
A d d ressin g in In ternetw ork P ro to co ls

P aul Francis

PhD Thesis

University College London

September 1994

ProQuest Number: 10045897

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10045897

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

A bstract

The m ost im po rtan t p a rt of an in ternet protocol is its addressing inform ation— th a t is, the infor­

m ation th a t affects routing of an in ternet packet. W hile there has been m uch research of routing

in internetw orks, there has not been a comprehensive study of addressing inform ation in in ternet

protocols per se. In this thesis, we examine the use of addresses in in ternet protocols. We s ta rt

w ith a taxonom y of addressing functions. Using this taxonom y, we then give a comprehensive

description of addressing modes in internetw ork protocols. Finally, we present two designs for ad­

dressing in internetw ork protocols, one based on current in ternet protocol syn tax (S IP P), and one

based on a new syntax (SPip). Both of these designs exploit the notion th a t v irtually all routing

and addressing sem antics can be achieved through the loose source route m echanism , though SPip

does this more generally th an SIPP. We analyze the capabilities and costs of S IPP and SPip, and

com pare them w ith those of OSPs internetw ork protocol, CLNP. We show th a t the general use

of the loose source route m echanism is the best way to achieve flexible, efficient, and evolvable

routing and addressing.

A cknow ledgem ents

I would like to than k Ram esh G ovindan, Satoshi Ono, and Zheng W ang for their help in docum ent

preparation . A nybody who has ever pu t together a large docum ent knows th a t even a little help

in this area goes a very long way.

I would like to thank Steve Casner, Lyman Chapin, Joel H alpern, B ala Rajagopolan, and Benny

Rodrig for the inform ation they provided me.

I would like to acknowledge the contributions to this thesis of Steve Deering, Ram esh Govindan,

and Sue Thom son. Steve is the au thor of the SIP protocol, which la ter m erged w ith P ip to become

SIPP. The header form at of S IP P is th a t of the original SIP. The influence of SIP on SPip requires

no explanation. Ram esh and Sue were bo th part of the “Pip T eam ” a t Bellcore, and contributed

m any ideas and lines of code.

I would like to thank my exam iners, D eborah E strin and Chris M itchell, for their helpful com m ents

(and, of course, for being m y exam iners).

I would like to thank N TT, and particularly Shigeki Goto, for supporting me during the flnal

m onths of my thesis work.

I would like to thank Bellcore for its assistance, financial and otherw ise, during the bulk of my

tim e w ith UCL. P articu larly I w ant to thank Dave Sincoskie for his trem endous professional

support and encouragem ent. I hope it yet pays off for him. I w ant to th an k Liang W u also for

his professional support bu t especially for his personal support a t the tim e I needed it m ost. I

would also like to thank Neil Haller, Sue M cDonald, S tu Personick, and M ary W ardell. W ithout

the assistance of the folks a t Bellcore th e re ’s no way any of th is would have happened.

Finally, I would like to thank my advisor Jon Crowcroft for all kinds of th ings (such as m any fine

evenings in the pub and in troducing me to the four-note gu itar jazz chords). I suppose (or a t least

hope) th a t he knows w hat all the things are, so I do not need to go in to detail here. Not only did

he make it possible for me to do th is, he m ade it v irtually painless and indeed largely a pleasure.

C on ten ts

1 In tr o d u c tio n 12

1.1 O utline ... 13

1 Internet P rotoco l T axonom y and Functionality 14

2 T a x o n o m y 15

2.1 Previous T ax o n o m ies... 15

2.2 A dditional Taxonomy; Defining Functions ra th e r th an E lem ents 17

2.2.1 A d d re s s e s ... 18

2.2.2 Source R o u t e .. 20

2.2.3 Type-of-Service (ToS) / Quality-of-Service (QoS) F ie ld 22

2.2.4 M o b ility .. 22

2.2.5 IP M ulticast .. 23

2.2.6 Flow Specification / Flow Identifier ... 24

2.3 Sum m ary of T ax o n o m ies.. 25

3 L ocators 27

3.1 H ierarchical L o c a to rs ... 27

3.1.1 Tree Topology .. 28

3.1.2 Mesh T o p o lo g y .. 31

3.2 Non-Hierarchical-Topology L o c a t o r s .. 34

3.2.1 Non-Regular T o p o lo g ie s ... 35

3.3 C urren t IP In te rn e t ... 36

3.4 Geographic Versus Provider-rooted A d d re s s e s ... 37

3.4.1 Some Background ... 38

3.4.2 D escription of Provider-rooted A d d re ss in g ... 39

3.4.3 D escription of Geographical A d d r e s s in g .. 40

3.4.4 Topology C onstrain ts ... 43

3.4.5 Scaling in R o u t i n g ... 43

3.4.6 Address R eco n fig u ra tio n ... 46

3.4.7 Address and Topology A d m in is tra t io n ... 48

3.4.8 Discussion and Sum m ary of Geographical versus Provider-rooted A ddressing 50

3.5 Relationship Between Cost of R outing and Cost of Deriving A d d re s s e s 51

4 V ecto rs 54

5 L ayering A d d resse s 57

5.1 B a c k g ro u n d .. 57

5.2 T he Problem — Large S u b n e tw o rk s .. 58

5.3 Em bedded Subnetw ork A d d resses .. 59

6 G rou p A d d resses 62

6.1 M ulticast A d d r e s s e s ... 62

6.1.1 Scoped M u lt ic a s t ... 64

6.1.2 Well-known M ulticast A d d r e s s e s .. 65

6.2 A nycast A d d r e s s e s ... 65

6.3 Tw o-phase G roup A d d resses ... 66

II Internetw ork P ro to co l H eader D esign 68

7 E v a lu a tio n C riter ia 70

7.1 C o s ts .. 70

7.2 C a p a b i l i t ie s .. 71

8 P r o to c o l D escr ip tio n s 73

8.1 S P i p .. 73

8.1.1 SPip R outing and Addressing F i e l d s ... 74

8.1.2 SPip Forwarding A lg o r i th m .. 74

8.1.3 SPip Packet Form ation ... 77

8.1.4 SPip EID D efin itio n s .. 79

8.1.5 SPip RSE D e f in it io n .. 80

8.1.6 SPip H ierarchical Unicast Address A s s ig n m e n t .. 82

8.1.7 SPip Header L a y o u t .. 83

8.2 S I P P .. 84

8.2.1 SIPP Routing and Addressing F ie ld s ... 84

8.2.2 SIPP Packet F o r m a t io n ... 85

8.2.3 S IPP Forwarding A lg o rith m .. 86

8.2.4 S IPP Address D e f in i t io n s .. 86

8.2.5 S IPP Header L a y o u t .. 89

8.3 C L N P ... 89

8.3.1 CLNP Address A s s ig n m e n t .. 90

8.3.2 CLNP Header L a y o u t .. 91

9 R o u tin g an d A d d ress in g C a p a b ilitie s o f S P ip , S IP P , an d C L N P 92

9.1 Big Enough Hierarchical Unicast A d d ressin g .. 92

9.1.1 CLNP w ith Classical Forwarding In fo rm a tio n ... 94

9.1.2 CLNP with A dditional (Non-Classical) Forwarding In fo rm a tio n 97

6

9.1.3 S IPP w ith Classical Forw arding Inform ation .. 98

9.1.4 S IPP w ith A dditional (Non-Classical) Forwarding Inform ation100

9.1.5 SPip w ith Classical Forw arding In fo rm a tio n ... 102

9.1.6 SPip w ith A dditional (Non-Classical) Forwarding In fo rm a tio n106

9.1.7 D iscu ssio n ..110

9.2 M u l t i c a s t ... I l l

9.2.1 C L N P ...I l l

9.2.2 S I P P .. 113

9.2.3 S P i p .. 114

9.2.4 D iscu ssio n .. 123

9.3 M o b il i ty ...124

9.3.1 C L N P ...124

9.3.2 S I P P .. 125

9.3.3 S P i p ...127

9.3.4 D iscu ssio n .. 127

9.4 Domain-Level Policy R o u t e ...128

9.4.1 Provider S e le c t io n ...128

9.4.2 Full Policy R o u te .. 135

9.5 Host A uto-A ddress C o n fig u ra tio n ...136

9.6 Type-of-Service (ToS) F i e l d ...137

9.6.1 C L N P ... 137

9.6.2 S I P P ...137

9.6.3 S P i p ...137

9.7 Em bedded Link-Layer A d d r e s s e s .. 138

9.8 Node-Level Source Route .. 139

9.8.1 C L N P ... 139

9.8.2 S I P P ...139

7

9.8.3 S P i p .. 140

9.9 A nycast G roup Addressing ..142

9.10 S u m m a r y .. 143

10 C o sts o f S P ip , S IP P , an d C L N P 145

10.1 Processing C o s t ..145

10.1.1 Cache H i t s ...147

10.1.2 Forwarding Table L o o k u p ...153

10.1.3 H ierarchical Unicast Addressing ...155

10.1.4 Single-phase Shared-tree M u l t ic a s t ..157

10.1.5 Single-phase Source-tree M u l t i c a s t ..157

10.1.6 O th e r s ...158

10.1.7 Discussion of Processing C o s t s .. 158

10.2 Header S i z e ...161

10.3 C ontrol Protocol C o m p le x i ty .. 165

10.3.1 Unicast R outing P ro to c o ls ...165

10.3.2 Provider S e le c t io n ...167

10.4 Address Assignm ent C o m p le x i ty ... 168

11 S u m m a ry an d C o n clu sio n s for P art II 171

12 E p ilo g u e 174

List o f F igures

3.1 Simple Tree C lu s te r in g ... 28

3.2 Tree w ith Backdoor Link .. 29

3.3 Logical Nodes as B a c k b o n e s ... 31

3.4 H ierarchically Organized Mesh N e tw o r k ... 32

3.5 R elationship Between Scaling and P a th Q u a l i ty ... 38

3.6 Exam ple of Provider-R ooted A ddresses ... 40

3.7 Exam ple of Geographical Addresses .. 42

5.1 Address Layering E x a m p le .. 59

8.1 SPip Forwarding A lg o r i th m ... 76

8.2 R outer O perating at M ultiple Hierarchical L e v e ls ... 81

9.1 Exam ple T o p o lo g y .. 93

9.2 R outer c ’s Forwarding Tables for Non-classical Unicast SPip E x a m p l e108

9.3 R outer a ’s Forwarding Tables for Classical, M ulticast, Shared-Tree O nly SPip Ex­

am ple ..116

9.4 R outer a Forwarding Tables for SPip Non-classical Source-Tree M ulticast Exam ple 118

9.5 R outer c Forwarding Tables for SPip Non-classical Source-Tree M ulticast Exam ple 119

9.6 Exam ple Topology for Policy Examples .. 129

10.1 Processing Speed Versus Hardware C o m p le x i ty ...146

10.2 Sum m ary of Forwarding Costs ..159

10.3 Summary of Header S iz e ..163

10

L ist o f T ables

2.1 Sum m ary of Header Field C lassifica tio n s .. 26

3.1 Sum m ary of R outing and Naming C o s t s .. 53

7.1 C riteria for R outing and A ddressing C a p a b i l i t ie s ... 72

9.1 Forw arding Tables for Classical Unicast CLNP E x a m p le ... 96

9.2 Forw arding Tables for Classical Unicast SPip E x a m p le .. 103

9.3 R outer c ’s Forwarding Tables for Non-classical Unicast SPip E x a m p l e 107

9.4 Sum m ary of Routing and A ddressing C a p a b ilitie s ...144

10.1 Sum m ary of Forwarding Costs ... 160

10.2 Sum m ary of Header S iz e ... 162

11

C hapter 1

In tro d u ctio n

In the mid to late 1970’s, there was a flurry of creative activ ity th a t gave us the basic underpinnings

for the connectionless in ternet. A lm ost 20 years later, this in ternet arch itectu re is dom inating the

d a ta netw orking world. A t the tim e the in ternet arch itecture was being invented, a lot of thought

went into the design of the in ternet protocol (see C hap ter 12). T his work culm inated in X erox’s

P up protocol [9], and shortly afterw ards in IP (the In ternet Protocol) [86, 87].

Since then, much work has been done related to internetw ork protocols, in rou ting algorithm s,

rou ter perform ance, network m anagem ent, and the like. U ntil recently, however, v irtually no

work had been done on internetw ork protocol header design per se. T h a t is to say, nobody had

asked the question “given w hat we’ve learned in the last 20 odd years, w hat fundam enta l general

s ta tem en ts can we make abou t the natu re of internetw ork protocol header design, and how m ight

th is lead to a b e tte r internetw ork protocol?”

T his is not to say th a t there has not been work in internetw ork protocol design in the intervening

years. For instance, during th a t time CLNP was developed in ISO [55]. However, these works

m ainly codified existing practice in a standards or p roprietary fram ework, m aking small bu t

increm ental im provem ents (though some m ight say the progress was backw ards).

W ith the recent explosion in growth of the IP in ternet, IP has been found w anting (through no

fault of the original designers—IP has far exceeded its expected useful lifetim e). IP ’s address

is simply not big enough [45]. This has resulted in a recent flurry of ac tiv ity to define IP ’s

replacem ent [64, 30, 37].

Given the lack of work on fundam ental in ternet header design and th e renewed in terest in a new

internetw ork protocol, this is a good tim e to revisit, in general term s, the topic of routing and

addressing in internetw ork protocol design. T h a t is the topic of this thesis.

More specifically, we ask “w hat inform ation m ust be in an internetw ork protocol header to support

12

routing , and how is th a t inform ation best encoded?” ̂ In particu lar, we present two new designs

for encoding routing inform ation. B oth designs exploit the use of the loose source route as a

general m echanism for a wide range of routing and addressing functions. One design, SIPP, is

based on current in ternet protocol syntax. The o ther design, SPip, uses a new syntax designed

around the loose source route m echanism . We show th a t bo th designs satisfy a wide range of

requirem ents, and th a t bo th are superior to existing approaches.

We assum e th a t the reader has a basic understanding of internetw orking and internetw orking

term inology—for example, as described in [68].

1.1 O u tlin e

This thesis has two parts. The first p a rt presents a taxonom y of routing inform ation, particularly

addresses, and discusses internetw ork protocol routing functionality in the context of th a t taxon­

omy. The second p a rt describes the two new in ternet protocol designs. These protocols, plus an

existing internetw ork protocol (CLN P) are analyzed and com pared.

P a rt I contains C hapters 2 th rough 6. C hapter 2 concerns taxonom y. It describes two previous

taxonom ies, discusses their shortcom ings, proposes a new taxonom y, and shows how the new

taxonom y cleanly describes existing routing and addressing functionality. C hapters 3 th rough 6

describe in detail various routing and addressing functions, in the language of the taxonom y of

C hapter 2. P art I provides the underpinning from which the protocol designs of P a rt II can be

discussed and understood. P a rt I also serves as a broad survey of the state-of-the-art.

P a rt II contains C hapters 7 through 11. C hapter 7 presents the criteria by which the three proto­

cols are analyzed. C hapter 8 describes the three protocols. C hapter 9 analyzes the capabilities of

the three protocols. C hapter 10 analyzes the costs of the three protocols. C hapter 11 sum m arizes

P a r t II and presents the conclusions reached.

C hapters 1 and 12 fall outside of the two P arts . C hap ter 1 is the in troduction , and C hapter 12 is

the epilogue.

^N ote th a t we do not address other asp ects o f in ternetw ork p rotocol header design, such as checksum m ing,

fragm entation , hop cou n t, and con gestion control.

13

Part I

In tern et P ro to co l T axon om y and

Funct ion a lity

14

C hapter 2

T axonom y

This chapter first describes previous taxonom ies of routing and addressing and discusses their

shortcom ings. It then suggests a new taxonomy, and shows how th a t taxonom y supports existing

routing and addressing functionality.

2.1 P re v io u s T a x o n o m ies

It is impossible to discuss the definition of address w ithout introducing the taxonom y of names,

addresses, and routes discussed by Shoch in 1978 [99], and further discussed by Saltzer in 1982 [96].

Shoch sta tes th a t the nam e, address, and route represent the fundam ental com ponents of network­

ing. Specifically, Shoch makes the following definitions:

• The nam e of a resource indicates w hat we seek,

• an address indicates where it is, and

• a route tells us how to get there.

The notion here is th a t a name is som ething w ith which a hum an can deal com fortably, such as

a character string. The nam e is m apped into an address, which is som ething less com fortable to

hum ans bu t more useful to machines, such as routers. The address then m aps in to a route, which

defines the p a th from one host to another.

The notion of an address indicating ‘w here’ satisfies our common usage of the word address. Hosts

(or telephones, or people in houses) th a t are in the same locale tend to have sim ilar addresses.

W hen a host (or phone, or person) moves, it gets a new address. By and large, netw ork addresses

have these characteristics.

15

However, the notion of an address indicating where som ething is can also be misleading. For

instance, an E thernet address (or any flat address), seems not to convey m uch of a notion of

location. If an E thernet interface is moved from an E thernet in New Jersey to an E thernet in

Tokyo, it keeps the same address. Thus, the E thernet address behaves more like an identifier (th a t

uniquely identifies the E thernet interface am ong all E thernet interfaces) th an an address.

The notion of an address indicating location is also misleading when an address is hierarchical

and the addressing hierarchy is not a stric t tree (th a t is, a single elem ent of the hierarchy falls

under m ultiple higher elem ents). An example of th is is provider-rooted addressing. This is a form

of addressing where the top level of the hierarchy indicates a backbone service provider, such as

N SFN ET or PSI, etc. Provider-rooted addressing is being proposed in some of the proposals for

the next generation of IP [30, 37].

W ith provider-rooted addressing, if a subscriber netw ork is a ttached to m ultiple backbones, it

obtains m ultiple addresses.^ Assume for instance th a t a subscriber netw ork is a ttached to two

providers, A and B, and therefore the hosts in the network each have two address prefixes A

and B. W hen address prefix A is used to address a host in the network, the packet is routed

through provider A. Likewise, when prefix B is used, the packet is rou ted through provider B (see

section 3.4.2).

The notion of an address indicating location is misleading here in two senses. F irst, the host seems

to be in one place (for instance, it m ay have one netw ork a ttachm en t po in t), and yet it has two

addresses, which would imply th a t it is in two locations. More im portantly , the address used in

a packet to the destination dictates, a t least a t the specificity of which provider is chosen, the

route to the destination. In other words, the address in p a rt determ ines how a packet gets to the

destination , and is therefore, by Shoch’s taxonom y, also a route.

These am biguities in Shoch’s taxonom y indicate th a t a more precise definition is needed. (To be

fair, Shoch’s paper sheds a great deal of light on w hat an address is, by pointing out different

kinds of addresses and how they behave. It is ju s t th a t the notion of “where” per se is am biguous.)

Saltzer also recognized am biguities in Shoch’s taxonom y, and so designed one of his own [96].

Saltzer observed th a t there are actually four entities th a t commonly appear in networks, and

th a t therefore a trip a rtite taxonom y is insufficient. These four entities are users/services^ hosts,

network attachm ent points, and paths. Each en tity has a nam e, and each is bound to the next—

users/services can be found on certain hosts, which have certain netw ork a ttach m en t points, to

which path s lead.

 ̂S tr ictly speak in g this does n ot have to b e true. If backbone routers m ain ta in routes to subscriber netw orks,

rather than only to other provider netw orks, then one address w ould suffice for routers to know how to route to

a subscriber through m ultip le providers. T h is , how ever, defeats one o f th e purposes o f p rovider-rooted addresses,

w hich is for routing to scale at th e rate o f providers at the top of the hierarchy. Current IP sca les at roughly the

rate of subscribers, w hich is found to be inadequate [45].

16

Saltzer made two im po rtan t points. F irst, th a t the form of the nam e of each en tity should be

distinguished from w hat the en tity is (Shoch thought of a nam e as being hum an friendly and

an address as being machine friendly). Second, th a t the natu re of the binding between the four

entities is of critical im portance. For instance, is the binding of the nam e of a host and the nam e

of its netw ork a ttachm en t point tigh tly coupled or dynam ic? If it is tigh tly coupled, as w ith an

E thernet address, the network attachm ent point nam e stays w ith a host w hen the host moves.

If it is dynam ic, as w ith IP addresses, the network a ttachm en t point nam e changes w ith host

m ovem ent, and the binding is dynam ically m aintained in tables (for instance, DNS tables).

In com paring his taxonom y w ith Shoch’s, Saltzer makes the following sta tem ent: “An address of

an object is a nam e of the object it is bound to. Thus, an address of a service is the nam e of some

host th a t runs it. A n address of a host is the nam e of some netw ork a ttach m en t point to which

it connects,” and so on. In essence, Saltzer takes away the am biguity of w hat an address is by

rem oving it from the taxonomy, and delegating it to its classical m eaning in com puter science.

Thus, according to Saltzer’s taxonomy, an address could be the nam e of a host (as in E thernet),

or it could be the nam e of a network a ttachm en t point (as in IP), or it could even be the name

of a p a th (as in IP source route). In the end, Saltzer does no t a ttem p t, as Shoch did, to come up

w ith a unifying definition of address.

In this thesis, we also do not a ttem p t to come up w ith a unifying definition of address. B ut neither

do we remove address from the basic taxonomy. R ather, we try to shed as m uch light as possible

on w hat an address is, and how it contributes to the job of routing. In so doing, we take advantage

of (bu t do not com pletely em brace) Saltzer’s taxonom y of user/service, host, netw ork attachm ent

point, and path , because indeed these are real elements in the network.

B ut, we also keep Shoch’s “nam e” and “address” , because those are also real elem ents in the

network. (We keep Shoch’s “rou te” as well, bu t this is the same as S altzer’s pa th .) People and

hosts have nam es th a t we deal w ith as real objects, and hosts and netw ork a ttachm en t points

have addresses th a t are real objects carried in packet headers or looked up in directories.

2.2 A d d it io n a l T axon om y: D efin in g F u n ctio n s ra th er th a n

E lem en ts

B oth Shoch’s and Saltzer’s taxonom ies are based on network elem ents, and cover all aspects of

nam ing /add ressing /rou ting (from the user to the path). This section expands those taxonom ies

by basing the taxonom y on function ra ther than network (or header) elem ent. I t also lim its itself

to th a t inform ation in the packet header th a t relates to routing.

This section shows th a t there are three route-affecting functions of a packet header. T hey are;

destination identification, destination location, and path modification. T hus, the three route-

17

affecting com ponents of the packet header are the identifier, the locator, and the modifier? Briefly

s ta ted , the identifier distinguishes the destination am ong all o ther destinations. It can be used by

the routing function to determ ine how to route a packet, and has the characteristic th a t its value is

independent of where in the network the destination is located. The locator is used by the routing

function to determ ine how to route a packet, bu t its value does depend on where in the network

the destination is located. A locator has the side-effect of identifying the destination . There

are two m ajor types of locators, source-sensitive and source-insensitive. A modifier is a header

elem ent th a t is independent of the identity or location of the destination , b u t still influences the

p a th taken to reach the destination.

The rem ainder of this section discusses various com ponents of the header in the context of these

three functions.

2.2.1 A ddresses

An address does two things. F irst, it identifies the addressed object (destination host or network

a ttachm en t point) among the set of addressable objects. (Note th a t an address can identify

m ultiple objects, as w ith IP m ulticast addresses [27]. In this thesis, when not otherwise sta ted ,

the term address refers to the address in its “un icast” , or non-m ulticast, form.) In this sense, it

does the “nam ing” function as defined by Shoch, though it is not a nam e is Shoch’s sense (th a t

is, it is no t necessarily hum an-friendly).

The second function of the address is to aid in routing the packet (or call setup) from wherever

it is to the destination . Simply put, it does this by providing w hatever inform ation is needed by

the routing function.

The reason th a t a single address typically accomplishes bo th functions is because usually one and

only one destination is a t a given place a t a given tim e. Thus, indicating “where” the destination

is is param ount to identifying it.

In theory, the address could be split in to two com ponents, an identifier (indicates w hat) and a

locator (indicates where). The former would be used only for identifying the destination , and

would not change even if the destination moved far enough to justify getting a new “locator” .

The la tte r would only assist the routing function^. Indeed, this is som etim es done in practice, for

instance in the case of mobile IP [104, 58], where the netw ork location of a destination can change

m ultiple tim es during the course of a T C P connection.

Consider the E thernet address in the context of locating and identifying. T he E therne t address

is only an identifier. W hen the E thernet packet is tran sm itted onto the cable, it is delivered to

^The term “loca tor” was first suggested b y Frank K astenholz on the b ig in tern et m ailin g list [7].
^N ote th at the w ord “router" w ould b e a b etter term th an “loca tor” for th e address b ecau se o f it s role as aiding

the routing function . H owever, the w ord “router” is already in com m on use to refer to the p h ysica l sw itch es that

forward in ternet packets.

18

all E thernet interfaces, each of which individually determ ines w hether or not the packet is for it.

T h a t is, each interface “identifies” the packet as being for it or not for it.

This classification is less clear when an E thernet packet is transm itted on a cable th a t is connected

to o ther cables via bridges. In this case, it is received by the bridges (as well as by everything else

a ttach ed to the cable), which then determ ine the location (from their individual perspectives) of

the destination indicated by the E thernet address. Thus, some “locating” is going on, bu t it is

no t the E thernet address th a t is locating the destination , bu t ra th er the p a th , as in stan tia ted by

the entries in the bridge’s forw arding tables, th a t locates the destination. The E thernet address

identifies the forw arding table entry w ithin each bridge.

This m ay seem to be splitting sem antic hairs, and one could argue th a t the E th ern e t address, in

the case of the bridged E thernet, is in fact locating the destination, albeit indirectly through the

m echanism of the forwarding tables in bridges. However, one m ust draw a line betw een locating

and not locating, and it seems th a t a clean place to draw it is according to the following definition:

If the address (or other header com ponent) of a destination rem ains the same no m atte r

which switch interface the destination directly obtains access through, then the address

is not a locator.

Now consider the IP address, which according to the above definition is a locator (bu t which, as

s ta ted above, effectively identifies as a side effect). The IP address is hierarchically partitioned into

three levels—network, subnet, and host [87]. (Actually, recent advances in classless IP address

assignm ent [42] add additional hierarchy to the IP address. For the purposes of this thesis,

however, the old m odel of IP suffices.) W hile exceptions to the following rule apply, by-and-large

routers outside of a given network m aintain a forw arding table en try indicating how to route to

th a t netw ork. Routers inside the network m aintain forwarding table entries for th e subnets w ithin

th a t netw ork, and routers on the subnet m aintain forw arding table entries for the hosts on the

subnet.

Viewed another way, the inform ation inside routers result in three kinds of pa th s in the IP In ternet.

T here are pa ths from all routers to all networks^, there are pa ths from routers in a network to

all subnets in the network, and there are pa ths from all routers on the subnet to all hosts on the

subnet

The job of the address, then, is to string these three paths together into a com posite p a th th a t will

reach the destination from any point in the in ternet. The address does this by im plicitly coupling

the three paths together by including them in the same address. If the destination changes its

netw ork access location to a different router interface, and th a t interface is far enough away from

the former access point, then the destination requires a new address. (In th e case of IP, “far

^Strictly speaking, m ost routers do n ot m ain ta in routes to all netw orks. M ost routers m a in ta in so-called default

routes to routers h igh up in the physically topology, for in stan ce in provider netw orks, w h ich in turn m ainta in

routes to all netw orks.

19

enough” is a different subnet, for instance a different LAN.)

It is in teresting to observe th a t the IP address essentially consists of a series of identifiers—

the network identifier, the subnet identifier, and the host identifier. Each individual identifier

behaves sim ilarly to the E thernet address. T h a t is, each individual identifier identifies a p a th to

a destination , and the destination itself. The “destination” in this case can be a set of systems

ra th e r th an a single system (for instance, an entire netw ork).

Similarly to an E thernet address, if the identified “destination” moves, it does not require a new

address. For instance, if an entire IP network moves from one p a rt of the In te rne t to another, it

does not have to obtain a new network identifier (called a “network num ber” in IP), and none of

the hosts inside of the netw ork need to obtain a new address. Likewise, if a whole subnet moves

w ithin a netw ork, it also does not need a new identifier.

2.2.2 Source R oute

A source route, as used in IP (and CLN P), is a series of IP (or NSAP) addresses in the header.

A source rou ted IP packet visits each of the system s identified by the IP addresses in the source

route in the order th a t the IP addresses are listed in the IP header.

There are two kinds of source route: the stric t source route and the loose source route. W ith the

s tric t source route, only those system s listed in the source route can be visited. W ith the loose

source route, systems other th an those listed in the source route can be visited. In o ther words,

the stric t source route com pletely specifies the path , while the loose source route only specifies

p a rt of the path .

The IP source route can be partitioned into two parts, the last elem ent of the source route (which

is the destination address), and the preceding elements. The two parts have different roles in the

source route, and m ust be classified separately.

The final elem ent of the source route is the destination address, and is therefore a locator.

The preceding elements of a source route, taken as a whole, is a kind of locator. This is easy to

see in the context of the stric t source route. W ith a stric t source route, if the destination moves,

it is alm ost certain th a t a t least some of the preceding elem ents of the stric t source rou te m ust

change. This is because a change in the destina tion’s location requires a different pa th . Since the

s tric t source route describes the complete p a th to the destination, it m ust change when the path

changes.

The classification of the preceding elements of a loose source route as a locator is less obvious.

S trictly speaking, the destination can move to a new location w ithout changing the preceding

elem ents of the loose source route (only the final elem ent will change), and the packet will still

be delivered. In this sense, the preceding elem ents of a loose source rou te seems to behave as a

20

modifier. T h a t is, it affects the path to the destination, bu t does no t affect the destination itself.

This having been said, if the destination moves, it is likely th a t the preceding elem ents of the

loose source route would change also, because the previous source route m ight become a poor

one. T hus, the preceding elements of a loose source route are coupled, albeit loosely, to the final

elem ent or destination.

We can fu rther support the sta tem ent th a t the loose source route is a locator by showing the

sim ilarity between the loose source route and the hierarchical address. Consider again the IP

address. As m entioned before, the IP address is essentially a series of identifiers coupled together.

Each identifier identifies the next lower element in the hierarchy.

The fact th a t an IP address (or any hierarchical address) is a series of identifiers means th a t

its syn tax could be a series of equal-sized identifiers, ra ther than nested hierarchical num bers

squeezed into 32 bits. Each of the identifiers could even be globally unique if the identifiers were

large enough (for instance, 48-bits in length, as are E thernet addresses).

W hen viewed as a series of identifiers ra th er than as a single “hierarchical address” , an IP address

has some characteristics sim ilar to a source route. Ju s t as the system s represented by the elements

of a source route are visited on the way to the destination, the “system s” represented by each of

the com ponents of a hierarchical address are norm ally visited by the packet on the way to the

destination .

In the case of the hierarchical address, the “system ” is in fact a collection of system s, such as a

netw ork or a subnet. Also, the mechanics of parsing a source route are different from the m echanics

of parsing a hierarchical address. None-the-less, their basic behavior is the same.

Viewing the hierarchical address as a source route, consider th a t the “higher” elem ents in the

hierarchical address correspond to the initial elements of the source route, and the “lower” elem ents

of the hierarchical address correspond to the later elements of the source route. If a destination

moves a short distance, it is likely th a t the lower elem ents of the hierarchical address will change

bu t no t the upper. For instance, if a destination moves w ithin the network, then its subnet num ber

m ight change, bu t not its network num ber. Likewise, with a source route, if a host moves a short

distance it is more likely th a t the la tte r elements will change th an the earlier.

The hierarchical address is in fact a specialized form of the source route. The source route, being

more general, could be used as a m echanism for achieving hierarchical addressing. W hen used in its

trad itio n a l role, however, the source route and hierarchical address have a fundam enta l difference.

T h a t is, the source route is dependent on the location of bo th the source and the destination, while

the hierarchical address is dependent only on the location of the destination. T his is because the

source route specifies a p a th from source to destination, whereas the hierarchical address only

specifies the “p a th ” from the top of the hierarchy to the bo ttom .

The difference between the two is im portan t, because it is in p a rt the source independence of the

21

hierarchical address th a t gives it its good scaling characteristics. Thus, it is useful to distinguish

betw een source-sensitive and source-insensitive locators in the taxonomy. H ierarchical addresses

are source-insensitive locators, while source routes are source-sensitive locators.

To emphasize the difference between the two types of locators, we use the te rm vector to describe

source-sensitive locators. Thus, a source route, as used in IP, is classified as a vector. A lthough

strictly speaking a vector is a type of locator, the term “locator” , when used alone, implies a

source-insensitive locator.

2.2.3 T ype-of-Service (ToS) / Q uality-of-Service (QoS) Field

A nother elem ent of an IP header th a t can influence the route is the ToS Field. (The analogous

field in CLNP is called the QoS Field. We use the term QoS Field when discussing CLNP, and

use the term ToS Field otherwise.)

The ToS Field in IP instructs the network to a ttem p t to give the packet a sm all set of service

characteristics, w ithin the lim itation of “best-effort” delivery. Exam ples of ToS Field types in

IP are low delay, high bandw idth, and low error. One way an IP netw ork could theoretically

provide these services are by routing the packet over transm ission facilities th a t have the requested

characteristics. Thus, the ToS Field can affect routing.

The ToS Field is neither an identifier nor a locator. It is not an identifier because the choice of

ToS Field has no influence on which destinations receive the packet. It only influences the path

taken. Packets to different destinations can have the same ToS Field value, and packets to the

same destination can have different ToS Field values. The ToS field is not a locator because it

does not change if the destination moves to a different network location.

R ather, the ToS Field is a pa th modifier (or ju s t modifier for short), the th ird te rm in the functional

taxonom y. A modifier is a header elem ent th a t is independent of the iden tity or location of the

destination , bu t still influences the p a th taken to reach the destination.

2.2.4 M obility

T here exists several proposals for m obility in IP [104, 58]. W hile these proposals differ in detail,

they all have one th ing in common— th a t is, two IP addresses are used ra th e r th an one. One

address is stable th roughout a higher level connection (such as T C P), and the other address

reflects the mobile h o st’s current location in the in ternet.

The stable address is the identifier for the connection. It does not change even as the mobile host

changes location®. Except for possibly the last router in a pa th , this identifier is not exam ined by

^The stab le address (identifier) can sim u ltan eou sly be a locator for the ’’hom e sta tio n ” o f the m obile h o st. T he

h om e sta tio n is a nod e th a t know s th e current loca tion of the m obile node.

22

routers.

The non-stable address is the true locator for the mobile host. This address is used to route the

packet to the current location of the mobile host.

2.2.5 IP M ulticast

The final com ponent of the IP header th a t can influence routing is the source address. The source

address influences routing when the destination address is a m ulticast address [27]. A m ulticast

address is an IP address th a t identifies m ultiple destinations, ra th er th an a single destination as

is the case w ith the non-m ulticast, or unicast, IP address. A m ulticast address also activates a

delivery service whereby all destinations receive the packet.

One technique for delivering an IP packet to m ultiple destinations is for a m ulticast routing

algorithm to form a spanning tree from the source to the destinations. R outers a t branches in the

tree replicate the IP packet and transm it one copy over each outgoing branch of the tree. Because

the tree is rooted a t the source, and because a given router can be on m ultiple trees for the same

group, the source address m ust be exam ined for the router to know which neighbors should receive

replicas.

According to the taxonom y, the IP m ulticast address in the destination address field is an identifier.

I t rem ains the same no m atter where the destinations are (or which destinations belong to the

group).

The source address, on the o ther hand, is a modifier. It influences the p a th (s) taken, bu t does

no t influence the set of destinations th a t receive the packet.® To be clear, the source address is

a modifier for the destination. The source address itself is of course a locator of the source, and

will change if the source changes location. The focus here, however, is on the destination and on

how packets are routed to the destination. W ith respect to the m ulticast destination , the source

address is a modifier.

Note th a t there are o ther forms of m ulticast [2, 79] th a t do not form trees a t the packet source,

and therefore do not depend on the source address. In these cases, the source address has no

influence on the route taken, and so does not fall in to the taxonom y one way or the other.

M u ltic a st S co p in g

Scoping in m ulticast is the act of lim iting the spread of a m ulticast, usually w ith respect to distance

from the source. To accomplish this, there is a field in the packet header th a t specifies the scope of

the packet, here called the scope field. In the case of IP, th is field is the hop count (Time-To-Live)

®The excep tion to this is where a d estin ation w ishes to filter all packets from a g iven source. H owever, this

shou ld be m odeled as a filtering fun ction rather than a rou ting function , an d so is orthogonal to this taxonom y.

23

field [31]. T h a t is, the m ulticast packets simply travel (away from the source) un til the hop count

expires. The larger the hop count, the larger the scope of the packet.

In the SIPP protocol [30, 40], there are b its set aside in the address field to indicate scope. The

scope bits are set independently of the m ulticast group identifier.

In either case, it is a little difficult to classify the scope field as identifier, locator, or modifier. By

itself, the scope field is none of the three. In com bination w ith the source address and m ulticast

address, however, it makes up part of the identification function. T h a t is, taken together, the

source address, m ulticast address, and scope field define the recipients of a given packet. In this

sense, it is neither a coincidence, nor inappropriate, th a t the S IP P scoping b its are p a rt of the

m ulticast address itself.

2.2.6 Flow Specification / Flow Identifier

“C onnection-oriented” network technologies, such as ISDN [17] and X.25 [16] have two phases of

operation; call setup and d a ta transfer. In the call setup phase, one or more call setup packets are

sent from source to destination (and possibly back again, depending on the protocol). The call

setup contains full “addressing” inform ation, similar in function to th a t inform ation in the header

of an IP packet, which is used to determ ine the path from source to destination .

The call setup may also contain inform ation indicating w hat service the subsequent flow (tra ­

ditionally called a connection) requires. Such inform ation can be as simple as peak bandw idth

required, or can have m ultiple param eters describing average bandw idth , peak bandw idth , delay

sensitivity, and loss sensitivity [75]. In line w ith the term inology of [75], we call this inform ation

the flow specification, or flow spec.

The call setup may also contain inform ation th a t tells routers how to associate subsequent d a ta

packets w ith the routing and flow spec inform ation. This is called the flow filter in the RSVP call

setup protocol [114].

Traditionally, for instance w ith X.25 and ISDN, the flow filter is a small identifier th a t is locally

managed by each router. We call this identifier the flow ID.^ The Flow ID can also be m anaged

by the source host, such as w ith SIPP and SPip (Sections 8.2.5 and 8.1.7 respectively). The flow

filter m ay even have no flow ID per se, bu t instead identify the fields in an otherwise connection­

less packet header th a t uniquely identify the flow—for instance, source and destination address,

protocol num ber, and po rt num ber.

The flow spec in the call setup m ay or m ay not influence the pa th chosen. A significant am ount

of lite ra tu re exists on the topic of optim al p a th selection based on flow requirem ents, of which the

work of Bertsekas and G allager is exem plary [5]. However, optim al p a th selection is an exceedingly

^X.25 uses the term Logical C hannel N um ber (L C N). ATM uses the term V irtual C ircuit Identifier (V C I). ATM

uses tw o n ested levels of V C I. It calls the lower level a V C I, and the upper level a V P I (V irtu a l P a th Identifier).

24

hard problem , and except for very simple flow specs, is not yet practical. It m ay be useful to use

the flow spec to influence the p a th chosen w ithout looking for an optim al p a th per se. Recent

work on call setup such as RSVP, however, does not yet a ttem p t to choose routes based on the

flow spec.

W hen being used to influence routing, the flow spec is classified sim ilarly to the ToS Field— th a t

is, it is a modifier. Because the problem is so difficult, and because this thesis prim arily deals w ith

connectionless internetw orking, we do not further exam ine the use of the flow spec in its role as a

modifier.

Note th a t the d a ta packets of a flow do not contain the flow spec. Instead , they contain one of 1)

a flow ID only, 2) a flow ID and other routing inform ation such as addresses, or 3) only routing

inform ation. In the first case, each router forwards based solely on the flow ID. In the second

case, routers will norm ally forw ard on the flow ID, bu t m ay also use the routing inform ation, for

instance because the sta te for the flow ID has been lost.

A lthough the flow ID in the d a ta packet therefore influences the route, it in itse lf carries no

routing and addressing sem antics. R ather, it is nothing m ore than a m nemonic for the flow spec

and rou ting inform ation th a t was in the call setup (or form er packets). As such, the flow ID does

no t provide new routing inform ation and is therefore outside the scope of the taxonom y presented

here.

2.3 S u m m ary o f T a xon om ies

Each of the three taxonom ies presented here are valid and useful w ithin their context. Shoch chose

to focus on the term s th a t are m ost in the networking vocabulary (now as well as th en)— name,

address, and route. Shoch rem ained true to the vernacular m eaning of these term s in networking,

th a t nam es identify w hat is sought, addresses indicate where the ob ject is, and routes describe

the p a th to the object. Shoch shed much light on the m eaning and use of these term s.

Saltzer felt th a t the vocabulary of Shoch lacked precision, and so delegated the term s nam e and

address to their classical m eaning in com puter science (an address of an ob ject is a nam e of the

object it is bound to). Saltzer introduced the entities users/services, hosts, netw ork attachm ent

points, and paths, and described how each is bound to the next.

T his chap ter fu rther examines the role of addressing, or m ore generally, everything th a t goes in

a packet header th a t affects routing. Saltzer’s taxonom y is inadequate for th is purpose because

it takes the focus away from the address. Shoch’s taxonom y lacks precision in-so-far-as addresses

(in Shoch’s sense of the word) are concerned.

Thus, a refinem ent of addressing taxonom y is introduced. In particu lar, there are three functions

in addressing— identifying (the destination), locating (the destination), and modifying (the p a th to

25

Table 2.1: Summary of Header Field Classifications

Header Field Classification Section

E thernet Address Identifier 2.2.1

IP Unicast Address Locator 2.2.1

Type-of-Service Field Modifier 2.2.3

Source Route Locator 2.2.2

M obility Stable Address Identifier 2.2.4

M obility Non-stable Address Locator 2.2.4

IP M ulticast Address Identifier 2.2.5

Source A ddressf Modifier 2.2.5

Scope/Source A ddress/M ulticast Identifier 2.2.5

Flow Spec Modifier 2.2.6

Flow ID Not Applicable 2.2.6

fw ith Source-rooted M ulticast

the destination). The identifier unam biguously identifies the destination regardless of its location

in the netw ork. The locator also unam biguously identifies the destination , bu t is dependent on the

netw ork location of the destination. Locators can be source-sensitive or source-insensitive. Unless

otherwise sta ted , source-sensitive locators are called vectors, and source-insensitive locators are

called ju s t locators. The modifier influences the p a th taken to the destination , bu t has no bearing

on the location or identity of the destination.

The com ponents of well-known packet headers, particu larly IP, are classified according to this

taxonom y, and are found to fit neatly into the taxonom y. Table 2.1 sum m arizes the classification.

26

C hapter 3

L ocators

T his section discusses various forms of locators th a t reduce the cost of routing . It has already

been m entioned th a t locators are sensitive to host movem ent. W hen a host moves, it m ust obtain

a new locator. This section shows how locators are also sensitive to topology. By topology, we

m ean the network graph formed by the connection of nodes w ith links.

There are two m ajor forms of locators, hierarchical and non-hierarchical. H ierarchical locators are

by far the more common, and are discussed here first.

3.1 H ierarch ica l L oca tors

All hierarchical locators employ some form of clustering. T h a t is, groups of nodes are formed

in to a cluster, which is represented by a single value in a com ponent of the hierarchical locator.

For instance, w ith IP, the three address com ponents are host, subnet, and network. The subnet

com ponent identifies the cluster of hosts consisting of those hosts a ttached to the subnet. The

netw ork com ponent identifies the cluster of subnets th a t belong to a given netw ork.

In a hierarchical locator, the lowest-level (0th level) com ponent is the host (or rou ter). The next

higher level (1st level) com ponent is a cluster of hosts. The 2nd level com ponent is a cluster of 1st

level clusters, and so on [62]. This thesis refers to bo th hosts and clusters as hierarchy elements.

The topological constrain t placed on clusters is th a t there m ust be a p a th betw een any two nodes in

a cluster th a t only traverses nodes th a t belong to the cluster. In o ther words, it m ust be possible

for nodes outside a cluster to view the cluster as a single com ponent. T hus, large num bers of

nodes can be viewed as a single node, thus shrinking forwarding table size, and decreasing the

cost of routing. If the cluster is not internally connected, it is not possible to view it as a single

com ponent.

There are several aspects of hierarchical addressing th a t are of in terest. One aspect is th a t of

27

2.2.0 Forwaiding Table

De.st Next Hop

2.2.1 2.2.1

2.2.2 2.2.2

2 2.11 2.2.n

other 2.0.0

0 .0.0

Figure 3.1: Simple Tree C lustering

determ ining which elem ents should be clustered a t each level, and w hether elem ents can belong to

m ultiple different clusters. A nother aspect is th a t of determ ining w hat routing inform ation hosts

and routers should contain. B oth of these aspects are influenced by the topology, the desired

quality of the paths found, the desired robustness to network failure, and the desired algorithm ic

simplicity. W hat follows is a num ber of different approaches to hierarchical clustering.

3.1.1 Tree Topology

The sim plest form of hierarchical clustering is where the network topology is a tree, and the

address struc tu re follows the tree struc tu re , as shown in Figure 3.1. In the tree topology, a group

of nodes is clustered by virtue of having a link to the same higher level node.

The addressing reflects th is clustering as shown in Figure 3.1. The addresses in this exam ple have

three com ponents, w ith each successive com ponent identifying the next cluster down. The higher

the cluster, the fewer com ponents in the address required to identify it. By convention, an address

w ith three com ponents refers to a node, and an address w ith fewer th an three com ponents refers

to a cluster. An address w ith Os as the trailing com ponents refers to a node th a t is not a leaf in

the hierarchy. Thus, the top-m ost node has address 0.0.0, a node below it has address 2.0.0, and

so on. T he address 2 refers to 2.0.0 and all nodes below it.

W ith a tree topology, the only explicit inform ation required in a forw arding table for a given node

concerns w hat is below it. W hen a node receives a packet, it looks up the address of the packet

28

2.2.0 Forwarding Table

Dest Next Hop

2 .2.1

2 .2.2

2.2.n

5.4.0

2 .2.1

2 .2.2

2 2.n

5.4
Backdoor Link connecting

nodes 2.2.0 and 5.4.0.
0 .0.0

other 2 .0.0

3.0.0
2 .0.0 4.0.0 5.0.01. 0.0

2.5.02 .2 .0. 5.4ŒD 5.4.05.1.02 . 1.0

2 .2 .1, 2 . 2.2 5.4.25.4.1, 5.4.n(M

Figure 3.2: Tree w ith Backdoor Link

in the forw arding table. If the result is th a t the destination is below it, then the packet is sent

down to the appropria te neighbor node. O therwise, the packet is sent up.

For exam ple, consider the forwarding table of the node labeled 2.2.0, shown in Figure 3.1. It has

entries for the nodes below it; 2.2.1, 2.2.2, etc. Any address not of the form 2.2.x, where x implies

any value, is simply forwarded up, to node 2.0.0 (shown as other in the forw arding table). This

forw arding up of packets not destined for things below is called default routing. I t is an effective

means of reducing forw arding table size and routing com plexity for nodes no t a t the top of the

hierarchy, and is in common use in the IP in ternet, even though the topology of the IP in ternet is

not strictly a tree topology.

The tree topology is simple and effective, bu t has two m ajor problem s, bo th stem m ing from the

fact th a t all traffic between a given two nodes goes th rough their paren t nodes. F irst, congestion

can occur a t the paren t nodes. Second, the paren t nodes are single po in ts of failure.

T ree T o p o lo g y w ith E n h a n cem en ts

To alleviate these problems, three enhancem ents to the tree topology are com m only used in

practice. F irst, there can exist links between nodes th a t do not share a parent-child relationship.

These links are called backdoor links, or ju s t backdoors. This is shown in Figure 3.2. In practice,

backdoor links often are lim ited to carry only th a t traffic between nodes in the clusters th a t the

backdoor connects. Indeed, in the IP In ternet, backdoors are usually explicitly prevented from

carrying any other traffic.

29

Thus, the purpose of the backdoor link is prim arily to shunt traffic away from the upper portions of

the hierarchy (or, from the users perspective, avoid the perform ance degradation or cost associated

w ith going through the upper portions of the hierarchy). W ith respect to im proving robustness,

the backdoor is lim ited in th a t it typically only provides an a lternate p a th for traffic between the

two clusters, bu t not for traffic betw een nodes in other clusters.

The hierarchical locator is not affected by backdoor links. The hierarchical locator still follows the

up /dow n links th a t are the basis of the tree topology. The forwarding tables of routers, however,

are affected by the backdoor links.

Figure 3.2 shows the forw arding table of node 2.2.0 modified to take in to account the backdoor

link to 5.4.0. In addition to checking packets for addresses 2.2.1, 2.2.2, etc., i t m ust check for

packets w ith address prefix 5.4. Any packets with an address prefix of 5.4 are routed to node

5.4.0, which then forwards them down as appropriate. The ability of a router to choose a finer-

grained forw arding table entry (for example, 5.4) over a coarser-grained forw arding en try (for

exam ple, other) is called best-m atch routing [73]. Default routing can be viewed as a form of

best-m atch routing where the coarsest-granularity en try is “all addresses” .

The second enhancem ent to the tree topology is where a single “node” in the otherwise tree

topology is actually a collection of nodes internally connected, usually bu t no t necessarily by a

mesh topology. A mesh topology is a topology w ith no regular struc tu re . Such a collection of

in ternally connected nodes is called a backbone.

Figure 3.3 com pares an element of the tree topology w ith an elem ent of the backbone-iree topology.

It can be seen th a t logically the two are equivalent, bu t th a t the backbone reduces or elim inates

single points of failure (particularly if the lower-level elem ent is connected in m ultiple places,

such as 2.2.n) and spreads traffic over m ultiple nodes. Thus, hierarchical locators still follow the

tree struc tu re as w ith the pure tree topology. T he contents of forw arding tab les also does not

change significantly by the in troduction of backbones. The only difference is th a t, in the case of

backbones, the forwarding table en try may direct a packet to another node in the backbone before

it is directed down the hierarchy.

The top of the backbone-tree topology can be, and in practice typically is, a set of backbones,

them selves in terconnected by a mesh topology. In term s of addressing, this is equivalent to

rem oving the top elem ent of the tree topology, and interconnecting the resulting top elem ents

w ith a m esh topology. T hus, forwarding table entries in nodes a t the top of the hierarchy will

have explicit entries for other top-level elem ents ra th e r th an a default en try poin ting up.

In the th ird enhancem ent to the tree topology, elem ents are allowed to have m ultiple parents.

T his enhancem ent is sim ilar to the backdoor in th a t it is a link th a t connects different elements

of the hierarchy, bu t different in th a t the in tent is for the link to be a “full p a rtic ip an t” in the

topology— it can be used to forward traffic between w hat is below it and everything else in the

topology.

30

Node 2.2.0 (logical)
is actually a
backbone network.

2 . 2.0

2 .2.0

2 . 2.22 . 2.1 2.2.U 2 . 2.22 .2.1 2.2.n

Logical Addressing Tree Actual Topology

Figure 3.3: Logical Nodes as Backbones

For this level of participation to scale well, the elem ent w ith m ultiple paren ts should obtain

addresses from each of its parents, resulting in m ultiple addresses for m ultiply connected hierarchy

elem ents.

This adds overhead to the nam ing system , since each m ulti-parent elem ent m ust have m ultiple

entries in the nam ing system . The increase, however, is a small constan t. T his enhancem ent also

com plicates alm ost every aspect of addressing and routing. Choosing an address is more complex

because system s m ust be able to choose from m ultiple addresses. This is no t a triv ia l choice,

because the address chosen influences the p a th taken (it causes the packet to go through the part

of the hierarchy indicated by the address [107]). Default routing becomes more complex, because

the num ber of up choices increases.

3.1.2 M esh Topology

I t is possible to form a cluster hierarchy even when the topology displays no hierarchical charac­

teristics. All th a t is necessary is to logically group hierarchical elem ents such th a t each group is

internally connected [62].

Figure 3.4A shows a mesh topology. Figure 3.4B shows two levels of clusters superim posed on the

mesh topology. It also shows the node addresses th a t result from this clustering. As s ta ted before,

the only hard requirem ent for this clustering is th a t each cluster be in ternally connected. There

may, however, be any num ber of less hard requirem ents th a t determ ine how clustering is done.

For instance, a certain am ount of connectivity w ithin each cluster m ay be required (for instance,

a t least two paths between any two nodes in a cluster). Or, clusters m ay be form ed around nodes

th a t exchange a lot of traffic.

H ierarchical clustering over a mesh topology can result in pa ths th a t are longer th an shortest

31

Original
Mesh

Network

3.2.1

3.2.33.2.2

Hierarchical Network from
Node 3.2.Ts Perspective

1 .2.2

1.2.3

2 . 1.2 2.1.3

1.3.31.3.2

2 . 2.1
1.3.4

2.2.3

2 . 2.2

2.2

2.2.4

3.2
3.1.4

3.2.33.2.2
3.1.3

B
Original Mesh Network Organized
as Three Level Hierarchical Network

Figure 3.4: Hierarchically Organized Mesh Network

p ath . For instance, assume th a t the forwarding tables in every rou ter m ain ta in entries describing

how to route to each node in their own level 1 cluster, each level 1 cluster in the ir level 2 cluster,

and so on up to the top level, for which forwarding inform ation abou t all top level clusters is

m aintained. T his style of forw arding inform ation is proposed in [62].

W ith th is style of forw arding inform ation, the “view” of the network for node 3.2.1 is as shown in

Figure 3.4C. W ith this view, node 3.2.1 only requires entries for 5 c lusters/nodes, versus entries

32

for 23 nodes w ith flat routing. One cost of this savings, in the case of hierarchical clustering

over a mesh topology, is longer paths than those found w ith flat routing. For instance, consider

the p a th from 3.2.1 to 1.2.1. Because 3.2.1 knows nothing about the in ternals of clusters 1 or

2, 3.2.1 would likely assume th a t the shortest pa th to anything in cluster 1 is via the direct link

betw een its top level cluster and cluster 1. The resulting p a th is 5 hops long: 3.2.1— 3.1.1— 1.3.2—

1.3.1— 1.3.3— 1.2.1. The shortest pa th (in term s of hops, anyway), on the o ther hand, is 2 hops:

3.2.1— 2.2.2— 1.2.1.

Note th a t such non-optim al pa ths do not exist in the case of hierarchical clustering over a tree

topology, because there is only one possible p a th between all nodes pairs. Such non-optim al

pa th s can exist in the enhanced tree topology, bu t generally to a lesser extent th an w ith a mesh

topology. Backdoor links generally do not result in non-optim al pa th s because backdoor links

usually service a lim ited com m unity of nodes, and because those nodes can easily hold explicit

forw arding inform ation for the backdoor link. The routing inform ation required to choose among

m ultiple paren ts or m ultiple addresses scales w ith the num ber of paren ts, which is small [107], so

m ultiple parents need not result in non-optim al paths. The existence of mesh networks w ithin a

hierarchy elem ent can result in non-optim al paths, because there may be m ultiple ways to enter

a hierarchy elem ent, and the forwarding inform ation required to indicate the best one could be a

significant increase in the overall forwarding inform ation required.

A nother in teresting characteristic of hierarchical clustering is th a t a cluster p artitio n can result

in a node being unreachable even though there is a physical p a th to th a t node. For instance,

consider the case where the link between 1.3.3 and 1.2.1 crashes, thus partition ing cluster 1.3 from

the o ther clusters in cluster 1. Given the forw arding inform ation described above, if 3.2.1 tries

to send a packet to 1.2.1, it will reach 1.3.3 and then be dropped, because 1.3.3 has no way to

forw ard it back through cluster 3 and cluster 2 into the other partitio n of its own cluster. M ethods

exist for repairing such logical partitions [80, 56, 98, 113]. These m ethods involve 1) renum bering

nodes, 2) replicating the packet and sending each replica in to each partition , or more commonly,

3) tem porarily obtaining ex tra forwarding inform ation abou t the in ternals of o ther clusters.

V a r ia t io n s in F o rw a rd in g In f o r m a t io n

W ith in the context of the hierarchical clustering/addressing described above, there are any num ber

of variations as to the specific forwarding inform ation m aintained a t nodes. The forw arding

inform ation described above, where each node keeps some inform ation abo u t all hierarchy levels,

bu t only th a t inform ation th a t perta ins to the internals of the node’s own clusters, is here called

classical forwarding information^.

One variation on classical forwarding inform ation is where a node keeps some in ternal inform ation

ab o u t neighboring clusters, th a t is, clusters w ith which it shares a link. W ith this inform ation.

^The term classical was su ggested by B ala R ajagopolan in personal conversations.

33

a node could in some cases find optim al paths to nearby nodes even though thoses nodes are in

different clusters. Thus, nodes find b e tte r pa ths a t the cost of m aintain ing additional inform a­

tion [3]. M aintaining this type of additional inform ation is often refered to as hole punching in

the In ternet community.

A nother variation is to establish a kind of default routing, where nodes m ain tain classical forw ard­

ing inform ation for destinations a t and below their level, bu t only m ain tain inform ation on how

to route to the closest higher level node for each higher level. This style of default rou ting tech­

nique requires less forwarding inform ation th an full classical routing, and has sim pler operation

for lower-level nodes, bu t may result in longer paths.

L andm ark F orw ard ing

A nother style of hierarchical clustering on a mesh netw ork is the L andm ark Hierarchy [106]. The

Landm ark H ierarchy was designed to facilitate com plete auto-configuration of the hierarchy. T h a t

is, the clustering and addressing happens autom atically.

The Landm ark Hierarchy is formed as follows. Individual nodes are random ly assigned a h ierar­

chical level w ith decreasing probability for higher levels. Routing table entries for a given node

X are m aintained in all nodes a certain num ber of hops (called the radius) from node X. The

higher the level of a node, the larger its radius. Every node becomes the child of the closest next

higher level node. This defines the node’s address (the paren t assigns each child a num ber from

its address space). The radius of any given node m ust be large enough such th a t its paren t knows

how to route to it. Nodes a t the top of the hierarchy have an infinite radius (th a t is, all nodes

know how to route to the top-level nodes).

T his hierarchy is easier to autoconfigure because the focal points of bo th routing and cluster

definition are individual nodes (the “landm arks”), not entire clusters. It is easier to algorithm ically

m anage single nodes th an groups of nodes. A t the same tim e, because of these individual focal

points, the L andm ark hierarchy is more sensitive to single node failures. The failure of a landm ark

results in a partition of the cluster th a t had formed around it.

3.2 N o n -H iera rch ica l-T o p o lo g y L ocators

There are a lim ited num ber of non-hierarchical-topology locators. The m ost com m on of these

are those used w ith a regular, though non-hierarchical, topology. Exam ples of such topologies

in the context of com m unications networks are G ridnet [72], C artesian R outing [43, 44], and

the M anhattan S treet Network [69].^ G ridnet’s topology is a grid of hexagons (each node has 3

neighbors), and C artesian R outing and M anhattan S treet Network are grids of squares (each node

®The large m ajority of work done on regular netw orks is in parallel processing, for in stan ce [6, 63, 89, 59].

34

has 4 neighbors). In all cases, a node is given a 2-element address. One elem ent gives the node’s

location on a horizontal (or east-w est) coordinate, and the other gives the n o d e’s locations on a

vertical (or north-south) coordinate. To route a packet, a node simply forw ards the packet to a

neighbor th a t gives the packet forw ard progress on one of the coordinates.

Ju s t as a cluster in a hierarchical topology can logically partition , a grid topology can also logically

partition . This happens when a node loses connectivity to one or m ore neighbors and therefore

cannot make forw ard progress on either coordinate. There are a num ber of approaches to repairing

partitions in a grid topology, usually involving spreading inform ation abou t the broken topology

to nearby nodes so th a t they can route around the partition , bu t also po ten tia lly tagging packets

so th a t they can tem porarily m ake backwards progress in order to go around the partitio n [44, 69].

G rid topologies have m any positive properties. One of them is th a t the rou ting scales to an

unlim ited num ber of nodes and links. A nother is th a t traffic can be dispersed am ong m ultiple

paths, for the purpose of either robustness or avoiding congestion.

The m ain negative property of a grid topology is th a t the topology m ust be a grid. Especially

as a netw ork covers larger and larger geographic areas, a grid becomes a less and less economical

topology. A more economical topology is to place links between locales th a t are 1) near each

other, and 2) exchange enough traffic to justify the link. In addition, form ation of a grid topology

requires com plete cooperation between various network adm inistrations. Such cooperation does

not exist, and should not be required to exist, in the In ternet.

To create a grid topology where one does not na turally exist requires either installing gratu itous

physical links, or creating logical links between nodes not physically connected by adding ex tra

routing inform ation. The la tte r approach is similar to the techniques used to repair a grid par­

tition , bu t where the “p a rtitio n ” is a perm anent and intentional condition. E ither approach has

associated costs th a t may negate the benefits of the grid.

O ther common regular topologies are rings and chains. The ring is especially common for local

area topologies [51], bu t has also been used for the wide area [100, 66], particu larly as the basis for

a bus arch itecture [74, 33]. Like a grid topology, rings and chains have the advantage of simplicity,

and the disadvantage of a forced physical topology th a t m ay not be a n a tu ra l fit for the network

user population.

3.2.1 N on-R egu lar Topologies

An in teresting and not widely known (at least in the internetw orking com m unity) scheme for

assigning non-hierarchical locators on regular or non-regular topologies is called interval routing

[i l l , 41]. In such a scheme, every node is given a single unique flat address (called labels in [111]).

The labels are assigned such th a t forwarding tables of the following type can be used to route a

packet to any node.

35

Each node has a forwarding table th a t consists of a single label for each link. The labels are

cyclically ordered. A packet w ith label (address) x is routed over the link whose label is less

th an or equal to x (in the cyclical ordering), bu t num erically closer to x th an any other link’s

label. Thus, the forwarding table size for any given node is equal to the node degree of th a t node,

independent of the size of the network.

In [i l l] , various labeling schemes are presented th a t work for regular and non-regular topologies,

and th a t utilize every link in the network (unlike an earlier scheme [97], th a t worked only by

creating a logical spanning tree over an otherwise mesh netw ork). For some regular topologies

(such as grids and rings), the labeling schemes find the shortest pa ths (in the case where every

link is assum ed to have equal cost). For non-regular topologies, the labeling scheme does not

necessarily find the shortest path .

Like grid topologies, the labeling scheme is subject to logical partitions when two neighbors become

disconnected. In addition, in the general case, nodes m ust be relabeled when the topology changes.

These problem s are explored, and lim ited solutions are offered in [i l l] . A lthough interval routing

m ight not (or m ight) be of practical use, it is interesting work none-the-less.

3.3 C urrent IP In tern et

As already sta ted , IP addresses are hierarchical locators. The current IP in ternet is essentially

a tree topology, bu t with all three enhancem ents. The hierarchical elem ents of the current IP

in ternet are: provider network, subscriber netw ork, subnet, and host. The C ID R IP address

assignm ent scheme m atches this hierarchy [42]. T h a t is, blocks of IP addresses are assigned to

providers, which assign sub-blocks to subscribers, which assign sub-blocks to subnets, and then

to hosts.

The top level of the IP in ternet consists of m ultiple provider networks in terconnected in a mesh

topology. A provider network is a backbone netw ork established for the purpose of providing

packet carriage betw een subscriber networks. Subscriber networks are typically private networks

such as a cam pus or corporate netw ork. A subnet is a network operating “below” (in the sense

of protocol encapsulation) IP, such as an E thernet or X.25 network [16]. Nodes a ttach ed to the

same subnet share a subnet address prefix.

The second enhancem ent m entioned above, where a single elem ent of the hierarchy is a backbone

netw ork, is pervasive th roughout the IP in ternet. Provider networks are alm ost always composed

of routers connected by links. Subscriber networks are also usually composed of routers connected

by links, except th a t the links are typically LANs th a t are also subnets to which hosts are a ttached .

Thus, subscriber networks can be described as a collection of subnets interconnected in a mesh

fashion by routers.

Backdoor links, the first enhancem ent m entioned above, are not so pervasive as backbone topolo­

36

gies, bu t do exist. Since backdoor links tend to be hidden (they do not appear in forwarding

tables of routers outside of the elements being connected), it is hard to know how m any exist in

practice.

The th ird enhancem ent, m ulti-parent elements, are also not so pervasive, b u t do exist. They

typically exist either between subscriber and provider, or host and subnet. T h a t is, a subscriber

m ight be connected to m ultiple providers, or a host m ight be connected to m ultiple subnets (w ithin

a given subscriber), bu t it would be strange for a subnet to be connected to m ultip le subscribers.

A subnet norm ally belongs (in an organizational sense) to a single subscriber netw ork, and so it

would not m ake sense for it to fall hierarchically under two subscriber networks.

Subscribers connected to m ultiple providers is a particu larly in teresting exam ple of a m ulti-parent

elem ent. This is because the subscriber-provider relationship is a significant one b o th w ith respect

to billing and service provided. As the in ternet becomes commercial, and as m ultip le services,

such as voice and video, become available, this relationship, and the associated use of m ultiple

providers, will likely become still more im portan t.

3.4 G eograp h ic V ersu s P ro v id er -ro o ted A d d re sse s

T he relationship between a subscriber and m ultiple providers (either sim ultaneously or sequen­

tially) raises some interesting new problems in the IP in ternet. If the top-level hierarchical ad­

dress com ponent is assigned to providers, then a subscriber network will get new addresses when

it changes providers, and will have m ultiple addresses if it subscribes sim ultaneously to m ultiple

providers.

The notion of hosts having a single, sta tic address is deeply ingrained in the IP in ternet. There

are no au tom atic procedures for modifying the addresses of a group of IP hosts, even when all of

the IP hosts have the same address prefix and the m odification is only to the prefix. In addition,

IP hosts generally have little notion of other IP hosts having m ultiple addresses. For instance,

IP hosts generally have no software for choosing am ong m ultiple addresses p resen ted to them by

directory service, and m ultiple IP addresses cannot be used to identify a tran sp o rt connection,

even though the m ultiple IP addresses may identify the same host.

Because of this deeply engrained notion of IP addresses, the in troduction of provider-rooted ad­

dresses to the IP in ternet may require significant changes to the operation of the IP in ternet [107].

W hile [107] argues th a t these changes are positive ones, bringing new features and new flexibility

to the in ternet, there is no question th a t these changes require new functionality and result in

added complexity.

An alternative address assignm ent scheme is geographical addressing, such as exists in the global

telephone netw ork [14]. Because geographical addresses remove the dependency of address on

provider, a subscriber can change providers or have m ultiple providers w ithout changing addresses.

37

Typical

Operating

Region

Ideal

Operating

Region
Good

Scaling

Bad Paths

Figure 3.5: Relationship Between Scaling and P a th Q uality

T he use of geographical addresses, however, pu ts an additional burden on providers, in term s of

how much routing inform ation they m ust m ain tain and on how they m ust interconnect.^

Because of the timeliness and im portance of the issue of geographic versus provider-rooted ad­

dresses, a com parison of the two m ethods is given here. (Note th a t m any of the ideas presented here

were discussed on the big-internet mailing list of the In ternet Engineering Task Force (IE T F) [7].)

3.4.1 Som e Background

The assignm ent of addresses in the in ternet follows a tree of address assignm ent authorities. At

the root of the tree is the top-level (or level H) address assignm ent au thority . This address assign­

m ent au th o rity assigns blocks of num bers to the next level down (level H-1) address assignm ent

au thority , which assigns blocks of numbers from the block it owns to level H-2 address assignm ent

au thorities and so on. For the sake of discussion, we refer to assigning a block of num bers as

sim ply assigning a num ber.

The issue is how to assign these num bers so th a t 1) routing scales well, 2) good paths are found,

3) constrain ts on the physical topology are minimized, 4) reconfiguration of system s is minimized,

and 5) the address assignm ent process is simple, fair, and politically viable. Consider the graph

of Figure 3.5. In general the “physics” of networking forces operating poin ts on this graph to be

along a region extending from the upper left to the lower right. T h a t is, one typically can get good

scaling b u t bad paths, or good paths bu t bad scaling, or som ething in between. D epending on the

type of address assignm ent scheme used, however, it is possible to move som ew hat tow ards the

lower left (good solutions). This may, however, increase topology constrain ts or reconfiguration

requirem ents.

 ̂S teve D eering of X erox Parc is cred ited w ith prom oting the idea o f using geographical addresses in the Internet.

T he descriptions o f geographical addresses g iven here derive largely from his work.

38

C entral to the evaluation of any address assignm ent scheme are answers to the questions 1) w hat

constitu tes good scaling, 2) w hat constitu tes a good p a th , 3) w hat constitu tes unacceptable or

costly topology constraints, 4) w hat constitu tes unacceptable or costly reconfiguration, and 5)

w hat constitu tes a simple, fair, and politically viable address assignm ent process. Except for

possibly the first question, it is difficult to answer these questions in general term s, partly because

the cost of each aspect is borne by different parties, and partly because the cost of each aspect

changes over tim e.

This section generally lim its itself to describing the characteristics of the two address assignm ent

schemes, and leaves it to others to determ ine the ex ten t to which those characteristics are beneficial

or detrim ental.

3.4.2 D escription of Provider-rooted A ddressing

The beisic approach to provider-rooted addresses is as follows. The top-level address assignm ent

au th o rity assigns num bers directly to providers. This includes bo th in ternet protocol service

providers and lower-layer (for instance, ATM) protocol service providers. D epending on its size,

the provider can either assign the next level internally, or assign the next level directly to its

subscribers. The internal assignm ent would be for clustering groups of subscribers under a single

prefix for the sake of internal scaling.

Thus, the address prefixes would be:

provider, subscriber

or

provider.subProvider. subscriber

To understand this notation , consider Figure 3.6. Shown are three providers w ith subscribers

a ttached to them . The providers have been given top-level num bers 29, 48, and 14. Provider

29 has given two subscribers next-level num bers 12 and 17. Thus, the upper-left subscriber with

assignm ent 12 has a prefix of 29.12. This means th a t the field of the address th a t indicates provider

is 29, and the field th a t indicates subscriber is 12. All host addresses in this subscriber network

s ta r t w ith the prefix 29.12.

It is possible th a t the providers themselves are som ew hat hierarchically organized. For instance,

there m ay be long-distance and local-access providers. The subscriber is d irectly connected to

the local-access provider, bu t m ay also have a service relationship w ith one or m ore long-distance

providers to which the local-access provider is connected. In this case, the address prefix could be

form ed as shown above, or could include both the long-distance and local-access providers:

LDprovider.LApro vider, subscriber

In either case, subscribers are given an address prefix from each top-level provider through which

39

A

prelix

= 2V.12

siihscTiber = 17sLihscribcr = 12

This number assigned

by top-level authorityprovider = 29This number

assigned by

provider 29 providtu' networks

provider = 14provider = 4K

4X.32
14.91

suitscriber networks

Subscriiier (' has two prefixes

beeause it is connected to two providers

Figure 3.6; Example of Provider-Rooted Addresses

they derive service. Each host in the subscriber network, then, has one address for each provider

through which the subscriber network can be reached—for instance, subscriber C, connected to

both providers 48 and 14 in Figure 3.6. When the subscriber subscribes to a new provider, or

unsubscribes from an existing provider, it must change the address prefix for all of its hosts and

routers.

Additional levels are assigned under the subscriber number for use within the subscriber network.

These levels are not relevant to this discussion.

3.4.3 Description of Geographical Addressing

Our working definition of geographical addressing is where the top N hierarchical levels of the

address are assigned to geographical regions. Each level of geographic area is completely within

the next higher level of geographic area. Three examples of geographical address prefixes are:

c o u n t r y . me t r o . si te

c o n t i n e n t . m e t r o , s i te

^Strictly speaking, the subscriber m ay not have to change its prefix. However, this results in worse scaling, as

discussed later.

40

continent, country .metro. site

Note th a t w ith geographical addresses, the lowest level of assignm ent is to “sites” ra th er th an to

“subscribers” . B oth site and subscriber, however, represent p rivate netw orks th a t are assigned

address prefixes.

Because of the requirem ent th a t the elem ents of a hierarchy cluster m ust be in ternally connected,

it is necessary in a geographical addressing scheme th a t all h ierarchical elem ents in a geographic

area be in ternally connected. (Note th a t this does not necessarily require connectiv ity— th a t

is, where all N hierarchy elem ents are directly connected to each other. R ather, it requires th a t

there be some p a th from any elem ent in an area to any other elem ent in the area th a t only

traverses elem ents in the area.) For instance, if the geographic clustering is country.metro.site,

then all m etro networks in a country m ust be able to reach all o ther m etro networks in the country

w ithout going through another country. Likewise for all the sites in any m etro, etc.

Consider Figure 3.7. It po rtrays the same providers and subscribers A, B, and C as Figure 3.6,

bu t shown geographically ra th er than logically according to provider. The providers overlap

geographical area, so the routers of the providers are shown in Figure 3.7. The address convention

of Figure 3.7 is country.metro.site, where country = 93 and m etro = 42. Note th a t site C (labeled

subscriber C in Figure 3.6) has only one address even though it is connected to two providers.

Note also th a t all of the routers in m etro 42 are internally connected by v irtue of two (heavily

draw n) links between routers of different providers.

Taken to the extrem e, the assignm ent of geographic addresses could be carried all the way to

individual hosts. T h a t is, geographical areas could be recursively subdivided until every possible

host location in the world (galaxy?) defines a unique address. Clearly this is unworkable. A t the

local (cam pus or single building) level, one m ust assign addresses according to netw ork topology,

no t some pre-determ ined geographical partitioning. Thus, a t some point in the hierarchy, the

addressing m ust change from geographical to network-physical.

A sensible place to make this change is a t the boundary between the private netw ork (or site) and

the provider. W ithin a site, address adm inistration should be com pletely autonom ous and not

constrain ted by geography (or anything else not w ithin the control of the site). T hus it would not

be appropriate to make the change a t some level below the provider/ subscriber boundary. And,

since provider coverage does not necessarily conform to geographic boundaries (some providers

are global in scope, and provider coverage areas overlap considerably), it does no t m ake sense to

make the change from geographical to network-physical a t the boundaries betw een providers.

Thus, geographical addresses have a geographical p a rt, a site p a rt, and an in tra-site part:

geographicalPart.sitePart.intra-sitePart

where each part can have in ternal layers.

The geographical p a rt for a given site is determ ined according to the geographic location of the

41

prov ider

routers

93.42 .17

'S i t e (a has o n e

pre fixyn spi te
of tw o prov iders

93.42 .12
'I'liis n u m b ^
assigned by

m etro 42 ^

m e t r o = 4 2

Hiis n um ber ass igned
by coun try 93

country = 93

T his n u m b er assigned

by top-level authori ty

Figure 3.7; Exam ple of G eographical A ddresses

s ite ’s connection to a provider. This is where the site “appears” in the global topology. Thus,

even though a site may cover m ultiple geographic areas, if it is a ttach ed to a provider in only

one geographic area, the whole site will have a geographic prefix ind icating th a t geographic area.

More typically, a site th a t covers m ultiple geographic areas would be connected to providers in

m ultiple geographic areas.

In any event, the m ain point is th a t the specific provider th a t a site a ttach es to does not affect

the s ite ’s address. T hus, a site could change from one provider to an o th er in a given geographic

area, or a tta c h to m ultiple providers in a given geographic area, w ithou t changing addresses or

42

having multiple addresses.

3.4.4 Topology Constraints

Provider-rooted addresses place no “u n natu ra l” constrain ts on the topology. O f course, with

provider-rooted addresses, each provider m ust be internally connected, bu t a provider would n a t­

urally be in ternally connected, so this represents no real constra in t. Provider-rooted addresses

place no constrain ts on how providers interconnect w ith each other.

G eographical addresses do place an unna tu ra l constrain t on topology. T h a t is, they require th a t

the providers th a t cover a geographical area (th a t area denoted by the geographic prefix) be

connected in th a t area. W hile it is na tu ra l for providers to be connected to each other somewhere,

it is generally (though not necessarily) unna tu ra l to force them to be connected in every geographic

area th a t they cover.

In the current USA In ternet topology, provider networks tend to in terconnect in a sm all num ber

places, for instance at FIXs or CIXs (Federal or Com m ercial Inter-exchange). Thus, requiring con­

nectiv ity in every m etro area, for instance, would require m uch more in ter-connectiv ity th a t there

currently is. On the other hand, the long-distance phone carriers in the USA have connectivity in

every geographical area (called LATAs).

3.4.5 Scaling in R outing

In this section, the inform ation needed in ro u te rs’ forwarding tables for bo th geographical and

provider-rooted addressing is described and com pared. The inform ation m ay vary, depending

on the desired quality and fiexibility of pa ths found. T his section also describes m ethods for

im proving the scaling characteristics of both schemes.

S ca lin g o f P r o v id e r -r o o ted A d d ressin g

As sta ted above, provider addresses are of the form:

provider.subscriber

or

provider.subProvider.subscriber

For addresses of the form provider.subscriber, routers in provider netw orks m ust, a t a m ini­

m um , m aintain routes (forwarding table entries) for 1) o ther providers, and 2) subscribers w ithin

their own provider network. For addresses of the form provider.subProvider.subscriber, routers in

provider networks m ust, a t a m inim um , m aintain routes for 1) o ther providers, 2) subProvider

clusters w ithin their provider, and 3) subscribers w ithin their subProvider cluster.

43

The num ber of subProvider or subscriber routes th a t a router m ust m ain tain is w ith in the control

of the provider. As a provider obtains more subscribers, it can add in ternal levels of hierarchy

(subProvider, sub-subProvider, etc.) to keep the num ber of internal routes m anageable.

A provider, however, cannot control the num ber of o ther providers for which it m ust m aintain

routes. Thus, the size of the forwarding tables at the top of the hierarchy (provider) is open-ended.

As a result, the forwarding table size may grow beyond acceptable levels. One solution to this

problem is to add another level of hierarchy above the provider level.

provider Cluster.provider, subscriber

W ith this address, m ultiple providers are clustered w ithin a new top-level identifier, the provider-

Clusier. One possible basis for provider clustering (th a t is, the choice of which providers go into

which clusters) is geographical location. In this case, a provider th a t spanned m ultip le geographic

areas would appear as m ultiple providers, one for each geographic area it appeared in. A perhaps

b e tte r basis for provider clustering could be the kind of service provided. For instance, all ATM

providers could form a cluster, all in ternet providers another cluster, and so on. A nother basis

could sim ply be the am ount of interconnection various providers have w ith each other. Providers

w ith a large num ber of interconnections would naturally be placed in the sam e cluster.

A nother solution is possible in the case where a relatively sm all num ber of providers are long­

distance providers, and the rest are local-access providers. This form of address [LDprovider.

LAprovider.subscriber) is discussed above. In this case, only the long-distance providers are ad­

vertised globally.

Routers in provider networks may also wish to m aintain certain inform ation ab o u t the internals

(subscriber or subProvider) of another provider. This would happen in the case where

1. Two providers are interconnected w ith each other in m ultiple places, and

2. the routing policy for one of the providers is to route the packet to the in terconnection point

closest to the destination (versus simply routing the packet to the nearest interconnection

point).

The am ount of routing inform ation in this case is also open ended, as it depends on the num ber

of providers w ith which there are m ultiple interconnection points (which itself depends on m any

factors, such as the user traffic m atrix), and it depends on the num ber of subscribers in o ther

provider networks and on how internal clustering is done in other provider netw orks.

W hether or not it is advantageous for a provider to route a packet to the nearest interconnec­

tion point versus route a packet to the interconnection point nearest the destina tion depends

on m any factors, not the least of which is the business relationship established betw een the two

providers on how they com pensate each other for traffic carried. A discussion of the advantages

and disadvantages of this routing policy is outside the scope of this thesis.

44

S ca lin g o f G eo g ra p h ica l A d d ress in g

As sta ted above, geographical addresses are of the form:

geographicalN.geographicalN-1 . . . site

A router in a provider network m ust, in the general case, m aintain routes for

1. all geographicalNclusters, all geographicalN-1 clusters w ithin the ir own geographicalNcluster,

and so on,

2. all sites w ithin the lowest-level geographical cluster th a t the provider rou te r services.

T he num ber of geographical clusters th a t a router m ust m ain tain routes for is fixed. If the top-

level geographical clustering [geographicalN\n the example above) is continent, then the top-level

num ber of routes is 7 (or so, depending on w hat constitu tes a continent). If the top-level clustering

is country, then it is three hundred and som ething, and if it is m etro, then it m ight be around

10,000 or so. In any event, it is fixed and either does not change or changes slowly and minimally

over tim e. Since the geographic clustering is adm inistratively determ ined (by whichever address

assignm ent au tho rity has control), the num ber of routes a t the top levels can be set to be som ething

reasonable for curren t technology capabilities, and thus scales well.

T he num ber of sites w ithin a geographic area, however, is open-ended. T hus, the size of the

forw arding tables a t the site level of the hierarchy is open-ended. As a result, the forwarding table

size m ay grow beyond acceptable levels.

One solution is of course to add another level of geographic hierarchy above the site level, resulting

in smaller geographical areas. This results in an prefix change for sites, which is counter to the

reason for using geographical addresses.

A nother solution is to arrange for a packet to visit all providers in a given geographic area, either

by p u ttin g the packet on a broadcast m edium th a t all providers listen on, or having the packet

rou ted to each provider in tu rn . Each router th a t receives the packet knows if the destination is

for one of its subscribers, and accepts the packet if it is. Note th a t the la tte r solution is generally

preferable to the former one, because 1) the broadcast m edium m ay become a traffic bottleneck,

and 2) the broadcast m edium solution will result in m ultiple packet deliveries for the case where

a subscriber is a ttached to m ultiple providers in the geographic area. On the o ther hand, with

the la tte r solution, there m ust be a way to prevent a (m is-addressed) packet th a t is no t for any

of the sites in a geographical area to continue looping am ong the providers.

A nother solution to this problem is to place a provider layer of hierarchy between the geographical

p a rt and the site part:

geographicalPart.iniiialProvider.sitePart

45

The ex tra layer, in itialProvider, indicates which provider the site initially connected to. Routers

in a geographic area, then, m ust m aintain routes for each provider in th a t area, plus routes for

every site th a t is no longer a ttached to its initial provider. If m ost sites rem ain a ttach ed to their

in itial providers, then the num ber of routes is greatly reduced.

R outers in provider networks m ay also wish to m aintain certain inform ation ab o u t the internals

(subscriber or subProvider) of another provider. This would happen in the case where

1. Two providers were interconnected w ith each other in m ultiple places, and

2. the routing policy for one of the providers was to route the nearest in terconnection point

(versus routing the packet to the interconnection poin t closest to the destination).

Note th a t this is the reverse of the routing policy described in the previous section. T h a t is, w ith

provider-rooted addressing, the na tu ra l pa th is to find the interconnection point closest to the

source, and w ith geographical addressing the na tu ra l p a th is to find the in terconnection point

closest to the destination. In either case, finding the “u n n a tu ra l” p a th requires ex tra forwarding

inform ation.

3.4.6 A ddress Reconfiguration

T his section discusses the conditions under which address reconfiguration in p rivate networks is

required for the two schemes.

There are two cases where a private network assigned a geographical address prefix m ust change

th a t prefix:

1. If the private network changes its provider access location to another geographical area, and

2. If the geographical areas themselves change.

The former would norm ally happen when a private netw ork moves from one location to another.

The la tte r has happened in the phone network in the USA in the form of area code splits. This

happens when the available addresses in an area become depleted, and the a rea is sp lit in half,

assigning a new area code to one of the halves.

A rea code splits (or more generally, geographical area splits) can be avoided if the rou ting supports

m ultiple (overlapping) area identifiers for the same area. If this is allowed, th en a new area

identifier can be added to a geographical area if the addresses under the existing area identifier

become depleted. Thus, no existing systems need to change address. R outers in an area m ust still

m ain tain routes to all sites, however.

A nother way to avoid area code splits is to simply make the address space in an area large enough

to handle all grow th. This of course requires a large address space.

46

There are several cases where a private network assigned a provider-rooted address prefix m ust

change th a t prefix:

1. If the private network subscribes to a new provider,

2. If the provider has an in ternal layer of addressing and the subscriber moves to a new location

w ith respect to the clustering defined by th a t layer, and

3. If the provider modifies its addressing scheme, for instance, by getting a new provider num ber

or adding an in ternal layer of hierarchy.

Item s 2 and 3 for provider-rooted addressing are sim ilar to items 1 and 2 for geographical address­

ing respectively, and need no further discussion. As emphasized above, the m ain advantage to

geographical addressing is th a t a subscriber can change providers w ithout requiring a new address.

Changing providers is likely to be a fairly frequent event, certainly a m uch more frequent event

th an either private networks changing location or geographic areas changing. Ju s t how frequent

depends of course on the subscriber, bu t several changes a year seems feasible.

Because of the frequency of provider changes, it is necessary to have an au tom atic m eans of

changing all the host addresses in a private network a t once. This task is greatly simplified by the

fact th a t it is only necessary to change the provider prefix for each host, and th a t the change is

the same across all hosts. The exception to this would be the case where the new provider prefix

is so long th a t it takes up address space used for num bering in the private network.

There are two basic approaches to autom atic private-network-wide prefix reconfiguration. One is

to use a general purpose network m anagem ent device th a t keeps track of the hosts in a private

netw ork and individually updates hosts using a general network m anagem ent protocol such as

SNM P [12].

A nother approach is to design a specialized protocol th a t updates hosts. A n exam ple of this

would be a modified h o st/ro u te r discovery protocol such as ES-IS [53], where routers periodically

broadcast advertisem ents, and hosts discover the routers by listening to the broadcasts. The

broadcasts could contain the prefixes of the private netw ork. In this case, the routers would have

to be upd a ted individually to reflect the new prefix. This, however, is not so bad since routers

need to be individually configured w ith addressing inform ation for rou ting purposes anyway.

Given th a t a general m anagem ent facility in a private network is useful for m any things, it seems

to be a b e tte r approach to the prefix reconfiguration problem . Note th a t the directory service,

such as DNS [71], would also have to be updated to reflect the new prefix(es).

It is not necessarily true th a t geographical addressing isolates a private network from any per-host

adm inistra tion resulting from provider changes. For instance, consider the case when a private

netw ork is connected to m ultiple providers (or, is connected to one local-access provider bu t

derives long-distance service from m ultiple providers) and wishes to be able to choose between

47

those providers on a connection-by-connection or packet-by-packet basis. This is called provider

selection.

Provider selection is a special case of the more general policy routing [11]. T he te rm policy

rou ting is commonly used to describe the function whereby the source of a packet selects the

series of providers th a t the p a th traverses. In the case of provider selection, only the providers on

either end of the p a th are selected. In [107] it is argued th a t the providers closest to the source

and destination are the m ost im portan t, prim arily because it is those providers w ith which the

source and destination have billing relationships.

For provider selection to work, the following things, a t a m inim um , are required [107]:

1. The source m ust know which providers it is connected to.

2. The source m ust know which providers the destination is connected to.

3. The source m ust have enough inform ation about the providers, and possibly how they are

interconnected, to make an intelligent policy decision.

4. T he source m ust have a way to indicate in the packet which source-end provider should be

chosen.

5. The source m ust have a way to indicate in the packet which destination-end provider should

be chosen.

To do provider selection with geographic addressing, hosts m ust be configured w ith inform ation

ab o u t their connected providers, and directory service m ust be configured w ith provider inform a­

tion so th a t rem ote hosts can obtain the inform ation. Moreover, th is inform ation m ust be upda ted

when a subscriber a ttaches to new providers. In addition, new m echanism s m ust be created to

cause packets to be routed through the desired providers.

Thus, in order to get provider selection w ith geographic addresses, the same sort of private-

netw ork configuration and packet form atting is required as w ith provider-rooted addresses. In

other words, the netw ork configuration benefits achieved by using geographic addresses are largely

lost if provider selection is required.

On the o ther hand, private-netw ork configuration w ith geographic addressing is never worse th an

w ith provider-rooted addresses. And, if a private network does no t require provider selection,

for instance because it connects to only one provider, then private-netw ork configuration is easier

w ith geographic addresses in th a t nothing has to be done if the private network changes providers.

3.4 .7 A ddress and Topology A dm inistration

W ith provider-rooted addresses, address adm inistration is straight-forw ard. The top-level address-

adm inistra tion au thority assigns provider IDs directly to providers. Providers in tu rn partition

48

the address space as best suits their needs.

A lternatively, the top-level address-adm inistration au tho rity can assign blocks of provider IDs to

sub-authorities, which can subsequently assign provider IDs to providers in their jurisdiction . For

instance, the top-level address-adm inistration au tho rity could assign blocks of provider IDs to

per-country assignm ent authorities.

In order to assign geographical addresses, two adm inistrative tasks are required th a t are not

required w ith the assignm ent of provider-rooted addresses.

1. The geographical boundaries m ust be determ ined.

2. The connectivity between providers w ithin geographical areas m ust be determ ined.

It is hard to know the difficulty of these two tasks in the context of the in ternet. In areas where

the establishm ent of in ternet providers has been unregulated, it can be im agined th a t the two

tasks are quite difficult. This is because the positioning of geographical boundaries m ay have an

economic im pact on providers.

For instance, consider a provider th a t covers a certain region. If boundaries are draw n such th a t

the provider is com pletely w ithin a geographic area, then th a t provider only needs to interconnect

w ith o ther providers in one geographic area. If, on the o ther hand, boundaries are draw n such

th a t the provider covers parts of several geographic areas, the provider m ust in terconnect with

other providers in each of the geographic areas.

Since it is likely th a t one of the arrangem ents (probably the form er) will be more advantageous

to the provider than the other, the provider will natu ra lly lobby for one set of boundaries over

another. This is likely to conflict w ith the wishes of another provider, resulting in a difficult

negotiating process.

A nother difficult aspect of address assignm ent is th a t of determ ining how m uch address space goes

to each recipient (either a provider or a geographic area). This is particu larly true in the case

where the address space is strongly lim ited, such as is the case w ith IP.

T his aspect of address assignm ent has bo th political and technical difficulties. Politically, one

organization may object to getting less address space th an another. Technically, if no t enough

address space is allocated, then it is necessary to either renum ber or to represent a single en tity

by m ultiple prefixes (or bo th). If too much address space is allocated, then the address space is

poorly utilized. This is discussed further in Section 10.4.

49

3.4,8 D iscussion and Sum m ary of G eographical versus P rovider-rooted

A ddressing

Several aspects of geographical and provider-rooted address assignm ent have been considered.

Each technique has different advantages and disadvantages.

Both geographical and provider-rooted address assignm ents have po ten tia l scaling problem s. W ith

provider-rooted addressing, the num ber of providers is open ended. W ith geographical addressing,

the num ber of sites in a geographic area is open ended. Techniques for im proving their respective

scaling problem s are presented, bu t the techniques are not a ttrac tive .

W hile it is impossible to predict fu ture growth w ith certainty, it seems likely th a t scaling would

be worse w ith geographic th an with provider-rooted addressing. The num ber of large providers

is constrained by com petitive and economic factors. It is likely th a t a relatively small num ber

of large providers will dom inate. Smaller providers will likely either be m erged into the larger

providers, or fall under the larger providers in a local-access/long-distance relationship.

W ith respect to address reassignm ent, provider-rooted addresses pu t a larger burden on private

networks, since addresses m ust be reassigned whenever a private network subscribes to a new

provider. Since bo th schemes can result in subscriber prefix changes, however, au tom atic host

prefix assignm ent is desirable in any event. In addition, m ultiple addresses m ust be m aintained

for private networks connecting to m ultiple providers. This burden, however, can be leveraged for

provider selection.

Geographic addressing places more constrain ts on the topology of the netw ork, since providers

m ust in terconnect w ithin geographic areas. Finally, geographic addressing has more adm inistra­

tive /po litica l difficulties, prim arily because the geographic boundary locations affect the topology.

Because the two addressing schemes have a different set of advantages and disadvantages, it is

im possible to say which is be tte r. Some generalizations, however, can be m ade. For instance,

in general, geographic addressing is be tte r for private networks and worse for providers, whereas

the reverse is true for provider-rooted addressing. Also, geographic addressing works b e tte r in

a well-regulated or well-organized environm ent. Because the in ternet has historically been, and

still is, a t best loosely organized, geographic addressing does not seem to be a feasible option at

th is tim e. As the in ternet m atures, however, it m ay obtain b e tte r organization, and geographical

addressing m ay become more feasible.

50

3.5 R e la tio n sh ip B e tw e en C ost o f R o u tin g and C ost o f

D er iv in g A d d resses

M echanistically, addresses do two things. F irst, they identify the destination . Second, they m ay

describe, a t a greater or lesser degree of specificity, the pa th to the destination. T he need for

the former function (identification) is fairly obvious, and need not be fu rther discussed here. The

need for the la tte r function (location) may seem obvious when considered in certa in ways, bu t in

fact deserves fu rther discussion.

There are two uses for the locator (ignoring for now its role as an identifier). F irst, it aids in

scaling. T h a t is, it reduces the memory, bandw idth , or processing required to route packets

com pared to w hat would be required if identifiers were used. Second, it allows the source of a

packet (or, w hatever writes the locator into the packet header) to control the p a th . A significant

am ount of a tten tio n has been paid to the locator in its scaling role, bo th in the research literatu re

[67, 46, 62, 61, 103, 106], and in commonly used networks such as IP [87], and public voice [14]

and d a ta networks [15]. Recently, some atten tion has been paid to the locator in its p a th control

role, prim arily in the context of the so-called policy routing problem [11, 107, 36, 34, 35, 101].

The la tte r function of the locator (path control) is im portan t, and is trea ted la ter in th is thesis.

Here we consider the use of the locator for improving scaling.

A useful way to consider this use of the locator is in term s of w hat p a th inform ation rou ters keep.

Routers cannot keep full inform ation about paths to all destinations. In the contex t of scaling,

then , the purpose of a locator is to make up for a lack of pa th inform ation in routers. T h a t is,

the locator describes, a t some level, paths in the netw ork topology, so th a t routers do not have to

m ain tain full p a th inform ation.

In general, the less p a th inform ation th a t exists in the routers, the more p a th inform ation m ust

exist in the address. Thus, pu tting more p a th inform ation in the locator improves the scaling

characteristics of routers. However, pu tting more pa th inform ation in the locator also increases

the cost of deriving locators.

In the following examples, we assum e a model where a source has a nam e for a destination . From

th is nam e, an address m ust be derived, at a certain cost. This address can be an identifier or a

locator, depending on w hat is needed by routers. The form of the address is re la ted to the cost

of the p a th inform ation in routers. The cost of obtain ing the nam e in the first place is outside of

the scope of w hat we wish to illustrate here, and so is not considered.

The to ta l internet-w ide cost of the system is the com bined cost of deriving the address from the

nam e, and the cost of m aintain ing p a th inform ation in routers. We examine the costs here in

simple term s, because we are for now only interested in general characteristics. We consider only

the cost of to ta l (internet-w ide) system memory, and we do not account for caching strategies.

51

F irst, consider a routing system th a t m aintains paths to all netw ork destinations. T his is called

flat routing. The to ta l internet-w ide memory required to store this inform ation is roughly N^.

This is because every router m ust m aintain a routing table en try for every nam ed host. (One could

m odel this as a routing system th a t consisted of a single large database, w ith entries containing

the next hop in the p a th from each system to every other system . The size of th is database would

be i\T2.)

T he address required by routers is a simple identifier. Assum ing th a t nam es and addresses are

separate entities, the cost of deriving an address from a nam e, in term s of to ta l (internet-w ide)

system memory, is roughly N , where N is the num ber of nam ed entities. T his is because every

nam e m aps into one identifier, so in theory only one en try in the nam ing system is required for

every nam ed host. (One could model this as a nam ing system th a t consisted of a single large

database, w ith entries containing the identifier associated w ith every nam e. The size of this

database would be N .) Thus, the to ta l system memory required is roughly N -(- , which is

roughly for large N .

Now consider a classical hierarchical routing structu re , where netw ork destinations are grouped

in clusters, clusters are grouped in to higher level-clusters, and so on in hierarchical fashion. Any

cluster is a m em ber of only one higher-level cluster. The cost of the rou ting system is roughly

where H is the num ber of hierarchy levels [62]. This is because each of N system s only

needs to keep track of the system s in its portions of the hierarchy, which is system s.

The address required for this system is a locator, such as an IP address. Because the locator is

source-independent, the cost of deriving an address from a name is the same as w ith identifiers,

th a t is, N . T hus, the to ta l system cost using locators is roughly N H , a significant decrease

from fiat routing. All of the decrease comes from savings in the p a th inform ation in routers.

Finally, consider a true source-routing system , where routers only m ain tain p a th inform ation for

their im m ediate neighbors, and packet headers contain full source routes (vectors). The cost of

the routing system is roughly E N , where E is the average num ber of neighbors in the topology

th a t each system has. This is a significant reduction over the hierarchical routing system .

The cost of the nam ing system , however, is roughly D N ^ , where D is one-half the diam eter of

the network. This is because each of N names m ust m ap into N vectors, one for each source, and

each vector has on average D com ponents.

Thus, the to ta l system cost using vectors is roughly {D and E are for all practical purposes

sm all constan ts). This is the same cost as using identifiers for addresses.

T hus it can be seen th a t the choice of an addressing scheme is, in p a rt, one of balancing the cost

of addressing (nam e to address binding) against the cost of routing (address to route binding). It

is easy to decrease the cost of either routing or addressing, bu t it is hard to decrease the cost of

bo th . O f the three examples above, hierarchical addressing has the lowest overall cost, because it

decreases the cost of routing w ithout significantly increasing the cost of addressing. In general.

52

Table 3.1: Summary of Routing and Naming Costs

R outing Type Costs

Routing Naming Rough T otal

F lat Routing N

Hierarchical Routing N

Pure Source Routing E N D N ^

the lowest overall cost requires the use of some form of locator.

It is w orth noting th a t the scaling benefit of locators is not lim ited to the case where hosts do not

move often. If hosts move often, then the nam ing system m ust be updated often, which increases

the cost of m aintaining the nam ing system , thus increasing the overall cost of using locators.

W hen identifiers are used, however, host m obility increases the cost of routing, because routes to

a host m ust be modified when the host moves. Thus, m obility increases the overall cost when

either identifiers or locators are used. Because of this, the overall cost of hierarchical addressing

versus flat addressing, even w ith host mobility, is still less.

53

C hapter 4

V ectors

Vectors are not in common use, so this section is quite brief com pared to the previous section on

locators. Indeed, to the au th o r’s knowledge, the only in ternationally standard ized protocol th a t

uses a vector for norm al operation is the source routing bridge protocol for IE E E 802 LANs [83].

Saltzer, Reed, and Clark [95] give a num ber of reasons for using vectors (called source routes in

[95]) ra ther th an locators (or, the more general notion of hop-by-hop routing in [95]) in the packet

header.

1. Separation of routing from identification.

2. G atew ay sim plicity and network m aintenance.

3. R oute control.

The first reason, while a good idea, does not necessarily follow from the use of vectors per se. T h a t

is, identification can be separated from routing even when locators are used, sim ply by including

an identifier separate from the locator. And, use of vectors does not necessarily m ean th a t pure

identification is used, as the elements of the vector can be locators them selves, as w ith IP.

The la tte r two reasons are the more commonly cited reasons for using vectors ra th e r th an locators.

The second reason is the m otivation behind source-routing bridges in IE E E 802.5. The use of

source routing minimizes the s ta te required in the bridges since no forw arding table is required.

Of course, th is pushes the burden of finding routes on some other system . In the case of IE E E 802

source routing, the burden is pushed onto hosts, which discover pa ths using a flooded search. This

m ethod of p a th discovery can, in the worst case, cause an explosion in search packets, creating

more problem s th an it solves [82].

The notion of simplifying forwarding for routers is taken further by Sirpent [19] and by Paris [20].

These two protocols propose th a t the elements th a t make up the vector are designed so as to

best assist the rou ter w ith regards to its forwarding im plem entation. In the case of S irpent, each

54

elem ent contains the local tag used by the router to identify the next hop. In the case of Paris,

each elem ent contains the binary self-routing code used to route the packet th rough the switch

fabric.

It is interesting to note the sim ilarity between Paris and the the first use of the telephone num ber.

T he telephone num ber was originally nothing more th an a means of producing the sequence of

electric pulses required to drive the step-by-step switches in the central office. W ith step-by-step

switches, each digit of the dialed num ber indicated how to route to the next sw itch elem ent (and

in fact electronically drove the switch hardw are). W ith Paris, each b it in each elem ent of the

vector indicates how to route through the next binary elem ent of the switch fabric.

W ith regards to route control, early work in source routing [95] speculated on the p o ten tia l for

allowing the source to choose a p a th appropriate to the source’s requirem ents. For instance,

trouble isolation, policy, class-of-service, and in-order packets are cited as uses for source routing.

These topics, however, were not pursued in detail. More recently, Perlm an, in her thesis [81]

explored in detail the use of source routes to discover and route around m isbehaving routers.

Some recent papers consider the use of source routes for policy reasons [11, 35, 94, 101, 21]. Policy

rou ting can broadly be defined as the capability to choose among m ultiple pa th s from source

to destination . T his capability is usually exercised by the source. Common reasons for choosing

am ong m ultiple pa ths are 1) some paths are adm inistratively restric ted for a given com m unications,

2) some paths are cheaper than others, 3) some paths do not offer adequate service.

There are several advantages to using a source routing approach for policy routing. F irst, every

source m ay have its own policy constrain ts (for instance, certain acceptable use or billing policies).

It is m ost efficient to lim it d istribution of this policy inform ation to the sources them selves. Second,

it m ay not be feasible to globally d istribu te policy inform ation abou t tran sit netw orks. Further,

some sources m ay have less need for detailed transit policy inform ation th an others. W ith a source

routing approach, it is possible for sources to cache only the inform ation they need, and from th a t

inform ation calculate the appropria te routes.

Note th a t this caching approach is a fundam entally different approach to scaling com pared to

aggregation. W ith aggregation, contiguous portions of the netw ork are abstrac ted as a single

elem ent. This abstraction is reflected through common addressing. R outers m ain tain some level

of inform ation about all portions of the topology, albeit indirectly th rough abstraction . In the case

of hierarchical clustering, routers m ain tain more detailed inform ation abou t nearby destinations,

and less detailed inform ation about more d istan t destinations, bu t none-the-less m ain ta in some

level of inform ation abou t all destinations. In the case of a grid topology, all destinations are

viewed a t the same level of abstraction .

W ith the source rou ting /caching approach described above, no system necessarily has routing

inform ation (aggregated or otherwise) about all destinations. A t a m inim um , rou ters m ay only

have inform ation on how to reach their neighbors (where a neighbor could be a neighbor router

55

or a neighbor network). Sources m ay have no inform ation abou t m any network destinations, for

instance, if they have no traffic to send to those destinations. A source can gather and cache new

routing inform ation if the need arises.

One of the difficulties of the source rou ting /caching approach is d istribu tion of the routing informa^

tion. There is a chicken-and-egg problem whereby some routing inform ation m ust be established

to carry more detailed routing inform ation to where it is needed. One approach to this problem

is a hybrid of hierarchical aggregation and source routing /caching , as suggested by E strin and

R ekhter [36]. Hierarchical aggregation is used for common routes. Sources th a t have no special

policy needs can use these routes for everything. Sources th a t have special policy needs can use

these routes to ob tain additional topology inform ation.

It is w orth noting th a t caching as used here is not the same as caching as used in the context of

a VCI. A VCI is simply a compression of a header w ith com plete routing inform ation (locators or

vectors). (A VCI m ay also be compressing traffic characterization inform ation. This aspect of the

VCI is outside the scope of this thesis.) A VCI is useful for a num ber of things, such as m aking

packets smaller or increasing switching speed, bu t it has no positive scaling effects (in the context

of routing), nor any effect on the overall architecture of rou ting and addressing.

56

C hapter 5

L ayering A d d resses

T his section discusses the issue of how a router determ ines the subnetw ork address to use when it

forw ards a packet over a subnetw ork. It first gives some background and describes the problem .

Then it describes an approach to the problem whereby subnetw ork addresses are em bedded in

in ternet addresses. Finally, it discusses the shortcom ings of this approach, particu larly in the

context of CLNP.

5.1 B a ck g ro u n d

W hen a rou ter receives a packet, it m ust decide which in ternet system (router or host) should next

receive the packet. M echanistically, what the router m ust do is encapsulate the in te rne t packet in

a subnetw ork header with the subnetw ork address of the next hop and transm it the packet onto

the appropria te subnetw ork. Exactly how this is done depends on the situation .

Consider the case where the in ternet protocol is IP, and the rou ter receiving the packet is on the

sam e subnetw ork as the destination host, and the subnetw ork in question is a broadcast LAN. By

a simple com parison of the destination IP address against the subnetw ork m ask of the subnetw ork

[10], the rou ter can determ ine th a t the destination host is on the subnetw ork. T he rou ter then

broadcasts a search packet (called an A RP request [84]) onto the subnetw ork. All hosts receive

the packet, and the host whose IP address m atches th a t in the query responds to the router with

its subnetw ork address. The rou ter caches this inform ation for fu ture packets, and transm its the

packet to the host using this subnetw ork address.

Consider the same case as the previous paragraph, bu t where the in ternet protocol is CLN P [55].

In th is case, there is no subnetw ork mask th a t the router can use to determ ine if th e host is on

the subnetw ork. Instead, the rou ter has a list of all hosts on the subnetw ork, along w ith their

subnetw ork addresses, th a t it obtained by listening to announcem ents from all hosts [53]. Using

th is inform ation, the rou ter can transm it the packet to the host.

57

Now, consider the case where the destination host is not on any of the ro u te r’s a ttached sub­

netw orks, b u t where the subnetworks are still relatively small (LANs or po in t-to -poin t links, for

instance). In this case, the rou ter will have previously learned, probably via a broadcast mech­

anism , of all o ther routers on the subnetworks, and will have a forwarding tab le showing which

destinations should be forwarded to which routers. This table can have been created by the

netw ork adm in istra to r or by autom atic discovery and routing protocols.

5.2 T h e P r o b le m — Large S u b n etw ork s

T he common them e in the three cases of the previous section is th a t the routers on th e subnetworks

are capable of learning the subnetw ork addresses of every system a ttached to the subnetworks.

T his is possible because the num ber of system s on the subnetw orks is small. Problem s arise,

however, in the case where the subnetw orks have a very large num ber of system s a ttached to

them , such as m ight be the case w ith X.25, SMDS, Fram e Relay, or ATM subnetw orks. In this

case, it is not possible for routers to m aintain inform ation abou t all o ther a ttach ed system s, or to

use a broadcasting m ethod to discover the subnetw ork address of any a ttached system .

Assume th a t a router has received a packet for some destination host. There are two m ajor cases

of in terest. The first case is where either the destination host or the destination h o s t’s private

network are a ttached to the ro u te r’s subnetwork. In this case, the problem is one of the router

learning the subnetw ork address (or addresses) of the host or of the h o s t’s private netw ork. This

problem is very similar to th a t of learning the in ternet address of a host given its nam e. In the

case of nam ing, it is a relatively sta tic one-to-one or one-to-m any m apping of nam e to in ternet

address(es). In the case of subnetw ork address discovery, it is a relatively s ta tic one-to-one or

one-to-m any m apping of destination in ternet address to subnetw ork address(es).

The second case is where either the destination host, or the destination h o st’s private network,

is not a ttached to the ro u te r’s subnetw ork, bu t instead is reached through one or more transit

networks. In this case, the problem is less similar to the nam e-to-address m apping problem . The

destination in ternet address m ust be m apped into the subnetw ork address of the next hop router

on the path to the destination host. The choice of next-hop router m ay not be relatively static ,

as it depends on the s ta te of the topology, the routing algorithm s being used, and so on.

T his second case is a more difficult problem in term s of algorithm ic complexity, since it m ust take

rou ting into account. The scaling problems, however, are not as severe as in the first case. In the

second case, the num ber of po ten tia l next-hop routers is proportional to the num ber of neighbor

tran sit networks. This is likely to be a much smaller num ber th an the num ber of subscribers

a ttached directly to the subnetw ork. Thus, it is likely to be possible for a rou ter a ttached to the

subnetw ork to m ain tain routing and subnetw ork address inform ation for rou ters a ttached to all

o ther tran s it networks.

58

Provider N etw orks

Routers

RB RAI
Provider B Provider CProvider A

Subscriber X
Subscriber Networks

Subscriber W

Figure 5.1: Address Layering Exam ple

5.3 E m b ed d e d S ub n etw ork A d d r e sse s

There are two basic approaches to the problem of determ ining the appropria te subnetw ork address

from the destination in ternet address. One approach is where the appropria te subnetw ork address

of the host is em bedded in the internetw ork address of the host. In this case, the rou ter can

sim ply ex trac t the subnetw ork address from the in ternet address and form a subnetw ork header

w ith it. The other case is where the subnetw ork address is no t em bedded in the in ternet address.

In this case, the rou ter m ust dynam ically discover the subnetw ork address, and then cache it for

la ter use. The former case is of particu lar interest here, because it im pacts the form and use of

addresses. The la tte r case is discussed in [109].

Consider the topology of Figure 5.1. Provider A is a subnetw ork of some sort w ith routers a t its

edges. It has routers connected to other providers and rou ters connected to subscriber networks.

Assume th a t a packet is being sent to subscriber X a ttached to provider A. W ithou t embedded

subnetw ork addresses, the destination address m ight look like:

provider A. suhscriberX. area.host

Routers outside of provider A (for instance. R outer RB) w ould look a t the first p a rt of the

address (providerA) and route it to a router a t the border of provider A (R outer R A l). T hat

rou ter would then look a t the next hierarchy level, suhscriberX, and have to determ ine from th a t

which subnetw ork address to route the packet to. If there is some discovery m echanism available

to provide this inform ation, the router can get the inform ation and forward the packet across the

subnetw ork to the router th a t connects subscriber X w ith provider A.

Note th a t the difficult problem is not one of getting the packet from one provider to another

provider. The difficult problem , ra ther, is in getting the packet from the en try po in t of the last

provider in the path to the subscriber. This is because the num ber of subscribers for a given

59

provider is much larger th an the num ber of neighbor providers.

If, on the other hand, the em bedded subnetw ork m ethod is used instead, the address m ight look

like this:

provider A. subnet AddrX. area.host

In this address, the em bedded subnetw ork address [subnetAddrX) is in p a rt tak ing the place of

the suhscriberX p art of the previous address. T h a t is, the subnetAddrX field uniquely identifies

subscriber X am ong all other subscribers. B ut, this identification is indirect, because explicitly, the

subnetAddrX field is identifying the subnetw ork interface a ttached to the rou ter th a t is a ttached

to the subscriber. If th a t router is exclusive to subscriber X, then subscriber X has indirectly been

identified.

More to the po in t, however, is th a t the provider X router receiving this address can ex trac t the

subnetAddrX field, pu t it in the destination address field of the subnetw ork packet (or call setup),

and forw ard the packet. If a rou ter a t a subnetw ork interface is a ttached to m ultiple subscribers,

such as rou ter J in Figure 5.1, then fu rther subscriber identification inform ation in the address

would be necessary, for instance:

provider A.subnetAddrY.subscriberY. area, host

Em bedding subnetw ork addresses in in ternet addresses is very useful in m any cases, and has been

specified for use in a t least one in ternational standard [56]. It was also used in the early IP

in ternet, to get packets across the A RPA N ET (the A R PA N ET sw itch and p o rt num bers were

em bedded in the IP address). However, it does not work in all cases.

F irst, it does no t work in the case where the subnetw ork address is too large to fit in the in ternet

address and still leave enough space for the other addressing inform ation the in te rne t address

m ust contain. T his is generally the case with IP, as m ost subnetw ork addresses (IEEE802, X.121,

E.164) are larger than the IP address.

T he NSAP address, on the o ther hand, was designed w ith incorporation of subnetw ork addresses

in m ind [54]. Thus, it incorporates the subnetw ork addresses m entioned in the last paragraph.

Interestingly enough, however, a standards group for developm ent of ATM subnetw orks (the ATM

Forum) subsequently adopted the NSAP address for use in addressing ATM interfaces. Thus, the

NSAP address is not big enough to contain all subnetw ork addresses^.

Second, the em bedded subnetw ork address specifies the p a th to the destination a t a higher level

of detail th an the other fields of the address. The o ther fields, provider, subscriber, area, and so

on, identify groups of system s, not single system s (or interfaces). The subnetw ork address, on the

o ther hand, specifies a single interface. This is overly constraining in the case where there are

 ̂From th is, one could form ulate an axiom — which I call th e D eering A xiom , b ecau se S teve D eer in g first p o in ted

out this conundrum — that an in ternet address can never be big enough to h o ld all subnetw ork addresses, because

a future subnetw ork can alw ays adopt the internet address.

60

m ultiple routers entering a subscriber network from the sam e provider.

For instance, in Figure 5.1, subscriber W has two connection points to provider A. If one of the

subnetw ork addresses is em bedded in the internet address, then the rou ter connected to the other

subnetw ork address will not be found in case the original one fails.

T h ird , the subnetw ork address m ust be em bedded in the appropriate p a rt of the address, and in

such a way th a t i t ’s coding is clear. The pitfalls of a bad encoding can be illu stra ted w ith the

NSAP address. W hen a subnetw ork address is encoded in an NSAP, the subnetw ork address is

the m ost significant field w ith location sem antics. (There are fields w ith more significance than

the subnetw ork address field, bu t these fields only tag the address as being a certain type, and do

not have any location sem antics.)

Depending on the nature of the subnetw ork address, it may or m ay not have enough hierarchy,

or the right kind of hierarchy, to scale sufficiently. For instance, the E.164 address has a country

code as its m ost significant field. As discussed in section 3.4.5, geographical addresses may not

scale well w ith the existing in ternet topology.

A related problem is th a t it is may not be clear to a rou ter w hether the subnetw ork address given

is on its own subnetw ork or another subnetw ork. For instance, a packet w ith an E.164 address

em bedded in it m ight cross m ultiple subnetworks using E.164 addresses— SMDS, ATM , Frame

Relay, or BISDN. Because E.164 addresses are geographical, and because m ultiple providers can

cover the same geographic territory , the router has to have explicit inform ation abo u t w hat E.164

addresses are on the provider’s network. The am ount of inform ation required to know this may

be com parable to the am ount of inform ation needed for subnetw ork address discovery in the first

place.

Note th a t this problem does not exist w ith the addresses shown in this section, where the most

significant field is provider. If the m ost significant field is provider, then the rou ter a ttached to

the identified provider knows th a t the subnetw ork address m ust be on its subnetw ork.

Fourth , it is possible th a t there should be m ultiple subnetw ork addresses in the in te rne t address.

For instance, consider the case where Subscriber X ’s in ternal network was itself a single large

subnetw ork w ith hosts directly a ttached . In th a t case, to solve the problem of subnetw ork address

discovery using the em bedded subnetw ork address technique, the in ternet address w ould be:

provider A .subnetAddrX.subnetAddrHost

where subnetA ddrH ost is the subnetw ork address of a host on the subscriber’s subnetw ork. The

existence of m ultiple subnetw ork addresses only com pounds the above problems.

In the cases where the problems or lim itations associated w ith the em bedded subnetw ork address

approach make it unacceptable, a dynam ic discovery m ethod m ust be used, as discussed in [109].

61

C hapter 6

G roup A d d resses

The previous chapters dealt essentially w ith unicast addresses—addresses th a t identify (or locate)

a single system or interface. An increasingly im portan t class of address is the group address— an

address th a t identifies m ultiple system s or interfaces. A group address can have two basic services

associated w ith i t— m ulticast service and unicast service. W ith m ulticast service, all systems

identified by th a t address receive a copy (possibly unreliably) of the packet. The term muliicast

address indicates a group address w ith m ulticast service.

W ith unicast service, only one of the group of systems identified by the group address should

receive a packet destined for the group. The term anycast address indicates a group address w ith

unicast service.

The following sections discuss m ulticast and anycast addressing.

6.1 M u lt ica s t A d d re sse s

A m ulticast address allows the source of the packet to send th a t packet to m ultip le o ther system s

w ithout having to know the separate identities of those system s, and w ithout having to send

m ultiple packets. This simplifies the host considerably (though it com plicates the routers). It also

decreases the latency of packet delivery com pared to sending of m ultiple packets, because the last

of m ultiple packets would be queued up behind the others leaving the host. Finally, it improves

bandw ith efficiency, because only one copy of any given packet is tran sm itted over any link.

The usual model of m ulticast packet delivery is th a t the m ulticast packet traverses some kind

of tree, logically overlaid on the physical topology which is typically a mesh of some kind. The

sender is at the root of the tree, and the receivers are a t the leaves. A t every branch in the tree,

the packet is replicated, and one copy sent over each branch. Thus, the latency rem ains low, as

no wire carries more th an one of a given packet.

62

T here are m any im portan t issues concerning m ulticast— w hat the natu re of the tree is (source

rooted [27], centered [2]), how the tree is formed, scaling, m anaging resources, d istribu ting ad­

dresses, controlling group m em bership, achieving reliable packet delivery, and so on [8, 26, 90,

112, 2]. In keeping w ith the scope of this thesis, however, the discussion here is largely lim ited to

the form of the m ulticast address and related inform ation required in the packet header.

A fundam ental d istinction among tree types is source-rooted trees versus non-source-rooted trees.

Source-rooted trees are shortest pa th spanning trees where the root of the tree is a t the source of

the packet [27]. N on-source-rooted trees are any other type of tree, for instance a shortest p a th

spanning tree rooted a t some system which is not the source [2], or a Steiner tree [112].

D epending on the nature of the m ulticast tree, different inform ation in the packet is used by the

rou ter in m aking the forwarding decision. Consider first a case where all m ulticast packets in

a network traverse the same non-source-rooted tree, and where th a t tree extends to all hosts in

the network. This is called a broadcast non-source-rooted tree. In this case, all m ulticast packets

reach all hosts, and the hosts either accept or discard the packet based on w hether or not they

are a m em ber of the group identified by the m ulticast address. W ith this kind of tree, each router

m aintains a list of which interfaces are on the tree. W hen it receives a m ulticast packet, the router

sim ply forw ards the packet over all tree interfaces except the one it came in on.

T hus, the only inform ation from the packet header th a t the router needs is the inform ation th a t

tells it th a t the packet is a m ulticast packet. In the case of IP, th is can be done by looking a t the

first four bits of the destination IP address. If those four b its are value 1110, then the packet is a

m ulticast packet. O therwise it is not. The host, on the o ther hand, looks only a t the full m ulticast

address to determ ine if it should accept the packet (this is true for the following three examples).

Next, consider the case where there is one tree per source host (or, per source host th a t is actively

sending m ulticast packets), and th a t each tree extends to all hosts in the network. These are

called broadcast source-rooted trees. W ith a broadcast source-rooted tree, the rou ter expects the

packet for a certain source host (or set of hosts, as identified by an address prefix) to arrive on a

certain link— the link th a t the router would norm ally route a unicast packet over to reach the the

host (as a destination). The rou ter also knows, for each source, which outgoing links to forward

the packet over.

Thus, for the broadcast source-rooted tree, the inform ation from the packet header th a t the router

needs is 1) w hether or not the packet is m ulticast, and 2) the source address.

Next, consider the case where there is one non-source-rooted tree per m ulticast group, and th a t

each tree extends only to the m em bers of the m ulticast group. This is called a multicast non­

source-rooted tree. In this case, a router m ust know which of its links are on th e m ulticast tree

for each group. W hen a router receives a packet for the group, it forwards the packet over all of

the links on the tree except the one it came in on.

For a m ulticast non-source-rooted tree, the packet header need only carry the identifier for the

63

m ulticast group. (The value of the identifier indicates th a t the packet is a m ulticast packet.

Therefore, no separate “this is a m ulticast packet” inform ation is required.)

Finally, consider a muliicasi source-rooted tree. In this case, the packet header m ust contain bo th

the identifier for the group, and the address of the source of the packet.

In the above examples, the source address, when it is used, is functionally a modifier. The

(destination) m ulticast address, when it is used, is an identifier.

6.1.1 Scoped M ulticast

W ith scoped m ulticast, a m ulticast packet is only allowed to travel a certain distance from the

source of the m ulticast packet, where distance can be m easured in various ways. A simple way to

measure distance is by num ber of hops away from the source. This is used w ith IP by the setting

the Tim e-to-Live (TTL) field. This field is decrem ented a t least once (and usually once) every

tim e a router forwards the packet.

W ith IP unicast, routers discard a packet whose T T L has decrem ented to 0. W ith IP m ulticast on

the M BONE, the discard threshold is settable, so th a t routers can tune the am ount of m ulticast

traffic they forward. In addition, the initial se tting of the T T L is based roughly on the am ount of

bandw idth generated by the application, so th a t video, for instance, will have a lower in itial TTL

th an audio. Thus, a ro u te r’s threshold can be configured to discard video while accepting audio.

(Note th a t this particu lar use of the T T L on the M BONE is not necessary if m ulticast pruning is

im plem ented— th a t is, individually selecting which m ulticast groups can traverse a link.)

The usual desired scoping sem antics is not hops, bu t ra th er to keep the packet w ithin certain

boundaries, for instance, the local LAN, the departm en tal networks, the com pany networks, and

so on. Thus, hop count is not usually a good m echanism (except for the local LAN case, where a

hop count of 1 suffices).

An alternative m echanism , specified in the S IPP protocol [30], is to have a scope field th a t explicitly

defines the scoping boundary. The hop-count m ethod requires no special handling by the router

(it is norm al procedure for a rou ter to drop a packet whose hop-count has expired). The scope

field m ethod, on the o ther hand, requires th a t an explicit forwarding decision be m ade by routers.

A scope field can either be in terpreted in conjunction w ith the source locator, or independent of the

source locator. In the la tte r case, a router simply associates each of its interfaces w ith zero or more

scope values. A packet w ith a m atching scope value is never tran sm itted over th a t interface. In

the former case, the rou ter associates each interface w ith zero or more (scope value, source locator

prefix) pairs. A packet w ith a m atching scope value and a m atching source locator prefix is never

transm itted over th a t interface. Source-independent scoping is sim pler, and source-dependent

scoping is more general.

64

W ith source independent scoping, a single series of expanding concentric scoping boundaries is

defined for each host—th a t is, w ith respect to all of its locators. W ith source independent scoping,

po ten tia lly m ultiple such concentric boundaries are defined for each host, if it has m ultiple locators.

For either case, the group m em bers for a given packet are defined by the com bined (scope, source

locator, group ID) inform ation. For forwarding a packet, however, the rou ter does no t care about

the source locator unless it is doing source-dependent scoping (or of course source-rooted trees).

6.1.2 W ell-known M ulticast A ddresses

A nother form of m ulticast address is the “well-known” m ulticast address. The well-known m ul­

ticast address is a norm al m ulticast address in th a t it identifies a set of nodes. I t is different,

however, in th a t the set of nodes th a t it identifies offer a particu lar service, and th a t th a t service

is identified by the value of the well-known m ulticast address. An exam ple of a well-known m ul­

ticast address w ith IP is “all O SPF routers” [73]. T h a t is, all O SPF routers will accept a packet

addressed to the “all O SPF routers” m ulticast address.

The desired recipients of m ost well-known m ulticast addresses are local in scope. For instance, the

“all O SPF rou te rs” well-known m ulticast address m ust only go to all O SPF routers on the local

LAN. Thus, the scope m ust be local LAN (or, hop count of 1). T his allows nodes to com m unicate

to o ther nodes of a certain type w ithout going through an address discovery process.

A well-known m ulticast address, combined with the scope and source locator, defines m ultiple

groups, each w ithin a prescribed scope.

6.2 A n y c a s t A d d re sse s

Like a m ulticast address, the anycast address identifies a set of nodes. Unlike a m ulticast address,

however, the delivery sem antics for an anycast address is to deliver the packet to one node only.

Normally, bu t no t necessarily, the single node is assum ed to be the “closest” , according to the

routing protocols notion of closest [76].

The rou ter forw arding m echanism of an anycast address is closer to th a t of a unicast address than

th a t of a m ulticast address. A router can tre a t an anycast address like a unicast address in th a t

it calculates a single pa th to one of the members of the anycast group. Indeed, m ost routing

algorithm s designed for use w ith unicast addresses work w ithout m odification for anycast. (By

and large, a routing algorithm can not distinguish between m ultiple pa ths to a single (unicast)

destination and m ultiple anycast destinations.)

Because of th is sim ilarity w ith unicast, anycast addresses can be sim ilar to unicast addresses. For

instance, anycast addresses can be hierarchical with the same scaling benefits as unicast addresses.

Indeed, one form of anycast address is one th a t is indistinguishable from unicast addresses, bu t

65

th a t happens to be assigned to multiple nodes.

The S IP P protocol takes advantage of a specialized form of hierarchical anycast addresses th a t

come out of the unicast address space [40]. In SIPP, they are called cluster addresses, and they

are for the purpose of sending a packet to any one of the border rou ters of a cluster of nodes

defined by a hierarchical prefix. (A S IPP cluster address is encoded as an address prefix followed

by all zeros.)

A nother example of an otherwise unicast address having anycast sem antics is the Core Based Tree

(G ET) m ulticast protocol [2]. This is discussed in the next subsection.

A po ten tia lly useful form of anycast address is the well-known anycast address. A nycast addresses

can also be sim ilar to m ulticast addresses, in th a t they can be (non-hierarchical) identifiers. This

form is particu larly useful for well-known anycast addresses where, like well-known m ulticast

addresses, they identify a service as well as a group of nodes.

Scoping can be used w ith this form of anycast address. The effect of scoping is sim ilar to th a t used

w ith m ulticast in th a t no nodes outside of the area defined by the scope will receive the packet.

As w ith m ulticast, the source address may or may not be used in defining the scope boundary.

6.3 T w o -p h a se G roup A d d resse s

A useful form of group addressing is two-phase group addressing, where a packet is initially routed

as unicast (or anycast), and subsequently is routed as group-addressed (m ulticast or anycast).

One example of this is rem ote m ulticast, where a packet is sent to a rem ote network (using

unicast), where it then becomes m ulticast w ith local scope. This causes the packet to be delivered

to a m ulticast group th a t is local to a rem ote network. This style of m ulticast is advantageous

com pared to regular (single-phase) source-rooted m ulticast in th a t w ith rem ote m ulticast, routers

in between the source and the rem ote network do not need to have any knowledge of the m ulticast

group, whereas w ith regular source-rooted m ulticast, they do.

A sim ilar case can be m ade for rem ote anycast.

A nother example of two-phase m ulticast is the G ET m ulticast protocol [2j. W ith G ET, a single

m ulticast tree is formed from some root (core) router th a t may not be a sender (or m ay not be

the only sender) to the m ulticast group. A node may send to the group w ithout being a member

of the group. W hen this happens, the sending node forms a packet th a t has the unicast address of

the core and the m ulticast address of the group. The packet is initially rou ted tow ards the core.

W hen it reaches any rou ter on the m ulticast tree, th a t rou ter changes the phase of the packet and

routes it as a m ulticast packet (along the m ulticast tree).

The advantage of this approach over the source-rooted tree is th a t routers need only keep per

66

group forwarding inform ation, ra ther than per group and per source forw arding inform ation. The

disadvantage is th a t the tree formed is less optim al than the source-rooted tree, particu larly when

the core router is poorly placed.

67

Part II

In tern etw ork P ro to co l H eader

D esig n

68

In P a r t II of this thesis, we consider the design of the routing and addressing aspects of an in ternet­

work protocol. In particu lar, we explore two designs—one based on a conventional internetw ork

protocol header syntax [30, 40] (SIPP), though w ith expanded sem antics, and one based on a new

internetw ork protocol header syntax (SPip). These two designs are com pared w ith a conventional

in ternetw ork protocol, CLNP [55].

We do not consider aspects of internetw ork protocol design not related to rou ting and addressing.

These aspects include higher layer protocol identification, hop count lim itation , checksum calcu­

lation, and fragm entation and reassembly. All of these functions are largely orthogonal to routing

and addressing, and are therefore not considered in th is thesis.

Since a t the tim e of th is w riting the S IPP protocol is a candidate for replacem ent of IP, a note on

the history of SIPP is appropriate. During the two years th a t I worked on this thesis, I was actively

prom oting my protocol ideas in the In ternet Engineering Task Force— the stan d ard s body th a t

has oversight of T C P /IP and related protocols—as one of the candidate replacem ents for IP. My

in itial proposal was P ip [38, 39, 37], a variation on SPip presented in this thesis (SPip, pronounced

“ess p ip” , stands for Simple P ip). Later, the P ip project merged w ith another candidate, SIP (for

Simple In ternet Protocol), creating SIPP (SIP Plus). SIPP kept the syn tax of SIP, bu t expanded

its sem antics.

69

C hapter 7

E valu ation C riteria

T his chapter describes the evaluation criteria for the protocols. We are in terested in the capabilities

and the costs of each of the protocols.

7.1 C o sts

We consider 4 costs:

1. Processing cost (speed and hardw are com plexity)

2. A ddress assignm ent com plexity

3. C ontrol protocol (such as routing) complexity

4. Header size

It is in fact alm ost impossible to be precise w ith respect to these costs, as they depend on so m any

factors. Thus, we trea t these costs more in term s of general argum ents th an precise analysis.

For processing cost, we focus prim arily on aspects of software im plem entation ra th er th an h a rd ­

ware. The reason for this is partly the au th o r’s unfam iliarity w ith hardw are, and partly the fact

th a t there are a large num ber of hardw are approaches, and we can not cover them all. In any

event, software im plem entation alone provides a good basis for relative com parison, as discussed

in Section 10.1.

For address assignm ent complexity, we consider bo th address autoconfiguration (m ainly of hosts),

and m anual assignm ent along an address assignm ent hierarchy. W ith respect to the form er, we are

in terested in w hether ’’serverless” address autoconfiguration is possible or not. W ith respect to the

la tte r, we are prim arily in terested in the difficulty of assigning addresses considering internetw ork

grow th and change.

70

W ith respect to control protocol complexity, we prim arily lim it ourselves to pointing out where

certain aspects of the in ternet protocol design make the control protocols more complex. In

general, we use the IP control protocols as baselines in this evaluation.

O f these four costs, the header size is the one th a t is easy to quantify. I t is, however, difficult to

quantize w hat the true cost of a large header is. A t high link speeds, where m ost packets can be

fairly l a r g e a large header constitu tes only a small percentage of packet size.

A t very low link speeds, even a m oderate packet size is intolerable, and so some kind of header

compression (for instance, using a VCI [17, 16]) is required. W ith header com pression, however, a

large (uncom pressed) header will not behave significantly worse th an a m oderate header if a large

percentage of headers can be com pressed successfully (th a t is, fall under an existing VCI).

7.2 C ap ab ilit ie s

The capabilities of in terest, sum m arized in Table 7.1, are the routing and addressing functions

described in P a r t I. The capabilities are partitioned in to two categories, required and useful. The

purpose of the two categories is to show the different relative im portance of the various capabilities.

The required capabilities are widely accepted as necessary for any future internetw ork protocol.

The useful capabilities are those for which there is less agreem ent as to w hether or no t they are

w orth the complexity. The inclusion of a capability in one category or the o ther is in some cases a

judgem ent call. In case of doubt, I used the current working s ta tu s of the capability in the IE T F

standards com m unity [48] to choose the category. T h a t is, if the IE T F is actively working on the

capability, I included it in the required category.

^The exceptions are in teractive d ata traffic such as telnet (w here one character or on ly one line m ight b e sent)

and in teractive voice, where low la ten cy and rela tively low b an d w idth en cod in g (for in stan ce, 32k b its per second)

resu lt in sm allish packets. H ow ever, at h igh link speeds, th is traffic is likely to co n stitu te on ly a sm all percentage

of to ta l traffic, the m ajority taken up by im age transm issions.

71

Table 7.1: Criteria for Routing and Addressing Capabilities

C apability Section

required

Big enough hierarchical unicast addressing 2.2.1

M ulticast/ shared-tree group addressing 6.1

M ulticast/ source-tree group addressing 6.1

Scoped m ulticast group addressing 6.1.1

W ell-known m ulticast group addressing 6.1.2

M obility 2.2.4

M ulticast/ two-phase group addressing 6.3

Domain-level policy route 4

Host A uto-address assignm ent

useful

Type-of-Service Field 2.2.3

Em bedded link-layer address 5

Node level source route 4

Anycast group addressing 6.2

A nycast/ two-phase group addressing 6.3

72

C hapter 8

P ro to c o l D escr ip tio n s

T his section describes the three protocols analyzed in P a r t II of this thesis. Note th a t we only

describe the p a rt of the protocol having to do w ith the identification, location, and p a th modifi­

cation functions. Unless otherwise sta ted , the term internet protocol is assum ed to refer to only

th a t p a rt of the in ternet protocol th a t accomplishes these three functions.

8.1 S P ip

Perhaps not surprisingly, the design of SPip follows directly from the m ain observations m ade in

P a r t I, namely, th a t

1. all routing and addressing functions can be classified as one of identification, location, or

p a th m odification, and

2. a locator is simply a series of identifiers, and the process of locating is th a t of routing in

tu rn to each of the identifiers.

Based on item 1 above, we argue th a t (the routing and addressing portion of) an in ternet protocol

should have three and only three p arts— an identifier, a locator, and a p a th modifier (actually,

two identifiers and two locators, one each for source and destination).

Based on item 2 above, we argue th a t the locator p a rt should be based on a loose source route­

like m echanism , with each elem ent of the loose source route being a simple identifier (versus a

com plete hierarchical address as w ith IP).

T his is, in a nutshell, the design of SPip. The argum ents for this approach are m ade by way of

showing, in C hapter 9, how SPip handles each of the routing and addressing capabilities w ith a

single simple forwarding engine, and w ith straightforw ard control protocols (com parable to those

required for IP or S IPP).

73

8.1.1 SP ip R ou tin g and A ddressing Fields

The (routing and addressing p a rt of the) SPip header has the following form at:

64 bits 64 bits variable

Source EID Dest EID Route Sequence

The Source EID and Dest EID fields are endpoint identifiers. They have no locator or pa th

modifier sem antics. They are flat in-so-far as SPip is concerned^.

Higher layer protocols such as T C P [88] use the Source and Dest EIDs to identify the connection

endpoints. W hen an SPip host receives a packet, it only need examine the Dest EID to determ ine

th a t the packet is destined for itself.

The R oute Sequence contains the location and path m odification inform ation. T he Route Sequence

is fo rm atted as:

' 32 bits8 bits 8 bits 32 bits 32 bits

N um Source RSE Active RSE R SE l RSE2 R SEn

where RSE stands for Route Sequence Element^.

T he RSE has a 1-bit flag followed by two parts, a 7-bit P a th Modifier and a 24-bit RS Identifier:

R oute Sequence Elem ent (RSE)

1 bit 7 bits 24 bits

Last RSE P a th Modifier RSID

T he Last RSE flag is set to 1 if this is the last RSE in the route sequence, and set to 0 otherwise.

T he following sections describe the use of the SPip header.

8.1.2 SP ip Forwarding A lgorithm

T hree local variables are m aintained during the forwarding algorithm :

a c t iv e T a b le This indicates which of m ultiple forwarding tables should be accessed. There are

two types of tables, RSETahles and EIDTables. RSETables are accessed w ith RSEs, and

EID Tables are accessed w ith EIDs.

a c t iv e R S E T his indicates which of m ultiple RSEs, or the EID, is used to access the activeTable.

If activeR SE is non-zero, it indicates an RSE, and indicates the EID if it is zero.

'■The Source and D est E ID s have a certain am ount o f structure to facilita te their assignm ent (see Section 8 .1 .4).

T h is structure, how ever, has no bearing on operation of the SP ip p rotocol.
^R oute Sequence E lem ents are called F T IF s (Forw arding Table Index F ie ld s) in the orig inal P ip p rotoco l [37,

38, 39].

74

t r a n s m i tR S E T his indicates w hat value the Active RSE field should be set to upon transm ission

of the packet. For the case of m ulticast, it applies to all transm itted packets.

T he forw arding algorithm is illustrated in Figure 8.1 and described as follows:

1. Set activeR SE and transm itR S E to the value of the Active RSE held in the received packet.

2. If activeR SE is zero, set activeTable to be the M ain EID Table, and go to step 3. Otherwise,

set activeTable to be the R oot RSETable, and go to step 4.

3. Set activeR SE to zero, and index the active EID Table (indicated by activeTable) using the

value of the Best EID held ex tracted from the packet header. The indexed en try will re tu rn

either:

(a) a pointer to a Forwarding Inform ation Base (FIB) entry (go to step 6), or

(b) error.

The indexed entry also includes a tag th a t indicates if transm itR S E should be set to the

curren t activeRSE (th a t is, advanced to point to the EID).

4. Index the active RSETable (indicated by activeTable) using the value of the active RSE held

(indicated by activeRSE) ex trac ted from the packet header. The indexed en try will re tu rn

one of:

(a) a pointer to a Forwarding Inform ation Base (FIB) entry (go to step 6),

(b) a pointer to one of the EIDTables (go to step 3),

(c) a pointer to another RSETable, possibly the same one already accessed (go to step 5),

or

(d) error.

The indexed en try also includes a tag th a t indicates if transm itR S E should be set to the

curren t activeR SE (th a t is, advanced to point to the current RSE).

5. Increm ent activeRSE. Set activeTable to be the one pointed to by the entry from the previous

step. Go to step 4.

6. Using the inform ation from the FIB entry, forward the packet over zero or more interfaces.

The FIB inform ation includes the interface and link-layer header for each packet to be

tran sm itted . The Active RSE held of the tran sm itted packet is set to transm itR S E .

This algorithm describes the RSETables and EIDTables as h a t tables th a t are directly indexed

by the RSE or EID respectively, where every entry has one of the choices enum erated above (a

pointer to some outcom e or an error). Given th a t the RSE space is 2^^ values, and th a t the EID

space is 2®“̂ values, it is clear th a t such an im plem entation is impossible. However, the sem antics

of such an im plem entation m ust be achieved.

75

If Active RSE != 0
Index with
Active RSE __[

Point to another (possibly
the same) RSE Table

RSE Tables

Select
next
RSE

If Active RSE = 0
Index with
Dest EID

Default

Point to
FIB Entry

Point to EID Table

Forwarding
Information
Base (FIB)

0 Outgoing Interfaces
0 Link Addresses

EID Tables

Point to
FIB Entry

Default

Figure 8.1: SPip Forwarding A lgorithm

T he large m ajo rity of the entries in the RSETables or EIDTables contain either errors or default

routes. B oth represent the case where no explicit m atch is found. T hus, the sem antics of the

RSETable or EIDTable lookup is exact-m atch w ith default. T h a t is, either an exact m atch is

found, or a default en try (which may contain a default route or an error indication) is used.

In the algorithm above, the index is described as using the whole RSE— the Last RSE flag, the

P a th Modifier, and the RSID. These three fields, however, are separate and orthogonal elements

of the RSE. Thus, it is possible to default on the RSID bu t still retrieve different entries based

on the value of the P a th Modifier and Last RSE. In particu lar, a set Last RSE flag will generally

cause the router to examine an EIDTable, usually the M ain EID Table. The use of defaults in

general is described in the examples of C hapter 9, for instance. Section 9.2.3.

Note th a t the SPip forwarding algorithm is described in com pletely m echanistic term s. T his is in­

tentional, and is possible because SPip reduces routing and addressing to its elem ental functions—

identification, location, and p a th m odification. In a sense, the SPip forw arding engine is like a

76

machine language. A machine language is defined in term s of the m achine— th a t is, se tting register

values, moving words from here to there, and so on. The sem antics is derived from the machine

language th rough a com puter program .

SPip is a kind of machine language for forw arding packets. SPip executes the basic functions, and

various routing and addressing sem antics can be derived w ith various routing algorithm s, address

assignm ents, packet form ats, and so on.

8.1.3 SP ip Packet Formation

Every SPip host stores locally one or more EIDs th a t identify itself (note th a t such an EID may

represent a m ulticast group, and therefore identifies o ther hosts as well). Some of these EIDs are

send-capable and others are not. A send-capable EID is one th a t can validly be used as the h ost’s

source EID in a transm itted packet. M ulticast EIDs are not send-capable. U nicast EIDs are.

A ssociated w ith every EID are zero or more address sequences th a t can be though t of as represent­

ing its location in the in ternet. An address sequence is a series of RSIDs (An, A n - i , . . . , A i, A q).

W hen SPip hierarchical unicast addressing is used, each RSID in the address sequence carries one

level of the hierarchical address (for instance, network, subnet, or host). T his is discussed in detail

in Section 8.1.5.

For every destination (group or individual) th a t a host sends packets to , the host has one or more

EIDs, and associated w ith each EID is one or more address sequences (where an address sequence

can have zero addresses, for instance in the case of m ulticast).

W hen a packet is tran sm itted from a source host S to a destination host D, the Source EID contains

one of S’s EIDs, and the Dest EID contains one of D ’s EIDs. The route sequence typically contains

two address sequences—one from host S and one from host D. Each address sequence will be one

of those associated w ith the corresponding EID.

The source h o st’s address sequence is in the RSID p a rt of the in itial RSEs of the route sequence,

in order of lowest order RSID first. The destination h o st’s address sequence is in the RSID part

of the trailing RSEs of the route sequence, in order of highest order RSID first. In between the

two address sequences is zero or more RSEs, called tran s it RSEs. The P a th M odifier p a rt of the

RSEs are filled in separately, depending on the desired routing. The Last RSE fiag of every RSE

except the last one is set to 0.

For instance, assum e th a t host S ’s address sequence is (Sn, S n _ i , . . . , ^ i , 5o), th a t host D ’s

address sequence is (Dm, D m - i , - - - , D%, D q), and th a t there are no tran s it RSEs. A route

sequence in the packet from host S to host D would look like:

(S"o, S i , . . . , S j i , D m , D m —1 , • • • , Dq)

77

W ith tran s it RSEs To through Tp, the route sequence would be:

{ S qj S i , . . . , S n , T o , T i , . . . , Î J , , D r m !) • • •) -^ o)

T he source EID and address sequence are always locally known by the transm ittin g host. The

destination EID and address sequences can be learned either from DNS or from a previously

received SPip packet. The transit RSEs are learned through w hatever m eans is appropriate to

the application.

T he N um Source RSE field is set to indicate how m any of the in itial RSEs represent the source

address sequence. This tells a receiving host how to learn the address sequence of the remote

host. Note th a t it can encom pass more th an ju s t the source address sequence. For instance, if

the tran s it RSEs represent a policy route, and the host requires th a t re tu rn packets follow the

sam e route (in reverse), the Num Source RSE includes the tran sit RSEs. Its value, for the above

exam ple, assum ing th a t no transit RSEs are included, is n + 1.

The default setting for the Active RSE field (th a t is, the setting used if no b e tte r setting is known)

is to point to the first RSE after the source address sequence. Thus, the Active RSE field for the

above example is n + 2 . O ther settings are possible, however, depending on the situation.

Obviously, if host S is to send a packet to host D, it m ust know an EID for host D, and zero or

m ore address sequences associated w ith th a t EID (no address sequence m ay be required if, for

instance, the EID represents a m ulticast group).

As m entioned above, there are two ways th a t host S can obtain the EID and address sequences

for host D. One way is to receive it from DNS, and the other is to derive it from an SPip packet

previously received from D. The former would norm ally be the case if host S initiates the exchange,

and the la tte r would norm ally be the case if host D initiates the exchange.

The form er case is straightforw ard. DNS (or some directory service) carries the EIDs and address

sequences for hosts, and re tu rns them when queried.

For the la tte r case, when host S receives a packet from host D, the EID of host D is in the Source

EID field. The address sequence th a t host S should use to re tu rn a packet to host D is the reverse

of the in itial n RSIDs of the route sequence, where n is the value of the N um Source RSE field.

(The P a th Modifier fields of the received RSEs are set a t the h o st’s discretion.)

For instance, assum e th a t the received route sequence is (A q , A i , , A k - i , A k), and th a t the

value of Num Source RSE is n (n < À;). Host S forms an address sequence for host D of

(An, • • • , , A q).

The address sequence for host S used as the source address in the tran sm itted packet should

generally, bu t not necessarily, m atch the tail of the route sequence in the packet received from

host D.

78

8.1.4 SP ip EID D efinitions

T here are two SPip EID types, individual and group. The individual SPip EID is used for unicast

packet service, and the group SPip EID is used for m ulticast and anycast packet service. Roughly

3 /4 th s of the EID space is reserved for fu ture definitions.

The prim ary goal in the definition of EIDs is to facilitate easy m anagem ent of EIDs, p articu ­

larly host autoconfiguration. The definition of EIDs relies heavily on IEEE-802 addresses [50].

I t is assum ed th a t system s running SPip will have local access to a globally unique IEEE-802

address— preferably one not associated w ith an IEEE-802 LAN interface. Thus, SP ip system s can

autom atically create their own EID w ithout coordination w ith any other system s.

Note th a t a specific non-goal of SPip EID definition is to allow recognition of a system ’s orga­

nizational affiliation— for instance, by p u tting an organization ID a t the high order end of the

EID. P u ttin g organizational affiliation in the EID could be useful for several purposes, such as

packet filtering or inverse DNS lookups. The advantages of organizational affiliation, however, are

outweighed by the disadvantages, such as the increased com plexity of autoconfiguration . Also,

o rganizational affiliation can often be determ ined from the route sequence.

Individual EIDs have the following format:

16 bits 48 bits

hex 0000 Individual IEEE-802 Address

T he first 16 bits of the unicast EID are hex 0000. The low-order 48 bits of the unicast EID contain

an IEEE-802 Address. This IEEE-802 address m ust be an individual IEEE-802 address. If the

IEEE-802 address is universally adm inistered, then the corresponding SPip unicast EID is globally

unique w ith high probability.

G roup EIDs have the following form at:

4 bits 4 bits 8 bits 48 bits

00x1 Scope Local-Use Group IEEE-802 Address

The first four b its are 0001 if the EID is m ulticast, and 0011 if the EID is anycast. E ither way,

the EID identifies the same set of system s.

The Scope field indicates a boundary over which the packet m ust not be tran sm itted . Typical

values for the scope field are subnet, subscriber network, and global (no scope lim itation). The

boundary is independent of the source— th a t is, a rou ter simply defines each of its interfaces

as crossing zero or more boundary types, and any group EID w ith th a t boundary type is not

tran sm itted over the link.

A scope value of 0 is reserved to m ean “any scope value” . T hus, when a host has discovered a

group EID (say, th rough DNS or IG M P [28]) th a t it will use in a packet, if the scope field is 0, the

host can validly set it to any other defined scope value. If the scope field is non-0, on the other

79

hand, the host m ay not modify it. A packet m ust not be transm itted w ith a scope value of 0 in

the Dest EID field.

An IEEE-802 address occupies the low-order 48 bits. T his m ust be a group IEEE-802 address. If

the host interface is an IEEE-802 LAN, then the G roup IEEE-802 address m ust be the same one

th a t is used to receive packets for the corresponding m ulticast/ anycast group.

T he 8-bit Local-Use field allows a system responsible for the assignm ent of group addresses to

create up to 256 different group addresses from a single IEEE-802 address. T his m akes the global

m anagem ent of group addresses trivial, as no coordination betw een hosts is required, and because

a single host can create m ultiple group addresses. Note, however, th a t if m ultiple group addresses

are created from the same IEEE-802 address, they will all be received over the same IEEE-802

address on the LAN.

8.1.5 SP ip R SE D efinition

The RSE is defined as follows:

RS Identifier

1 bit 7 bits 1 bit 19 bits 4 bits

Last RSE P a th Modifier 0 ID Level

T he P a th Modifier field is a pa th modifier according to the definition given in P a r t I. As such,

it can be set independently of the rest of the RSE. It could in theory be modified in tran sit by

routers, bu t this is not p a rt of the forw arding algorithm described above.

The low-order b it of the P a th Modifier is used to indicate norm al forw ard-path forw arding versus

the reverse-path forwarding used for source-rooted m ulticast. A 0 value in the low-order bit

indicates forw ard-path, and a 1 value indicates reverse-path forwarding. The form er type is called

the norm al form RSID or norm al form RSE, and the la tte r type is called the reverse-path form

RSID or RSE.

A high-order bit of 0 in the 24-bit RS Identifier defines the RSID as being for use w ith unicast

h ierarchical addressing. A high-order value of 1 is a t th is tim e undefined, and can be used for

fu ture definitions.

The rem ainder of the RSID is defined and assigned identically for bo th norm al-form and reverse-

pa th form. The Level field (low-order 4 b its) indicates the hierarchical level of the RSE. Because

the ID field is too small to be globally unique, the Level field is required to tell rou ters a t which

hierarchical level to route the packet. This is necessary because routers opera te a t m ultiple

hierarchy levels.

To see this, consider Figure 8.2. R outer R is in backbone B. R outer R operates a t two levels—

the top level where it m aintains inform ation about other backbones, and a t the nex t level down.

80

Backbone B

Router R

Subscriber S
K) = 48 Subscriber T

Figure 8.2: R outer O perating a t M ultiple H ierarchical Levels

where it m aintains entries for subscriber networks. Assume th a t the neighbor backbone C has ID

num ber 48 and th a t one of the subscriber networks S under backbone B also has ID num ber 48.

W ithout the Level field, router R could not distinguish between the backbone C and subscriber

S. The essential purpose of the Level field, then, is to manage the RS Identifier num ber space so

th a t different elements in the hierarchy have different RS Identifiers.

The following Level values are defined:

Value Assignment

0 host ID

1 provider ID

2 - 5 in tra-subscriber

6 - 9 in tra-provider

10 - 15 reserved

O f the 16 Level values, two of them , host ID and provider ID, are globally recognized. A Level

value of 1 is the provider level, and is initially the top level of the hierarchy. All providers are

assigned an ID a t Level 1^. Since the ID is 19 bits, th is allows for approxim ately 500,000 providers

world-wide.

Level 0 is reserved to mean Host ID. This level can only be used in RSIDs assigned to individual

hosts. Setting aside this level for hosts is useful in forming node-level source routes and may be

^By provider, we m ean a netw ork that provides sw itch ing services. T h a t is, from a g iven en try p oin t to the

provider netw ork, the provider can deliver packets to m ultip le exit po in ts . T h e a ctu a l packet service provided m ay

b e SPip , or m ay be som e other p rotoco l running under SP ip , such as A TM , X .25 , or IP. T h e size o f the provider

(in either geographic coverage or num ber of subscribers) is irrelevant to this d iscussion .

81

useful for host autoconfiguration. Note th a t hosts do not necessarily need a RSID a t the host

level, since the EID serves to identify hosts.

Levels 10 through 15 are reserved for fu ture use. One po ten tia l use is for clustering providers

under a higher-level hierarchy level. This could be necessary if the num ber of providers becomes

too large for routing algorithm s to handle, or for the 19-bit ID space to handle. As w ith all

clustering, all providers w ithin a given higher level cluster m ust be in terconnected . Note th a t the

levels values are not assigned in order of hierarchy level. T h a t is, a higher level num ber does not

im ply a higher level of the hierarchy. This allows the reserved level values to be applied to any

point in the hierarchy.

Levels 6 th rough 9 are reserved for use w ithin a provider. W hile the use of these levels is left to

the discretion of the provider, it is expected th a t one of them would be used to identify subscribers

a ttached to the provider. The rem aining levels may be used for additional clustering w ithin the

provider netw ork. This is necessary for providers th a t have so m any subscribers th a t they need

to cluster subscribers in ternally (as described in Section 3.4.2).

Some discussion is required as to why a range of levels (levels 2 - 5) is globally recognized as being

for in tra-subscriber use, ra ther than ju s t letting each provider decide for itself w hat levels, under

its provider ID, are for intra-subscriber use.

The reason is to decouple above-subscriber address assignm ent from in tra-subscriber address as­

signm ent. Since a subscriber can be connected to m ultiple providers, or can change providers,

if each provider gave the subscriber a different range of in tra-subscriber num bers, then in tra ­

subscriber num bering would have to be modified when providers were changed.

A subscriber netw ork is num bered w ithin the range of levels from 2 to 5, independently of any

provider num bering. Thus, a subscriber network m ight assign level 2 to subnets, and level 3 to

areas. This leaves levels 4 and 5 for growth in the in tra-subscriber hierarchy either above the area

level or below the subnet level. If more than two levels were required for fu ture grow th, additional

levels could be assigned from the reserved space, though they m ust be globally recognized as such.

Differentiating by level does not make all RS Identifiers distinguishable, only those th a t are 1) a t

the same level, and 2) have the same paren t in the hierarchy. Thus, it is still possible for a router

to have forwarding table entries for different destinations w ith the same RS Identifier. To handle

this case, the rou ter m ust use m ultiple RSEs when calculating the next hop (see Section 9.1.6).

8.1.6 SP ip Hierarchical U nicast A ddress A ssign m en t

An SPip address is a series of RS Identifiers, s ta rting at the top level and continuing down to the

host level or to the level above the host level (which can be identified by the E ID). This series of

RS Identifiers m ay be preceded by a route fragm ent of one or more RS Identifiers, all a t the top

level.

82

The purpose of the route fragm ent is to handle the case where the subscriber’s im m ediate top-level

provider is not advertised globally, for instance because it is only a local access provider. In this

case, the (partial) address m ust be prefixed with the RS Identifier of a provider th a t is advertised

globally, resulting in the complete address.

To assign SPip addresses, a top-level address assignm ent au thority (such as the In te rn e t Assigned

N um bers A uthority (lANA) w ith respect to IP [92] and C C IT T w ith respect to E.163 [14]), assigns

IDs a t level 3 to providers. Providers assign num bers to elem ents below them in the hierarchy,

etc., w ithin the constrain ts of the ranges assigned to levels in Section 8.1.5.

Because subscribers can be connected to m ultiple providers, the subscriber netw ork can have

m ultiple address prefixes, and the subnets w ithin the subscriber netw ork can have m ultip le address

sequences. A host entry in DNS consists of the addresses of the subnets to which the host is

a ttached , plus the host’s EID. We do not specify here w hether the EIDs are listed separately from

the addresses (th a t is, w ith different record types), or w hether a single construct including bo th

address and EID is used. The choice is one of com plexity versus com pactness of encoding, and

does not affect w hat inform ation is derived from DNS.

8.1.7 SP ip H eader Layout

The header layout for SPip is as follows:

8 b its I 8 b its 8 b its 8 bits

Ver Flow

Payload Length Payload Type Hop Lim it

Source EID

Dest EID

reserved Header Length Num Source RSE Active RSE

R S E l

RSE2

R SEn

O ptional P adding

The first two 32-bit words of this header are fo rm atted the same as the S IPP header. T he Flow

field is pseudo-random ly set by the source of the packet such th a t the flow field and Source EID

field taken together uniquely define the contents of the routing inform ation in the packet— th a t

is, the Dest EID field and route sequence.

The Flow field has a num ber of po ten tia l uses. It can be used by rou ters to cache the results of a

83

forw arding lookup (see Section 10.1.1). It can similarly be used by hosts to cache the results of a

route sequence reversal calculation.

In addition, the Flow field can be used by routers for the purpose of m anaging flows— th a t is, the

operations necessary to insure th a t real-tim e traffic requirem ents, such as delay and latency, are

satisfied (see Section 2.2.6). This la tte r use of the Flow field is outside the scope of th is thesis.

The Source and Dest EID are positioned identically to the SIPP Source and D est Addresses.'*

The rem ainder of the header is unique to SPip. The Header Length gives the length of the entire

SPip header in 64-bit words. The rem ainder of the fields (N um Source RSE, A ctive RSE, and

RSEs) are as explained above.

8.2 S IP P

Like SPip, the SIPP protocol can also use a source route m echanism for routing and addressing

flexibility (though in S IP P it is not the only m echanism). SIPP, however, does so w ithin the

fram ework of a trad itional (IP-like) packet header.

8.2.1 S IP P R outing and A ddressing Fields

The (routing and addressing portion of the) SIPP header has the following form at [30, 40]:

64 b its

fixed optional

64 bits 64 bits 8 bits 64 bits 64 bits

Source Addr Dest Addr Next Addr A d d rl Addr2 A ddrn

The sequence of addresses (A d d rl, Addr2, etc.) com bined with the N ext A ddr field is called the

Source Route.

The Source and Dest A ddrs are, a t a m inim um , identifiers for the source and destination of the

packet^. Like S P ip ’s EIDs, the Source and Dest A ddrs are used by higher layer protocols to

identify the endpoints of a connection. The Source and Dest A ddrs are the only fields in the SIPP

header th a t identify the source and destination.

The Source and Dest A ddrs may additionally be locators in th a t they can be hierarchically struc­

tu red addresses in the same way as IP or NSAP addresses. In particu lar, they are bit-wise

left-to-right m askable addresses. By this, we mean th a t the fields in the address identifying the

higher elem ents of the hierarchy are to the left of those identifying the lower elem ents, and th a t

^This m uch of the SP ip header w as taken d irectly from SIP P, thou gh as o f th is w riting S IP P does n o t have the

sam e rules for se ttin g the flow ID .
®This is true w hen the op tion al Source R ou te is n ot included . W hen the Source R ou te is included , the D est Addr

conta ins the active address, and the last address in the address sequence holds the identifier for the d estin ation .

84

the field positions can fall on a rb itra ry b it boundaries.

A S IPP header may additionally contain a Source Route. M echanistically, this Source Route is

handled the same way as the IP loose source route. T h a t is, when a packet is received by a SIPP

node, it checks to see if the Dest Addr m atches one of its own. If it does, it swaps the Dest Addr

w ith the active addr in the Source Route, increm ents the Next A ddr field, and forw ards the packet

to the new Dest Addr.

8.2.2 S IP P Packet Form ation

It is easier to describe the form ation of S IPP packets if we view the Source A ddr, Dest A ddr, and

the sequence of addresses as a route sequence whereby:

• the 1st address of the route sequence is the Source A ddr,

• the 2nd through {i — l) s t addresses are those in the Source R oute sta rtin g w ith the first

address and ending w ith the address before the one indicated by the Next A ddr field,

• the ith address is th a t in the Dest A ddr field, and

• the (i + l) s t through n th addresses are the rem aining addresses in the Source Route.

Assume th a t a source host S is sending a packet to a destination host D. Each host has a sequence

of one or more SIPP addresses th a t represents its locator.

The source h o st’s address sequence takes up the initial addresses of the route sequence, in order of

lowest order address first. The destination h ost’s address sequence takes up the tra iling addresses

of the route sequence, in order of highest order address first. For instance, assume host S’s address

sequence is (5^, 5 „ _ i , . . . , 5 i, 5"o) and host D ’s address sequence is {Dm, D m - i , • • • > D i, D q).

A simple route sequence in the packet from host S to host D would look like:

(“̂ 0) 1 • • •) * ^ n j D m I D m — 1 , • • • , D q ^

If m = 1 and n = 1, then there is no Source Route in the packet.

As w ith SPip, a S IPP host S can learn the address sequence of a destination host D either through

DNS or through the reception of a packet from the destination host. The address sequence for

the host D can be ex trac ted from a received packet as follows.

T he received packet from host D contains a route sequence {Aq, A i , . . . , A k - i , Ak). For each

of host S’s address sequences, host S com pares the elem ents of the address sequence against the

ta il of the received route sequence, looking for a best m atch. The best m atch is w ith the address

sequence th a t has the largest i such th a t 5"o = Ak, S i = A k - i , . ■ ■, S{ = A k - i , where (So, S i, . . .)

is the source address sequence.

85

Host S then reverses the rem aining (unm atched) addresses in the incoming route sequence, to get

— I — 1) — I — 2) • * *) - ^ 1) - ^ o) '

As far as host S is concerned, this is a valid address sequence representing the destination , though

actually it may contain the destination address sequence prepended with some additional ad­

dresses, representing, for example, a policy route.

This ability in S IPP for hosts to represent their addresses as an address sequence, and to reverse

a received route sequence, gives S IPP much of its routing and addressing flexibility, including

its ability to arb itrarily extend the address space. This is the second m ost im p o rtan t difference

betw een SIPP and IP (the first being the fact th a t S IP P ’s native address is longer th an IP ’s).

8.2.3 SIP P Forwarding A lgorithm

For destination-based unicast forwarding, the SIPP forwarding algorithm is v irtually identical to

th a t of IP [87]. The differences are th a t 1) it operates on 64-bit addresses ra th e r th an 32-bit

addresses, and 2) S IPP has no field equivalent to IP ’s ToS Field. In other words, S IP P has no

p a th modifier.®

For source-tree m ulticast forwarding [31], there is a difference from IP ’s source-tree m ulticast

forw arding due to the fact th a t S IPP can use its source-routing m echanism to effectively extend the

length of SIPP addresses beyond 64 bits, similarly to how SPip creates variable length addressing.

W hen S IPP addresses are extended in this fashion, the source “address” (or, more accurately,

address sequence), covers m ultiple fields— the Source A ddr field and the in itial positions of the

source route. During forwarding, if upon exam ining the Dest A ddr field the S IP P rou ter deter­

mines th a t the packet is to forwarded according to source-tree m ulticast, it exam ines the address

im m ediately preceding th a t indicated by the Next A ddr field, if any, and the address in the Source

A ddr field otherwise.

If, upon exam ining an address in the source address sequence, the rou ter finds th a t it m ust examine

the next lower-order address in the sequence, the router examines the address in the Source Route

im m ediately preceding the address it ju s t examined, if any, and exam ines the address in the Source

A ddr field otherwise.

8.2.4 S IP P A ddress D efinitions

There are three SIPP address types, the hierarchical unicast address, the m ulticast address, and

the local-use address.

®The ToS F ie ld o f IP has b een found to be o f litt le practical u se. T he use o f ToS F ie ld rou tin g in general, given

the current sta te-of-th e-art in routing and the current in ternet environm ent, is question ab le . T h u s, S IP P chooses

not to im plem ent it .

86

The multicast address is formatted as follows:

1 7 bits 4 bits 4 bits 48 bits

c 1111111 Flags Scope G roup ID

The in itial bit is the IP com patibility bit, or C -bit. The C -bit is used to indicate w hether the

system owning this address is an IP system . It is used for transition ing IP to SIPP, and is not of

particu lar relevance to this thesis.

The subsequent 7 bits are set to all ones, and indicate th a t this is a m ulticast address. No other

address type may have these 7 bits set to all ones.

O f the four Flag bits, the high order three are reserved and set to 0. The rem aining bit indicates

w hether the m ulticast address is well-known (perm anently assigned) or transien t (not perm anently

assigned).

The Scope field serves the equivalent function of th a t in the SPip group EID.

The G roup ID identifies the m ulticast group.

The local-use address is defined as follows:

4 bits 12 bits 48 bits

0110 Subnet ID Node ID

The initial 4 b it p a tte rn of 0110 identifies the address as being a local-use address. No o ther

address type m ay have th is 4-bit pa ttern .

The Subnet ID is used to identify a subnet w ithin the network where the local-use address is

assigned.

The Node ID identifies the node^ w ithin the subnet identified by the Subnet ID. The Node ID

will usually be, bu t is not constrained to be, an IEEE-802 address.

The prim ary purpose of the local-use address is to allow auto-configuration. A S IPP host can

assign the Node ID using an IEEE-802 address if it has one, or a link address otherwise, w ithout

coordination w ith other system s. It learns the Subnet ID and higher level addresses from router

advertisem ents.

The rem aining address space is used for hierarchical unicast addresses. H ierarchical unicast ad ­

dresses encoded in a single SIPP address (th a t is, not an address sequence) initially have the

following structure:

1 n bits m bits p bits 63 — n — m — p bits

C Provider ID Subscriber ID Subnet ID Node ID

The assignm ent of SIPP hierarchical unicast addresses in an address sequence is discussed in

Section 8.2.4.

^SIPP uses the term node to m ean router or host.

87

S IPP addresses are provider-rooted (see Section 3.4). T h a t is, the high-order part of the address

is assigned to providers, which then assign portions of the address space to subscribers, etc. This

is similar to assignm ent of IP addresses under the CID R scheme [42]. The term “provider prefix”

refers to the high-order p a rt of the address up to and including the provider ID.

The subscriber ID distinguishes am ong m ultiple subscribers a ttach ed to the provider identified by

the provider ID. The term “subscriber prefix” refers to the high-order part of the address up to

and including the subscriber ID.

The subnet ID identifies a set of nodes on a single link w ithin the subscriber netw ork identified

by the subscriber prefix. The node ID identifies a single node am ong the group of nodes identified

by the subnet prefix.

A special case of hierarchical unicast address is the cluster address. A cluster address is an address

w ith a provider, subscriber, or subnet prefix followed by all zeros. C luster addresses are routed to

the routers a t the border of the network identified by the cluster address. These routers recognize

the cluster address as identifying them selves for the purpose of advancing the source route.

S IP P A d d ress S eq u en ces

The S IPP unicast address form at shown in the previous section also applies to the case where a

S IPP address is conveyed as an address sequence ra th er th an a single address. This is called an

extended address. T h a t is, the high-order field is the provider identifier, followed by the subscriber

identifier, followed in tu rn by subnet identifier and host identifier. The difference, of course, is

th a t w ith an extended address, these fields (and possibly additional fields, depending on how the

in ternet grows) are spread over m ultiple 64-bit addresses.

There are two restrictions th a t apply when an extended address is used. F irst, a t least the high-

order and low-order address of the extended address should by itself be globally unique. The

high-order address m ust be unique so th a t any router, no m a tte r where it is in the hierarchy, can

route a packet up to the top of the hierarchy w ithout confusing it w ith local destinations. The

low-order address m ust be unique because it uniquely identifies the host (or host group) among

all hosts.

Actually, it seems highly unlikely th a t the SIPP address would need to be extended beyond two

addresses (unless, perhaps, som ebody w anted to encode an NSAP address in a S IPP address

sequence). S trictly speaking, it is probably not necessary, in the case of greater-than-tw o address

sequences, to make the middle addresses globally unique (just as SPip RSEs are not globally

unique). Because of the unlikelihood of greater-than-tw o address sequences, we do not consider

the pros and cons of unique middle addresses.

The second restriction is th a t a single hierarchy field w ithin the extended address (for instance,

the Subscriber ID field) m ust not cross a 64-bit boundary. This is because the S IPP forwarding

88

engine operates on only one address a t a time.

8.2.5 S IP P Header Layout

The header layout for S IPP is as follows:

8 bits 8 bits 8 bits 8 bits

Ver Flow

Payload Length Payload Type Hop Limit

Source Address

Dest Address

Note th a t this header is the same as the in itial p a rt of the SPip header. The Payload Type is

used to identify the subsequent header, which can be a S IPP option or a different protocol. If

the Payload Type indicates S IPP Source Route®, then the subsequent Source Route header is

form atted as follows:

8 bits

Payload Type

8 bits

Num Addrs

8 bits

Next Addr

8 bits

Reserved

Reserved

Addr[0]

A ddr[l]

A ddr[Num A ddrs - 1]

8.3 C L N P

The (routing and addressing portion of the) CLNP header has the following form at [55, 64]:

8 bits

fixe

variable

d

8 bits variable

op

variable

iional

variable

SA Length Source Addr DA Length Dest A ddr QoS Fields Source R oute

Source and Dest A ddrs serve the same role as those of S IP P — th a t is, they are locators. In CLNP,

however, they are variable length (thus the SA Length and DA Length fields).

* C alled a R ou tin g H eader in the SIPP specification

89

M echanistically, the optional Source Route is handled similarly to th a t of SIPP, the m ain difference

being th a t SIPP swaps the active address in and out of the Dest A ddr field (as w ith IP), while

CLNP does not. However, CLNP does not have the enhanced rules for handling the source route

th a t SIPP has (reversing and using as an address sequence). Thus, CLNP is lim ited in its routing

and addressing capabilities com pared to S IPP (C hapter 9).

CLNP also has a Type-of-Service (ToS) Field which is intended to influence the route taken, and

is thus a pa th modifier. (In CLNP, however, the field is called the Quality-of-Service (QoS) Field.

To avoid confusion, we use the term QoS Field when discussing CLNP, and use the term ToS

Field otherwise.) Some of the QoS Field encodings, however, are not specified in the base CLNP

specification, and so can be adopted to different uses. (See Section 9.4.1 for m ore details on this

use of QoS Field.) One of its encodings is specified in the base specification. It specifies preferences

for sequencing, tran sit delay, cost, and error probability.

8.3.1 C L N P A ddress A ssignm ent

The address defined for use with CLNP is the NSAP (Network Service Access P oin t) address [54].

Like the S IP P address, the NSAP address is bitwise left-to-right maskable. W hereas SIPP and

SPip addresses are extensible by virtue of chaining m ultiple fixed-size addresses in a source-route

mechanism , NSAP addresses are by them selves variable length. An NSAP address can be up to

20 bytes in length, in increm ents of 1 byte.

The high-order portion of the NSAP address defines the addressing au tho rity for the rem ainder

of the address, bu t does not contain any hierarchical topology information.® T he au th o rity thus

defined determ ines how to further assign the address.

For instance, the first byte of the NSAP address is the A uthority and Form at Identifier (AFI).

An AFI value of 47 indicates th a t the subsequent assignm ent au tho rity is the ISO In ternational

Code D esignator (ICD) [52]. The subsequent two bytes is the In itial Dom ain Identifier (IDI).

An IDI value of 0005 indicates the US Governm ent. The US G overnm ent, th rough the auspices

of GO SIP (G overnm ent OSI Profile), has au tho rity over the assignm ent of the rem ainder of the

NSAP address, the Domain Specific P a rt (DSP). GO SIP defines the com plete NSAP address

as [110]:

1 byte 2 1 3 2 2 2 6 1

AFI IDI Domain Specific P a r t (DSP)

47 0005 DFI AA Rsvd RD Area ID Sel

W here D FI = DSP Form at Identifier, AA = A dm inistrative A uthority , Rsvd = Reserved, RD

= R outing Domain Identifier, A rea = A rea Identifier, ID = System Identifier, and Sel = NSAP

Selector.

® Strictly speaking, the high-order part of the SIP P and S P ip addresses also define an ad d ressin g authority, but

the prim ary purpose is to identify the top part of the topolog ica l hierarchy.

90

The D FI is essentially a type code. The AA is a top-level assignm ent by the G O SIP num bering

au thority . The RD is a routing dom ain w ithin the AA. The A rea is defined by the IS-IS routing

algorithm [56] as the higher of two hierarchical levels w ithin an RD. The ID identifies a host, and

is defined by IS-IS as the lower of the two hierarchical levels. The ID can be b u t is not constrained

to be an IEEE-802 address. The Sel indicates which higher layer protocol the packet is destined

for.

T here are also A FI values defined for group addresses [57]. Specifically, every A FI for an individual

address has a corresponding A FI indicating a group address. Note th a t group NSAPs do not have

a scope field.

8.3.2 C L N P H eader Layout

T he CLN P header has the following form at [55]:

Field Bytes

Network Layer Protocol Identifier 1

Length Indicator 2

V ersion/Protocol Id Extension 3

Lifetime 4

Type 5

Segment Length 6,7

Checksum 8,9

D estination A ddress Length Indicator 10

D estination Address 11

m - 1

Source Address Length Indicator m

Source Address m 4- 1

n - 1

D ata U nit Identifier n, n 4- 1

Segm ent Offset n -f 2, n -f

T otal Length n 4- 4, n 4-

The options, if any, follow this.

91

C hapter 9

R o u tin g and A d d ressin g

C ap ab ilities o f SP ip , S IP P , and

C L N P

This section describes how SPip, SIPP, and CLNP achieves (or does not achieve) each of the

routing and addressing capabilities listed in Section 7.2. In so doing, it fu rther specifies the

operation of the protocols.

In all of the examples, the following conventions apply. Addresses (or RSEs) in a sequence of

addresses are separated by a colon (': ') . Hierarchical levels w ithin an address are separated by

a dot (‘.’). If the address in a sequence is an SPip RSE, then the norm al form RSE is no tated

as ‘xY ’, where x is the Level (numeric) and Y is the ID (alphabetic). The reverse-path form is

no ta ted as ‘rxY ’ (where r is not a variable, ju s t ‘r ’). An address w ritten as x.y.O ... means an

address w ith prefix x.y followed by one or more hierarchical levels of value 0. An address w ritten

as x .y .* ... m eans as address w ith prefix x.y followed by one or more hierarchical levels whose

values are wildcarded. T h a t is, it is irrelevant (for instance, to a rou ter) w hat the values are.

9.1 B ig E n o u g h H ierarch ica l U n ica s t A d d r e ss in g

H ierarchical unicast addressing is of course the most im p o rtan t capability of an internetw ork

protocol. W ithou t it, an in ternet could not grow to global proportions.

Note th a t we have explicitly s ta ted th a t hierarchical unicast addresses m ust be “big enough” . By

this we mean big enough to handle all fu ture in ternet grow th. We sta te this explicitly because a

num ber of in ternet protocols have in the past underestim ated the required address size, not the

least of these being IP. T hus we are here particu larly sensitive to the requirem ent th a t the address

92

Subscriber W

Backbone B

Backbone C

Subscriber U
Router M

Backbone D

Subscriber X

?i\Subnet L

Subnet I

XXSt Zyost H
Subnet J

Subscriber V

Subnet K

Subscriber S

Figure 9.1: Exam ple Topology

can handle all fu ture in ternet growth.

The examples in this section are based on the topology of Figure 9.1. Figure 9.1 shows only the

detail required for the examples. For instance, it is assum ed th a t rou ter c is connected to a router

in subscriber netw ork T , even though the router in subscriber network T is not shown.

This section describes two different hierarchical unicast addressing scenarios, one with classical

forw arding inform ation and one w ith additional “hole-punching” forw arding inform ation (see Sec­

tion 3.1.2).

C lassica l F orw ard ing In fo rm a tio n

W ith classical forwarding inform ation, each router knows how to forward to 1) its im m ediate

paren ts in the addressing hierarchy (up), 2) all peers in the addressing hierarchy th a t share a

paren t (across), and 3) its im m ediate children in the addressing hierarchy (down).

Consider rou ter c of Figure 9.1. It is in backbone B, and therefore a t the top of the hierarchy. Since

93

it is a t the top of the hierarchy, it has no paren t in the hierarchy, and therefore no up forwarding

inform ation. At the top level of the hierarchy, router c m aintains (across) forw arding inform ation

abou t all other backbones. Thus, router c has forwarding inform ation for backbones C and D and

all other backbones (not shown). R outer c also m aintains (down) forw arding inform ation about

the subscriber networks a ttached to backbone B, nam ely subscriber networks S, T , and W.

A d d itio n a l (N o n -C la ss ic a l) F orw ard in g In fo rm a tio n

Again consider router c of Figure 9.1. Assume it has all of the forw arding inform ation described

above for classical forw arding inform ation, plus the following additional forwarding inform ation.

1. Inform ation abou t some of backbone C ’s subscribers. Note th a t backbone B is connected to

backbone C in two places. Assume th a t when backbone B is sending packets to backbone

C, it wishes to distinguish between these two connection points based on the destination

subscriber network. Specifically, it wishes to send packets destined for subscriber V via

the link between rou ter c and backbone C, and to send packets destined for subscriber

U via the link between router d and backbone C. T hus, the routers in backbone B have

explicit forwarding inform ation for subscribers V and U. Assume further th a t there are

other subscribers in backbone C, such as subscriber X, for which the entry po in t does not

m atte r, and so no forwarding inform ation is known by routers in backbone B.

2. Inform ation about some of subscriber S’s subnets. Note th a t subscriber network S has two

connection points with backbone B, one a t rou ter b and one a t rou ter c. Assume th a t

backbone B wishes to send packets to subnet I via rou ter b, and packets to subnet J via

rou ter c. Thus, routers in backbone B m ust have forw arding inform ation for subnets I and

J in subscriber network S. Assume fu rther th a t there are other subnets in backbone C, such

as subnet K, for which the entry po in t does not m a tte r, and so no forw arding inform ation

is known by routers in backbone B.

9.1.1 C L N P w ith Classical Forwarding Inform ation

L et’s focus for the m om ent on the forw arding inform ation in rou ter c. From router f, it receives

a routing advertisem ent for backbone C of C .* T h a t is, the routing advertisem ent shows th a t

any NSAP address w ith prefix C (C in the high-order field) followed by anyth ing (w ildcard) should

be forwarded to router f. The ‘C ’ of prefix C is some num erical value th a t is unique am ong all

providers^. Likewise, rou ter c receives the following advertisem ents from the following neighbors:

^The num erical value for C will also contain som e address assignm ent au th ority in form ation , due to the m eth od

by w hich N S A P addresses are assigned. For the purposes o f routing, how ever, the assignm ent authority inform ation

con caten ated w ith provider in form ation am ounts to a single field.

94

From A dvertisem ent

rou ter f C .+ ...

rou ter b D .* ...

rou ter d B .W .+ ...

rou ter a B .S .* ...

subscriber T B .T .* ...

Note th a t the above description of routing inform ation received by rou ter c reads like a distance-

vector routing algorithm , whereby routers tell each o ther how far they are from various destina­

tions, and routers pick the rou ter th a t advertised the shortest distance to a destina tion as the

next hop on the p a th to the destination. We are, however, no t presupposing any specific routing

algorithm . A link-state scheme would result in the same forw arding inform ation being gathered

and calculated by router c (see [36] for a description of the two routing algorithm styles).

From the routing inform ation gathered, router c builds a corresponding forw arding table:

Forw arding Table for rou ter c

D estination Next Hop

B .W .* ... router d

B .S .* ... router a

B .T .* ... subscriber T

C .* ... router f

D .* ... router b

* . . . (default) Error

Conceptually, this forw arding table works as follows. W hen a packet arrives, the destination

address is com pared against each of the addresses in the forw arding table in sequence. The

destination address is said to m atch the forwarding table address if all b its except th e w ildcarded

bits m atch. If the two addresses m atch, then the forw arding inform ation for th a t en try (outgoing

interface and link address) is used to forward the packet. Note th a t the last en try m atches

all addresses. This is called the default entry, and is where packets are rou ted if no m atches

occur. Since rou ter c is a t the top of the hierarchy, it has no default route per se. Thus, if no

m atch otherwise occurs, the default entry indicates an error. Note th a t this forw arding tab le is a

simplified version of the more general forwarding table lookup algorithm described in Section 9.1.2.

Forw arding tables for routers f, h, and i are shown in Table 9.1. R outer f ’s forw arding table is

sim ilar in content to th a t of router c (except of course th a t it is from rou ter f ’s perspective, not

rou ter c’s). R outer i ’s forwarding table is very simple. It has local forw arding inform ation (for

host Z), bu t otherwise defaults packets to router h. T h a t is, all packets th a t are no t known to be

local are sim ply routed to the backbone provider network.

Now consider a packet from host Z in subscriber network V to host H in subscriber netw ork S.

Assume th a t the address of host H is B .S.J.H . This is a four-level hierarchy consisting of backbone.

95

Table 9.1: Forwarding Tables for Classical Unicast CLNP Example

Forwarding Table for rou ter f

D estination Next Hop

C .U .* ... rou ter j

C .V .* ... rou ter h

C .X .* ... rou ter j

B .* ... rou ter c

D .+ ... rou ter c

* . . . (default) E rror

Forwarding Table for rou ter h

D estination Next Hop

C .U .* ... router f

C .V .* ... rou ter i

C .X .* ... rou ter f

B .* ... rou ter f

D .* ... rou ter f

* . . . (default) Error

Forwarding Table for rou ter i

D estination Next Hop

C.V.L.Z host Z

* .. . (default) router h

subscriber, subnet, and host. An actual NSAP address for host H m ight be:

2f00058000065e00000249005d08002001402E01,

or more readably:

A FI IDI DFI AA Rsvd RD Area

2f 0005 80 00065e 0000 0249 005d

ID Sel

08002001402E 01

T his NSAP address comes from the USA GO SIP definition (see Section 8.3.1). The AA value of

00065e identifies backbone B, the RD value of 0249 identifies subscriber S, the A rea value of 005d

identifies subnet J, and the ID value of 08002001402E identifies host H.

Assume th a t the address of host Z is C.V.L.Z (backbone C, subscriber V, subnet L, and host Z).

Host Z forms a packet w ith source address C.V.L.Z and destination address B .S.J.H . Host Z sends

th is packet to router i (for instance, because rou ter i is host Z’s default router on the local LAN).

R outer i com pares the destination address B .S.J.H against the entries in its forwarding table, and

96

finds no explicit m atch. It therefore m atches on the default entry and sends the packet to router

h. R outer h m atches B .S.J.H against en try B .* .. . , and forw ards the packet to router f, which

makes a similar m atch in its forwarding table, and forwards the packet to rou ter c.

Up until this point, the routers have effectively only considered the high-order p a rt of the address

(backbone B) in routing the packet. Thus, the packet is being routed tow ards backbone B. R outer

c, however, is in backbone B, so it considers more of the packet to make its forw arding decision.

Specifically, rou ter c m atches B.S.J.H against en try B .S .* .. . , and the packet is therefore now

being rou ted to subscriber S (as identified by the prefix B .S .* . . .) . W hen rou ter a receives the

packet, it m atches in its forw arding table (not shown, bu t sim ilar in form to rou ter i’s) against

the full host address (B .S .J.H), and forwards the packet to host H.

W hen host H wishes to re tu rn a packet to host V, it sim ply reverses the positions of the source

and destination address fields, and sends the packet to router a, which defaults it to rou ter c, etc.

9.1.2 C L N P w ith A dditional (N on-C lassical) Forwarding Inform ation

Now consider the case where routers in backbone B have the additional forw arding inform ation

described a t the beginning of this section—th a t is, where routers in backbone B have explicit

entries for subscriber networks U and V, and for subnets I and J , bu t not for subscriber X or

subnet K. W ith this additional inform ation, router c ’s forw arding table has the following entries:

Forwarding Table for router c

D estination Next Hop

B .S .I .* ... rou ter b

B .S .J .* ... rou ter a

B .W .* ... rou ter d

B .S .* ... router a

B .T .* ... subscriber T

C .U .* ... router d

C .V .* ... router f

C .* ... rou ter f

D .* ... router b

* . . . (default) Error

T his forwarding table shows the general form of forwarding w ith CLN P— th a t is, besi-match with

default forwarding. The best-m atch comes from the fact th a t m ultiple entries in the forwarding

table can m atch a given address. For instance, address B.S.I.Y m atches on the first (B .S .I.* ...)

and fourth (B .S .* ...) entries in router c’s forwarding table. However, the best m atch is the one

th a t should be used, where the best m atch is the one th a t m atches on the longest prefix. In this

case, B.S.I.Y should m atch on the first en try ra ther than the fourth entry.

97

T he address B.S.K.Y (a host in subnet K), on the o ther hand, would not m atch on the first

(B .S .I.* ...) or second (B .S .J .* ...) entries, bu t ra ther would m atch on the fourth (B .S .* ...) entry.

Indeed, it is the fact th a t there are some subnets in subscriber S for which backbone B has

no forwarding inform ation th a t results in the fourth entry. If the routers in backbone B had

forw arding inform ation for all of the subnets in subscriber S, then the fourth en try would not be

necessary, as all addresses in subscriber S would m atch on one of the (B .S .x .* .. .) entries.

The technique of m aintain ing forwarding inform ation abou t destinations in o ther clusters (th a t is,

m ore th an ju s t classical forwarding inform ation) is called hole-punching. M aintaining only p a rt

of the to ta l inform ation available in ano ther cluster is called partial hole-punching.

Conceptually, the way to achieve best-m atch is to com pare the packet address against the entries

in order of longest prefix first. Since a serial search is no t fast, software [65] or hardw are [78, 70]

search techniques are applied to do a faster best-m atch lookup.

9.1.3 S IP P w ith Classical Forwarding Inform ation

We are in terested in two cases— one where global hierarchical unicast addresses are encoded in a

single S IPP address, and one where they are encoded in an address sequence.

S in g le A d d ress

The former case is identical to the CLNP case described above. T h a t is, the forw arding tables and

packet forwarding scenario given in Section 9.1.1 apply exactly to the single-address S IPP case.

The only difference is in the size of the address. CLNP addresses can be expanded to up to 20

bytes, whereas a SIPP address is 8 bytes. Thus, CLN P addresses can handle any im aginable

netw ork growth, whereas it is easy to imagine 8 bytes eventually being inadequate^.

An exam ple encoding of address B .S.J.H in SIPP is

0000034e30417058

where the first 8 bits are reserved as 00, the next 24 bits are the backbone identifier (00034e), the

next 10 bits is the subscriber identifier (c l, bu t appearing in the above address shifted left two, so

304), the next 10 bits is the subnet identifier (17), and the last 12 b its is the host identifier (058).

Because the single-address S IPP case is identical to the CLN P case, there is no need to discuss it

fu rther here.

^T his is not to say that 8 b y tes definitely are inadequate. W ith careful m anagem ent of the address space, w hich

in itse lf exacts a certain cost, an 8 b yte address space can handle a netw ork w hose size, for in sta n ce , w ell exceeds

the global telephone netw ork.

98

E x te n d e d A d d ress

Since an extended address of greater th an 128 bits is unlikely to ever be necessary, we assume

here th a t the extended address is 128 bits (th a t is, an address sequence of two SIPP addresses).

There are three ways th a t the four fields of the hierarchical address could be assigned w ithin a

S IPP extended address. They are; B :S.J.H , B .S:J.H , and B .S.J:H , where the colon indicates the

boundary between the two SIPP addresses.

O f the three choices, only the la tte r two make much sense. T he first— placing the address boundary

betw een the backbone and subscriber identifiers, makes little sense because it does not evenly

d istribu te the bits of the address well.

The last choice—placing the address boundary between the subnet and host IDs, makes some

sense in th a t it allows the host ID to be com pletely location-independent, as is S P ip’s EID. The

last choice m ay indeed be necessary in the case where 1) serverless auto-configuration of host IDs

is required, and 2) the in ternet outgrows 48-bit host IDs. (This would require a new SIPP address

definition, for instance, one w ith a 4-bit pream ble followed by a 60bit host ID .)

The middle choice— placing the address boundary between the subscriber and subnet IDs, seems

the m ost logical choice. This boundary represents a clear adm inistra tive boundary— th a t between

the provider and the subscriber. Thus, the subscriber has control over the lower 64-bit address,

and the provider has control over the upper 64-bit address. I t also allows for serverless au to ­

configuration using the local-use SIPP address type in the lower 64-bits (see Section 9.5). Thus,

we assum e addresses of the form B.S:J.H in this section.

Given addresses of this form, and the classical forw arding inform ation described above, router c

would have the following forwarding table:

Forwarding Table for rou ter c

D estination Next Hop

B.W router d

B.S router a

B .T subscriber T

C .* ... router f

D .* ... rou ter b

* . . . (default) Error

A ctually, this table is v irtually identical for the analogous CLNP forw arding table (or single­

address S IPP forwarding table). The only difference is th a t the first th ree entries indicate a full

address ra ther th an showing some wildcard bits. T his is because the backbone and subscriber IDs

together occupy an entire address.

The forw arding tables for routers f and h sim ilarly reflect those of the CLN P example, and are not

repeated here. The forwarding table for routers a or i, however, do have an im po rtan t difference

99

from that for the CLNP case, and so the forwarding table for router a is given here;

Forwarding Table for router a

D estination Next Hop

J.H host H

B.S self

I .+ ... subnet I

! { . * . . . subnet K

* .. . (default) router h

The first th ing to notice abou t this forw arding table is th a t the second en try identifies router a ’s

own subscriber network (B.S), and th a t the next hop inform ation for th is en try is “self” . This

indicates th a t rou ter a should advance the source route. For instance, consider the case where

rou ter a receives a packet destined for B.S;J.H , w ith the address B.S in the Dest A ddr field, and

the address J.H as the Next A ddr in the source route. R outer a looks up B.S in the forwarding

table, and m atches on the second entry. T his indicates self, so rou ter a advances the source route

(puts J.H in the Dest A ddr field, puts B.S where J.H was in the source route, and increm ents

the Next A ddr field), and then looks up J.H . This m atches on the first entry, and the packet is

forw arded to host H.

The second thing to notice about this forw arding table is th a t the th ird and fourth entries have

the subnet ID as the m ost significant inform ation in the address, and th a t the rest of the address

is w ildcarded. Since the subnet ID field alone is not globally unique, another rou ter in another

subscriber network could have identical D estination inform ation in its forw arding tab le entries,

bu t which point to different destinations.

For instance, assum e th a t the local-use S IPP address is used for the lower address of the extended

address. Assume further th a t the 12-bit Subnet ID for subnet I is value 02e. T his results in a

forw arding table D estination entry in rou ter a of 602e*.. . , where 6 is the 4-bit pream ble indicating

th a t the address is a local-use address, 02e is the subnet ID, and the rest of the address is

w ildcarded. Assume, however, th a t subnet L in subscriber V also uses the local-use form at, and

also has a subnet ID of 02e. The forw arding table D estination en try for some rou ter in subscriber

netw ork V would be the same.

This does not result in any particu lar problem as long as the forwarding contexts are kept distinct.

T h a t is, as long as router a does not need to m aintain any subnet-level forwarding inform ation

ab o u t subnets in another subscriber netw ork, the forwarding table en try is unam biguous.

9.1.4 S IP P w ith A dditional (N on-C lassical) Forwarding Inform ation

W hen using single addresses, S IPP works identically to the CLN P case (Section 9.1.2).

D epending on the situation, S IPP w ith extended addresses can have some problem s w ith hole-

100

punching. This occurs when hole-punching is across the 64-bit address boundary

For instance, consider the forwarding table of router c if we naively construct it based on th a t of

the CLNP example, bu t taking extended addresses into account.

Forw arding Table for router c

D estination Next Hop

I .* .. . rou ter b

J .+ .. . router a

B.W router d

B.S router a

B .T subscriber T

C.U router d

C.V router f

C .* ... router f

D .* ... router b

* . . . (default) Error

S trictly speaking, the forwarding table of router c works correctly.^ If, however, rou ter c had

forw arding table entries for subnets in another subscriber netw ork, then the D estination fields for

those entries could be identical w ith those for the subnets in subscriber network S (the first two

entries), and routing would fail. (In practice, there would be subnets w ithin backbone B, for use

by the operators of backbone B. Thus, these subnet IDs would appear in the forw arding tables

and would be ambiguous with respect to subscriber S’s subnet IDs.)

T hus, in general, the above forwarding table could not be generated. The first two entries should

not appear.

As m entioned in the previous section, this am biguity results from the facts th a t 1) the subnet IDs

appear a t the top of the (lower) address, and 2) the subnet IDs are not globally unique.

Note th a t the problem does not come up w ith the o ther hole-punching of rou ter c’s forw arding

tab le—namely, where rou ter c is m aintaining entries for subscribers of backbone C. These addresses

have the backbone ID a t the top (entries 3 through 7 in rou ter c ’s forw arding tab le). Since

backbone IDs are globally unique, the subscribers in different backbones are distinguishable.

^N ote th at the entries are in the sam e order as th a t of the corresponding C L N P forw arding table . A ccording

to th e b est-m a tch algorithm o f com paring against longest-prefix first, the en try order show n here is incorrect— the

I .* . . . and J .* . . . en tries should com e after the C.V entry. H owever, if th e num bering spaces for the lower and

upper addresses of the ex ten d ed address are separate, then no address will m a tch on b o th a lower and an upper

entry, so the ordering of lower versus upper addresses is irrelevant.

101

9.1.5 SP ip w ith Classical Forwarding Inform ation

Like CLNP and SIPP, SPip forwarding is best-m atch w ith default. W hereas we describe CLNP

and SIPP forw arding in term s of a single forwarding table w ith best-m atch sem antics, we describe

SPip forwarding as a tree of forwarding tables, each w ith single-match with default sem antics (the

default occurring if there is otherwise no m atch). This description style follows n a tu ra lly from the

SPip header form at, which presents addresses as a series of flat identifiers ra th e r th an as a single

(or small num ber of) hierarchical addresses.

In the following examples, backbone IDs are assigned a t level 1, subscriber IDs are assigned a t

level 9, and subnet IDs are assigned a t level 3. The host IDs are the EIDs, and so do not have a

level per se. (The level is unnecessary because EIDs are in a separate num ber space, w ith separate

forw arding tables, and so are never confused w ith RSE IDs.)

T he forwarding tables for classical routing inform ation are stra igh t forw ard to derive, and are

shown in Table 9.2.

102

Table 9.2: Forwarding Tables for Classical Uni­

cast SPip Example

R oot RSETable for router c

D estination Next Hop T -tag

9W router d V
98 router a y
9T subscriber T y
10 router f y
ID router b y
IB Root RSETable y

default Error

Root RSETable for router f

D estination Next Hop T -tag

9U router j y
9V router h y
9X router j y
IB router c y
ID router c y
10 Root RSETable y

default Error

Root RSETable for router h

D estination Next Hop T -tag

9U router f y
9V subscriber V y
9X router f y
IB router f y
ID router f y
10 Root RSETable y

default Error

R oot RSETable for router i

D estination Next Hop T -tag

9V Root RSETable y
3L M ain EID Table y

default rou ter h y

M ain EID Table for rou ter i

D estination Next Hop T -tag

Z host Z y
default A R P y

R oot RSETable for router a

D estination Next Hop T -tag

9S R oot RSETable y
31 subnet I y
3K subnet K y
3J M ain EIDTable y

default rou ter c y

Main EID Table for router a

D estination Next Hop T -tag

H host H y
default A R P y

103

There are several things to note about the forwarding tables in Table 9.2.

First, the title of each ro u te r’s forwarding table is changed from ju s t “Forwarding Table” to “Root

R SE T able” or “M ain EID Table” . Since SPip is modeled as a tree of forw arding tables, the different

forw arding tables require different labels. If an RSE is active (as opposed to the EID), the router

always accesses the Root RSETable first. Note also th a t routers a and i have an EID Table as well

as a R oot RSETable. This is because bo th routers a and i have host-level forw arding inform ation.

Second, the D estination entries in the forw arding tables have no w ildcard b its. This reflects the

fact th a t the individual forwarding tables are single-m atch ra th er th an best-m atch .

T hird , there is an additional column, the T -tag column. T -tag stands for transm itR S E tag (see

Section 8.1.2. It has an if the RSE should be tagged for setting upon transm it, and is blank

otherwise.

Fourth , some entries indicate a subnet or a subscriber netw ork in the Next Hop field (for instance,

the th ird entry of router c’s Root R SETable). By this we m ean to indicate a rou ter w ithin the

subnet or subscriber network. Since Figure 9.1 does not actually show those routers, we indicate

ju s t subnet or subscriber network instead.

Finally, neither the Last RSE flag nor the P a th Modifier appears in these tables. The P a th

Modifier does not appear because all of the P a th Modifier values for the un icast examples are

assum ed to be the sam e— they indicate norm al form RSEs and are therefore 0.

We are not showing the Last RSE flag ju s t to keep things simple. The entries th a t point to other

RSETables would do so only when the Last RSE flag is not set. If the effect of the Last RSE flag

were shown in the tables, then each of these entries m ight have a com panion en try pointing to the

M ain EID Table (or a default entry based on the Last RSE flag not being set pointing to the Main

EID Table). The entries th a t point to EIDTables would only do so if the Last RSE flag is set. If

the effect of the Last RSE flag were shown in the tables, then each of these entries m ight have a

com panion entry pointing to an RSETable. Examples showing the use of the Last RSE flag are

given in section 9.8.3.

Consider a packet sent from host Z to host H. Host Z form ats the packet as follows:

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSE5 RSE6

Z H 4 3L 9V 1C IB 9S 3J

The (globally unique) host IDs are placed in the Source and Dest EID fields (SEID and DEID).

The subnet, subscriber, and backbone IDs of the source are placed in the first three RSEs of the

route sequence. The backbone, subscriber, and subnet IDs of the destination follow those. The

active RSE is set to the backbone of the destination (the 4 th RSE, IB). It is shown in bold for

clarity.

This packet is transm itted to rou ter i, which indexes its R oot RSETable w ith the active RSE, IB.

104

This m atches nothing in the R oot RSETable, so the default en try is chosen, which indicates th a t

the packet should be forwarded to router h. This entry is tagged (the T -tag is set) to show th a t

the Active RSE should be set upon transm ission to point to the RSE th a t was used to access the

table. Because this RSE is the same as the one active when the packet was received, the packet

is tran sm itted unchanged (except perhaps for the hop count, which we do not consider here) to

rou ter h.

R outer h accesses its R oot RSETable w ith value IB , m atching on the 4 th entry. T his entry

indicates th a t the packet should be forwarded to rou ter f. As w ith router i, only one RSE was

exam ined during forwarding, so the Active RSE is again no t changed.

R outer f accesses its Root RSETable, w ith similar results, and forwards the packet to router c.

Thus, rou ter c receives the packet as it was transm itted by host Z. In o ther words, the packet has

been so far routed “to backbone B” .

W hen rou ter c accesses its Root RSETable w ith IB , it gets a m atch on the 6th entry. T he Next

Hop field for this entry says “Root R SETable” . This indicates th a t the rou ter should advance to

the next RSE, and index the Root RSETable using it. Thus, rou ter c indexes its R oot RSETable

w ith value 9S. This also produces an exact m atch— the 2nd entry.

T his en try indicates th a t the packet should be forwarded to rou ter a. Its T -tag indicates th a t the

Active RSE should be set to point to the RSE used to access this en try— the 5th RSE— 9S. Thus,

rou ter c transm its the following packet to router a;

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSE5 RSE6

Z H 5 3L 9V 1C IB 9S 3J

In this packet, the Active RSE field has been changed from 4 to 5, so th a t now the packet is being

forw arded to subscriber S ra ther than to backbone B. In o ther words, rou ter c had recognized in

its first access to the R oot RSETable th a t the interm ediate destination, backbone B, had been

reached, and so now forwarding m ust take place a t the next level of g ranularity— the subscriber

level.

W hen router a receives the above packet, it accesses its Root RSETable w ith value 9S. This

m atches exactly w ith the first entry, which instructs the router to access the R oot RSETable

again w ith the subsequent RSE, 3J. This access m atches the 4 th entry, which in structs rou ter a

to access the M ain EIDTable.

T his final access, made using the Dest EID field, produces an exact m atch on host H ’s EID, and

the packet is forw arded to host H. Since the en try in the M ain EIDTable has the T -tag set, the

Active RSE field is set to 0 upon transm ission, which indicates th a t forwarding should now take

place on Dest EID ra ther than on an RSE.

Note th a t the default entry for the EID Table says “A R P ” . This is an indication th a t the router

should A R P for the host LAN address [84]. If an explicit host entry exists in the EIDTable,

105

it indicates th a t either 1) host H was previously A R P ’d for and the answer was cached in the

EID Table, or 2) host H advertised itself w ith an ES-IS style host hello packet, and rou ter a stored

the discovered inform ation in its EIDTable. Thus, the EIDTable can substitu te for the trad itional

IP A R P table.

To re tu rn a packet to host Z, host H follows the route sequence reversal rules given in Section 8.1.3.

T h a t is, host H takes the RSEs indicated by the Num Source RSE field from the beginning of

the route sequence (3L:9V:1C), reverses it (1C:9V:3L), and prepends its own address sequence

(3J:9S:1B:1C:9V:3L). Host H also swaps Source and Dest EIDs, and sets the Active RSE field to

point to the RSE after its own source address sequence. Thus, the packet transm itted by host H

is:

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSES RSE6

H Z 4 3J 9S IB 1C 9V 3L

9.1.6 SP ip w ith A dditional (N on-C lassical) Forwarding Inform ation

W ith the additional forwarding inform ation described in Section 9.1 rou ter c has the forw arding

tables shown in Table 9.3.

Because SPip is described in term s of nested forwarding tables, the forw arding tables of Table 9.3

are unwieldy to read. Figure 9.2 gives the same inform ation pictorially. The boxes of Figure 9.2

indicate forwarding tables. The arrows indicate forwarding table entries. The arrows are shown

to go through w hat is the D estination column of the forwarding table, and term inate either a t

another forw arding table, or a t the w hat is the Next Hop column of the forw arding table. Entries

w ith active T -tags are shown w ith a dot a t the beginning of the arrow. Subsequent com plicated

examples of SPip forwarding present the tables only pictorially.

To see how the forw arding tables for the hole-punching case works, le t’s pick up the previous

example a t the point where the packet from host Z to host H arrives a t rou ter c from rou ter f.

The packet a t th a t point contains the following header:

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSES RSE6

Z H 4 3L 9V 1C IB 9S 3J

R outer c accesses its R oot RSETable w ith RSE IB (the 6th entry in Table 9.3, or the arrow going

off to the right from the Root RSETable of Figure 9.2. T his indicates th a t router c access the

R oot RSETable again, w ith RSE 9S, the subsequent RSE.

The en try for 9S instructs the forwarding algorithm to access RSETable 1 w ith the subsequent

RSE, 3J. This access m atches on the 3J entry, indicating th a t the packet is to be forw arded to

router a. Note th a t the entry in RSETable 1 for 3J does not have the T -tag set. It was set,

however, for the previous access (the one on the Root RSETable w ith 9S). Thus, the Active RSE

field is modified to point to the 5th RSE, 9S. More to the point, the Active RSE field is set to

106

Table 9.3: Router c’s Forwarding Tables for Non-classical Unicast SPip Example

Root RSETable for router c

D estination Next Hop T -tag

9W router d V
9S RSETable 1 y
9T subscriber T \ /
1C RSETable 2 V
ID router b V
IB Root RSETable V

default Error

RSETable 1 for router c

D estination Next Hop T -tag

31 router b

3J router a

default router a

RSETable 2 for router c

D estination Next Hop T -tag

9U router d

9V router f

default router f

point to 9S because the subscriber network identifier level (level 9) is the level a t which the packet

is now being unam biguously forwarded.

To see this more clearly, consider a packet from host H to a host Y in subscriber U (w ith address

1C:9U:3M) (not shown in Figure 9.1). The packet arriving a t router c from rou ter a is:

SEID DEID Active RSE R SE l RSE2 RSE3 RSE4 RSE5 RSE6

H Y 4 3J 9S IB 1C 9U 3M

Note th a t this packet is unchanged from w hat was tran sm itted by host H, because the target

destination is still (the top-level) backbone C.

R outer c accesses its Root RSETable w ith 1C, retrieving an instruction to access RSETable 2.

This is accessed with the subsequent RSE, 9U. T h a t access produces the nex t hop, which is router

d. The Active RSE field stays a t the 4 th RSE, IC , because this was the last tagged entry.

Note what would have happened if the Active RSE in the packet tran sm itted from router c had

107

Root RSETable 1 - B

9-T9-W 1-C

default- D

d

Error

RSET able RSETable 2

default 9 - U default

9 - V

b
fa

Figure 9.2: R outer c’s Forwarding Tables for Non-classical Unicast SPip Exam ple

been 9U— the RSE th a t ultim ately gave router c its forwarding inform ation. R outer d would in

th a t case have received the following packet:

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSE5 RSE6

H Y 5 3J 9S IB 1C 9U 3M

It would have accessed its Root RSETable w ith 9U. D epending on the actual num erical value for

U, however, this packet may have m atched exactly w ith one of the subscriber IDs for backbone

B ’s own network. For instance, the num erical values for bo th W and U m ight be, say, 17. The

packet in th is case would be incorrectly routed to subscriber W. By leaving the Active RSE to be

1C, rou ter d is able to know the appropria te context for the subscriber ID — th a t is, a subscriber

a ttached to backbone C.

The technique of looking ahead in the route sequence w ithout advancing the Active RSE poin ter is

different from SIPP (or IP or CLN P) route sequence handling, where the active address is always

the last one exam ined. This looking forward is called peek-ahead. Peek-ahead is necessary in SPip

because each level of the hierarchy is one RSE, and m ultiple hierarchy levels m ust be exam ined to

do hole-punching. It is not necessary in CLNP, nor to a large ex ten t SIPP, because the sem antics

108

of best-match lookup on a hierarchical address allow hole-punching.

Note th a t all of the entries in rou ter c ’s R oot RSETable (Table 9.3) have the T -tag set, and

th a t none of the entries in router c ’s other RSETables have the T -tag set. Not also th a t by-and-

large the Root RSETable holds classical forwarding inform ation, and th a t the o ther RSETables

hold additional hole-punching forwarding inform ation. For instance, rou ter c ’s Root RSETable

has Next Hop inform ation for 9W, 9T, and ID , all classical forw arding inform ation. R outer c ’s

additional RSETables contain Next Hop inform ation for 31, 3J, 9U, and 9V, all hole-punching

forwarding inform ation.

The R oot RSETable is the only RSETable th a t is accessed w ithou t accum ulated context. Accesses

to other RSETables have some context (for instance, the context for rou ter c ’s RSETable 1 is

subscriber S, and for RSETable 2 is backbone C). Classical forw arding is unam biguous and does

not need context, whereas hole-punching forw arding inform ation can be am biguous and needs

context. T hus, classical forw arding inform ation by-and-large goes in the R oot RSETable, and

hole-punching inform ation does not.

There are two pieces of classical forwarding inform ation, however, where the Next Hop inform ation

does not appear in router c ’s Root RSETable. They are for 1C and 9S. This inform ation shows

up in the default entries of the two ex tra RSETables. T he forw arding inform ation for 9S appears

in the default en try for RSETable 1, and the forwarding inform ation for 1C appears in the default

en try for RSETable 2. Note th a t the entries in the Root RSETable for 9S and 1C poin t to

RSETable 1 and RSETable 2 respectively.

To see why this inform ation appears in the default entries, consider the case of a packet from Host

H to a host Q (not shown in Figure 9.1) in subscriber X arriving a t rou ter c:

SEID DEID Active RSE R SE l RSE2 RSE3 RSE4 RSE5 RSE6

H Q 4 3J 9S IB 1C 9X 3N

RSE 1C points router c to RSETable 2, bu t the next RSE, 9X, does not have a m atch in RSETable

2. This is because routers in backbone B do not care how packets are routed to subscriber X— both

entries points to backbone C are equally preferable. The default causes rou ter c to fall back on

the (classical) forwarding inform ation for 1C. In essence, rou ter c d ipped into RSETable 2 because

there m ight be more detailed forwarding inform ation, bu t discovered, by not m atching, th a t there

was not after all.

Note th a t in certain cases, it is possible to not include the com plete address sequence in a packet.

This is the case where two hosts are in close proxim ity to each other, for instance in the same

subnet or subscriber network.

For instance, consider a packet from host H to a host in subnet I (say, host F). Since they are

in the same subscriber network, there is no need to include RSEs encoding subscriber and above

inform ation. T hus, the packet from host H to host F can be fo rm atted as:

109

SEID DEID Active RSE R S E l RSE2

H F 2 3J 31

W hen rou ter a receives this packet, it indexes its R oot RSETable w ith 31, m atching on the second

entry, and forwards the packet to subnet I.

The problem w ith this optim ization is th a t it does not work in all cases. For instance, if router a

had hole-punching forwarding inform ation pertain ing to the interior of ano ther subscriber network,

then router a m ay not be able to distinguish between subnet level RSEs in its own subscriber

netw ork and another subscriber network. However, it is difficult for host H to know if rou ter a,

or some other router, has hole-punching forwarding inform ation, and thus needs more addressing

inform ation.

Therefore, this kind of optim ization is in general not a viable option.

9.1.7 D iscussion

All three protocols can do hierarchical unicast routing. All three protocols have effectively un­

lim ited address size, CLNP by virtue of its large single address, and SIPP and SPip by v irtue of

being able to string fixed-sized addresses together to create a large address space.

SPip has a slight lim itation in th a t it can only devote 19 bits (the size of the RSE ID field) to

identification at each hierarchy level. This allows for approxim ately 500,000 hierarchical clusters

w ithin a higher-level cluster. If a cluster has more than this m any sub-clusters, then it would have

to introduce another layer of hierarchy to handle the additional clusters.

All three protocols can handle bo th classical and hole-punching forwarding inform ation. The one

exception is with SIPP, when it is using extended addressing and when the hole-punching is across

an address boundary. This lim itation results from the fact th a t S IP P does not do peek-ahead when

it processes the source route.

The lim itation of SIPP not being able to hole-punch across an address boundary is not a serious

one. F irst, hole-punching is not so common. Second, it is possible to place the address boundary

where peek-ahead is m ost rare, for instance at the boundary betw een provider and subscriber.

Finally, if it is absolutely necessary for, say, a provider to be able to choose am ong m ultiple entry

points into a subscriber’s network based on the location of the destination , there are a t least two

ways to make it happen. F irst, the subnet num ber could be replicated in the low-order p a rt of the

higher address. The backbone routers could forward on the subnet num ber in the higher address,

and the subscriber routers could forward on the subnet num ber in the lower p a rt of the address.

Second, the subscriber could be given m ultiple subscriber num bers, one for each en try point.

B oth m ethods have the effect of pu ttin g intra-subscriber inform ation in the higher address, and

110

b o th m ethods require coordination between subscriber and provider. The form er m ethod is easier

for the subscriber, and the la tte r easier for the provider.

9.2 M u lt ica s t

This section covers all forms of m ulticast listed in Table 7.1— broadcast^ and m ulticast, shared-tree

and source-tree, scoped, well-known addresses, and two-phase.

In all the descriptions, we assume the following action /response. T h a t is, th a t the in itiating host

transm its a m ulticast, and th a t a receiving host be able to transm it a unicast packet back to the

transm itting host.

The descriptions for CLNP and SIPP are only rough outlines. D etailed descriptions of how to

handle m ulticast for trad itional packet form ats can be found in the lite ra tu re [27, 28, 29, 31].

9.2.1 C L N P

The m echanism for form atting a m ulticast packet in CLNP is similar to th a t of unicast. The

host learns of a group address through the norm al m eans (directory service or an IGM P-like

protocol [28] yet to be defined for CLNP). It pu ts the group address in the destination address

field, pu ts its own unicast address in the source address field, and transm its the packet.

There is no scope field in the NSAP group address (or any other place in the CLNP header).

There are two ways to achieve scoping in CLNP. One is to do w hat IP curren tly does, which is to

use the hop-count field (see Section 6.1.1). The o ther way is to assign separate group addresses

for each scoping.

The technique for forwarding a m ulticast packet in CLNP has not yet been defined, so we assume

here th a t it is done similarly to how it is described in Section 6.1, which is basically how Deering

specifies it in his PhD thesis [29] (some of which exists in IP today, and some of which does not).

In other words, the router examines the Dest A ddr, determ ines th a t it is m ulticast, and either

determ ines the tree links from this and forwards the packet(s), or determ ines th a t it m ust also

examine the Source A ddr, and uses the combined inform ation to determ ine the tree links. Thus,

CLNP can (or will be able to) handle all four com binations of b roadcast/ m ulticast and source-

tree / shared-tree.

If a host receiving the packet wishes to re tu rn a packet to the source host, it places the Source

A ddr of the received packet in the Dest A ddr field, places its own unicast hierarchical address in

the Source A ddr field, and transm its the packet.

* Since broadcast is a degenerate form of m ulticast, we do not consider it exp licitly , bu t in stea d assum e it works

if m ulticast works.

I l l

W ell-K n o w n M u ltic a st G roup A d d ressin g

Well-known group addresses can be assigned from the already defined NSAP group address space.

For well-known group addressing to be practical, however, an effective scoping m echanism is

required (Section 6.1.2). Hop count is an effective scoping m echanism where the scope is the local

LAN (hop count of 1). W here the desired scope is larger, hop-count does not provide enough

control over the recipients. Because CLNP does not have a scoping m echanism o ther th an hop-

count, C L N P’s capability to do well-known m ulticast is lim ited.

T w o -P h a se M u ltica st

The m echanism where by two-phase m ulticast could in theory be m ade to work is the CLN P loose

source route (LSR) option (called partia l source route in CLN P). T he reason we say in theory is

because there is a bug w ith C L N P ’s LSR m echanism th a t makes it effectively unusable. The bug

derives from the fact th a t the LSR m echanism is such th a t the active address of the source route

is in the LSR option ra ther than in the destination address field. In addition, the LSR option is

a “type 3” function [55], m eaning th a t it does not need to be supported in routers, and th a t a

rou ter not supporting it simply ignores it—the router does not discard the packet.

As a result, if there are some routers th a t do not support the LSR option (non-LSR routers) on

the path between the source and the active address, those packets will route on the address in

the destination address field ra ther th an on the active address. W ith unicast, th is can result in a

forwarding loop whereby the packet is routed by a non-LSR router to an LSR router, which then

routes it back to the non-LSR router th a t already handled it.

W ith two-phase m ulticast, the consequences of this bug can be really disastrous. The packet would

go as unicast initially (routed on the active address of the source route), then reach a non-LSR

router, which m ulticasts it. Some of the m ulticast replications reach LSR routers which forward

it unicast to more non-LSR routers, which m ulticast it further. If there is a loop, then the packet

can replicated each time it traverses the loop. Eventually the hop-count would cause the replicas

to be discarded, bu t only after generating potentially an enorm ous num ber of packets.

Even if this problem were fixed (for instance, by m aking im plem entation of the LSR option

m andatory), use of the LSR for two-phase m ulticast is generally difficult because, as w ith IP, the

notion of handling a route sequence is foreign to CLNP. Thus, none of the hooks th a t make its use

convenient, such as route sequences in directory service or in the A PI (A pplication Program m ing

Interface) are in place.

112

9.2.2 S IPP

Before being able to form at a SIPP m ulticast packet, a S IPP host m ust first determ ine the group

address. In particu lar, the host m ust determ ine the setting of the scope field. W hile the SIPP

specification defines a scope field in its group address, there is nothing yet in the specification th a t

indicates how the scope field should be set.

There are basically two approaches. In one, the scope can be tightly coupled w ith th e group ID,

resulting in 64-bit identifiers th a t are trea ted individually. T h a t is, group addresses w ith the same

group ID bu t different scope are learned individually, for instance via IG M P, and the host chooses

among them depending on the desired scope of the m ulticast. A lternatively, the scope can be

uncoupled from the group ID, so th a t the host considers the scope field to be separately settable.

In this case, the host would learn a single group ID, and then compose the full group address by

setting the scope field according to the desired scope.

We do not discuss the pros and cons of the two approaches here. We assume in w hat follows th a t

a SIPP host is able to obtain the appropriate group address.

S IPP m ulticast packets are form atted identically to S IPP unicast packets. In particu lar, the

destination “inform ation” can be encoded as an address sequence. This address sequence appears

anywhere a single group address would otherwise appear— in IGM P, SD, or DNS.

T he low-order address (and identifier) of the address sequence is the group address, and the higher

order addresses of the sequence, if present (for instance for two-phase) are unicast addresses. As

w ith unicast, the source address sequence of the S IPP host is placed a t the beginning of the route

sequence, and the destination address sequence is placed a t the end.

SIPP m ulticast packets are forwarded by routers similarly as described for CLN P above, taking

in to account parsing the extended source address as described in Section 8.2.3. T he only difference

is th a t the S IPP router m ust in terp re t the scope field. Thus, once a router has determ ined which

links a packet should potentially be forwarded over, it m ust elim inate zero or m ore because of

scoping.

It has not yet been defined w hether scoping in SIPP is source-independent or source-dependent

(see Section 6.1.1). If the former case, then the rou ter simply does not transm it the packet over

links whose defined scope values m atch th a t in the packet. In the la tte r case, the rou ter m ust

consider bo th the source address sequence and scope value to prune the outgoing link set.

If a host receiving the packet wishes to re tu rn a packet to the source host, it executes the reversing

rules given in Section 8.2.2.

113

W ell-K n o w n M u ltic a st

SIPP has reserved a portion of its group address space for well-known group addresses, and has

scoping. Thus, SIPP can do well-known m ulticast groups.

T w o -P h a se M u ltica st

SIPP can do two-phase m ulticast, bu t only in the case where the m ulticast phase is shared-tree.

W ith two-phase m ulticast, the destination address is an address sequence whereby the low-level

address is the group address, and the rem aining addresses is the unicast address sequence of the

system th a t will originate the m ulticast phase. If the unicast address sequence is a cluster address,

then the first cluster border rou ter th a t th a t packet reaches will originate the m u lticast phase (by

advancing the route sequence to the group address).

S IPP can do C BT-style two-phase m ulticast, where the m ulticast phase of the packet s ta rts when

the packet reaches any router on the core tree. However, care m ust be taken in the assignm ent

of the core address (the unicast address of the core). T h a t is, the core address m ust no t be the

one used by the core for its norm al unicast com m unications. This is because of the way the route

sequence is advanced in SIPP. T h a t is, a router only advances the route sequence if it believes

th a t it is the destination for the active address. If the norm al unicast address of the core were

used, then every router on the C B T tree would install th a t address as its own, an would therefore

receive unicast packets addressed to the core.

9.2.3 SPip

W ith SPip, every EID, including group EIDs, has associated w ith it zero or m ore address se­

quences. The address sequence is required only for two-phase m ulticast. O therw ise, there is no

address sequence.

Before a host can form at a m ulticast packet, it m ust set the scope field of the group EID. If

the EID has a scope field of 0, then the host m ust set the scope field to the desired value (see

Section 8.1.4). If, on the other hand, the host has m ultiple EIDs w ith identical group IDs but

different non-zero scope fields, then it chooses am ong them according to the desired scope.

To form a m ulticast packet, an SPip host initially does the same as it does for unicast. T h a t is,

the group EID is placed in the Dest EID field, the EID of the tran sm ittin g host is placed in the

Source EID field, and the address sequence of the transm itting host is placed a t the front of the

route sequence.

In addition to this, the host does one of the following:

1. If the group EID is associated w ith one or more address sequences, then one of the address

114

sequences is placed after the source address sequence exactly as w ith unicast.

2. O therwise, the host places its own address sequence, in reverse-path form, in to the routing

sequence after the source address sequence. The reverse-path form address sequence is placed

in order of highest-level RSE first (same order as the destination address sequence would

norm ally be placed). The Active RSE field is set to point a t the first reverse-path form RSE,

and the Num Source RSE field is set to point to the last norm al form RSE.

It w hat follows, we assume single-phase m ulticast. T h a t is, we assum e th a t there is no address

sequence associated w ith the group EID— case 2 above.

Consider the case of host H in Figure 9.1 transm itting a m ulticast packet w ith group address G l.

SEID DEID Active RSE R S E l RSE2 RSE3 RSE4 RSES RSE6

H G l 4 3J 9S IB r l B r9S r3J

Note th a t host H ’s norm al form address sequence occupies RSEs 1 th rough 3, and th a t host H’s

reverse-path form address sequence occupies RSEs 4 through 6.

As shown below, the purpose of the reverse-path form RSEs is for source-tree m ulticast. W ith

shared-tree m ulticast, they are not necessary. However, the host has no way of knowing (or, more

accurately, should not be required to know) if the packet will be tran sm itted on a source-tree or

a shared-tree.

The router, on the other hand, of course knows w hether the packet is being forw arded as source-

tree or shared-tree, and builds its forw arding tables accordingly.

S h ared -T ree M u ltica st

If the rou ter is operating exclusively in shared-tree mode, then it does not care abou t the reverse-

p a th form RSEs in the packet. It m ust look beyond them to the m ulticast EID.

T hus, a router w ith shared-tree m ulticast adds one entry to its Root RSETable. T h a t en try is the

r-defauH en try— th a t is, it is retrieved for any revere-path form RSE.

For instance, the Root RSETable for rou ter a for the classical rou ting inform ation case would be

the same as th a t given in Table 9.2, bu t w ith the addition of the r-default entry. This is shown in

Figure 9.3.

The m ulticast entries of Figure 9.3 are shown w ith dashed lines. Note th a t w hat was previously

the single default entry has here been changed to n-default (m eaning norm al form default). This

is the entry retrieved if the RSE is norm al form, bu t does not m atch any of the explicit norm al

form entries. The r-default entry is retrieved for all reverse-path form RSEs.

The r-default entry indicates th a t the M ain EIDTable should be accessed. The M ain EID Table,

in addition to the unicast entries it had from the unicast example (Table 9.2), has a num ber of

115

Root RSETable
Router a

r-uetault n-detault

Main EIDTable

n-default

ARP

r-default

Error
V V'

one or more of J, I, K, and c
(minus the incoming link)

Figure 9.3: R outer a ’s Forwarding Tables for Classical, M ulticast, Shared-Tree O nly SPip Exam ple

group EIDs (G l - Gn), each of which indicate one or more of router a ’s links. T he actual set of a ’s

links depends on the group m em bership, and on the scope of the group EID. C onceptually, each

different scope results in a separate entry in the EID Table. An im plem entation may, however,

trea t the scope field as a separate field.

These entries have the T -tag set. Note th a t, since these entries are for shared-tree m ulticast, the

packet would not be transm itted over the link from which it was received.

Consider the m ulticast packet from host H shown above. It would arrive a t rou te r a as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

H G l 4 3J 9S IB r l B r9S r3J

R outer a would access its Root RSETable with value r lB . T his would retrieve the r-default entry,

since there are no other reverse-path form entries in router a ’s Root RSETable. T his causes router

a to access its Main EIDTable with Dest EID G l. This en try indicates which links the packet

should be forw arded over. The T -tag for this link is set, so the Active RSE would be set to zero

116

in all transm itted packets;

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSES RSE6

H G l 0 3J 9S IB rlB r9S r3J

Because the Active RSE in this packet is zero, subsequent routers would not look a t the reverse-

pa th form RSEs, bu t ra ther would directly access the M ain EID Table w ith the group EID. Thus,

the processing overhead of the reverse-path form RSEs is only incurred once— at th e first router.

The packet length overhead of the reverse-path form RSEs, however, rem ains th roughout the

packets lifetime. Inclusion of the reverse-path form RSEs is the cost of hiding the natu re of the

m ulticast tree from hosts.

S o u rce-T ree M u ltica st

W ith IP source-tree m ulticast, routers build reverse-path trees^ rooted a t the destinations of their

unicast forw arding tables. This results in a set of potential outgoing links for m ulticast packets

from each unicast destination. This set is then pruned based on the m em bership of each group.

Thus, when a m ulticast packet is received, the source address and group ID together are used to

determ ine the outgoing links.

SPip m ust of course do the same thing. In the case of SPip, however, the reverse-paths built from

the unicast destinations are installed in the forwarding tables as reverse-path form RSEs. The

reverse-path form RSEs in the packet, then, are used to indicate which source tree the packet is

forwarded on.

For instance, assum ing the hole-punching forwarding inform ation case, the forw arding tables for

routers a and c are as shown in Figures 9.4 and 9.5 respectively.

Consider the forwarding table for router a. The normal form (unicast) entries are draw n in solid

lines, and the reverse-path form (m ulticast) entries are draw n in dashed lines.

R outer a is in a subscriber network (S). If the source is inside subscriber netw ork S, then rou ter a

m ust know which subnet the source is on so tha t the packet can be m ulticast over the appropriate

tree. If the source is not inside subscriber network S, then rou ter a does not care which backbone,

subscriber, or subnet the packet came from, because all packets from outside en ter subscriber

network S via the same two interfaces®.

Thus, one of the m ulticast entries of router a ’s Root RSETable is there sim ply to determ ine if the

packet m ight be from inside subscriber network A by m atching against backbone B (r lB). If no

m atch occurs, the packet is assum ed to come from outside of subscriber netw ork S, and EIDTable

3 is chosen (r-default).

^The use o f the term reverse-path does should n ot necessarily im ply th at a reverse-p ath rou tin g a lgorithm [27]

was used to form the tree. Forw ard-path routing inform ation can also be used.
®We are assum ing that backbone B transm its m ulticast packets to subscriber S v ia b o th of the in terfaces. This

is not necessarily the way all tree-building algorithm s would work.

117

Root RSETable
Router a 9-S

r-default
\

n-deiault

Main EIDTable RSETable 1 '

detault

default

I RSETable 2 '
1 ; y [

I EIDTable 3 i

default 'default

Error ErrorI EIDTable 1 »
one or more of: J, K

I EIDTable 2 '
I I

- , ---------, -------I-------------T

, ;
default

/

default
tError

Error V y '!/
one or more of: I, K, and c

Figure 9.4: R outer a Forwarding Tables for SPip Non-classical Source-Tree M ulticast Example

EIDTable 3 indicates th a t the packet should be forwarded to neither, either, or b o th subnets J

and K^. W hich com bination depends on the group m em bership for the group address. If bo th J

^This assum es th at packets entering subscriber S from router b w ill be rou ted to subnet I, so there is no need

for router a to forward them to subnet I.

118

Root RSETable
Router c

9-T

1-D

9-W 1-C

default
rl-D

r;-B rl-p
Error

RSETable 1
I EIDTable 1

RSETable 2

! RSETable 3 ^

r9-W
, r9-

. - A ____________^

! EIDTable 2 '\ '

default

I RSETable 4 ̂'I I
- \--------------I--------

r9-S r9-U
Error

I RSETable 5 i

I
I

r9-V

 ,

! EIDTable 5

default

JA ^

I EIDTable 6

I EIDTable 3 1 r3-I

___V______ ^
\ I EIDTable 4 1
\ ^
\

I EIDTable 7 ' \ '

r3-J default' \
I \
I \

I
I I
I

_ X _ .

I EIDTable 9

I EIDTable 8

Figure 9.5: R outer c Forwarding Tables for SPip Non-classical Source-Tree M ulticast Example

and K have mem bers then the packet will go to both. Only groups th a t have m em bers on one

or more of J and K are explicitly listed in EIDTable 3. T hus, if neither have m em bers, then the

group is not listed and the packet defaults to neither (th a t is. E rror). (Note th a t EID Table 3 has

only one default, so there is no need to distinguish between n-default and r-default.)

If a packet at router a has a top-level RSE of rlB , then the en try in rou ter a ’s R oot RSETable

119

indicates a secondary forwarding table— RSETable 1. In RSETable 1, router a continues to check

to see if the packet originated in subscriber network S by com paring against r9S. If, again, there

is no m atch, the packet is assumed to be from outside and uses the default en try (EIDTable 3).

If it does m atch, then the packet is known to be from a subscriber S subnet, and forw arding table

R SETable 2 is accessed with the next RSE, the subnet num ber. Depending on the subnet, one

of two EID Tables is chosen. (In this case, the forwarding is the same w hether the packet is from

subnet I or K. In the general case, there is a different tree for each origin.)

Now consider the forwarding tables of router c. Like Figure 9.4, Figure 9.5 shows the unicast

entries in solid lines, and the m ulticast entries in dotted lines. To simplify things. Figure 9.5

is incom plete in th a t it does not show the entries for the leaf forw arding tables (RSETables 1

and 2 and EIDTables 1 through 9). The entries for RSETables 1 and 2 are identical to those in

F igure 9.2, so do not need to be repeated here. The entries for EID Tables 1 th rough 9 are similar

in form to the m ulticast EIDTables in Figure 9.4, so also do not need to be shown here.

R outer c is in backbone B, and as such has no default routing per se. T hus, the single error

default entry from the Root RSETable serves both normal form and reverse-path form addresses.

O f the three reverse-path form entries in the Root RSETable, the one for backbone D (r lD) points

d irectly to an EIDTable. This indicates th a t there is a single source-tree for any packets from

backbone D (or its subscribers). The entries for backbones B (its own) and C po in t to RSETables.

T his indicates th a t there are m ultiple trees with the same top-level RSE, and thu s additional RSEs

m ust be examined.

In the case of the backbone C entry (rlC), the multiple trees come from the fact th a t routers in

backbone B have explicit forwarding information for subscribers U and V in backbone C. This

inform ation is reflected in RSETable 4. Note th a t the default en try in RSETable 4 handles the

backbone C subscriber networks not explicitly known to rou ter a (EID Table 6).

In the case of the backbone B entry (rlB), router a m ust distinguish betw een the various subscriber

netw orks a ttached to backbone B (RSETable 3). Router a m ust also d istinguish between subnets

I and J in subscriber S (RSETable 5).

A notable fact about the m ulticast forwarding tables for routers a and c is th a t a t no tim e is the

A ctive RSE in the packet changed. There are no set T -tags in any of the m ulticast entries. For

the full duration of the packet transm ission through the netw ork, the Active RSE always points

to the top-level RSE.

T he reason for this is th a t, contrary to the unicast case, the more detailed addressing inform ation

is needed a t the s ta rt of the path , not a t the end. W ith unicast, rou ting considers only the

top-level addressing inform ation until the packet approaches the destination , a t which tim e lower-

level addressing inform ation is examined. W ith source-tree m ulticast, the forw arding is with

respect to the unicast address of the source (and the group ID), and so the detailed (lower-level)

addressing inform ation is exam ined at the s ta rt of the path , and la ter in the p a th only the top-level

120

information is examined.

Because routers later in the path look at the top-level inform ation, the Active RSE m ust point to

the top-level RSE. Since there is no way to back-up the Active RSE, routers a t the beginning of

the p a th cannot advance the Active RSE to point to the lower-level RSEs.

L o w est-L ev el F irst

An alternative approach to packet form at for source-tree m ulticast is to reverse the order of the

reverse-path form RSEs in the packet header. Thus, the RSEs are in order of lowest-level RSE

first. All other aspects of header form ation are the same as described above for highest-level first.

The po ten tia l advantage of this m ethod is th a t routers at the beginning of the p a th can examine

only the lower-level RSEs rather than having to examine all of the RSEs. Later in the p a th the

Active RSE can be advanced to point a t the higher-level RSEs.

The problem w ith this approach is th a t it has a scaling problem . W hen the RSEs are parsed in

order of lowest RSE first, there can be many possible lower-level RSEs th a t u ltim ately resolve to

the same higher-level RSE. It tu rn s out in many cases, especially w ith hole-punching, th a t each

of these lower-level RSEs results in a different set of branches, u ltim ately leading to the same

EID Table, bu t replicating the higher-level RSEs m ultiple times.

R ather th an give an example (which requires quite a lengthy explanation—ju s t to explain a bad

idea), I leave it to the reader to try to create the forwarding tables necessary for lowest-level first

RSEs for the non-classical forwarding inform ation case. The reader will quickly discover th a t it

results in a large and complex set of forwarding tables.

W ell-K n o w n M u ltica st

SPip has reserved a portion of its group EID space for well-known m ulticast, and has scoping.

Thus, SPip can do well-known m ulticast groups.

T w o -P h a se M u ltica st

SPip can do two-phase m ulticast with both shared-tree and source-tree m ulticast. Recall from

the form atting rules given at the beginning of this section th a t an SPip host only includes the

reverse-path form RSEs if there is no address sequence associated w ith the group EID. W ith two-

phase m ulticast, there is an address sequence associated w ith the group EID — th a t of the unicast

destination from which the m ulticast phase originates. Thus, the route sequence of two-phase

m ulticast packets contain the source address sequence (in norm al form) followed im m ediately by

the address sequence associated with the group EID.

121

S h ared -T ree T w o -P h a se

If the m ulticast phase is shared-tree, then the address sequence associated w ith the group EID

is nothing more th an the unicast address sequence of the m ulticast-phase origin. For instance,

the destination inform ation associated with a two-phase m ulticast to group G l th a t s ta rts its

m ulticast phase a t subnet J is (EID = G l, ASeq = 1B:9S:3J) ®. If host Z is to send a packet to

th is group, it would receive th a t destination information from some source (such as IG M P), and

form at a packet as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

Z G l 4 3L 9V 1C I B 9S 3J

The packet would reach router a (or some router on subnet J) as per unicast forwarding. Using

a forwarding table such as th a t of Figure 9.4, router a would access its M ain EID Table w ith the

group EID G l. In this case, EIDTable 1 would have an explicit en try for G l, m atch on th a t entry,

and forward the packet according to the m ulticast tree for G l. The en try would have the T -tag

set, so the Active RSE would be set it 0, and the packet would from then on be forwarded as

m ulticast.

If, ra ther th an reaching a router on subnet J, it is desired th a t any rou ter on backbone B in itiate

the m ulticast phase, then the destination address sequence only requires the backbone-level RSE,

as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4

Z G l 4 3L 9V 1C I B

Note th a t, because IB is the last RSE in the sequence, it has the Last RSE flag set. This is how

the backbone router knows to access the EIDTable rather th an look for another RSE.

Now consider how to do CBT-style two-phase. The destination inform ation contains the unicast

address of the core of the CBT tree, say for instance a router z in backbone c: (EID = G2, ASeq

= 1C:9X:3Y:0Z), where 9X and 3Y are subscriber and subnet RSEs, and OZ is the host-level RSE

for router z. Every router on any CBT tree with z as the core installs a chain of RSETables with

1C, 9X, 3Y, and OZ in tu rn as entries. None of the entries have the T -tag set. The last RSETable

en try (OZ) points to an EIDTable containing the group EIDs. The entries in the EID Table have

the T-tags set. The default entry in the EIDTable has the norm al unicast forw arding inform ation

th a t would have been retrieved for a unicast packet to 1C:9X:3Y:0Z.

W hen a router on the tree receives a CBT packet with z as the core, it traverses the chain

of RSETables and looks up the group G2 in the EIDTable. If no m atch occurs, the packet is

forwarded towards z as per norm al unicast. If a match occurs, then the Active RSE is set to 0,

and the packet is forwarded as per m ulticast.

®Note that if the m ulticast phase is to start from a host, a host-level R SE in the address sequence is required.

H ost-level R SE s are d iscussed in Section 9.8.3

12 2

S ou rce-T ree T w o -P h a se

To do two-phase where the packet is source-tree m ulticast from the origin of the m ulticast phase,

it is necessary to include the reverse-path RSEs of the m ulticast phase origin. T hus, the desti­

nation inform ation for a packet to group G2 and originating a t router z w ith address sequence

1C:9X:3Y:0Z is:

(EID = G2, ASeq = lC:9X:3Y:0Z;rlC;r9X:r3Y)

The OZ RSETable entry points back to the Root RSETable. Thus, rou ter z accesses the Root

RSETable with r lC . This causes the normal source-tree m ulticast actions to occur as described

above.

9.2.4 D iscussion

All three protocols can do the most basic m ulticasts— single-phase, shared-tree and source-tree,

broadcast and m ulticast.

CLNP is currently lacking scoped addresses. M ulticast in CLNP, however, is still in the early

stages of definition, so it is presumed th a t eventually CLNP will have scoping. In any event,

there is certainly nothing in CLNP per se th a t would prevent scoping— there is plenty of room

in the NSAP address to define a scope field. It would be preferable if this field were in the same

well-known place for all group addresses. This, however, is not the direction th a t OSI is taking for

group addressing [57]. In any event, it remains to be seen w hether well-known addressing beyond

the local LAN is useful.

Because of inadequate scoping, CLNPs ability to do well-known addressing is som ew hat lim ited.

Fortunately, CLNP can do a very im portant class of well-known group address— the one w ith a

scope of the local LAN. In fact, existing CLNP control protocols such as ES-IS and IS-IS take

advantage of local LAN m ulticast, though only by using well-known IEEE-802 link-level group

addresses, not CLNP group addresses.

Both S IPP and SPip have scoping and well-known group addressing.

CLNP cannot handle any two-phase m ulticast, prim arily because of a bug in C L N P ’s LSR mech­

anism, bu t also because CLNP hosts are not commonly expected to form at LSR packets. SIPP

handles two-phase m ulticast with shared-tree, but not source-tree, in the m ulticast phase. In

particular, SIPP handles CBT-style m ulticast (two-phase w ith shared-tree, where the m ulticast

phase can s ta rt anywhere on the shared-tree). This is a po ten tia lly im portan t form of m ulticast.

For instance, it is part of all ongoing work in m ulticast in the IE T F standards organization [49].

SPip handles all the forms of m ulticast discussed.

A general observation is th a t, in order to make m ulticast work, CLN P and S IPP do “som ething

1 23

special” in the routers, while SPip does “something special” in the hosts. T h a t is, upon discovering

th a t a packet is m ulticast, CLNP and SIPP break out of the “norm al” lookup algorithm (th a t is,

of looking at destination address and possibly source route), and look a t the source address. SPip

routers, on the other hand, do the same thing for unicast and m ulticast, bu t in order to form at a

m ulticast packet, SPip hosts break out of the “norm al” form atting algorithm (th a t is, of pu tting

the source address sequence at the beginning of the route sequence and the destination address

sequence afterw ards), and adds the reverse-path form source address sequence between the two.

Thus, while SPip has perhaps succeeded in creating an efficient yet general purpose router for­

warding mechanism, it has not as successfully created a general purpose host packet form atting

mechanism.

9.3 M o b ility

T here are several aspects to m obility—how hosts and routers discover each other, how it it deter­

m ined when a host needs a new address, how the new address is assigned, how a correspondent

host learns the new address of the mobile host, and how a correspondent host au then ticates the

new address.

This section does not concern itself with these aspects (though Section 9.5 discusses auto-address

assignm ent). R ather, it considers only 1) how packets are routed between a mobile host and a

correspondent host once the correspondent host has learned the new address of the mobile host,

and 2) how the two hosts identify each other.

We consider the following scenario. Host H is attached to subnet J and is exchanging packets with

host Z a ttached to subnet L. Host H then moves to subnet 1. We consider two cases, one where

host H does not obtain a new address on subnet 1, and the other where host H does obtain a new

address. In the former case, host H ’s individual address m ust be advertised off of the subnet, for

instance to router a. In the la tte r case, host Z m ust learn host H ’s new address and s ta r t using it.

9.3.1 C L N P

Initially, host H on subnet J has address B.S.J.H. Host Z has address C.V.L.Z. Packets are being

exchanged using these addresses according to description in Section 9.1.1.

Host H moves to subnet 1 but does not obtain a new address. Thus, packets from host Z to host

H still have the address B.S.J.H . These packets are forwarded to router a. Now, however, router

a m ust forward the packet over to subnet 1 ra ther than on subnet J . Thus, the routing algorithm

running in subscriber network S m ust now carry an explicit en try for host H on subnet I (bu t w ith

address B .S.J.H).

124

If the IS-IS routing protocol is being used [56], and subnet I is in the same area as subnet J , then

host-level routing inform ation is carried as a m atter of course.

Assuming th a t router a has obtained the new routing inform ation for host H, rou ter a forwards

the packet to subnet I, and the packet is delivered to host H.

Now, assum e th a t host H obtains a new address, B.S.I.H, on subnet I. This would be necessary

if, for instance, subnet I were in a different IS-IS area. This would imply th a t the host has moved

“far enough” th a t m aintaining host-level routing inform ation all the way back to the h ost’s former

position is too much overhead.

Under the current level of CLNP specification, there is no way th a t host Z can continue exchanging

packets w ith host H (a t least, not w ithout tearing down the active application associations). This

is because the NSAP address doubles as the host identifier. Once host H gets the new address, it

also gets a new identifier. Unless the previous identifier (the true identifier) is carried in the new

packets, and conveyed to host Z’s applications as before, host Z cannot recognize th a t the packets

w ith address B.S.I.H are coming from the same hast as B .S.J.H .

Presum ably CLNP standards will continue to progress, and th is shortcom ing will be solved. There

are two basic approaches available to CLNP. One is to declare some subset of the NSAP address

to be globally unique. This could be byte positions 1 through 6 (where byte position 0 is the

low-order byte), since those positions already hold the IEEE-802 address in m any cases. Or it

could be byte positions 1 through 8, to allow for more definitions in the fu ture.

The other approach is to convey the entire previous address in some p a rt of the header— an option

or an encapsulated header. This is the approach being pursued by IP , which does not have the

luxury (or overhead, depending on what side of the fence you’re on) of incorporating the IEEE-802

address.

E ither way, the new address could either be learned by host Z, and conveyed in packets from

host Z, or it could be learned by some system on subnet J — perhaps router a. In th is la tte r case,

router J would modify the packet to contain the appropriate inform ation. The la tte r case has the

advantage of keeping host Z simple (it does not need to know anything abou t the new location of

host H), bu t results in a longer pa th , as now packets m ust be forw arded through rou ter a (whereas

if host Z learned the new location of host H, the packet would be rou ted th rough router b and

directly to subnet I).

9.3.2 SIP P

We initially assume th a t single (non-extended) addresses are being used. Thus, the addresses used

at the s ta rt of the com m unications (when host H is on subnet J) are B .S.J.H and C.V.L.Z, and

packets from host H to host Z have the following simple form at:

125

Source Addr Dest Addr

B.S.J.H C.V.L.Z

For the case where host H keeps the same address after m oving to subnet I, host-level routing

inform ation is d istribu ted as described for CLNP above, and the packet form at rem ains the same.

For the case where host H obtains a new address, host H learns the cluster address for subnet I,

which is B.S.I.O®. Host H forms an address sequence using the cluster address as the high-order

address, and its original address as the low-order (and identifying) address. T hus, host H ’s address

sequence is B.S.I.O:B.S.J.H. Packets from host H to host Z are fo rm atted as follows;

Source Addr Dest Addr Next Addr A ddrl

B.S.J.H C.V.L.Z 2 B.S.I.O

where a Next Addr value of 1 points to the first address in the source route (thus, the above Next

A ddr value of 2 is pointing beyond the single address in the source route).

This packet is routed to host Z. Since host Z only uses the (low-order) identifying address to

identify host H, host Z recognizes this packet as being from host H even though the source route

has been added. Host Z reverses this packet according to the rules in Section 8.2.2, producing a

re tu rn packet of:

Source Addr Dest Addr Next Addr A ddrl

C.V.L.Z B.S.I.O 1 B.S.J.H

Host Z could also have learned of host H’s new address by some o ther m echanism , such as a query

to host H ’s base sta tion (the system th a t keeps track of host H ’s cu rren t address).

This packet is routed to a router on subnet I, which recognizes the cluster address B.S.I.O as being

for itself, and advances the packet, producing:

Source Addr Dest Addr Next Addr A ddrl

C.V.L.Z B.S.J.H 2 B.S.I.O

The router knows th a t address B.S.J.H is on its own subnet, because host H advertised it there,

and delivers the packet to host H.

Now consider the case where host H is using extended addresses of the form described in Sec­

tion 9.1.3. T h a t is, the identifying address is the local-use address and the high-order address is

the subscriber prefix— B.S:J.H. Host Z, likewise, has aHdress C.V:L.Z

In this case, packets leaving host H on subnet J are fo rm atted as:

Source Addr Dest Addr Next Addr A ddrl A ddr2

J.H C.V 2 B.S L.Z

and arrive a t host Z as:

*This cluster address is norm ally advertised by routers for the purpose o f h o st au to-address configuration .

126

Source Addr Dest Addr Next Addr A ddrl A ddr2

J.H L.Z 3 B.S C.V

A fter host H moves to subnet I, it keeps its identifying address J.H , and gets a new prefix of

B.S:I.O. Packets from host H ’s new location to host Z are initially fo rm atted as:

Source A ddr Dest Addr Next Addr A ddrl A ddr2 Addr3

J.H C.V 3 I.O B.S L.Z

A nd re tu rn packets leave host Z as:

Source Addr Dest Addr Next Addr A ddrl Addr2 A ddr3

L.Z B.S 2 C.V 1.0 J.H

9 .3 .3 SPip

Form ing packets for m obility in SPip is straightforward.

Packets from host H on subnet J are form atted as:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

H Z 4 3J 9S IB 1C 9V 3L

W hen host H moves to subnet I, its address sequence changes from 1B:9S:3J to 1B:9S:3I. Thus,

packets from host H on subnet I are form atted as:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

H Z 4 31 9S IB 1 0 9V 3L

A nd re tu rn packets as:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

Z H 4 3L 9V 1C IB 9S 31

T he sam e com m ents made for the CLNP case—namely th a t the packets to host H on subnet I

could have been form atted by host Z or by host H’s base sta tion— apply here (as well as to the

S IP P case).

9.3 .4 D iscussion

B oth SPip and SIPP handle m obility w ithout changes to the basic packet fo rm atting rules. Indeed,

w ith in the context of the reversing rules, it is possible for an SPip or S IP P host th a t is not mobile

and th a t has no notion of m obility of other hosts to successfully com m unicate w ith a mobile host

w ithou t going through a base station . This requires, however, th a t the mobile host sends a packet

to the correspondent host when it gets a new address, so th a t the correspondent host can record

the new address. If, on the other hand, the correspondent host is m obility -sm art, it could send a

query to the mobile h o st’s base sta tion to learn the new address.

127

To handle mobility, CLNP m ust be modified to carry both the initial address (for identification)

and the new address (for routing) in the packet header.

In term s of control protocols to handle mobility (update and query messages, discovery messages,

and so on), none of the three protocols (assuming th a t CLNP packets were modified to handle

m obility) has any particular advantage over the others.

9.4 D o m a in -L ev e l P o licy R o u te

A do main-lev el policy route is a route whereby the p a th is specified in term s of the high-level

clusters th a t a packet should go through, particularly backbones. The te rm dom ain is used here

(ra ther than , say, backbone) because this term is commonly used when discussing policy routes

(for instance, [11]). The policy routing discussed in this section is lim ited to backbones.

There are two policy routing applications of in terest— provider selection^® and full policy route.

Provider selection is where only the providers on either end of the p a th are selected. These

providers are either directly connected to the subscriber networks or reachable th rough a local-

access provider.

A full policy route is where the source can specify a num ber of backbones on the p a th from source

to destination, not ju s t the providers for the source and destination.

The examples for this section are from the topology shown in Figure 9.6. Figure 9.6 shows two

subscriber networks, S and V, and 10 backbones, A through D and M through P. All examples

are for packets between hosts H and Z.

Note th a t b o th subscriber networks are connected to two providers each, B and D in the case of

subscriber netw ork S, and A and C in the case of subscriber netw ork V. Assum ing provider-rooted

addressing, this gives the hosts in both networks two addresses each—one w ith a prefix from one

provider, and one with a prefix from the other provider.

9.4.1 Provider Selection

We are interested in the following scenarios:

1. Host H in subscriber netw ork S initiates an exchange w ith host Z in subscriber netw ork V.

Packets leave subscriber network S via provider B and arrive a t subscriber network V via

provider C. R eturn packets take the symmetric reverse p a th (th a t is, they go through the

same two providers).

^°The term s provider and backbone are used som ew hat interchangeably. In general, p rovider is u sed w hen

referring to the backbone in its pro vider/subscriber role, and backbone is u sed w hen referring genericaUy to a

top-level netw ork.

128

S u b n e t I
f ^ S u b n e t L

lost H
Su b n e t J

:OSt Zy

Su b n e t K
Subscriber V

S u b s c r ib e r S

Figure 9.6: Example Topology for Policy Exam ples

2. Assume scenario 1 is underway and packets have been exchanged. In the m iddle of the

exchange, a different provider network is selected. (This would be desired if, for instance

due to a failure, service was no longer available through provider B. This could also happen

after the first packet is sent because the destination-end provider assum ed by the in itia tor

is not the one preferred by the destination.) Now, packets should exit and en ter subscriber

network S via provider D (but still enter and exit subscriber netw ork V via provider C).

3. A new exchange is s ta rted between hosts H and Z. As w ith scenario 1, packets leave subscriber

network S via provider B and arrive at subscriber network V via provider C. R eturn packets,

however, take an asym m etric return path, leaving subscriber netw ork V via provider C but

entering subscriber network S via provider D.

C L N P

CLNP can use the choice of destination (provider-rooted) address to influence the destination-

end provider chosen, as discussed in Section 3.4. CLNP can use the source specific QoS field to

influence the source-end provider chosen.

129

QoS in CLNP is encoded as a single value. The first two b its of the value, however, indicate

one of three classes of QoS—source specific, destination specific, and globally unique. If the class

is source specific, then the value is interpreted in conjunction w ith the source address (or, more

commonly, a source address prefix). T hat is, the value is concatenated w ith the source address

to create a com posite QoS value. Therefore, the same QoS value w ith different source addresses

is in terpreted differently. The destination specific value is in terp re ted in conjunction w ith the

destination address. The globally unique value is not specific to either source or destination

address.

For source-end provider selection, the subscriber network assigns a source specific QoS value for

each provider network. To choose the source-end provider, a host inserts the QoS value m atching

the provider chosen. The forwarding tables in the subscriber netw ork routers are form ed such th a t

any packet w ith a source specific QoS value for a given provider gets forw arded to th a t provider.

If the destination is not reachable through th a t provider, the packet m ay either be discarded or

routed through another provider (or routed to the selected provider to be discarded there, for

instance if default routing is in effect). If the chosen provider is reachable th rough a local-access

provider (see Section 3.4.2), then the routers in the local-access provider m ust keep entries for all

of its subscriber’s QoS values.

T hus, to send a packet according to scenario 1 above, host H forms the following header:

Source Addr Dest Addr SS QoS

B.S.J.H C.V.L.Z B

Host H chooses B.S.J.H ra ther than D.S.J.H as its source address so th a t re tu rn packets will come

via provider B. This packet is forwarded by routers in subscriber netw ork S by examining the SS

QoS field (a value indicating “provider B”) in conjunction w ith the source addr. The routers in

provider B do not have any forwarding information for SS QoS = (B, B .S .J.H), and so route the

packet on destination address only. This causes the packet to be routed to provider C, from which

it is routed to subscriber network L and then to host Z.

To retu rn packets on a sym m etric path to host H, host Z reverses source and destination address,

and m ust also choose an SS QoS commiserate with the address it is using for itself. In other words,

since the address it is using shows provider C, it picks an SS QoS th a t indicates provider C:

Source Addr Dest Addr SS QoS

C.V.L.Z B.S.J.H C

T his packet will exit subscriber network V through provider C (because of the SS QoS), and enter

subscriber network S th rough provider B (because of the destination address B .S .J.H). Note th a t

hosts H and Z could have done this without any particular coordination betw een them selves as

long as 1) the providers chosen by host H are acceptable to host Z, and 2) host Z assumes th a t

host H w ants sym m etric routes.

For scenario 2, host H chooses a new SS QoS to cause packets to be routed through provider D:

130

Source Addr Dest Addr SS QoS

B.S.J.H C.V.L.Z D

W hile this does cause packets to exit via provider D, re tu rn packets from host Z will continue to

be formed as shown above, causing return packets to enter via provider B. Short of using loose

source routing, there is no way th a t host Z can cause packets to enter subscriber network S via

provider D, because the addresses cannot be changed during an application association.

For scenario 3 above, host H forms the following packet:

Source Addr Dest Addr SS QoS

D.S.J.H C.V.L.Z B

Host Z tu rns this packet around the same way as the previous exam ple, producing:

Source Addr Dest Addr SS QoS

C.V.L.Z D.S.J.H C

Thus, host H can cause packets to return via a different provider from the one over which it was

received.

S IP P

Like CLNP, SIPP uses provider-rooted addresses to route packets th rough the selected destination-

end provider.

To route packets through the selected source-end provider, S IPP uses a cluster address in the

route sequence.

Assume simple (non-extended) addresses. Under scenario 1, host H form ats its packets as follows:

Source Addr Dest Addr Next Addr A ddrl

B.S.J.H B.O 1 C.V.L.Z

The cluster address B.O in the Dest Addr field causes the packet to be routed to provider B. The

border rou ter of provider B advances the route sequence, thus routing the packet to C.V.L.Z. This

address causes the packet to go to provider C, and from there to host Z.

To re tu rn a packet, host Z reverses the route sequence, and adds a cluster address of C.O to cause

the packet to be routed through provider C outgoing:

Source Addr Dest Addr Next Addr A ddrl Addr2

C.V.L.Z C.O 1 B.O B.S.J.H

Note th a t the cluster address of backbone B is in this route sequence. This cluster address is

redundan t in th a t host H ’s address alone is sufficient to cause the packet to be routed through

backbone B. Host Z cannot, through inspection of the packet header alone, easily know th a t

address B.O is in fact a cluster of B .S.J.H , and is therefore redundan t. This is because there is no

131

inform ation in the addresses th a t indicate the location of the field boundaries of the hierarchical

address. This inform ation is passed around in routing algorithm s, bu t hosts are no t usually privy

to this inform ation. In fact, even routers in subscriber network V are unlikely to have such high-

level address boundary inform ation, as they would most likely use default rou ting to exit the

subscriber network.

In particu lar, a host cannot simply compare a cluster address and a full (non-cluster) address and

determ ine with certain ty th a t the cluster address is for a cluster th a t the full address is in. For

instance, assume th a t the num erical value of B.S.J.H is the 64-bit address 12.34.56.78.9a.bc.de.f0,

and th a t the prefix 12.34 represents backbone B. Thus the cluster address B.O is 12 .34.00.00....

Assume th a t there is another backbone Q whose backbone prefix is 12.34.56 (and whose cluster

address Q.O is 12 .34.56.00...). If a host receives a route sequence of Q.O:B.S.J.H, the prefix of

bo th addresses (up to the O’s of Q.O) is the same. However, the cluster address is obviously not

redundan t inform ation.

W hen host H sends another packet to host Z, it reverses the packet received from host Z, producing:

Source Addr Dest Addr Next Addr A ddrl Addr2

B.S.J.H B.O 1 C.O C.V.L.Z

Thus, bo th cluster addresses are in all subsequent packets, even though one of them is always

redundant.

Now assume th a t scenario 2 begins. To cause packets to go through provider D, host H m ust a t

a m inim um replace the cluster address of provider B with th a t of provider D:

Source Addr Dest Addr Next Addr A ddrl Addr2

B.S.J.H D.O 1 C.O C.V.L.Z

This header does cause the packet to be forwarded through provider D outgoing. However, there

is a problem w ith the retu rn packets. The reversed packets from host Z are fo rm atted as:

Source Addr Dest Addr Next Addr A ddrl A ddr2

C.V.L.Z C.O 1 D.O B.S.J.H

These packets are routed through provider C to provider D. The border rou ter of provider D

advances the route sequence, producing:

Source Addr Dest Addr Next Addr A ddrl Addr2

C.V.L.Z B.S.J.H 3 C.O D.O

W ith classical forwarding inform ation, the border router of provider D would forw ard this packet

to provider B. The packet, however, should not go through provider B. Instead, the packet should

be forwarded directly to subscriber S w ithout going through provider B.

One way to solve this problem is by having subscriber S advertise its subscriber prefix from

provider B to provider D. Thus, routers in provider D would have forw arding table entries for

13 2

prefix B.S.*. .. (as well as for B .* ...)

This solution has two problems. F irst, it can result in scaling problem s in provider D. If provider

D has a large num ber of subscribers, it can internally cluster those subscribers so th a t its routers

do not require per-subscriber forwarding inform ation except for the subscribers in their cluster.

If subscribers advertise subscriber prefixes assigned from other backbones, these prefixes will not

in general fit in to provider D ’s internal clustering scheme, and so routers in provider D m ust keep

per-subscriber inform ation.

T he second problem is th a t host H has no (simple) way of knowing if prefix B .S .* ... has been

advertised to provider D or not. Host H therefore does not really know if it can form the above

route sequence or not. Thus, host H m ust instead generate the following route sequence:

Source Addr Dest Addr Next Addr A ddrl A ddr2 A ddr3

B.S.J.H D.O 2 D.S.O C.O C.V.L.Z

T his is reversed by host Z, producing:

Source Addr Dest Addr Next Addr A ddrl A ddr2 Addr3

C.V.L.Z C.O 1 D.O D.S.O B.S.J.H

Thus, when the border router of provider D receives the packet and advances the route sequence,

it produces:

Source Addr Dest Addr Next Addr A ddrl A ddr2 A ddr3

C.V.L.Z D.S.O 3 C.O D.O B.S.J.H

T his packet gets forwarded on address D.S.O, which causes it to go to subscriber S. The border

rou ter of subscriber S advances the route sequence to address B .S.J.H , which causes the packet to

go directly to host H.

The th ird scenario requires some kind of coordination between the two hosts. T h a t is, simple

reversal of host H ’s packets will not result in the right behavior.

For instance, host H could form at its packets as follows:

Source Addr Dest Addr Next Addr A ddrl

D .S.J.H B.O 1 C.V.L.Z

The cluster address B.O will cause packets to exit via provider B. The reversed packet is:

Source Addr Dest Addr Next Addr A ddrl A ddr2

C.V.L.Z C.O 1 B.O D .S.J.H

This packet will be routed to provider B before being routed to provider D, which is no t the

desired behavior. Instead, host Z requires specific knowledge th a t host H does no t w ant re tu rn

packets to go through provider B. Then host Z could remove the cluster address B.O from the

retu rned route sequence.

133

S P ip

Under scenario 1, host H formats packets as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

H Z 3 3J 9S I B 1C 9V 3L

The only difference between this packet and the packets for the unicast exam ple in Section 9.1.5

is th a t the Active RSE is set to be the top-level RSE in the source address sequence. This causes

the packet to be routed through provider B on the way to provider C.

R eturn packets are form atted as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSE5 RSE6

Z H 3 3L 9V 1C IB 9S 31

W hen, in scenario 2, host H decides to route its packets th rough provider D, it simply changes

the th ird RSE as follows:

SEID DEID Active RSE R SEl RSE2 RSE3 RSE4 RSES RSE6

H Z 3 3J 9S I D 1C 9V 3L

For scenario 3, host H forms packets as follows:

SEID DEID Active RSE Num Source RSE R SEl 2 3 4 5 6 7

H Z 4 3 3J 9S IB I D 1C 9V 3L

Note th a t the above header shows the Num Source RSE set to po in t to RSE3 (IB , the top-level

RSE of the source address sequence). (Previous SPip headers have not bo thered to show the

Num Source RSE.) We show it this time to underscore the fact th a t host Z ’s default behavior on

re turn ing this packet is to use ju s t the RSEs indicated by the N um Source RSE field—th a t is, the

first 3 RSEs. Thus, the 4th RSE (ID) would not be included in the re tu rn packet:

SEID DEID Active RSE RSEl RSE2 RSE3 RSE4 RSES RSE6

Z H 3 3L 9V 1C IB 9S 31

This packet does not go through provider D in the return path .

D isc u ss io n

CLNP is surprisingly (to me) adept at handling provider selection. The only th ing it can not do

is change providers after establishing an application association. CLN P hosts m ust, however, be

configured w ith appropriate SSQoS information.

B oth SIPP and SPip handle scenarios 1 and 2, though SPip m ore sim ply th an SIPP. For SIPP

to do provider selection, the host m ust learn the cluster address of its providers. As the provider

cluster address is not som ething otherwise needed by the host, some additional configuration or

discovery is required to do provider selection. Discovery is com plicated by the fact th a t the only

134

system s th a t naturally know the provider cluster address are the subscriber border routers, which

are not directly connected to hosts.

Ironically, CLNP can do scenario 3 while SIPP cannot— at least, not w ithout coordination between

the two hosts. (SPip does scenario 3 as well.) On the o ther hand , since w ith CLN P the provider

cannot be changed after the first packet has been sent, coordination is required betw een the two

hosts to make sure th a t the in itiating host knows which destination-end provider the receiving

host desires.

9.4,2 Full P o licy R oute

In this section, we describe how the three protocols can cause packets from host H to host Z to

go through backbones B, N, Q, R, and C.

C L N P

CLNP is not capable of forming the above policy route.

If C L N P’s loose source route bug were fixed, then CLNP could approxim ate the policy route by

targeting individual routers in each of the desired backbones. Host Z, however, could not reverse

the policy route, so the re tu rn path would be asymmetric.

S I P P

Assume simple (non-extended) addresses. To send a packet along the above policy route, host H

forms the following packet:

Source Addr Dest Addr Next Addr A ddrl Addr2 A ddr3 A ddr4 AddrS

B.S.J.H B.O 1 N.O Q.O R.O C.O C.V.L.Z

Packets reversed by host Z would follow the reverse path .

S P ip

To send a packet along the above policy route, host H forms the following packet:

SEID DEID Active RSE R SEl 2 3 4 5 6 7 8 9

H Z 3 3J 9S IB IN IQ IR 1C 9V 3L

Packets reversed by host Z would follow the reverse path.

135

9.5 H o st A u to -A d d r e ss C onfiguration

In this section, we consider the capability of the internet protocol to support plug-and-play oper­

ation. Specifically, we are in terested in considering the am ount of m anual configuration necessary

for hosts to bring up the in ternet protocol itself. We do not consider rou ters because routers

require a certain am ount of configuration, for instance for the routing protocols, as a m a tte r of

course. Thus, auto-configuration of addresses in routers is not particu larly useful (in addition to

being much harder).

T here are two kinds of auto-address configuration—serverless and server-based. W ith serverless

auto-configuration, a host can configure a complete, globally routable in ternet address w ithout

talking to a server on an individual basis. By individual basis, we m ean th a t any server th a t might

be involved does not give different hosts different inform ation.

For instance, a common form of auto-configuration (indeed, the form we are in terested in here) is

where a host listens to a router advertisem ent of the subnet prefix, and appends its own host ID,

thus creating its address. In this case, the router is a kind of server, bu t its prefix advertisem ent

is not dependent on individual hosts. Thus, this is server-less auto-configuration.

All three protocols can do server-less auto-address configuration, and all roughly the same way.

T h a t is, each protocol allows the host to append its IEEE-802 address (either the one on its

interface card, or the one associated with its CPU) to the prefix. The prefix is globally routable

to the subnet, and the IEEE-802 address is guaranteed to be unique on the subnet^^. Thus, the

resulting address is globally unique and routable.

In the case of CLNP, the IEEE-802 address is positioned in the ID portion of the CLN P address.

In the case of SIPP, the local-use address form at is used. To form a globally rou tab le SIPP

address using a local-use address requires an address sequence. T his increases packet header

size and reduces forwarding perform ance (see Section 10.1). To avoid using an address sequence,

a SIPP host could form a local-use address only for the purpose of exchanging packets with an

address server, which then gives it a single, globally routable address. This “server-based” address

configuration, however, is more complex

In the case of SPip, the standard unicast EID is formed using an IEEE-802 address. T he address

sequence is learned from the router advertisem ent.

T h is is true if the address is of the “universally adm inistered” class, and if the vendor assign ing the address

has done it properly.

136

9.6 T y p e -o f -Service (ToS) Field

This section describes how the three protocols can do ToS Field style routing in the IP sense.

T h a t is, where there are a small number of service types th a t influence the route the packet takes.

In the case of IP, the ToS Field may also influence how the packet is internally queued, or how

it is transm itted over the link. This aspect of the ToS Field is outside the scope of rou ting and

addressing, and is not considered here. In IP, the available types are precedence, delay, th roughput,

and reliability.

9.6.1 C L N P

C L N P ’s globally unique QoS Field is in many ways similar to IP ’s ToS Field. T h a t is, a set of

values are defined to provide a small number of well-known service types. In CLNP, those types

are sequencing, delay, cost, and residual error probability.

As shown above in the context of provider selection (Section 9.4.1), CLN P can also use its source

specific and destination specific QoS param eters to define additional types of service.

9.6.2 SIP P

SIPP has no equivalent to IP ’s ToS Field. Note th a t this is an in tentional design decision on the

p a rt of the S IPP designers. The is because ToS Field, especially in the rou ting sense, has not

been proven to be a useful tool in the internet. Since every feature has a cost, S IP P is careful not

to include features whose benefit is marginal.

SIPP, on the other hand, does have encodings for different traffic classes, plus a flow identifier.

The traffic class inform ation is only for the purpose of determ ining how to queue the packet in a

router, not for determ ining how to route the packet. The flow identifier could be used for routing,

though the current SIPP specifications do not discuss this. As Section 2.2.6 discusses, the flow

identifier does not contain routing inform ation per se. R ather, it is a short hand for other routing

inform ation already in the packet.

9.6.3 SPip

The 8-bit P a th Modifier can be used for ToS Field routing in SPip. T he low-order b it determ ines

w hether the corresponding RSID is normal form or reverse-path form. The rem aining 7 b its are

free for future assignm ent. One possible future assignment is IP-style ToS Field.

Since each RSE has a P a th Modifier field, the ToS Field could be set separately for each RSE—for

instance, for each level of the hierarchy. Normally, however, all of the P a th M odifiers for a given

address sequence would be set to the same value.

137

Note th a t the 7 free bits of the P a th Modifier can be set on reverse-path form RSEs as well as on

norm al form. Depending on how the reverse paths were calculated, this could have the effect of

forwarding a m ulticast packet over a tree appropriate to the requested ToS.

9.7 E m b ed d e d Link-Layer A d d resses

C hapter 5 discusses the use of em bedded link-layer addresses. O f the three protocols, only CLNP

explicitly encodes link-layer addresses in its header. However, as described in chap ter 5, the way

they are used in CLNP is faulty and limited.

An a lternative approach is to include the link-layer address(es) in an options field.

This could work with SPip as follows. An options field is included in the header th a t contains the

link-layer addresses for each subnetw ork th a t requires it (th a t is, for each subnetw ork for which

the link-layer address lookup is too expensive or impossible).

The link-layer addresses in the options field are labeled to indicate which RSID each link-layer

address applies to. T h a t is, each address in the options field is of the form:

RSE Number Link-layer Addr

Since each RSID refers to only one subnet, it always clear where the link-layer address applies.

Thus, the problem th a t exists w ith CLNP, where it is not necessarily clear which subnet the

link-layer address refers to, is avoided.

W hen a packet arrives a t a router th a t does not know the appropria te link-layer address for the

next hop, the router looks into the options field and either ex tracts the appropria te link-layer

address, or discovers th a t the link-layer address is not listed.

If the link layer address is listed, the router can cache it for fu ture use. Thus, it does no t have the

processing overhead of looking into the options field on every packet. If the address is not listed,

the router can send an error report to the source indicating as much, and subsequent packets from

the source can give the link-layer address, or indicate th a t it is no t known, or select a different

route (for instance by using a different address). Since the link-layer address can be cached a t

routers and requested when needed, the host need not include it in every packet.

T his approach can also be used by S IPP and CLNP. In this case, the list of link-layer addresses

in the option is labeled with an address prefix rather than w ith an RSE, so th a t the rou ter knows

which link-layer address it should use.

138

9.8 N o d e -L e v e l Source R o u te

By node level source route, we mean a source route th a t identifies individual nodes (hosts or

routers) th a t the packet should visit. We are interested in two cases— one where the returned

packet follows the (reverse) source route, and one where it does not.

9.8.1 C L N P

IP and CLNP bo th have source route options th a t operate a t (and only a t) the node level. In

neither case is the receiving host able to, in practice, re tu rn the packet along the reverse path .

T his is not because the reverse path information is not in the header— it is. It is instead because

the specifications do not indicate th a t hosts should reverse the source route.

9.8.2 SIP P

S IP P ’s route sequence can serve as a source route option. If S IPP addresses are non-extended,

then node-level source routing in SIPP works similar to IP. T h a t is, each address in the source

route fully identifies a node, and the source route is advanced each tim e an identified node is

reached.

The difference between SIPP and IP is th a t the host receiving the source route will reverse it and

use it for re turn packets. If this routing of the return packets is not the desired behavior, or if

the SIPP addresses are extended, then the route sequence of SIPP cannot be used for node-level

source routing. Instead, m ultiple encapsulations of the SIPP header are required.

The problem w ith using extended addresses is as follows. Assume th a t a packet from host H to

host Z should visit routers A, B, and C on the way. Assume th a t all addresses are extended, such

th a t system x has address sequence xl:xO. If a route sequence were used to route the packet, the

route sequence would be H0:H1:A1:A0:B1:B0:C1:C0:Z1:Z0, with A1 as the in itial active address

(th a t is, it would initially appear in the Dest Addr field, and AO would be pointed to by the Next

A ddr field). The couplet A1:A0 would route the packet to rou ter A, the next couplet Bl:BO would

route the packet to router B, and so on.

W hen host Z reverses this sequence, however, it produces Z0:Z1:C0;C1:B0:B1:A0:A1:H1:H0, with

the initial active address being CO. This is broken, because in the general case it is impossible to

route a packet from host Z to “CO” (it m ust be routed to “C l” first).

T hus, to do node-level source routing whereby the return packet does not follow the reverse path ,

or where extended addresses are used, each node in the route m ust be encoded in a separate SIPP

header, and the headers encapsulated in sequence.

Thus, for the example above, the first (outerm ost) header contains the route sequence H0:H1:C1:C0,

139

the next header the sequence H0:H1;B1:B0, and so on. The higher-layer protocol indicator (Pay­

load Type in SIPP, Protocol in IP) indicates SIPP in each header except the last. Thus, when for

instance router C received the first header, it decapsulates it and subm its the next header to the

S IPP layer. This causes the packet to be routed to host B, which does the same.

W hen host Z receives the packet, the single header has a route sequence of H0:H1:Z1:Z0. All of

the source route inform ation is lost. Host Z reverses this header to send subsequent packets to H.

9.8.3 SPip

An SPip host can do node-level source routes, both where the re tu rn packets follow the reverse

p a th and where they do not. In order to do node-level source routing, however, a node-level RSID

m ust be assigned to each node th a t the packet will visit. In all bu t one of the examples up to now

(two-phase m ulticast), the node-level information is the EID itself. Assigning node-level RSEs

is an ex tra configuration task not otherwise needed. Thus, the assignm ent of node-level RSEs is

unlikely to happen in practice.

The technique of header encapsulation shown for SIPP can be used w ith SPip when a node-level

source route is needed b u t node-level RSEs have not been assigned. In w hat follows, we assume

th a t the node-level RSEs have been assigned.

In addition, the forwarding tables m ust be set up such th a t the node-level RSE is checked for by

the router. For instance, say router a of Figure 9.1 is given a node-level RSE of value Oa so th a t it

can be the target of a node-level source route. It would configure its (classical) forwarding table

as follows. Note th a t these forwarding tables show the effect of the Last RSE b it by pu ttin g a

or a ‘o’ before each D estination entry. A ‘4-’ indicates th a t the Last RSE b it is set (th a t is, it is

the last RSE in the route sequence).

Root RSETable for router a

D estination Next Hop T-tag

o9S Root RSETable V
o3I subnet I V
o3K subnet K \ /
o3J RSETable 1 V
+ 3 J Main EIDTable V
oQa Root RSETable \ /

odefault router c \ /
4-default Main EIDTable V

140

RSETable 1 for router a

D estination Next Hop T-tag

oOa Root RSETable y
default Main EIDTable y

Note th a t one difference between router a ’s Root RSETable here and the one shown in Table 9.2

is the addition of the + 3J entry^^. The Oa entry in RSETable 1 indicates th a t router a should

go back to the Root RSETable with the next RSE (presum ably the top-level RSE of the next

node in the source route). The default entry indicates what the -|-3J en try would otherwise have

indicated— th a t the M ain EIDTable should be examined.

If there are o ther routers on the same LAN, the node-level entries for these rou ters would also

appear in rou ter a ’s RSETable 1.

Assume th a t rou ter a receives a packet w ith a node-level source route. A packet is received with

an active RSE of o3J. The next two RSEs are oOa and olB . T h a t is, the top-level RSE of the next

node is IB.

Router a accesses its Root RSETable with value o3J. This points to R SETable 1, which is accessed

w ith oOa. This points back to the Root RSETable, which is accessed w ith o lB . T his m atches on

the default entry, and the packet is routed to backbone B.

Now, assume th a t router a receives a packet destined for it, and w ith the node-level RSE as paxt

of router a ’s address sequence. In this case, the packet is received w ith an active RSE of o3J, bu t

the next and final RSE is + 0 a (' + ’ because this is the last RSE in the route sequence).

This tim e, router a accesses its Root RSETable with value o3J, which, as before, points to

RSETable 1. RSETable 1 is accessed with +0a. This m atches on the -fdefau lt entry, which

points to the Main EIDTable. This is accessed with the EID, which is rou ter a ’s, and rou ter a

accepts the packet.

The above example illustrates the need for the Last RSE flag.

Note th a t a host could remove the node-level RSE from the address sequence when sending a

packet to router a (as a destination). Since the EID identifies the node, the node-level RSE is

not necessary. Since the node-level RSE always has level 0, the sending host knows th a t it can

elim inate this RSE from the address sequence.

Next we examine the route sequence form at for node-level source routes.

F irst consider the case where packets do not follow the reverse path . Assume the scenario from

S IPP above, where a packet visits routers A, B, and C on the p a th from host H to host Z. Assume

th a t the address sequences of hosts H and Z are 1H;9H:3H and 1Z:9Z:3Z respectively, and the the

A ctually, the 3 J entry in the forwarding table of Table 9.2, had we b een in d ica tin g the Last R SE b it sta tus,

w ould have been for -f3 J , since the expectation in that table is to retrieve the E ID .

141

address sequence of router x is lx;9x:3x:0x, where Ox is the node-level RSID.

The route sequence for the packet is:

3H:9H:1H : 1A:9A:3A:0A : 1B:9B:3B:0B : 1C:9C:3C:0C : 1Z:9Z:3Z

The Active RSE is lA , and the Num Source RSE is IH (the spaces are added in the route sequence

ju st to make it easier to read, and have no special m eaning). The packet follows the route sequence,

visiting routers A, B, and C as a result.

W hen host Z receives the packet, it reverses only the address sequence of host H. The rest is

discarded because the Num Source RSE did not include them .

Now assume the same path , bu t where the re tu rn packets m ust take the reverse path . The route

sequence, covering two lines of tex t, is form atted as follows:

3H:9H:1H : 0A:3A:9A;1A : 0B:3B:9B:1B : 0C:3C:9C:1C :

1A:9A:3A:0A : 1B:9B:3B:0B : 1C:9C:3C:0C : 1Z:9Z:3Z

The N um Source RSE field is set to 15. T h a t is, it includes everything in the first line. The Active

RSE field is set to 16— the beginning of the second line.

W hen host Z reverses this packet, it reverses w hat is on the first line above, resulting in:

1C:9C:3C:0C : 1B:9B:3B:0B : 1A:9A:3A:0A : 1H:9H:3H

Host Z’s own address is prepended to this, and the resulting packet is routed through routers C,

B, and A— the reverse path .

9.9 A n y c a st G roup A d d ress in g

We are interested in bo th one- and two-phase anycast.

N either CLNP nor S IPP have defined a separate anycast address space, though bo th could. While

perhaps preferable, it is not necessary th a t anycast addresses come from a separate address space.

Any unicast address can be declared an anycast address.

O n e -p h a s e A n y c a s t

For CLNP and SIPP, there is no difference in the form at of the packet header between (single­

phase) anycast and unicast. For SPip, anycast addresses do not require an RSE address sequence,

so SPip anycast packets have only the source address sequence in the route sequence.

There is essentially no difference between the way routers handle anycast and unicast. In both

142

cases, the destination address/E ID is exam ined and forwarded according to w hat is for all practical

purposes a unicast forwarding table entry.

SPip anycast addresses have a scope field. If SIPP defines anycast, then it could define them

similar to m ulticast, and therefore get scoping. The issue of how to set the scope is the same for

anycast as it is for m ulticast.

T w o -p h a se A n y c a s t

W ith SPip, two-phase anycast is achieved by simply p u tting the relevant (unicast) RSIDs in the

route sequence. For instance, if the desired service is th a t the packet goes unicast to a subscriber

network and then anycast to one of the group’s hosts, the destination address sequence contains

the RSIDs up to and including the subscriber-level RSID. Thus, two-phase anycast destination

inform ation contains an anycast EID and an address sequence, and a source host form ats the

header exactly as it does a unicast address, w ith the exception th a t it may have to fill in the

scope field of the anycast EID. If the target of the unicast phase is an individual host, then the

host-level RSID is included in the address sequence.

W ith SIPP and CLNP, there are two ways to do a two-phase anycast. One is to define the low-

order part of an otherwise unicast address as anycast. For instance, if the desired service is th a t of

the last paragraph , unicast to a subscriber network and then anycast to one of the g roup’s hosts,

then the provider and subscriber IDs in the address could be as unicast, bu t the subnet ID and

after could be replaced with an anycast ID.

The other way is using the source route m echanism, similar to how tw o-phase m ulticast is done.

T h a t is. the first address in the source route brings the packet unicast to a host, in the case of

CLN P or S IPP , or a border router, in the case of SIPP cluster addresses. (The com m ents m ade

above regarding the CLNP partia l source route bug of course still apply.)

9 .10 S u m m a ry

Table 9.4 sum m arizes the results of this C hapter. Those boxes m arked w ith ^ indicate th a t

the capability can be supported by the protocol. Those boxes m arked w ith % ind icate th a t the

capability can be supported but w ith m ajor lim itations. Blank boxes m ean th a t the capability

cannot be supported by the protocol.

Note that one form of m ulticast (two-phase w ith source-tree) and full policy rou tes are shown in

the ''useful” section of Table 9.4, even though the basic function (m ulticast and policy routing

respectively) are in the “required” section.

143

Table 9.4; Summary of Routing and Addressing Capabilities

Capability CLNP SIPP SPip

required

Big Enough Hierarchical Unicast Addressing

Classical Forwarding Information

Hole-Punching Forwarding Inform ation

M ulticast G roup Addressing

Shared-Tree y V V

Source-Tree V V V
Scoped % y V
Well-Known % y ^ /
Tw o-Phase/Shared-Tree y

M obility y y
Domain-Level Policy Route

Provider Selection V
Host Auto-A ddress Assignment y V

useful

Tw o-Phase/Source-Tree M ulticast y
Full Policy Route y y
Type-of-Service Field y y
Em bedded Link-Layer Address %

Node-Level Source Route

W ith Reversing

W ithout Reversing /
A nycast Group Addressing \ / y y
A nycast/T w o-Phase V
 ̂ Not with non-extended addresses

 ̂ Requires ex tra router configuration

 ̂ S trict source route only, unless encapsulation technique used

Not w ith extended addressing, unless encapsulation technique used

 ̂ Using hierarchical anycast address only

® W ith minor lim itations

144

C hapter 10

C osts o f SPip, SIPP, and C L N P

In this chapter, we discuss the relative costs of SPip, SIPP, and CLNP, in term s of processing

cost, header size, address assignment complexity, and control protocol complexity.

10.1 P ro c ess in g C ost

Processing cost is difficult to analyze comprehensively and in detail. Processing cost differs from

im plem entation to im plem entation, and within a given im plem entation , processing cost is in­

fluenced by m any factors— the mix of traffic (influences caching strategies), forw arding table size

(influences forwarding table lookup time or CAM (Content A ddressable M emory) size), and packet

form at (options are slower).

There are two basic elements of processing cost; processing speed and hardw are complexity. These

two elem ents can be traded off—reductions in processing speed generally require more complex

hardw are. None the less, one protocol can have lower overall cost th an another, in term s of speed

or hardw are complexity or some combination of the two, as shown in Figure 10.1.

In spite of the difficulty of precise and comprehensive analysis of processing cost, we can make

some useful generalizations. First, we can place a lower bound on processing speed. T h a t is, a

packet cannot be processed faster than the time it takes for the b its relevant to the forwarding

decision to arrive on the wire.

This lower bound is of practical consequence, as it is desirable (and often achievable) for a router

to transm it a received packet as soon as possible, thus minim izing sw itching latency. W ith cut-

through switching (th a t is, starting the transmission of a packet before the en tire packet is re­

ceived [105, 4, 1]), the lowest possible switching latency is the tim e it takes for the relevant bits

to arrive on the wire.

The second generalization we can make is th a t processing cost is d irectly related (as a first ap-

145

(.'omplex
Harclwaie

Operating region of

a worse protocol

Operating region of

a better protocol
Simple

Hardware

Fast Speed Slow Speed

Figure 10.1: Processing Speed Versus H ardw are Com plexity

proxim ation) to the num ber of memory accesses (reads and w rites) required, by a trad itional

C P U /m em ory hardw are architecture, to process a packet. This analysis includes b o th accesses to

the packet header and to other memory, such as a forwarding table. The following argum ents to

back up this claim are not at all rigorous, but defensible none the less.

It is fairly well established th a t the most expensive aspect of packet processing is m em ory trans­

fers [24, 23, 77, 91]. W hile memory transfer overhead is worst in the case of copying whole packets,

the fact is th a t any memory access is expensive relative to o ther processor operations, especially

when the access is across a shared bus.

In the case of packet processing, it is possible to reduce the cost of accesses w ith fast, local, dual­

ported memory. This, however, is increasing the complexity of hardw are. So, either way, there is

an increase in processing “cost” .

In general the cost of hardw are im plem entation is roughly related to the num ber of memory

accesses. For instance, if a packet header is large, and most of the b its of the header are relevant

to the forwarding process, then this can be reflected either as a lot of accesses or as a “wide”

hardw are structure . If a given field read from a header requires a lot of processing, this can

result in a lot of accesses to memory, for instance to do a forw arding table lookup, or in a “deep”

hardw are structu re . For instance, it is shown in [70] th a t more hardw are is required for a best-

m atch w ith default forwarding table search than for th a t of an any-m atch search, for the same

size address. T h a t is, the w idth of the hardware structu re (address size) is the sam e while the

dep th is greater.

A final argum ent supporting the count of memory accesses to com pare perform ance derives from

the fact th a t we are doing com parative performance m easurem ents ra ther th an absolute. We can

assume th a t every read has associated with it a small am ount of processing (shift, m ask, com pare,

etc.). It would make no sense to read something w ithout acting on it in some way. A nd, in ternet

146

packet processing does not require heavy-duty processing operations, such as a divide operation.

W hile some memory accesses will have more processing associated w ith them th an others, we can

assume as a first approxim ation th a t on average the ex tra processing is the same for all memory

accesses. Thus, processing is ju s t a small (probably less th an two) m ultiplier on the num ber of

memory accesses, which can be ignored because roughly the same m ultiplier applies to the memory

accesses of each protocol.

Based on the above observations, we settle here for using a simple count of mem ory accesses to

approxim ate processing cost for the three protocols. We assum e a processor w ith a native word

length of 64 bits. Thus, up to 64 bits can be read in a single read. However, we consider reading

or w riting any single field to be a single read or write, even though m ultiple such fields m ight be

otherwise accessible w ith a single 64-bit read.

Even with the simplification of counting only memory accesses, the analysis of processing cost is

still com plicated. The num ber of accesses depends on a num ber of variables, for instance w hether

the forwarding cache is hit or missed, and for SIPP and CLNP, w hether the forw arding table is

large or small.

Since a cache lookup and best-m atch forwarding table lookup are common to a num ber of routing

cabilities, we first analyze them separately, followed by the analysis of each rou ting cability (under

cache miss conditions).

10.1.1 Cache Hits

The caching of forwarding table lookup results is a common practice am ong routers [93, 47].

Typical cache size is m ultiple hundreds of entries. W hen a packet is received, the cache is indexed

w ith the destination address, using a CAM or a hash. If there is a cache h it, the forwarding

inform ation is ex tracted and the packet forwarded. If there is a miss, a forw arding table lookup

is done, and the result is w ritten into the cache.

In the following three subsections, the caching strategy for each protocol is described, along w ith

its cost.

C L N P

At a m inim um , CLNP indexes the cache w ith the destination NSAP address. T his stra tegy allows

CLNP to cache unicast and shared-tree m ulticast forwarding table lookups, b u t not source-tree

m ulticast lookups. Source-tree m ulticast, however, is in the fu ture likely to be a significant and

perhaps even dom inant traffic type. Thus, we should consider two caching strateg ies for C LN P—

one where only the destination address is used, and one where bo th source and destination address

are used.

147

For the destination address only caching strategy, we assume the following algorithm . The low

order p a rt of the destination NSAP address is read and used to com pute the hash value (the low

order p a rt is m ost effective for this because it differs most between different addresses). If this

results in a hit, then the rest of the NSAP address is read and com pared against the cache entry.

To read the low order p a rt of the destination NSAP address the router m ust first locate it by

reading the D estination Address Length Indicator field. So, the to ta l num ber of m em ory accesses

are as follows:

1. Read D estination Address Length Indicator 1 access

2. Read low-order part of Dest Addr 1 access

3. Read low-order part of address in cache entry 1 access

4. Read high-order parts of Dest Addr 2 accesses

5. Read high-order parts of address in cache 2 accesses

Totals: 7 accesses

3 for miss (min)

O f course, there are other memory accesses as well, such as retrieving the po in ter to the FIB

(Forw arding Inform ation Base), accessing the FIB, and so on. B ut these are common to all of the

protocols and so need not be counted for comparison.

The fastest possible destination-only cache lookup time is 30 bytes a t wire speed— 10 bytes for

the beginning of the header, and 20 bytes for the destination address^.

The caching algorithm for combined source/destination caching requires a decision po in t— where

the router determ ines if the lookup requires the source address. T his is necessary because the

source address should not be part of the compare if it was not used for the original lookup. This

avoids caching per source/ destination pair (versus ju st per destination) for unicast and shared-tree

m ulticast packets.

Thus, there are two caches, one for dest-only and one for source/dest com bined. The dest-only

cache is always accessed first to determ ine if the combined source/dest cache should be accessed.

Thus, the initial p a rt of the cache lookup is:

1. Read D estination Address Length Indicator 1 access

2. Read low-order part of Dest Addr 1 access

3. Read “which-cache” indicator 1 access

The which-cache indicator can be the same word as the low-order p a rt of the address, bu t w ith a

special value. If the which-cache indicator indicates dest-only cache,^ then the rem ainder of the

lookup is as described above, and costs 7 accesses. Otherwise, the following additional steps are

^The d estin a tion address can be sm aller, but in practice it is alm ost alw ays 20 b ytes.
^N ote that it is n o t adequate to only determ ine that the destin ation address is a m u lticast address to decide to

use the so u rce /d est cache. T h is is because the m ulticast address m ight be for a shared-tree, in w h ich the d est-on ly

cache suffices.

148

executed:

4. Read Source Address Length Indicator 1 access

5. Read low-order p a rt of Source Addr 1 access

6. Read low-order p a rt of source address in s /d cache entry 1 access

7. Read low-order part of dest address in s /d cache 1 access

8. Read high-order parts of Dest Addr 2 accesses

9. Read high-order parts of Source Addr 2 accesses

10. Read high-order parts of addresses in s /d cache 4 accesses

Totals: 15 accesses for h it

6 for miss (m in)

The fastest possible lookup for combined source/destination caching is 51 bytes a t wire speed.

Note th a t these caching algorithm s do not allow caching of packets th a t have ToS or source

routing. O f the “required” capabilities, this eliminates the ability of caching to be used with

provider selection, which uses the ToS facility. If the Length Indicator field indicates the presence

of ToS or source routing, then the cache is not searched.

The cache perform ance of CLNP is summarized in the following table:

CLNP Cache Performance

Cache M ethod Cache Hit

(accesses)

Cache Miss

(accesses)

Best Possible

(bytes a t wire speed)

D estination-only caching 7 3 30

Source/D est caching, source not required 7 3 30

Source/D est caching, source required 15 6 51

S I P P

SIPP caching is similar to CLNP caching in th a t it can either ju s t cache on the Dest A ddr,

in which case the cache can not be used with source-tree m ulticast, or it can cache on source

address inform ation as well. The strategy in the la tte r case would be the same as C LN P—first

access a dest-only cache using the Dest Addr field of the packet, and then determ ine if the source

inform ation should be examined. As w ith CLNP above, we consider bo th cases.

D estination-only caching requires only one read of the Dest A ddr field, and one read to the memory

location holding the cache— two accesses total. A cache miss also costs two accesses.

Note, however, th a t the result of the cache lookup may be to advance the route sequence. In this

case, the advance is done, and the cache lookup is done all over again using the new Dest Addr.

The cost of advancing the route header in SIPP is as follows:

149

1. Read Payload Type field 1 access

2. Read and write Next Addr field 2 accesses

3. Read Num Addrs field 1 access

4. Read and write A ddr in route sequence 2 accesses

5. W rite Dest A ddr field 1 access

Total: 7 accesses

T his first read, to the Payload Type field, is to insure th a t the R outing Header is the one imme­

diately following the SIPP header.

So, the to ta l cost of destination-only caching with SIPP is 2 accesses w ith no route sequence

advance, 11 accesses w ith one route sequence advance, 19 accesses w ith two route sequence ad­

vances, and so on. Even one route sequence advance, however, is the m inority case, and two route

sequence advances should alm ost never happen.

T he same stra tegy for CLNP described above can be used for S IP P — th a t is, the destination

address is exam ined first to determ ine which cache, the dest-only cache or the source/dest cache,

m ust be used. For the source/dest cache, the extended address m ust be exam ined in order of

high-order p a rt first^.

To determ ine which cache is used requires two memory accesses— a read of the destination address

in the S IP P header, and a read of the which-cache indicator. If source/dest caching is indicated,

then at least 3 more memory accesses are required—read the source address of the packet, read

the source address of the cache, and read the destination address of the cache— for a to ta l of 5

accesses.

In alm ost all cases, this suffices for a cache hit. It does not in the case where 1) the host is

using extended addressing, 2) the host is transm itting packets to the same group using m ultiple

source extended addresses, and 3) the router in question is on m ultiple of the resulting trees. If

th is is the case, then the source/dest cache will indicate th a t more of the source address m ust be

exam ined. This requires three more memory accesses— one to insure th a t the Source R oute is in

the expected location, one to read the upper address of the extended address, and one to read the

corresponding address in the source/dest cache.

Given the ra rity of this situation , we assume th a t the source/dest cache requires a to ta l of 5

accesses. Note th a t if the source/dest cache is used, then it is not necessary to advance the route

sequence, since the route sequence is not advanced with m ulticast (see Section 9.2.2).

T he fastest possible forwarding speed of cached SIPP again depends on w hether or not the higher

addresses of the source extended address m ust be examined. Again, we assum e the common case

where it is not.

thank S teve D eering for p o in tin g this out to m e. Initially I thou gh t th a t the Source A ddr field alone was

sufficient, a lthou gh this error did not change the analysis results for the com m on case.

150

T hus, the SIPP packet can commonly be forwarded as soon as the destination address is received—

24 bytes a t wire speed. If a route sequence advance takes place, then the fastest forw arding speed

depends on where in the route sequence the subsequent address lies. If we assume th a t an extended

address has two addresses, then the second address of the routing header will be read when the

route is advanced. This address can be read after 48 bytes have arrived.

The following table sum m arizes S IP P ’s caching performance:

SIPP Cache Performance

Cache M ethod Cache Hit

(accesses)

Cache Miss

(accesses)

Best Possible

(bytes a t wire speed)

D estination-only caching 2 2 24

w ith one route sequence advance 11 11 « 4 8

w ith two route sequence advances 19 19 «5 6

Source/D est caching, source not required 3 2 24

Source/D est caching, source required 5 2 or 5 24

S P ip

SPip uses the flow ID combined w ith the source address for every cache lookup. This is possible

because SPip hosts assign a unique flow ID for every Source EID, Dest BID, and route sequence

combination.'^

As part of its cache m anagem ent, however, SPip routers also record the hop count field in the

cache, and check subsequent packets against it. If a cache h its, bu t the hop count of the received

packet does not m atch th a t of previous cache hits, the cache is erased and the packet is rou ted on

full routing inform ation.

T he purpose of m onitoring hop count is to discover when caches have become invalid due to

routing changes. For instance, consider the following case:

A packet is routed from host X to host Y, with a route sequence th a t indicates th a t the packet

should visit rou ter B on the way. Assume th a t the resulting p a th takes the packet through router

A on the way from host X to router B:

X

Assume th a t one or more packets have taken this path , and th a t therefore the packet is cached

based on flow ID and source EID. Subsequent to th a t, the path from B to Y breaks such th a t

the new p a th from B to Y takes the packet through router A. If rou ter A does no t check the hop

count field, it will simply access the cache using flow ID and source EID and rou te the packet

^It is not clear that such an approach is advantageous w ith SIPP. F irst, S IP P ’s regular cach in g is already fast.

Second, a flow -based cache h it does not elim inate the cost of advancing the source route if th a t is necessary. T h is

is the m ost exp en sive part o f SIPP caching.

151

tow ards B, resulting in a loop.

If, however, router A checks the hop count against the previous value, it will find th a t the hop

count is different, flush the cache, read the route sequence, and correctly route the packet towards

host Y. This m ethod will catch and break all loops.

The mem ory accesses for SPip caching are as follows:

1. Read flow ID field in packet 1 access

2. Read Source EID field in packet 1 access

3. Read flow ID from cache entry 1 access

4. Read source EID from cache entry 1 access

5. Read Hop Count field in packet 1 access

6. Read Hop Count field from cache entry 1 access

7. Read active RSE from cache entry 1 access

7. W rite Active RSE field in packet 1 access

Total: 8 accesses

An SPip cache h it requires six reads—two for the flow ID and Source A ddr in the packet, two

to read the corresponding fields in the cache entry, one to read the hop count field, and one to

com pare it against the one stored in the cache. SPip cache misses cost four reads.

Once a cache hit takes place, however, the SPip packet is not yet necessarily fully processed. If

the full forw arding process (the first one— when the cache was created) involved advancing the

route sequence, then the router m ust also do so after the cache h it. The route sequence does not

have to parsed, however, to do this. R ather, the router can store the originally calculated value

of the Active RSE field and write th a t value into the transm itted packet. This costs two memory

accesses— one read and one write.

T hus, the to ta l cost of a cache hit with SPip is 8 memory accesses. This cache hit is valid for

every type of forw arding— unicast, m ulticast, source routing, and so on.

Since the cache hit is com pleted after the Source EID field is read, the fastest possible forwarding

tim e for SPip is 16 bytes at wire speed^.

The cache perform ance of SPip is sum m arized as follows:

SPip Cache Perform ance

Cache M ethod Cache Hit

(accesses)

Cache Miss

(accesses)

Best Possible

(bytes a t wire speed)

(SPip has ju s t one cache m ethod) 8 4 16

^N ote th at the A ctive R SE field does not need to be read before the packet can b e forw arded. It does, how ever,

n eed to b e w ritten once it arrives.

152

10.1.2 Forwarding Table Lookup

Two forw arding table lookup styles are described in th is section, one for CLN P and SIPP, and a

different one for SPip.

C L N P an d S I P P

It is hard to characterize the perform ance of CLNP and SIPP lookups in term s of num ber of reads,

because the num ber required depends on a several things, particu larly the num ber of entries in

the forw arding table, and on the fanout value of the search tree, which im pacts how m uch memory

is needed to store the forwarding inform ation (more memory, fewer reads).

A fairly common form of search tree has a binary fanout— th a t is, each decision po in t divides

the possible num ber of outcomes roughly in half. There are a num ber of such schemes, such as

P a tric ia and the binary trie [65]. For this analysis, we assume a perfect binary search tree—th a t

is, one for which the num ber of search iterations is logg(n), where n is the num ber of entries in

the forw arding table. (T ha t is, each iteration perfectly divides the num ber of rem aining possible

outcom es in half.)

The search tree works as follows. The tree is a collection of d a ta structures, each w ith a compare

value and two pointers. Each pointer points either to another d a ta struc tu re , one to the “righ t”

and one to the “left” , or to nothing if the data structure is a leaf in the tree (as ind icated by the

com pare value).

The tree search s ta rts w ith the root d a ta structure. For each iteration of the search, the compare

value is retrieved from the d a ta struc tu re and compared against the address being searched. This

com pare can be a greater/less than compare, as w ith a binary trie , or a 0 /1 m ask com pare, as

w ith Patric ia . E ither way, the result is to retrieve either the righ t po in ter or the left pointer, and

do another iteration.

W hen a leaf is reached, a full compare (possibly involving a mask) is done against the address to

determ ine either if a m atch has occurred, or if the lookup has failed. The size of the po in ter is the

native word size of the m achine, and so is accessed w ith a single read. The size of the compare

value, however, is related to the size of the address. For SIPP, the com pare value is accessed in

one read (assum ing a 64-bit m achine), as shown in the following C code segm ent for a patricia

tree;

for (; 1 ;) {
if (currentPointer->value && address == 0)

currentPointer = currentPointer->right;
else

15 3

currentPointer = currentPointer->left;
if (currentPointer->value == 0)

break;

The to ta l cost of this iteration is 2 reads, one for the compare value and one for the pointer.

For CLNP, the compare value is three 64-bit words, bu t this does not m ean th a t every compare

requires three reads. This is because the comparing (w hether it be m asks or g reater/less than)

works left-to-right on the address. For instance, w ith P atric ia , only one bit is com pared a t a

tim e, and the current bit is always to the right of the previous b it. T hus, even though the CLNP

address is 3 64-bit words long, only one of them need be com pared a t any given iteration . Thus,

each iteration m ust indicate which 64-bit word of the address should be exam ined:

for (;!;) {
address = addressArray[currentPointer->addressWord]
if (currentPointer->value && address == 0)

currentPointer = currentPointer->right;
else

currentPointer = currentPointer->left;
if (currentPointer->value == 0)

break;

}

Thus, each iteration of a CLNP search costs three reads.

For SIPP, the final com pare costs one read, while for CLNP it costs th ree reads.

Thus, the to ta l cost of the lookup for SIPP is:

2 log2(n) -Hl (10.1)

and for CLNP, it is:

3 log 2 (n) + 3 (10 .2)

where n is the num ber of entries in the forwarding table.

1 5 4

For our analysis, we assume two cases, a large forwarding table (8192 entries), and a small forw ard­

ing table (16 entries). Based on the above equations, the cost of the forw arding tab le operations

for SIPP and CLNP are:

Protocol Small Forwarding Table Large Forwarding Table

SIPP 9 27

CLNP 15 42

SP ip

The above search tree style does not apply to SPip because SPip does not have bit-wise maskable

addresses. Instead, SPip has a series of flat identifiers (RSEs).

Typical forw arding operations for an SPip router involve one or two RSEs. A lookup of two RSEs

happens when either a router is hole punching, or when the packet passes from one hierarchy level

to another. Occasionally three or more RSEs may be exam ined in a single forw arding operation.

For the purpose of evaluation, we assume th a t two RSEs are exam ined.

The cost of exam ining two RSEs is calculated as follows:

1. Read Active RSE field 1 access

2. Read active RSE 1 access

3. Read value from RSE Table 1 or 2 accesses

4. Read next RSE (or EID) 1 access

3. Read value from RSE Table 1 or 2 accesses

Total: 6 accesses

Reading a value from an RSE Table may sometimes require two accesses. This happens when the

read entry indicates th a t a default entry should be accessed. For our analysis, we assum e th a t

an RSE Table read requires on average 1.5 accesses. Thus, the to ta l cost of a forwarding table

lookup w ith SPip is 6 accesses.

10.1.3 Hierarchical U nicast Addressing

In practice, the cost of a hierarchical unicast lookup is more expensive w ith hole-punching than

w ithout. W ith SPip, hole-punching results in an additional RSE being exam ined. W ith SIPP or

CLNP, the rou ter will look deeper in the address to dig out the relevant forw arding inform ation.

O ur analysis, however, is too rough to distinguish between the two. Therefore, we ignore the

distinction.

155

C L N P

The cost of hierarchical unicast addressing in CLNP is equal to the cost of a cache miss plus

the cost of reading the D estination Address plus the cost of the forw arding tab le lookup. The

cache miss requires three accesses. The low order part of the D estination A ddress is already read

when the cache is missed, so two more accesses are required to read the full D estination Address.

Finally, the forwarding table lookup takes 15 or 42 accesses (for sm all and large forw arding table

respectively).

Thus, the to ta l cost of a hierarchical unicast address forwarding w ith CLN P is 20 or 47 accesses.

Note th a t the cost here is dom inated by the forwarding table lookup.

The fastest possible processing time is the same as th a t of the destination-only cache (because a

decision is reached after the destination address is read)— 30 bytes a t wire speed.

S IP P

For SIPP, we consider two cases: one where the route sequence is not advanced, and one where it

is advanced once.

W ith no route sequence advance, the cost is 2 accesses for the cache miss (a t which po in t the

D estination Address has been read), and 9 or 27 accesses for the forw arding tab le lookup, for a

to ta l of 11 or 29 accesses. Again the cost is dom inated by the forw arding table lookup.

If the route sequence is advanced, then we can assume th a t the first lookup resulted in a cache

hit (2 accesses), since the address in the first lookup is one th a t the rou ter recognizes as its own.

The cost of advancing the route sequence is 7 accesses. The cost of the forw arding table lookup

is 9 or 27 accesses, resulting in a to ta l cost of 18 or 36 accesses.

The fastest possible forwarding speed is the same as th a t of the destination-only cache h it— 24

bytes for no route sequence advance, and 48 bytes for one route sequence advance.

S P ip

The cost of a hierarchical unicast address lookup for SPip is equal to the cost of a cache miss (4

accesses), plus the cost of the forwarding table(s) lookup (6 accesses), plus the cost of updating

the Active RSE field, which is 2 accesses (one read, from the FIB, and, often, one w rite). The

to ta l cost is therefore 12 accesses.

The fastest possible lookup time for a hierarchical unicast address depends on how deep the

relevant RSE is in the route sequence. If we assume four-level addresses— host, subnet, subscriber,

and provider— then there are six RSEs, and the last RSE is the subnet ID for the destination.

Assuming th a t the subnet ID m ust be read, the fastest possible lookup tim e is 52 bytes a t wire

156

speed.

10.1.4 Single-phase Shared-tree M ulticast

For CLNP and SIPP, we assume th a t the m ulticast address has been inserted into the cache a t

m ulticast tree setup tim e and therefore results in a cache h it even if the m ulticast packet has not

yet been received.® This assum ption applies to all of the m ulticast examples.

Thus, for shared-tree m ulticast, the forwarding cost is the same as for a (source/dest) cache hit,

which is 7 accesses and 30 bytes for CLNP, 3 accesses and 24 bytes for SIPP.

For SPip, the forw arding cost is a cache miss (4 accesses) plus a lookup on the D estination EID

field. This lookup requires only three memory accesses, one to read the Active RSE field (which

will be value 0), one to read the Dest EID field, and one to read the EID Table. Thus, the to ta l

cost is 7 accesses.

The fastest possible lookup is the time it takes for the Active RSE field to arrive— 28 bytes.

10.1.5 Single-phase Source-tree M ulticast

C L N P

For source-tree m ulticast, the cache hit (7 accesses) on the destination address indicates th a t the

source address m ust be examined. The cost of examining the source address is 3 accesses to read

the source address plus the cost of the forwarding table lookup (15 or 42 accesses). T hus, the

to ta l cost of a source-tree m ulticast lookup is 25 or 52 accesses.

The fastest possible forwarding time is the time it takes to read the source address— 51 bytes at

wire speed.

S I P P

W ith SIPP, the cache h it (3 accesses) on the destination address indicates th a t the source address

m ust be examined. To examine the source address, the rou ter m ust first decide if the source

address is extended or not. This requires exam ination of the Payload Type field (1 access).

If the address is not extended, then a forwarding table lookup is done on the Source A ddress— 10

or 28 accesses, one to read the source address and 9 or 27 to do the lookup. T hus, the to ta l cost

for a simple address is 14 or 31 accesses.

The fastest possible time is the time it takes to read the Dest EID — 24 bytes a t wire speed.

®Note that som e im plem en tation s of som e m ulticast algorithm s, such as M O S P F , in order to save m em ory, m ay

do ex ten sive processing to calcu late a m ulticast tree when the first m ulticast packet o f a group is received.

157

If the address is extended, then the router m ust read the Next A ddr field (1 access) to determ ine

the location of the high-order part of the source address. For this analysis, we assume th a t the

extended address sequence has two addresses. Next, the high-order p a rt of the source address

sequence is read (1 access), and a forwarding table lookup is perform ed.

This lookup may result in an answer, or may indicate th a t the low-order p a rt of the source

address sequence should be examined. Note, however, th a t each forw arding tab le lookup should

cost roughly half th a t of a full forwarding table lookup, because only half of the address is exam ined

each time. Given this, plus the fact th a t the first lookup m ay suffice, we assum e th a t the cost

of searching both addresses is equivalent to the cost of a full search— 9 or 27 accesses. Add to

this the cost of reading the source address, and the to ta l cost for extended addresses is 16 or 34

accesses. The fastest possible speed is the tim e it takes to receive the first address of the route

sequence— 40 bytes a t wire speed.

S P ip

To do source-tree m ulticast, SPip examines one or more RSEs before exam ining the Dest EID.

Unlike unicast forwarding, it may have to parse through the entire source address before exam ining

the Dest EID. Thus, we can assume th a t 4 iterations on the RSE lookup are done, ra ther th an 2

as we assum ed for the unicast hierarchical lookup. This results in 5 additional accesses over the

unicast case, or 17 accesses total.

Like the unicast case, the fastest possible forwarding time depends on the num ber of RSEs in the

address sequence. We can assume here th a t it is the same as for the unicast case— 52 bytes.

10.1.6 Others

The other capabilities can be analyzed along the lines of the previous sections. R ather th an go

through each one in detail, we present the results of the cost analysis in Table 10.1.

10.1.7 D iscussion of Processing Costs

Figure 10.2 sum m arizes in graphical form the processing costs for the three protocols. Figure 10.2

has three graphs, for 1) the num ber of accesses with a large forw arding table, 2) the num ber of

accesses w ith a small forwarding table, and 3) the best possible forwarding tim e, in num ber of

bytes a t wire speed. Each graph also shows the performance of a cache hit. Keep in m ind th a t

m ost lookups will result in a cache hit.

Each graph gives four traces—one for CLNP (dotted line w ith the le tte r ‘c ’ for d a ta points), one

for SPip (solid line with the le tter ‘p ’ for d a ta points), and two for S IP P (dashed lines). One of

the SIPP lines is for the case where the route sequence is no t advanced (lower-case ‘s’ for d a ta

158

CLNr
50

SIPP with
advance

cache
hit

' ' l ^ ~ S H ! t -------

SIPP without
advance

cm

cuSPip
sm
su

1 2 3 4 5 6 7 S 9 10 II 12

Number of accesses, larue forwarding table

CLNP

cache
hit

cm
\ SPip

SIPP without
advance

12
Su

cu
sm

su

1 2 3 4 5 6 7 X 9 10 11 12

Number o f accesses, small forwarding table

100

cache
hit

SPip

(1 SIPP with
' advance

cm
Su

cu
s- -

SIPP without
advance

1 2 3 4 5 6 7 X 9 10 11 12
Best possible time, bvtes at wire speed

Figure 10,2: Summary of Forwarding Costs

159

Table 10.1: Summary of Forwarding Costs

Capability CLNP SIPP SPip

small large best smalP large^ best^ both* best

required

1 . Hierarchical Unicast 2 0 47 30 11/18® 29/36 24/48 1 2 52

2 . Shared-tree M ulticast 7 7 6 30 3 3® 24 7 28

3. Source-tree M ulticast 25 52 51 14/16^ 31/34 24/40 17 52

4. Tw o-Phase/Shared-tree _ 8 - - 11/18-3® 29/36-3 24/48-24 12/7^° 52/28

5. Mobility - - - 11/18® 29/36 24/48 1 2 52

6 . Provider Select 25 52 61 11/18® 29/36 24/48 1 2 52

useful

7. Tw o-Phase/Source-tree - - - - - - 12/17^° 52/64

8 . Policy Route^'’ - - - 11/18® 29/36 56 1 2 64

9. Type-of-Service Field 25 52 61 - - - 1 2 52

1 0 . Source Route 23/31^® 50/58 124 11/18® 29/36 24/88 1 2 1 0 0

11. Anycast 7 7 6 30 3 3® 24 7 28

1 2 . Two-Phase Anycast 2 0 47 30 11/18-3® 29/36-3 24/48-24 12/7^° 52/28

Num ber of memory accesses for small forwarding table (16 entries)

Num ber of memory accesses for large forwarding table (8192 entries)

Fastest possible forwarding tim e (bytes at wire speed)

Num ber of memory accesses (SPip has no dependency on forwarding table size)

X /Y where X = no routing sequence advance, Y = 1 advance

Does not depend on forwarding table size

X /Y where X = simple address, Y = extended address

C apability does not exist

X /Y -Z where X /Y = unicast phase no-advance/advance, Z = group address phase

X /Y where X = unicast phase, Z = group address phase

Assume 3 backbones in policy route

Assume 3 routers in source route, no reversing (extended addresses for SIPP)

X /Y where X = no source route advance, Y = 1 advance

points), and the o ther is for the case where it is (upper-case ‘S’ for d a ta points).

Each d a ta point gives the perform ance for the associated capability. T he capabilities are num bered

1 through 12, corresponding to the num bers of the cabilities in Table 10.1. T he first 6 cabilities

are “required” , and the la tte r six are “useful” . D ata points are missing where the protocol cannot

do the capability. Thus, for instance, the CLNP traces have fewer d a ta points th an the SPip

traces.

Note th a t strictly speaking there should not be lines connecting the d a ta points, as the d a ta

points are discreet and have no relation to each other—at least not in the sense of a continuous

m easurem ent. The lines, however, make it easier to group the d a ta points for a given protocol,

160

and also give a stronger visual sense of the performance of each protocol as a whole.

All of the cache h it d a ta shows the performance for com bined source/dest caching. Specifically,

the d a ta is for:

‘cm ’ CLNP w ith a hit on the combined source and destination address (the ‘m ’ in ‘cm ’ stands for

m ulticast).

‘cu’ CLNP w ith a destination address only hit.

‘p ’ SPip under all conditions.

‘S’ SIPP w ith two destination address only hits (th a t is, the route sequence is advanced once),

‘sm ’ SIPP w ith a hit on the combined source and destination address.

‘su ’ SIPP w ith a destination address only hit. (Note th a t these last two are com bined, labeled ‘s ’,

in the best possible tim e graph because they have the same perform ance).

The m ajor insights shown by the graphs of Figure 10.2 are as follows.

The first two graphs show th a t CLNP and SIPP are heavily dependent on forwarding table size

for their perform ance, while SPip in independent of forw arding table size. SPip perform ance is

significantly better than CLNP or SIPP when the forwarding table is large. W hen the forwarding

table is small, SPip perform s b e tte r than CLNP, performs roughly the same as S IPP with no route

sequence advance, and better th an SIPP with an advance.

In term s of num ber of memory accesses, CLNP performs significantly worse th an SIPP or SPip

across the board. In term s of best possible forwarding times, CLN P and SPip are com parable,

w ith SIPP perform ing generally b e tte r for the no route sequence advance case.

An in teresting point regarding SPip is th a t, in term s of the num ber of accesses, its non-cache

lookup perform ance is in m ost cases not th a t much worse th an its cache-hit perform ance. In

term s of best possible tim e, however, cache hit lookups perform significantly b e tte r th an cache

miss lookups.

10.2 H ea d er Size

C alculation of header size for the three protocols is straightforw ard. Table 10.2 shows the header

sizes for the three protocols. We assume two sizes of SIPP addresses (“large” and “sm all” S IPP).

Figure 10.3 gives the results of Table 10.2 in graph form. It shows th a t CLNP, large SIPP, and

SPip have generally similar header size, with CLNP being slightly worse th an SPip, and SPip

being generally worse, particularly for the common unicast and m ulticast cases (capabilities 1

through 3), than large SIPP. Small SIPP has a significantly sm aller header, particu larly for plain

161

Table 10.2: Summary of Header Size

Capability CLNP ^ Small S IPP 2 Large SIPP ^ SPip ^

required

1. H ierarchical Unicast 57 24 48 56

2. Shared-tree M ulticast 57 24 40 56

3. Source-tree M ulticast 57 24 40 56

4. T w o-Phase/Shared-tree - 40 56 56

5. M obility - 40 56 56

6. Provider Select 61 48 64 56

useful

7. T w o-Phase/Source-tree - - - 64

8. Policy Route^ - 56 72 64

9. Type-of-Service Field 61 - - 56

10. Source Route ® 123 56 96 104

11. A nycast 57 24 40 40

12. Tw o-Phase Anycast 57 40 56 56

 ̂ The CLNP NSAP address size is always assum ed to be 20 bytes

 ̂ “Small” SIPP assumes simple addresses

 ̂ “Large” SIPP assumes 2-address address sequence

Three RSEs per address sequence

 ̂ Assume 3 backbones in policy route

® Assume 3 routers in source route, no reversing

hierarchical unicast addressing (capability number 1), for which it is ha lf the size of large SIPP

and about 40% the size of CLNP or SPip. For source- or shared-tree m ulticast, sm all S IPP is 60%

the size of large SIPP, and 40% th a t of SPip or CLNP.

Given the small header size of small SIPP, we m ust ask if the advantage of the sm aller header

is w orth the cost— namely, th a t small SIPP (SIPP w ithout extended addresses) does not have

“serverless” auto-address configuration). Thus, auto-address configuration is significantly more

com plicated with small S IPP than with large SIPP or CLNP or SPip.

Header size has two m ajor effects on protocol performance. F irst, a large header can increase the

sw itching latency of a packet. Second, a large header takes up bandw idth and reduces th roughpu t

on a link.

Concerning latency, a large header can increase latency in two ways, depending on w hether or not

cu t-th rough switching is being used. If cut-through switching is being used, th en a large header

per se does not increase latency—it depends on where the inform ation relevant to forwarding is.

For instance, the SPip packet for unicast hierarchical addressing has a large header (56 bytes).

162

100

" s- ~ p — ■s

a "

- -s

s- - !t -

Figure 10.3: Sum m ary of Header Size

bu t in the case of a cache hit, the switching latency is only 16 bytes (see the cache hit section

of the b o tto m graph of Figure 10.2). W ithou t a cache hit, however, the latency is indeed higher

(52 bytes). We refer to a header where the relevant forwarding inform ation is a t the front as a

“shallow” header. Likewise, a header where the relevant forw arding inform ation is a t the back is

called a “deep” header. Thus, SPip with a cache hit is shallow, and SPip w ith a cache miss is

deep.

If cut-through switching is not being used, then a large packet header increases latency simply by

m aking the packet larger. Even if cut-through switching is being used, a large header can increase

latency for the case where a packet is queued up behind other packets. If the d a ta portion of

the packet (the portion behind the internet header) is large, then even a large in ternet header

does not make much difference. For instance, if the d a ta packet is 4000 bytes, the large (57-byte)

CLNP header contributes to less th an 2% of the total packet size, and so is irrelevant. If the d a ta

portion is small, on the other hand, then header size is a significant factor.

Thus, we are concerned w ith two things:

163

• Switching latency with cut-through (deep or shallow header), and

• Percentage of packet size contributed by the header (large or sm all header).

As shown in Section 10.1.7, S IPP with no route sequence advance has significantly lower cut-

th rough latency (fastest possible forwarding time) than S IPP w ith a route sequence advance,

CLNP, or SPip. Small SIPP has no route sequence and so never requires a route sequence advance.

Thus, small S IPP best satisfies both of the above concerns.

There are environm ents where deep and large headers are a problem , and environm ents where

they are not. In general, as bandw idth and distance increase, deep or large headers become less

of a problem.

Deep headers becomes less of a problem simply because faster bandw id th leads to lower latency.

For instance, the latency due to C LN P’s 57 byte header on E therne t (10 M bps) is 0.046ms. A

typical packetization ra te for VAT voice encoding (VAT is a conferencing application running over

the IP in ternet) is 20ms— th a t is, the voice packetization itself adds 20ms latency [13]. T hus, the

large CLNP header contributes to only 0.2% of the to tal latency. Even when sw itched through 10

routers, the cum ulative latency due to the header is ju st 2% of the packetization latency.

Large headers become less of a problem a t high speeds for two reasons. F irst, in the non cut-

through case, the latency of a larger header is less a t high speeds. Second, applications can

generally produce larger packets when using high speed links, precisely because the latency is

lower w ith higher speed. Thus a large header contributes less overhead a t higher speeds.

For instance, interactive voice or video applications can to lerate only a small am ount of end-to-

end latency (a couple of hundred milliseconds). As link speed increases, however, packets can

be larger while still m aintaining an acceptable latency. Of course, some applications have small

packets independent of link speed— telnet and DNS, for instance. B ut as link speeds increase,

the use of “large-packet” applications (sound and image) tends to dom inate link usage patterns.

Thus, even if a large header consumes a significant portion of sm all packets, large packets make

up m ost of the link usage, and thus the large header accounts for only a small fraction of the to ta l

link usage.

O f course, there exist m any slow speed links— for instance voice-band m odem s, and increasingly,

wireless links. On these links, header size is an im portant issue. In fact, even the IP header, at

20 bytes, is too big for dial-up links, and requires header compression [60].

Thus, we have situations where the largest (CLNP) of the three headers is no problem , and others

where the sm allest (small SIPP) is too big.

Fortunately, there are m echanisms for reducing the negative im pact of a large or deep header.

B oth of them have already been m entioned. If the problem is ju s t deep headers, then a flow ID

style caching scheme such as th a t of SPip or SIPP (with flow setup) can be used. If the problem

is large headers, then a header compression scheme as used w ith IP can be used. These schemes

164

are in common use and are known to work well.

Given th a t these mechanisms exist, the difference between using small S IPP and one of the larger

headers is nothing more th an a question of at what point a com pression scheme m ust be used.

W ith sm all SIPP, the bandw idth at which no compression can be to lerated is lower th an w ith one

of the larger headers.

Given th a t serverless auto-address configuration is an im po rtan t feature, the only situation th a t

could justify choosing small SIPP over one of the (auto-configurable) larger headers is th a t where

1) a widely deployed technology worked without compression when using sm all S IPP , bu t requires

compression when using a larger header, and 2) the use of com pression is expensive, for instance

because the caching characteristics were poor.

Such a situation does not exist today, and in my mind is highly unlikely to exist in the future.

Therefore, I conclude th a t the benefits of using small SIPP are outweighed by the costs.

10.3 C o n tro l P r o to c o l C om p lex ity

Most of the control protocols used for CLNP, SIPP, and SPip, such as routing protocols, operate

similarly. This is not surprising, since for the capabilities th a t are covered by all three protocols,

the three protocols differ more by mechanism than by sem antics.

T here are, however, three cases where the control protocol com plexity is different betw een the

protocols. One is with small S IPP auto-address configuration. Because sm all S IP P does not have

serverless auto-address configuration, an auto-address configuration protocol, such as DHCP for

IP [32], is required. Such protocols are not as complex as d istribu ted routing protocols, bu t are

more complex than , say, ARP, and so are not trivial.

The o ther two cases where control protocol complexity is different are 1) w ith provider selection,

and 2) certain aspects of the unicast routing protocol. These two cases are covered below.

10.3.1 U nicast R outing Protocols

SPip and CLNP have exactly the same semantics vis a vis hierarchical unicast routing. As a

result, their routing protocols operate almost identically. The rou ting protocols for bo th advertise

longest-m atch prefixes from the m ost significant part of the address on down. CLN P does so in

the form of an address prefix, and SPip in the form of a sequence of RSEs, b u t the inform ation

conveyed is the same.

The prim ary difference between CLNP and SPip is th a t, a t forw arding tim e, CLN P always ex­

amines the address from the most significant part, whereas SPip does not necessarily s ta r t at the

m ost significant part. As discussed in section 9.1, this means th a t SPip m ust understand the

165

context of the packet (th a t is, the most significant part) w ithout looking a t the m ost significant

p a rt. Insuring th a t this works correctly requires some additional com plexity in S P ip ’s routing

protocols.

S IPP shares this difference w ith SPip. SIPP has an additional difference in th a t it does not do

hole punching across the 64-bit boundary. The routing protocol for S IP P also should operate

in term s of longest-m atch prefixes. However, because SIPP does not do hole punching across

the 64-bit boundary, it is conceivable th a t a SIPP routing protocol could advertise only 64-bit

addresses— th a t is, it does not necessarily advertise addresses from the m ost significant part.

These differences in SPip and SIPP result in some additional com plexity in their routing protocols,

and potentially in some new failure modes. SPip and SIPP are discussed in tu rn in the following

two sections.

S P ip

T he ex tra complexity to S P ip ’s routing protocol is minimal. As discussed in Section 9.1.6, SPip

advances the Active RSE for classical forwarding inform ation but not non-classical (hole-punching)

forw arding inform ation. Thus, an SPip router m ust format its forw arding tables so th a t it advances

the Active RSE appropriately.

Fortunately, this can be done w ithout additional router configuration. W hen an SPip router

receives a routing update , it compares the RSEs in the sequence of RSEs against those of its own

address(es). The router can always advance the Active RSE beyond the level where its own RSE

m atches th a t in the advertised sequence.

T his style of operation introduces the possibility of a new failure m ode in the case where a ro u te r’s

address has been misconhgured. In this case, it is possible th a t such a misconfigured rou ter will

advance the Active RSE for w hat is essentially non-classical forw arding inform ation.

For instance, assume the non-classical forwarding inform ation case of Figure 9.1 in Section 9.1.

Assume further th a t rou ter b has been misconfigured so th a t it th inks th a t its own top-level RSE

is 1C— th a t is, th a t of backbone C.

Assume th a t a packet for host Z w ith address sequence 1C:9V:3L arrives a t rou te r b from subnet

I. Since router b has hole punching information for 1C:9V, and since it th inks it is in 1C (because

it was misconfigured), router b advances the Active RSE and forw ards the packet to rou ter c.

R outer c examines 9V, bu t assumes the context is for an address sequence w ith IB in the top-level

RSE. If there is a subscriber-level RSE under backbone B whose value m atches 9V, rou ter c will

incorrectly forward the packet towards th a t subscriber. The packet will subsequently either be

delivered to the wrong subscriber network, or will loop back to rou ter b, which will again in terp ret

the RSE 9V incorrectly, thus forming a loop.

In actual practice, it seems likely th a t if router b were misconfigured this way, th en some other

166

aspect of the routing algorithm would not operate correctly. For instance, rou ter c m ight not

successfully obtain router b as a neighbor, since it would be expecting router b to have an address

prefix sim ilar to its own. None the less, the possibility for the above failure mode exists w ith SPip,

where it does not for SIPP.

S IP P

W hen the SIPP routing protocol is advertising full prefixes (from the m ost significant p a r t of the

address), S IPP is subject to the same ex tra complexity and failure m ode as described for SPip

above.

The S IPP forwarding engine always forwards based on single (64-bit) addresses only. T h a t is,

even though m ultiple addresses may be examined in the course of processing the source route,

any single instance of forwarding operates on a single address, and does not consider previous

addresses in the route sequence. Because of this, it is theoretically possible for S IP P routing

algorithm s to advertise only 64 bit addresses.

This requires very careful configuration of the routing algorithm . If the lower p a r t of an address

sequence w ith a certain upper p a rt (say X) is advertised into an area w ith a different upper part

(say Y), the routers in Y will not be able to detect th a t the lower p a rt is for a destina tion outside

of Y. If there are addresses in Y with the same lower part, then routing will fail.

Because of this, SIPP routing algorithm s should always advertise full address sequences, even

though the forw arding engine operates on single addresses.

10.3.2 Provider Selection

W ith CLNP, for a host to select a provider, it m ust know the appropria te QoS option value to

pu t in the header. W ith SIPP, for a host to select a provider, it m ust know the cluster address of

the provider. B oth of these bits of inform ation m ust be learned via some discovery m echanism .

W ith SPip, on the o ther hand, the provider is selected using the top RSE of the address sequence.

T his RSE is already known by hosts via the norm al address sequence advertisem ent done by

routers (as p a rt of the auto-address configuration process).

Exactly how im portan t this difference is is hard to say, bu t it is likely to be significant. On one

hand, the header “tag ” (the provider information in the header— QoS, cluster address, or RSE)

is not the only inform ation needed by a host to make an informed provider choice. The host

m ust also know the ram ifications of choosing one provider over ano ther—for instance cost and

perform ance. One could argue th a t, given th a t this inform ation m ust be d is tribu ted to hosts, the

additional com plexity of adding the header tag to this inform ation is minimal.

One the o ther hand, having the header tag is likely to make obtain ing the o ther inform ation needed

167

easier. For instance, current DNS could be leveraged to give provider inform ation on request. The

host could make an inverse query using the top-level (provider) RSE. The record stored by DNS

could contain such provider inform ation as provider name, type of network (ATM , X.25, In ternet),

available types-of-service, and the like. This is particularly useful for learning ab o u t the providers

of destinations, as it is naturally harder to learn inform ation abou t rem ote sites com pared to one’s

own site.

A nother advantage of being able to isolate the provider ID is in com paring two addresses to aid

in the choice of provider. An SPip host can know definitively if a destination shares the same

provider ju s t by com paring its top-level RSE with the d estina tion ’s. This com parison cannot be

m ade w ith certain ty w ith SIPP, because the host does not natu ra lly know which b its of the address

are the provider part.

10.4 A d d re ss A ss ig n m en t C o m p lex ity

This section considers how easy or hard it is to assign addresses w ith CLNP, SIPP, and SPip.

Specifically, it considers the hum an adm inistrative process of assigning addresses. (Host au to ­

address configuration is discussed in previous sections of th is chapter and is Section 9.5.)

Address adm inistration is easier w ith SPip than it is w ith CLN P or SIPP. T he fundam ental

reason for th is is th a t w ith SPip, each “field” of the address is in a separate RSE, and so is in

certain respects is independent of the other fields. W ith CLNP and SIPP, the fields of the address

ab u t against each other. Thus, the size and position of one field affects the size and position

of adjacent fields. This tigh t relationship between fields in CLN P and S IPP p u t constrain ts on

address assignm ent th a t SPip does not suffer.

This fundam ental difference m anifests itself in a number of ways. F irst, the in itia l assignm ent of

CLNP and SIPP addresses (as opposed to reassignment la ter on) requires th a t the field positions

of each address be determ ined. M aking this determ ination is by no m eans im possible, bu t it is

not easy either, especially if the address is small. In the case of IP, great care m ust be taken

in the assignm ent of subnet and host fields, precisely because the IP address is small [108]. The

problem is not as bad with SIPP, and even less so with CLNP. Still, the process of choosing field

sizes has certain adm inistrative costs associated with it, which m ust be borne by a large num ber

of organizations. For instance, with CLNP, many countries and large organizations have gone

through the exercise of assigning field positions.

A more serious problem is th a t of reassigning addresses. Addresses have to be reassigned from

tim e to time for a num ber of reasons:

1. Network grow th may require a new level of hierarchy.

2. Network grow th may cause a field of the hierarchy to be too small.

168

3. Changing providers may require a new prefix.

4. Changing network location may require a new prefix.

Consider the first case—adding a new level of hierarchy. W ith SPip, adding a new level of hierarchy

is, a t least w ith respect to the address assignment procedure, very easy. A new RSE is inserted a t

the point in the address sequence where the new hierarchy level is. No reassignm ent of num bers

in existing RSEs is necessary. O f course, hosts and routers under the new level m ust have new

addresses configured, bu t th is is true with CLNP and SIPP also.

W ith SIPP or CLNP, however, the process is more involved. Consider an address p l.p 2 .s l.s2 . We

wish to insert a new hierarchy level in between levels p2 and s i , creating p l.p 2 .n l.s l.s2 . There are

several ways in which the new field can be inserted. F irst, if the address is variable length and

p l.p 2 .s l.s2 is not already the m axim um length, then the length is increased by the size of nl, and

it is inserted. This is sim ilar to and ju s t about as easy as the SPip case. U nfortunately, NSAP

addresses tend to already be a t their m axim um length (20 bytes) [110], and lengthening the S IPP

address requires a m inim um of 64 more bits plus additional forwarding overhead.

Second, there may already be space (unassigned bits) in the address between p2 and s i. In this

case, adding the new level is easy. Sometimes this may in practice be possible. For instance, the

G O SIP definition of CLNP has a “reserved” field. More generally, however, such space does not

exist.

T hird , the fields s i and s2 can be shrunk and shoved to the right. T his m ay involve a renum bering—

m eaning th a t the value of the fields s i or s2 may need to be changed for a given hierarchy element.

This is a significantly more involved process than the first two m ethods or th an SPip.

If there is not enough address space to the right of p2 to accom m odate the new hierarchy level,

then it is necessary to requisition a new portion of the address space to create the ex tra room.

For instance, a new prefix p l.p 3 m ight be obtained, where the field size of p3 is sm aller th an th a t

of p2. This process is also more involved than the first two m ethods or SPip.

The second po ten tia l reason for reassignm ent, where a field becomes too small to assign all of the

required num bers, should v irtually never happen with SPip. This is because S P ip ’s field size is

19 b its, or more th an 500,000 assignm ents a t a single level of the hierarchy. It is more likely w ith

CLNP, where fields, such as the area field, are as small as 16 bits, though 65,000 is still a large

num ber of assignm ents. W ith SIPP, especially small SIPP, it is more likely still.

Ju s t because a field overflows does not mean th a t the field size m ust be changed. A nother a lter­

native is to assign the hierarchy element th a t ran out of num bers another prefix. In this case, the

hierarchy elem ent would appear twice in forwarding tables. T his m ethod trades off forw arding

table size for ease of address assignm ent. In the worst case, however, the field m ust be resized,

requiring a process sim ilar to the one described above for adding a hierarchy level (th a t is, it is

easy for SPip and potentially more involved for SIPP and C LN P).

169

The last two poten tia l reasons for reassignment, getting a new prefix because of provider change

or moving, can result in lower-level field resignments if the new prefix is longer than the old one.

This, again, requires a process similar to the one described above. E ither the subscriber m ust

shrink its existing fields, or the provider (or geographic area) m ust ob ta in a new prefix space. One

way to avoid this situation is to make sure th a t all provider prefixes are the same length. This,

however, adds constraints to the initial assignment process, m aking it more difficult.

170

C hapter 11

S um m ary and C onclusions for

P art II

P a rt II of this thesis describes and analyzes three protocols— one w ith conventional syn tax and

sem antics (CLN P), one w ith a conventional syntax but expanded sem antics (S IP P), and one w ith

a new syntax and sem antics (SPip). The new semantics and sy n tax are the m ajor contributions

of this thesis.

The new sem antics come from an expanded use of the source route m echanism to achieve flexible

routing and addressing while m aintaining good performance.

To dem onstrate the flexible routing and addressing, the capabilities of the three protocols are

analyzed. Specifically, ten “required” and eight “useful” capabilities are considered. All of the

capabilities are ones th a t have been discussed in the IPng (IP next generation) process of the

IE T F , and represent a wide range of internetworking applications.

Of these capabilities, bo th SIPP and SPip handle all of the ten required ones. CLN P handles eight

of the required ones, including the four most critical ones. CLN P does not handle mobility, which

is a serious weakness. CLNP also does not handle two-phase shared-tree m ulticast, which may

prove to be a serious weakness, as th a t style m ulticast may prove im portan t for global scaling.

Of the eight useful capabilities, SPip handles seven of them . The only one th a t SPip does not

handle is em bedded link-layer addresses. Embedded link-layer addresses, however, is not so much

a routing and addressing problem as an address resolution problem , and in m y opinion its solution

should not come from the address per se. It is better to convey th e link-layer address in an option

or out-of-band. This opinion is supported by the fact th a t C L N P ’s em bedded link-layer addresses

have scaling and operational problems (see C hapter 5).

Both S IPP and CLNP handle four of the eight useful capabilities.

171

N ext, P a r t II analyzes the costs of the three protocols. These costs are analyzed prim arily for

forw arding cost (speed or hardw are complexity) and header size, bu t also for control protocol

com plexity and address assignm ent complexity.

The m ajor results of this analysis are as follows:

• S IPP generally has the lowest forwarding cost when a cache hit occurs. S IP P ’s caching

perform ance depends on the situation, however, and can be much b e tte r or som ew hat worse

th an S P ip ’s or C L N P’s. S P ip ’s and C LN P’s caching perform ance is sim ilar. Most router

forw arding takes place under cache hit conditions.

• S P ip ’s “best possible” caching perform ance (cut-through sw itching a t wire speed) is the best

of the three, C L N P’s the worst.

• S P ip ’s forwarding cost is independent of forwarding tab le size, whereas S IP P ’s and C L N P’s

are dependent on forwarding table size.

• For large forwarding tables (8192 entries), SP ip’s forw arding cost is significantly b e tte r than

S IP P ’s, which is in tu rn significantly better than C L N P ’s.

• For small forwarding tables (16 entries), SPip and S IPP w ithout a rou te sequence advance

perform similarly, SIPP w ith a route sequence advance perform s som ew hat worse, and CLNP

perform s worse still.

• S IPP has a smaller header than SPip or CLNP, bu t prim arily under the conditions where

simple (non-extended) addresses are used. This elim inates the serverless host auto-address

configuration feature of SIPP, however, and so is considered not w orth doing. Otherwise,

the packet size of the three protocols are comparable, w ith CLNP generally being slightly

worse and SIPP generally being better.

• Ignoring small S IP P ’s need for a host address assignm ent protocol, the control protocol

com plexity among the three protocols is generally com parable, though SPip is slightly less

complex in the area of provider selection, and SIPP and SPip require a slightly more complex

rou ting protocol than does CLNP.

• The address assignm ent process for SPip is simpler th an th a t of S IP P and CLNP.

T he conclusion of this thesis is th a t the generalization of the source routing m echanism increases

in ternet protocol capabilities over conventional m ethods. This is achieved a t lower cost in term s

of perform ance and operation com pared to conventional m ethods. This conclusion is particu larly

true for the comprehensive use of the source routing m echanism — th a t is, w here it is used for

locators— of SPip. It also holds, though less strongly, for the hybrid approach— a source route of

bitwise m askable addresses—of SIPP.

172

T his conclusion has two ram ifications— one for the present and one for the future. For the present,

it means th a t we can get the required features needed for continued grow th, b o th functionally and

actually, of the in ternet.

For the fu ture, it means an increased probability th a t the protocol will more easily be able to

accom m odate as-yet-unconceived features. This is particularly true of SPip, which is designed in

term s of a “routing and addressing engine” . T h a t is, SPip executes according to the elem ental

routing and addressing functions, as described in P art I of the thesis, ra th e r th an according to

the desired sem antics of the protocol. The desired sem antics are achieved by establishing the

appropriate forwarding tables in routers and the appropriate address sequences in hosts. New

sem antics are derived by modifying the control protocols and system configuration (such as DNS),

bu t w ithout m odifying the basic in ternet protocol.

173

C hapter 12

E p ilogu e

Ju s t to confirm the old saying th a t there is nothing new under the sun, 1 offer the following

epilogue.

As sta ted in C hapter 1, there was a flurry of creative activ ity in the mid to late 1970’s th a t resulted

in the internetw ork architecture, and in particular Pup [9] and IP [86, 87]. These two protocols,

however, do not in my mind adequately reflect the depth of understanding th a t the early in ternet

architects had of routing and addressing.

Specifically, one RFC and three lEN s (In ternet Engineering Notes) [85, 25, 22, 18] docum ent some

of the debate th a t took place during the year from m id-1977 to m id-1978 and th a t led to the IP

protocol. (O f course, I discovered these docum ents well after I had done the basic work on P ip :-).

These four docum ents show th a t 1) one of the central ideas of Pip, nam ely th a t of pu ttin g the

fields of the address in individual header fields, had been proposed by Jon Postel [85], and th a t

2) m ost of w hat the in ternet com m unity is currently “discovering” about routing and addressing

was already though t of by Postel, Sunshine, Cohen, Clark, Cerf, and perhaps others who did not

bother pu tting out lEN s (or whose lENs or other publications I have not bothered to read).

In w hat follows, the aspects of th a t debate th a t relate to the findings of this thesis are sum m arized.

The opening paragraph in P oste l’s May 1977 RFC730, “Extensible Field A ddressing” , says:

This memo discusses the need for and advantages of the expression of addresses in

a network environm ent as a set of fields. The suggestion is th a t as the netw ork grows

the address can be extended by three techniques: adding fields on the left, adding fields

on the right, and increasing the size of individual fields. Carl Sunshine has described

this type of addressing in a paper on source routing [102].

This, in a nutshell, is P ip ’s (or S P ip ’s) route sequence, which allow adding fields (RSEs) on the

left, the right, and in the middle (which Postel’s can do too, though he does not m ention it above).

174

L ater in the RFC, Postel says:

The prospect of interconnections of networks to form a com plex m ultinetw ork sys­

tem poses additional addressing problems. The new H ost-IM P interface specification

has reserved fields in the leader to carry network addresses. There is experim ental work

in progress on interconnecting networks. We should be prepared for these extensions

to the address space.

Talk abou t understatem ent!

And la ter still:

A problem with simple field addressing is the desire to specify only the fields th a t are

necessary given the local context. A program in terp reting the address is then unsure

w hat the first field represents. Some clues are needed in the address specification for

correct parsing to be possible. Dave Crocker has described a syn tax for a sim ilar

problem in network access of data .

T rying to do this (only including the fields of the address relevant to local context in the header)

w ith SPip tu rned out to be problem atic. Still, the “clue” th a t Postel refers to is useful for efficient

processing of the header, as the router only needs to parse the relevant fields. T his “clue” is S P ip ’s

Active RSE field.

Postel gets to the m eat of the th ing in the following excerpt:

Specifically I suggest th a t we adopt a field based extensible address scheme where

each field is separated from its neighbors by a delim iter character and each field has a

nam e. W hen an address is specified the name of the most general field m ust also be

indicated.

Definitions:

(address) ::= (field-name) “:” (fields)

(field-name) ::= “N E T ” — “IM P” — “H O ST” — “M ESSA G E-ID ”

(fields) ::= (field) — (field) “/ ” (fields)

(field) ::= a decimal num ber

SPip has a few differences from this, bu t the basic idea is there. Som ething to give the context

of the field to be parsed (SP ip’s Active RSE — P oste l’s field-name), and a series of fields (S P ip’s

are b inary not decimal, bu t had P oste l’s found their way in to a packet, I ’m sure they would have

been binary).

In A pril of 1978, Danny Cohen shed more light on the natu re of addresses in his IEN31, “On

Names, Addresses and Routings (II)” [25]:

175

I HATE TO A DM IT IT, BUT ...

A t the beginning of this note, and in an earlier note, I used a great line telling th a t

“nam es tell what the processes are, and addresses tell where they are .” It continues

by “routings tell how to get there.”

I hate to adm it th a t by now I have some reservations ab o u t this definition. My

nam e is “D anny.” My address is “ISI.” When I was a t Tech, my nam e was the same,

bu t the address was different. This supports the definition. How about the addresses

in a broadcasting m edia network? W hen a host changes its position (location) on the

sam e E thernet, its address does not change. Well, m aybe these addresses are no t real

addresses, according to the definition. A dm ittedly, this is an uncom fortable thought.

I believe th a t there is a b e tte r explanation. I suggest th a t an address is “the canonic

rou ting from the root of the addressing-tree.” It sounds recursive, does no t it?

To be more precise, an addressing scheme is a hierarchical organization of elem ents,

w ith code assignm ent such th a t each element has a unique set of codes, corresponding

to its position in the hierarchy.

T he notion th a t the address tells how-to-get-there from the roo t of the tree is very

sim ilar to the notion th a t absolute coordinates are really relative, w ith respect to the

origin.

Since we know (by default) how to get from the source to the UA root, and since

the address tells how to get to the destination from the root, the address tells how to

get from the source to the destination.

Hence, by definition, addresses are routings.

T his last conclusion, th a t addresses are routes, is a key “finding” of the taxonom y section (Sec­

tion 2.2) of this thesis, and is the basis of SP ip’s route sequence.

Later on in the lEN , Cohen makes a proposal:

O ur proposal for addressing and routing is as follows:

• Establish a UA (Universal Address) scheme, of variable level s truc tu re .

• Dissem inate as much knowledge to each participating node as deem ed practical.

• Allow the option of routing to be included in the headers of the messages.

• Refuse delivery of messages to a destination w ith unknow n routing.

• Establish internet-directory-assistance service.

This last point is crucial. “Internet-directory-assistance” (now known as DNS) m ust advertise the

“rou te” from the root of the hierarchy to the leaves. In particu lar, if the packet form at is a string

of fields (or addresses, as in S IPP), then DNS should advertise th a t string.

So, a t th is point in the discourse (April 1978), Postel has provided the address form at, and Cohen

the arch itec tu ra l underpinning from which to understand th a t address. So, w hat happened? W hy

176

did we end up with IP and not som ething more like SPip?

We find a clue to the answer from IEN46, w ritten by Clark and Cohen in June of 1978 called “A

Proposal for Addressing and R outing in the In te rn e t” [22]. After discussing several problem s with

rou ting and addressing, they make the following sta tem ent:

The solution which has been proposed in the past to cope w ith th is is to replace

the address in the packet w ith a route, called a source route since it is provided by

the source of the packet. The disadvantage of having a route in a packet instead

of an address is th a t the concept of an address is very useful one. For example, for

accounting purposes it may be necessary to note the source and destination of a packet

as it passes th rough a tran sit net. Clearly, it is desirable th a t the source and destination

be uniquely identified for this purpose, som ething not easily done if the source and

destination are specified only by a route. Thus, we propose th a t the address continue

to be the prim ary piece of inform ation in the packet, b u t th a t it be possible to include,

in addition, an optional source route.

So, here they recognize the need for a com pact, simple, fixed length something to identify the

source and destination of a packet. But, this is nothing more than the EID of SPip. So, the

need for bo th an identifier and an “address” (still a t th a t tim e arguable to be a route) was clearly

recognized. However, they added the source route to handle the routing bit, and kept the address

as the prim ary piece of inform ation.

I th ink this would have been fine (indeed, this is S IP P ’s approach) except for the crucial thing

m entioned by Cohen in IEN31:

• Establish internet-directory-assistance service.

Well, DNS was of course established, bu t it did not contain the source route, ju s t the address. So,

the “rou ting” inform ation in the packet was effectively lim ited to a single 32 bit field.

I was in terested to find the following in the C lark /C ohen paper:

5. M igration

W hat is the relationship between the scheme proposed here and the curren t in ternet

header w ith a fixed size address field? Happily, adoption of the addressing stra tegy

involving regions together w ith the optional in te rn e t source route implies no im m ediate

upheaval to packet form ats or gateway code. C urrently, every network is a region, and

every gateway thus contains code for doing inter-region routing. Eventually, gateways

will want to be modified as follows. W hen a region finally is defined which contains

more than one netw ork, then gateways inside th a t region will need to understand an

additional com ponent of the in ternet address. Thus, unless gateway code is rew ritten

177

for different regions, it will be necessary to write code which can deal, eventually, w ith

a variable size com ponent of the address. The address itself, however, can reasonably

be a fixed size, since it is merely an address and not a route. In fact, it seems th a t the

field as specified for the current in ternet header is sufficient in size, although perhaps

m arginally so.

Well, som ething happened here. An argum ent was pu t forth th a t 32 b its is enough because the

address does not have to do rou ting -the source route can handle the rest. C learly it was recognized

th a t a variable length something was needed, but the source route was deem ed sufficient for th a t,

and the 32-bit address won out in the end. So, perhaps w hat killed IP is not th a t the address

is too short (though probably it is), bu t th a t the ability for DNS to hand a host a source route

(which it could then pu t in the header so th a t the right th ing could happen in the network) was

not created.

So, indeed S P ip ’s routing sequence is a com bination of Po ste l’s Extensible Field Addressing (EFA)

and Clark and Cohen’s “address” , though with SPip the “routing” p a rt of the “address” has been

largely moved over to the EFA (route sequence in SPip), and the “address” (EID in SPip) is left

w ith the identification function.

An lEN from Cerf the following m onth (July 1978) seems to meld w ith C lark /C ohen (IEN48,

“The C atenet Model for Internetw orking” [18]). It generally confirms the C lark /C ohen proposal.

It, however, makes some additional interesting statem ents;

In order to limit the overhead of address fields in the header, it was decided to

restrict the m axim um length of the host portion of the in ternet address to 24 bits.

The possibility of true, variable-length addressing was seriously considered. A t one

point, it appeared th a t addresses might be as long as 120 bits each for source and

destination . The overhead in the higher level protocols for m aintain ing tab les capable

of dealing w ith the m axim um possible address sizes was considered excessive.

Not only is it in teresting th a t a longer address (120 bits, alm ost as long as an N SA P), was seriously

considered, but the reason for not going with it (memory overhead to “upper layer protocols”)

really shows how times have changed.

Finally, C erf’s lEN seems to delegate source routing to its current, and very lim ited, role:

One of the m ajor argum ents in favor of variable length “addressing” is to support

w hat is called “source-routing.” The structure of the inform ation in the “address”

really identifies a route (e.g., through a particular sequence of networks and gateways).

Such a capability could support ad hoc network interconnections in which a host on

two nets could serve as a private gateway. Though it would no t partic ipa te in catenet

routing or flow control procedures, any host which knows of this private gatew ay could

send “source-routed” in ternet datagram s to th a t host.

178

It is interesting th a t the original ideas of Postel and Cohen (very SPip-like) evolved into the source

route, which was then lim ited to a “special service” role (i.e., routing a packet th rough a private

host on two nets).

To conclude, I m ust say th a t when I read these four docum ents, I found it fascinating and delightful

to discover th a t my work, with the considerable aid of hindsight, was able to confirm, and pu t in

a m odern context, the early thinking of the internet architects.

179

B ib liograp h y

[1] A. A utolitano, F. Bernabei, M. Ciampi, and M. L istanti. A pplication of G eneralized Parallel

D elta Networks to a Hybrid Broadband Switch. International Conference on Communica­

tions, 1:123-127, June 1989.

[2] A. Ballardie, P. Francis, and J. Grower oft. An A rchitecture for Scalable Inter-D om ain

M ulticast R outing. Proceedings of A C M SIG CO M M 93, pages 85-95, Septem ber 1993.

[3] A. Bar-Noy and M. Copal. Topology D istribution Cost vs. Efficient R outing in Large N et­

works. Proceedings o f A C M SIG CO M M 90, pages 242-252, Septem ber 1990.

[4] F. B ernabei and M. Listanti. A Hybrid Switching Exchange for B roadband C om m uni­

cations. Proceedings of the Ninth International Conference on Computer Communication

Technologies for the 90 ’s, pages 61-65, October 1988.

[5] D. Bertsekas and R. Gallager. Data Networks. Prentice-H all, 1987.

[6] L. B buy an and D. Agrawal. Generalized Hypercube and H yperbus S truc tu re for a C om puter

Network. IE E E Transactions on Computing, C-33:323-333, 1984.

[7] big in ternet@ m unnari.oz.au. Big Internet Mailing List, archive a t m unnari.oz.aurbig-

in ternet/list-arch ive /*.

[8] K. B irm an, A. Schiper, and P. Stephenson. Lightweight C ausal and Atom ic G roup M ulticast.

A C M Transactions on Computer Systems, 9(3):272-314, A ugust 1991.

[9] D. Boggs, J. Shoch, E. T aft, and R. Metcalfe. Pup: An Internetw ork A rchitecture. IE E E

Transactions on Communications, C 0M -28(4):612-624, A pril 1980.

[10] R. Braden and J. Postel. Requirem ents for Internet G atew ays. Request For C om m ents 1009,

University of Southern California Inform ation Sciences In stitu te , June 1987.

[11] L. Breslau and D. E strin . Design of Inter-A dm inistrative D om ain R outing Protocols. Pro­

ceedings of A C M SIG C O M M 90, pages 231-241, Septem ber 1990.

[12] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network M anagem ent P ro to ­

col (SNM P). Request For Com m ents 1157, University of Southern C alifornia Inform ation

Sciences In stitu te , May 1990.

180

mailto:internet@munnari.oz.au

[13] Steve Casner. Private Communications. ISI.

[14] C C IT T . C C IT T E.163, Numbering Plan for the International Telephone Service, Blue Book,

1988.

[15] C C IT T . C C IT T X.121, International Numbering Plan fo r Public Data Networks, Blue

Book, 1988.

[16] C C IT T . C C IT T X.25, Interface Between Data Terminal Equipment (D T E) and Data Cir­

cuit Terminating Equipment (DCE) for Terminals Operating in the Packet Mode on Public

Data Networks, Blue Book, 1988.

[17] C C IT T . Draft Recommendation Q.931, ISD N User-Network Interface Layer 3-General A s ­

pects, Blue Book, 1988.

[18] V. Cerf. The C atenet Model for Internetworking. In ternet Engineering Note 48, University

of Southern California Inform ation Sciences Institu te , Ju ly 1978.

[19] D. Cheriton. Sirpent: A High-Performance Internetw orking A pproach. Proceedings o f A C M

S IG C O M M 89, Sepember 1989.

[20] I. Cidon and I. Copal. Control Mechanisms for High-Speed Networks. Proceedings o f IE E E

International Conference on Communications ‘90, April 1990.

[21] D. Clark. Policy routing in In ternet Protocols. Request For Com m ents 1102, U niversity of

Southern California Inform ation Sciences Institu te , May 1989.

[22] D. Clark and D. Cohen. A Proposal for Addressing and R outing in the In ternet. In ternet

Engineering Note 46, University of Southern California Inform ation Sciences In stitu te , June

1978.

[23] D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An Analysis of T C P Processing Overhead.

Transactions on Communications, 27(6):23-29, June 1989.

[24] D. Clark and D. Tennenhouse. A rchictectural Considerations for a New G eneration of

Protocols. Proceedings of A C M SIG C O M M 90, pages 200-208, Septem ber 1990.

[25] D. Cohen. On Names, Addresses and Routings (II). In ternet Engineering Note 31, University

of Southern California Inform ation Sciences Institu te , April 1978.

[26] J. Crowcroft and K. Paliwoda. A M ulticast Transport P rotocol. Proceedings o f A C M SIG ­

CO M M 88, pages 247-256, A ugust 1988.

[27] S. Deering. M ulticast Routing in Internetw orks and E xtended LANs. Proceedings of A C M

SIG C O M M 88, A ugust 1988.

[28] S. Deering. Host Extensions for IP M ulticasting. Request For C om m ents 1112, University

of Southern California Inform ation Sciences Institu te , A ugust 1989.

181

[29] S. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis, S tanford University,

Palo A lto, California, 1991.

[30] S. Deering. SIP: A Simple In ternet Protocol. IE E E Network, 7(6):16-28, M ay 1993.

[31] S. Deering, D. W aitzm an, and C. Partridge. Distance Vector M ulticast R outing P ro to ­

col. Request For Com m ents 1075, University of Southern California Inform ation Sciences

In stitu te , November 1988.

[32] R. Droms. Dynamic Host Configuration Protocol. Request For Com m ents 1531, University

of Southern California Inform ation Sciences Institu te , O ctober 1993.

[33] W. Edm ond, K. Seo, M. Leib, and C. Topolcic. The DARPA W ideband Network Dual Bus

Protocol. Proceedings of A C M SIG C O M M 90, pages 79-89, Septem ber 1990.

[34] D. Estrin. Policy R equirem ents for In ter A dm inistrative Dom ain Routing. Request For

Com m ents 1125, U niversity of Southern California Inform ation Sciences In stitu te , November

1989.

[35] D. E strin and K. O braczka. Connectivity D atabase O verhead for In ter-D om ain Policy R out­

ing. Proceedings o f IE E E Infocom 91, April 1991.

[36] D. E strin , Y. Rekhter, and S. Hotz. Scalable Inter-D om ain R outing A rchitecture. Proceedings

of A C M S IG C O M M 92, pages 40-52, A ugust 1992.

[37] P. Francis. A N ear-term A rchitecture for Deploying Pip. IE E E Network, 7(6):30-37, May

1993.

[38] P. Francis. P ip Header Processing. Request For Com m ents 1622, University of Southern

California Inform ation Sciences Institu te , May 1994.

[39] P. Francis. P ip N ear-term A rchitecture. Request For C om m ents 1621, University of Southern

California Inform ation Sciences In stitu te , May 1994.

[40] P. Francis and R. G ovindan. Flexible Routing and A ddressing For a Next G eneration IP .

Submitted to A C M SIG C O M M 94, 1994.

[41] G. Fredereckson and R. Janardan . Designing Networks w ith C om pact R outing Tables.

Algorithmica, 3:171-190, 1988.

[42] V. Fuller, T . Li, J. Yu, and K. V aradhan. Classless In ter-dom ain R outing (CIDR): an

Address Assignment and Aggregation S trategy. Request For C om m ents 1519, University of

Southern California Inform ation Sciences Institu te , Septem ber 1993.

[43] G. Finn. Routing and addressing problems in large m etropolitan-scale internetw orks. Re­

search R eport ISI/RR-87-180, Inform ation Sciences In stitu te , M arina del Rey, California,

M arch 1987.

182

[44] G. Finn. Reducing the vulnerability of dynam ic com puter networks. Research R eport

ISI/RR-88-201, Inform ation Sciences Institu te , M arina del Rey, California, June 1988.

[45] P. Gross and P. A lm quist. lESG Deliberations on R outing and Addressing. Request For

Com m ents 1380, University of Southern California Inform ation Sciences In s titu te , November

1992.

[46] J. Hagouel. Issues in Routing for Large and Dynamic Networks. PhD thesis, Columbia

University, New York City, 1983.

[47] Joel Halpern. Private Communications. Network Systems Corp.

[48] E. Huizer and D. Crocker. IE T F W roking C roup Guidelines and Procedures. Request For

Com m ents 1603, U niversity of Southern California Inform ation Sciences In stitu te , M arch

1994.

[49] idm r@ cs.ucl.ac.uk. Inter-Domain Multicast Routing Mailing List. ftp

cs.ucl.ac.uk:darpa/idm r-archive.Z .

[50] IEEE. Logical Link Control, IEEE 802.2, 1988.

[51] IEEE. Token Ring Access Method and Physical Layer Specifications, IE E E 802.5, 1989.

[52] In ternational O rganization for S tandardization. Data Interchange - Structures for the Iden­

tification of Organizations, ISO 6523, 1984.

[53] In ternational O rganization for S tandardization. End System to Intermediate System routeing

exchange protocol for use in conjunction with the Protocol fo r providing the connectionless­

mode network service (ISO 8473), ISO 9542, 1988.

[54] In ternational O rganization for S tandardization. Information Processing Systems - Data

Communications - Network Service Definition - Addendum 2: Covering Network Layer A d­

dressing, ISO 8348 AD2, M arch 1988.

[55] In ternational O rganization for S tandardization. Protocol fo r providing connectionless-mode

network service, ISO 8473, 1988.

[56] In ternational O rganization for S tandardization. Intermediate System to Intermediate Sys­

tem routeing exchange protocol for use in conjunction with the Protocol fo r providing the

connectionless-mode network service (ISO 8473), ISO 10589, 1991.

[57] In ternational O rganization for S tandardization. Information Technology - Telecommunica­

tions and Information Exchange Between Systems - Network Service Definition fo r Open

Systems Interconnection: A m endm ent 5: Addition of Group Network Addressing, IS O /IE C

8348/Am . 5, 1993.

[58] J. loannidis, D. D ucham p, and C. Maguire Jr. IP-Based Protocols for Mobile In ternetw ork­

ing. Proceedings o f A C M SIG C O M M 91, pages 235-245, 1991.

183

mailto:idmr@cs.ucl.ac.uk

[59] J. Liu and W. Hsu. Routing and broadcasting algorithm s for a large fam ily of interconnec­

tion topologies. Technical R eport CPS-91-05, Dept, of C om puter Science, M ichigan S tate

University, O ctober 1991.

[60] V. Jacobson. Com pressing T C P /IP Headers for Low-Speed Serial Links. Request For

C om m ents 1144, U niversity of Southern California Inform ation Sciences In stitu te , February

1990.

[61] J. Jaffe. Hierarchical clustering with topology databases. Computer Networks and ISD N

Systems, 15(5):329-339, 1988.

[62] F. K am oun and L. Kleinrock. Hierarchical R outing for Large Networks: Perform ance Eval­

uation and O ptim ization. Computer Networks, 1(3):155-174, Jan u ary 1977.

[63] H. Katseff. Incom plete H ypercube. IE E E Transactions on Computing, 0-37:604-607, 1988.

[64] D. K atz and P. Ford. TUBA: Replacing IP w ith CLNP. IE E E Network, 7(6):38-47, May

1993.

[65] D. K nuth. The A r t of Computer Programming, Vol. 3 (Sorting and Searching). Addison

Wesley, 1973.

[66] J. Kolar and H. Wu. A Study of Survivability Versus Cost for Several Fiber Network

A rchitectures. IE E E International Conference on Communications ’88, pages 61-66, vol. 1,

June 1988.

[67] G. Lauer. Hierarchical routing design for SURAN. IE E E International Conference on

Communications (ICC) ’86, 1:93-102, June 1986.

[68] D. Lynch and M. Rose. In ternet System Handbook. Addison Wesley, 1993.

[69] N. M axemchuck. The M anhattan Street Network. IE E E G L O B E C O M ’85, pages 255-261,

vol. 1, December 1985.

[70] A. McAuley and P. Francis. Fast R outing Table Lookup Using CAMs. Proceedings of

IN F O C O M 93, pages 1382-1391, M arch 1993.

[71] P. M ockapetris. Domain Names - Im plem entation and Specification. R equest For Com m ents

1035, University of Southern California Inform ation Sciences In s titu te , November 1987.

[72] R. Moore, N. Geer, and H. Graf. G R ID N ET- An A lternative Large D istribu ted Network.

IE E E Computer Magazine, pages 57-66, April 1984.

[73] J. Moy. O SPF Version 2. Request For C om m ents 1131, U niversity of Southern California

Inform ation Sciences In stitu te , Ju ly 1991.

[74] R. Newman, Z. Budrikis, and J. H ullett. The Q PSX M an. IE E E Communications Magazine,

26(4):20-28, April 1988.

184

[75] C. Partridge. A Proposed Flow Sepcification. Request For C om m ents 1363, University of

Southern California Inform ation Sciences Institu te , Septem ber 1992.

[76] C. Partridge, T. Mendez, and W. Milliken. Host A nycasting Service. R equest For Com m ents

1546, University of Southern California Information Sciences In stitu te , November 1993.

[77] C. P artridge and S. Pink. A Faster UDP. Transactions on Networking, l(4);429-440, A ugust

1993.

[78] T . Pei and C. Zukowski. VLSI Im plem entation of Routing Tables: Tries and CAMs. Pro­

ceedings of IN F O C O M 91, April 1991.

[79] R. Perlm an. A Protocol for D istributed C om putation of a Spanning Tree in an Extended

LAN. Ninth Data Communications Symposium, 1985.

[80] R. Perlm an. H ierarchical Networks and the Subnetwork P artitio n Problem . Computer

Networks and IS D N Systems, 5:297-303, 1985.

[81] R. Perlm an. Network Layer Protocols with Byzantine Robustness. PhD thesis, M assachusetts

In stitu te of Technology, Cam bridge, M assachusetts, 1988.

[82] R. Perlm an and G. Varghese. Pitfalls in the Design of D istribu ted R outing A lgorithm s.

Proceedings of A C M SIG C O M M 88, pages 43-54, A ugust 1988.

[83] D. P itt and R. Dixon. Addressing, Bridging, and Source R outing (LAN Interconnection).

IE E E Network, 2 (l):25-32 , January 1988.

[84] D. Plum m er. E thernet Address Resolution Protocol: Or C onverting Network Protocol

Addresses to 48.Bit E thernet Address for Transmission on E th ern e t H ardw are. Request For

Com m ents 826, University of Southern California Inform ation Sciences In stitu te , November

1982.

[85] J. Postel. Extensible Field Addressing. Request For Com m ents 730, U niversity of Southern

California Inform ation Sciences In stitu te , May 1977.

[86] J . Postel. Internetw ork Protocol Approaches. IE E E Transactions on Communications,

COM -28(4):604-611, April 1980.

[87] J. Postel. In ternet Protocol. Request For Comments 791, U niversity of Southern California

Inform ation Sciences Institu te , Septem ber 1981.

[88] J. Postel. Transm ission Control Protocol. Request For C om m ents 793, U niversity of South­

ern California Inform ation Sciences Institu te , Septem ber 1981.

[89] D. P radhan . Dynamically R estructurable Fault Tolerant Processor N etwork A rchitectures.

IE E E Transactions on Computing, C-34:434-447, 1985.

[90] B. R ajagopalan. Reliability and Scaling Issues in M ulticast Com m unication. Proceedings of

A C M SIG C O M M 92, pages 188-198, August 1992.

185

[91] K. Ram akrishnan. Perform ance Considerations in Designing Network Interfaces. Journal

on Selected Areas in Communications, 11(2):203-219, February 1993.

[92] J. Reynolds and J. Postel. Assigned Numbers. Request For Com m ents 1340, University of

Southern California Inform ation Sciences Institu te , July 1992.

[93] Benny Rodrig. Private Communications. RAD Network Devices, L td.

[94] V. R utenburg and R. Ogier. Fair Charging Policies and M inim um -Expected-C ost Routing

in In ternets with Packet Loss. Proceedings of IE E E Infocom 91, April 1991.

[95] H. Saltzer, D. Reed, and D. Clark. Source Routing for Cam pus-W ide In ternet T ransport.

Proceedings of the IFIP WG 6.4 Workshop on Local Networks, pages 25-32, A ugust 1980.

[96] J. Saltzer. On the Naming and Binding of Network D estinations. Local Computer Networks,

pages 311-317, 1982.

[97] N. Santoro and R. Khalib. Routing W ithout R outing Tables. Technical R eport SCS-TR-6,

C arlton University School of Com puter Science, O ttaw a, 1982.

[98] N. Shacham . O rganization of Dynamic Radio Network by O verlapping C lusters: A rchitec­

ture Considerations and O ptim ization. Proceedings of the Tenth International Symposium

P E R F O R M A N C E ’84 , pages 435-447, December 1984.

[99] J. Shoch. Inter-N etw ork Naming, Addressing, and Routing. Proceedings 17th IE E E Com­

puter Society Internation Conference, pages 72-79, Septem ber 1978.

[100] T . Starling. Network Reconfiguration Saves Society Corp. $1 Million a Year. Bank System

Equipment, 2 5 (ll):48 -49 , 1988.

[101] M. S teenstrup. An A rchitecture for Inter-D om ain Policy Routing. R equest For Com m ents

1478, University of Southern California Inform ation Sciences In stitu te , June 1993.

[102] C. Sunshine. Source Routing and Com puter Networks. Proceedings of A C M S IG C O M M 77,

January 1977.

[103] C. Sunshine. Addressing Problem s in M ulti-Network System s. Proceedings of IN F O C O M

82, pages 12-18, M arch 1982.

[104] F. Teraoka, Y. Yokote, and M. Tokoro. A Network A rchitecture P roviding Host M igration

Transparency. Proceedings of A C M SIG C O M M 91, pages 209-220, 1991.

[105] D. Train and A. Carlton. Error Handling and O ther Im plem entation D etails of C ut-T hrough

Switching. Pacific R im Conference on Communications, Computers and Signal Processing,

pages 125-127, June 1987.

[106] P. Tsuchiya. The Landm ark Hierarchy: a New Hierarchy for R outing in Very Large N et­

works. Proceedings of A C M SIG C O M M 88, pages 35-42, A ugust 1988.

186

[107] P. Tsuchiya. Efficient and Robust Policy R outing Using M ultiple H ierarchical Addresses.

Proceedings of A C M SIG C O M M 91, Septem ber 1991.

[108] P. Tsuchiya. On the Assignm ent of Subnet Numbers. Request For C om m ents 1219, Univer­

sity of Southern California Inform ation Sciences In stitu te , April 1991.

[109] P. Tsuchiya. In ternet Routing over Large Public D ata Networks using Shortcuts. Proceedings

of A C M SIG C O M M 92, O ctober 1992.

[110] U.S. D epartm ent of Commerce, N ational In s titu te of S tandards and Technology, G aithers­

burg, MD, USA. Government Open Systems Interconnection Profile (G O SIP) Version 2,

federal inform ation processing standard 146-1 edition, April 1991.

[111] J . Van Leeuwen and R. Tan. Interval Routing. The Computer Journal, 30(4):298-307, 1987.

[112] D. Wall. Mechanisms for Broadcast and Selective Broadcast. PhD thesis, S tanford University,

Palo A lto, California, 1980.

[113] J . W estcott and G. Lauer. Hierarchical R outing for Very Large Networks. IE E E Military

Communications Conference M IL C O M ’8^, 2:214-218, O ctober 1984.

[114] L. Zhang, S. Deering, D. Estrin , S. Shenker, and D. Zappala. RSV P: A New Resource

ReSerVation Protocol. IE E E Network, Septem ber 1993.

187

