of addressing where the top  level of the hierarchy indicates a  backbone service provider, such as 

N SFN ET or PSI, etc. Provider-rooted addressing is being proposed in some of the proposals for 

the next generation of IP  [30, 37].

W ith  provider-rooted addressing, if a subscriber netw ork is a ttached  to  m ultiple backbones, it 

obtains m ultiple addresses.^ Assume for instance th a t a  subscriber netw ork is a ttached  to  two 

providers, A and B, and therefore the hosts in the  network each have two address prefixes A 

and B. W hen address prefix A is used to address a host in the network, the packet is routed 

through provider A. Likewise, when prefix B is used, the packet is rou ted  through  provider B (see 

section 3.4.2).

The notion of an address indicating location is misleading here in two senses. F irst, the  host seems 

to  be in one place (for instance, it m ay have one netw ork a ttachm en t po in t), and  yet it has two 

addresses, which would imply th a t it is in two locations. More im portantly , the  address used in 

a packet to  the  destination  dictates, a t least a t the  specificity of which provider is chosen, the 

route to  the destination. In other words, the address in p a rt determ ines how a  packet gets to  the 

destination , and is therefore, by Shoch’s taxonom y, also a route.

These am biguities in Shoch’s taxonom y indicate th a t a more precise definition is needed. (To be 

fair, Shoch’s paper sheds a great deal of light on w hat an  address is, by pointing  out different 

kinds of addresses and how they  behave. It is ju s t th a t the  notion of “where” per se is am biguous.) 

Saltzer also recognized am biguities in Shoch’s taxonom y, and so designed one of his own [96].

Saltzer observed th a t there are actually  four entities th a t commonly appear in networks, and 

th a t therefore a trip a rtite  taxonom y is insufficient. These four entities are users/services^ hosts, 

network attachm ent points, and paths. Each en tity  has a nam e, and each is bound to  the next— 

users/services can be found on certain  hosts, which have certain  netw ork a ttach m en t points, to 

which path s lead.

 ̂S tr ictly  speak in g  this does n ot have to b e  true. If backbone routers m ain ta in  routes to  subscriber netw orks, 

rather than  only to other provider netw orks, then  one address w ould  suffice for routers to  know  how  to route to  

a subscriber through  m ultip le  providers. T h is , how ever, defeats one o f th e  purposes o f p rovider-rooted  addresses, 

w hich  is for routing to scale at th e  rate o f providers at the  top  of the hierarchy. Current IP  sca les at roughly the  

rate of subscribers, w hich  is found to  be inadequate [45].
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Saltzer made two im po rtan t points. F irst, th a t the form of the nam e of each en tity  should be 

distinguished from  w hat the en tity  is (Shoch thought of a  nam e as being hum an friendly and 

an address as being machine friendly). Second, th a t the natu re  of the  binding between the four 

entities is of critical im portance. For instance, is the binding of the nam e of a  host and  the nam e 

of its netw ork a ttachm en t point tigh tly  coupled or dynam ic? If it is tigh tly  coupled, as w ith an 

E thernet address, the  network attachm ent point nam e stays w ith a  host w hen the host moves. 

If it is dynam ic, as w ith IP  addresses, the network a ttachm en t point nam e changes w ith host 

m ovem ent, and the binding is dynam ically m aintained in tables (for instance, DNS tables).

In com paring his taxonom y w ith Shoch’s, Saltzer makes the following sta tem ent: “An address of 

an object is a  nam e of the object it is bound to. Thus, an address of a  service is the nam e of some 

host th a t runs it. A n address of a host is the nam e of some netw ork a ttach m en t point to  which 

it connects,” and so on. In essence, Saltzer takes away the am biguity of w hat an address is by 

rem oving it from  the taxonomy, and delegating it to  its classical m eaning in com puter science.

Thus, according to  Saltzer’s taxonomy, an address could be the nam e of a  host (as in E thernet), 

or it could be the nam e of a  network a ttachm en t point (as in IP ), or it could even be the name 

of a  p a th  (as in IP  source route). In the end, Saltzer does no t a ttem p t, as Shoch did, to come up 

w ith a unifying definition of address.

In this thesis, we also do not a ttem p t to  come up w ith a unifying definition of address. B ut neither 

do we remove address from  the basic taxonomy. R ather, we try  to  shed as m uch light as possible 

on w hat an address is, and how it contributes to  the job of routing. In so doing, we take advantage 

of (bu t do not com pletely em brace) Saltzer’s taxonom y of user/service, host, netw ork attachm ent 

point, and path , because indeed these are real elements in the network.

B ut, we also keep Shoch’s “nam e” and “address” , because those are also real elem ents in the 

network. (We keep Shoch’s “rou te” as well, bu t this is the same as S altzer’s pa th .) People and 

hosts have nam es th a t we deal w ith as real objects, and hosts and netw ork a ttachm en t points 

have addresses th a t are real objects carried in packet headers or looked up in directories.

2.2 A d d it io n a l T axon om y: D efin in g  F u n ctio n s ra th er  th a n  

E lem en ts

B oth Shoch’s and Saltzer’s taxonom ies are based on network elem ents, and cover all aspects of 

nam ing /add ressing /rou ting  (from the user to the path ). This section expands those taxonom ies 

by basing the taxonom y on function ra ther than  network (or header) elem ent. I t  also lim its itself 

to th a t inform ation in the packet header th a t relates to routing.

This section shows th a t there are three route-affecting functions of a packet header. T hey are; 

destination identification, destination location, and  path modification. T hus, the  three route-

17



affecting com ponents of the packet header are the identifier, the locator, and the modifier?  Briefly 

s ta ted , the identifier distinguishes the destination am ong all o ther destinations. It can be used by 

the routing function to determ ine how to route a packet, and has the characteristic  th a t its value is 

independent of where in the network the destination  is located. The locator is used by the routing 

function to determ ine how to  route a packet, bu t its value does depend on where in the  network 

the destination is located. A locator has the side-effect of identifying the destination . There 

are two m ajor types of locators, source-sensitive and source-insensitive. A modifier is a  header 

elem ent th a t is independent of the identity  or location of the destination , b u t still influences the 

p a th  taken to  reach the destination.

The rem ainder of this section discusses various com ponents of the header in the context of these 

three functions.

2.2.1 A ddresses

An address does two things. F irst, it identifies the addressed object (destination host or network 

a ttachm en t point) among the set of addressable objects. (Note th a t an address can identify 

m ultiple objects, as w ith IP m ulticast addresses [27]. In this thesis, when not otherwise sta ted , 

the term  address refers to  the address in its “un icast” , or non-m ulticast, form.) In this sense, it 

does the “nam ing” function as defined by Shoch, though it is not a  nam e is Shoch’s sense (th a t 

is, it is no t necessarily hum an-friendly).

The second function of the address is to  aid in routing the packet (or call setup) from  wherever 

it is to the destination . Simply put, it does this by providing w hatever inform ation is needed by 

the routing  function.

The reason th a t a  single address typically accomplishes bo th  functions is because usually one and 

only one destination  is a t a  given place a t a  given tim e. Thus, indicating “where” the destination  

is is param ount to  identifying it.

In theory, the address could be split in to  two com ponents, an identifier (indicates w hat) and a 

locator (indicates where). The former would be used only for identifying the destination , and 

would not change even if the destination moved far enough to justify  getting  a new “locator” . 

The la tte r  would only assist the routing function^. Indeed, this is som etim es done in practice, for 

instance in the  case of mobile IP  [104, 58], where the netw ork location of a  destination  can change 

m ultiple tim es during the course of a  T C P  connection.

Consider the  E thernet address in the context of locating and identifying. T he E therne t address 

is only an identifier. W hen the E thernet packet is tran sm itted  onto the cable, it is delivered to

^The term  “loca tor” was first suggested  b y  Frank K astenholz on  the b ig  in tern et m ailin g  list  [7].
^N ote th at the w ord “router" w ould  b e  a b etter  term  th an  “loca tor” for th e  address b ecau se o f it s  role as aiding  

the routing function . H owever, the w ord “router” is already in  com m on use to refer to  the p h ysica l sw itch es that 

forward in ternet packets.
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all E thernet interfaces, each of which individually determ ines w hether or not the  packet is for it. 

T h a t is, each interface “identifies” the packet as being for it or not for it.

This classification is less clear when an E thernet packet is transm itted  on a  cable th a t is connected 

to  o ther cables via bridges. In this case, it is received by the bridges (as well as by everything else 

a ttach ed  to  the cable), which then  determ ine the location (from  their individual perspectives) of 

the destination indicated by the E thernet address. Thus, some “locating” is going on, bu t it is 

no t the E thernet address th a t is locating the destination , bu t ra th er the  p a th , as in stan tia ted  by 

the entries in the bridge’s forw arding tables, th a t locates the destination. The E thernet address 

identifies the forw arding table entry  w ithin each bridge.

This m ay seem to  be splitting  sem antic hairs, and one could argue th a t the E th ern e t address, in 

the case of the bridged E thernet, is in fact locating the destination, albeit indirectly  through the 

m echanism  of the forwarding tables in bridges. However, one m ust draw  a line betw een locating 

and  not locating, and it seems th a t a  clean place to  draw  it is according to  the following definition:

If the address (or other header com ponent) of a  destination rem ains the same no m atte r 

which switch interface the destination directly obtains access through, then  the address 

is not a locator.

Now consider the IP  address, which according to the above definition is a  locator (bu t which, as 

s ta ted  above, effectively identifies as a side effect). The IP  address is hierarchically partitioned  into 

three levels—network, subnet, and host [87]. (Actually, recent advances in classless IP  address 

assignm ent [42] add additional hierarchy to  the IP  address. For the purposes of this thesis, 

however, the  old m odel of IP  suffices.) W hile exceptions to  the following rule apply, by-and-large 

routers outside of a  given network m aintain  a  forw arding table en try  indicating how to  route to  

th a t netw ork. Routers inside the network m aintain  forwarding table entries for th e  subnets w ithin 

th a t netw ork, and routers on the subnet m aintain  forw arding table entries for the hosts on the 

subnet.

Viewed another way, the inform ation inside routers result in three kinds of pa th s  in the  IP  In ternet. 

T here are pa ths from  all routers to  all networks^, there are pa ths from  routers in a  network to 

all subnets in the network, and there are pa ths from all routers on the subnet to  all hosts on the 

subnet

The job  of the address, then, is to  string these three paths together into a com posite p a th  th a t will 

reach the destination  from  any point in the in ternet. The address does this by im plicitly coupling 

the three paths together by including them  in the same address. If the destination  changes its 

netw ork access location to  a different router interface, and th a t interface is far enough away from 

the former access point, then the destination  requires a  new address. (In th e  case of IP, “far

^Strictly speaking, m ost routers do n ot m ain ta in  routes to  all netw orks. M ost routers m a in ta in  so-called  default 

routes to  routers h igh  up  in the physically  topology, for in stan ce in  provider netw orks, w h ich  in  turn  m ainta in  

routes to  all netw orks.
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enough” is a  different subnet, for instance a  different LAN.)

It is in teresting to observe th a t the IP  address essentially consists of a series of identifiers— 

the network identifier, the subnet identifier, and the host identifier. Each individual identifier 

behaves sim ilarly to  the E thernet address. T h a t is, each individual identifier identifies a  p a th  to 

a destination , and the destination itself. The “destination” in this case can be a set of systems 

ra th e r th an  a single system  (for instance, an entire netw ork).

Similarly to  an E thernet address, if the identified “destination” moves, it does not require a new 

address. For instance, if an entire IP  network moves from  one p a rt of the In te rne t to  another, it 

does not have to obtain  a  new network identifier (called a “network num ber” in IP ), and none of 

the hosts inside of the netw ork need to obtain a new address. Likewise, if a  whole subnet moves 

w ithin a  netw ork, it also does not need a new identifier.

2.2.2 Source R oute

A source route, as used in IP  (and CLN P), is a series of IP  (or NSAP) addresses in the header. 

A source rou ted  IP  packet visits each of the system s identified by the IP  addresses in the source 

route in the order th a t the IP  addresses are listed in the IP  header.

There are two kinds of source route: the stric t source route and the loose source route. W ith  the 

s tric t source route, only those system s listed in the  source route can be visited. W ith  the loose 

source route, systems other th an  those listed in the source route can be visited. In o ther words, 

the stric t source route com pletely specifies the path , while the loose source route only specifies 

p a rt of the path .

The IP  source route can be partitioned  into two parts, the last elem ent of the  source route (which 

is the destination  address), and the preceding elements. The two parts  have different roles in the 

source route, and m ust be classified separately.

The final elem ent of the source route is the destination  address, and is therefore a  locator.

The preceding elements of a  source route, taken  as a  whole, is a  kind of locator. This is easy to 

see in the context of the stric t source route. W ith  a stric t source route, if the destination  moves, 

it is alm ost certain  th a t a t least some of the preceding elem ents of the  stric t source rou te  m ust 

change. This is because a change in the destina tion’s location requires a  different pa th . Since the 

s tric t source route describes the complete p a th  to the destination, it m ust change when the path  

changes.

The classification of the preceding elements of a  loose source route as a  locator is less obvious. 

S trictly  speaking, the destination can move to  a new location w ithout changing the preceding 

elem ents of the  loose source route (only the final elem ent will change), and the  packet will still 

be delivered. In this sense, the preceding elem ents of a  loose source rou te  seems to  behave as a
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modifier. T h a t is, it affects the path  to the destination, bu t does no t affect the destination itself.

This having been said, if the destination moves, it is likely th a t the preceding elem ents of the 

loose source route would change also, because the previous source route m ight become a poor 

one. T hus, the preceding elements of a loose source route are coupled, albeit loosely, to  the final 

elem ent or destination.

We can fu rther support the sta tem ent th a t the loose source route is a  locator by showing the 

sim ilarity  between the loose source route and the hierarchical address. Consider again the IP  

address. As m entioned before, the IP  address is essentially a series of identifiers coupled together. 

Each identifier identifies the next lower element in the hierarchy.

The fact th a t an IP  address (or any hierarchical address) is a  series of identifiers means th a t 

its syn tax  could be a series of equal-sized identifiers, ra ther than  nested hierarchical num bers 

squeezed into 32 bits. Each of the identifiers could even be globally unique if the  identifiers were 

large enough (for instance, 48-bits in length, as are E thernet addresses).

W hen viewed as a series of identifiers ra th er than  as a  single “hierarchical address” , an  IP  address 

has some characteristics sim ilar to a source route. Ju s t as the system s represented by the elements 

of a  source route are visited on the way to the destination, the “system s” represented  by each of 

the com ponents of a hierarchical address are norm ally visited by the packet on the way to  the 

destination .

In the case of the hierarchical address, the “system ” is in fact a  collection of system s, such as a 

netw ork or a subnet. Also, the  mechanics of parsing a  source route are different from  the m echanics 

of parsing a hierarchical address. None-the-less, their basic behavior is the same.

Viewing the hierarchical address as a  source route, consider th a t the “higher” elem ents in the 

hierarchical address correspond to the initial elements of the source route, and the “lower” elem ents 

of the  hierarchical address correspond to the later elements of the source route. If a  destination 

moves a  short distance, it is likely th a t the lower elem ents of the hierarchical address will change 

bu t no t the upper. For instance, if a destination  moves w ithin the network, then  its subnet num ber 

m ight change, bu t not its network num ber. Likewise, with a source route, if a  host moves a short 

distance it is more likely th a t the la tte r elements will change th an  the earlier.

The hierarchical address is in fact a  specialized form  of the source route. The source route, being 

more general, could be used as a m echanism  for achieving hierarchical addressing. W hen used in its 

trad itio n a l role, however, the  source route and hierarchical address have a  fundam enta l difference. 

T h a t is, the  source route is dependent on the location of bo th  the source and the destination, while 

the hierarchical address is dependent only on the location of the destination. T his is because the 

source route specifies a  p a th  from source to destination, whereas the hierarchical address only 

specifies the “p a th ” from  the top of the hierarchy to  the bo ttom .

The difference between the two is im portan t, because it is in p a rt the source independence of the
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hierarchical address th a t gives it its good scaling characteristics. Thus, it is useful to  distinguish 

betw een source-sensitive and source-insensitive locators in the taxonomy. H ierarchical addresses 

are source-insensitive locators, while source routes are source-sensitive locators.

To emphasize the difference between the two types of locators, we use the te rm  vector to describe 

source-sensitive locators. Thus, a  source route, as used in IP, is classified as a  vector. A lthough 

strictly  speaking a  vector is a  type of locator, the term  “locator” , when used alone, implies a 

source-insensitive locator.

2.2.3 T ype-of-Service  (ToS) /  Q uality-of-Service (QoS) Field

A nother elem ent of an  IP  header th a t can influence the route is the ToS Field. (The analogous 

field in CLNP is called the QoS Field. We use the term  QoS Field when discussing CLNP, and 

use the term  ToS Field otherwise.)

The ToS Field in IP  instructs the network to  a ttem p t to  give the packet a  sm all set of service 

characteristics, w ithin the lim itation of “best-effort” delivery. Exam ples of ToS Field types in 

IP  are low delay, high bandw idth, and low error. One way an IP  netw ork could theoretically 

provide these services are by routing the packet over transm ission facilities th a t have the requested 

characteristics. Thus, the ToS Field can affect routing.

The ToS Field is neither an identifier nor a locator. It is not an identifier because the choice of 

ToS Field has no influence on which destinations receive the packet. It only influences the path  

taken. Packets to  different destinations can have the same ToS Field value, and packets to  the 

same destination can have different ToS Field values. The ToS field is not a  locator because it 

does not change if the  destination  moves to a different network location.

R ather, the ToS Field is a  pa th  modifier (or ju s t modifier for short), the  th ird  te rm  in the functional 

taxonom y. A modifier is a header elem ent th a t is independent of the iden tity  or location of the 

destination , bu t still influences the p a th  taken to reach the destination.

2.2.4 M obility

T here exists several proposals for m obility in IP  [104, 58]. W hile these proposals differ in detail, 

they all have one th ing in common— th a t is, two IP  addresses are used ra th e r th an  one. One 

address is stable th roughout a  higher level connection (such as T C P ), and  the other address 

reflects the mobile h o st’s current location in the in ternet.

The stable address is the identifier for the connection. It does not change even as the mobile host 

changes location®. Except for possibly the last router in a pa th , this identifier is not exam ined by

^The stab le address (identifier) can sim u ltan eou sly  be a locator for the ’’hom e sta tio n ” o f the m obile  h o st. T he  

h om e sta tio n  is a nod e th a t know s th e  current loca tion  of the m obile node.
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routers.

The non-stable address is the true  locator for the mobile host. This address is used to  route the 

packet to  the current location of the mobile host.

2.2.5 IP M ulticast

The final com ponent of the IP  header th a t can influence routing  is the source address. The source 

address influences routing  when the destination address is a m ulticast address [27]. A m ulticast 

address is an IP  address th a t identifies m ultiple destinations, ra th er th an  a  single destination  as 

is the case w ith the non-m ulticast, or unicast, IP  address. A m ulticast address also activates a 

delivery service whereby all destinations receive the packet.

One technique for delivering an IP  packet to m ultiple destinations is for a  m ulticast routing 

algorithm  to  form  a spanning tree from  the source to  the destinations. R outers a t branches in the 

tree replicate the IP  packet and transm it one copy over each outgoing branch of the tree. Because 

the tree is rooted a t the source, and because a given router can be on m ultiple trees for the  same 

group, the source address m ust be exam ined for the router to  know which neighbors should receive 

replicas.

According to  the taxonom y, the IP  m ulticast address in the destination  address field is an identifier. 

I t rem ains the same no m atter where the destinations are (or which destinations belong to  the 

group).

The source address, on the o ther hand, is a  modifier. It influences the p a th (s) taken, bu t does 

no t influence the set of destinations th a t receive the packet.® To be clear, the source address is 

a  modifier for the destination. The source address itself is of course a locator of the source, and 

will change if the source changes location. The focus here, however, is on the destination  and on 

how packets are routed  to the destination. W ith  respect to  the m ulticast destination , the source 

address is a  modifier.

Note th a t there are o ther forms of m ulticast [2, 79] th a t do not form  trees a t the packet source, 

and therefore do not depend on the source address. In these cases, the  source address has no 

influence on the route taken, and so does not fall in to  the taxonom y one way or the other.

M u ltic a st  S co p in g

Scoping in m ulticast is the act of lim iting the spread of a  m ulticast, usually w ith respect to  distance 

from  the source. To accomplish this, there is a  field in the packet header th a t specifies the scope of 

the packet, here called the scope field. In the case of IP, th is field is the hop count (Time-To-Live)

®The excep tion  to  this is where a d estin ation  w ishes to  filter all packets from  a g iven  source. H owever, this 

shou ld  be m odeled  as a filtering fun ction  rather than  a rou ting  function , an d  so is orthogonal to  this taxonom y.
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field [31]. T h a t is, the m ulticast packets simply travel (away from  the source) un til the  hop count 

expires. The larger the hop count, the larger the scope of the  packet.

In the SIPP  protocol [30, 40], there are b its set aside in the address field to  indicate scope. The 

scope bits are set independently  of the m ulticast group identifier.

In either case, it is a little  difficult to classify the scope field as identifier, locator, or modifier. By 

itself, the  scope field is none of the three. In com bination w ith the source address and  m ulticast 

address, however, it makes up part of the identification function. T h a t is, taken  together, the  

source address, m ulticast address, and scope field define the recipients of a  given packet. In this 

sense, it is neither a coincidence, nor inappropriate, th a t the S IP P  scoping b its are p a rt of the 

m ulticast address itself.

2.2.6 Flow  Specification /  Flow Identifier

“C onnection-oriented” network technologies, such as ISDN [17] and X.25 [16] have two phases of 

operation; call setup and d a ta  transfer. In the call setup phase, one or more call setup packets are 

sent from  source to destination (and possibly back again, depending on the protocol). The call 

setup contains full “addressing” inform ation, similar in function to th a t inform ation in the header 

of an IP  packet, which is used to determ ine the path  from  source to  destination .

The call setup may also contain inform ation indicating w hat service the subsequent flow  ( tra ­

ditionally called a connection) requires. Such inform ation can be as simple as peak bandw idth 

required, or can have m ultiple param eters describing average bandw idth , peak bandw idth , delay 

sensitivity, and loss sensitivity [75]. In line w ith the term inology of [75], we call this inform ation 

the flow specification, or flow  spec.

The call setup may also contain inform ation th a t tells routers how to  associate subsequent d a ta  

packets w ith the routing and flow spec inform ation. This is called the flow  filter  in the RSVP call 

setup protocol [114].

Traditionally, for instance w ith X.25 and ISDN, the flow filter is a small identifier th a t is locally 

managed by each router. We call this identifier the flow  ID.^ The Flow ID can also be m anaged 

by the source host, such as w ith SIPP  and SPip (Sections 8.2.5 and 8.1.7 respectively). The flow 

filter m ay even have no flow ID per se, bu t instead identify the fields in an otherwise connection­

less packet header th a t uniquely identify the flow—for instance, source and destination  address, 

protocol num ber, and po rt num ber.

The flow spec in the call setup m ay or m ay not influence the pa th  chosen. A significant am ount 

of lite ra tu re  exists on the topic of optim al p a th  selection based on flow requirem ents, of which the 

work of Bertsekas and G allager is exem plary [5]. However, optim al p a th  selection is an exceedingly

^X.25 uses the term  Logical C hannel N um ber (L C N ). ATM  uses the term  V irtual C ircuit Identifier (V C I). ATM  

uses tw o n ested  levels of V C I. It calls the lower level a V C I, and the upper level a  V P I (V irtu a l P a th  Identifier).
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hard  problem , and  except for very simple flow specs, is not yet practical. It m ay be useful to  use 

the flow spec to influence the p a th  chosen w ithout looking for an optim al p a th  per se. Recent 

work on call setup such as RSVP, however, does not yet a ttem p t to  choose routes based on the 

flow spec.

W hen being used to influence routing, the flow spec is classified sim ilarly to  the  ToS Field— th a t 

is, it is a  modifier. Because the problem  is so difficult, and because this thesis prim arily  deals w ith 

connectionless internetw orking, we do not further exam ine the use of the flow spec in its role as a  

modifier.

Note th a t the d a ta  packets of a  flow do not contain the flow spec. Instead , they  contain  one of 1) 

a  flow ID only, 2) a  flow ID and other routing inform ation such as addresses, or 3) only routing 

inform ation. In the first case, each router forwards based solely on the flow ID. In the second 

case, routers will norm ally forw ard on the flow ID, bu t m ay also use the routing inform ation, for 

instance because the sta te  for the flow ID has been lost.

A lthough the flow ID in the d a ta  packet therefore influences the route, it in itse lf carries no 

routing  and addressing sem antics. R ather, it is nothing m ore than  a m nemonic for the flow spec 

and rou ting  inform ation th a t was in the call setup (or form er packets). As such, the flow ID does 

no t provide new routing inform ation and is therefore outside the scope of the taxonom y presented 

here.

2.3  S u m m ary  o f  T a xon om ies

Each of the three taxonom ies presented here are valid and useful w ithin their context. Shoch chose 

to focus on the term s th a t are m ost in the networking vocabulary (now as well as th en )— name, 

address, and route. Shoch rem ained true  to  the vernacular m eaning of these term s in networking, 

th a t nam es identify w hat is sought, addresses indicate where the ob ject is, and  routes describe 

the p a th  to the object. Shoch shed much light on the m eaning and use of these term s.

Saltzer felt th a t the vocabulary of Shoch lacked precision, and so delegated the term s nam e and 

address to their classical m eaning in com puter science (an address of an ob ject is a  nam e of the 

object it is bound to). Saltzer introduced the entities users/services, hosts, netw ork attachm ent 

points, and paths, and described how each is bound to  the next.

T his chap ter fu rther examines the role of addressing, or m ore generally, everything th a t goes in 

a  packet header th a t affects routing. Saltzer’s taxonom y is inadequate for th is purpose because 

it takes the focus away from the address. Shoch’s taxonom y lacks precision in-so-far-as addresses 

(in Shoch’s sense of the word) are concerned.

Thus, a  refinem ent of addressing taxonom y is introduced. In particu lar, there are three functions 

in addressing— identifying (the destination), locating (the destination), and modifying (the p a th  to
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Table 2.1: Summary of Header Field Classifications

Header Field Classification Section

E thernet Address Identifier 2.2.1

IP Unicast Address Locator 2.2.1

Type-of-Service Field Modifier 2.2.3

Source Route Locator 2.2.2

M obility Stable Address Identifier 2.2.4

M obility Non-stable Address Locator 2.2.4

IP  M ulticast Address Identifier 2.2.5

Source A ddressf Modifier 2.2.5

Scope/Source A ddress/M ulticast Identifier 2.2.5

Flow Spec Modifier 2.2.6

Flow ID Not Applicable 2.2.6

fw ith Source-rooted M ulticast

the destination). The identifier unam biguously identifies the destination  regardless of its location 

in the netw ork. The locator also unam biguously identifies the destination , bu t is dependent on the 

netw ork location of the destination. Locators can be source-sensitive or source-insensitive. Unless 

otherwise sta ted , source-sensitive locators are called vectors, and source-insensitive locators are 

called ju s t locators. The modifier influences the p a th  taken to the destination , bu t has no bearing 

on the location or identity  of the destination.

The com ponents of well-known packet headers, particu larly  IP, are classified according to  this 

taxonom y, and are found to  fit neatly  into the taxonom y. Table 2.1 sum m arizes the classification.
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C hapter 3

L ocators

T his section discusses various forms of locators th a t reduce the cost of routing . It has already 

been m entioned th a t locators are sensitive to host movem ent. W hen a host moves, it m ust obtain 

a new locator. This section shows how locators are also sensitive to  topology. By topology, we 

m ean the network graph formed by the connection of nodes w ith links.

There are two m ajor forms of locators, hierarchical and non-hierarchical. H ierarchical locators are 

by far the more common, and are discussed here first.

3.1 H ierarch ica l L oca tors

All hierarchical locators employ some form of clustering. T h a t is, groups of nodes are formed 

in to  a cluster, which is represented by a  single value in a com ponent of the hierarchical locator. 

For instance, w ith IP, the three address com ponents are host, subnet, and network. The subnet 

com ponent identifies the cluster of hosts consisting of those hosts a ttached  to  the subnet. The 

netw ork com ponent identifies the cluster of subnets th a t belong to  a  given netw ork.

In a  hierarchical locator, the lowest-level (0th level) com ponent is the host (or rou ter). The next 

higher level (1st level) com ponent is a  cluster of hosts. The 2nd level com ponent is a  cluster of 1st 

level clusters, and so on [62]. This thesis refers to  bo th  hosts and clusters as hierarchy elements.

The topological constrain t placed on clusters is th a t there m ust be a p a th  betw een any two nodes in 

a cluster th a t only traverses nodes th a t belong to  the cluster. In o ther words, it m ust be possible 

for nodes outside a cluster to view the cluster as a  single com ponent. T hus, large num bers of 

nodes can be viewed as a  single node, thus shrinking forwarding table size, and  decreasing the 

cost of routing. If the cluster is not internally  connected, it is not possible to  view it as a  single 

com ponent.

There are several aspects of hierarchical addressing th a t are of in terest. One aspect is th a t of
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2.2.0 Forwaiding Table

De.st Next Hop

2.2.1 2.2.1

2.2.2 2.2.2

2 2.11 2.2.n

other 2.0.0

0 .0.0

Figure 3.1: Simple Tree C lustering

determ ining which elem ents should be clustered a t each level, and w hether elem ents can belong to 

m ultiple different clusters. A nother aspect is th a t of determ ining w hat routing inform ation hosts 

and routers should contain. B oth of these aspects are influenced by the topology, the desired 

quality  of the paths found, the  desired robustness to  network failure, and  the desired algorithm ic 

simplicity. W hat follows is a num ber of different approaches to hierarchical clustering.

3.1.1 Tree Topology

The sim plest form of hierarchical clustering is where the network topology is a  tree, and  the 

address struc tu re  follows the tree struc tu re , as shown in Figure 3.1. In the tree topology, a  group 

of nodes is clustered by virtue of having a link to  the same higher level node.

The addressing reflects th is clustering as shown in Figure 3.1. The addresses in this exam ple have 

three com ponents, w ith each successive com ponent identifying the next cluster down. The higher 

the cluster, the  fewer com ponents in the address required to  identify it. By convention, an address 

w ith three com ponents refers to a  node, and an address w ith fewer th an  three com ponents refers 

to  a cluster. An address w ith Os as the trailing com ponents refers to  a node th a t is not a  leaf in 

the hierarchy. Thus, the top-m ost node has address 0.0.0, a  node below it has address 2.0.0, and 

so on. T he address 2 refers to 2.0.0 and all nodes below it.

W ith  a tree topology, the only explicit inform ation required in a  forw arding table for a  given node 

concerns w hat is below it. W hen a node receives a packet, it looks up the address of the packet
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2.2.0 Forwarding Table

Dest Next Hop 

2 .2.1 

2 .2.2 

2.2.n 

5.4.0

2 .2.1

2 .2.2

2 2.n 

5.4
Backdoor Link connecting 

nodes 2.2.0 and 5.4.0.
0 .0.0

other 2 .0.0

3.0.0
2 .0.0 4.0.0 5.0.01. 0.0

2.5.02 .2 .0. 5.4ŒD 5.4.05.1.02 . 1.0

2 .2 .1, 2 . 2.2 5.4.25.4.1, 5.4.n(M

Figure 3.2: Tree w ith Backdoor Link

in the forw arding table. If the result is th a t the destination  is below it, then  the packet is sent 

down to  the appropria te  neighbor node. O therwise, the packet is sent up.

For exam ple, consider the forwarding table of the node labeled 2.2.0, shown in Figure 3.1. It has 

entries for the nodes below it; 2.2.1, 2.2.2, etc. Any address not of the form  2.2.x, where x implies 

any value, is simply forwarded up, to node 2.0.0 (shown as other in the forw arding table). This 

forw arding up of packets not destined for things below is called default routing. I t is an  effective 

means of reducing forw arding table size and routing com plexity for nodes no t a t the top  of the 

hierarchy, and  is in common use in the IP  in ternet, even though the topology of the IP  in ternet is 

not strictly  a tree topology.

The tree topology is simple and effective, bu t has two m ajor problem s, bo th  stem m ing from  the 

fact th a t all traffic between a given two nodes goes th rough their paren t nodes. F irst, congestion 

can occur a t the paren t nodes. Second, the paren t nodes are single po in ts of failure.

T ree T o p o lo g y  w ith  E n h a n cem en ts

To alleviate these problems, three enhancem ents to the tree topology are com m only used in 

practice. F irst, there can exist links between nodes th a t do not share a parent-child  relationship. 

These links are called backdoor links, or ju s t backdoors. This is shown in Figure 3.2. In practice, 

backdoor links often are lim ited to carry only th a t traffic between nodes in the clusters th a t the 

backdoor connects. Indeed, in the IP  In ternet, backdoors are usually explicitly prevented from 

carrying any other traffic.
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Thus, the purpose of the backdoor link is prim arily to  shunt traffic away from  the upper portions of 

the hierarchy (or, from  the users perspective, avoid the perform ance degradation  or cost associated 

w ith going through the upper portions of the hierarchy). W ith  respect to im proving robustness, 

the backdoor is lim ited in th a t it typically only provides an a lternate  p a th  for traffic between the 

two clusters, bu t not for traffic betw een nodes in other clusters.

The hierarchical locator is not affected by backdoor links. The hierarchical locator still follows the 

up /dow n  links th a t are the basis of the tree topology. The forwarding tables of routers, however, 

are affected by the backdoor links.

Figure 3.2 shows the forw arding table of node 2.2.0 modified to  take in to  account the  backdoor 

link to  5.4.0. In addition  to  checking packets for addresses 2.2.1, 2.2.2, etc., i t  m ust check for 

packets w ith address prefix 5.4. Any packets with an address prefix of 5.4 are routed  to  node 

5.4.0, which then  forwards them  down as appropriate. The ability  of a  router to  choose a finer- 

grained forw arding table entry  (for example, 5.4) over a  coarser-grained forw arding en try  (for 

exam ple, other) is called best-m atch routing [73]. Default routing  can be viewed as a form  of 

best-m atch  routing where the coarsest-granularity  en try  is “all addresses” .

The second enhancem ent to the tree topology is where a single “node” in the otherwise tree 

topology is actually  a collection of nodes internally  connected, usually bu t no t necessarily by a 

mesh topology. A mesh topology is a  topology w ith no regular struc tu re . Such a collection of 

in ternally  connected nodes is called a backbone.

Figure 3.3 com pares an element of the tree topology w ith an elem ent of the backbone-iree topology. 

It can be seen th a t logically the two are equivalent, bu t th a t the backbone reduces or elim inates 

single points of failure (particularly  if the lower-level elem ent is connected in m ultiple places, 

such as 2.2.n) and spreads traffic over m ultiple nodes. Thus, hierarchical locators still follow the 

tree struc tu re  as w ith the pure tree topology. T he contents of forw arding tab les also does not 

change significantly by the in troduction of backbones. The only difference is th a t, in the case of 

backbones, the  forwarding table en try  may direct a  packet to  another node in the  backbone before 

it is directed down the hierarchy.

The top of the backbone-tree topology can be, and in practice typically is, a  set of backbones, 

them selves in terconnected by a mesh topology. In term s of addressing, this is equivalent to  

rem oving the  top elem ent of the tree topology, and interconnecting the resulting top  elem ents 

w ith a m esh topology. T hus, forwarding table entries in nodes a t the top  of the  hierarchy will 

have explicit entries for other top-level elem ents ra th e r th an  a default en try  poin ting  up.

In the th ird  enhancem ent to  the tree topology, elem ents are allowed to  have m ultiple parents. 

T his enhancem ent is sim ilar to the backdoor in th a t it is a  link th a t connects different elements 

of the hierarchy, bu t different in th a t the  in tent is for the link to  be a  “full p a rtic ip an t” in the 

topology— it can be used to forward traffic between w hat is below it and everything else in the 

topology.
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Node 2.2.0 (logical) 
is actually a 
backbone network.

2 . 2.0

2 .2.0
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Logical Addressing Tree Actual Topology

Figure 3.3: Logical Nodes as Backbones

For this level of participation to  scale well, the elem ent w ith m ultiple paren ts should obtain 

addresses from  each of its parents, resulting in m ultiple addresses for m ultiply connected hierarchy 

elem ents.

This adds overhead to the nam ing system , since each m ulti-parent elem ent m ust have m ultiple 

entries in the nam ing system . The increase, however, is a small constan t. T his enhancem ent also 

com plicates alm ost every aspect of addressing and routing. Choosing an address is more complex 

because system s m ust be able to choose from  m ultiple addresses. This is no t a  triv ia l choice, 

because the address chosen influences the p a th  taken (it causes the packet to  go through the part 

of the  hierarchy indicated by the address [107]). Default routing becomes more complex, because 

the num ber of up choices increases.

3.1.2 M esh  Topology

I t is possible to  form a cluster hierarchy even when the topology displays no hierarchical charac­

teristics. All th a t is necessary is to logically group hierarchical elem ents such th a t each group is 

internally  connected [62].

Figure 3.4A shows a mesh topology. Figure 3.4B shows two levels of clusters superim posed on the 

mesh topology. It also shows the node addresses th a t result from  this clustering. As s ta ted  before, 

the only hard  requirem ent for this clustering is th a t each cluster be in ternally  connected. There 

may, however, be any num ber of less hard requirem ents th a t determ ine how clustering is done. 

For instance, a  certain  am ount of connectivity w ithin each cluster m ay be required (for instance, 

a t least two paths between any two nodes in a cluster). Or, clusters m ay be form ed around nodes 

th a t exchange a lot of traffic.

H ierarchical clustering over a  mesh topology can result in pa ths th a t are longer th an  shortest
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Figure 3.4: Hierarchically Organized Mesh Network

p ath . For instance, assume th a t the forwarding tables in every rou ter m ain ta in  entries describing 

how to  route to  each node in their own level 1 cluster, each level 1 cluster in the ir level 2 cluster, 

and  so on up to  the top level, for which forwarding inform ation abou t all top  level clusters is 

m aintained. T his style of forw arding inform ation is proposed in [62].

W ith  th is style of forw arding inform ation, the “view” of the network for node 3.2.1 is as shown in 

Figure 3.4C. W ith  this view, node 3.2.1 only requires entries for 5 c lusters/nodes, versus entries
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for 23 nodes w ith flat routing. One cost of this savings, in the case of hierarchical clustering 

over a  mesh topology, is longer paths than  those found w ith flat routing. For instance, consider 

the p a th  from 3.2.1 to  1.2.1. Because 3.2.1 knows nothing about the in ternals of clusters 1 or 

2, 3.2.1 would likely assume th a t the shortest pa th  to  anything in cluster 1 is via the  direct link 

betw een its top level cluster and cluster 1. The resulting p a th  is 5 hops long: 3.2.1— 3.1.1— 1.3.2—

1.3.1— 1.3.3— 1.2.1. The shortest pa th  (in term s of hops, anyway), on the o ther hand, is 2 hops:

3.2.1— 2.2.2— 1.2.1.

Note th a t such non-optim al pa ths do not exist in the case of hierarchical clustering over a  tree 

topology, because there is only one possible p a th  between all nodes pairs. Such non-optim al 

pa th s  can exist in the enhanced tree topology, bu t generally to  a  lesser extent th an  w ith a  mesh 

topology. Backdoor links generally do not result in non-optim al pa th s  because backdoor links 

usually service a lim ited com m unity of nodes, and because those nodes can easily hold explicit 

forw arding inform ation for the backdoor link. The routing inform ation required to  choose among 

m ultiple paren ts or m ultiple addresses scales w ith the num ber of paren ts, which is small [107], so 

m ultiple parents need not result in non-optim al paths. The existence of mesh networks w ithin a 

hierarchy elem ent can result in non-optim al paths, because there may be m ultiple ways to  enter 

a hierarchy elem ent, and the forwarding inform ation required to  indicate the best one could be a 

significant increase in the overall forwarding inform ation required.

A nother in teresting  characteristic of hierarchical clustering is th a t a  cluster p artitio n  can result 

in a node being unreachable even though there is a  physical p a th  to  th a t node. For instance, 

consider the case where the link between 1.3.3 and 1.2.1 crashes, thus partition ing  cluster 1.3 from 

the o ther clusters in cluster 1. Given the forw arding inform ation described above, if 3.2.1 tries 

to  send a packet to  1.2.1, it will reach 1.3.3 and then be dropped, because 1.3.3 has no way to 

forw ard it back through cluster 3 and cluster 2 into the other partitio n  of its own cluster. M ethods 

exist for repairing such logical partitions [80, 56, 98, 113]. These m ethods involve 1) renum bering 

nodes, 2) replicating the packet and sending each replica in to  each partition , or more commonly, 

3) tem porarily  obtaining ex tra  forwarding inform ation abou t the in ternals of o ther clusters.

V a r ia t io n s  in  F o rw a rd in g  In f o r m a t io n

W ith in  the context of the hierarchical clustering/addressing described above, there are any num ber 

of variations as to the specific forwarding inform ation m aintained a t nodes. The forw arding 

inform ation described above, where each node keeps some inform ation abo u t all hierarchy levels, 

bu t only th a t inform ation th a t perta ins to  the internals of the node’s own clusters, is here called 

classical forwarding information^.

One variation  on classical forwarding inform ation is where a node keeps some in ternal inform ation 

ab o u t neighboring clusters, th a t is, clusters w ith which it shares a link. W ith  this inform ation.

^The term  classical was su ggested  by B ala R ajagopolan  in personal conversations.
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a node could in some cases find optim al paths to  nearby nodes even though thoses nodes are in 

different clusters. Thus, nodes find b e tte r pa ths a t the cost of m aintain ing additional inform a­

tion [3]. M aintaining this type of additional inform ation is often refered to  as hole punching  in 

the In ternet community.

A nother variation is to  establish a kind of default routing, where nodes m ain tain  classical forw ard­

ing inform ation for destinations a t and below their level, bu t only m ain tain  inform ation on how 

to  route to the closest higher level node for each higher level. This style of default rou ting  tech­

nique requires less forwarding inform ation th an  full classical routing, and has sim pler operation 

for lower-level nodes, bu t may result in longer paths.

L andm ark  F orw ard ing

A nother style of hierarchical clustering on a mesh netw ork is the L andm ark Hierarchy [106]. The 

Landm ark H ierarchy was designed to facilitate com plete auto-configuration of the  hierarchy. T h a t 

is, the  clustering and addressing happens autom atically.

The Landm ark Hierarchy is formed as follows. Individual nodes are random ly assigned a h ierar­

chical level w ith decreasing probability  for higher levels. Routing table entries for a  given node 

X are m aintained in all nodes a certain  num ber of hops (called the radius) from  node X. The 

higher the level of a  node, the larger its radius. Every node becomes the child of the closest next 

higher level node. This defines the node’s address (the paren t assigns each child a  num ber from 

its address space). The radius of any given node m ust be large enough such th a t its paren t knows 

how to route to  it. Nodes a t the top of the hierarchy have an infinite radius ( th a t is, all nodes 

know how to  route to  the top-level nodes).

T his hierarchy is easier to  autoconfigure because the focal points of bo th  routing and cluster 

definition are individual nodes (the “landm arks” ), not entire clusters. It is easier to  algorithm ically 

m anage single nodes th an  groups of nodes. A t the same tim e, because of these individual focal 

points, the L andm ark hierarchy is more sensitive to single node failures. The failure of a  landm ark 

results in a partition  of the cluster th a t had formed around it.

3.2 N o n -H iera rch ica l-T o p o lo g y  L ocators

There are a lim ited num ber of non-hierarchical-topology locators. The m ost com m on of these 

are those used w ith a regular, though non-hierarchical, topology. Exam ples of such topologies 

in the context of com m unications networks are G ridnet [72], C artesian  R outing [43, 44], and 

the M anhattan  S treet Network [69].^ G ridnet’s topology is a grid of hexagons (each node has 3 

neighbors), and C artesian  R outing and M anhattan  S treet Network are grids of squares (each node

®The large m ajority  of work done on  regular netw orks is in  parallel processing, for in stan ce [6, 63, 89, 59].
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has 4 neighbors). In all cases, a  node is given a 2-element address. One elem ent gives the node’s 

location on a  horizontal (or east-w est) coordinate, and the other gives the n o d e’s locations on a 

vertical (or north-south) coordinate. To route a packet, a  node simply forw ards the packet to  a 

neighbor th a t gives the packet forw ard progress on one of the coordinates.

Ju s t as a  cluster in a hierarchical topology can logically partition , a  grid topology can also logically 

partition . This happens when a  node loses connectivity to  one or m ore neighbors and therefore 

cannot make forw ard progress on either coordinate. There are a num ber of approaches to  repairing 

partitions in a grid topology, usually involving spreading inform ation abou t the broken topology 

to  nearby nodes so th a t they can route around the partition , bu t also po ten tia lly  tagging packets 

so th a t they can tem porarily  m ake backwards progress in order to  go around the partitio n  [44, 69].

G rid topologies have m any positive properties. One of them  is th a t the rou ting  scales to  an 

unlim ited num ber of nodes and links. A nother is th a t traffic can be dispersed am ong m ultiple 

paths, for the purpose of either robustness or avoiding congestion.

The m ain negative property  of a  grid topology is th a t the topology m ust be a grid. Especially 

as a  netw ork covers larger and larger geographic areas, a  grid becomes a less and less economical 

topology. A more economical topology is to place links between locales th a t are 1) near each 

other, and 2) exchange enough traffic to justify  the link. In addition, form ation of a grid topology 

requires com plete cooperation between various network adm inistrations. Such cooperation does 

not exist, and should not be required to  exist, in the  In ternet.

To create a grid topology where one does not na turally  exist requires either installing gratu itous 

physical links, or creating logical links between nodes not physically connected by adding ex tra  

routing inform ation. The la tte r approach is similar to  the techniques used to  repair a  grid par­

tition , bu t where the “p a rtitio n ” is a perm anent and intentional condition. E ither approach has 

associated costs th a t may negate the benefits of the grid.

O ther common regular topologies are rings and chains. The ring is especially common for local 

area topologies [51], bu t has also been used for the wide area [100, 66], particu larly  as the basis for 

a  bus arch itecture  [74, 33]. Like a grid topology, rings and chains have the advantage of simplicity, 

and the disadvantage of a  forced physical topology th a t m ay not be a n a tu ra l fit for the network 

user population.

3.2.1 N on-R egu lar  Topologies

An in teresting  and not widely known (at least in the internetw orking com m unity) scheme for 

assigning non-hierarchical locators on regular or non-regular topologies is called interval routing 

[ i l l ,  41]. In such a scheme, every node is given a single unique flat address (called labels in [111]). 

The labels are assigned such th a t forwarding tables of the following type can be used to  route a 

packet to any node.
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Each node has a forwarding table th a t consists of a  single label for each link. The labels are 

cyclically ordered. A packet w ith label (address) x is routed  over the  link whose label is less 

th an  or equal to x (in the cyclical ordering), bu t num erically closer to x  th an  any other link’s 

label. Thus, the forwarding table size for any given node is equal to  the  node degree of th a t node, 

independent of the size of the network.

In [ i l l ] ,  various labeling schemes are presented th a t work for regular and non-regular topologies, 

and th a t utilize every link in the network (unlike an earlier scheme [97], th a t worked only by 

creating a logical spanning tree over an otherwise mesh netw ork). For some regular topologies 

(such as grids and rings), the labeling schemes find the shortest pa ths (in the  case where every 

link is assum ed to  have equal cost). For non-regular topologies, the  labeling scheme does not 

necessarily find the shortest path .

Like grid topologies, the labeling scheme is subject to  logical partitions when two neighbors become 

disconnected. In addition, in the  general case, nodes m ust be relabeled when the topology changes. 

These problem s are explored, and lim ited solutions are offered in [ i l l ] .  A lthough interval routing 

m ight not (or m ight) be of practical use, it is interesting work none-the-less.

3.3  C urrent IP  In tern et

As already sta ted , IP  addresses are hierarchical locators. The current IP  in ternet is essentially 

a tree topology, bu t with all three enhancem ents. The hierarchical elem ents of the current IP 

in ternet are: provider network, subscriber netw ork, subnet, and host. The C ID R  IP  address 

assignm ent scheme m atches this hierarchy [42]. T h a t is, blocks of IP  addresses are assigned to 

providers, which assign sub-blocks to subscribers, which assign sub-blocks to  subnets, and then 

to  hosts.

The top level of the IP  in ternet consists of m ultiple provider networks in terconnected  in a mesh 

topology. A provider network is a  backbone netw ork established for the  purpose of providing 

packet carriage betw een subscriber networks. Subscriber networks are typically private networks 

such as a cam pus or corporate netw ork. A subnet is a  network operating  “below” (in the  sense 

of protocol encapsulation) IP, such as an E thernet or X.25 network [16]. Nodes a ttach ed  to  the 

same subnet share a subnet address prefix.

The second enhancem ent m entioned above, where a single elem ent of the hierarchy is a  backbone 

netw ork, is pervasive th roughout the IP  in ternet. Provider networks are alm ost always composed 

of routers connected by links. Subscriber networks are also usually composed of routers connected 

by links, except th a t the links are typically LANs th a t are also subnets to  which hosts are a ttached . 

Thus, subscriber networks can be described as a collection of subnets interconnected  in a  mesh 

fashion by routers.

Backdoor links, the first enhancem ent m entioned above, are not so pervasive as backbone topolo­
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gies, bu t do exist. Since backdoor links tend to be hidden (they do not appear in forwarding 

tables of routers outside of the elements being connected), it is hard  to know how m any exist in 

practice.

The th ird  enhancem ent, m ulti-parent elements, are also not so pervasive, b u t do exist. They 

typically exist either between subscriber and provider, or host and subnet. T h a t is, a  subscriber 

m ight be connected to  m ultiple providers, or a  host m ight be connected to  m ultiple subnets (w ithin 

a given subscriber), bu t it would be strange for a  subnet to  be connected to  m ultip le subscribers. 

A subnet norm ally belongs (in an organizational sense) to  a  single subscriber netw ork, and so it 

would not m ake sense for it to  fall hierarchically under two subscriber networks.

Subscribers connected to  m ultiple providers is a  particu larly  in teresting  exam ple of a  m ulti-parent 

elem ent. This is because the subscriber-provider relationship is a  significant one b o th  w ith respect 

to  billing and service provided. As the in ternet becomes commercial, and as m ultip le services, 

such as voice and video, become available, this relationship, and the associated use of m ultiple 

providers, will likely become still more im portan t.

3.4  G eograp h ic  V ersu s P ro v id er -ro o ted  A d d re sse s

T he relationship between a subscriber and m ultiple providers (either sim ultaneously or sequen­

tially) raises some interesting new problems in the IP  in ternet. If the top-level hierarchical ad­

dress com ponent is assigned to providers, then  a subscriber network will get new addresses when 

it changes providers, and will have m ultiple addresses if it subscribes sim ultaneously to  m ultiple 

providers.

The notion of hosts having a single, sta tic  address is deeply ingrained in the IP  in ternet. There 

are no au tom atic  procedures for modifying the addresses of a group of IP  hosts, even when all of 

the IP  hosts have the same address prefix and the m odification is only to the prefix. In addition, 

IP  hosts generally have little notion of other IP  hosts having m ultiple addresses. For instance, 

IP  hosts generally have no software for choosing am ong m ultiple addresses p resen ted  to  them  by 

directory service, and m ultiple IP  addresses cannot be used to  identify a tran sp o rt connection, 

even though the m ultiple IP addresses may identify the same host.

Because of this deeply engrained notion of IP  addresses, the in troduction  of provider-rooted ad­

dresses to  the IP  in ternet may require significant changes to the operation of the  IP  in ternet [107]. 

W hile [107] argues th a t these changes are positive ones, bringing new features and  new flexibility 

to  the in ternet, there is no question th a t these changes require new functionality  and result in 

added complexity.

An alternative  address assignm ent scheme is geographical addressing, such as exists in the global 

telephone netw ork [14]. Because geographical addresses remove the dependency of address on 

provider, a  subscriber can change providers or have m ultiple providers w ithout changing addresses.
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T he use of geographical addresses, however, pu ts an additional burden on providers, in term s of 

how much routing inform ation they m ust m ain tain  and on how they m ust interconnect.^

Because of the timeliness and im portance of the issue of geographic versus provider-rooted ad­

dresses, a com parison of the two m ethods is given here. (Note th a t m any of the ideas presented here 

were discussed on the big-internet mailing list of the In ternet Engineering Task Force (IE T F ) [7].)

3.4.1 Som e Background

The assignm ent of addresses in the in ternet follows a tree of address assignm ent authorities. At 

the root of the tree is the top-level (or level H) address assignm ent au thority . This address assign­

m ent au th o rity  assigns blocks of num bers to  the next level down (level H-1) address assignm ent 

au thority , which assigns blocks of numbers from  the block it owns to  level H-2 address assignm ent 

au thorities and so on. For the sake of discussion, we refer to  assigning a block of num bers as 

sim ply assigning a num ber.

The issue is how to assign these num bers so th a t 1) routing scales well, 2) good paths are found, 

3) constrain ts on the physical topology are minimized, 4) reconfiguration of system s is minimized, 

and 5) the address assignm ent process is simple, fair, and politically viable. Consider the graph 

of Figure 3.5. In general the “physics” of networking forces operating poin ts on this graph to  be 

along a  region extending from the upper left to  the lower right. T h a t is, one typically can get good 

scaling b u t bad paths, or good paths bu t bad scaling, or som ething in between. D epending on the 

type of address assignm ent scheme used, however, it is possible to  move som ew hat tow ards the 

lower left (good solutions). This may, however, increase topology constrain ts or reconfiguration 

requirem ents.

 ̂S teve D eering of X erox Parc is cred ited  w ith  prom oting the idea o f using geographical addresses in  the Internet. 

T he descriptions o f geographical addresses g iven  here derive largely from  his work.
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C entral to the evaluation of any address assignm ent scheme are answers to  the questions 1) w hat 

constitu tes good scaling, 2) w hat constitu tes a  good p a th , 3) w hat constitu tes unacceptable or 

costly topology constraints, 4) w hat constitu tes unacceptable or costly reconfiguration, and 5) 

w hat constitu tes a simple, fair, and politically viable address assignm ent process. Except for 

possibly the first question, it is difficult to answer these questions in general term s, partly  because 

the cost of each aspect is borne by different parties, and partly  because the cost of each aspect 

changes over tim e.

This section generally lim its itself to describing the characteristics of the  two address assignm ent 

schemes, and leaves it to  others to  determ ine the ex ten t to which those characteristics are beneficial 

or detrim ental.

3.4.2 D escription  of Provider-rooted  A ddressing

The beisic approach to provider-rooted addresses is as follows. The top-level address assignm ent 

au th o rity  assigns num bers directly to  providers. This includes bo th  in ternet protocol service 

providers and lower-layer (for instance, ATM ) protocol service providers. D epending on its size, 

the provider can either assign the next level internally, or assign the next level directly to  its 

subscribers. The internal assignm ent would be for clustering groups of subscribers under a single 

prefix for the sake of internal scaling.

Thus, the address prefixes would be:

provider, subscriber

or

provider.subProvider. subscriber

To understand  this notation , consider Figure 3.6. Shown are three providers w ith subscribers 

a ttached  to them . The providers have been given top-level num bers 29, 48, and  14. Provider 

29 has given two subscribers next-level num bers 12 and 17. Thus, the upper-left subscriber with 

assignm ent 12 has a prefix of 29.12. This means th a t the field of the address th a t indicates provider 

is 29, and the field th a t indicates subscriber is 12. All host addresses in this subscriber network 

s ta r t  w ith the prefix 29.12.

It is possible th a t the providers themselves are som ew hat hierarchically organized. For instance, 

there m ay be long-distance and local-access providers. The subscriber is d irectly  connected to 

the local-access provider, bu t m ay also have a  service relationship w ith one or m ore long-distance 

providers to  which the local-access provider is connected. In this case, the address prefix could be 

form ed as shown above, or could include both  the long-distance and local-access providers:

LDprovider.LApro vider, subscriber

In either case, subscribers are given an address prefix from  each top-level provider through which
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they derive service. Each host in the subscriber network, then, has one address for each provider 

through which the subscriber network can be reached—for instance, subscriber C, connected to 

both providers 48 and 14 in Figure 3.6. When the subscriber subscribes to a new provider, or 

unsubscribes from an existing provider, it must change the address prefix for all of its hosts and 

routers.

Additional levels are assigned under the subscriber number for use within the subscriber network. 

These levels are not relevant to this discussion.

3.4.3 Description of Geographical Addressing

Our working definition of geographical addressing is where the top N hierarchical levels of the 

address are assigned to geographical regions. Each level of geographic area is completely within 

the next higher level of geographic area. Three examples of geographical address prefixes are:

c o u n t r y  . me t r o  . si te  

c o n t i n e n t . m e t r o ,  s i te

^Strictly speaking, the subscriber m ay not have to change its prefix. However, this results in worse scaling, as 

discussed later.

40



continent, country .metro. site

Note th a t w ith geographical addresses, the lowest level of assignm ent is to  “sites” ra th er th an  to 

“subscribers” . B oth site and subscriber, however, represent p rivate netw orks th a t are assigned 

address prefixes.

Because of the requirem ent th a t the elem ents of a hierarchy cluster m ust be in ternally  connected, 

it is necessary in a  geographical addressing scheme th a t all h ierarchical elem ents in a geographic 

area be in ternally  connected. (Note th a t this does not necessarily require connectiv ity— th a t

is, where all N hierarchy elem ents are directly connected to  each other. R ather, it requires th a t 

there be some p a th  from  any elem ent in an area to  any other elem ent in the  area th a t only 

traverses elem ents in the area.) For instance, if the geographic clustering is country.metro.site, 

then  all m etro networks in a country m ust be able to reach all o ther m etro  networks in the country 

w ithout going through another country. Likewise for all the sites in any m etro, etc.

Consider Figure 3.7. It po rtrays the same providers and subscribers A, B, and  C as Figure 3.6, 

bu t shown geographically ra th er than  logically according to provider. The providers overlap 

geographical area, so the routers of the providers are shown in Figure 3.7. The address convention 

of Figure 3.7 is country.metro.site, where country =  93 and m etro =  42. Note th a t  site C (labeled 

subscriber C in Figure 3.6) has only one address even though it is connected to  two providers. 

Note also th a t all of the routers in m etro 42 are internally connected by v irtue of two (heavily 

draw n) links between routers of different providers.

Taken to the extrem e, the assignm ent of geographic addresses could be carried all the way to 

individual hosts. T h a t is, geographical areas could be recursively subdivided until every possible 

host location in the world (galaxy?) defines a unique address. Clearly this is unworkable. A t the 

local (cam pus or single building) level, one m ust assign addresses according to  netw ork topology, 

no t some pre-determ ined geographical partitioning. Thus, a t some point in the  hierarchy, the 

addressing m ust change from  geographical to network-physical.

A sensible place to make this change is a t the boundary between the private netw ork (or site) and 

the provider. W ithin  a site, address adm inistration should be com pletely autonom ous and not 

constrain ted  by geography (or anything else not w ithin the control of the site). T hus it would not 

be appropriate to make the change a t some level below the provider/ subscriber boundary. And, 

since provider coverage does not necessarily conform to  geographic boundaries (some providers 

are global in scope, and provider coverage areas overlap considerably), it does no t m ake sense to 

make the change from  geographical to  network-physical a t the boundaries betw een providers.

Thus, geographical addresses have a  geographical p a rt, a  site p a rt, and  an in tra-site  part:

geographicalPart.sitePart.intra-sitePart

where each part can have in ternal layers.

The geographical p a rt for a given site is determ ined according to the  geographic location of the
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s ite ’s connection to  a provider. This is where the site “appears” in the global topology. Thus, 

even though  a site may cover m ultiple geographic areas, if it is a ttach ed  to  a provider in only 

one geographic area, the whole site will have a  geographic prefix ind icating  th a t  geographic area. 

More typically, a site th a t covers m ultiple geographic areas would be connected to  providers in 

m ultiple geographic areas.

In any event, the  m ain point is th a t the specific provider th a t a site a ttach es to  does not affect 

the s ite ’s address. T hus, a  site could change from  one provider to  an o th er in a given geographic 

area, or a tta c h  to  m ultiple providers in a given geographic area, w ithou t changing addresses or
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having multiple addresses.

3.4.4 Topology Constraints

Provider-rooted addresses place no “u n natu ra l” constrain ts on the topology. O f course, with 

provider-rooted addresses, each provider m ust be internally  connected, bu t a  provider would n a t­

urally be in ternally  connected, so this represents no real constra in t. Provider-rooted addresses 

place no constrain ts on how providers interconnect w ith each other.

G eographical addresses do place an unna tu ra l constrain t on topology. T h a t is, they require th a t 

the providers th a t cover a  geographical area  (th a t area denoted by the geographic prefix) be 

connected in th a t area. W hile it is na tu ra l for providers to  be connected to  each other somewhere, 

it is generally (though not necessarily) unna tu ra l to force them  to  be connected in every geographic 

area th a t they cover.

In the current USA In ternet topology, provider networks tend to  in terconnect in a sm all num ber 

places, for instance at FIXs or CIXs (Federal or Com m ercial Inter-exchange). Thus, requiring con­

nectiv ity  in every m etro area, for instance, would require m uch more in ter-connectiv ity  th a t there 

currently  is. On the other hand, the long-distance phone carriers in the  USA have connectivity in 

every geographical area (called LATAs).

3.4.5 Scaling in R outing

In this section, the inform ation needed in ro u te rs’ forwarding tables for bo th  geographical and 

provider-rooted addressing is described and com pared. The inform ation m ay vary, depending 

on the desired quality and fiexibility of pa ths found. T his section also describes m ethods for 

im proving the scaling characteristics of both  schemes.

S ca lin g  o f  P r o v id e r -r o o ted  A d d ressin g

As sta ted  above, provider addresses are of the form: 

provider.subscriber

or

provider.subProvider.subscriber

For addresses of the form  provider.subscriber, routers in provider netw orks m ust, a t a  m ini­

m um , m aintain  routes (forwarding table entries) for 1) o ther providers, and 2) subscribers w ithin 

their own provider network. For addresses of the form  provider.subProvider.subscriber, routers in 

provider networks m ust, a t a m inim um , m aintain  routes for 1) o ther providers, 2) subProvider 

clusters w ithin their provider, and 3) subscribers w ithin their subProvider cluster.
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The num ber of subProvider or subscriber routes th a t a  router m ust m ain tain  is w ith in  the control 

of the  provider. As a provider obtains more subscribers, it can add in ternal levels of hierarchy 

(subProvider, sub-subProvider, etc.) to  keep the num ber of internal routes m anageable.

A provider, however, cannot control the num ber of o ther providers for which it m ust m aintain  

routes. Thus, the size of the forwarding tables at the top  of the hierarchy (provider) is open-ended. 

As a result, the forwarding table size may grow beyond acceptable levels. One solution to  this 

problem  is to add another level of hierarchy above the provider level.

provider Cluster.provider, subscriber

W ith  this address, m ultiple providers are clustered w ithin a new top-level identifier, the  provider- 

Clusier. One possible basis for provider clustering (th a t is, the choice of which providers go into 

which clusters) is geographical location. In this case, a  provider th a t spanned m ultip le geographic 

areas would appear as m ultiple providers, one for each geographic area it appeared  in. A perhaps 

b e tte r basis for provider clustering could be the kind of service provided. For instance, all ATM 

providers could form a cluster, all in ternet providers another cluster, and so on. A nother basis 

could sim ply be the am ount of interconnection various providers have w ith each other. Providers 

w ith a large num ber of interconnections would naturally  be placed in the  sam e cluster.

A nother solution is possible in the case where a relatively sm all num ber of providers are long­

distance providers, and the rest are local-access providers. This form  of address [LDprovider. 

LAprovider.subscriber) is discussed above. In this case, only the long-distance providers are ad­

vertised globally.

Routers in provider networks may also wish to m aintain  certain  inform ation ab o u t the internals 

(subscriber or subProvider) of another provider. This would happen in the case where

1. Two providers are interconnected w ith each other in m ultiple places, and

2. the routing  policy for one of the providers is to  route the packet to  the in terconnection point 

closest to  the destination (versus simply routing  the packet to  the nearest interconnection 

point).

The am ount of routing inform ation in this case is also open ended, as it depends on the num ber 

of providers w ith which there are m ultiple interconnection points (which itself depends on m any 

factors, such as the user traffic m atrix), and it depends on the num ber of subscribers in o ther 

provider networks and on how internal clustering is done in other provider netw orks.

W hether or not it is advantageous for a  provider to  route a packet to  the nearest interconnec­

tion point versus route a  packet to the interconnection point nearest the destina tion  depends 

on m any factors, not the least of which is the business relationship established betw een the two 

providers on how they com pensate each other for traffic carried. A discussion of the advantages 

and disadvantages of this routing policy is outside the scope of this thesis.
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S ca lin g  o f  G eo g ra p h ica l A d d ress in g

As sta ted  above, geographical addresses are of the form: 

geographicalN.geographicalN-1 . . .  site 

A router in a provider network m ust, in the general case, m aintain  routes for

1. all geographicalNclusters, all geographicalN-1 clusters w ithin the ir own geographicalNcluster, 

and so on,

2. all sites w ithin the lowest-level geographical cluster th a t the provider rou te r services.

T he num ber of geographical clusters th a t a  router m ust m ain tain  routes for is fixed. If the top- 

level geographical clustering [geographicalN\n the example above) is continent, then  the top-level 

num ber of routes is 7 (or so, depending on w hat constitu tes a  continent). If the top-level clustering 

is country, then  it is three hundred and som ething, and if it is m etro, then  it m ight be around 

10,000 or so. In any event, it is fixed and either does not change or changes slowly and minimally 

over tim e. Since the geographic clustering is adm inistratively  determ ined (by whichever address 

assignm ent au tho rity  has control), the num ber of routes a t the top  levels can be set to be som ething 

reasonable for curren t technology capabilities, and thus scales well.

T he num ber of sites w ithin a geographic area, however, is open-ended. T hus, the size of the 

forw arding tables a t the  site level of the hierarchy is open-ended. As a result, the  forwarding table 

size m ay grow beyond acceptable levels.

One solution is of course to add another level of geographic hierarchy above the site level, resulting 

in smaller geographical areas. This results in an prefix change for sites, which is counter to  the 

reason for using geographical addresses.

A nother solution is to arrange for a packet to  visit all providers in a given geographic area, either 

by p u ttin g  the packet on a broadcast m edium  th a t all providers listen on, or having the packet 

rou ted  to  each provider in tu rn . Each router th a t receives the packet knows if the  destination  is 

for one of its subscribers, and accepts the packet if it is. Note th a t the la tte r solution is generally 

preferable to  the former one, because 1) the broadcast m edium  m ay become a traffic bottleneck, 

and  2) the broadcast m edium  solution will result in m ultiple packet deliveries for the  case where 

a subscriber is a ttached  to m ultiple providers in the geographic area. On the o ther hand, with 

the la tte r solution, there m ust be a way to prevent a  (m is-addressed) packet th a t is no t for any 

of the sites in a geographical area to continue looping am ong the providers.

A nother solution to this problem  is to place a provider layer of hierarchy between the geographical 

p a rt and the site part:

geographicalPart.iniiialProvider.sitePart
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The ex tra  layer, in itialProvider, indicates which provider the site initially  connected to. Routers 

in a geographic area, then, m ust m aintain  routes for each provider in th a t area, plus routes for 

every site th a t is no longer a ttached  to  its initial provider. If m ost sites rem ain a ttach ed  to  their 

in itial providers, then  the num ber of routes is greatly reduced.

R outers in provider networks m ay also wish to m aintain  certain  inform ation ab o u t the internals 

(subscriber or subProvider) of another provider. This would happen  in the case where

1. Two providers were interconnected w ith each other in m ultiple places, and

2. the routing policy for one of the providers was to  route the nearest in terconnection point 

(versus routing the packet to  the interconnection poin t closest to  the destination).

Note th a t this is the reverse of the routing policy described in the previous section. T h a t is, w ith 

provider-rooted addressing, the na tu ra l pa th  is to find the interconnection point closest to  the 

source, and w ith geographical addressing the na tu ra l p a th  is to  find the in terconnection point 

closest to  the destination. In either case, finding the “u n n a tu ra l” p a th  requires ex tra  forwarding 

inform ation.

3.4.6 A ddress Reconfiguration

T his section discusses the conditions under which address reconfiguration in p rivate  networks is 

required for the two schemes.

There are two cases where a private network assigned a geographical address prefix m ust change 

th a t prefix:

1. If the private network changes its provider access location to another geographical area, and

2. If the geographical areas themselves change.

The former would norm ally happen  when a  private netw ork moves from  one location to  another. 

The la tte r  has happened in the phone network in the USA in the form  of area code splits. This 

happens when the available addresses in an area become depleted, and the a rea  is sp lit in half, 

assigning a new area code to  one of the halves.

A rea code splits (or more generally, geographical area splits) can be avoided if the rou ting  supports 

m ultiple (overlapping) area identifiers for the same area. If this is allowed, th en  a  new area 

identifier can be added to  a  geographical area if the addresses under the existing area  identifier 

become depleted. Thus, no existing systems need to change address. R outers in an  area  m ust still 

m ain tain  routes to  all sites, however.

A nother way to  avoid area code splits is to simply make the address space in an area  large enough 

to  handle all grow th. This of course requires a  large address space.
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There are several cases where a private network assigned a  provider-rooted address prefix m ust 

change th a t prefix:

1. If the private network subscribes to  a new provider,

2. If the provider has an in ternal layer of addressing and the subscriber moves to  a new location 

w ith respect to  the clustering defined by th a t layer, and

3. If the provider modifies its addressing scheme, for instance, by getting  a  new provider num ber 

or adding an in ternal layer of hierarchy.

Item s 2 and 3 for provider-rooted addressing are sim ilar to  items 1 and 2 for geographical address­

ing respectively, and need no further discussion. As emphasized above, the m ain advantage to 

geographical addressing is th a t a  subscriber can change providers w ithout requiring a  new address. 

Changing providers is likely to  be a fairly frequent event, certainly a m uch more frequent event 

th an  either private networks changing location or geographic areas changing. Ju s t how frequent 

depends of course on the subscriber, bu t several changes a year seems feasible.

Because of the  frequency of provider changes, it is necessary to have an au tom atic  m eans of 

changing all the host addresses in a private network a t once. This task  is greatly simplified by the 

fact th a t it is only necessary to  change the provider prefix for each host, and  th a t the  change is 

the same across all hosts. The exception to this would be the case where the new provider prefix 

is so long th a t it takes up address space used for num bering in the private network.

There are two basic approaches to  autom atic private-network-wide prefix reconfiguration. One is 

to use a general purpose network m anagem ent device th a t keeps track  of the hosts in a private 

netw ork and individually updates hosts using a general network m anagem ent protocol such as 

SNM P [12].

A nother approach is to design a specialized protocol th a t updates hosts. A n exam ple of this 

would be a modified h o st/ro u te r discovery protocol such as ES-IS [53], where routers periodically 

broadcast advertisem ents, and hosts discover the routers by listening to  the  broadcasts. The 

broadcasts could contain the prefixes of the private netw ork. In this case, the routers would have 

to  be upd a ted  individually to  reflect the new prefix. This, however, is not so bad since routers 

need to  be individually configured w ith addressing inform ation for rou ting  purposes anyway.

Given th a t a  general m anagem ent facility in a  private network is useful for m any things, it seems 

to  be a b e tte r approach to  the prefix reconfiguration problem . Note th a t the directory service, 

such as DNS [71], would also have to be updated  to reflect the new prefix(es).

It is not necessarily true  th a t geographical addressing isolates a  private network from  any per-host 

adm inistra tion  resulting from provider changes. For instance, consider the case when a private 

netw ork is connected to  m ultiple providers (or, is connected to  one local-access provider bu t 

derives long-distance service from  m ultiple providers) and wishes to  be able to  choose between
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those providers on a connection-by-connection or packet-by-packet basis. This is called provider 

selection.

Provider selection is a  special case of the more general policy routing [11]. T he te rm  policy 

rou ting  is commonly used to  describe the function whereby the source of a  packet selects the 

series of providers th a t the p a th  traverses. In the case of provider selection, only the providers on 

either end of the p a th  are selected. In [107] it is argued th a t the  providers closest to  the  source 

and destination  are the m ost im portan t, prim arily because it is those providers w ith which the 

source and destination have billing relationships.

For provider selection to  work, the following things, a t a  m inim um , are required [107]:

1. The source m ust know which providers it is connected to.

2. The source m ust know which providers the destination  is connected to.

3. The source m ust have enough inform ation about the providers, and possibly how they are 

interconnected, to make an intelligent policy decision.

4. T he source m ust have a way to indicate in the packet which source-end provider should be 

chosen.

5. The source m ust have a way to indicate in the packet which destination-end provider should 

be chosen.

To do provider selection with geographic addressing, hosts m ust be configured w ith inform ation 

ab o u t their connected providers, and directory service m ust be configured w ith provider inform a­

tion so th a t rem ote hosts can obtain  the inform ation. Moreover, th is inform ation m ust be upda ted  

when a subscriber a ttaches to new providers. In addition, new m echanism s m ust be created to 

cause packets to be routed through the desired providers.

Thus, in order to  get provider selection w ith geographic addresses, the same sort of private- 

netw ork configuration and packet form atting is required as w ith provider-rooted addresses. In 

other words, the netw ork configuration benefits achieved by using geographic addresses are largely 

lost if provider selection is required.

On the o ther hand, private-netw ork configuration w ith geographic addressing is never worse th an  

w ith provider-rooted addresses. And, if a  private network does no t require provider selection, 

for instance because it connects to  only one provider, then private-netw ork configuration is easier 

w ith geographic addresses in th a t nothing has to  be done if the private network changes providers.

3.4 .7  A ddress and Topology A dm inistration

W ith  provider-rooted addresses, address adm inistration is straight-forw ard. The top-level address- 

adm inistra tion  au thority  assigns provider IDs directly to  providers. Providers in tu rn  partition
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the  address space as best suits their needs.

A lternatively, the top-level address-adm inistration au tho rity  can assign blocks of provider IDs to 

sub-authorities, which can subsequently assign provider IDs to providers in their jurisdiction . For 

instance, the  top-level address-adm inistration au tho rity  could assign blocks of provider IDs to 

per-country  assignm ent authorities.

In order to assign geographical addresses, two adm inistrative tasks are required th a t are not 

required w ith the assignm ent of provider-rooted addresses.

1. The geographical boundaries m ust be determ ined.

2. The connectivity between providers w ithin geographical areas m ust be determ ined.

It is hard  to  know the difficulty of these two tasks in the context of the in ternet. In areas where 

the establishm ent of in ternet providers has been unregulated, it can be im agined th a t the two 

tasks are quite difficult. This is because the positioning of geographical boundaries m ay have an 

economic im pact on providers.

For instance, consider a provider th a t covers a certain  region. If boundaries are draw n such th a t 

the provider is com pletely w ithin a geographic area, then  th a t provider only needs to interconnect 

w ith o ther providers in one geographic area. If, on the o ther hand, boundaries are draw n such 

th a t the provider covers parts of several geographic areas, the provider m ust in terconnect with

other providers in each of the geographic areas.

Since it is likely th a t one of the arrangem ents (probably the form er) will be more advantageous 

to  the provider than  the other, the provider will natu ra lly  lobby for one set of boundaries over 

another. This is likely to conflict w ith the wishes of another provider, resulting in a difficult 

negotiating process.

A nother difficult aspect of address assignm ent is th a t of determ ining how m uch address space goes

to  each recipient (either a  provider or a  geographic area). This is particu larly  true  in the case

where the address space is strongly lim ited, such as is the case w ith IP.

T his aspect of address assignm ent has bo th  political and technical difficulties. Politically, one 

organization may object to  getting less address space th an  another. Technically, if no t enough 

address space is allocated, then  it is necessary to  either renum ber or to  represent a  single en tity  

by m ultiple prefixes (or bo th). If too much address space is allocated, then  the address space is 

poorly utilized. This is discussed further in Section 10.4.
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3.4,8 D iscussion  and Sum m ary of G eographical versus P rovider-rooted  

A ddressing

Several aspects of geographical and provider-rooted address assignm ent have been considered. 

Each technique has different advantages and disadvantages.

Both geographical and provider-rooted address assignm ents have po ten tia l scaling problem s. W ith  

provider-rooted addressing, the num ber of providers is open ended. W ith  geographical addressing, 

the num ber of sites in a  geographic area is open ended. Techniques for im proving their respective 

scaling problem s are presented, bu t the techniques are not a ttrac tive .

W hile it is impossible to predict fu ture growth w ith certainty, it seems likely th a t scaling would 

be worse w ith geographic th an  with provider-rooted addressing. The num ber of large providers 

is constrained by com petitive and economic factors. It is likely th a t a  relatively small num ber 

of large providers will dom inate. Smaller providers will likely either be m erged into the larger 

providers, or fall under the larger providers in a local-access/long-distance relationship.

W ith  respect to address reassignm ent, provider-rooted addresses pu t a  larger burden on private 

networks, since addresses m ust be reassigned whenever a private network subscribes to  a new 

provider. Since bo th  schemes can result in subscriber prefix changes, however, au tom atic  host 

prefix assignm ent is desirable in any event. In addition, m ultiple addresses m ust be m aintained 

for private networks connecting to  m ultiple providers. This burden, however, can be leveraged for 

provider selection.

Geographic addressing places more constrain ts on the topology of the  netw ork, since providers 

m ust in terconnect w ithin geographic areas. Finally, geographic addressing has more adm inistra­

tive /po litica l difficulties, prim arily because the geographic boundary  locations affect the topology.

Because the two addressing schemes have a  different set of advantages and disadvantages, it is 

im possible to say which is be tte r. Some generalizations, however, can be m ade. For instance, 

in general, geographic addressing is be tte r for private networks and worse for providers, whereas 

the reverse is true for provider-rooted addressing. Also, geographic addressing works b e tte r in 

a well-regulated or well-organized environm ent. Because the in ternet has historically been, and 

still is, a t best loosely organized, geographic addressing does not seem to  be a  feasible option at 

th is tim e. As the in ternet m atures, however, it m ay obtain  b e tte r organization, and  geographical 

addressing m ay become more feasible.
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3.5  R e la tio n sh ip  B e tw e en  C ost o f  R o u tin g  and  C ost o f  

D er iv in g  A d d resses

M echanistically, addresses do two things. F irst, they identify the destination . Second, they m ay 

describe, a t a greater or lesser degree of specificity, the pa th  to  the destination. T he need for 

the former function (identification) is fairly obvious, and need not be fu rther discussed here. The 

need for the la tte r function (location) may seem obvious when considered in certa in  ways, bu t in 

fact deserves fu rther discussion.

There are two uses for the locator (ignoring for now its role as an  identifier). F irst, it aids in 

scaling. T h a t is, it reduces the memory, bandw idth , or processing required to  route packets 

com pared to  w hat would be required if identifiers were used. Second, it allows the source of a 

packet (or, w hatever writes the locator into the packet header) to  control the p a th . A significant 

am ount of a tten tio n  has been paid to  the locator in its scaling role, bo th  in the research literatu re  

[67, 46, 62, 61, 103, 106], and in commonly used networks such as IP  [87], and public voice [14] 

and d a ta  networks [15]. Recently, some atten tion  has been paid to  the  locator in its  p a th  control 

role, prim arily in the context of the so-called policy routing  problem  [11, 107, 36, 34, 35, 101].

The la tte r function of the locator (path  control) is im portan t, and is trea ted  la ter in th is thesis. 

Here we consider the use of the locator for improving scaling.

A useful way to  consider this use of the locator is in term s of w hat p a th  inform ation rou ters keep. 

Routers cannot keep full inform ation about paths to  all destinations. In the contex t of scaling, 

then , the purpose of a locator is to  make up for a  lack of pa th  inform ation in routers. T h a t is, 

the locator describes, a t some level, paths in the netw ork topology, so th a t routers do not have to 

m ain tain  full p a th  inform ation.

In general, the less p a th  inform ation th a t exists in the routers, the more p a th  inform ation m ust 

exist in the address. Thus, pu tting  more p a th  inform ation in the locator improves the scaling 

characteristics of routers. However, pu tting  more pa th  inform ation in the locator also increases 

the cost of deriving locators.

In the following examples, we assum e a model where a source has a  nam e for a destination . From  

th is nam e, an address m ust be derived, at a  certain  cost. This address can be an  identifier or a 

locator, depending on w hat is needed by routers. The form  of the address is re la ted  to  the cost 

of the  p a th  inform ation in routers. The cost of obtain ing the nam e in the first place is outside of 

the scope of w hat we wish to  illustrate here, and so is not considered.

The to ta l internet-w ide cost of the system  is the com bined cost of deriving the address from  the 

nam e, and the cost of m aintain ing p a th  inform ation in routers. We examine the costs here in 

simple term s, because we are for now only interested in general characteristics. We consider only 

the cost of to ta l (internet-w ide) system  memory, and we do not account for caching strategies.
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F irst, consider a  routing system  th a t m aintains paths to all netw ork destinations. T his is called 

flat routing. The to ta l internet-w ide memory required to store this inform ation is roughly N^.  

This is because every router m ust m aintain  a routing table en try  for every nam ed host. (One could 

m odel this as a  routing system  th a t consisted of a single large database, w ith entries containing 

the next hop in the p a th  from each system  to every other system . The size of th is database would 

be i\T2.)

T he address required by routers is a  simple identifier. Assum ing th a t nam es and addresses are 

separate  entities, the  cost of deriving an address from  a nam e, in term s of to ta l (internet-w ide) 

system  memory, is roughly N ,  where N  is the num ber of nam ed entities. T his is because every 

nam e m aps into one identifier, so in theory  only one en try  in the nam ing system  is required for 

every nam ed host. (One could model this as a nam ing system  th a t consisted of a  single large 

database, w ith entries containing the identifier associated w ith every nam e. The size of this 

database would be N .) Thus, the to ta l system  memory required is roughly N  -(- , which is

roughly for large N .

Now consider a classical hierarchical routing structu re , where netw ork destinations are grouped 

in clusters, clusters are grouped in to  higher level-clusters, and so on in hierarchical fashion. Any 

cluster is a  m em ber of only one higher-level cluster. The cost of the rou ting  system  is roughly 

where H  is the num ber of hierarchy levels [62]. This is because each of N  system s only 

needs to  keep track  of the system s in its portions of the hierarchy, which is system s.

The address required for this system  is a locator, such as an IP  address. Because the locator is 

source-independent, the cost of deriving an address from a name is the  same as w ith identifiers, 

th a t is, N . T hus, the  to ta l system  cost using locators is roughly N H , a  significant decrease 

from  fiat routing. All of the decrease comes from  savings in the p a th  inform ation in routers.

Finally, consider a true source-routing system , where routers only m ain tain  p a th  inform ation for 

their im m ediate neighbors, and packet headers contain full source routes (vectors). The cost of 

the routing system  is roughly E N ,  where E  is the average num ber of neighbors in the  topology 

th a t each system  has. This is a  significant reduction over the hierarchical routing  system .

The cost of the nam ing system , however, is roughly D N ^ ,  where D  is one-half the diam eter of 

the network. This is because each of N  names m ust m ap into N  vectors, one for each source, and 

each vector has on average D  com ponents.

Thus, the to ta l system  cost using vectors is roughly {D and E  are for all practical purposes 

sm all constan ts). This is the same cost as using identifiers for addresses.

T hus it can be seen th a t the choice of an addressing scheme is, in p a rt, one of balancing the cost 

of addressing (nam e to address binding) against the cost of routing (address to  route binding). It 

is easy to  decrease the cost of either routing or addressing, bu t it is hard  to decrease the cost of 

bo th . O f the three examples above, hierarchical addressing has the lowest overall cost, because it 

decreases the cost of routing w ithout significantly increasing the cost of addressing. In general.
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Table 3.1: Summary of Routing and Naming Costs

R outing Type Costs

Routing Naming Rough T otal

F lat Routing N

Hierarchical Routing N

Pure Source Routing E N D N ^

the lowest overall cost requires the use of some form  of locator.

It is w orth noting th a t the scaling benefit of locators is not lim ited to  the case where hosts do not 

move often. If hosts move often, then  the nam ing system  m ust be updated  often, which increases 

the cost of m aintaining the nam ing system , thus increasing the overall cost of using locators. 

W hen identifiers are used, however, host m obility increases the cost of routing, because routes to 

a  host m ust be modified when the host moves. Thus, m obility increases the overall cost when 

either identifiers or locators are used. Because of this, the overall cost of hierarchical addressing 

versus flat addressing, even w ith host mobility, is still less.
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C hapter 4

V ectors

Vectors are not in common use, so this section is quite brief com pared to  the  previous section on 

locators. Indeed, to the au th o r’s knowledge, the only in ternationally  standard ized  protocol th a t 

uses a vector for norm al operation is the source routing  bridge protocol for IE E E  802 LANs [83].

Saltzer, Reed, and Clark [95] give a num ber of reasons for using vectors (called source routes in 

[95]) ra ther th an  locators (or, the more general notion of hop-by-hop routing  in [95]) in the packet 

header.

1. Separation of routing from  identification.

2. G atew ay sim plicity and network m aintenance.

3. R oute control.

The first reason, while a  good idea, does not necessarily follow from  the use of vectors per se. T h a t 

is, identification can be separated  from  routing even when locators are used, sim ply by including 

an identifier separate  from the locator. And, use of vectors does not necessarily m ean th a t pure 

identification is used, as the elements of the vector can be locators them selves, as w ith IP.

The la tte r  two reasons are the more commonly cited reasons for using vectors ra th e r th an  locators. 

The second reason is the m otivation behind source-routing bridges in IE E E  802.5. The use of 

source routing  minimizes the s ta te  required in the bridges since no forw arding table is required. 

Of course, th is pushes the burden of finding routes on some other system . In the case of IE E E  802 

source routing, the  burden is pushed onto hosts, which discover pa ths using a flooded search. This 

m ethod of p a th  discovery can, in the worst case, cause an explosion in search packets, creating 

more problem s th an  it solves [82].

The notion of simplifying forwarding for routers is taken further by Sirpent [19] and  by Paris [20]. 

These two protocols propose th a t the elements th a t make up the vector are designed so as to 

best assist the rou ter w ith regards to its forwarding im plem entation. In the case of S irpent, each
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elem ent contains the local tag  used by the router to  identify the next hop. In the case of Paris, 

each elem ent contains the binary self-routing code used to  route the packet th rough the switch 

fabric.

It is interesting to  note the sim ilarity between Paris and the the first use of the telephone num ber. 

T he telephone num ber was originally nothing more th an  a means of producing the sequence of 

electric pulses required to drive the step-by-step switches in the central office. W ith  step-by-step  

switches, each digit of the dialed num ber indicated how to  route to  the next sw itch elem ent (and 

in fact electronically drove the switch hardw are). W ith  Paris, each b it in each elem ent of the 

vector indicates how to route through the next binary  elem ent of the switch fabric.

W ith  regards to route control, early work in source routing  [95] speculated on the  p o ten tia l for 

allowing the source to  choose a  p a th  appropriate  to  the source’s requirem ents. For instance, 

trouble isolation, policy, class-of-service, and in-order packets are cited as uses for source routing. 

These topics, however, were not pursued in detail. More recently, Perlm an, in her thesis [81] 

explored in detail the use of source routes to discover and route around m isbehaving routers.

Some recent papers consider the use of source routes for policy reasons [11, 35, 94, 101, 21]. Policy 

rou ting  can broadly be defined as the capability to choose among m ultiple pa th s  from  source 

to  destination . T his capability is usually exercised by the source. Common reasons for choosing 

am ong m ultiple pa ths are 1) some paths are adm inistratively  restric ted  for a  given com m unications, 

2) some paths are cheaper than  others, 3) some paths do not offer adequate service.

There are several advantages to  using a  source routing approach for policy routing. F irst, every 

source m ay have its own policy constrain ts (for instance, certain  acceptable use or billing policies). 

It is m ost efficient to lim it d istribution  of this policy inform ation to  the sources them selves. Second, 

it m ay not be feasible to globally d istribu te  policy inform ation abou t tran sit netw orks. Further, 

some sources m ay have less need for detailed transit policy inform ation th an  others. W ith  a  source 

routing  approach, it is possible for sources to  cache only the inform ation they need, and  from  th a t 

inform ation calculate the appropria te  routes.

Note th a t this caching approach is a fundam entally  different approach to  scaling com pared to 

aggregation. W ith  aggregation, contiguous portions of the netw ork are abstrac ted  as a  single 

elem ent. This abstraction  is reflected through common addressing. R outers m ain tain  some level 

of inform ation about all portions of the topology, albeit indirectly th rough abstraction . In the case 

of hierarchical clustering, routers m ain tain  more detailed inform ation abou t nearby destinations, 

and  less detailed inform ation about more d istan t destinations, bu t none-the-less m ain ta in  some 

level of inform ation abou t all destinations. In the case of a  grid topology, all destinations are 

viewed a t the same level of abstraction .

W ith  the source rou ting /caching  approach described above, no system  necessarily has routing 

inform ation (aggregated or otherwise) about all destinations. A t a m inim um , rou ters m ay only 

have inform ation on how to  reach their neighbors (where a neighbor could be a neighbor router
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or a neighbor network). Sources m ay have no inform ation abou t m any network destinations, for 

instance, if they have no traffic to send to those destinations. A source can gather and  cache new 

routing  inform ation if the need arises.

One of the difficulties of the source rou ting /caching  approach is d istribu tion  of the  routing  informa^ 

tion. There is a  chicken-and-egg problem  whereby some routing inform ation m ust be established 

to carry more detailed routing inform ation to where it is needed. One approach to  this problem  

is a  hybrid of hierarchical aggregation and source routing /caching , as suggested by E strin  and 

R ekhter [36]. Hierarchical aggregation is used for common routes. Sources th a t have no special 

policy needs can use these routes for everything. Sources th a t have special policy needs can use 

these routes to  ob tain  additional topology inform ation.

It is w orth noting th a t caching as used here is not the same as caching as used in the context of 

a  VCI. A VCI is simply a compression of a header w ith com plete routing  inform ation (locators or 

vectors). (A VCI m ay also be compressing traffic characterization  inform ation. This aspect of the 

VCI is outside the scope of this thesis.) A VCI is useful for a  num ber of things, such as m aking 

packets smaller or increasing switching speed, bu t it has no positive scaling effects (in the context 

of routing), nor any effect on the overall architecture of rou ting  and addressing.
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C hapter 5

L ayering A d d resses

T his section discusses the issue of how a router determ ines the subnetw ork address to  use when it 

forw ards a packet over a  subnetw ork. It first gives some background and describes the problem . 

Then it describes an approach to the problem  whereby subnetw ork addresses are em bedded in 

in ternet addresses. Finally, it discusses the shortcom ings of this approach, particu larly  in the 

context of CLNP.

5.1 B a ck g ro u n d

W hen a rou ter receives a packet, it m ust decide which in ternet system  (router or host) should next 

receive the packet. M echanistically, what the router m ust do is encapsulate the in te rne t packet in 

a  subnetw ork header with the subnetw ork address of the next hop and transm it the packet onto 

the appropria te  subnetw ork. Exactly how this is done depends on the situation .

Consider the case where the in ternet protocol is IP, and the  rou ter receiving the packet is on the 

sam e subnetw ork as the destination host, and the subnetw ork in question is a  broadcast LAN. By 

a simple com parison of the  destination  IP  address against the  subnetw ork m ask of the  subnetw ork 

[10], the rou ter can determ ine th a t the destination  host is on the subnetw ork. T he rou ter then  

broadcasts a search packet (called an A RP request [84]) onto the subnetw ork. All hosts receive 

the packet, and the host whose IP  address m atches th a t in the query responds to  the router with 

its subnetw ork address. The rou ter caches this inform ation for fu ture packets, and  transm its  the 

packet to  the host using this subnetw ork address.

Consider the same case as the previous paragraph, bu t where the in ternet protocol is CLN P [55]. 

In th is case, there is no subnetw ork mask th a t the router can use to  determ ine if th e  host is on 

the subnetw ork. Instead, the rou ter has a list of all hosts on the subnetw ork, along w ith their 

subnetw ork addresses, th a t it obtained by listening to announcem ents from  all hosts [53]. Using 

th is inform ation, the rou ter can transm it the packet to  the host.
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Now, consider the case where the destination host is not on any of the ro u te r’s a ttached  sub­

netw orks, b u t where the subnetworks are still relatively small (LANs or po in t-to -poin t links, for 

instance). In this case, the rou ter will have previously learned, probably via a  broadcast mech­

anism , of all o ther routers on the subnetworks, and will have a forwarding tab le  showing which 

destinations should be forwarded to  which routers. This table can have been created  by the 

netw ork adm in istra to r or by autom atic discovery and routing protocols.

5.2 T h e  P r o b le m — Large S u b n etw ork s

T he common them e in the three cases of the previous section is th a t the routers on th e  subnetworks 

are capable of learning the subnetw ork addresses of every system  a ttached  to  the  subnetworks. 

T his is possible because the num ber of system s on the subnetw orks is small. Problem s arise, 

however, in the case where the subnetw orks have a very large num ber of system s a ttached  to 

them , such as m ight be the case w ith X.25, SMDS, Fram e Relay, or ATM subnetw orks. In this 

case, it is not possible for routers to  m aintain  inform ation abou t all o ther a ttach ed  system s, or to 

use a broadcasting m ethod to discover the subnetw ork address of any a ttached  system .

Assume th a t a  router has received a packet for some destination  host. There are two m ajor cases 

of in terest. The first case is where either the destination host or the destination  h o s t’s private 

network are a ttached  to the ro u te r’s subnetwork. In this case, the problem  is one of the router 

learning the subnetw ork address (or addresses) of the host or of the h o s t’s private netw ork. This 

problem  is very similar to  th a t of learning the in ternet address of a  host given its nam e. In the 

case of nam ing, it is a relatively sta tic  one-to-one or one-to-m any m apping of nam e to  in ternet 

address(es). In the case of subnetw ork address discovery, it is a  relatively s ta tic  one-to-one or 

one-to-m any m apping of destination in ternet address to  subnetw ork address(es).

The second case is where either the destination host, or the destination h o st’s private network, 

is not a ttached  to the ro u te r’s subnetw ork, bu t instead is reached through one or more transit 

networks. In this case, the problem  is less similar to the nam e-to-address m apping problem . The 

destination  in ternet address m ust be m apped into the subnetw ork address of the next hop router 

on the path  to  the destination host. The choice of next-hop router m ay not be relatively static , 

as it depends on the s ta te  of the topology, the routing algorithm s being used, and  so on.

T his second case is a  more difficult problem  in term s of algorithm ic complexity, since it m ust take 

rou ting  into account. The scaling problems, however, are not as severe as in the  first case. In the 

second case, the num ber of po ten tia l next-hop routers is proportional to the num ber of neighbor 

tran sit networks. This is likely to  be a much smaller num ber th an  the num ber of subscribers 

a ttached  directly to the subnetw ork. Thus, it is likely to be possible for a  rou ter a ttached  to  the 

subnetw ork to  m ain tain  routing and subnetw ork address inform ation for rou ters a ttached  to  all 

o ther tran s it networks.
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Figure 5.1: Address Layering Exam ple

5.3 E m b ed d e d  S ub n etw ork  A d d r e sse s

There are two basic approaches to  the problem  of determ ining the appropria te  subnetw ork address 

from  the destination  in ternet address. One approach is where the appropria te  subnetw ork address 

of the host is em bedded in the internetw ork address of the host. In this case, the rou ter can 

sim ply ex trac t the subnetw ork address from the in ternet address and form  a subnetw ork header 

w ith it. The other case is where the subnetw ork address is no t em bedded in the in ternet address. 

In this case, the rou ter m ust dynam ically discover the subnetw ork address, and then  cache it for 

la ter use. The former case is of particu lar interest here, because it im pacts the form  and use of 

addresses. The la tte r case is discussed in [109].

Consider the topology of Figure 5.1. Provider A is a  subnetw ork of some sort w ith  routers a t its 

edges. It has routers connected to other providers and rou ters connected to  subscriber networks. 

Assume th a t a packet is being sent to  subscriber X a ttached  to  provider A. W ithou t embedded 

subnetw ork addresses, the destination address m ight look like:

provider A. suhscriberX. area.host

Routers outside of provider A (for instance. R outer RB) w ould look a t the first p a rt of the 

address (providerA) and route it to a  router a t the border of provider A (R outer R A l). T hat 

rou ter would then  look a t the next hierarchy level, suhscriberX, and have to  determ ine from  th a t 

which subnetw ork address to  route the packet to. If there is some discovery m echanism  available 

to provide this inform ation, the router can get the inform ation and forward the packet across the 

subnetw ork to the router th a t connects subscriber X w ith provider A.

Note th a t the difficult problem  is not one of getting  the packet from  one provider to  another 

provider. The difficult problem , ra ther, is in getting the packet from  the en try  po in t of the last 

provider in the path  to  the  subscriber. This is because the num ber of subscribers for a  given
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provider is much larger th an  the num ber of neighbor providers.

If, on the other hand, the em bedded subnetw ork m ethod is used instead, the address m ight look 

like this:

provider A. subnet AddrX. area.host

In this address, the em bedded subnetw ork address [subnetAddrX) is in p a rt tak ing  the place of 

the suhscriberX  p art of the previous address. T h a t is, the subnetAddrX  field uniquely identifies 

subscriber X am ong all other subscribers. B ut, this identification is indirect, because explicitly, the 

subnetAddrX  field is identifying the subnetw ork interface a ttached  to  the rou ter th a t is a ttached  

to  the subscriber. If th a t router is exclusive to subscriber X, then subscriber X has indirectly been 

identified.

More to  the  po in t, however, is th a t the provider X router receiving this address can ex trac t the 

subnetAddrX  field, pu t it in the destination address field of the subnetw ork packet (or call setup), 

and  forw ard the packet. If a rou ter a t a  subnetw ork interface is a ttached  to  m ultiple subscribers, 

such as rou ter J in Figure 5.1, then  fu rther subscriber identification inform ation in the address 

would be necessary, for instance:

provider A.subnetAddrY.subscriberY. area, host

Em bedding subnetw ork addresses in in ternet addresses is very useful in m any cases, and has been 

specified for use in a t least one in ternational standard  [56]. It was also used in the early IP 

in ternet, to get packets across the A RPA N ET (the A R PA N ET sw itch and p o rt num bers were 

em bedded in the IP  address). However, it does not work in all cases.

F irst, it does no t work in the case where the subnetw ork address is too large to  fit in the in ternet 

address and still leave enough space for the other addressing inform ation the  in te rne t address 

m ust contain. T his is generally the case with IP, as m ost subnetw ork addresses (IEEE802, X.121, 

E.164) are larger than  the IP  address.

T he NSAP address, on the o ther hand, was designed w ith incorporation of subnetw ork addresses 

in m ind [54]. Thus, it incorporates the subnetw ork addresses m entioned in the last paragraph. 

Interestingly  enough, however, a  standards group for developm ent of ATM  subnetw orks (the ATM 

Forum ) subsequently  adopted  the NSAP address for use in addressing ATM interfaces. Thus, the 

NSAP address is not big enough to contain all subnetw ork addresses^.

Second, the em bedded subnetw ork address specifies the p a th  to  the destination  a t a  higher level 

of detail th an  the other fields of the address. The o ther fields, provider, subscriber, area, and so 

on, identify groups of system s, not single system s (or interfaces). The subnetw ork address, on the 

o ther hand, specifies a single interface. This is overly constraining in the case where there are

 ̂From  th is, one could  form ulate an axiom — which I call th e  D eering A xiom , b ecau se S teve  D eer in g  first p o in ted  

out this conundrum — that an in ternet address can  never be big enough  to h o ld  all subnetw ork  addresses, because  

a future subnetw ork  can  alw ays adopt the internet address.
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m ultiple routers entering a  subscriber network from  the sam e provider.

For instance, in Figure 5.1, subscriber W  has two connection points to  provider A. If one of the 

subnetw ork addresses is em bedded in the internet address, then  the rou ter connected to  the other 

subnetw ork address will not be found in case the original one fails.

T h ird , the subnetw ork address m ust be em bedded in the appropriate  p a rt of the  address, and in 

such a  way th a t i t ’s coding is clear. The pitfalls of a  bad  encoding can be illu stra ted  w ith the 

NSAP address. W hen a  subnetw ork address is encoded in an NSAP, the subnetw ork address is 

the  m ost significant field w ith location sem antics. (There are fields w ith more significance than  

the subnetw ork address field, bu t these fields only tag  the address as being a certain  type, and do 

not have any location sem antics.)

Depending on the nature  of the subnetw ork address, it may or m ay not have enough hierarchy, 

or the right kind of hierarchy, to scale sufficiently. For instance, the E.164 address has a country 

code as its m ost significant field. As discussed in section 3.4.5, geographical addresses may not 

scale well w ith the existing in ternet topology.

A related  problem  is th a t it is may not be clear to  a rou ter w hether the subnetw ork address given 

is on its own subnetw ork or another subnetw ork. For instance, a  packet w ith an  E.164 address 

em bedded in it m ight cross m ultiple subnetworks using E.164 addresses— SMDS, ATM , Frame 

Relay, or BISDN. Because E.164 addresses are geographical, and because m ultiple providers can 

cover the same geographic territory , the router has to  have explicit inform ation abo u t w hat E.164 

addresses are on the provider’s network. The am ount of inform ation required to  know this may 

be com parable to  the am ount of inform ation needed for subnetw ork address discovery in the first 

place.

Note th a t this problem  does not exist w ith the addresses shown in this section, where the most 

significant field is provider. If the m ost significant field is provider, then  the rou ter a ttached  to  

the identified provider knows th a t the subnetw ork address m ust be on its subnetw ork.

Fourth , it is possible th a t there should be m ultiple subnetw ork addresses in the in te rne t address. 

For instance, consider the case where Subscriber X ’s in ternal network was itself a  single large 

subnetw ork w ith hosts directly a ttached . In th a t case, to  solve the problem  of subnetw ork address 

discovery using the em bedded subnetw ork address technique, the in ternet address w ould be:

provider A .subnetAddrX.subnetAddrHost

where subnetA ddrH ost is the subnetw ork address of a  host on the subscriber’s subnetw ork. The 

existence of m ultiple subnetw ork addresses only com pounds the above problems.

In the cases where the problems or lim itations associated w ith the em bedded subnetw ork address 

approach make it unacceptable, a dynam ic discovery m ethod m ust be used, as discussed in [109].
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C hapter 6

G roup A d d resses

The previous chapters dealt essentially w ith unicast addresses—addresses th a t identify (or locate) 

a  single system  or interface. An increasingly im portan t class of address is the group address— an 

address th a t identifies m ultiple system s or interfaces. A group address can have two basic services 

associated w ith i t— m ulticast service and unicast service. W ith  m ulticast service, all systems 

identified by th a t address receive a copy (possibly unreliably) of the packet. The term  muliicast  

address indicates a group address w ith m ulticast service.

W ith unicast service, only one of the group of systems identified by the group address should 

receive a packet destined for the group. The term  anycast address indicates a  group address w ith 

unicast service.

The following sections discuss m ulticast and anycast addressing.

6.1 M u lt ica s t  A d d re sse s

A m ulticast address allows the source of the packet to send th a t packet to  m ultip le o ther system s 

w ithout having to  know the separate identities of those system s, and w ithout having to  send 

m ultiple packets. This simplifies the host considerably (though it com plicates the routers). It also 

decreases the latency of packet delivery com pared to sending of m ultiple packets, because the last 

of m ultiple packets would be queued up behind the others leaving the host. Finally, it improves 

bandw ith  efficiency, because only one copy of any given packet is tran sm itted  over any link.

The usual model of m ulticast packet delivery is th a t the m ulticast packet traverses some kind 

of tree, logically overlaid on the physical topology which is typically a mesh of some kind. The 

sender is at the root of the tree, and the receivers are a t the leaves. A t every branch in the tree, 

the packet is replicated, and one copy sent over each branch. Thus, the latency rem ains low, as 

no wire carries more th an  one of a  given packet.
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T here are m any im portan t issues concerning m ulticast— w hat the natu re  of the  tree is (source 

rooted [27], centered [2]), how the tree is formed, scaling, m anaging resources, d istribu ting  ad­

dresses, controlling group m em bership, achieving reliable packet delivery, and  so on [8, 26, 90, 

112, 2]. In keeping w ith the scope of this thesis, however, the discussion here is largely lim ited to 

the form of the m ulticast address and related inform ation required in the packet header.

A fundam ental d istinction  among tree types is source-rooted trees versus non-source-rooted trees. 

Source-rooted trees are shortest pa th  spanning trees where the root of the tree is a t the source of 

the packet [27]. N on-source-rooted trees are any other type  of tree, for instance a shortest p a th  

spanning tree rooted a t some system  which is not the source [2], or a  Steiner tree  [112].

D epending on the nature  of the m ulticast tree, different inform ation in the  packet is used by the 

rou ter in m aking the forwarding decision. Consider first a  case where all m ulticast packets in 

a network traverse the same non-source-rooted tree, and where th a t tree extends to all hosts in 

the network. This is called a broadcast non-source-rooted tree. In this case, all m ulticast packets 

reach all hosts, and the hosts either accept or discard the packet based on w hether or not they 

are a m em ber of the group identified by the m ulticast address. W ith  this kind of tree, each router 

m aintains a list of which interfaces are on the tree. W hen it receives a  m ulticast packet, the router 

sim ply forw ards the packet over all tree interfaces except the one it came in on.

T hus, the only inform ation from  the packet header th a t the router needs is the  inform ation th a t 

tells it th a t the packet is a  m ulticast packet. In the case of IP, th is can be done by looking a t the 

first four bits of the destination  IP  address. If those four b its are value 1110, then  the packet is a 

m ulticast packet. O therwise it is not. The host, on the o ther hand, looks only a t the full m ulticast 

address to determ ine if it should accept the packet (this is true for the  following three examples).

Next, consider the case where there is one tree per source host (or, per source host th a t is actively 

sending m ulticast packets), and th a t each tree extends to  all hosts in the network. These are 

called broadcast source-rooted trees. W ith  a broadcast source-rooted tree, the rou ter expects the 

packet for a  certain  source host (or set of hosts, as identified by an address prefix) to arrive on a 

certain  link— the link th a t the router would norm ally route a unicast packet over to  reach the the 

host (as a destination). The rou ter also knows, for each source, which outgoing links to  forward 

the packet over.

Thus, for the broadcast source-rooted tree, the inform ation from  the packet header th a t the router 

needs is 1) w hether or not the packet is m ulticast, and 2) the source address.

Next, consider the case where there is one non-source-rooted tree per m ulticast group, and  th a t 

each tree extends only to  the m em bers of the m ulticast group. This is called a  multicast non­

source-rooted tree. In this case, a  router m ust know which of its links are on th e  m ulticast tree 

for each group. W hen a router receives a packet for the group, it forwards the packet over all of 

the links on the tree except the one it came in on.

For a m ulticast non-source-rooted tree, the packet header need only carry  the identifier for the
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m ulticast group. (The value of the identifier indicates th a t the packet is a  m ulticast packet. 

Therefore, no separate “this is a m ulticast packet” inform ation is required.)

Finally, consider a muliicasi source-rooted tree. In this case, the packet header m ust contain  bo th  

the identifier for the group, and the address of the source of the packet.

In the above examples, the source address, when it is used, is functionally a modifier. The 

(destination) m ulticast address, when it is used, is an identifier.

6.1.1 Scoped  M ulticast

W ith  scoped m ulticast, a  m ulticast packet is only allowed to travel a  certain  distance from  the 

source of the m ulticast packet, where distance can be m easured in various ways. A simple way to 

measure distance is by num ber of hops away from  the source. This is used w ith IP  by the setting 

the Tim e-to-Live (TTL) field. This field is decrem ented a t least once (and usually once) every 

tim e a router forwards the packet.

W ith  IP  unicast, routers discard a packet whose T T L  has decrem ented to  0. W ith  IP  m ulticast on 

the M BONE, the  discard threshold is settable, so th a t routers can tune  the am ount of m ulticast 

traffic they forward. In addition, the initial se tting  of the T T L  is based roughly on the am ount of 

bandw idth  generated by the application, so th a t video, for instance, will have a  lower in itial TTL 

th an  audio. Thus, a ro u te r’s threshold can be configured to  discard video while accepting audio. 

(Note th a t this particu lar use of the T T L  on the M BONE is not necessary if m ulticast pruning is 

im plem ented— th a t is, individually selecting which m ulticast groups can traverse a link.)

The usual desired scoping sem antics is not hops, bu t ra th er to  keep the packet w ithin certain  

boundaries, for instance, the local LAN, the departm en tal networks, the com pany networks, and 

so on. Thus, hop count is not usually a good m echanism  (except for the local LAN case, where a 

hop count of 1 suffices).

An alternative m echanism , specified in the S IPP  protocol [30], is to  have a  scope field th a t explicitly 

defines the scoping boundary. The hop-count m ethod requires no special handling by the router 

(it is norm al procedure for a rou ter to drop a packet whose hop-count has expired). The scope 

field m ethod, on the o ther hand, requires th a t an explicit forwarding decision be m ade by routers.

A scope field can either be in terpreted  in conjunction w ith the source locator, or independent of the 

source locator. In the la tte r case, a  router simply associates each of its interfaces w ith zero or more 

scope values. A packet w ith a  m atching scope value is never tran sm itted  over th a t interface. In 

the former case, the rou ter associates each interface w ith zero or more (scope value, source locator 

prefix) pairs. A packet w ith a m atching scope value and a  m atching source locator prefix is never 

transm itted  over th a t interface. Source-independent scoping is sim pler, and source-dependent 

scoping is more general.
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W ith  source independent scoping, a  single series of expanding concentric scoping boundaries is 

defined for each host—th a t is, w ith respect to  all of its locators. W ith  source independent scoping, 

po ten tia lly  m ultiple such concentric boundaries are defined for each host, if it has m ultiple locators. 

For either case, the group m em bers for a given packet are defined by the com bined (scope, source 

locator, group ID) inform ation. For forwarding a packet, however, the rou ter does no t care about 

the source locator unless it is doing source-dependent scoping (or of course source-rooted trees).

6.1.2 W ell-known M ulticast A ddresses

A nother form  of m ulticast address is the  “well-known” m ulticast address. The well-known m ul­

ticast address is a  norm al m ulticast address in th a t it identifies a  set of nodes. I t is different, 

however, in th a t the set of nodes th a t it identifies offer a particu lar service, and  th a t  th a t service 

is identified by the value of the well-known m ulticast address. An exam ple of a  well-known m ul­

ticast address w ith IP  is “all O SPF routers” [73]. T h a t is, all O SPF routers will accept a  packet 

addressed to the “all O SPF routers” m ulticast address.

The desired recipients of m ost well-known m ulticast addresses are local in scope. For instance, the 

“all O SPF rou te rs” well-known m ulticast address m ust only go to  all O SPF routers on the local 

LAN. Thus, the scope m ust be local LAN (or, hop count of 1). T his allows nodes to  com m unicate 

to o ther nodes of a  certain  type w ithout going through an address discovery process.

A well-known m ulticast address, combined with the scope and source locator, defines m ultiple 

groups, each w ithin a prescribed scope.

6.2 A n y c a s t  A d d re sse s

Like a m ulticast address, the anycast address identifies a  set of nodes. Unlike a m ulticast address, 

however, the  delivery sem antics for an anycast address is to  deliver the packet to  one node only. 

Normally, bu t no t necessarily, the single node is assum ed to  be the “closest” , according to  the 

routing  protocols notion of closest [76].

The rou ter forw arding m echanism  of an anycast address is closer to  th a t of a  unicast address than  

th a t of a m ulticast address. A router can tre a t an anycast address like a unicast address in th a t 

it calculates a  single pa th  to one of the members of the anycast group. Indeed, m ost routing 

algorithm s designed for use w ith unicast addresses work w ithout m odification for anycast. (By 

and large, a  routing  algorithm  can not distinguish between m ultiple pa ths to  a  single (unicast) 

destination  and m ultiple anycast destinations.)

Because of th is sim ilarity  w ith unicast, anycast addresses can be sim ilar to  unicast addresses. For 

instance, anycast addresses can be hierarchical with the same scaling benefits as unicast addresses. 

Indeed, one form  of anycast address is one th a t is indistinguishable from  unicast addresses, bu t
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th a t happens to be assigned to multiple nodes.

The S IP P  protocol takes advantage of a specialized form  of hierarchical anycast addresses th a t 

come out of the unicast address space [40]. In SIPP, they are called cluster addresses, and  they 

are for the purpose of sending a packet to any one of the  border rou ters of a  cluster of nodes 

defined by a hierarchical prefix. (A S IPP  cluster address is encoded as an  address prefix followed 

by all zeros.)

A nother example of an otherwise unicast address having anycast sem antics is the  Core Based Tree 

(G ET) m ulticast protocol [2]. This is discussed in the next subsection.

A po ten tia lly  useful form  of anycast address is the well-known anycast address. A nycast addresses 

can also be sim ilar to  m ulticast addresses, in th a t they can be (non-hierarchical) identifiers. This 

form  is particu larly  useful for well-known anycast addresses where, like well-known m ulticast 

addresses, they identify a  service as well as a  group of nodes.

Scoping can be used w ith this form of anycast address. The effect of scoping is sim ilar to th a t used 

w ith m ulticast in th a t no nodes outside of the area defined by the scope will receive the packet. 

As w ith m ulticast, the source address may or may not be used in defining the scope boundary.

6.3 T w o -p h a se  G roup  A d d resse s

A useful form  of group addressing is two-phase group addressing, where a packet is initially routed 

as unicast (or anycast), and subsequently is routed as group-addressed (m ulticast or anycast).

One example of this is rem ote m ulticast, where a packet is sent to  a  rem ote network (using 

unicast), where it then  becomes m ulticast w ith local scope. This causes the packet to  be delivered 

to a m ulticast group th a t is local to a  rem ote network. This style of m ulticast is advantageous 

com pared to  regular (single-phase) source-rooted m ulticast in th a t w ith rem ote m ulticast, routers 

in between the source and the rem ote network do not need to  have any knowledge of the m ulticast 

group, whereas w ith regular source-rooted m ulticast, they do.

A sim ilar case can be m ade for rem ote anycast.

A nother example of two-phase m ulticast is the G ET m ulticast protocol [2j. W ith  G ET, a single 

m ulticast tree is formed from some root (core) router th a t may not be a sender (or m ay not be 

the only sender) to the m ulticast group. A node may send to  the group w ithout being a  member 

of the  group. W hen this happens, the sending node forms a packet th a t has the unicast address of 

the  core and the m ulticast address of the group. The packet is initially rou ted  tow ards the core. 

W hen it reaches any rou ter on the m ulticast tree, th a t rou ter changes the phase of the  packet and 

routes it as a  m ulticast packet (along the m ulticast tree).

The advantage of this approach over the source-rooted tree is th a t routers need only keep per
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group forwarding inform ation, ra ther than  per group and per source forw arding inform ation. The 

disadvantage is th a t the tree formed is less optim al than  the source-rooted tree, particu larly  when 

the core router is poorly placed.
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Part II

In tern etw ork  P ro to co l H eader

D esig n
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In P a r t II of this thesis, we consider the design of the routing  and addressing aspects of an in ternet­

work protocol. In particu lar, we explore two designs—one based on a  conventional internetw ork 

protocol header syntax  [30, 40] (SIPP), though w ith expanded sem antics, and  one based on a  new 

internetw ork protocol header syntax  (SPip). These two designs are com pared w ith  a conventional 

in ternetw ork protocol, CLNP [55].

We do not consider aspects of internetw ork protocol design not related to  rou ting  and addressing. 

These aspects include higher layer protocol identification, hop count lim itation , checksum  calcu­

lation, and fragm entation and reassembly. All of these functions are largely orthogonal to  routing 

and  addressing, and are therefore not considered in th is thesis.

Since a t the tim e of th is w riting the S IPP  protocol is a  candidate for replacem ent of IP, a  note on 

the history of SIPP  is appropriate. During the two years th a t I worked on this thesis, I was actively 

prom oting my protocol ideas in the In ternet Engineering Task Force— the stan d ard s body th a t 

has oversight of T C P /IP  and related protocols—as one of the candidate replacem ents for IP. My 

in itial proposal was P ip [38, 39, 37], a variation on SPip presented in this thesis (SPip, pronounced 

“ess p ip” , stands for Simple P ip). Later, the P ip  project merged w ith another candidate, SIP (for 

Simple In ternet Protocol), creating SIPP  (SIP Plus). SIPP  kept the syn tax  of SIP, bu t expanded 

its sem antics.
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C hapter 7

E valu ation  C riteria

T his chapter describes the evaluation criteria  for the protocols. We are in terested  in the capabilities 

and  the costs of each of the protocols.

7.1 C o sts

We consider 4 costs:

1. Processing cost (speed and hardw are com plexity)

2. A ddress assignm ent com plexity

3. C ontrol protocol (such as routing) complexity

4. Header size

It is in fact alm ost impossible to be precise w ith respect to these costs, as they depend on so m any 

factors. Thus, we trea t these costs more in term s of general argum ents th an  precise analysis.

For processing cost, we focus prim arily on aspects of software im plem entation ra th er th an  h a rd ­

ware. The reason for this is partly  the au th o r’s unfam iliarity  w ith hardw are, and  partly  the fact 

th a t there are a  large num ber of hardw are approaches, and  we can not cover them  all. In any 

event, software im plem entation alone provides a good basis for relative com parison, as discussed 

in Section 10.1.

For address assignm ent complexity, we consider bo th  address autoconfiguration (m ainly of hosts), 

and  m anual assignm ent along an address assignm ent hierarchy. W ith  respect to  the form er, we are 

in terested  in w hether ’’serverless” address autoconfiguration is possible or not. W ith  respect to  the 

la tte r, we are prim arily in terested  in the difficulty of assigning addresses considering internetw ork 

grow th and change.
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W ith respect to control protocol complexity, we prim arily lim it ourselves to  pointing out where 

certain  aspects of the in ternet protocol design make the control protocols more complex. In 

general, we use the IP  control protocols as baselines in this evaluation.

O f these four costs, the header size is the one th a t is easy to  quantify. I t is, however, difficult to  

quantize w hat the true cost of a large header is. A t high link speeds, where m ost packets can be 

fairly l a r g e a  large header constitu tes only a  small percentage of packet size.

A t very low link speeds, even a m oderate packet size is intolerable, and  so some kind of header 

compression (for instance, using a VCI [17, 16]) is required. W ith  header com pression, however, a 

large (uncom pressed) header will not behave significantly worse th an  a m oderate header if a  large 

percentage of headers can be com pressed successfully ( th a t is, fall under an existing VCI).

7.2 C ap ab ilit ie s

The capabilities of in terest, sum m arized in Table 7.1, are the routing and addressing functions 

described in P a r t I. The capabilities are partitioned  in to  two categories, required and useful. The 

purpose of the two categories is to show the different relative im portance of the various capabilities.

The required capabilities are widely accepted as necessary for any future internetw ork protocol. 

The useful capabilities are those for which there is less agreem ent as to  w hether or no t they are 

w orth the complexity. The inclusion of a capability  in one category or the o ther is in some cases a 

judgem ent call. In case of doubt, I used the current working s ta tu s of the capability  in the IE T F  

standards com m unity [48] to choose the category. T h a t is, if the IE T F  is actively working on the 

capability, I included it in the required category.

^The exceptions are in teractive d ata  traffic such  as telnet (w here one character or on ly one line m ight b e  sent)  

and in teractive voice, where low la ten cy  and rela tively  low b an d w idth  en cod in g  (for in stan ce, 32k  b its per second) 

resu lt in  sm allish  packets. H ow ever, at h igh  link speeds, th is traffic is likely to  co n stitu te  on ly  a  sm all percentage  

of to ta l traffic, the m ajority  taken  up by im age transm issions.
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Table 7.1: Criteria for Routing and Addressing Capabilities

C apability Section

required

Big enough hierarchical unicast addressing 2.2.1

M ulticast/ shared-tree group addressing 6.1

M ulticast/ source-tree group addressing 6.1

Scoped m ulticast group addressing 6.1.1

W ell-known m ulticast group addressing 6.1.2

M obility 2.2.4

M ulticast/ two-phase group addressing 6.3

Domain-level policy route 4

Host A uto-address assignm ent

useful

Type-of-Service Field 2.2.3

Em bedded link-layer address 5

Node level source route 4

Anycast group addressing 6.2

A nycast/ two-phase group addressing 6.3
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C hapter 8

P ro to c o l D escr ip tio n s

T his section describes the three protocols analyzed in P a r t II of this thesis. Note th a t we only 

describe the p a rt of the protocol having to do w ith the identification, location, and  p a th  modifi­

cation  functions. Unless otherwise sta ted , the term  internet protocol is assum ed to  refer to  only 

th a t p a rt of the in ternet protocol th a t accomplishes these three functions.

8.1 S P ip

Perhaps not surprisingly, the design of SPip follows directly from  the m ain observations m ade in 

P a r t I, namely, th a t

1. all routing  and addressing functions can be classified as one of identification, location, or 

p a th  m odification, and

2. a  locator is simply a series of identifiers, and the process of locating is th a t of routing in 

tu rn  to each of the identifiers.

Based on item  1 above, we argue th a t (the routing and addressing portion of) an in ternet protocol 

should have three and only three p arts— an identifier, a  locator, and  a p a th  modifier (actually,

two identifiers and  two locators, one each for source and destination).

Based on item  2 above, we argue th a t the locator p a rt should be based on a loose source route­

like m echanism , with each elem ent of the loose source route being a simple identifier (versus a

com plete hierarchical address as w ith IP).

T his is, in a  nutshell, the  design of SPip. The argum ents for this approach are m ade by way of 

showing, in C hapter 9, how SPip handles each of the routing and addressing capabilities w ith a 

single simple forwarding engine, and w ith straightforw ard control protocols (com parable to  those 

required for IP  or S IPP).
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8.1.1 SP ip  R ou tin g  and A ddressing  Fields

The (routing and addressing p a rt of the) SPip header has the following form at:

64 bits 64 bits variable

Source EID Dest EID Route Sequence

The Source EID and Dest EID fields are endpoint identifiers. They have no locator or pa th  

modifier sem antics. They are flat in-so-far as SPip is concerned^.

Higher layer protocols such as T C P  [88] use the Source and Dest EIDs to  identify the connection 

endpoints. W hen an SPip host receives a packet, it only need examine the Dest EID to  determ ine 

th a t  the packet is destined for itself.

The R oute Sequence contains the location and path  m odification inform ation. T he Route Sequence 

is fo rm atted  as:

' 32 bits8 bits 8 bits 32 bits 32 bits

N um  Source RSE Active RSE R SE l RSE2 R SEn

where RSE stands for Route Sequence Element^.

T he RSE has a 1-bit flag followed by two parts, a  7-bit P a th  Modifier and a 24-bit RS Identifier:

R oute Sequence Elem ent (RSE)

1 bit 7 bits 24 bits

Last RSE P a th  Modifier RSID

T he Last RSE flag is set to 1 if this is the last RSE in the route sequence, and set to  0 otherwise. 

T he following sections describe the use of the SPip header.

8.1.2 SP ip  Forwarding A lgorithm

T hree local variables are m aintained during the forwarding algorithm :

a c t iv e T a b le  This indicates which of m ultiple forwarding tables should be accessed. There are 

two types of tables, RSETahles  and EIDTables. RSETables are accessed w ith  RSEs, and 

EID Tables are accessed w ith EIDs.

a c t iv e R S E  T his indicates which of m ultiple RSEs, or the EID, is used to  access the  activeTable. 

If activeR SE is non-zero, it indicates an RSE, and indicates the  EID if it is zero.

'■The Source and D est E ID s have a certain  am ount o f structure to facilita te  their assignm ent (see Section  8 .1 .4 ). 

T h is structure, how ever, has no bearing on operation  of the SP ip  p rotocol.
^R oute Sequence E lem ents are called  F T IF s (Forw arding Table Index F ie ld s) in the orig inal P ip  p rotoco l [37, 

38, 39].
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t r a n s m i tR S E  T his indicates w hat value the Active RSE field should be set to  upon transm ission 

of the packet. For the case of m ulticast, it applies to  all transm itted  packets.

T he forw arding algorithm  is illustrated  in Figure 8.1 and described as follows:

1. Set activeR SE and transm itR S E  to the value of the  Active RSE held in the  received packet.

2. If activeR SE is zero, set activeTable to  be the M ain EID Table, and go to  step  3. Otherwise, 

set activeTable to  be the R oot RSETable, and go to  step 4.

3. Set activeR SE to zero, and index the active EID Table (indicated by activeTable) using the 

value of the Best EID held ex tracted  from the packet header. The indexed en try  will re tu rn  

either:

(a) a pointer to a Forwarding Inform ation Base (FIB) entry (go to step 6), or

(b) error.

The indexed entry  also includes a tag  th a t indicates if transm itR S E  should be set to the 

curren t activeRSE (th a t is, advanced to  point to  the EID).

4. Index the active RSETable (indicated by activeTable) using the value of the active RSE held 

(indicated by activeRSE) ex trac ted  from  the packet header. The indexed en try  will re tu rn  

one of:

(a) a pointer to a Forwarding Inform ation Base (FIB) entry (go to step 6),

(b) a pointer to  one of the EIDTables (go to  step 3),

(c) a pointer to another RSETable, possibly the same one already accessed (go to  step 5), 

or

(d) error.

The indexed en try  also includes a tag  th a t indicates if transm itR S E  should be set to  the 

curren t activeR SE (th a t is, advanced to  point to  the current RSE).

5. Increm ent activeRSE. Set activeTable to be the one pointed to  by the entry  from the previous 

step. Go to  step 4.

6. Using the inform ation from  the FIB entry, forward the packet over zero or more interfaces. 

The FIB inform ation includes the interface and link-layer header for each packet to be 

tran sm itted . The Active RSE held of the tran sm itted  packet is set to  transm itR S E .

This algorithm  describes the RSETables and EIDTables as h a t tables th a t are directly indexed 

by the RSE or EID respectively, where every entry  has one of the  choices enum erated above (a 

pointer to some outcom e or an error). Given th a t the RSE space is 2^^ values, and th a t the EID 

space is 2®“̂ values, it is clear th a t such an im plem entation is impossible. However, the sem antics 

of such an im plem entation  m ust be achieved.

75



If Active RSE != 0 
Index with 
Active RSE __[

Point to another (possibly 
the same) RSE Table

RSE Tables

Select
next
RSE

If Active RSE = 0 
Index with 
Dest EID

Default

Point to
FIB Entry

Point to EID Table

Forwarding 
Information 
Base (FIB)

0 Outgoing Interfaces 
0 Link Addresses

EID Tables

Point to
FIB Entry

Default

Figure 8.1: SPip Forwarding A lgorithm

T he large m ajo rity  of the entries in the RSETables or EIDTables contain  either errors or default 

routes. B oth represent the case where no explicit m atch  is found. T hus, the sem antics of the 

RSETable or EIDTable lookup is exact-m atch w ith default. T h a t is, either an exact m atch  is 

found, or a default en try  (which may contain a default route or an error indication) is used.

In the algorithm  above, the index is described as using the whole RSE— the Last RSE flag, the 

P a th  Modifier, and the RSID. These three fields, however, are separate  and orthogonal elements 

of the RSE. Thus, it is possible to  default on the RSID bu t still retrieve different entries based 

on the value of the P a th  Modifier and Last RSE. In particu lar, a  set Last RSE flag will generally 

cause the router to  examine an EIDTable, usually the M ain EID Table. The use of defaults in 

general is described in the  examples of C hapter 9, for instance. Section 9.2.3.

Note th a t the SPip forwarding algorithm  is described in com pletely m echanistic term s. T his is in­

tentional, and is possible because SPip reduces routing and addressing to  its elem ental functions— 

identification, location, and p a th  m odification. In a  sense, the SPip forw arding engine is like a
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machine language. A machine language is defined in term s of the m achine— th a t is, se tting  register 

values, moving words from here to  there, and so on. The sem antics is derived from  the  machine 

language th rough  a com puter program .

SPip is a  kind of machine language for forw arding packets. SPip executes the basic functions, and 

various routing and addressing sem antics can be derived w ith various routing algorithm s, address 

assignm ents, packet form ats, and so on.

8.1.3 SP ip  Packet Formation

Every SPip host stores locally one or more EIDs th a t identify itself (note th a t such an EID may 

represent a  m ulticast group, and therefore identifies o ther hosts as well). Some of these EIDs are 

send-capable and others are not. A send-capable EID is one th a t can validly be used as the h ost’s 

source EID in a transm itted  packet. M ulticast EIDs are not send-capable. U nicast EIDs are.

A ssociated w ith every EID are zero or more address sequences th a t can be though t of as represent­

ing its location in the in ternet. An address sequence is a  series of RSIDs (An, A n - i , . . . ,  A i, A q). 

W hen SPip hierarchical unicast addressing is used, each RSID in the address sequence carries one 

level of the hierarchical address (for instance, network, subnet, or host). T his is discussed in detail 

in Section 8.1.5.

For every destination  (group or individual) th a t a host sends packets to , the host has one or more 

EIDs, and associated w ith each EID is one or more address sequences (where an  address sequence 

can have zero addresses, for instance in the case of m ulticast).

W hen a  packet is tran sm itted  from  a source host S to a destination  host D, the Source EID contains 

one of S’s EIDs, and the Dest EID contains one of D ’s EIDs. The route sequence typically  contains 

two address sequences—one from host S and  one from  host D. Each address sequence will be one 

of those associated w ith the corresponding EID.

The source h o st’s address sequence is in the RSID p a rt of the in itial RSEs of the route sequence, 

in order of lowest order RSID first. The destination  h o st’s address sequence is in the RSID part 

of the trailing RSEs of the route sequence, in order of highest order RSID first. In between the 

two address sequences is zero or more RSEs, called tran s it RSEs. The P a th  M odifier p a rt of the 

RSEs are filled in separately, depending on the desired routing. The Last RSE fiag of every RSE 

except the last one is set to  0.

For instance, assum e th a t host S ’s address sequence is (Sn, S n _ i , . . . ,  ^ i ,  5o), th a t  host D ’s 

address sequence is (Dm, D m - i , - - - ,  D%, D q), and th a t there are no tran s it RSEs. A route 

sequence in the packet from  host S to host D would look like:

(S"o, S i , . . . , S j i , D m , D m —1 , • • • , Dq)
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W ith  tran s it RSEs To through Tp, the route sequence would be:

{ S qj S i , . . . ,  S n , T o ,  T i ,  . . . , Î J , ,  D r m  ! ) • • • )  -^ o )

T he source EID and address sequence are always locally known by the transm ittin g  host. The 

destination  EID and address sequences can be learned either from  DNS or from  a previously 

received SPip packet. The transit RSEs are learned through w hatever m eans is appropriate  to 

the application.

T he N um  Source RSE field is set to indicate how m any of the in itial RSEs represent the source 

address sequence. This tells a receiving host how to  learn the address sequence of the remote 

host. Note th a t it can encom pass more th an  ju s t the source address sequence. For instance, if 

the tran s it RSEs represent a  policy route, and the host requires th a t re tu rn  packets follow the 

sam e route (in reverse), the Num Source RSE includes the tran sit RSEs. Its value, for the  above 

exam ple, assum ing th a t no transit RSEs are included, is n  +  1.

The default setting  for the Active RSE field ( th a t is, the setting  used if no b e tte r setting  is known) 

is to  point to the first RSE after the source address sequence. Thus, the Active RSE field for the 

above example is n + 2 .  O ther settings are possible, however, depending on the situation.

Obviously, if host S is to  send a packet to host D, it m ust know an EID for host D, and zero or 

m ore address sequences associated w ith th a t EID (no address sequence m ay be required if, for 

instance, the EID represents a  m ulticast group).

As m entioned above, there are two ways th a t host S can obtain  the EID and address sequences 

for host D. One way is to receive it from DNS, and the other is to  derive it from an SPip packet 

previously received from  D. The former would norm ally be the case if host S initiates the  exchange, 

and the la tte r would norm ally be the case if host D initiates the exchange.

The form er case is straightforw ard. DNS (or some directory service) carries the  EIDs and address 

sequences for hosts, and re tu rns them  when queried.

For the la tte r case, when host S receives a packet from  host D, the EID of host D is in the Source 

EID field. The address sequence th a t host S should use to  re tu rn  a packet to  host D is the  reverse 

of the in itial n  RSIDs of the route sequence, where n  is the value of the N um  Source RSE field. 

(The P a th  Modifier fields of the received RSEs are set a t the h o st’s discretion.)

For instance, assum e th a t the received route sequence is ( A q , A i , , A k - i ,  A k),  and th a t the 

value of Num Source RSE is n  (n  <  À;). Host S forms an address sequence for host D of

(An, • • • , , A q).

The address sequence for host S used as the source address in the tran sm itted  packet should 

generally, bu t not necessarily, m atch the tail of the route sequence in the packet received from 

host D.
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8.1.4 SP ip  EID D efinitions

T here are two SPip EID types, individual and group. The individual SPip EID is used for unicast 

packet service, and the group SPip EID is used for m ulticast and  anycast packet service. Roughly 

3 /4 th s  of the EID space is reserved for fu ture definitions.

The prim ary  goal in the definition of EIDs is to facilitate  easy m anagem ent of EIDs, p articu ­

larly  host autoconfiguration. The definition of EIDs relies heavily on IEEE-802 addresses [50]. 

I t is assum ed th a t system s running SPip will have local access to a globally unique IEEE-802 

address— preferably one not associated w ith an IEEE-802 LAN interface. Thus, SP ip  system s can 

autom atically  create their own EID w ithout coordination w ith any other system s.

Note th a t a  specific non-goal of SPip EID definition is to  allow recognition of a  system ’s orga­

nizational affiliation— for instance, by p u tting  an organization ID a t the high order end of the 

EID. P u ttin g  organizational affiliation in the EID could be useful for several purposes, such as 

packet filtering or inverse DNS lookups. The advantages of organizational affiliation, however, are 

outweighed by the disadvantages, such as the increased com plexity of autoconfiguration . Also, 

o rganizational affiliation can often be determ ined from the route sequence.

Individual EIDs have the following format:

16 bits 48 bits

hex 0000 Individual IEEE-802 Address

T he first 16 bits of the unicast EID are hex 0000. The low-order 48 bits of the unicast EID contain 

an IEEE-802 Address. This IEEE-802 address m ust be an individual IEEE-802 address. If the 

IEEE-802 address is universally adm inistered, then the corresponding SPip unicast EID is globally 

unique w ith high probability.

G roup EIDs have the following form at:

4 bits 4 bits 8 bits 48 bits

00x1 Scope Local-Use Group IEEE-802 Address

The first four b its are 0001 if the EID is m ulticast, and 0011 if the EID is anycast. E ither way, 

the EID identifies the same set of system s.

The Scope field indicates a boundary  over which the packet m ust not be tran sm itted . Typical 

values for the scope field are subnet, subscriber network, and global (no scope lim itation). The 

boundary  is independent of the source— th a t is, a rou ter simply defines each of its interfaces 

as crossing zero or more boundary  types, and any group EID w ith th a t boundary  type is not 

tran sm itted  over the link.

A scope value of 0 is reserved to m ean “any scope value” . T hus, when a host has discovered a 

group EID (say, th rough DNS or IG M P [28]) th a t it will use in a  packet, if the scope field is 0, the 

host can validly set it to  any other defined scope value. If the scope field is non-0, on the  other
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hand, the host m ay not modify it. A packet m ust not be transm itted  w ith a scope value of 0 in 

the Dest EID field.

An IEEE-802 address occupies the  low-order 48 bits. T his m ust be a  group IEEE-802 address. If 

the host interface is an IEEE-802 LAN, then  the G roup IEEE-802 address m ust be the same one 

th a t is used to receive packets for the corresponding m ulticast/ anycast group.

T he 8-bit Local-Use field allows a system  responsible for the assignm ent of group addresses to  

create up to  256 different group addresses from  a single IEEE-802 address. T his m akes the global 

m anagem ent of group addresses trivial, as no coordination betw een hosts is required, and because 

a single host can create m ultiple group addresses. Note, however, th a t if m ultiple group addresses 

are created  from  the same IEEE-802 address, they will all be received over the same IEEE-802 

address on the LAN.

8.1.5 SP ip  R SE  D efinition

The RSE is defined as follows:

RS Identifier

1 bit 7 bits 1 bit 19 bits 4 bits

Last RSE P a th  Modifier 0 ID Level

T he P a th  Modifier field is a pa th  modifier according to  the  definition given in P a r t  I. As such, 

it can be set independently  of the rest of the RSE. It could in theory be modified in tran sit by 

routers, bu t this is not p a rt of the forw arding algorithm  described above.

The low-order b it of the P a th  Modifier is used to  indicate norm al forw ard-path  forw arding versus 

the reverse-path forwarding used for source-rooted m ulticast. A 0 value in the low-order bit 

indicates forw ard-path, and a 1 value indicates reverse-path forwarding. The form er type is called 

the norm al form RSID or norm al form RSE, and the la tte r type is called the reverse-path  form 

RSID or RSE.

A high-order bit of 0 in the 24-bit RS Identifier defines the  RSID as being for use w ith unicast 

h ierarchical addressing. A high-order value of 1 is a t th is tim e undefined, and  can be used for 

fu ture  definitions.

The rem ainder of the RSID is defined and assigned identically for bo th  norm al-form  and reverse- 

pa th  form. The Level field (low-order 4 b its) indicates the hierarchical level of the RSE. Because 

the ID field is too small to be globally unique, the Level field is required to  tell rou ters a t which 

hierarchical level to route the packet. This is necessary because routers opera te  a t m ultiple 

hierarchy levels.

To see this, consider Figure 8.2. R outer R  is in backbone B. R outer R  operates a t two levels— 

the top  level where it m aintains inform ation about other backbones, and a t the nex t level down.
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Backbone B

Router R

Subscriber S 
K) = 48 Subscriber T

Figure 8.2: R outer O perating a t M ultiple H ierarchical Levels

where it m aintains entries for subscriber networks. Assume th a t the neighbor backbone C has ID 

num ber 48 and th a t one of the subscriber networks S under backbone B also has ID num ber 48. 

W ithout the Level field, router R could not distinguish between the backbone C and  subscriber

S. The essential purpose of the Level field, then, is to manage the RS Identifier num ber space so 

th a t different elements in the hierarchy have different RS Identifiers.

The following Level values are defined:

Value Assignment

0 host ID

1 provider ID

2 - 5 in tra-subscriber

6 - 9 in tra-provider

10 - 15 reserved

O f the 16 Level values, two of them , host ID and provider ID, are globally recognized. A Level 

value of 1 is the provider level, and is initially the top  level of the  hierarchy. All providers are 

assigned an ID a t Level 1^. Since the ID is 19 bits, th is allows for approxim ately  500,000 providers 

world-wide.

Level 0 is reserved to mean Host ID. This level can only be used in RSIDs assigned to  individual 

hosts. Setting aside this level for hosts is useful in forming node-level source routes and may be

^By provider, we m ean  a netw ork  that provides sw itch ing  services. T h a t is, from  a g iven  en try  p oin t to  the 

provider netw ork, the provider can  deliver packets to  m ultip le  exit po in ts . T h e a ctu a l packet service provided  m ay  

b e SPip , or m ay be som e other p rotoco l running under SP ip , such  as A TM , X .25 , or IP. T h e size o f the provider  

(in  either geographic coverage or num ber of subscribers) is irrelevant to this d iscussion .
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useful for host autoconfiguration. Note th a t hosts do not necessarily need a RSID a t the host 

level, since the EID serves to identify hosts.

Levels 10 through 15 are reserved for fu ture use. One po ten tia l use is for clustering providers 

under a  higher-level hierarchy level. This could be necessary if the num ber of providers becomes 

too  large for routing algorithm s to  handle, or for the 19-bit ID space to  handle. As w ith all 

clustering, all providers w ithin a  given higher level cluster m ust be in terconnected . Note th a t the 

levels values are not assigned in order of hierarchy level. T h a t is, a  higher level num ber does not 

im ply a higher level of the hierarchy. This allows the reserved level values to  be applied to  any 

point in the hierarchy.

Levels 6 th rough 9 are reserved for use w ithin a provider. W hile the use of these levels is left to 

the discretion of the provider, it is expected th a t one of them  would be used to  identify subscribers 

a ttached  to the provider. The rem aining levels may be used for additional clustering w ithin the 

provider netw ork. This is necessary for providers th a t have so m any subscribers th a t they need 

to  cluster subscribers in ternally  (as described in Section 3.4.2).

Some discussion is required as to  why a  range of levels (levels 2 - 5) is globally recognized as being 

for in tra-subscriber use, ra ther than  ju s t letting each provider decide for itself w hat levels, under 

its provider ID, are for intra-subscriber use.

The reason is to decouple above-subscriber address assignm ent from  in tra-subscriber address as­

signm ent. Since a subscriber can be connected to m ultiple providers, or can change providers, 

if each provider gave the subscriber a different range of in tra-subscriber num bers, then  in tra ­

subscriber num bering would have to  be modified when providers were changed.

A subscriber netw ork is num bered w ithin the range of levels from  2 to  5, independently  of any 

provider num bering. Thus, a  subscriber network m ight assign level 2 to  subnets, and level 3 to 

areas. This leaves levels 4 and 5 for growth in the in tra-subscriber hierarchy either above the area 

level or below the subnet level. If more than  two levels were required for fu ture grow th, additional 

levels could be assigned from  the reserved space, though they m ust be globally recognized as such.

Differentiating by level does not make all RS Identifiers distinguishable, only those th a t are 1) a t 

the same level, and 2) have the same paren t in the hierarchy. Thus, it is still possible for a  router 

to have forwarding table entries for different destinations w ith the same RS Identifier. To handle 

this case, the rou ter m ust use m ultiple RSEs when calculating the next hop (see Section 9.1.6).

8.1.6 SP ip  Hierarchical U nicast A ddress A ssign m en t

An SPip address is a series of RS Identifiers, s ta rting  at the  top level and continuing down to the 

host level or to  the level above the host level (which can be identified by the E ID ). This series of 

RS Identifiers m ay be preceded by a  route fragm ent of one or more RS Identifiers, all a t the top 

level.
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The purpose of the route fragm ent is to handle the case where the subscriber’s im m ediate top-level 

provider is not advertised globally, for instance because it is only a local access provider. In this 

case, the (partial) address m ust be prefixed with the RS Identifier of a  provider th a t is advertised 

globally, resulting in the complete address.

To assign SPip addresses, a top-level address assignm ent au thority  (such as the In te rn e t Assigned 

N um bers A uthority  (lANA) w ith respect to  IP  [92] and C C IT T  w ith respect to  E.163 [14]), assigns 

IDs a t level 3 to  providers. Providers assign num bers to  elem ents below them  in the hierarchy, 

etc., w ithin the constrain ts of the  ranges assigned to  levels in Section 8.1.5.

Because subscribers can be connected to m ultiple providers, the subscriber netw ork can have 

m ultiple address prefixes, and the subnets w ithin the subscriber netw ork can have m ultip le address 

sequences. A host entry  in DNS consists of the addresses of the subnets to which the host is 

a ttached , plus the host’s EID. We do not specify here w hether the EIDs are listed separately  from 

the addresses (th a t is, w ith different record types), or w hether a single construct including bo th  

address and EID is used. The choice is one of com plexity versus com pactness of encoding, and 

does not affect w hat inform ation is derived from  DNS.

8.1.7 SP ip  H eader Layout

The header layout for SPip is as follows:

8 b its I 8 b its 8 b its 8 bits

Ver Flow

Payload Length Payload Type Hop Lim it

Source EID

Dest EID

reserved Header Length Num  Source RSE Active RSE

R S E l

RSE2

R SEn

O ptional P adding

The first two 32-bit words of this header are fo rm atted  the same as the S IPP  header. T he Flow 

field is pseudo-random ly set by the source of the packet such th a t the flow field and  Source EID 

field taken together uniquely define the contents of the routing inform ation in the  packet— th a t 

is, the  Dest EID field and route sequence.

The Flow field has a num ber of po ten tia l uses. It can be used by rou ters to cache the results of a
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forw arding lookup (see Section 10.1.1). It can similarly be used by hosts to  cache the results of a 

route sequence reversal calculation.

In addition, the  Flow field can be used by routers for the purpose of m anaging flows— th a t is, the 

operations necessary to insure th a t real-tim e traffic requirem ents, such as delay and latency, are 

satisfied (see Section 2.2.6). This la tte r use of the Flow field is outside the scope of th is thesis.

The Source and Dest EID are positioned identically to  the SIPP  Source and  D est Addresses.'*

The rem ainder of the header is unique to  SPip. The Header Length gives the  length of the  entire 

SPip header in 64-bit words. The rem ainder of the fields (N um  Source RSE, A ctive RSE, and 

RSEs) are as explained above.

8.2 S IP P

Like SPip, the SIPP  protocol can also use a source route m echanism  for routing and addressing 

flexibility (though in S IP P  it is not the only m echanism ). SIPP, however, does so w ithin the 

fram ework of a  trad itional (IP-like) packet header.

8.2.1 S IP P  R outing  and A ddressing Fields

The (routing and addressing portion of the) SIPP header has the  following form at [30, 40]:

64 b its

fixed optional

64 bits 64 bits 8 bits 64 bits 64 bits

Source Addr Dest Addr Next Addr A d d rl Addr2 A ddrn

The sequence of addresses (A d d rl, Addr2, etc.) com bined with the N ext A ddr field is called the 

Source Route.

The Source and Dest A ddrs are, a t a m inim um , identifiers for the source and destination  of the 

packet^. Like S P ip ’s EIDs, the Source and Dest A ddrs are used by higher layer protocols to 

identify the endpoints of a  connection. The Source and Dest A ddrs are the  only fields in the SIPP 

header th a t identify the source and destination.

The Source and Dest A ddrs may additionally  be locators in th a t they  can be hierarchically struc­

tu red  addresses in the same way as IP  or NSAP addresses. In particu lar, they  are bit-wise 

left-to-right m askable addresses. By this, we mean th a t the fields in the  address identifying the 

higher elem ents of the hierarchy are to  the  left of those identifying the lower elem ents, and th a t

^This m uch of the SP ip  header w as taken  d irectly  from  SIP P, thou gh  as o f th is w riting  S IP P  does n o t have the  

sam e rules for se ttin g  the flow ID .
®This is true w hen the op tion al Source R ou te is n ot included . W hen the Source R ou te  is included , the  D est Addr 

conta ins the active address, and the last address in  the address sequence holds the  identifier for the d estin ation .
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the field positions can fall on a rb itra ry  b it boundaries.

A S IPP  header may additionally contain a Source Route. M echanistically, this Source Route is 

handled the same way as the IP  loose source route. T h a t is, when a packet is received by a SIPP 

node, it checks to see if the Dest Addr m atches one of its own. If it does, it swaps the Dest Addr 

w ith the active addr in the Source Route, increm ents the Next A ddr field, and forw ards the packet 

to  the new Dest Addr.

8.2.2 S IP P  Packet Form ation

It is easier to describe the form ation of S IPP  packets if we view the Source A ddr, Dest A ddr, and 

the sequence of addresses as a route sequence whereby:

•  the 1st address of the route sequence is the Source A ddr,

•  the 2nd through {i — l) s t  addresses are those in the Source R oute sta rtin g  w ith  the first 

address and ending w ith the address before the one indicated by the Next A ddr field,

•  the ith  address is th a t in the Dest A ddr field, and

•  the (i  +  l) s t  through n th  addresses are the rem aining addresses in the Source Route.

Assume th a t a source host S is sending a packet to a  destination  host D. Each host has a sequence

of one or more SIPP addresses th a t represents its locator.

The source h o st’s address sequence takes up the initial addresses of the route sequence, in order of 

lowest order address first. The destination  h ost’s address sequence takes up the tra iling  addresses 

of the  route sequence, in order of highest order address first. For instance, assume host S’s address 

sequence is (5^, 5 „ _ i , . . . ,  5 i, 5"o) and host D ’s address sequence is {Dm, D m - i ,  • • • > D i,  D q). 

A simple route sequence in the packet from host S to host D would look like:

(  “̂ 0  ) 1 • • • ) * ^ n  j D m  I D m  — 1 ,  • • • , D q  ^

If m  =  1 and n  = 1, then there is no Source Route in the packet.

As w ith SPip, a S IPP  host S can learn the address sequence of a  destination host D either through 

DNS or through the reception of a packet from the destination host. The address sequence for 

the host D can be ex trac ted  from a received packet as follows.

T he received packet from  host D contains a route sequence {Aq, A i , . . . ,  A k - i ,  Ak).  For each

of host S’s address sequences, host S com pares the elem ents of the  address sequence against the 

ta il of the  received route sequence, looking for a best m atch. The best m atch  is w ith the address 

sequence th a t has the  largest i such th a t 5"o =  Ak, S i = A k - i , . ■ ■, S{ = A k - i ,  where (So, S i, . . .  ) 

is the source address sequence.
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Host S then  reverses the rem aining (unm atched) addresses in the incoming route  sequence, to  get

— I — 1 )  —  I  — 2 )  • * * ) - ^ 1 )  - ^ o ) '

As far as host S is concerned, this is a  valid address sequence representing the destination , though 

actually  it may contain the destination address sequence prepended with some additional ad­

dresses, representing, for example, a  policy route.

This ability in S IPP  for hosts to  represent their addresses as an address sequence, and to  reverse 

a received route sequence, gives S IPP  much of its routing and addressing flexibility, including 

its ability  to arb itrarily  extend the address space. This is the second m ost im p o rtan t difference 

betw een SIPP and IP  (the first being the fact th a t S IP P ’s native address is longer th an  IP ’s).

8.2.3 SIP P  Forwarding A lgorithm

For destination-based unicast forwarding, the SIPP forwarding algorithm  is v irtually  identical to 

th a t of IP  [87]. The differences are th a t 1) it operates on 64-bit addresses ra th e r th an  32-bit 

addresses, and 2) S IPP  has no field equivalent to IP ’s ToS Field. In other words, S IP P  has no 

p a th  modifier.®

For source-tree m ulticast forwarding [31], there is a difference from  IP ’s source-tree m ulticast 

forw arding due to the fact th a t S IPP  can use its source-routing m echanism  to  effectively extend the 

length of SIPP  addresses beyond 64 bits, similarly to how SPip creates variable length addressing.

W hen S IPP  addresses are extended in this fashion, the source “address” (or, more accurately, 

address sequence), covers m ultiple fields— the Source A ddr field and the in itial positions of the 

source route. During forwarding, if upon exam ining the Dest A ddr field the  S IP P  rou ter deter­

mines th a t the packet is to  forwarded according to  source-tree m ulticast, it exam ines the address 

im m ediately preceding th a t indicated by the Next A ddr field, if any, and the address in the Source 

A ddr field otherwise.

If, upon exam ining an address in the source address sequence, the rou ter finds th a t it m ust examine 

the next lower-order address in the sequence, the router examines the address in the  Source Route 

im m ediately preceding the address it ju s t examined, if any, and exam ines the address in the Source 

A ddr field otherwise.

8.2.4 S IP P  A ddress D efinitions

There are three SIPP  address types, the  hierarchical unicast address, the  m ulticast address, and 

the local-use address.

®The ToS F ie ld  o f IP has b een  found  to  be o f litt le  practical u se. T he use o f ToS F ie ld  rou tin g  in  general, given  

the current sta te-of-th e-art in  routing and  the current in ternet environm ent, is question ab le . T h u s, S IP P  chooses 

not to  im plem ent it .
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The multicast address is formatted as follows:

1 7 bits 4 bits 4 bits 48 bits

c 1111111 Flags Scope G roup ID

The in itial bit is the IP  com patibility  bit, or C -bit. The C -bit is used to  indicate w hether the 

system  owning this address is an IP  system . It is used for transition ing  IP to SIPP, and is not of 

particu lar relevance to this thesis.

The subsequent 7 bits are set to  all ones, and indicate th a t this is a m ulticast address. No other 

address type may have these 7 bits set to all ones.

O f the four Flag bits, the high order three are reserved and set to  0. The rem aining bit indicates 

w hether the m ulticast address is well-known (perm anently  assigned) or transien t (not perm anently  

assigned).

The Scope field serves the equivalent function of th a t in the SPip group EID.

The G roup ID identifies the m ulticast group.

The local-use address is defined as follows:

4 bits 12 bits 48 bits

0110 Subnet ID Node ID

The initial 4 b it p a tte rn  of 0110 identifies the address as being a local-use address. No o ther 

address type m ay have th is 4-bit pa ttern .

The Subnet ID is used to identify a subnet w ithin the network where the local-use address is 

assigned.

The Node ID identifies the node^ w ithin the subnet identified by the Subnet ID. The Node ID 

will usually be, bu t is not constrained to  be, an IEEE-802 address.

The prim ary purpose of the  local-use address is to  allow auto-configuration. A S IPP  host can 

assign the Node ID using an IEEE-802 address if it has one, or a  link address otherwise, w ithout 

coordination w ith other system s. It learns the Subnet ID and higher level addresses from  router 

advertisem ents.

The rem aining address space is used for hierarchical unicast addresses. H ierarchical unicast ad ­

dresses encoded in a single SIPP address ( th a t is, not an address sequence) initially have the 

following structure:

1 n  bits m  bits p  bits 63 — n  — m  — p  bits

C Provider ID Subscriber ID Subnet ID Node ID

The assignm ent of SIPP  hierarchical unicast addresses in an address sequence is discussed in 

Section 8.2.4.

^SIPP uses the term  node to m ean router or host.
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S IPP  addresses are provider-rooted (see Section 3.4). T h a t is, the high-order part of the address 

is assigned to  providers, which then  assign portions of the address space to  subscribers, etc. This 

is similar to  assignm ent of IP  addresses under the CID R scheme [42]. The term  “provider prefix” 

refers to  the high-order p a rt of the address up to and including the provider ID.

The subscriber ID distinguishes am ong m ultiple subscribers a ttach ed  to  the provider identified by 

the provider ID. The term  “subscriber prefix” refers to  the high-order part of the address up to 

and including the subscriber ID.

The subnet ID identifies a  set of nodes on a single link w ithin the subscriber netw ork identified 

by the subscriber prefix. The node ID identifies a  single node am ong the group of nodes identified 

by the subnet prefix.

A special case of hierarchical unicast address is the  cluster address. A cluster address is an  address 

w ith a provider, subscriber, or subnet prefix followed by all zeros. C luster addresses are routed  to 

the routers a t the border of the network identified by the cluster address. These routers recognize 

the cluster address as identifying them selves for the purpose of advancing the source route.

S IP P  A d d ress  S eq u en ces

The S IPP  unicast address form at shown in the previous section also applies to the case where a 

S IPP  address is conveyed as an address sequence ra th er th an  a  single address. This is called an 

extended address. T h a t is, the high-order field is the provider identifier, followed by the subscriber 

identifier, followed in tu rn  by subnet identifier and host identifier. The difference, of course, is 

th a t w ith an extended address, these fields (and possibly additional fields, depending on how the 

in ternet grows) are spread over m ultiple 64-bit addresses.

There are two restrictions th a t apply when an extended address is used. F irst, a t least the high- 

order and low-order address of the  extended address should by itself be globally unique. The 

high-order address m ust be unique so th a t any router, no m a tte r where it is in the hierarchy, can 

route a packet up to  the top  of the hierarchy w ithout confusing it w ith local destinations. The 

low-order address m ust be unique because it uniquely identifies the  host (or host group) among 

all hosts.

Actually, it seems highly unlikely th a t the SIPP address would need to  be extended beyond two 

addresses (unless, perhaps, som ebody w anted to encode an NSAP address in a S IPP  address 

sequence). S trictly  speaking, it is probably not necessary, in the  case of greater-than-tw o address 

sequences, to make the middle addresses globally unique (just as SPip RSEs are not globally 

unique). Because of the unlikelihood of greater-than-tw o address sequences, we do not consider 

the pros and cons of unique middle addresses.

The second restriction is th a t a single hierarchy field w ithin the extended address (for instance, 

the Subscriber ID field) m ust not cross a 64-bit boundary. This is because the S IPP  forwarding
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engine operates on only one address a t a time.

8.2.5 S IP P  Header Layout

The header layout for S IPP  is as follows:

8 bits 8 bits 8 bits 8 bits

Ver Flow

Payload Length Payload Type Hop Limit

Source Address

Dest Address

Note th a t this header is the same as the in itial p a rt of the SPip header. The Payload Type is 

used to identify the subsequent header, which can be a S IPP  option or a  different protocol. If 

the Payload Type indicates S IPP  Source Route®, then the subsequent Source Route header is 

form atted  as follows:

8 bits

Payload Type

8 bits

Num Addrs

8 bits

Next Addr

8 bits

Reserved

Reserved

Addr[0]

A ddr[l]

A ddr[Num  A ddrs - 1]

8.3 C L N P

The (routing and addressing portion of the) CLNP header has the following form at [55, 64]:

8 bits

fixe

variable

d

8 bits variable

op

variable

iional

variable

SA Length Source Addr DA Length Dest A ddr QoS Fields Source R oute

Source and Dest A ddrs serve the same role as those of S IP P — th a t is, they are locators. In CLNP, 

however, they  are variable length (thus the SA Length and DA Length fields).

* C alled a R ou tin g  H eader in  the SIPP  specification
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M echanistically, the optional Source Route is handled similarly to th a t of SIPP, the  m ain difference 

being th a t SIPP  swaps the active address in and out of the Dest A ddr field (as w ith IP ), while 

CLNP does not. However, CLNP does not have the enhanced rules for handling the source route 

th a t SIPP  has (reversing and using as an address sequence). Thus, CLNP is lim ited  in its routing 

and  addressing capabilities com pared to  S IPP  (C hapter 9).

CLNP also has a Type-of-Service (ToS) Field which is intended to  influence the  route taken, and 

is thus a pa th  modifier. (In CLNP, however, the field is called the  Quality-of-Service (QoS) Field. 

To avoid confusion, we use the term  QoS Field when discussing CLNP, and  use the term  ToS 

Field otherwise.) Some of the QoS Field encodings, however, are not specified in the base CLNP 

specification, and so can be adopted  to different uses. (See Section 9.4.1 for m ore details on this 

use of QoS Field.) One of its encodings is specified in the base specification. It specifies preferences 

for sequencing, tran sit delay, cost, and error probability.

8.3.1 C L N P  A ddress A ssignm ent

The address defined for use with CLNP is the NSAP (Network Service Access P oin t) address [54]. 

Like the S IP P  address, the NSAP address is bitwise left-to-right maskable. W hereas SIPP  and 

SPip addresses are extensible by virtue of chaining m ultiple fixed-size addresses in a source-route 

mechanism , NSAP addresses are by them selves variable length. An NSAP address can be up to 

20 bytes in length, in increm ents of 1 byte.

The high-order portion of the NSAP address defines the addressing au tho rity  for the rem ainder 

of the address, bu t does not contain any hierarchical topology information.® T he au th o rity  thus 

defined determ ines how to further assign the address.

For instance, the first byte of the NSAP address is the A uthority  and Form at Identifier (AFI). 

An AFI value of 47 indicates th a t the subsequent assignm ent au tho rity  is the ISO In ternational 

Code D esignator (ICD) [52]. The subsequent two bytes is the In itial Dom ain Identifier (IDI). 

An IDI value of 0005 indicates the US Governm ent. The US G overnm ent, th rough  the auspices 

of GO SIP (G overnm ent OSI Profile), has au tho rity  over the assignm ent of the rem ainder of the 

NSAP address, the Domain Specific P a rt (DSP). GO SIP defines the  com plete NSAP address 

as [110]:

1 byte 2 1 3 2 2 2 6 1

AFI IDI Domain Specific P a r t (DSP)

47 0005 DFI AA Rsvd RD Area ID Sel

W here D FI =  DSP Form at Identifier, AA =  A dm inistrative A uthority , Rsvd =  Reserved, RD 

=  R outing Domain Identifier, A rea =  A rea Identifier, ID =  System  Identifier, and  Sel =  NSAP 

Selector.

® Strictly  speaking, the high-order part of the SIP P  and S P ip  addresses also define an ad d ressin g  authority, but 

the prim ary purpose is to  identify  the top part of the topolog ica l hierarchy.
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The D FI is essentially a type code. The AA is a top-level assignm ent by the G O SIP num bering 

au thority . The RD is a routing dom ain w ithin the AA. The A rea is defined by the IS-IS routing 

algorithm  [56] as the higher of two hierarchical levels w ithin an RD. The ID identifies a  host, and 

is defined by IS-IS as the lower of the two hierarchical levels. The ID can be b u t is not constrained 

to  be an IEEE-802 address. The Sel indicates which higher layer protocol the packet is destined 

for.

T here are also A FI values defined for group addresses [57]. Specifically, every A FI for an individual 

address has a corresponding A FI indicating a group address. Note th a t group NSAPs do not have 

a  scope field.

8.3.2 C L N P  H eader Layout

T he CLN P header has the following form at [55]:

Field Bytes

Network Layer Protocol Identifier 1

Length Indicator 2

V ersion/Protocol Id Extension 3

Lifetime 4

Type 5

Segment Length 6,7

Checksum 8,9

D estination A ddress Length Indicator 10

D estination Address 11 

m - 1

Source Address Length Indicator m

Source Address m 4- 1 

n - 1

D ata  U nit Identifier n, n 4- 1

Segm ent Offset n -f 2, n -f

T otal Length n 4- 4, n 4-

The options, if any, follow this.
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C hapter 9

R o u tin g  and A d d ressin g  

C ap ab ilities  o f  SP ip , S IP P , and  

C L N P

This section describes how SPip, SIPP, and CLNP achieves (or does not achieve) each of the 

routing and addressing capabilities listed in Section 7.2. In so doing, it fu rther specifies the 

operation of the protocols.

In all of the examples, the following conventions apply. Addresses (or RSEs) in a sequence of 

addresses are separated  by a colon ( ': ') . Hierarchical levels w ithin an address are separated  by 

a dot (‘.’). If the address in a sequence is an SPip RSE, then  the norm al form  RSE is no tated  

as ‘xY ’, where x is the Level (numeric) and Y is the ID (alphabetic). The reverse-path form is 

no ta ted  as ‘rxY ’ (where r is not a variable, ju s t ‘r ’). An address w ritten  as x.y.O ... means an 

address w ith prefix x.y followed by one or more hierarchical levels of value 0. An address w ritten  

as x .y .* ...  m eans as address w ith prefix x.y followed by one or more hierarchical levels whose 

values are wildcarded. T h a t is, it is irrelevant (for instance, to a rou ter) w hat the  values are.

9.1 B ig  E n o u g h  H ierarch ica l U n ica s t  A d d r e ss in g

H ierarchical unicast addressing is of course the most im p o rtan t capability  of an internetw ork 

protocol. W ithou t it, an in ternet could not grow to  global proportions.

Note th a t we have explicitly s ta ted  th a t hierarchical unicast addresses m ust be “big enough” . By 

this we mean big enough to  handle all fu ture in ternet grow th. We sta te  this explicitly because a 

num ber of in ternet protocols have in the past underestim ated the required address size, not the 

least of these being IP. T hus we are here particu larly  sensitive to  the  requirem ent th a t the address
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Figure 9.1: Exam ple Topology 

can handle all fu ture in ternet growth.

The examples in this section are based on the topology of Figure 9.1. Figure 9.1 shows only the 

detail required for the examples. For instance, it is assum ed th a t rou ter c is connected to  a router 

in subscriber netw ork T , even though the router in subscriber network T  is not shown.

This section describes two different hierarchical unicast addressing scenarios, one with classical 

forw arding inform ation and one w ith additional “hole-punching” forw arding inform ation (see Sec­

tion 3.1.2).

C lassica l F orw ard ing  In fo rm a tio n

W ith classical forwarding inform ation, each router knows how to  forward to 1) its im m ediate 

paren ts in the addressing hierarchy (up), 2) all peers in the addressing hierarchy th a t share a 

paren t (across), and 3) its im m ediate children in the  addressing hierarchy (down).

Consider rou ter c of Figure 9.1. It is in backbone B, and  therefore a t the top  of the  hierarchy. Since
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it is a t the  top of the hierarchy, it has no paren t in the  hierarchy, and therefore no up forwarding 

inform ation. At the top level of the hierarchy, router c m aintains (across) forw arding inform ation 

abou t all other backbones. Thus, router c has forwarding inform ation for backbones C and  D and 

all other backbones (not shown). R outer c also m aintains (down) forw arding inform ation about 

the subscriber networks a ttached  to  backbone B, nam ely subscriber networks S, T , and  W.

A d d itio n a l (N o n -C la ss ic a l)  F orw ard in g  In fo rm a tio n

Again consider router c of Figure 9.1. Assume it has all of the forw arding inform ation described 

above for classical forw arding inform ation, plus the following additional forwarding inform ation.

1. Inform ation abou t some of backbone C ’s subscribers. Note th a t backbone B is connected to 

backbone C in two places. Assume th a t when backbone B is sending packets to  backbone 

C, it wishes to distinguish between these two connection points based on the  destination 

subscriber network. Specifically, it wishes to send packets destined for subscriber V via 

the link between rou ter c and backbone C, and to  send packets destined for subscriber 

U via the link between router d and backbone C. T hus, the routers in backbone B have 

explicit forwarding inform ation for subscribers V and U. Assume further th a t there are 

other subscribers in backbone C, such as subscriber X, for which the entry po in t does not 

m atte r, and so no forwarding inform ation is known by routers in backbone B.

2. Inform ation about some of subscriber S’s subnets. Note th a t subscriber network S has two 

connection points with backbone B, one a t rou ter b and one a t rou ter c. Assume th a t 

backbone B wishes to send packets to  subnet I via rou ter b, and  packets to  subnet J via 

rou ter c. Thus, routers in backbone B m ust have forw arding inform ation for subnets I and 

J in subscriber network S. Assume fu rther th a t there are other subnets in backbone C, such 

as subnet K, for which the entry po in t does not m a tte r, and so no forw arding inform ation 

is known by routers in backbone B.

9.1.1 C L N P  w ith  Classical Forwarding Inform ation

L et’s focus for the  m om ent on the forw arding inform ation in rou ter c. From  router f, it receives 

a routing  advertisem ent for backbone C of C .* .. . .  T h a t is, the  routing advertisem ent shows th a t 

any NSAP address w ith prefix C (C in the high-order field) followed by anyth ing  (w ildcard) should 

be forwarded to  router f. The ‘C ’ of prefix C is some num erical value th a t is unique am ong all 

providers^. Likewise, rou ter c receives the  following advertisem ents from  the following neighbors:

^The num erical value for C will also contain  som e address assignm ent au th ority  in form ation , due to  the m eth od  

by w hich N S A P  addresses are assigned. For the purposes o f routing, how ever, the assignm ent authority  inform ation  

con caten ated  w ith  provider in form ation  am ounts to  a single field.
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From A dvertisem ent

rou ter f C .+ ...

rou ter b D .* ...

rou ter d B .W .+ ...

rou ter a B .S .* ...

subscriber T B .T .* ...

Note th a t the above description of routing inform ation received by rou ter c reads like a  distance- 

vector routing algorithm , whereby routers tell each o ther how far they  are from  various destina­

tions, and routers pick the rou ter th a t advertised the shortest distance to  a  destina tion  as the 

next hop on the p a th  to the destination. We are, however, no t presupposing any specific routing 

algorithm . A link-state scheme would result in the same forw arding inform ation being gathered 

and calculated by router c (see [36] for a description of the two routing algorithm  styles).

From  the routing inform ation gathered, router c builds a corresponding forw arding table:

Forw arding Table for rou ter c

D estination Next Hop

B .W .* ... router d

B .S .* ... router a

B .T .* ... subscriber T

C .* ... router f

D .* ... router b

* . . .  (default) Error

Conceptually, this forw arding table works as follows. W hen a packet arrives, the destination  

address is com pared against each of the addresses in the forw arding table in sequence. The 

destination  address is said to m atch the forwarding table address if all b its except th e  w ildcarded 

bits m atch. If the two addresses m atch, then the forw arding inform ation for th a t en try  (outgoing 

interface and link address) is used to forward the packet. Note th a t the last en try  m atches 

all addresses. This is called the default entry, and is where packets are rou ted  if no m atches 

occur. Since rou ter c is a t the top of the hierarchy, it has no default route per se. Thus, if no 

m atch  otherwise occurs, the default entry  indicates an error. Note th a t this forw arding tab le  is a 

simplified version of the more general forwarding table lookup algorithm  described in Section 9.1.2.

Forw arding tables for routers f, h, and i are shown in Table 9.1. R outer f ’s forw arding table is 

sim ilar in content to th a t of router c (except of course th a t it is from  rou ter f ’s perspective, not 

rou ter c’s). R outer i ’s forwarding table is very simple. It has local forw arding inform ation (for 

host Z), bu t otherwise defaults packets to router h. T h a t is, all packets th a t are no t known to  be 

local are sim ply routed  to the backbone provider network.

Now consider a packet from  host Z in subscriber network V to  host H in subscriber netw ork S. 

Assume th a t the address of host H is B .S.J.H . This is a  four-level hierarchy consisting of backbone.
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Table 9.1: Forwarding Tables for Classical Unicast CLNP Example

Forwarding Table for rou ter f

D estination Next Hop

C .U .* ... rou ter j

C .V .* ... rou ter h

C .X .* ... rou ter j

B .* ... rou ter c

D .+ ... rou ter c

* . . .  (default) E rror

Forwarding Table for rou ter h

D estination Next Hop

C .U .* ... router f

C .V .* ... rou ter i

C .X .* ... rou ter f

B .* ... rou ter f

D .* ... rou ter f

* . . .  (default) Error

Forwarding Table for rou ter i

D estination Next Hop

C.V.L.Z host Z

* .. .  (default) router h

subscriber, subnet, and host. An actual NSAP address for host H m ight be:

2f00058000065e00000249005d08002001402E01, 

or more readably:

A FI IDI DFI AA Rsvd RD Area

2f 0005 80 00065e 0000 0249 005d

ID Sel

08002001402E 01

T his NSAP address comes from the USA GO SIP definition (see Section 8.3.1). The AA value of 

00065e identifies backbone B, the RD value of 0249 identifies subscriber S, the A rea value of 005d 

identifies subnet J, and the ID value of 08002001402E identifies host H.

Assume th a t the address of host Z is C.V.L.Z (backbone C, subscriber V, subnet L, and  host Z). 

Host Z forms a packet w ith source address C.V.L.Z and destination  address B .S.J.H . Host Z sends 

th is packet to router i (for instance, because rou ter i is host Z’s default router on the local LAN). 

R outer i com pares the destination  address B .S.J.H  against the entries in its forwarding table, and
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finds no explicit m atch. It therefore m atches on the default entry  and sends the packet to  router 

h. R outer h m atches B .S.J.H  against en try  B .* .. . ,  and forw ards the packet to  router f, which 

makes a similar m atch in its forwarding table, and forwards the packet to rou ter c.

Up until this point, the routers have effectively only considered the high-order p a rt of the address 

(backbone B) in routing the packet. Thus, the packet is being routed tow ards backbone B. R outer 

c, however, is in backbone B, so it considers more of the packet to  make its forw arding decision. 

Specifically, rou ter c m atches B.S.J.H  against en try  B .S .* .. . ,  and the packet is therefore now 

being rou ted  to subscriber S (as identified by the prefix B .S .* . . . ) .  W hen rou ter a  receives the 

packet, it m atches in its forw arding table (not shown, bu t sim ilar in form to  rou ter i’s) against 

the full host address (B .S .J.H ), and forwards the packet to host H.

W hen host H wishes to  re tu rn  a  packet to  host V, it sim ply reverses the positions of the source 

and destination  address fields, and sends the packet to router a, which defaults it to  rou ter c, etc.

9.1.2 C L N P  w ith  A dditional (N on-C lassical) Forwarding Inform ation

Now consider the case where routers in backbone B have the additional forw arding inform ation 

described a t the beginning of this section—th a t is, where routers in backbone B have explicit 

entries for subscriber networks U and V, and for subnets I and J , bu t not for subscriber X or 

subnet K. W ith  this additional inform ation, router c ’s forw arding table has the following entries:

Forwarding Table for router c

D estination Next Hop

B .S .I .* ... rou ter b

B .S .J .* ... rou ter a

B .W .* ... rou ter d

B .S .* ... router a

B .T .* ... subscriber T

C .U .* ... router d

C .V .* ... router f

C .* ... rou ter f

D .* ... router b

* . . .  (default) Error

T his forwarding table shows the general form  of forwarding w ith CLN P— th a t is, besi-match with 

default forwarding. The best-m atch comes from the fact th a t m ultiple entries in the  forwarding 

table can m atch a given address. For instance, address B.S.I.Y m atches on the first (B .S .I.* ...  ) 

and fourth  (B .S .* ... ) entries in router c’s forwarding table. However, the best m atch  is the one 

th a t should be used, where the best m atch  is the one th a t m atches on the longest prefix. In this 

case, B.S.I.Y should m atch  on the first en try  ra ther than  the fourth  entry.
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T he address B.S.K.Y (a host in subnet K), on the o ther hand, would not m atch  on the first 

(B .S .I.* ...  ) or second (B .S .J .* ... ) entries, bu t ra ther would m atch  on the fourth  (B .S .* ... ) entry. 

Indeed, it is the fact th a t there are some subnets in subscriber S for which backbone B has 

no forwarding inform ation th a t results in the fourth entry. If the routers in backbone B had 

forw arding inform ation for all of the subnets in subscriber S, then  the fourth  en try  would not be 

necessary, as all addresses in subscriber S would m atch on one of the (B .S .x .* .. . )  entries.

The technique of m aintain ing forwarding inform ation abou t destinations in o ther clusters ( th a t is, 

m ore th an  ju s t classical forwarding inform ation) is called hole-punching. M aintaining only p a rt 

of the  to ta l inform ation available in ano ther cluster is called partial hole-punching.

Conceptually, the way to  achieve best-m atch  is to com pare the packet address against the entries 

in order of longest prefix first. Since a serial search is no t fast, software [65] or hardw are [78, 70] 

search techniques are applied to do a faster best-m atch lookup.

9.1.3 S IP P  w ith  Classical Forwarding Inform ation

We are in terested  in two cases— one where global hierarchical unicast addresses are encoded in a 

single S IPP  address, and one where they are encoded in an address sequence.

S in g le  A d d ress

The former case is identical to the CLNP case described above. T h a t is, the  forw arding tables and 

packet forwarding scenario given in Section 9.1.1 apply exactly  to  the single-address S IPP  case.

The only difference is in the size of the address. CLNP addresses can be expanded to up to  20 

bytes, whereas a  SIPP  address is 8 bytes. Thus, CLN P addresses can handle any im aginable 

netw ork growth, whereas it is easy to  imagine 8 bytes eventually  being inadequate^.

An exam ple encoding of address B .S.J.H  in SIPP is 

0000034e30417058

where the first 8 bits are reserved as 00, the next 24 bits are the backbone identifier (00034e), the 

next 10 bits is the subscriber identifier (c l, bu t appearing in the above address shifted  left two, so 

304), the  next 10 bits is the subnet identifier (17), and the last 12 b its is the host identifier (058).

Because the single-address S IPP  case is identical to  the CLN P case, there is no need to  discuss it 

fu rther here.

^T his is not to  say that 8 b y tes definitely are inadequate. W ith  careful m anagem ent of the  address space, w hich  

in  itse lf  exacts a certain  cost, an 8 b yte  address space can handle a netw ork  w hose size, for in sta n ce , w ell exceeds  

the global telephone netw ork.
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E x te n d e d  A d d ress

Since an extended address of greater th an  128 bits is unlikely to ever be necessary, we assume 

here th a t the extended address is 128 bits ( th a t is, an address sequence of two SIPP addresses). 

There are three ways th a t the four fields of the hierarchical address could be assigned w ithin a 

S IPP  extended address. They are; B :S.J.H , B .S:J.H , and B .S.J:H , where the colon indicates the 

boundary  between the two SIPP addresses.

O f the three choices, only the la tte r two make much sense. T he first— placing the address boundary  

betw een the backbone and subscriber identifiers, makes little  sense because it does not evenly 

d istribu te  the bits of the address well.

The last choice—placing the address boundary  between the subnet and host IDs, makes some 

sense in th a t it allows the host ID to be com pletely location-independent, as is S P ip’s EID. The 

last choice m ay indeed be necessary in the case where 1) serverless auto-configuration of host IDs 

is required, and 2) the in ternet outgrows 48-bit host IDs. (This would require a  new SIPP address 

definition, for instance, one w ith a 4-bit pream ble followed by a 60bit host ID .)

The middle choice— placing the address boundary between the subscriber and subnet IDs, seems 

the m ost logical choice. This boundary represents a clear adm inistra tive boundary— th a t between 

the provider and the subscriber. Thus, the subscriber has control over the lower 64-bit address, 

and  the provider has control over the upper 64-bit address. I t also allows for serverless au to ­

configuration using the local-use SIPP address type in the lower 64-bits (see Section 9.5). Thus, 

we assum e addresses of the form B.S:J.H in this section.

Given addresses of this form, and the classical forw arding inform ation described above, router c 

would have the following forwarding table:

Forwarding Table for rou ter c

D estination Next Hop

B.W router d

B.S router a

B .T subscriber T

C .* ... router f

D .* ... rou ter b

* . . .  (default) Error

A ctually, this table is v irtually  identical for the analogous CLNP forw arding table (or single­

address S IPP  forwarding table). The only difference is th a t the first th ree entries indicate a  full 

address ra ther th an  showing some wildcard bits. T his is because the backbone and  subscriber IDs 

together occupy an entire address.

The forw arding tables for routers f  and h sim ilarly reflect those of the CLN P example, and are not 

repeated  here. The forwarding table for routers a or i, however, do have an im po rtan t difference
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from that for the CLNP case, and so the forwarding table for router a is given here;

Forwarding Table for router a

D estination Next Hop

J.H host H

B.S self

I .+ ... subnet I

! { . * . . . subnet K

* .. .  (default) router h

The first th ing to notice abou t this forw arding table is th a t the second en try  identifies router a ’s 

own subscriber network (B.S), and th a t the next hop inform ation for th is en try  is “self” . This 

indicates th a t rou ter a  should advance the  source route. For instance, consider the case where 

rou ter a  receives a packet destined for B.S;J.H , w ith the address B.S in the Dest A ddr field, and 

the address J.H  as the Next A ddr in the source route. R outer a  looks up B.S in the forwarding 

table, and m atches on the second entry. T his indicates self, so rou ter a  advances the source route 

(puts J.H  in the Dest A ddr field, puts B.S where J.H  was in the  source route, and increm ents 

the Next A ddr field), and then looks up J.H . This m atches on the first entry, and the packet is 

forw arded to host H.

The second thing to notice about this forw arding table is th a t the th ird  and fourth  entries have 

the subnet ID as the m ost significant inform ation in the address, and th a t the rest of the  address 

is w ildcarded. Since the subnet ID field alone is not globally unique, another rou ter in another 

subscriber network could have identical D estination inform ation in its forw arding tab le  entries, 

bu t which point to different destinations.

For instance, assum e th a t the local-use S IPP  address is used for the lower address of the extended 

address. Assume further th a t the 12-bit Subnet ID for subnet I is value 02e. T his results in a 

forw arding table D estination entry in rou ter a  of 602e*.. . ,  where 6 is the 4-bit pream ble indicating 

th a t the address is a local-use address, 02e is the subnet ID, and the rest of the address is 

w ildcarded. Assume, however, th a t subnet L in subscriber V also uses the  local-use form at, and 

also has a subnet ID of 02e. The forw arding table D estination en try  for some rou ter in subscriber 

netw ork V would be the same.

This does not result in any particu lar problem  as long as the forwarding contexts are kept distinct. 

T h a t is, as long as router a does not need to m aintain  any subnet-level forwarding inform ation 

ab o u t subnets in another subscriber netw ork, the forwarding table en try  is unam biguous.

9.1.4 S IP P  w ith  A dditional (N on-C lassical) Forwarding Inform ation

W hen using single addresses, S IPP  works identically to the CLN P case (Section 9.1.2). 

D epending on the situation, S IPP  w ith extended addresses can have some problem s w ith hole-
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punching. This occurs when hole-punching is across the 64-bit address boundary

For instance, consider the forwarding table of router c if we naively construct it based on th a t of 

the CLNP example, bu t taking extended addresses into account.

Forw arding Table for router c

D estination Next Hop

I .* .. . rou ter b

J .+ .. . router a

B.W router d

B.S router a

B .T subscriber T

C.U router d

C.V router f

C .* ... router f

D .* ... router b

* . . .  (default) Error

S trictly  speaking, the forwarding table of router c works correctly.^ If, however, rou ter c had 

forw arding table entries for subnets in another subscriber netw ork, then the D estination fields for 

those entries could be identical w ith those for the subnets in subscriber network S (the  first two 

entries), and routing  would fail. (In practice, there would be subnets w ithin backbone B, for use 

by the operators of backbone B. Thus, these subnet IDs would appear in the  forw arding tables 

and  would be ambiguous with respect to  subscriber S’s subnet IDs.)

T hus, in general, the  above forwarding table could not be generated. The first two entries should 

not appear.

As m entioned in the previous section, this am biguity results from the facts th a t 1) the  subnet IDs 

appear a t the top of the (lower) address, and 2) the subnet IDs are not globally unique.

Note th a t the problem  does not come up w ith the o ther hole-punching of rou ter c’s forw arding 

tab le—namely, where rou ter c is m aintaining entries for subscribers of backbone C. These addresses 

have the backbone ID a t the top (entries 3 through 7 in rou ter c ’s forw arding tab le). Since 

backbone IDs are globally unique, the subscribers in different backbones are distinguishable.

^N ote th at the entries are in  the sam e order as th a t of the corresponding C L N P forw arding table . A ccording  

to  th e  b est-m a tch  algorithm  o f com paring against longest-prefix first, the en try  order show n here is incorrect— the  

I .* . . .  and J .* . . .  en tries should com e after the C.V entry. H owever, if th e  num bering spaces for the lower and  

upper addresses of the ex ten d ed  address are separate, then  no address will m a tch  on  b o th  a lower and an upper  

entry, so the ordering of lower versus upper addresses is irrelevant.
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9.1.5 SP ip  w ith  Classical Forwarding Inform ation

Like CLNP and SIPP, SPip forwarding is best-m atch w ith default. W hereas we describe CLNP 

and  SIPP forw arding in term s of a  single forwarding table w ith best-m atch sem antics, we describe 

SPip forwarding as a  tree of forwarding tables, each w ith single-match with default sem antics (the 

default occurring if there is otherwise no m atch). This description style follows n a tu ra lly  from  the 

SPip header form at, which presents addresses as a  series of flat identifiers ra th e r th an  as a  single 

(or small num ber of) hierarchical addresses.

In the following examples, backbone IDs are assigned a t level 1, subscriber IDs are assigned a t 

level 9, and subnet IDs are assigned a t level 3. The host IDs are the EIDs, and so do not have a 

level per se. (The level is unnecessary because EIDs are in a  separate num ber space, w ith separate 

forw arding tables, and so are never confused w ith RSE IDs.)

T he forwarding tables for classical routing  inform ation are stra igh t forw ard to  derive, and are 

shown in Table 9.2.
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Table 9.2: Forwarding Tables for Classical Uni­

cast SPip Example

R oot RSETable for router c

D estination Next Hop T -tag

9W router d V
98 router a y
9T subscriber T y
10 router f y
ID router b y
IB Root RSETable y

default Error

Root RSETable for router f

D estination Next Hop T -tag

9U router j y
9V router h y
9X router j y
IB router c y
ID router c y
10 Root RSETable y

default Error

Root RSETable for router h

D estination Next Hop T -tag

9U router f y
9V subscriber V y
9X router f y
IB router f y
ID router f y
10 Root RSETable y

default Error

R oot RSETable for router i

D estination Next Hop T -tag

9V Root RSETable y
3L M ain EID Table y

default rou ter h y

M ain EID Table for rou ter i

D estination Next Hop T -tag

Z host Z y
default A R P y

R oot RSETable for router a

D estination Next Hop T -tag

9S R oot RSETable y
31 subnet I y
3K subnet K y
3J M ain EIDTable y

default rou ter c y

Main EID Table for router a

D estination Next Hop T -tag

H host H y
default A R P y
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There are several things to note about the forwarding tables in Table 9.2.

First, the title  of each ro u te r’s forwarding table is changed from  ju s t “Forwarding Table” to “Root 

R SE T able” or “M ain EID Table” . Since SPip is modeled as a  tree of forw arding tables, the different 

forw arding tables require different labels. If an  RSE is active (as opposed to  the EID), the router 

always accesses the Root RSETable first. Note also th a t routers a  and i have an  EID Table as well 

as a  R oot RSETable. This is because bo th  routers a and i have host-level forw arding inform ation.

Second, the D estination entries in the forw arding tables have no w ildcard b its. This reflects the 

fact th a t the individual forwarding tables are single-m atch ra th er th an  best-m atch .

T hird , there is an additional column, the T -tag  column. T -tag  stands for transm itR S E  tag  (see 

Section 8.1.2. It has an if the RSE should be tagged for setting  upon transm it, and is blank 

otherwise.

Fourth , some entries indicate a subnet or a subscriber netw ork in the Next Hop field (for instance, 

the th ird  entry  of router c’s Root R SETable). By this we m ean to  indicate a  rou ter w ithin the 

subnet or subscriber network. Since Figure 9.1 does not actually  show those routers, we indicate 

ju s t subnet or subscriber network instead.

Finally, neither the Last RSE flag nor the P a th  Modifier appears in these tables. The P a th  

Modifier does not appear because all of the P a th  Modifier values for the un icast examples are 

assum ed to be the sam e— they indicate norm al form RSEs and are therefore 0.

We are not showing the Last RSE flag ju s t to  keep things simple. The entries th a t  point to  other 

RSETables would do so only when the Last RSE flag is not set. If the effect of the  Last RSE flag 

were shown in the tables, then  each of these entries m ight have a  com panion en try  pointing to  the 

M ain EID Table (or a default entry  based on the Last RSE flag not being set pointing  to  the  Main 

EID Table). The entries th a t point to EIDTables would only do so if the Last RSE flag is set. If 

the effect of the Last RSE flag were shown in the tables, then each of these entries m ight have a 

com panion entry  pointing to an RSETable. Examples showing the use of the Last RSE flag are 

given in section 9.8.3.

Consider a packet sent from  host Z to host H. Host Z form ats the packet as follows:

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSE5 RSE6

Z H 4 3L 9V 1C IB 9S 3J

The (globally unique) host IDs are placed in the Source and Dest EID fields (SEID  and DEID). 

The subnet, subscriber, and backbone IDs of the  source are placed in the first three RSEs of the 

route sequence. The backbone, subscriber, and subnet IDs of the destination  follow those. The 

active RSE is set to the backbone of the destination (the 4 th RSE, IB ). It is shown in bold for 

clarity.

This packet is transm itted  to rou ter i, which indexes its R oot RSETable w ith the active RSE, IB.
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This m atches nothing in the R oot RSETable, so the default en try  is chosen, which indicates th a t 

the packet should be forwarded to router h. This entry is tagged (the T -tag  is set) to  show th a t 

the Active RSE should be set upon transm ission to point to  the RSE th a t was used to  access the 

table. Because this RSE is the same as the one active when the packet was received, the packet 

is tran sm itted  unchanged (except perhaps for the hop count, which we do not consider here) to 

rou ter h.

R outer h accesses its R oot RSETable w ith value IB , m atching on the 4 th  entry. T his entry 

indicates th a t the packet should be forwarded to  rou ter f. As w ith router i, only one RSE was 

exam ined during forwarding, so the Active RSE is again no t changed.

R outer f accesses its Root RSETable, w ith similar results, and forwards the packet to  router c. 

Thus, rou ter c receives the packet as it was transm itted  by host Z. In o ther words, the  packet has 

been so far routed “to backbone B” .

W hen rou ter c accesses its Root RSETable w ith IB , it gets a m atch  on the 6th entry. T he Next 

Hop field for this entry  says “Root R SETable” . This indicates th a t the rou ter should advance to 

the next RSE, and index the Root RSETable using it. Thus, rou ter c indexes its R oot RSETable 

w ith value 9S. This also produces an exact m atch— the 2nd entry.

T his en try  indicates th a t the packet should be forwarded to  rou ter a. Its T -tag  indicates th a t the 

Active RSE should be set to point to the RSE used to access this en try— the 5th RSE— 9S. Thus, 

rou ter c transm its  the following packet to router a;

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSE5 RSE6

Z H 5 3L 9V 1C IB 9S 3J

In this packet, the  Active RSE field has been changed from 4 to 5, so th a t now the packet is being 

forw arded to  subscriber S ra ther than  to backbone B. In o ther words, rou ter c had recognized in 

its first access to the R oot RSETable th a t the interm ediate destination, backbone B, had been 

reached, and so now forwarding m ust take place a t the next level of g ranularity— the subscriber 

level.

W hen router a receives the above packet, it accesses its Root RSETable w ith value 9S. This 

m atches exactly w ith the first entry, which instructs the router to access the  R oot RSETable 

again w ith the subsequent RSE, 3J. This access m atches the 4 th  entry, which in structs  rou ter a 

to  access the M ain EIDTable.

T his final access, made using the Dest EID field, produces an exact m atch  on host H ’s EID, and 

the packet is forw arded to  host H. Since the en try  in the M ain EIDTable has the T -tag  set, the 

Active RSE field is set to  0 upon transm ission, which indicates th a t forwarding should now take 

place on Dest EID ra ther than  on an RSE.

Note th a t the default entry  for the EID Table says “A R P ” . This is an indication th a t  the router 

should A R P for the host LAN address [84]. If an explicit host entry  exists in the EIDTable,
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it indicates th a t either 1) host H was previously A R P ’d for and the answer was cached in the 

EID Table, or 2) host H advertised itself w ith an ES-IS style host hello packet, and rou ter a stored 

the discovered inform ation in its EIDTable. Thus, the EIDTable can substitu te  for the trad itional 

IP A R P table.

To re tu rn  a packet to  host Z, host H follows the route sequence reversal rules given in Section 8.1.3. 

T h a t is, host H takes the RSEs indicated by the Num Source RSE field from  the beginning of 

the route sequence (3L:9V:1C), reverses it (1C:9V:3L), and prepends its own address sequence 

(3J:9S:1B:1C:9V:3L). Host H also swaps Source and Dest EIDs, and sets the Active RSE field to 

point to the  RSE after its own source address sequence. Thus, the packet transm itted  by host H 

is:

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSES RSE6

H Z 4 3J 9S IB 1C 9V 3L

9.1.6 SP ip  w ith  A dditional (N on-C lassical) Forwarding Inform ation

W ith the additional forwarding inform ation described in Section 9.1 rou ter c has the forw arding 

tables shown in Table 9.3.

Because SPip is described in term s of nested forwarding tables, the forw arding tables of Table 9.3 

are unwieldy to read. Figure 9.2 gives the same inform ation pictorially. The boxes of Figure 9.2 

indicate forwarding tables. The arrows indicate forwarding table entries. The arrows are shown 

to go through w hat is the D estination column of the forwarding table, and term inate  either a t 

another forw arding table, or a t the w hat is the Next Hop column of the forw arding table. Entries 

w ith active T -tags are shown w ith a dot a t the beginning of the arrow. Subsequent com plicated 

examples of SPip forwarding present the tables only pictorially.

To see how the forw arding tables for the hole-punching case works, le t’s pick up the previous 

example a t the point where the packet from  host Z to  host H arrives a t rou ter c from  rou ter f. 

The packet a t th a t point contains the following header:

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSES RSE6

Z H 4 3L 9V 1C IB 9S 3J

R outer c accesses its R oot RSETable w ith RSE IB (the 6th entry  in Table 9.3, or the arrow  going 

off to the right from the Root RSETable of Figure 9.2. T his indicates th a t router c access the 

R oot RSETable again, w ith RSE 9S, the subsequent RSE.

The en try  for 9S instructs the forwarding algorithm  to access RSETable 1 w ith the subsequent 

RSE, 3J. This access m atches on the 3J entry, indicating th a t the packet is to be forw arded to 

router a. Note th a t the entry  in RSETable 1 for 3J does not have the T -tag  set. It was set, 

however, for the previous access (the one on the Root RSETable w ith 9S). Thus, the Active RSE 

field is modified to point to the 5th RSE, 9S. More to the point, the Active RSE field is set to
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Table 9.3: Router c’s Forwarding Tables for Non-classical Unicast SPip Example

Root RSETable for router c

D estination Next Hop T -tag

9W router d V
9S RSETable 1 y
9T subscriber T \ /
1C RSETable 2 V
ID router b V
IB Root RSETable V

default Error

RSETable 1 for router c

D estination Next Hop T -tag

31 router b

3J router a

default router a

RSETable 2 for router c

D estination Next Hop T -tag

9U router d

9V router f

default router f

point to  9S because the subscriber network identifier level (level 9) is the level a t which the packet 

is now being unam biguously forwarded.

To see this more clearly, consider a  packet from  host H to a  host Y in subscriber U (w ith address 

1C:9U:3M) (not shown in Figure 9.1). The packet arriving a t router c from  rou ter a is:

SEID DEID Active RSE R SE l RSE2 RSE3 RSE4 RSE5 RSE6

H Y 4 3J 9S IB 1C 9U 3M

Note th a t this packet is unchanged from  w hat was tran sm itted  by host H, because the target 

destination is still (the top-level) backbone C.

R outer c accesses its Root RSETable w ith 1C, retrieving an instruction  to  access RSETable 2. 

This is accessed with the subsequent RSE, 9U. T h a t access produces the nex t hop, which is router 

d. The Active RSE field stays a t the 4 th RSE, IC , because this was the last tagged entry.

Note what would have happened if the Active RSE in the packet tran sm itted  from  router c had
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Root RSETable 1 - B

9-T9-W 1-C

default- D

d

Error

RSET able RSETable 2

default 9 - U default

9 - V

b
fa

Figure 9.2: R outer c’s Forwarding Tables for Non-classical Unicast SPip Exam ple

been 9U— the RSE th a t ultim ately  gave router c its forwarding inform ation. R outer d would in 

th a t case have received the following packet:

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSE5 RSE6

H Y 5 3J 9S IB 1C 9U 3M

It would have accessed its Root RSETable w ith 9U. D epending on the actual num erical value for 

U, however, this packet may have m atched exactly w ith one of the subscriber IDs for backbone 

B ’s own network. For instance, the num erical values for bo th  W  and U m ight be, say, 17. The 

packet in th is case would be incorrectly routed  to subscriber W. By leaving the Active RSE to be 

1C, rou ter d is able to  know the appropria te  context for the subscriber ID — th a t is, a  subscriber 

a ttached  to  backbone C.

The technique of looking ahead in the route sequence w ithout advancing the Active RSE poin ter is 

different from  SIPP  (or IP or CLN P) route sequence handling, where the active address is always 

the last one exam ined. This looking forward is called peek-ahead. Peek-ahead is necessary in SPip 

because each level of the hierarchy is one RSE, and m ultiple hierarchy levels m ust be exam ined to 

do hole-punching. It is not necessary in CLNP, nor to a large ex ten t SIPP, because the sem antics
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of best-match lookup on a hierarchical address allow hole-punching.

Note th a t all of the entries in rou ter c ’s R oot RSETable (Table 9.3) have the T -tag  set, and 

th a t none of the entries in router c ’s other RSETables have the T -tag  set. Not also th a t by-and- 

large the Root RSETable holds classical forwarding inform ation, and th a t the o ther RSETables 

hold additional hole-punching forwarding inform ation. For instance, rou ter c ’s Root RSETable 

has Next Hop inform ation for 9W, 9T, and ID , all classical forw arding inform ation. R outer c ’s 

additional RSETables contain Next Hop inform ation for 31, 3J, 9U, and 9V, all hole-punching 

forwarding inform ation.

The R oot RSETable is the only RSETable th a t is accessed w ithou t accum ulated  context. Accesses 

to  other RSETables have some context (for instance, the context for rou ter c ’s RSETable 1 is 

subscriber S, and for RSETable 2 is backbone C). Classical forw arding is unam biguous and  does 

not need context, whereas hole-punching forw arding inform ation can be am biguous and  needs 

context. T hus, classical forw arding inform ation by-and-large goes in the R oot RSETable, and 

hole-punching inform ation does not.

There are two pieces of classical forwarding inform ation, however, where the Next Hop inform ation 

does not appear in router c ’s Root RSETable. They are for 1C and 9S. This inform ation shows 

up in the default entries of the two ex tra  RSETables. T he forw arding inform ation for 9S appears 

in the default en try  for RSETable 1, and the forwarding inform ation for 1C appears in the default 

en try  for RSETable 2. Note th a t the entries in the Root RSETable for 9S and 1C poin t to 

RSETable 1 and RSETable 2 respectively.

To see why this inform ation appears in the default entries, consider the case of a  packet from  Host 

H to a host Q (not shown in Figure 9.1) in subscriber X arriving a t rou ter c:

SEID DEID Active RSE R SE l RSE2 RSE3 RSE4 RSE5 RSE6

H Q 4 3J 9S IB 1C 9X 3N

RSE 1C points router c to RSETable 2, bu t the next RSE, 9X, does not have a m atch  in RSETable

2. This is because routers in backbone B do not care how packets are routed  to subscriber X— both 

entries points to backbone C are equally preferable. The default causes rou ter c to  fall back on 

the (classical) forwarding inform ation for 1C. In essence, rou ter c d ipped into RSETable 2 because 

there m ight be more detailed forwarding inform ation, bu t discovered, by not m atching, th a t there 

was not after all.

Note th a t in certain  cases, it is possible to  not include the com plete address sequence in a  packet. 

This is the case where two hosts are in close proxim ity to  each other, for instance in the same 

subnet or subscriber network.

For instance, consider a  packet from  host H to a host in subnet I (say, host F ). Since they are 

in the same subscriber network, there is no need to  include RSEs encoding subscriber and above 

inform ation. T hus, the packet from host H to  host F can be fo rm atted  as:
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SEID DEID Active RSE R S E l RSE2

H F 2 3J 31

W hen rou ter a receives this packet, it indexes its R oot RSETable w ith 31, m atching on the second 

entry, and forwards the packet to subnet I.

The problem  w ith this optim ization is th a t it does not work in all cases. For instance, if router a 

had hole-punching forwarding inform ation pertain ing to  the interior of ano ther subscriber network, 

then  router a m ay not be able to  distinguish between subnet level RSEs in its own subscriber 

netw ork and another subscriber network. However, it is difficult for host H to  know if rou ter a, 

or some other router, has hole-punching forwarding inform ation, and thus needs more addressing 

inform ation.

Therefore, this kind of optim ization is in general not a  viable option.

9.1.7 D iscussion

All three protocols can do hierarchical unicast routing. All three protocols have effectively un­

lim ited address size, CLNP by virtue of its large single address, and SIPP  and SPip by v irtue of 

being able to string fixed-sized addresses together to create a large address space.

SPip has a slight lim itation in th a t it can only devote 19 bits (the size of the RSE ID field) to 

identification at each hierarchy level. This allows for approxim ately 500,000 hierarchical clusters 

w ithin a higher-level cluster. If a cluster has more than  this m any sub-clusters, then  it would have 

to  introduce another layer of hierarchy to  handle the additional clusters.

All three protocols can handle bo th  classical and hole-punching forwarding inform ation. The one 

exception is with SIPP, when it is using extended addressing and when the hole-punching is across 

an address boundary. This lim itation results from  the fact th a t S IP P  does not do peek-ahead when 

it processes the source route.

The lim itation of SIPP  not being able to  hole-punch across an address boundary  is not a  serious 

one. F irst, hole-punching is not so common. Second, it is possible to place the address boundary 

where peek-ahead is m ost rare, for instance at the boundary betw een provider and  subscriber.

Finally, if it is absolutely necessary for, say, a  provider to be able to  choose am ong m ultiple entry 

points into a subscriber’s network based on the location of the destination , there are a t least two 

ways to  make it happen. F irst, the subnet num ber could be replicated in the low-order p a rt of the 

higher address. The backbone routers could forward on the subnet num ber in the  higher address, 

and the subscriber routers could forward on the subnet num ber in the lower p a rt of the address.

Second, the subscriber could be given m ultiple subscriber num bers, one for each en try  point.

B oth m ethods have the effect of pu ttin g  intra-subscriber inform ation in the higher address, and
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b o th  m ethods require coordination between subscriber and provider. The form er m ethod is easier 

for the subscriber, and the la tte r easier for the provider.

9.2 M u lt ica s t

This section covers all forms of m ulticast listed in Table 7.1— broadcast^ and m ulticast, shared-tree 

and source-tree, scoped, well-known addresses, and two-phase.

In all the descriptions, we assume the following action /response. T h a t is, th a t the in itiating  host 

transm its a m ulticast, and th a t a  receiving host be able to  transm it a  unicast packet back to  the 

transm itting  host.

The descriptions for CLNP and SIPP  are only rough outlines. D etailed descriptions of how to 

handle m ulticast for trad itional packet form ats can be found in the lite ra tu re  [27, 28, 29, 31].

9.2.1 C L N P

The m echanism  for form atting  a m ulticast packet in CLNP is similar to th a t of unicast. The 

host learns of a  group address through the norm al m eans (directory service or an IGM P-like 

protocol [28] yet to be defined for CLNP). It pu ts the group address in the destination  address 

field, pu ts its own unicast address in the source address field, and transm its  the packet.

There is no scope field in the NSAP group address (or any other place in the CLNP header). 

There are two ways to achieve scoping in CLNP. One is to do w hat IP  curren tly  does, which is to 

use the hop-count field (see Section 6.1.1). The o ther way is to  assign separate  group addresses 

for each scoping.

The technique for forwarding a m ulticast packet in CLNP has not yet been defined, so we assume 

here th a t it is done similarly to how it is described in Section 6.1, which is basically how Deering 

specifies it in his PhD  thesis [29] (some of which exists in IP  today, and some of which does not).

In other words, the router examines the Dest A ddr, determ ines th a t it is m ulticast, and either 

determ ines the tree links from this and forwards the packet(s), or determ ines th a t  it m ust also 

examine the Source A ddr, and uses the combined inform ation to  determ ine the tree links. Thus, 

CLNP can (or will be able to) handle all four com binations of b roadcast/ m ulticast and source- 

tree /  shared-tree.

If a  host receiving the packet wishes to re tu rn  a packet to  the source host, it places the Source 

A ddr of the received packet in the Dest A ddr field, places its own unicast hierarchical address in 

the Source A ddr field, and transm its the packet.

* Since broadcast is a degenerate form  of m ulticast, we do not consider it exp licitly , bu t in stea d  assum e it  works 

if  m ulticast works.

I l l



W ell-K n o w n  M u ltic a st  G roup  A d d ressin g

Well-known group addresses can be assigned from  the already defined NSAP group address space. 

For well-known group addressing to be practical, however, an effective scoping m echanism  is 

required (Section 6.1.2). Hop count is an effective scoping m echanism  where the scope is the local 

LAN (hop count of 1). W here the desired scope is larger, hop-count does not provide enough 

control over the recipients. Because CLNP does not have a scoping m echanism  o ther th an  hop- 

count, C L N P’s capability  to do well-known m ulticast is lim ited.

T w o -P h a se  M u ltica st

The m echanism  where by two-phase m ulticast could in theory  be m ade to  work is the  CLN P loose 

source route (LSR) option (called partia l source route in CLN P). T he reason we say in theory is 

because there is a  bug w ith C L N P ’s LSR m echanism  th a t makes it effectively unusable. The bug 

derives from  the fact th a t the LSR m echanism  is such th a t the active address of the  source route 

is in the LSR option ra ther than  in the destination address field. In addition, the  LSR option is 

a “type 3” function [55], m eaning th a t it does not need to  be supported  in routers, and th a t a 

rou ter not supporting  it simply ignores it—the router does not discard the packet.

As a result, if there are some routers th a t do not support the LSR option (non-LSR routers) on 

the path  between the source and the active address, those packets will route on the address in 

the destination  address field ra ther th an  on the active address. W ith  unicast, th is can result in a 

forwarding loop whereby the packet is routed by a non-LSR router to  an LSR router, which then  

routes it back to the non-LSR router th a t already handled it.

W ith  two-phase m ulticast, the consequences of this bug can be really disastrous. The packet would 

go as unicast initially (routed on the active address of the source route), then  reach a non-LSR 

router, which m ulticasts it. Some of the m ulticast replications reach LSR routers which forward 

it unicast to more non-LSR routers, which m ulticast it further. If there is a loop, then  the packet 

can replicated each time it traverses the loop. Eventually the hop-count would cause the replicas 

to  be discarded, bu t only after generating potentially  an enorm ous num ber of packets.

Even if this problem  were fixed (for instance, by m aking im plem entation  of the LSR option 

m andatory), use of the LSR for two-phase m ulticast is generally difficult because, as w ith IP, the 

notion of handling a route sequence is foreign to CLNP. Thus, none of the hooks th a t make its use 

convenient, such as route sequences in directory service or in the A PI (A pplication Program m ing 

Interface) are in place.
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9.2.2 S IPP

Before being able to form at a SIPP  m ulticast packet, a S IPP  host m ust first determ ine the group 

address. In particu lar, the host m ust determ ine the setting  of the scope field. W hile the SIPP 

specification defines a scope field in its group address, there is nothing yet in the specification th a t 

indicates how the scope field should be set.

There are basically two approaches. In one, the scope can be tightly  coupled w ith th e  group ID, 

resulting in 64-bit identifiers th a t are trea ted  individually. T h a t is, group addresses w ith  the same 

group ID bu t different scope are learned individually, for instance via IG M P, and  the host chooses 

among them  depending on the desired scope of the m ulticast. A lternatively, the scope can be 

uncoupled from the group ID, so th a t the host considers the scope field to  be separately  settable. 

In this case, the host would learn a single group ID, and then  compose the full group address by 

setting  the scope field according to  the desired scope.

We do not discuss the pros and cons of the two approaches here. We assume in w hat follows th a t 

a  SIPP  host is able to obtain the appropriate  group address.

S IPP  m ulticast packets are form atted  identically to S IPP  unicast packets. In particu lar, the 

destination “inform ation” can be encoded as an address sequence. This address sequence appears 

anywhere a single group address would otherwise appear— in IGM P, SD, or DNS.

T he low-order address (and identifier) of the address sequence is the group address, and  the higher 

order addresses of the sequence, if present (for instance for two-phase) are unicast addresses. As 

w ith unicast, the source address sequence of the S IPP  host is placed a t the beginning of the route 

sequence, and the destination address sequence is placed a t the end.

SIPP  m ulticast packets are forwarded by routers similarly as described for CLN P above, taking 

in to  account parsing the extended source address as described in Section 8.2.3. T he only difference 

is th a t the S IPP  router m ust in terp re t the scope field. Thus, once a router has determ ined which 

links a packet should potentially  be forwarded over, it m ust elim inate zero or m ore because of 

scoping.

It has not yet been defined w hether scoping in SIPP  is source-independent or source-dependent 

(see Section 6.1.1). If the former case, then  the rou ter simply does not transm it the  packet over 

links whose defined scope values m atch th a t in the packet. In the la tte r  case, the  rou ter m ust 

consider bo th  the source address sequence and scope value to  prune the outgoing link set.

If a  host receiving the packet wishes to re tu rn  a packet to the source host, it executes the  reversing 

rules given in Section 8.2.2.
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W ell-K n o w n  M u ltic a st

SIPP has reserved a portion of its group address space for well-known group addresses, and has 

scoping. Thus, SIPP  can do well-known m ulticast groups.

T w o -P h a se  M u ltica st

SIPP can do two-phase m ulticast, bu t only in the case where the m ulticast phase is shared-tree.

W ith  two-phase m ulticast, the destination  address is an address sequence whereby the low-level 

address is the group address, and the rem aining addresses is the unicast address sequence of the 

system  th a t will originate the m ulticast phase. If the unicast address sequence is a  cluster address, 

then  the first cluster border rou ter th a t th a t packet reaches will originate the m u lticast phase (by 

advancing the route sequence to the group address).

S IPP  can do C BT-style two-phase m ulticast, where the m ulticast phase of the  packet s ta rts  when 

the packet reaches any router on the core tree. However, care m ust be taken  in the  assignm ent 

of the core address (the unicast address of the core). T h a t is, the core address m ust no t be the 

one used by the core for its norm al unicast com m unications. This is because of the  way the route 

sequence is advanced in SIPP. T h a t is, a router only advances the route sequence if it believes 

th a t it is the destination  for the active address. If the norm al unicast address of the  core were 

used, then  every router on the C B T tree would install th a t address as its own, an  would therefore 

receive unicast packets addressed to the core.

9.2.3 SPip

W ith  SPip, every EID, including group EIDs, has associated w ith it zero or m ore address se­

quences. The address sequence is required only for two-phase m ulticast. O therw ise, there is no 

address sequence.

Before a host can form at a  m ulticast packet, it m ust set the scope field of the group EID. If 

the EID has a  scope field of 0, then  the host m ust set the scope field to  the desired value (see 

Section 8.1.4). If, on the other hand, the host has m ultiple EIDs w ith identical group IDs but 

different non-zero scope fields, then  it chooses am ong them  according to the desired scope.

To form a m ulticast packet, an SPip host initially does the same as it does for unicast. T h a t is, 

the group EID is placed in the Dest EID field, the EID of the tran sm ittin g  host is placed in the 

Source EID field, and the address sequence of the transm itting  host is placed a t the  front of the 

route sequence.

In addition to this, the host does one of the following:

1. If the group EID is associated w ith one or more address sequences, then  one of the  address
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sequences is placed after the source address sequence exactly as w ith unicast.

2. O therwise, the host places its own address sequence, in reverse-path form, in to  the routing 

sequence after the source address sequence. The reverse-path form  address sequence is placed 

in order of highest-level RSE first (same order as the destination  address sequence would 

norm ally be placed). The Active RSE field is set to  point a t the first reverse-path  form  RSE, 

and the Num  Source RSE field is set to  point to the last norm al form  RSE.

It w hat follows, we assume single-phase m ulticast. T h a t is, we assum e th a t there  is no address 

sequence associated w ith the group EID— case 2 above.

Consider the  case of host H in Figure 9.1 transm itting  a m ulticast packet w ith group address G l.

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSES RSE6

H G l 4 3J 9S IB r l B r9S r3J

Note th a t host H ’s norm al form  address sequence occupies RSEs 1 th rough 3, and  th a t host H’s 

reverse-path form address sequence occupies RSEs 4 through 6.

As shown below, the purpose of the reverse-path form  RSEs is for source-tree m ulticast. W ith 

shared-tree m ulticast, they are not necessary. However, the host has no way of knowing (or, more 

accurately, should not be required to know) if the packet will be tran sm itted  on a  source-tree or 

a shared-tree.

The router, on the other hand, of course knows w hether the packet is being forw arded as source- 

tree or shared-tree, and builds its forw arding tables accordingly.

S h ared -T ree  M u ltica st

If the rou ter is operating  exclusively in shared-tree mode, then  it does not care abou t the reverse- 

p a th  form RSEs in the packet. It m ust look beyond them  to the m ulticast EID.

T hus, a router w ith shared-tree m ulticast adds one entry to  its Root RSETable. T h a t en try  is the 

r-defauH en try— th a t is, it is retrieved for any revere-path form  RSE.

For instance, the Root RSETable for rou ter a for the classical rou ting  inform ation case would be 

the same as th a t given in Table 9.2, bu t w ith the addition of the r-default entry. This is shown in 

Figure 9.3.

The m ulticast entries of Figure 9.3 are shown w ith dashed lines. Note th a t w hat was previously 

the single default entry  has here been changed to  n-default (m eaning norm al form  default). This 

is the entry  retrieved if the RSE is norm al form, bu t does not m atch  any of the explicit norm al 

form  entries. The r-default entry is retrieved for all reverse-path form  RSEs.

The r-default entry  indicates th a t the M ain EIDTable should be accessed. The M ain EID Table, 

in addition to  the unicast entries it had from  the unicast example (Table 9.2), has a num ber of
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Root RSETable 
Router a

r-uetault n-detault

Main EIDTable

n-default

ARP

r-default

Error
V V'

one or more of J, I, K, and c
(minus the incoming link)

Figure 9.3: R outer a ’s Forwarding Tables for Classical, M ulticast, Shared-Tree O nly SPip Exam ple

group EIDs (G l - Gn), each of which indicate one or more of router a ’s links. T he actual set of a ’s 

links depends on the group m em bership, and on the scope of the group EID. C onceptually, each 

different scope results in a separate entry  in the EID Table. An im plem entation may, however, 

trea t the scope field as a separate field.

These entries have the T -tag  set. Note th a t, since these entries are for shared-tree m ulticast, the 

packet would not be transm itted  over the link from which it was received.

Consider the m ulticast packet from  host H shown above. It would arrive a t rou te r a  as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

H G l 4 3J 9S IB r l B r9S r3J

R outer a would access its Root RSETable with value r lB . T his would retrieve the r-default entry, 

since there are no other reverse-path form  entries in router a ’s Root RSETable. T his causes router 

a to access its Main EIDTable with Dest EID G l. This en try  indicates which links the packet 

should be forw arded over. The T -tag  for this link is set, so the Active RSE would be set to  zero
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in all transm itted packets;

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSES RSE6

H G l 0 3J 9S IB rlB r9S r3J

Because the Active RSE in this packet is zero, subsequent routers would not look a t the  reverse- 

pa th  form RSEs, bu t ra ther would directly access the M ain EID Table w ith the  group EID. Thus, 

the processing overhead of the reverse-path form RSEs is only incurred once— at th e  first router. 

The packet length overhead of the reverse-path form RSEs, however, rem ains th roughout the 

packets lifetime. Inclusion of the reverse-path form RSEs is the cost of hiding the natu re  of the 

m ulticast tree from  hosts.

S o u rce-T ree  M u ltica st

W ith IP  source-tree m ulticast, routers build reverse-path trees^ rooted a t the destinations of their 

unicast forw arding tables. This results in a set of potential outgoing links for m ulticast packets 

from each unicast destination. This set is then pruned based on the m em bership of each group. 

Thus, when a  m ulticast packet is received, the source address and group ID together are used to 

determ ine the outgoing links.

SPip m ust of course do the same thing. In the case of SPip, however, the  reverse-paths built from 

the unicast destinations are installed in the forwarding tables as reverse-path  form  RSEs. The 

reverse-path form  RSEs in the packet, then, are used to indicate which source tree the packet is 

forwarded on.

For instance, assum ing the hole-punching forwarding inform ation case, the forw arding tables for 

routers a and c are as shown in Figures 9.4 and 9.5 respectively.

Consider the forwarding table for router a. The normal form (unicast) entries are draw n in solid 

lines, and the reverse-path form  (m ulticast) entries are draw n in dashed lines.

R outer a is in a  subscriber network (S). If the source is inside subscriber netw ork S, then rou ter a 

m ust know which subnet the source is on so tha t the packet can be m ulticast over the appropriate 

tree. If the source is not inside subscriber network S, then rou ter a does not care which backbone, 

subscriber, or subnet the packet came from, because all packets from  outside en ter subscriber 

network S via the same two interfaces®.

Thus, one of the m ulticast entries of router a ’s Root RSETable is there  sim ply to  determ ine if the 

packet m ight be from  inside subscriber network A by m atching against backbone B (r lB ). If no 

m atch  occurs, the packet is assum ed to come from outside of subscriber netw ork S, and EIDTable 

3 is chosen (r-default).

^The use o f the term  reverse-path  does should n ot necessarily im ply th at a reverse-p ath  rou tin g  a lgorithm  [27] 

was used  to form the tree. Forw ard-path routing inform ation can also be used.
®We are assum ing that backbone B transm its m ulticast packets to subscriber S v ia  b o th  of the  in terfaces. This 

is not necessarily the way all tree-building algorithm s would work.
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tError
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one or more of: I, K, and c

Figure 9.4: R outer a Forwarding Tables for SPip Non-classical Source-Tree M ulticast Example

EIDTable 3 indicates th a t the packet should be forwarded to neither, either, or b o th  subnets J 

and K^. W hich com bination depends on the group m em bership for the group address. If bo th  J

^This assum es th at packets entering subscriber S from  router b w ill be rou ted  to subnet I, so  there is no need  

for router a to  forward them  to subnet I.
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Figure 9.5: R outer c Forwarding Tables for SPip Non-classical Source-Tree M ulticast Example

and  K have mem bers then the packet will go to both. Only groups th a t have m em bers on one 

or more of J and K are explicitly listed in EIDTable 3. T hus, if neither have m em bers, then the 

group is not listed and the packet defaults to neither (th a t is. E rror). (Note th a t  EID Table 3 has 

only one default, so there is no need to distinguish between n-default and r-default.)

If a  packet at router a has a top-level RSE of rlB , then the en try  in rou ter a ’s R oot RSETable
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indicates a secondary forwarding table— RSETable 1. In RSETable 1, router a  continues to  check 

to see if the packet originated in subscriber network S by com paring against r9S. If, again, there 

is no m atch, the packet is assumed to be from outside and uses the  default en try  (EIDTable 3). 

If it does m atch, then the packet is known to be from a subscriber S subnet, and  forw arding table 

R SETable 2 is accessed with the next RSE, the subnet num ber. Depending on the subnet, one 

of two EID Tables is chosen. (In this case, the forwarding is the  same w hether the  packet is from 

subnet I or K. In the general case, there is a different tree for each origin.)

Now consider the forwarding tables of router c. Like Figure 9.4, Figure 9.5 shows the unicast 

entries in solid lines, and the m ulticast entries in dotted lines. To simplify things. Figure 9.5 

is incom plete in th a t it does not show the entries for the leaf forw arding tables (RSETables 1 

and  2 and EIDTables 1 through 9). The entries for RSETables 1 and 2 are identical to  those in 

F igure 9.2, so do not need to be repeated here. The entries for EID Tables 1 th rough 9 are similar 

in form  to the m ulticast EIDTables in Figure 9.4, so also do not need to  be shown here.

R outer c is in backbone B, and as such has no default routing  per se. T hus, the single error 

default entry from the Root RSETable serves both normal form  and reverse-path  form  addresses. 

O f the three reverse-path form entries in the Root RSETable, the one for backbone D (r lD ) points 

d irectly  to an EIDTable. This indicates th a t there is a single source-tree for any packets from 

backbone D (or its subscribers). The entries for backbones B (its own) and  C po in t to RSETables. 

T his indicates th a t there are m ultiple trees with the same top-level RSE, and thu s additional RSEs 

m ust be examined.

In the case of the backbone C entry (rlC ), the multiple trees come from  the fact th a t routers in 

backbone B have explicit forwarding information for subscribers U and V in backbone C. This 

inform ation is reflected in RSETable 4. Note th a t the default en try  in RSETable 4 handles the 

backbone C subscriber networks not explicitly known to rou ter a  (EID Table 6).

In the  case of the backbone B entry  (rlB ), router a m ust distinguish betw een the various subscriber 

netw orks a ttached  to backbone B (RSETable 3). Router a  m ust also d istinguish between subnets 

I and  J in subscriber S (RSETable 5).

A notable fact about the m ulticast forwarding tables for routers a  and c is th a t a t no tim e is the 

A ctive RSE in the packet changed. There are no set T -tags in any of the m ulticast entries. For 

the full duration  of the packet transm ission through the netw ork, the Active RSE always points 

to  the top-level RSE.

T he reason for this is th a t, contrary  to the unicast case, the more detailed  addressing inform ation 

is needed a t the  s ta rt of the path , not a t the end. W ith unicast, rou ting  considers only the 

top-level addressing inform ation until the packet approaches the destination , a t which tim e lower- 

level addressing inform ation is examined. W ith source-tree m ulticast, the forw arding is with 

respect to the unicast address of the source (and the group ID), and  so the detailed  (lower-level) 

addressing inform ation is exam ined at the s ta rt of the path , and la ter in the p a th  only the top-level
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information is examined.

Because routers later in the path  look at the top-level inform ation, the Active RSE m ust point to 

the top-level RSE. Since there is no way to back-up the Active RSE, routers a t the beginning of 

the p a th  cannot advance the Active RSE to  point to the lower-level RSEs.

L o w est-L ev el F irst

An alternative approach to  packet form at for source-tree m ulticast is to  reverse the order of the 

reverse-path form RSEs in the packet header. Thus, the RSEs are in order of lowest-level RSE 

first. All other aspects of header form ation are the same as described above for highest-level first. 

The po ten tia l advantage of this m ethod is th a t routers at the beginning of the p a th  can examine 

only the lower-level RSEs rather than  having to examine all of the RSEs. Later in the p a th  the 

Active RSE can be advanced to  point a t the higher-level RSEs.

The problem  w ith this approach is th a t it has a scaling problem . W hen the RSEs are parsed in 

order of lowest RSE first, there can be many possible lower-level RSEs th a t u ltim ately  resolve to 

the same higher-level RSE. It tu rn s out in many cases, especially w ith hole-punching, th a t each 

of these lower-level RSEs results in a different set of branches, u ltim ately  leading to  the same 

EID Table, bu t replicating the higher-level RSEs m ultiple times.

R ather th an  give an example (which requires quite a lengthy explanation—ju s t to  explain a  bad 

idea), I leave it to the reader to try  to create the forwarding tables necessary for lowest-level first 

RSEs for the non-classical forwarding inform ation case. The reader will quickly discover th a t it 

results in a large and complex set of forwarding tables.

W ell-K n o w n  M u ltica st

SPip has reserved a portion of its group EID space for well-known m ulticast, and  has scoping. 

Thus, SPip can do well-known m ulticast groups.

T w o -P h a se  M u ltica st

SPip can do two-phase m ulticast with both  shared-tree and source-tree m ulticast. Recall from 

the form atting  rules given at the beginning of this section th a t an SPip host only includes the 

reverse-path form  RSEs if there is no address sequence associated w ith  the group EID. W ith  two- 

phase m ulticast, there is an address sequence associated w ith the group EID — th a t of the  unicast 

destination  from  which the m ulticast phase originates. Thus, the  route sequence of two-phase 

m ulticast packets contain the source address sequence (in norm al form) followed im m ediately by 

the address sequence associated with the group EID.
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S h ared -T ree  T w o -P h a se

If the m ulticast phase is shared-tree, then the address sequence associated w ith the group EID 

is nothing more th an  the unicast address sequence of the m ulticast-phase origin. For instance, 

the destination inform ation associated with a two-phase m ulticast to  group G l th a t s ta rts  its 

m ulticast phase a t subnet J is (EID =  G l, ASeq =  1B:9S:3J) ®. If host Z is to  send a  packet to 

th is group, it would receive th a t destination information from  some source (such as IG M P), and 

form at a packet as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

Z G l 4 3L 9V 1C I B 9S 3J

The packet would reach router a  (or some router on subnet J) as per unicast forwarding. Using 

a  forwarding table such as th a t of Figure 9.4, router a would access its M ain EID Table w ith the 

group EID G l. In this case, EIDTable 1 would have an explicit en try  for G l, m atch  on th a t entry, 

and forward the packet according to the m ulticast tree for G l. The en try  would have the T -tag  

set, so the Active RSE would be set it 0, and the packet would from  then on be forwarded as 

m ulticast.

If, ra ther th an  reaching a router on subnet J, it is desired th a t any rou ter on backbone B in itiate 

the m ulticast phase, then the destination address sequence only requires the backbone-level RSE, 

as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4

Z G l 4 3L 9V 1C I B

Note th a t, because IB is the last RSE in the sequence, it has the Last RSE flag set. This is how 

the backbone router knows to access the EIDTable rather th an  look for another RSE.

Now consider how to do CBT-style two-phase. The destination inform ation contains the  unicast 

address of the core of the CBT tree, say for instance a router z in backbone c: (EID  =  G2, ASeq 

=  1C:9X:3Y:0Z), where 9X and 3Y are subscriber and subnet RSEs, and  OZ is the  host-level RSE 

for router z. Every router on any CBT tree with z as the core installs a  chain of RSETables with 

1C, 9X, 3Y, and OZ in tu rn  as entries. None of the entries have the T -tag  set. The last RSETable 

en try  (OZ) points to an EIDTable containing the group EIDs. The entries in the  EID Table have 

the T-tags set. The default entry in the EIDTable has the norm al unicast forw arding inform ation 

th a t would have been retrieved for a unicast packet to 1C:9X:3Y:0Z.

W hen a router on the tree receives a CBT packet with z as the core, it traverses the chain 

of RSETables and looks up the group G2 in the EIDTable. If no m atch  occurs, the packet is 

forwarded towards z as per norm al unicast. If a match occurs, then  the Active RSE is set to  0, 

and  the packet is forwarded as per m ulticast.

®Note that if  the m ulticast phase is to  start from a host, a host-level R SE  in  the  address sequence is required. 

H ost-level R SE s are d iscussed  in  Section  9.8.3
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S ou rce-T ree  T w o -P h a se

To do two-phase where the packet is source-tree m ulticast from  the origin of the m ulticast phase, 

it is necessary to include the reverse-path RSEs of the m ulticast phase origin. T hus, the desti­

nation inform ation for a  packet to group G2 and originating a t router z w ith address sequence 

1C:9X:3Y:0Z is:

(EID =  G2, ASeq =  lC:9X:3Y:0Z;rlC;r9X:r3Y)

The OZ RSETable entry points back to the Root RSETable. Thus, rou ter z accesses the Root 

RSETable with r lC . This causes the normal source-tree m ulticast actions to occur as described 

above.

9.2.4 D iscussion

All three protocols can do the most basic m ulticasts— single-phase, shared-tree and source-tree, 

broadcast and m ulticast.

CLNP is currently  lacking scoped addresses. M ulticast in CLNP, however, is still in the early 

stages of definition, so it is presumed th a t eventually CLNP will have scoping. In any event, 

there is certainly nothing in CLNP per se th a t would prevent scoping— there is plenty of room  

in the NSAP address to define a scope field. It would be preferable if this field were in the same 

well-known place for all group addresses. This, however, is not the direction th a t OSI is taking for 

group addressing [57]. In any event, it remains to be seen w hether well-known addressing beyond 

the local LAN is useful.

Because of inadequate scoping, CLNPs ability to do well-known addressing is som ew hat lim ited. 

Fortunately, CLNP can do a very im portant class of well-known group address— the one w ith a 

scope of the local LAN. In fact, existing CLNP control protocols such as ES-IS and IS-IS take 

advantage of local LAN m ulticast, though only by using well-known IEEE-802 link-level group 

addresses, not CLNP group addresses.

Both S IPP  and SPip have scoping and well-known group addressing.

CLNP cannot handle any two-phase m ulticast, prim arily because of a  bug in C L N P ’s LSR mech­

anism, bu t also because CLNP hosts are not commonly expected to  form at LSR packets. SIPP 

handles two-phase m ulticast with shared-tree, but not source-tree, in the m ulticast phase. In 

particular, SIPP  handles CBT-style m ulticast (two-phase w ith shared-tree, where the m ulticast 

phase can s ta rt anywhere on the shared-tree). This is a po ten tia lly  im portan t form  of m ulticast. 

For instance, it is part of all ongoing work in m ulticast in the IE T F  standards organization [49].

SPip handles all the forms of m ulticast discussed.

A general observation is th a t, in order to make m ulticast work, CLN P and S IPP  do “som ething

1 23



special” in the routers, while SPip does “something special” in the hosts. T h a t is, upon discovering 

th a t a packet is m ulticast, CLNP and SIPP break out of the “norm al” lookup algorithm  (th a t is, 

of looking at destination address and possibly source route), and look a t the source address. SPip 

routers, on the other hand, do the same thing for unicast and m ulticast, bu t in order to  form at a 

m ulticast packet, SPip hosts break out of the “norm al” form atting  algorithm  (th a t is, of pu tting  

the source address sequence at the beginning of the route sequence and  the destination  address 

sequence afterw ards), and adds the reverse-path form source address sequence between the two.

Thus, while SPip has perhaps succeeded in creating an efficient yet general purpose router for­

warding mechanism, it has not as successfully created a general purpose host packet form atting 

mechanism.

9.3 M o b ility

T here are several aspects to m obility—how hosts and routers discover each other, how it it deter­

m ined when a host needs a new address, how the new address is assigned, how a correspondent 

host learns the new address of the mobile host, and how a correspondent host au then ticates the 

new address.

This section does not concern itself with these aspects (though Section 9.5 discusses auto-address 

assignm ent). R ather, it considers only 1) how packets are routed between a mobile host and a 

correspondent host once the correspondent host has learned the new address of the mobile host, 

and 2) how the two hosts identify each other.

We consider the following scenario. Host H is attached to subnet J and is exchanging packets with 

host Z a ttached  to subnet L. Host H then moves to  subnet 1. We consider two cases, one where 

host H does not obtain a new address on subnet 1, and the other where host H does obtain  a new 

address. In the former case, host H ’s individual address m ust be advertised off of the subnet, for 

instance to router a. In the la tte r case, host Z m ust learn host H ’s new address and s ta r t using it.

9.3.1 C L N P

Initially, host H on subnet J has address B.S.J.H. Host Z has address C.V.L.Z. Packets are being 

exchanged using these addresses according to description in Section 9.1.1.

Host H moves to subnet 1 but does not obtain a new address. Thus, packets from  host Z to  host 

H still have the address B.S.J.H . These packets are forwarded to router a. Now, however, router 

a m ust forward the packet over to  subnet 1 ra ther than  on subnet J . Thus, the routing algorithm  

running in subscriber network S m ust now carry an explicit en try  for host H on subnet I (bu t w ith 

address B .S.J.H ).
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If the IS-IS routing protocol is being used [56], and subnet I is in the same area as subnet J , then 

host-level routing inform ation is carried as a m atter of course.

Assuming th a t router a has obtained the new routing inform ation for host H, rou ter a  forwards 

the packet to  subnet I, and the packet is delivered to host H.

Now, assum e th a t host H obtains a new address, B.S.I.H, on subnet I. This would be necessary 

if, for instance, subnet I were in a different IS-IS area. This would imply th a t the  host has moved 

“far enough” th a t m aintaining host-level routing inform ation all the way back to  the h ost’s former 

position is too much overhead.

Under the current level of CLNP specification, there is no way th a t host Z can continue exchanging 

packets w ith host H (a t least, not w ithout tearing down the active application associations). This 

is because the NSAP address doubles as the host identifier. Once host H gets the new address, it 

also gets a new identifier. Unless the previous identifier (the true identifier) is carried in the new 

packets, and conveyed to host Z’s applications as before, host Z cannot recognize th a t the packets 

w ith address B.S.I.H are coming from the same hast as B .S.J.H .

Presum ably CLNP standards will continue to progress, and th is shortcom ing will be solved. There 

are two basic approaches available to CLNP. One is to declare some subset of the NSAP address 

to be globally unique. This could be byte positions 1 through 6 (where byte position 0 is the 

low-order byte), since those positions already hold the IEEE-802 address in m any cases. Or it 

could be byte positions 1 through 8, to allow for more definitions in the  fu ture.

The other approach is to convey the entire previous address in some p a rt of the  header— an option 

or an encapsulated header. This is the approach being pursued by IP , which does not have the 

luxury (or overhead, depending on what side of the fence you’re on) of incorporating the IEEE-802 

address.

E ither way, the new address could either be learned by host Z, and conveyed in packets from 

host Z, or it could be learned by some system on subnet J — perhaps router a. In th is la tte r case, 

router J would modify the packet to contain the appropriate inform ation. The la tte r  case has the 

advantage of keeping host Z simple (it does not need to know anything abou t the  new location of 

host H), bu t results in a  longer pa th , as now packets m ust be forw arded through rou ter a  (whereas 

if host Z learned the new location of host H, the packet would be rou ted  th rough  router b and 

directly to subnet I).

9.3.2 SIP P

We initially assume th a t single (non-extended) addresses are being used. Thus, the  addresses used 

at the s ta rt of the com m unications (when host H is on subnet J) are B .S.J.H  and  C.V.L.Z, and 

packets from  host H to host Z have the following simple form at:
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Source Addr Dest Addr

B.S.J.H C.V.L.Z

For the case where host H keeps the same address after m oving to  subnet I, host-level routing 

inform ation is d istribu ted  as described for CLNP above, and the packet form at rem ains the  same.

For the case where host H obtains a new address, host H learns the  cluster address for subnet I, 

which is B.S.I.O®. Host H forms an address sequence using the cluster address as the high-order 

address, and its original address as the low-order (and identifying) address. T hus, host H ’s address 

sequence is B.S.I.O:B.S.J.H. Packets from host H to host Z are fo rm atted  as follows;

Source Addr Dest Addr Next Addr A ddrl

B.S.J.H C.V.L.Z 2 B.S.I.O

where a Next Addr value of 1 points to the first address in the source route (thus, the above Next 

A ddr value of 2 is pointing beyond the single address in the source route).

This packet is routed to host Z. Since host Z only uses the (low-order) identifying address to 

identify host H, host Z recognizes this packet as being from host H even though the source route 

has been added. Host Z reverses this packet according to  the rules in Section 8.2.2, producing a 

re tu rn  packet of:

Source Addr Dest Addr Next Addr A ddrl

C.V.L.Z B.S.I.O 1 B.S.J.H

Host Z could also have learned of host H’s new address by some o ther m echanism , such as a  query 

to host H ’s base sta tion  (the system  th a t keeps track of host H ’s cu rren t address).

This packet is routed to a router on subnet I, which recognizes the cluster address B.S.I.O as being 

for itself, and advances the packet, producing:

Source Addr Dest Addr Next Addr A ddrl

C.V.L.Z B.S.J.H 2 B.S.I.O

The router knows th a t address B.S.J.H  is on its own subnet, because host H advertised it there, 

and delivers the packet to host H.

Now consider the case where host H is using extended addresses of the form described in Sec­

tion 9.1.3. T h a t is, the identifying address is the local-use address and  the high-order address is 

the subscriber prefix— B.S:J.H. Host Z, likewise, has aHdress C.V:L.Z

In this case, packets leaving host H on subnet J are fo rm atted  as:

Source Addr Dest Addr Next Addr A ddrl A ddr2

J.H C.V 2 B.S L.Z

and arrive a t host Z as:

*This cluster address is norm ally advertised  by routers for the purpose o f h o st au to-address configuration .
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Source Addr Dest Addr Next Addr A ddrl A ddr2

J.H L.Z 3 B.S C.V

A fter host H moves to subnet I, it keeps its identifying address J.H , and gets a  new prefix of 

B.S:I.O. Packets from host H ’s new location to host Z are initially fo rm atted  as:

Source A ddr Dest Addr Next Addr A ddrl A ddr2 Addr3

J.H C.V 3 I.O B.S L.Z

A nd re tu rn  packets leave host Z as:

Source Addr Dest Addr Next Addr A ddrl Addr2 A ddr3

L.Z B.S 2 C.V 1.0 J.H

9 .3 .3  SPip

Form ing packets for m obility in SPip is straightforward. 

Packets from host H on subnet J are form atted as:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

H Z 4 3J 9S IB 1C 9V 3L

W hen host H moves to subnet I, its address sequence changes from  1B:9S:3J to  1B:9S:3I. Thus, 

packets from  host H on subnet I are form atted as:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

H Z 4 31 9S IB 1 0 9V 3L

A nd re tu rn  packets as:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

Z H 4 3L 9V 1C IB 9S 31

T he sam e com m ents made for the CLNP case—namely th a t the packets to  host H on subnet I 

could have been form atted  by host Z or by host H’s base sta tion— apply here (as well as to  the 

S IP P  case).

9.3 .4  D iscussion

B oth SPip and SIPP  handle m obility w ithout changes to the basic packet fo rm atting  rules. Indeed, 

w ith in  the context of the reversing rules, it is possible for an SPip or S IP P  host th a t  is not mobile 

and  th a t has no notion of m obility of other hosts to successfully com m unicate w ith a mobile host 

w ithou t going through a base station . This requires, however, th a t the mobile host sends a  packet 

to  the correspondent host when it gets a new address, so th a t the correspondent host can record 

the new address. If, on the other hand, the correspondent host is m obility -sm art, it could send a 

query to the mobile h o st’s base sta tion  to learn the new address.
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To handle mobility, CLNP m ust be modified to carry both  the initial address (for identification) 

and the new address (for routing) in the packet header.

In term s of control protocols to handle mobility (update and query messages, discovery messages, 

and so on), none of the three protocols (assuming th a t CLNP packets were modified to  handle 

m obility) has any particular advantage over the others.

9.4 D o m a in -L ev e l P o licy  R o u te

A do main-lev el policy route is a route whereby the p a th  is specified in term s of the high-level 

clusters th a t a  packet should go through, particularly backbones. The te rm  dom ain is used here 

(ra ther than , say, backbone) because this term  is commonly used when discussing policy routes 

(for instance, [11]). The policy routing discussed in this section is lim ited to  backbones.

There are two policy routing applications of in terest— provider selection^® and full policy route. 

Provider selection is where only the providers on either end of the p a th  are selected. These 

providers are either directly connected to the subscriber networks or reachable th rough a local- 

access provider.

A full policy route is where the source can specify a num ber of backbones on the p a th  from source 

to destination, not ju s t the providers for the source and destination.

The examples for this section are from the topology shown in Figure 9.6. Figure 9.6 shows two 

subscriber networks, S and V, and 10 backbones, A through D and M through P. All examples 

are for packets between hosts H and Z.

Note th a t b o th  subscriber networks are connected to  two providers each, B and  D in the case of 

subscriber netw ork S, and A and C in the case of subscriber netw ork V. Assum ing provider-rooted 

addressing, this gives the hosts in both networks two addresses each—one w ith a prefix from  one 

provider, and one with a prefix from the other provider.

9.4.1 Provider Selection

We are interested in the following scenarios:

1. Host H in subscriber netw ork S initiates an exchange w ith host Z in subscriber netw ork V. 

Packets leave subscriber network S via provider B and arrive a t subscriber network V via 

provider C. R eturn  packets take the symmetric reverse p a th  ( th a t is, they go through the 

same two providers).

^°The term s provider and backbone are used som ew hat interchangeably. In general, p rovider is u sed  w hen  

referring to the backbone in its  pro vider/subscriber role, and backbone is u sed  w hen  referring genericaUy to a 

top-level netw ork.
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Figure 9.6: Example Topology for Policy Exam ples

2. Assume scenario 1 is underway and packets have been exchanged. In the m iddle of the 

exchange, a different provider network is selected. (This would be desired if, for instance 

due to a failure, service was no longer available through provider B. This could also happen 

after the first packet is sent because the destination-end provider assum ed by the in itia tor 

is not the one preferred by the destination.) Now, packets should exit and  en ter subscriber 

network S via provider D (but still enter and exit subscriber netw ork V via provider C).

3. A new exchange is s ta rted  between hosts H and Z. As w ith scenario 1, packets leave subscriber 

network S via provider B and arrive at subscriber network V via provider C. R eturn  packets, 

however, take an asym m etric return path, leaving subscriber netw ork V via provider C but 

entering subscriber network S via provider D.

C L N P

CLNP can use the choice of destination (provider-rooted) address to  influence the destination- 

end provider chosen, as discussed in Section 3.4. CLNP can use the  source specific QoS field to 

influence the source-end provider chosen.
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QoS in CLNP is encoded as a single value. The first two b its of the value, however, indicate 

one of three classes of QoS—source specific, destination specific, and globally unique. If the  class 

is source specific, then the value is interpreted in conjunction w ith the source address (or, more 

commonly, a  source address prefix). T hat is, the value is concatenated w ith the source address 

to  create a com posite QoS value. Therefore, the same QoS value w ith different source addresses 

is in terpreted  differently. The destination specific value is in terp re ted  in conjunction w ith the 

destination  address. The globally unique value is not specific to  either source or destination  

address.

For source-end provider selection, the subscriber network assigns a source specific QoS value for 

each provider network. To choose the source-end provider, a  host inserts the QoS value m atching 

the provider chosen. The forwarding tables in the subscriber netw ork routers are form ed such th a t 

any packet w ith a source specific QoS value for a given provider gets forw arded to  th a t provider. 

If the destination  is not reachable through th a t provider, the packet m ay either be discarded or 

routed  through another provider (or routed to the selected provider to  be discarded there, for 

instance if default routing is in effect). If the chosen provider is reachable th rough a local-access 

provider (see Section 3.4.2), then the routers in the local-access provider m ust keep entries for all 

of its subscriber’s QoS values.

T hus, to send a packet according to scenario 1 above, host H forms the following header:

Source Addr Dest Addr SS QoS

B.S.J.H C.V.L.Z B

Host H chooses B.S.J.H  ra ther than  D.S.J.H as its source address so th a t re tu rn  packets will come 

via provider B. This packet is forwarded by routers in subscriber netw ork S by examining the SS 

QoS field (a value indicating “provider B”) in conjunction w ith the source addr. The routers in 

provider B do not have any forwarding information for SS QoS =  (B, B .S .J.H ), and  so route the 

packet on destination  address only. This causes the packet to  be routed  to  provider C, from  which 

it is routed to  subscriber network L and then to host Z.

To retu rn  packets on a sym m etric path  to host H, host Z reverses source and destination  address, 

and m ust also choose an SS QoS commiserate with the address it is using for itself. In other words, 

since the address it is using shows provider C, it picks an SS QoS th a t indicates provider C:

Source Addr Dest Addr SS QoS

C.V.L.Z B.S.J.H C

T his packet will exit subscriber network V through provider C (because of the  SS QoS), and  enter 

subscriber network S th rough  provider B (because of the destination  address B .S .J.H ). Note th a t 

hosts H and Z could have done this without any particular coordination  betw een them selves as 

long as 1) the providers chosen by host H are acceptable to  host Z, and 2) host Z assumes th a t 

host H w ants sym m etric routes.

For scenario 2, host H chooses a new SS QoS to cause packets to  be routed through  provider D:
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Source Addr Dest Addr SS QoS

B.S.J.H C.V.L.Z D

W hile this does cause packets to exit via provider D, re tu rn  packets from  host Z will continue to 

be formed as shown above, causing return  packets to  enter via provider B. Short of using loose 

source routing, there is no way th a t host Z can cause packets to  enter subscriber network S via 

provider D, because the addresses cannot be changed during an application association.

For scenario 3 above, host H forms the following packet:

Source Addr Dest Addr SS QoS

D.S.J.H C.V.L.Z B

Host Z tu rns this packet around the same way as the previous exam ple, producing:

Source Addr Dest Addr SS QoS

C.V.L.Z D.S.J.H C

Thus, host H can cause packets to return via a different provider from the one over which it was 

received.

S IP P

Like CLNP, SIPP uses provider-rooted addresses to route packets th rough the selected destination- 

end provider.

To route packets through the selected source-end provider, S IPP  uses a cluster address in the 

route sequence.

Assume simple (non-extended) addresses. Under scenario 1, host H form ats its packets as follows:

Source Addr Dest Addr Next Addr A ddrl

B.S.J.H B.O 1 C.V.L.Z

The cluster address B.O in the Dest Addr field causes the packet to  be routed  to  provider B. The 

border rou ter of provider B advances the route sequence, thus routing the packet to  C.V.L.Z. This 

address causes the packet to go to provider C, and from there to host Z.

To re tu rn  a packet, host Z reverses the route sequence, and adds a cluster address of C.O to  cause 

the packet to  be routed through provider C outgoing:

Source Addr Dest Addr Next Addr A ddrl Addr2

C.V.L.Z C.O 1 B.O B.S.J.H

Note th a t the cluster address of backbone B is in this route sequence. This cluster address is 

redundan t in th a t host H ’s address alone is sufficient to cause the packet to  be routed through 

backbone B. Host Z cannot, through inspection of the packet header alone, easily know th a t 

address B.O is in fact a cluster of B .S.J.H , and is therefore redundan t. This is because there is no
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inform ation in the addresses th a t indicate the location of the field boundaries of the  hierarchical 

address. This inform ation is passed around in routing algorithm s, bu t hosts are no t usually privy 

to this inform ation. In fact, even routers in subscriber network V are unlikely to  have such high- 

level address boundary inform ation, as they would most likely use default rou ting  to  exit the 

subscriber network.

In particu lar, a host cannot simply compare a cluster address and a  full (non-cluster) address and 

determ ine with certain ty  th a t the cluster address is for a cluster th a t the  full address is in. For 

instance, assume th a t the num erical value of B.S.J.H is the 64-bit address 12.34.56.78.9a.bc.de.f0, 

and th a t the prefix 12.34 represents backbone B. Thus the cluster address B.O is 12 .34.00.00.... 

Assume th a t there is another backbone Q whose backbone prefix is 12.34.56 (and  whose cluster 

address Q.O is 12 .34.56.00...). If a host receives a route sequence of Q.O:B.S.J.H, the prefix of 

bo th  addresses (up to  the O’s of Q.O) is the same. However, the  cluster address is obviously not 

redundan t inform ation.

W hen host H sends another packet to host Z, it reverses the packet received from  host Z, producing:

Source Addr Dest Addr Next Addr A ddrl Addr2

B.S.J.H B.O 1 C.O C.V.L.Z

Thus, bo th  cluster addresses are in all subsequent packets, even though one of them  is always 

redundant.

Now assume th a t scenario 2 begins. To cause packets to go through provider D, host H m ust a t 

a m inim um  replace the cluster address of provider B with th a t of provider D:

Source Addr Dest Addr Next Addr A ddrl Addr2

B.S.J.H D.O 1 C.O C.V.L.Z

This header does cause the packet to be forwarded through provider D outgoing. However, there 

is a  problem  w ith the retu rn  packets. The reversed packets from  host Z are fo rm atted  as:

Source Addr Dest Addr Next Addr A ddrl A ddr2

C.V.L.Z C.O 1 D.O B.S.J.H

These packets are routed through provider C to provider D. The border rou ter of provider D 

advances the route sequence, producing:

Source Addr Dest Addr Next Addr A ddrl Addr2

C.V.L.Z B.S.J.H 3 C.O D.O

W ith  classical forwarding inform ation, the border router of provider D would forw ard this packet 

to provider B. The packet, however, should not go through provider B. Instead, the  packet should 

be forwarded directly to subscriber S w ithout going through provider B.

One way to  solve this problem  is by having subscriber S advertise its subscriber prefix from 

provider B to  provider D. Thus, routers in provider D would have forw arding table entries for
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prefix B.S.*. .. (as well as for B .* ... )

This solution has two problems. F irst, it can result in scaling problem s in provider D. If provider 

D has a large num ber of subscribers, it can internally cluster those subscribers so th a t its routers 

do not require per-subscriber forwarding inform ation except for the subscribers in their cluster. 

If subscribers advertise subscriber prefixes assigned from other backbones, these prefixes will not 

in general fit in to  provider D ’s internal clustering scheme, and  so routers in provider D m ust keep 

per-subscriber inform ation.

T he second problem  is th a t host H has no (simple) way of knowing if prefix B .S .* ... has been 

advertised to provider D or not. Host H therefore does not really know if it can form  the above 

route sequence or not. Thus, host H m ust instead generate the following route sequence:

Source Addr Dest Addr Next Addr A ddrl A ddr2 A ddr3

B.S.J.H D.O 2 D.S.O C.O C.V.L.Z

T his is reversed by host Z, producing:

Source Addr Dest Addr Next Addr A ddrl A ddr2 Addr3

C.V.L.Z C.O 1 D.O D.S.O B.S.J.H

Thus, when the border router of provider D receives the packet and advances the  route sequence, 

it produces:

Source Addr Dest Addr Next Addr A ddrl A ddr2 A ddr3

C.V.L.Z D.S.O 3 C.O D.O B.S.J.H

T his packet gets forwarded on address D.S.O, which causes it to  go to  subscriber S. The border 

rou ter of subscriber S advances the route sequence to address B .S.J.H , which causes the packet to 

go directly to host H.

The th ird  scenario requires some kind of coordination between the two hosts. T h a t is, simple 

reversal of host H ’s packets will not result in the right behavior.

For instance, host H could form at its packets as follows:

Source Addr Dest Addr Next Addr A ddrl

D .S.J.H B.O 1 C.V.L.Z

The cluster address B.O will cause packets to exit via provider B. The reversed packet is:

Source Addr Dest Addr Next Addr A ddrl A ddr2

C.V.L.Z C.O 1 B.O D .S.J.H

This packet will be routed to provider B before being routed to  provider D, which is no t the 

desired behavior. Instead, host Z requires specific knowledge th a t host H does no t w ant re tu rn  

packets to  go through provider B. Then host Z could remove the  cluster address B.O from  the 

retu rned  route sequence.
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S P ip

Under scenario 1, host H formats packets as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

H Z 3 3J 9S I B 1C 9V 3L

The only difference between this packet and the packets for the  unicast exam ple in Section 9.1.5 

is th a t the Active RSE is set to be the top-level RSE in the source address sequence. This causes 

the packet to  be routed  through provider B on the way to  provider C.

R eturn  packets are form atted  as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

Z H 3 3L 9V 1C IB 9S 31

W hen, in scenario 2, host H decides to route its packets th rough  provider D, it simply changes 

the th ird  RSE as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSES RSE6

H Z 3 3J 9S I D 1C 9V 3L

For scenario 3, host H forms packets as follows:

SEID DEID Active RSE Num  Source RSE R SEl 2 3 4 5 6 7

H Z 4 3 3J 9S IB I D 1C 9V 3L

Note th a t the above header shows the Num Source RSE set to  po in t to  RSE3 (IB , the top-level 

RSE of the source address sequence). (Previous SPip headers have not bo thered  to  show the 

Num  Source RSE.) We show it this time to underscore the fact th a t host Z ’s default behavior on 

re turn ing  this packet is to use ju s t the RSEs indicated by the N um  Source RSE field—th a t is, the 

first 3 RSEs. Thus, the 4th RSE (ID ) would not be included in the re tu rn  packet:

SEID DEID Active RSE RSEl RSE2 RSE3 RSE4 RSES RSE6

Z H 3 3L 9V 1C IB 9S 31

This packet does not go through provider D in the return path .

D isc u ss io n

CLNP is surprisingly (to me) adept at handling provider selection. The only th ing it can not do 

is change providers after establishing an application association. CLN P hosts m ust, however, be 

configured w ith appropriate SSQoS information.

B oth SIPP  and SPip handle scenarios 1 and 2, though SPip m ore sim ply th an  SIPP. For SIPP 

to  do provider selection, the host m ust learn the cluster address of its providers. As the provider 

cluster address is not som ething otherwise needed by the host, some additional configuration or 

discovery is required to do provider selection. Discovery is com plicated by the fact th a t the only
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system s th a t naturally  know the provider cluster address are the subscriber border routers, which 

are not directly connected to hosts.

Ironically, CLNP can do scenario 3 while SIPP cannot— at least, not w ithout coordination between 

the two hosts. (SPip does scenario 3 as well.) On the o ther hand , since w ith CLN P the provider 

cannot be changed after the first packet has been sent, coordination is required betw een the two 

hosts to  make sure th a t the in itiating host knows which destination-end  provider the receiving 

host desires.

9.4,2 Full P o licy  R oute

In this section, we describe how the three protocols can cause packets from  host H to  host Z to 

go through backbones B, N, Q, R, and C.

C L N P

CLNP is not capable of forming the above policy route.

If C L N P’s loose source route bug were fixed, then CLNP could approxim ate the policy route by 

targeting  individual routers in each of the desired backbones. Host Z, however, could not reverse 

the policy route, so the re tu rn  path  would be asymmetric.

S I P P

Assume simple (non-extended) addresses. To send a packet along the above policy route, host H 

forms the following packet:

Source Addr Dest Addr Next Addr A ddrl Addr2 A ddr3 A ddr4 AddrS

B.S.J.H B.O 1 N.O Q.O R.O C.O C.V.L.Z

Packets reversed by host Z would follow the reverse path .

S P ip

To send a packet along the above policy route, host H forms the following packet:

SEID DEID Active RSE R SEl 2 3 4 5 6 7 8 9

H Z 3 3J 9S IB IN IQ IR 1C 9V 3L

Packets reversed by host Z would follow the reverse path.
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9.5 H o st  A u to -A d d r e ss  C onfiguration

In this section, we consider the capability of the internet protocol to support plug-and-play oper­

ation. Specifically, we are in terested  in considering the am ount of m anual configuration necessary 

for hosts to  bring up the in ternet protocol itself. We do not consider rou ters because routers 

require a certain  am ount of configuration, for instance for the routing protocols, as a m a tte r of 

course. Thus, auto-configuration of addresses in routers is not particu larly  useful (in addition to  

being much harder).

T here are two kinds of auto-address configuration—serverless and server-based. W ith  serverless 

auto-configuration, a host can configure a complete, globally routable in ternet address w ithout 

talking to a server on an individual basis. By individual basis, we m ean th a t any server th a t might 

be involved does not give different hosts different inform ation.

For instance, a  common form of auto-configuration (indeed, the form  we are in terested  in here) is 

where a host listens to a router advertisem ent of the subnet prefix, and appends its own host ID, 

thus creating its address. In this case, the router is a kind of server, bu t its prefix advertisem ent 

is not dependent on individual hosts. Thus, this is server-less auto-configuration.

All three protocols can do server-less auto-address configuration, and all roughly the same way. 

T h a t is, each protocol allows the host to append its IEEE-802 address (either the  one on its 

interface card, or the one associated with its CPU) to the prefix. The prefix is globally routable 

to  the subnet, and the IEEE-802 address is guaranteed to be unique on the subnet^^. Thus, the 

resulting address is globally unique and routable.

In the case of CLNP, the IEEE-802 address is positioned in the ID portion  of the  CLN P address.

In the case of SIPP, the local-use address form at is used. To form  a globally rou tab le  SIPP 

address using a local-use address requires an address sequence. T his increases packet header 

size and reduces forwarding perform ance (see Section 10.1). To avoid using an address sequence, 

a  SIPP host could form a local-use address only for the purpose of exchanging packets with an 

address server, which then gives it a single, globally routable address. This “server-based” address 

configuration, however, is more complex

In the case of SPip, the standard  unicast EID is formed using an IEEE-802 address. T he address 

sequence is learned from the router advertisem ent.

T h is is true if  the address is of the “universally  adm inistered” class, and if  the vendor assign ing  the address 

has done it properly.
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9.6 T y p e -o f -Service  (ToS) Field

This section describes how the three protocols can do ToS Field style routing in the IP  sense. 

T h a t is, where there are a small number of service types th a t influence the route the  packet takes. 

In the case of IP, the ToS Field may also influence how the packet is internally  queued, or how 

it is transm itted  over the link. This aspect of the ToS Field is outside the scope of rou ting  and 

addressing, and is not considered here. In IP, the available types are precedence, delay, th roughput, 

and reliability.

9.6.1 C L N P

C L N P ’s globally unique QoS Field is in many ways similar to  IP ’s ToS Field. T h a t is, a  set of 

values are defined to provide a small number of well-known service types. In CLNP, those types 

are sequencing, delay, cost, and residual error probability.

As shown above in the context of provider selection (Section 9.4.1), CLN P can also use its source 

specific and destination specific QoS param eters to define additional types of service.

9.6.2 SIP P

SIPP has no equivalent to IP ’s ToS Field. Note th a t this is an in tentional design decision on the 

p a rt of the S IPP  designers. The is because ToS Field, especially in the rou ting  sense, has not 

been proven to be a useful tool in the internet. Since every feature has a cost, S IP P  is careful not 

to include features whose benefit is marginal.

SIPP, on the other hand, does have encodings for different traffic classes, plus a flow identifier. 

The traffic class inform ation is only for the purpose of determ ining how to queue the packet in a 

router, not for determ ining how to route the packet. The flow identifier could be used for routing, 

though the current SIPP specifications do not discuss this. As Section 2.2.6 discusses, the flow 

identifier does not contain routing inform ation per se. R ather, it is a  short hand  for other routing 

inform ation already in the packet.

9.6.3 SPip

The 8-bit P a th  Modifier can be used for ToS Field routing in SPip. T he low-order b it determ ines 

w hether the corresponding RSID is normal form or reverse-path form. The rem aining 7 b its are 

free for future assignm ent. One possible future assignment is IP-style ToS Field.

Since each RSE has a P a th  Modifier field, the ToS Field could be set separately  for each RSE—for 

instance, for each level of the hierarchy. Normally, however, all of the  P a th  M odifiers for a  given 

address sequence would be set to  the same value.
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Note th a t the 7 free bits of the P a th  Modifier can be set on reverse-path form  RSEs as well as on 

norm al form. Depending on how the reverse paths were calculated, this could have the effect of 

forwarding a m ulticast packet over a tree appropriate to the requested ToS.

9.7  E m b ed d e d  Link-Layer A d d resses

C hapter 5 discusses the use of em bedded link-layer addresses. O f the three protocols, only CLNP 

explicitly encodes link-layer addresses in its header. However, as described in chap ter 5, the way 

they are used in CLNP is faulty  and limited.

An a lternative approach is to include the link-layer address(es) in an options field.

This could work with SPip as follows. An options field is included in the header th a t  contains the 

link-layer addresses for each subnetw ork th a t requires it ( th a t is, for each subnetw ork for which 

the link-layer address lookup is too expensive or impossible).

The link-layer addresses in the options field are labeled to indicate which RSID each link-layer 

address applies to. T h a t is, each address in the options field is of the form:

RSE Number Link-layer Addr

Since each RSID refers to only one subnet, it always clear where the link-layer address applies. 

Thus, the problem  th a t exists w ith CLNP, where it is not necessarily clear which subnet the 

link-layer address refers to, is avoided.

W hen a packet arrives a t a router th a t does not know the appropria te  link-layer address for the 

next hop, the router looks into the options field and either ex tracts the appropria te  link-layer 

address, or discovers th a t the link-layer address is not listed.

If  the link layer address is listed, the router can cache it for fu ture use. Thus, it does no t have the 

processing overhead of looking into the options field on every packet. If the address is not listed, 

the router can send an error report to the source indicating as much, and subsequent packets from  

the source can give the link-layer address, or indicate th a t it is no t known, or select a  different 

route (for instance by using a different address). Since the link-layer address can be cached a t 

routers and requested when needed, the host need not include it in every packet.

T his approach can also be used by S IPP  and CLNP. In this case, the list of link-layer addresses 

in the option is labeled with an address prefix rather than  w ith an RSE, so th a t the rou ter knows 

which link-layer address it should use.
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9.8 N o d e -L e v e l  Source R o u te

By node level source route, we mean a source route th a t identifies individual nodes (hosts or 

routers) th a t the packet should visit. We are interested in two cases— one where the returned 

packet follows the (reverse) source route, and one where it does not.

9.8.1 C L N P

IP  and CLNP bo th  have source route options th a t operate a t (and only a t) the  node level. In 

neither case is the receiving host able to, in practice, re tu rn  the packet along the reverse path . 

T his is not because the reverse path  information is not in the header— it is. It is instead because 

the specifications do not indicate th a t hosts should reverse the source route.

9.8.2 SIP P

S IP P ’s route sequence can serve as a  source route option. If S IPP  addresses are non-extended, 

then  node-level source routing in SIPP  works similar to IP. T h a t is, each address in the  source 

route fully identifies a node, and the source route is advanced each tim e an identified node is 

reached.

The difference between SIPP and IP is th a t the host receiving the source route will reverse it and 

use it for re turn  packets. If this routing of the return packets is not the desired behavior, or if 

the SIPP addresses are extended, then the route sequence of SIPP cannot be used for node-level 

source routing. Instead, m ultiple encapsulations of the SIPP  header are required.

The problem  w ith using extended addresses is as follows. Assume th a t  a  packet from  host H to 

host Z should visit routers A, B, and C on the way. Assume th a t all addresses are extended, such 

th a t system  x has address sequence xl:xO. If a route sequence were used to  route the packet, the 

route sequence would be H0:H1:A1:A0:B1:B0:C1:C0:Z1:Z0, with A1 as the in itial active address 

( th a t is, it would initially appear in the Dest Addr field, and AO would be pointed  to  by the Next 

A ddr field). The couplet A1:A0 would route the packet to rou ter A, the  next couplet Bl:BO would 

route the packet to router B, and so on.

W hen host Z reverses this sequence, however, it produces Z0:Z1:C0;C1:B0:B1:A0:A1:H1:H0, with 

the initial active address being CO. This is broken, because in the  general case it is impossible to 

route a packet from  host Z to “CO” (it m ust be routed to “C l” first).

T hus, to do node-level source routing whereby the return  packet does not follow the reverse path , 

or where extended addresses are used, each node in the route m ust be encoded in a  separate SIPP 

header, and the headers encapsulated in sequence.

Thus, for the example above, the first (outerm ost) header contains the route sequence H0:H1:C1:C0,
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the next header the sequence H0:H1;B1:B0, and so on. The higher-layer protocol indicator (Pay­

load Type in SIPP, Protocol in IP) indicates SIPP in each header except the last. Thus, when for 

instance router C received the first header, it decapsulates it and  subm its the  next header to  the 

S IPP  layer. This causes the packet to be routed to host B, which does the same.

W hen host Z receives the packet, the single header has a route sequence of H0:H1:Z1:Z0. All of 

the  source route inform ation is lost. Host Z reverses this header to  send subsequent packets to  H.

9.8.3 SPip

An SPip host can do node-level source routes, both  where the re tu rn  packets follow the reverse 

p a th  and where they do not. In order to do node-level source routing, however, a  node-level RSID 

m ust be assigned to each node th a t the packet will visit. In all bu t one of the examples up to now 

(two-phase m ulticast), the node-level information is the EID itself. Assigning node-level RSEs 

is an ex tra  configuration task not otherwise needed. Thus, the assignm ent of node-level RSEs is 

unlikely to happen in practice.

The technique of header encapsulation shown for SIPP can be used w ith SPip when a  node-level 

source route is needed b u t node-level RSEs have not been assigned. In w hat follows, we assume 

th a t the  node-level RSEs have been assigned.

In addition, the forwarding tables m ust be set up such th a t the  node-level RSE is checked for by 

the router. For instance, say router a of Figure 9.1 is given a node-level RSE of value Oa so th a t it 

can be the target of a node-level source route. It would configure its (classical) forwarding table 

as follows. Note th a t these forwarding tables show the effect of the Last RSE b it by pu ttin g  a 

or a  ‘o’ before each D estination entry. A ‘4-’ indicates th a t the Last RSE b it is set ( th a t is, it is 

the last RSE in the route sequence).

Root RSETable for router a

D estination Next Hop T-tag

o9S Root RSETable V
o3I subnet I V
o3K subnet K \ /
o3J RSETable 1 V
+ 3 J Main EIDTable V
oQa Root RSETable \ /

odefault router c \ /
4-default Main EIDTable V
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RSETable 1 for router a

D estination Next Hop T-tag

oOa Root RSETable y
default Main EIDTable y

Note th a t one difference between router a ’s Root RSETable here and  the one shown in Table 9.2 

is the addition of the + 3J entry^^. The Oa entry in RSETable 1 indicates th a t router a should 

go back to the Root RSETable with the next RSE (presum ably the top-level RSE of the  next 

node in the source route). The default entry  indicates what the  -|-3J en try  would otherwise have 

indicated— th a t the M ain EIDTable should be examined.

If there are o ther routers on the same LAN, the node-level entries for these rou ters would also 

appear in rou ter a ’s RSETable 1.

Assume th a t rou ter a receives a packet w ith a node-level source route. A packet is received with 

an active RSE of o3J. The next two RSEs are oOa and olB . T h a t is, the  top-level RSE of the next 

node is IB.

Router a accesses its Root RSETable with value o3J. This points to R SETable 1, which is accessed 

w ith oOa. This points back to the Root RSETable, which is accessed w ith  o lB . T his m atches on 

the default entry, and the packet is routed to backbone B.

Now, assume th a t router a receives a packet destined for it, and w ith the node-level RSE as paxt 

of router a ’s address sequence. In this case, the packet is received w ith an active RSE of o3J, bu t 

the next and final RSE is + 0 a  (' +  ’ because this is the last RSE in the route sequence).

This tim e, router a accesses its Root RSETable with value o3J, which, as before, points to 

RSETable 1. RSETable 1 is accessed with +0a. This m atches on the -fdefau lt entry, which 

points to  the Main EIDTable. This is accessed with the EID, which is rou ter a ’s, and rou ter a 

accepts the packet.

The above example illustrates the need for the Last RSE flag.

Note th a t a host could remove the node-level RSE from the address sequence when sending a 

packet to router a  (as a destination). Since the EID identifies the node, the node-level RSE is 

not necessary. Since the node-level RSE always has level 0, the sending host knows th a t it can 

elim inate this RSE from the address sequence.

Next we examine the route sequence form at for node-level source routes.

F irst consider the case where packets do not follow the reverse path . Assume the scenario from 

S IPP  above, where a packet visits routers A, B, and C on the p a th  from  host H to  host Z. Assume 

th a t the address sequences of hosts H and Z are 1H;9H:3H and 1Z:9Z:3Z respectively, and the the

A ctually, the 3 J entry in  the forwarding table of Table 9.2, had  we b een  in d ica tin g  the Last R SE  b it sta tus, 

w ould  have been  for -f3 J , since the expectation  in that table is to retrieve the E ID .
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address sequence of router x is lx;9x:3x:0x, where Ox is the node-level RSID.

The route sequence for the packet is:

3H:9H:1H : 1A:9A:3A:0A : 1B:9B:3B:0B : 1C:9C:3C:0C : 1Z:9Z:3Z

The Active RSE is lA , and the Num Source RSE is IH  (the spaces are added in the route sequence 

ju st to make it easier to read, and have no special m eaning). The packet follows the route sequence, 

visiting routers A, B, and C as a result.

W hen host Z receives the packet, it reverses only the address sequence of host H. The rest is 

discarded because the Num Source RSE did not include them .

Now assume the same path , bu t where the re tu rn  packets m ust take the reverse path . The route 

sequence, covering two lines of tex t, is form atted  as follows:

3H:9H:1H : 0A:3A:9A;1A : 0B:3B:9B:1B : 0C:3C:9C:1C :

1A:9A:3A:0A : 1B:9B:3B:0B : 1C:9C:3C:0C : 1Z:9Z:3Z

The N um  Source RSE field is set to  15. T h a t is, it includes everything in the first line. The Active 

RSE field is set to 16— the beginning of the second line.

W hen host Z reverses this packet, it reverses w hat is on the first line above, resulting  in:

1C:9C:3C:0C : 1B:9B:3B:0B : 1A:9A:3A:0A : 1H:9H:3H

Host Z’s own address is prepended to this, and the resulting packet is routed through routers C, 

B, and A— the reverse path .

9.9 A n y c a st  G roup  A d d ress in g

We are interested in bo th  one- and two-phase anycast.

N either CLNP nor S IPP  have defined a separate anycast address space, though bo th  could. While 

perhaps preferable, it is not necessary th a t anycast addresses come from a  separate  address space. 

Any unicast address can be declared an anycast address.

O n e -p h a s e  A n y c a s t

For CLNP and SIPP, there is no difference in the form at of the packet header between (single­

phase) anycast and unicast. For SPip, anycast addresses do not require an RSE address sequence, 

so SPip anycast packets have only the source address sequence in the route sequence.

There is essentially no difference between the way routers handle anycast and  unicast. In both
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cases, the destination address/E ID  is exam ined and forwarded according to  w hat is for all practical 

purposes a unicast forwarding table entry.

SPip anycast addresses have a scope field. If SIPP defines anycast, then it could define them  

similar to m ulticast, and therefore get scoping. The issue of how to  set the scope is the  same for 

anycast as it is for m ulticast.

T w o -p h a se  A n y c a s t

W ith  SPip, two-phase anycast is achieved by simply p u tting  the relevant (unicast) RSIDs in the 

route sequence. For instance, if the desired service is th a t the packet goes unicast to  a  subscriber 

network and then  anycast to one of the group’s hosts, the destination  address sequence contains 

the RSIDs up to  and including the subscriber-level RSID. Thus, two-phase anycast destination 

inform ation contains an anycast EID and an address sequence, and  a source host form ats the 

header exactly as it does a unicast address, w ith the exception th a t it may have to  fill in the 

scope field of the anycast EID. If the target of the unicast phase is an individual host, then the 

host-level RSID is included in the address sequence.

W ith  SIPP and CLNP, there are two ways to  do a two-phase anycast. One is to  define the low- 

order part of an otherwise unicast address as anycast. For instance, if the desired service is th a t of 

the last paragraph , unicast to a subscriber network and then  anycast to  one of the  g roup’s hosts, 

then  the provider and subscriber IDs in the address could be as unicast, bu t the subnet ID and 

after could be replaced with an anycast ID.

The other way is using the source route m echanism, similar to how tw o-phase m ulticast is done. 

T h a t is. the  first address in the source route brings the packet unicast to a  host, in the case of 

CLN P or S IPP , or a border router, in the case of SIPP cluster addresses. (The com m ents m ade 

above regarding the CLNP partia l source route bug of course still apply.)

9 .10  S u m m a ry

Table 9.4 sum m arizes the results of this C hapter. Those boxes m arked w ith  ^  indicate th a t 

the capability can be supported  by the protocol. Those boxes m arked w ith % ind icate  th a t the 

capability can be supported  but w ith m ajor lim itations. Blank boxes m ean th a t the  capability 

cannot be supported  by the protocol.

Note that one form  of m ulticast (two-phase w ith source-tree) and full policy rou tes are shown in 

the ''useful” section of Table 9.4, even though the basic function (m ulticast and  policy routing  

respectively) are in the “required” section.
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Table 9.4; Summary of Routing and Addressing Capabilities

Capability CLNP SIPP SPip

required

Big Enough Hierarchical Unicast Addressing

Classical Forwarding Information

Hole-Punching Forwarding Inform ation

M ulticast G roup Addressing

Shared-Tree y V V

Source-Tree V V V
Scoped % y V
Well-Known % y ^ /
Tw o-Phase/Shared-Tree y

M obility y y
Domain-Level Policy Route

Provider Selection V
Host Auto-A ddress Assignment y V

useful

Tw o-Phase/Source-Tree M ulticast y
Full Policy Route y y
Type-of-Service Field y y
Em bedded Link-Layer Address %

Node-Level Source Route

W ith  Reversing

W ithout Reversing /
A nycast Group Addressing \ / y y
A nycast/T w o-Phase V
 ̂ Not with non-extended addresses 

 ̂ Requires ex tra  router configuration

 ̂ S trict source route only, unless encapsulation technique used 

Not w ith extended addressing, unless encapsulation technique used 

 ̂ Using hierarchical anycast address only 

® W ith  minor lim itations

144



C hapter 10

C osts  o f  SPip, SIPP, and  C L N P

In this chapter, we discuss the relative costs of SPip, SIPP, and CLNP, in term s of processing 

cost, header size, address assignment complexity, and control protocol complexity.

10.1 P ro c ess in g  C ost

Processing cost is difficult to analyze comprehensively and in detail. Processing cost differs from 

im plem entation to im plem entation, and within a given im plem entation , processing cost is in­

fluenced by m any factors— the mix of traffic (influences caching strategies), forw arding table size 

(influences forwarding table lookup time or CAM (Content A ddressable M emory) size), and packet 

form at (options are slower).

There are two basic elements of processing cost; processing speed and  hardw are complexity. These 

two elem ents can be traded off—reductions in processing speed generally require more complex 

hardw are. None the less, one protocol can have lower overall cost th an  another, in term s of speed 

or hardw are complexity or some combination of the two, as shown in Figure 10.1.

In spite of the difficulty of precise and comprehensive analysis of processing cost, we can make 

some useful generalizations. First, we can place a lower bound on processing speed. T h a t is, a 

packet cannot be processed faster than the time it takes for the  b its relevant to  the forwarding 

decision to arrive on the wire.

This lower bound is of practical consequence, as it is desirable (and often achievable) for a router 

to transm it a  received packet as soon as possible, thus minim izing sw itching latency. W ith  cut- 

through switching ( th a t is, starting  the transmission of a packet before the en tire  packet is re­

ceived [105, 4, 1]), the  lowest possible switching latency is the tim e it takes for the  relevant bits 

to arrive on the wire.

The second generalization we can make is th a t processing cost is d irectly  related  (as a first ap-
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proxim ation) to  the num ber of memory accesses (reads and w rites) required, by  a  trad itional 

C P U /m em ory  hardw are architecture, to process a packet. This analysis includes b o th  accesses to 

the packet header and to other memory, such as a forwarding table. The following argum ents to 

back up this claim  are not at all rigorous, but defensible none the less.

It is fairly well established th a t the most expensive aspect of packet processing is m em ory trans­

fers [24, 23, 77, 91]. W hile memory transfer overhead is worst in the case of copying whole packets, 

the fact is th a t any memory access is expensive relative to o ther processor operations, especially 

when the access is across a shared bus.

In the case of packet processing, it is possible to reduce the cost of accesses w ith fast, local, dual­

ported  memory. This, however, is increasing the complexity of hardw are. So, either way, there is 

an increase in processing “cost” .

In general the cost of hardw are im plem entation is roughly related to  the num ber of memory 

accesses. For instance, if a  packet header is large, and most of the b its of the header are relevant 

to the forwarding process, then this can be reflected either as a  lot of accesses or as a  “wide” 

hardw are structure . If a given field read from a header requires a lot of processing, this can 

result in a lot of accesses to memory, for instance to do a forw arding table lookup, or in a “deep” 

hardw are structu re . For instance, it is shown in [70] th a t more hardw are is required for a  best- 

m atch w ith default forwarding table search than for th a t of an any-m atch search, for the same 

size address. T h a t is, the w idth of the hardware structu re  (address size) is the  sam e while the 

dep th  is greater.

A final argum ent supporting the count of memory accesses to  com pare perform ance derives from 

the fact th a t we are doing com parative performance m easurem ents ra ther th an  absolute. We can 

assume th a t every read has associated with it a small am ount of processing (shift, m ask, com pare, 

etc.). It would make no sense to read something w ithout acting on it in some way. A nd, in ternet
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packet processing does not require heavy-duty processing operations, such as a  divide operation.

W hile some memory accesses will have more processing associated w ith them  th an  others, we can 

assume as a first approxim ation th a t on average the ex tra  processing is the same for all memory 

accesses. Thus, processing is ju s t a small (probably less th an  two) m ultiplier on the num ber of 

memory accesses, which can be ignored because roughly the same m ultiplier applies to the memory 

accesses of each protocol.

Based on the above observations, we settle here for using a simple count of mem ory accesses to 

approxim ate processing cost for the three protocols. We assum e a  processor w ith a native word 

length of 64 bits. Thus, up to 64 bits can be read in a  single read. However, we consider reading 

or w riting any single field to be a single read or write, even though m ultiple such fields m ight be 

otherwise accessible w ith a  single 64-bit read.

Even with the simplification of counting only memory accesses, the analysis of processing cost is 

still com plicated. The num ber of accesses depends on a  num ber of variables, for instance w hether 

the forwarding cache is hit or missed, and for SIPP and CLNP, w hether the forw arding table is 

large or small.

Since a cache lookup and best-m atch forwarding table lookup are common to  a num ber of routing 

cabilities, we first analyze them  separately, followed by the analysis of each rou ting  cability (under 

cache miss conditions).

10.1.1 Cache Hits

The caching of forwarding table lookup results is a common practice am ong routers [93, 47]. 

Typical cache size is m ultiple hundreds of entries. W hen a packet is received, the  cache is indexed 

w ith the destination address, using a CAM or a hash. If there is a  cache h it, the forwarding 

inform ation is ex tracted  and the packet forwarded. If there is a  miss, a  forw arding table lookup 

is done, and the result is w ritten  into the cache.

In the following three subsections, the caching strategy for each protocol is described, along w ith 

its cost.

C L N P

At a  m inim um , CLNP indexes the cache w ith the destination NSAP address. T his stra tegy  allows 

CLNP to cache unicast and shared-tree m ulticast forwarding table lookups, b u t not source-tree 

m ulticast lookups. Source-tree m ulticast, however, is in the fu ture likely to be a significant and 

perhaps even dom inant traffic type. Thus, we should consider two caching strateg ies for C LN P— 

one where only the destination  address is used, and one where bo th  source and destination  address 

are used.
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For the destination  address only caching strategy, we assume the following algorithm . The low 

order p a rt of the destination  NSAP address is read and used to com pute the hash value (the low 

order p a rt is m ost effective for this because it differs most between different addresses). If this 

results in a hit, then the rest of the NSAP address is read and com pared against the  cache entry.

To read the low order p a rt of the destination NSAP address the router m ust first locate it by 

reading the D estination Address Length Indicator field. So, the to ta l num ber of m em ory accesses 

are as follows:

1. Read D estination Address Length Indicator 1 access

2. Read low-order part of Dest Addr 1 access

3. Read low-order part of address in cache entry 1 access

4. Read high-order parts of Dest Addr 2 accesses

5. Read high-order parts of address in cache 2 accesses

Totals: 7 accesses

3 for miss (min)

O f course, there are other memory accesses as well, such as retrieving the po in ter to  the FIB 

(Forw arding Inform ation Base), accessing the FIB, and so on. B ut these are common to all of the 

protocols and so need not be counted for comparison.

The fastest possible destination-only cache lookup time is 30 bytes a t wire speed— 10 bytes for 

the beginning of the header, and 20 bytes for the destination address^.

The caching algorithm  for combined source/destination caching requires a  decision po in t— where 

the router determ ines if the lookup requires the source address. T his is necessary because the 

source address should not be part of the compare if it was not used for the original lookup. This 

avoids caching per source/ destination pair (versus ju st per destination) for unicast and shared-tree 

m ulticast packets.

Thus, there are two caches, one for dest-only and one for source/dest com bined. The dest-only 

cache is always accessed first to determ ine if the combined source/dest cache should be accessed.

Thus, the initial p a rt of the cache lookup is:

1. Read D estination Address Length Indicator 1 access

2. Read low-order part of Dest Addr 1 access

3. Read “which-cache” indicator 1 access

The which-cache indicator can be the same word as the low-order p a rt of the address, bu t w ith a 

special value. If the which-cache indicator indicates dest-only cache,^ then  the rem ainder of the 

lookup is as described above, and costs 7 accesses. Otherwise, the following additional steps are

^The d estin a tion  address can be sm aller, but in practice it is alm ost alw ays 20 b ytes.
^N ote that it is n o t adequate to only determ ine that the destin ation  address is a m u lticast address to  decide to  

use the  so u rce /d est cache. T h is is because the m ulticast address m ight be for a shared-tree, in  w h ich  the d est-on ly  

cache suffices.
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executed:

4. Read Source Address Length Indicator 1 access

5. Read low-order p a rt of Source Addr 1 access

6. Read low-order p a rt of source address in s /d  cache entry 1 access

7. Read low-order part of dest address in s /d  cache 1 access

8. Read high-order parts of Dest Addr 2 accesses

9. Read high-order parts of Source Addr 2 accesses

10. Read high-order parts of addresses in s /d  cache 4 accesses

Totals: 15 accesses for h it

6 for miss (m in)

The fastest possible lookup for combined source/destination caching is 51 bytes a t wire speed.

Note th a t these caching algorithm s do not allow caching of packets th a t have ToS or source 

routing. O f the “required” capabilities, this eliminates the ability  of caching to  be used with 

provider selection, which uses the ToS facility. If the Length Indicator field indicates the  presence 

of ToS or source routing, then the cache is not searched.

The cache perform ance of CLNP is summarized in the following table:

CLNP Cache Performance

Cache M ethod Cache Hit 

(accesses)

Cache Miss 

(accesses)

Best Possible 

(bytes a t wire speed)

D estination-only caching 7 3 30

Source/D est caching, source not required 7 3 30

Source/D est caching, source required 15 6 51

S I P P

SIPP  caching is similar to CLNP caching in th a t it can either ju s t cache on the Dest A ddr, 

in which case the cache can not be used with source-tree m ulticast, or it can cache on source 

address inform ation as well. The strategy in the la tte r case would be the  same as C LN P—first 

access a dest-only cache using the Dest Addr field of the packet, and  then  determ ine if the source 

inform ation should be examined. As w ith CLNP above, we consider bo th  cases.

D estination-only caching requires only one read of the Dest A ddr field, and one read  to  the  memory 

location holding the cache— two accesses total. A cache miss also costs two accesses.

Note, however, th a t the result of the cache lookup may be to advance the route sequence. In this 

case, the advance is done, and the cache lookup is done all over again using the new Dest Addr.

The cost of advancing the route header in SIPP is as follows:

149



1. Read Payload Type field 1 access

2. Read and write Next Addr field 2 accesses

3. Read Num Addrs field 1 access

4. Read and write A ddr in route sequence 2 accesses

5. W rite Dest A ddr field 1 access

Total: 7 accesses

T his first read, to  the Payload Type field, is to insure th a t the R outing Header is the one imme­

diately following the SIPP header.

So, the to ta l cost of destination-only caching with SIPP is 2 accesses w ith  no route sequence 

advance, 11 accesses w ith one route sequence advance, 19 accesses w ith two route  sequence ad­

vances, and so on. Even one route sequence advance, however, is the m inority case, and two route 

sequence advances should alm ost never happen.

T he same stra tegy  for CLNP described above can be used for S IP P — th a t is, the destination  

address is exam ined first to determ ine which cache, the dest-only cache or the source/dest cache, 

m ust be used. For the source/dest cache, the extended address m ust be exam ined in order of 

high-order p a rt first^.

To determ ine which cache is used requires two memory accesses— a read of the  destination  address 

in the S IP P  header, and a read of the which-cache indicator. If source/dest caching is indicated, 

then  at least 3 more memory accesses are required—read the source address of the  packet, read 

the source address of the cache, and read the destination address of the cache— for a to ta l of 5 

accesses.

In alm ost all cases, this suffices for a cache hit. It does not in the case where 1) the host is 

using extended addressing, 2) the  host is transm itting  packets to  the same group using m ultiple 

source extended addresses, and 3) the router in question is on m ultiple of the  resulting trees. If 

th is is the case, then  the source/dest cache will indicate th a t more of the source address m ust be 

exam ined. This requires three more memory accesses— one to insure th a t the Source R oute is in 

the expected location, one to  read the upper address of the extended address, and  one to  read the 

corresponding address in the source/dest cache.

Given the ra rity  of this situation , we assume th a t the source/dest cache requires a  to ta l of 5 

accesses. Note th a t if the source/dest cache is used, then it is not necessary to  advance the route 

sequence, since the route sequence is not advanced with m ulticast (see Section 9.2.2).

T he fastest possible forwarding speed of cached SIPP again depends on w hether or not the higher 

addresses of the source extended address m ust be examined. Again, we assum e the  common case 

where it is not.

thank S teve D eering for p o in tin g  this out to  m e. Initially I thou gh t th a t the Source A ddr field alone was 

sufficient, a lthou gh  this error did not change the analysis results for the com m on case.
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T hus, the SIPP  packet can commonly be forwarded as soon as the  destination address is received— 

24 bytes a t wire speed. If a  route sequence advance takes place, then the fastest forw arding speed 

depends on where in the route sequence the subsequent address lies. If we assume th a t  an extended 

address has two addresses, then the second address of the routing  header will be read when the 

route is advanced. This address can be read after 48 bytes have arrived.

The following table sum m arizes S IP P ’s caching performance:

SIPP Cache Performance

Cache M ethod Cache Hit 

(accesses)

Cache Miss 

(accesses)

Best Possible 

(bytes a t wire speed)

D estination-only caching 2 2 24

w ith one route sequence advance 11 11 « 4 8

w ith two route sequence advances 19 19 «5 6

Source/D est caching, source not required 3 2 24

Source/D est caching, source required 5 2 or 5 24

S P ip

SPip uses the flow ID combined w ith the source address for every cache lookup. This is possible 

because SPip hosts assign a unique flow ID for every Source EID, Dest BID, and  route sequence 

combination.'^

As part of its cache m anagem ent, however, SPip routers also record the hop count field in the 

cache, and check subsequent packets against it. If a  cache h its, bu t the hop count of the received 

packet does not m atch th a t of previous cache hits, the cache is erased and the packet is rou ted  on 

full routing inform ation.

T he purpose of m onitoring hop count is to discover when caches have become invalid due to 

routing  changes. For instance, consider the following case:

A packet is routed from host X to host Y, with a route sequence th a t indicates th a t the packet 

should visit rou ter B on the way. Assume th a t the resulting p a th  takes the packet through router 

A on the way from  host X to router B:

X

Assume th a t one or more packets have taken this path , and th a t therefore the packet is cached 

based on flow ID and source EID. Subsequent to th a t, the path  from  B to Y  breaks such th a t 

the new p a th  from  B to Y takes the packet through router A. If rou ter A does no t check the hop 

count field, it will simply access the cache using flow ID and source EID and rou te  the packet

^It is not clear that such  an approach is advantageous w ith SIPP. F irst, S IP P ’s regular cach in g  is already fast. 

Second, a flow -based  cache h it does not elim inate the cost of advancing the source route if  th a t is necessary. T h is  

is  the m ost exp en sive  part o f SIPP  caching.
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tow ards B, resulting in a loop.

If, however, router A checks the hop count against the previous value, it will find th a t the hop 

count is different, flush the cache, read the route sequence, and correctly route the  packet towards 

host Y. This m ethod will catch and break all loops.

The mem ory accesses for SPip caching are as follows:

1. Read flow ID field in packet 1 access

2. Read Source EID field in packet 1 access

3. Read flow ID from cache entry 1 access

4. Read source EID from  cache entry 1 access

5. Read Hop Count field in packet 1 access

6. Read Hop Count field from cache entry 1 access

7. Read active RSE from cache entry 1 access

7. W rite Active RSE field in packet 1 access

Total: 8 accesses

An SPip cache h it requires six reads—two for the flow ID and Source A ddr in the packet, two 

to read the corresponding fields in the cache entry, one to  read the hop count field, and one to 

com pare it against the one stored in the cache. SPip cache misses cost four reads.

Once a cache hit takes place, however, the SPip packet is not yet necessarily fully processed. If 

the full forw arding process (the first one— when the cache was created) involved advancing the 

route sequence, then the router m ust also do so after the cache h it. The route sequence does not 

have to parsed, however, to do this. R ather, the router can store the originally calculated value 

of the Active RSE field and write th a t value into the transm itted  packet. This costs two memory 

accesses— one read and one write.

T hus, the to ta l cost of a cache hit with SPip is 8 memory accesses. This cache hit is valid for 

every type of forw arding— unicast, m ulticast, source routing, and so on.

Since the cache hit is com pleted after the Source EID field is read, the  fastest possible forwarding 

tim e for SPip is 16 bytes at wire speed^.

The cache perform ance of SPip is sum m arized as follows:

SPip Cache Perform ance

Cache M ethod Cache Hit 

(accesses)

Cache Miss 

(accesses)

Best Possible 

(bytes a t wire speed)

(SPip has ju s t one cache m ethod) 8 4 16

^N ote th at the A ctive  R SE  field does not need  to be read before the packet can  b e  forw arded. It does, how ever, 

n eed  to b e  w ritten  once it arrives.
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10.1.2 Forwarding Table Lookup

Two forw arding table lookup styles are described in th is section, one for CLN P and  SIPP, and a 

different one for SPip.

C L N P  an d  S I P P

It is hard  to characterize the perform ance of CLNP and SIPP lookups in term s of num ber of reads, 

because the num ber required depends on a several things, particu larly  the  num ber of entries in 

the forw arding table, and on the fanout value of the search tree, which im pacts how m uch memory 

is needed to  store the forwarding inform ation (more memory, fewer reads).

A fairly common form  of search tree has a binary fanout— th a t is, each decision po in t divides 

the possible num ber of outcomes roughly in half. There are a num ber of such schemes, such as 

P a tric ia  and the binary trie [65]. For this analysis, we assume a perfect binary search tree—th a t 

is, one for which the num ber of search iterations is logg(n), where n  is the num ber of entries in 

the forw arding table. (T ha t is, each iteration perfectly divides the num ber of rem aining possible 

outcom es in half.)

The search tree works as follows. The tree is a collection of d a ta  structures, each w ith a  compare 

value and two pointers. Each pointer points either to another d a ta  struc tu re , one to  the “righ t” 

and one to the “left” , or to nothing if the data  structure  is a leaf in the tree (as ind icated  by the 

com pare value).

The tree search s ta rts  w ith the root d a ta  structure. For each iteration  of the search, the  compare 

value is retrieved from the d a ta  struc tu re  and compared against the address being searched. This 

com pare can be a greater/less than  compare, as w ith a  binary trie , or a  0 /1  m ask com pare, as 

w ith Patric ia . E ither way, the result is to retrieve either the righ t po in ter or the left pointer, and 

do another iteration.

W hen a leaf is reached, a full compare (possibly involving a mask) is done against the  address to 

determ ine either if a m atch has occurred, or if the lookup has failed. The size of the po in ter is the 

native word size of the m achine, and so is accessed w ith a single read. The size of the  compare 

value, however, is related to the size of the address. For SIPP, the com pare value is accessed in 

one read (assum ing a 64-bit m achine), as shown in the following C code segm ent for a  patricia 

tree;

for ( ; 1 ;) {
if (currentPointer->value && address == 0) 

currentPointer = currentPointer->right; 
else
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currentPointer = currentPointer->left; 
if (currentPointer->value == 0) 

break;

The to ta l cost of this iteration  is 2 reads, one for the compare value and one for the pointer.

For CLNP, the compare value is three 64-bit words, bu t this does not m ean th a t every compare 

requires three reads. This is because the comparing (w hether it be m asks or g reater/less than) 

works left-to-right on the address. For instance, w ith P atric ia , only one bit is com pared a t a  

tim e, and the current bit is always to  the right of the previous b it. T hus, even though the CLNP 

address is 3 64-bit words long, only one of them  need be com pared a t any given iteration . Thus, 

each iteration  m ust indicate which 64-bit word of the address should be exam ined:

for (;!;) {
address = addressArray[currentPointer->addressWord] 
if (currentPointer->value && address == 0) 

currentPointer = currentPointer->right; 
else

currentPointer = currentPointer->left; 
if (currentPointer->value == 0) 

break;

}

Thus, each iteration  of a CLNP search costs three reads.

For SIPP, the final com pare costs one read, while for CLNP it costs th ree reads.

Thus, the to ta l cost of the lookup for SIPP is:

2 log2(n) -Hl  (10.1)

and for CLNP, it is:

3 log 2 (n )  +  3 (10 .2)

where n  is the num ber of entries in the forwarding table.
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For our analysis, we assume two cases, a large forwarding table (8192 entries), and a  small forw ard­

ing table (16 entries). Based on the above equations, the cost of the forw arding tab le  operations 

for SIPP and CLNP are:

Protocol Small Forwarding Table Large Forwarding Table

SIPP 9 27

CLNP 15 42

SP ip

The above search tree style does not apply to SPip because SPip does not have bit-wise maskable 

addresses. Instead, SPip has a series of flat identifiers (RSEs).

Typical forw arding operations for an SPip router involve one or two RSEs. A lookup of two RSEs 

happens when either a router is hole punching, or when the packet passes from one hierarchy level 

to another. Occasionally three or more RSEs may be exam ined in a single forw arding operation. 

For the purpose of evaluation, we assume th a t two RSEs are exam ined.

The cost of exam ining two RSEs is calculated as follows:

1. Read Active RSE field 1 access

2. Read active RSE 1 access

3. Read value from RSE Table 1 or 2 accesses

4. Read next RSE (or EID) 1 access

3. Read value from RSE Table 1 or 2 accesses

Total: 6 accesses

Reading a value from an RSE Table may sometimes require two accesses. This happens when the 

read entry  indicates th a t a  default entry should be accessed. For our analysis, we assum e th a t 

an RSE Table read requires on average 1.5 accesses. Thus, the to ta l cost of a  forwarding table 

lookup w ith SPip is 6 accesses.

10.1.3 Hierarchical U nicast Addressing

In practice, the cost of a hierarchical unicast lookup is more expensive w ith hole-punching than  

w ithout. W ith  SPip, hole-punching results in an additional RSE being exam ined. W ith  SIPP  or 

CLNP, the rou ter will look deeper in the address to dig out the relevant forw arding inform ation.

O ur analysis, however, is too rough to  distinguish between the two. Therefore, we ignore the 

distinction.
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C L N P

The cost of hierarchical unicast addressing in CLNP is equal to  the cost of a  cache miss plus 

the cost of reading the D estination Address plus the cost of the  forw arding tab le  lookup. The 

cache miss requires three accesses. The low order part of the D estination A ddress is already read 

when the cache is missed, so two more accesses are required to  read  the full D estination Address. 

Finally, the forwarding table lookup takes 15 or 42 accesses (for sm all and large forw arding table 

respectively).

Thus, the to ta l cost of a  hierarchical unicast address forwarding w ith CLN P is 20 or 47 accesses. 

Note th a t the cost here is dom inated by the forwarding table lookup.

The fastest possible processing time is the same as th a t of the destination-only  cache (because a 

decision is reached after the destination address is read)— 30 bytes a t wire speed.

S IP P

For SIPP, we consider two cases: one where the route sequence is not advanced, and  one where it 

is advanced once.

W ith  no route sequence advance, the cost is 2 accesses for the  cache miss (a t which po in t the 

D estination Address has been read), and 9 or 27 accesses for the forw arding tab le  lookup, for a 

to ta l of 11 or 29 accesses. Again the cost is dom inated by the forw arding table lookup.

If the route sequence is advanced, then we can assume th a t the first lookup resulted in a  cache 

hit (2 accesses), since the address in the first lookup is one th a t the rou ter recognizes as its own. 

The cost of advancing the route sequence is 7 accesses. The cost of the forw arding table lookup 

is 9 or 27 accesses, resulting in a to ta l cost of 18 or 36 accesses.

The fastest possible forwarding speed is the same as th a t of the destination-only  cache h it— 24 

bytes for no route sequence advance, and 48 bytes for one route sequence advance.

S P ip

The cost of a hierarchical unicast address lookup for SPip is equal to  the cost of a  cache miss (4 

accesses), plus the cost of the forwarding table(s) lookup (6 accesses), plus the cost of updating  

the Active RSE field, which is 2 accesses (one read, from the FIB, and, often, one w rite). The 

to ta l cost is therefore 12 accesses.

The fastest possible lookup time for a hierarchical unicast address depends on how deep the 

relevant RSE is in the route sequence. If we assume four-level addresses— host, subnet, subscriber, 

and provider— then there are six RSEs, and the last RSE is the  subnet ID for the destination. 

Assuming th a t the subnet ID m ust be read, the fastest possible lookup tim e is 52 bytes a t wire
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speed.

10.1.4 Single-phase Shared-tree M ulticast

For CLNP and SIPP, we assume th a t the m ulticast address has been inserted  into the cache a t 

m ulticast tree setup tim e and therefore results in a cache h it even if the m ulticast packet has not 

yet been received.® This assum ption applies to  all of the m ulticast examples.

Thus, for shared-tree m ulticast, the forwarding cost is the same as for a  (source/dest) cache hit, 

which is 7 accesses and 30 bytes for CLNP, 3 accesses and 24 bytes for SIPP.

For SPip, the forw arding cost is a cache miss (4 accesses) plus a  lookup on the D estination EID 

field. This lookup requires only three memory accesses, one to read the Active RSE field (which 

will be value 0), one to  read the Dest EID field, and one to read the EID Table. Thus, the to ta l 

cost is 7 accesses.

The fastest possible lookup is the time it takes for the Active RSE field to arrive— 28 bytes.

10.1.5 Single-phase Source-tree M ulticast  

C L N P

For source-tree m ulticast, the cache hit (7 accesses) on the destination  address indicates th a t the 

source address m ust be examined. The cost of examining the source address is 3 accesses to  read 

the source address plus the cost of the forwarding table lookup (15 or 42 accesses). T hus, the 

to ta l cost of a source-tree m ulticast lookup is 25 or 52 accesses.

The fastest possible forwarding time is the time it takes to read the source address— 51 bytes at 

wire speed.

S I P P

W ith  SIPP, the cache h it (3 accesses) on the destination address indicates th a t the source address 

m ust be examined. To examine the source address, the rou ter m ust first decide if the source 

address is extended or not. This requires exam ination of the Payload Type field (1 access).

If  the address is not extended, then a forwarding table lookup is done on the Source A ddress— 10 

or 28 accesses, one to read the source address and 9 or 27 to do the lookup. T hus, the to ta l cost 

for a  simple address is 14 or 31 accesses.

The fastest possible time is the time it takes to read the Dest EID — 24 bytes a t wire speed.

®Note that som e im plem en tation s of som e m ulticast algorithm s, such  as M O S P F , in  order to  save m em ory, m ay  

do ex ten sive  processing to calcu late a m ulticast tree when the first m ulticast packet o f a group is received.
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If the address is extended, then the router m ust read the Next A ddr field (1 access) to  determ ine 

the location of the high-order part of the source address. For this analysis, we assume th a t the 

extended address sequence has two addresses. Next, the high-order p a rt of the  source address 

sequence is read (1 access), and a forwarding table lookup is perform ed.

This lookup may result in an answer, or may indicate th a t the low-order p a rt of the source 

address sequence should be examined. Note, however, th a t each forw arding tab le  lookup should 

cost roughly half th a t of a full forwarding table lookup, because only half of the address is exam ined 

each time. Given this, plus the fact th a t the first lookup m ay suffice, we assum e th a t the cost 

of searching both  addresses is equivalent to the cost of a full search— 9 or 27 accesses. Add to 

this the cost of reading the source address, and the to ta l cost for extended addresses is 16 or 34 

accesses. The fastest possible speed is the tim e it takes to receive the first address of the  route 

sequence— 40 bytes a t wire speed.

S P ip

To do source-tree m ulticast, SPip examines one or more RSEs before exam ining the Dest EID. 

Unlike unicast forwarding, it may have to  parse through the entire source address before exam ining 

the Dest EID. Thus, we can assume th a t 4 iterations on the RSE lookup are done, ra ther th an  2 

as we assum ed for the unicast hierarchical lookup. This results in 5 additional accesses over the 

unicast case, or 17 accesses total.

Like the unicast case, the fastest possible forwarding time depends on the num ber of RSEs in the 

address sequence. We can assume here th a t it is the same as for the unicast case— 52 bytes.

10.1.6 Others

The other capabilities can be analyzed along the lines of the previous sections. R ather th an  go 

through each one in detail, we present the results of the cost analysis in Table 10.1.

10.1.7 D iscussion  of Processing  Costs

Figure 10.2 sum m arizes in graphical form  the processing costs for the three protocols. Figure 10.2 

has three graphs, for 1) the num ber of accesses with a large forw arding table, 2) the num ber of 

accesses w ith a small forwarding table, and 3) the best possible forwarding tim e, in num ber of 

bytes a t wire speed. Each graph also shows the performance of a  cache hit. Keep in m ind th a t 

m ost lookups will result in a cache hit.

Each graph gives four traces—one for CLNP (dotted line w ith the le tte r ‘c ’ for d a ta  points), one 

for SPip (solid line with the le tter ‘p ’ for d a ta  points), and two for S IP P  (dashed lines). One of 

the SIPP lines is for the case where the route sequence is no t advanced (lower-case ‘s’ for d a ta
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Table 10.1: Summary of Forwarding Costs

Capability CLNP SIPP SPip

small large best smalP large^ best^ both* best

required

1 . Hierarchical Unicast 2 0 47 30 11/18® 29/36 24/48 1 2 52

2 . Shared-tree M ulticast 7 7 6 30 3 3® 24 7 28

3. Source-tree M ulticast 25 52 51 14/16^ 31/34 24/40 17 52

4. Tw o-Phase/Shared-tree _ 8 - - 11/18-3® 29/36-3 24/48-24 12/7^° 52/28

5. Mobility - - - 11/18® 29/36 24/48 1 2 52

6 . Provider Select 25 52 61 11/18® 29/36 24/48 1 2 52

useful

7. Tw o-Phase/Source-tree - - - - - - 12/17^° 52/64

8 . Policy Route^'’ - - - 11/18® 29/36 56 1 2 64

9. Type-of-Service Field 25 52 61 - - - 1 2 52

1 0 . Source Route 23/31^® 50/58 124 11/18® 29/36 24/88 1 2 1 0 0

11. Anycast 7 7 6 30 3 3® 24 7 28

1 2 . Two-Phase Anycast 2 0 47 30 11/18-3® 29/36-3 24/48-24 12/7^° 52/28

Num ber of memory accesses for small forwarding table (16 entries)

Num ber of memory accesses for large forwarding table (8192 entries)

Fastest possible forwarding tim e (bytes at wire speed)

Num ber of memory accesses (SPip has no dependency on forwarding table size) 

X /Y  where X =  no routing sequence advance, Y =  1  advance 

Does not depend on forwarding table size 

X /Y  where X =  simple address, Y =  extended address 

C apability does not exist

X /Y -Z  where X /Y  =  unicast phase no-advance/advance, Z =  group address phase 

X /Y  where X =  unicast phase, Z =  group address phase 

Assume 3 backbones in policy route

Assume 3 routers in source route, no reversing (extended addresses for SIPP)

X /Y  where X =  no source route advance, Y =  1  advance

points), and the o ther is for the case where it is (upper-case ‘S’ for d a ta  points).

Each d a ta  point gives the perform ance for the associated capability. T he capabilities are num bered 

1 through 12, corresponding to the num bers of the cabilities in Table 10.1. T he first 6 cabilities 

are “required” , and the la tte r six are “useful” . D ata points are missing where the protocol cannot 

do the capability. Thus, for instance, the CLNP traces have fewer d a ta  points th an  the SPip 

traces.

Note th a t strictly  speaking there should not be lines connecting the d a ta  points, as the d a ta  

points are discreet and have no relation to each other—at least not in the sense of a  continuous 

m easurem ent. The lines, however, make it easier to group the d a ta  points for a  given protocol,
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and also give a stronger visual sense of the performance of each protocol as a  whole.

All of the cache h it d a ta  shows the performance for com bined source/dest caching. Specifically, 

the d a ta  is for:

‘cm ’ CLNP w ith a hit on the combined source and destination  address (the ‘m ’ in ‘cm ’ stands for 

m ulticast).

‘cu’ CLNP w ith a destination  address only hit.

‘p ’ SPip under all conditions.

‘S’ SIPP  w ith two destination  address only hits ( th a t is, the route sequence is advanced once), 

‘sm ’ SIPP w ith a hit on the combined source and destination  address.

‘su ’ SIPP  w ith a destination address only hit. (Note th a t these last two are com bined, labeled ‘s ’, 

in the best possible tim e graph because they have the same perform ance).

The m ajor insights shown by the graphs of Figure 10.2 are as follows.

The first two graphs show th a t CLNP and SIPP are heavily dependent on forwarding table size 

for their perform ance, while SPip in independent of forw arding table size. SPip perform ance is 

significantly better than  CLNP or SIPP when the forwarding table is large. W hen the forwarding 

table is small, SPip perform s b e tte r than CLNP, performs roughly the same as S IPP  with no route 

sequence advance, and better th an  SIPP with an advance.

In term s of num ber of memory accesses, CLNP performs significantly worse th an  SIPP or SPip 

across the board. In term s of best possible forwarding times, CLN P and SPip are com parable, 

w ith SIPP  perform ing generally b e tte r for the no route sequence advance case.

An in teresting point regarding SPip is th a t, in term s of the num ber of accesses, its non-cache 

lookup perform ance is in m ost cases not th a t much worse th an  its cache-hit perform ance. In 

term s of best possible tim e, however, cache hit lookups perform  significantly b e tte r th an  cache 

miss lookups.

10.2  H ea d er  Size

C alculation of header size for the three protocols is straightforw ard. Table 10.2 shows the header 

sizes for the three protocols. We assume two sizes of SIPP addresses ( “large” and  “sm all” S IPP).

Figure 10.3 gives the results of Table 10.2 in graph form. It shows th a t CLNP, large SIPP, and 

SPip have generally similar header size, with CLNP being slightly worse th an  SPip, and SPip 

being generally worse, particularly  for the common unicast and m ulticast cases (capabilities 1 

through 3), than  large SIPP. Small SIPP has a significantly sm aller header, particu larly  for plain
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Table 10.2: Summary of Header Size

Capability CLNP ^ Small S IPP  2 Large SIPP  ^ SPip ^

required

1. H ierarchical Unicast 57 24 48 56

2. Shared-tree M ulticast 57 24 40 56

3. Source-tree M ulticast 57 24 40 56

4. T w o-Phase/Shared-tree - 40 56 56

5. M obility - 40 56 56

6. Provider Select 61 48 64 56

useful

7. T w o-Phase/Source-tree - - - 64

8. Policy Route^ - 56 72 64

9. Type-of-Service Field 61 - - 56

10. Source Route ® 123 56 96 104

11. A nycast 57 24 40 40

12. Tw o-Phase Anycast 57 40 56 56

 ̂ The CLNP NSAP address size is always assum ed to  be 20 bytes 

 ̂ “Small” SIPP assumes simple addresses 

 ̂ “Large” SIPP assumes 2-address address sequence 

Three RSEs per address sequence 

 ̂ Assume 3 backbones in policy route 

® Assume 3 routers in source route, no reversing

hierarchical unicast addressing (capability number 1), for which it is ha lf the  size of large SIPP 

and about 40% the size of CLNP or SPip. For source- or shared-tree m ulticast, sm all S IPP  is 60% 

the size of large SIPP, and 40% th a t of SPip or CLNP.

Given the small header size of small SIPP, we m ust ask if the advantage of the sm aller header 

is w orth the cost— namely, th a t small SIPP (SIPP w ithout extended addresses) does not have 

“serverless” auto-address configuration). Thus, auto-address configuration is significantly more 

com plicated with small S IPP  than  with large SIPP or CLNP or SPip.

Header size has two m ajor effects on protocol performance. F irst, a  large header can increase the 

sw itching latency of a packet. Second, a large header takes up bandw idth  and reduces th roughpu t 

on a link.

Concerning latency, a  large header can increase latency in two ways, depending on w hether or not 

cu t-th rough switching is being used. If cut-through switching is being used, th en  a  large header 

per se does not increase latency—it depends on where the inform ation relevant to  forwarding is. 

For instance, the SPip packet for unicast hierarchical addressing has a  large header (56 bytes).
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Figure 10.3: Sum m ary of Header Size

bu t in the case of a cache hit, the switching latency is only 16 bytes (see the cache hit section 

of the b o tto m  graph of Figure 10.2). W ithou t a  cache hit, however, the  latency is indeed higher 

(52 bytes). We refer to  a header where the relevant forwarding inform ation is a t the front as a 

“shallow” header. Likewise, a header where the relevant forw arding inform ation is a t the back is 

called a “deep” header. Thus, SPip with a cache hit is shallow, and SPip w ith  a cache miss is 

deep.

If cut-through switching is not being used, then a large packet header increases latency simply by 

m aking the packet larger. Even if cut-through switching is being used, a  large header can increase 

latency for the  case where a packet is queued up behind other packets. If the d a ta  portion  of 

the packet (the portion  behind the internet header) is large, then  even a large in ternet header 

does not make much difference. For instance, if the d a ta  packet is 4000 bytes, the  large (57-byte) 

CLNP header contributes to less th an  2% of the total packet size, and so is irrelevant. If the d a ta  

portion  is small, on the other hand, then header size is a significant factor.

Thus, we are concerned w ith two things:
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• Switching latency with cut-through (deep or shallow header), and

• Percentage of packet size contributed  by the header (large or sm all header).

As shown in Section 10.1.7, S IPP  with no route sequence advance has significantly lower cut- 

th rough latency (fastest possible forwarding time) than  S IPP  w ith a route sequence advance, 

CLNP, or SPip. Small SIPP has no route sequence and so never requires a  route sequence advance. 

Thus, small S IPP  best satisfies both  of the above concerns.

There are environm ents where deep and large headers are a problem , and  environm ents where 

they are not. In general, as bandw idth  and distance increase, deep or large headers become less 

of a  problem.

Deep headers becomes less of a problem  simply because faster bandw id th  leads to  lower latency. 

For instance, the latency due to C LN P’s 57 byte header on E therne t (10 M bps) is 0.046ms. A 

typical packetization ra te  for VAT voice encoding (VAT is a conferencing application  running over 

the IP  in ternet) is 20ms— th a t is, the voice packetization itself adds 20ms latency [13]. T hus, the 

large CLNP header contributes to  only 0.2% of the to tal latency. Even when sw itched through 10 

routers, the cum ulative latency due to the header is ju st 2% of the packetization latency.

Large headers become less of a problem  a t high speeds for two reasons. F irst, in the non cut- 

through case, the latency of a  larger header is less a t high speeds. Second, applications can 

generally produce larger packets when using high speed links, precisely because the latency is 

lower w ith higher speed. Thus a large header contributes less overhead a t higher speeds.

For instance, interactive voice or video applications can to lerate only a small am ount of end-to- 

end latency (a couple of hundred milliseconds). As link speed increases, however, packets can 

be larger while still m aintaining an acceptable latency. Of course, some applications have small 

packets independent of link speed— telnet and DNS, for instance. B ut as link speeds increase, 

the use of “large-packet” applications (sound and image) tends to  dom inate link usage patterns. 

Thus, even if a  large header consumes a significant portion of sm all packets, large packets make 

up m ost of the link usage, and thus the large header accounts for only a small fraction of the to ta l 

link usage.

O f course, there exist m any slow speed links— for instance voice-band m odem s, and increasingly, 

wireless links. On these links, header size is an im portant issue. In fact, even the IP  header, at 

20 bytes, is too big for dial-up links, and requires header compression [60].

Thus, we have situations where the largest (CLNP) of the three headers is no problem , and others 

where the sm allest (small SIPP) is too big.

Fortunately, there are m echanisms for reducing the negative im pact of a  large or deep header. 

B oth of them  have already been m entioned. If the problem is ju s t deep headers, then a flow ID 

style caching scheme such as th a t of SPip or SIPP (with flow setup) can be used. If the problem  

is large headers, then a header compression scheme as used w ith IP  can be used. These schemes
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are in common use and are known to work well.

Given th a t these mechanisms exist, the difference between using small S IPP  and one of the larger 

headers is nothing more th an  a question of at what point a com pression scheme m ust be used. 

W ith  sm all SIPP, the bandw idth  at which no compression can be to lerated  is lower th an  w ith one 

of the larger headers.

Given th a t serverless auto-address configuration is an im po rtan t feature, the only situation  th a t 

could justify  choosing small SIPP over one of the (auto-configurable) larger headers is th a t where

1) a widely deployed technology worked without compression when using sm all S IPP , bu t requires 

compression when using a larger header, and 2) the use of com pression is expensive, for instance 

because the caching characteristics were poor.

Such a situation  does not exist today, and in my mind is highly unlikely to exist in the future. 

Therefore, I conclude th a t the benefits of using small SIPP are outweighed by the costs.

10.3 C o n tro l P r o to c o l  C om p lex ity

Most of the control protocols used for CLNP, SIPP, and SPip, such as routing protocols, operate 

similarly. This is not surprising, since for the capabilities th a t are covered by all three protocols, 

the three protocols differ more by mechanism than  by sem antics.

T here are, however, three cases where the control protocol com plexity is different betw een the 

protocols. One is with small S IPP  auto-address configuration. Because sm all S IP P  does not have 

serverless auto-address configuration, an auto-address configuration protocol, such as DHCP for 

IP  [32], is required. Such protocols are not as complex as d istribu ted  routing protocols, bu t are 

more complex than , say, ARP, and so are not trivial.

The o ther two cases where control protocol complexity is different are 1) w ith provider selection, 

and 2) certain  aspects of the unicast routing protocol. These two cases are covered below.

10.3.1 U nicast R outing  Protocols

SPip and CLNP have exactly the same semantics vis a vis hierarchical unicast routing. As a 

result, their routing protocols operate almost identically. The rou ting  protocols for bo th  advertise 

longest-m atch prefixes from the m ost significant part of the address on down. CLN P does so in 

the form of an address prefix, and SPip in the form of a sequence of RSEs, b u t the inform ation 

conveyed is the same.

The prim ary difference between CLNP and SPip is th a t, a t forw arding tim e, CLN P always ex­

amines the address from the most significant part, whereas SPip does not necessarily s ta r t  at the 

m ost significant part. As discussed in section 9.1, this means th a t SPip m ust understand  the
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context of the packet ( th a t is, the most significant part) w ithout looking a t the m ost significant 

p a rt. Insuring th a t this works correctly requires some additional com plexity in S P ip ’s routing 

protocols.

S IPP  shares this difference w ith SPip. SIPP has an additional difference in th a t  it does not do 

hole punching across the 64-bit boundary. The routing protocol for S IP P  also should operate 

in term s of longest-m atch prefixes. However, because SIPP  does not do hole punching across 

the 64-bit boundary, it is conceivable th a t a SIPP routing protocol could advertise only 64-bit 

addresses— th a t is, it does not necessarily advertise addresses from  the m ost significant part.

These differences in SPip and SIPP  result in some additional com plexity in their routing  protocols, 

and  potentially  in some new failure modes. SPip and SIPP are discussed in tu rn  in the  following 

two sections.

S P ip

T he ex tra  complexity to S P ip ’s routing protocol is minimal. As discussed in Section 9.1.6, SPip 

advances the Active RSE for classical forwarding inform ation but not non-classical (hole-punching) 

forw arding inform ation. Thus, an SPip router m ust format its forw arding tables so th a t it advances 

the Active RSE appropriately.

Fortunately, this can be done w ithout additional router configuration. W hen an SPip router 

receives a routing update , it compares the RSEs in the sequence of RSEs against those of its own 

address(es). The router can always advance the Active RSE beyond the level where its own RSE 

m atches th a t in the advertised sequence.

T his style of operation introduces the possibility of a new failure m ode in the case where a ro u te r’s 

address has been misconhgured. In this case, it is possible th a t such a misconfigured rou ter will 

advance the Active RSE for w hat is essentially non-classical forw arding inform ation.

For instance, assume the non-classical forwarding inform ation case of Figure 9.1 in Section 9.1. 

Assume further th a t rou ter b has been misconfigured so th a t it th inks th a t its own top-level RSE 

is 1C— th a t is, th a t of backbone C.

Assume th a t a packet for host Z w ith address sequence 1C:9V:3L arrives a t rou te r b from  subnet

I. Since router b has hole punching information for 1C:9V, and since it th inks it is in 1C (because 

it was misconfigured), router b advances the Active RSE and forw ards the packet to  rou ter c. 

R outer c examines 9V, bu t assumes the context is for an address sequence w ith IB in the  top-level 

RSE. If there is a  subscriber-level RSE under backbone B whose value m atches 9V, rou ter c will 

incorrectly forward the packet towards th a t subscriber. The packet will subsequently  either be 

delivered to the wrong subscriber network, or will loop back to  rou ter b, which will again in terp ret 

the  RSE 9V incorrectly, thus forming a loop.

In actual practice, it seems likely th a t if router b were misconfigured this way, th en  some other
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aspect of the routing algorithm  would not operate correctly. For instance, rou ter c m ight not 

successfully obtain  router b as a neighbor, since it would be expecting router b to  have an  address 

prefix sim ilar to its own. None the less, the possibility for the above failure mode exists w ith SPip, 

where it does not for SIPP.

S IP P

W hen the SIPP  routing protocol is advertising full prefixes (from  the m ost significant p a r t of the 

address), S IPP  is subject to the same ex tra  complexity and failure m ode as described for SPip 

above.

The S IPP  forwarding engine always forwards based on single (64-bit) addresses only. T h a t is, 

even though m ultiple addresses may be examined in the course of processing the  source route, 

any single instance of forwarding operates on a single address, and does not consider previous 

addresses in the route sequence. Because of this, it is theoretically  possible for S IP P  routing 

algorithm s to  advertise only 64 bit addresses.

This requires very careful configuration of the routing algorithm . If the lower p a r t of an  address 

sequence w ith a certain upper p a rt (say X) is advertised into an area w ith a different upper part 

(say Y), the routers in Y will not be able to detect th a t the lower p a rt is for a  destina tion  outside 

of Y. If there are addresses in Y with the same lower part, then routing  will fail.

Because of this, SIPP routing algorithm s should always advertise full address sequences, even 

though the forw arding engine operates on single addresses.

10.3.2 Provider Selection

W ith CLNP, for a host to select a provider, it m ust know the appropria te  QoS option value to 

pu t in the header. W ith SIPP, for a host to select a provider, it m ust know the cluster address of 

the provider. B oth of these bits of inform ation m ust be learned via some discovery m echanism .

W ith  SPip, on the o ther hand, the provider is selected using the top  RSE of the address sequence. 

T his RSE is already known by hosts via the norm al address sequence advertisem ent done by 

routers (as p a rt of the auto-address configuration process).

Exactly how im portan t this difference is is hard to say, bu t it is likely to be significant. On one 

hand, the header “tag ” (the provider information in the header— QoS, cluster address, or RSE) 

is not the only inform ation needed by a host to  make an informed provider choice. The host 

m ust also know the ram ifications of choosing one provider over ano ther—for instance cost and 

perform ance. One could argue th a t, given th a t this inform ation m ust be d is tribu ted  to  hosts, the 

additional com plexity of adding the header tag to this inform ation is minimal.

One the o ther hand, having the header tag  is likely to make obtain ing the o ther inform ation needed
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easier. For instance, current DNS could be leveraged to give provider inform ation on request. The 

host could make an inverse query using the top-level (provider) RSE. The record stored by DNS 

could contain such provider inform ation as provider name, type of network (ATM , X.25, In ternet), 

available types-of-service, and the like. This is particularly useful for learning ab o u t the providers 

of destinations, as it is naturally  harder to learn inform ation abou t rem ote sites com pared to  one’s 

own site.

A nother advantage of being able to isolate the provider ID is in com paring two addresses to  aid 

in the choice of provider. An SPip host can know definitively if a  destination  shares the  same 

provider ju s t by com paring its top-level RSE with the d estina tion ’s. This com parison cannot be 

m ade w ith certain ty  w ith SIPP, because the host does not natu ra lly  know which b its of the address 

are the provider part.

10.4  A d d re ss  A ss ig n m en t  C o m p lex ity

This section considers how easy or hard it is to assign addresses w ith CLNP, SIPP, and SPip. 

Specifically, it considers the hum an adm inistrative process of assigning addresses. (Host au to ­

address configuration is discussed in previous sections of th is chapter and is Section 9.5.)

Address adm inistration  is easier w ith SPip than it is w ith CLN P or SIPP. T he fundam ental 

reason for th is is th a t w ith SPip, each “field” of the address is in a  separate RSE, and so is in 

certain  respects is independent of the other fields. W ith CLNP and  SIPP, the fields of the  address 

ab u t against each other. Thus, the size and position of one field affects the size and position 

of adjacent fields. This tigh t relationship between fields in CLN P and S IPP  p u t constrain ts on 

address assignm ent th a t SPip does not suffer.

This fundam ental difference m anifests itself in a number of ways. F irst, the  in itia l assignm ent of 

CLNP and SIPP  addresses (as opposed to reassignment la ter on) requires th a t the field positions 

of each address be determ ined. M aking this determ ination is by no m eans im possible, bu t it is 

not easy either, especially if the address is small. In the case of IP, great care m ust be taken 

in the assignm ent of subnet and host fields, precisely because the IP  address is small [108]. The 

problem  is not as bad with SIPP, and even less so with CLNP. Still, the process of choosing field 

sizes has certain  adm inistrative costs associated with it, which m ust be borne by a  large num ber 

of organizations. For instance, with CLNP, many countries and large organizations have gone 

through the exercise of assigning field positions.

A more serious problem  is th a t of reassigning addresses. Addresses have to  be reassigned from 

tim e to time for a  num ber of reasons:

1. Network grow th may require a new level of hierarchy.

2. Network grow th may cause a field of the hierarchy to be too  small.
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3. Changing providers may require a new prefix.

4. Changing network location may require a new prefix.

Consider the first case—adding a  new level of hierarchy. W ith  SPip, adding a new level of hierarchy 

is, a t least w ith respect to  the address assignment procedure, very easy. A new RSE is inserted a t 

the point in the address sequence where the new hierarchy level is. No reassignm ent of num bers 

in existing RSEs is necessary. O f course, hosts and routers under the new level m ust have new 

addresses configured, bu t th is is true with CLNP and SIPP also.

W ith  SIPP  or CLNP, however, the process is more involved. Consider an address p l.p 2 .s l.s2 . We 

wish to insert a new hierarchy level in between levels p2 and s i ,  creating  p l.p 2 .n l.s l.s2 . There are 

several ways in which the new field can be inserted. F irst, if the  address is variable length and 

p l.p 2 .s l.s2  is not already the m axim um  length, then the length is increased by the size of nl, and 

it is inserted. This is sim ilar to and ju s t about as easy as the  SPip case. U nfortunately, NSAP 

addresses tend  to already be a t their m axim um  length (20 bytes) [110], and lengthening the S IPP  

address requires a m inim um  of 64 more bits plus additional forwarding overhead.

Second, there may already be space (unassigned bits) in the address between p2 and s i. In this 

case, adding the new level is easy. Sometimes this may in practice be possible. For instance, the 

G O SIP definition of CLNP has a “reserved” field. More generally, however, such space does not 

exist.

T hird , the fields s i and s2 can be shrunk and shoved to the right. T his m ay involve a renum bering— 

m eaning th a t the value of the fields s i  or s2 may need to be changed for a  given hierarchy element. 

This is a significantly more involved process than the first two m ethods or th an  SPip.

If there  is not enough address space to  the right of p2 to accom m odate the new hierarchy level, 

then  it is necessary to  requisition a  new portion of the address space to create the ex tra  room. 

For instance, a  new prefix p l.p 3  m ight be obtained, where the field size of p3 is sm aller th an  th a t 

of p2. This process is also more involved than the first two m ethods or SPip.

The second po ten tia l reason for reassignm ent, where a field becomes too small to  assign all of the 

required num bers, should v irtually  never happen with SPip. This is because S P ip ’s field size is 

19 b its, or more th an  500,000 assignm ents a t a single level of the hierarchy. It is more likely w ith 

CLNP, where fields, such as the area field, are as small as 16 bits, though 65,000 is still a  large 

num ber of assignm ents. W ith  SIPP, especially small SIPP, it is more likely still.

Ju s t because a field overflows does not mean th a t the field size m ust be changed. A nother a lter­

native is to  assign the hierarchy element th a t ran out of num bers another prefix. In this case, the 

hierarchy elem ent would appear twice in forwarding tables. T his m ethod trades off forw arding 

table size for ease of address assignm ent. In the worst case, however, the field m ust be resized, 

requiring a process sim ilar to  the one described above for adding a hierarchy level (th a t is, it is 

easy for SPip and potentially  more involved for SIPP and C LN P).
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The last two poten tia l reasons for reassignment, getting a new prefix because of provider change 

or moving, can result in lower-level field resignments if the new prefix is longer than  the old one. 

This, again, requires a process similar to the one described above. E ither the subscriber m ust 

shrink its existing fields, or the provider (or geographic area) m ust ob ta in  a new prefix space. One 

way to avoid this situation  is to make sure th a t all provider prefixes are the same length. This, 

however, adds constraints to the initial assignment process, m aking it more difficult.
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C hapter 11

S um m ary and C onclusions for 

P art II

P a rt II of this thesis describes and analyzes three protocols— one w ith conventional syn tax  and 

sem antics (CLN P), one w ith a conventional syntax but expanded sem antics (S IP P ), and one w ith 

a new syntax and sem antics (SPip). The new semantics and sy n tax  are the m ajor contributions 

of this thesis.

The new sem antics come from an expanded use of the source route m echanism  to  achieve flexible 

routing and addressing while m aintaining good performance.

To dem onstrate the flexible routing and addressing, the capabilities of the three protocols are 

analyzed. Specifically, ten “required” and eight “useful” capabilities are considered. All of the 

capabilities are ones th a t have been discussed in the IPng (IP  next generation) process of the 

IE T F , and represent a wide range of internetworking applications.

Of these capabilities, bo th  SIPP and SPip handle all of the ten  required ones. CLN P handles eight 

of the required ones, including the four most critical ones. CLN P does not handle mobility, which 

is a serious weakness. CLNP also does not handle two-phase shared-tree m ulticast, which may 

prove to  be a serious weakness, as th a t style m ulticast may prove im portan t for global scaling.

Of the eight useful capabilities, SPip handles seven of them . The only one th a t SPip does not 

handle is em bedded link-layer addresses. Embedded link-layer addresses, however, is not so much 

a routing and addressing problem  as an address resolution problem , and  in m y opinion its solution 

should not come from  the address per se. It is better to  convey th e  link-layer address in an  option 

or out-of-band. This opinion is supported  by the fact th a t C L N P ’s em bedded link-layer addresses 

have scaling and operational problems (see C hapter 5).

Both S IPP  and CLNP handle four of the eight useful capabilities.
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N ext, P a r t II analyzes the costs of the three protocols. These costs are analyzed prim arily  for 

forw arding cost (speed or hardw are complexity) and header size, bu t also for control protocol 

com plexity and address assignm ent complexity.

The m ajor results of this analysis are as follows:

•  S IPP  generally has the lowest forwarding cost when a cache hit occurs. S IP P ’s caching 

perform ance depends on the situation, however, and can be much b e tte r or som ew hat worse 

th an  S P ip ’s or C L N P’s. S P ip ’s and C LN P’s caching perform ance is sim ilar. Most router 

forw arding takes place under cache hit conditions.

•  S P ip ’s “best possible” caching perform ance (cut-through sw itching a t wire speed) is the best 

of the  three, C L N P’s the worst.

•  S P ip ’s forwarding cost is independent of forwarding tab le  size, whereas S IP P ’s and  C L N P’s 

are dependent on forwarding table size.

• For large forwarding tables (8192 entries), SP ip’s forw arding cost is significantly b e tte r than  

S IP P ’s, which is in tu rn  significantly better than C L N P ’s.

• For small forwarding tables (16 entries), SPip and S IPP  w ithout a  rou te  sequence advance 

perform  similarly, SIPP w ith a route sequence advance perform s som ew hat worse, and CLNP 

perform s worse still.

• S IPP  has a smaller header than  SPip or CLNP, bu t prim arily under the conditions where 

simple (non-extended) addresses are used. This elim inates the serverless host auto-address 

configuration feature of SIPP, however, and so is considered not w orth doing. Otherwise, 

the packet size of the three protocols are comparable, w ith CLNP generally being slightly 

worse and SIPP generally being better.

• Ignoring small S IP P ’s need for a host address assignm ent protocol, the  control protocol 

com plexity among the three protocols is generally com parable, though SPip  is slightly less 

complex in the area of provider selection, and SIPP and SPip require a slightly  more complex 

rou ting  protocol than  does CLNP.

•  The address assignm ent process for SPip is simpler th an  th a t of S IP P  and  CLNP.

T he conclusion of this thesis is th a t the generalization of the source routing m echanism  increases 

in ternet protocol capabilities over conventional m ethods. This is achieved a t lower cost in term s 

of perform ance and operation com pared to conventional m ethods. This conclusion is particu larly  

true  for the comprehensive use of the source routing m echanism — th a t is, w here it is used for 

locators— of SPip. It also holds, though less strongly, for the hybrid approach— a source route of 

bitwise m askable addresses—of SIPP.
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T his conclusion has two ram ifications— one for the present and one for the  future. For the present, 

it means th a t we can get the required features needed for continued grow th, b o th  functionally and 

actually, of the  in ternet.

For the fu ture, it means an increased probability  th a t the protocol will more easily be able to 

accom m odate as-yet-unconceived features. This is particularly  true  of SPip, which is designed in 

term s of a “routing and addressing engine” . T h a t is, SPip executes according to  the elem ental 

routing  and addressing functions, as described in P art I of the thesis, ra th e r th an  according to 

the desired sem antics of the protocol. The desired sem antics are achieved by establishing the 

appropriate  forwarding tables in routers and the appropriate address sequences in hosts. New 

sem antics are derived by modifying the control protocols and system  configuration (such as DNS), 

bu t w ithout m odifying the basic in ternet protocol.
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C hapter 12

E p ilogu e

Ju s t to confirm the old saying th a t there is nothing new under the sun, 1 offer the following 

epilogue.

As sta ted  in C hapter 1, there was a flurry of creative activ ity  in the mid to  late 1970’s th a t resulted 

in the internetw ork architecture, and in particular Pup [9] and IP [86, 87]. These two protocols, 

however, do not in my mind adequately reflect the depth of understanding  th a t the early in ternet 

architects had of routing and addressing.

Specifically, one RFC and three lEN s (In ternet Engineering Notes) [85, 25, 22, 18] docum ent some 

of the debate th a t took place during the year from m id-1977 to  m id-1978 and th a t led to the IP 

protocol. (O f course, I discovered these docum ents well after I had done the basic work on P ip  :-). 

These four docum ents show th a t 1) one of the central ideas of Pip, nam ely th a t of pu ttin g  the 

fields of the address in individual header fields, had been proposed by Jon Postel [85], and th a t

2) m ost of w hat the in ternet com m unity is currently “discovering” about routing and  addressing 

was already though t of by Postel, Sunshine, Cohen, Clark, Cerf, and perhaps others who did not 

bother pu tting  out lEN s (or whose lENs or other publications I have not bothered to  read).

In w hat follows, the aspects of th a t debate th a t relate to the findings of this thesis are sum m arized.

The opening paragraph  in P oste l’s May 1977 RFC730, “Extensible Field A ddressing” , says:

This memo discusses the need for and advantages of the expression of addresses in 

a  network environm ent as a  set of fields. The suggestion is th a t as the netw ork grows 

the address can be extended by three techniques: adding fields on the left, adding fields 

on the right, and increasing the size of individual fields. Carl Sunshine has described 

this type of addressing in a paper on source routing [102].

This, in a  nutshell, is P ip ’s (or S P ip ’s) route sequence, which allow adding fields (RSEs) on the 

left, the  right, and in the middle (which Postel’s can do too, though he does not m ention it above).
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L ater in the RFC, Postel says:

The prospect of interconnections of networks to  form  a com plex m ultinetw ork sys­

tem  poses additional addressing problems. The new H ost-IM P interface specification 

has reserved fields in the leader to carry network addresses. There is experim ental work 

in progress on interconnecting networks. We should be prepared for these extensions 

to  the address space.

Talk abou t understatem ent!

And la ter still:

A problem  with simple field addressing is the desire to  specify only the fields th a t  are 

necessary given the local context. A program  in terp reting  the address is then  unsure 

w hat the first field represents. Some clues are needed in the address specification for 

correct parsing to be possible. Dave Crocker has described a syn tax  for a  sim ilar 

problem  in network access of data .

T rying to  do this (only including the fields of the address relevant to local context in the header) 

w ith SPip tu rned  out to be problem atic. Still, the “clue” th a t Postel refers to is useful for efficient 

processing of the header, as the router only needs to  parse the relevant fields. T his “clue” is S P ip ’s 

Active RSE field.

Postel gets to the m eat of the th ing in the following excerpt:

Specifically I suggest th a t we adopt a field based extensible address scheme where 

each field is separated from its neighbors by a delim iter character and each field has a 

nam e. W hen an address is specified the name of the most general field m ust also be 

indicated.

Definitions:

(address) ::=  (field-name) “:” (fields)

(field-name) ::=  “N E T ” — “IM P” — “H O ST” —  “M ESSA G E-ID ”

(fields) ::=  (field) — (field) “/ ” (fields)

(field) ::=  a  decimal num ber

SPip has a few differences from this, bu t the basic idea is there. Som ething to  give the context 

of the  field to be parsed (SP ip’s Active RSE — P oste l’s field-name), and a series of fields (S P ip’s 

are b inary  not decimal, bu t had P oste l’s found their way in to  a packet, I ’m sure they  would have 

been binary).

In A pril of 1978, Danny Cohen shed more light on the natu re  of addresses in his IEN31, “On 

Names, Addresses and Routings (II)” [25]:
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I HATE TO  A DM IT IT, BUT ...

A t the beginning of this note, and in an earlier note, I used a great line telling th a t 

“nam es tell what the processes are, and addresses tell where they are .” It continues 

by “routings tell how to  get there.”

I hate to  adm it th a t by now I have some reservations ab o u t this definition. My 

nam e is “D anny.” My address is “ISI.” When I was a t Tech, my nam e was the same, 

bu t the address was different. This supports the definition. How about the  addresses 

in a broadcasting m edia network? W hen a host changes its position (location) on the 

sam e E thernet, its address does not change. Well, m aybe these addresses are no t real 

addresses, according to the definition. A dm ittedly, this is an uncom fortable thought.

I believe th a t there is a b e tte r explanation. I suggest th a t an address is “the  canonic 

rou ting  from the root of the addressing-tree.” It sounds recursive, does no t it?

To be more precise, an addressing scheme is a hierarchical organization of elem ents, 

w ith code assignm ent such th a t each element has a unique set of codes, corresponding 

to  its position in the hierarchy.

T he notion th a t the address tells how-to-get-there from  the roo t of the tree is very 

sim ilar to the  notion th a t absolute coordinates are really relative, w ith respect to  the 

origin.

Since we know (by default) how to get from the source to  the UA root, and since 

the address tells how to get to the destination from the root, the address tells how to 

get from  the source to the destination.

Hence, by definition, addresses are routings.

T his last conclusion, th a t addresses are routes, is a key “finding” of the taxonom y section (Sec­

tion  2.2) of this thesis, and is the basis of SP ip’s route sequence.

Later on in the lEN , Cohen makes a proposal:

O ur proposal for addressing and routing is as follows:

• Establish a UA (Universal Address) scheme, of variable level s truc tu re .

• Dissem inate as much knowledge to each participating  node as deem ed practical.

•  Allow the option of routing to be included in the headers of the  messages.

• Refuse delivery of messages to a destination w ith unknow n routing.

• Establish internet-directory-assistance service.

This last point is crucial. “Internet-directory-assistance” (now known as DNS) m ust advertise the 

“rou te” from  the root of the hierarchy to the leaves. In particu lar, if the packet form at is a string 

of fields (or addresses, as in S IPP), then DNS should advertise th a t string.

So, a t th is point in the discourse (April 1978), Postel has provided the address form at, and Cohen 

the arch itec tu ra l underpinning from which to understand th a t address. So, w hat happened? W hy
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did we end up with IP and  not som ething more like SPip?

We find a clue to the answer from  IEN46, w ritten  by Clark and Cohen in June  of 1978 called “A 

Proposal for Addressing and R outing in the In te rn e t” [22]. After discussing several problem s with 

rou ting  and addressing, they make the following sta tem ent:

The solution which has been proposed in the  past to  cope w ith  th is is to  replace 

the address in the packet w ith a route, called a source route since it is provided by 

the source of the  packet. The disadvantage of having a route in a packet instead 

of an address is th a t the concept of an address is very useful one. For example, for 

accounting purposes it may be necessary to note the source and  destination  of a packet 

as it passes th rough a tran sit net. Clearly, it is desirable th a t the source and destination 

be uniquely identified for this purpose, som ething not easily done if the  source and 

destination  are specified only by a route. Thus, we propose th a t the address continue 

to  be the prim ary piece of inform ation in the packet, b u t th a t it be possible to  include, 

in addition, an optional source route.

So, here they recognize the need for a com pact, simple, fixed length something  to  identify the 

source and destination of a  packet. But, this is nothing more than  the EID of SPip. So, the 

need for bo th  an identifier and an “address” (still a t th a t tim e arguable to be a  route) was clearly 

recognized. However, they added the source route to handle the routing bit, and kept the address 

as the prim ary piece of inform ation.

I th ink this would have been fine (indeed, this is S IP P ’s approach) except for the crucial thing 

m entioned by Cohen in IEN31:

• Establish internet-directory-assistance service.

Well, DNS was of course established, bu t it did not contain the source route, ju s t the address. So, 

the “rou ting” inform ation in the packet was effectively lim ited to a single 32 bit field.

I was in terested  to find the following in the C lark /C ohen  paper:

5. M igration

W hat is the relationship  between the scheme proposed here and the curren t in ternet 

header w ith a fixed size address field? Happily, adoption of the addressing stra tegy  

involving regions together w ith the optional in te rn e t source route implies no im m ediate 

upheaval to packet form ats or gateway code. C urrently, every network is a region, and 

every gateway thus contains code for doing inter-region routing. Eventually, gateways 

will want to be modified as follows. W hen a region finally is defined which contains 

more than  one netw ork, then  gateways inside th a t region will need to understand  an 

additional com ponent of the in ternet address. Thus, unless gateway code is rew ritten
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for different regions, it will be necessary to write code which can deal, eventually, w ith 

a variable size com ponent of the address. The address itself, however, can reasonably 

be a fixed size, since it is merely an address and not a route. In fact, it seems th a t the 

field as specified for the current in ternet header is sufficient in size, although perhaps 

m arginally so.

Well, som ething happened here. An argum ent was pu t forth  th a t 32 b its is enough because the 

address does not have to  do rou ting -the  source route can handle the rest. C learly it was recognized 

th a t a  variable length something  was needed, but the source route was deem ed sufficient for th a t, 

and the 32-bit address won out in the end. So, perhaps w hat killed IP  is not th a t the address 

is too short (though probably it is), bu t th a t the ability for DNS to  hand  a  host a  source route 

(which it could then pu t in the header so th a t the right th ing could happen  in the network) was 

not created.

So, indeed S P ip ’s routing sequence is a com bination of Po ste l’s Extensible Field Addressing (EFA) 

and Clark and Cohen’s “address” , though with SPip the “routing” p a rt of the “address” has been 

largely moved over to the EFA (route sequence in SPip), and the “address” (EID  in SPip) is left 

w ith the identification function.

An lEN from Cerf the following m onth (July 1978) seems to  meld w ith C lark /C ohen  (IEN48, 

“The C atenet Model for Internetw orking” [18]). It generally confirms the C lark /C ohen  proposal. 

It, however, makes some additional interesting statem ents;

In order to limit the overhead of address fields in the header, it was decided to 

restrict the m axim um  length of the host portion of the in ternet address to  24 bits.

The possibility of true, variable-length addressing was seriously considered. A t one 

point, it appeared th a t addresses might be as long as 120 bits each for source and 

destination . The overhead in the higher level protocols for m aintain ing tab les capable 

of dealing w ith the m axim um  possible address sizes was considered excessive.

Not only is it in teresting th a t a longer address (120 bits, alm ost as long as an N SA P), was seriously 

considered, but the reason for not going with it (memory overhead to  “upper layer protocols” ) 

really shows how times have changed.

Finally, C erf’s lEN seems to delegate source routing to its current, and very lim ited, role:

One of the m ajor argum ents in favor of variable length “addressing” is to  support 

w hat is called “source-routing.” The structure of the inform ation in the  “address” 

really identifies a route (e.g., through a particular sequence of networks and gateways).

Such a capability could support ad hoc network interconnections in which a host on 

two nets could serve as a private gateway. Though it would no t partic ipa te  in catenet 

routing or flow control procedures, any host which knows of this private gatew ay could 

send “source-routed” in ternet datagram s to th a t host.
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It is interesting th a t the original ideas of Postel and Cohen (very SPip-like) evolved into the source 

route, which was then  lim ited to  a  “special service” role (i.e., routing  a packet th rough a  private 

host on two nets).

To conclude, I m ust say th a t when I read these four docum ents, I found it fascinating  and delightful 

to  discover th a t my work, with the considerable aid of hindsight, was able to  confirm, and  pu t in 

a  m odern context, the early thinking of the internet architects.
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