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27 Abstract. We solve the linearised Vlasov-Fokker=Planck (VFP) equation to show that heat

28 flow or an electrical current in a magnetizéd collisional plasma is unstable to the growth of

29 a circula‘r.ly polarised transverse Perturbation t0 a zeroth 01jder }miform magnetic ﬁeld. The
Braginskii (1965) transport equations exhibit the same instability in the appropriate limit. This

30 is relevant to laser-produced plasmasy.inertial fusion‘energy (IFE) and to dense cold interstellar

31 plasmas.

32

33

34

35

36 1. Introduction

37 In plasmas, particle momentum ‘distributions”are rarely Maxwellian and isotropic. —They

38 frequently carry a large energy flux or,a component of energetic particles. This is especially

39 so where there is a large localised deposition of energy. A dimensionless measure of an energy

40 flux is its ratio to the so-called free-streaming heat flow, Qy = nemevy, where n, is the electron

H density and v; = /eT'/me js the}Iectron thermal velocity if the plasma can be characterised

jé by a temperature T in eV. In ablating systems, the heat flow is naturally of the order of

44 10% of the free-streaming heat flow. This is particularly a feature of laser-irradiated dense

45 plasmas that constitute the main interest of this paper (eg Craxton et al 2015). A number of

46 plasma instabilities aresknown. to be associated with strong heat flow in laser-plasmas. These

47 include the Tidman & Shanny instability (Tidman & Shanny 1974, Sherlock & Bissell 2020),

48 the Weibel instability (1959), the electrothermal instability (Haines 1981), the ion-acoustic

49 instability that’egeneratesfan anomalous resistivity (Forslund 1970, Rozmus et al 2018), and

50 the field-compressing magnetothermal instability of Bissell et al (2010). Apart from the field-

51 compressing magnetothermal instability these instabilities do not require a pre-existing zeroth

52 order magnetic field: The Tidman-Shanny instability is driven by the Biermann battery and

53 relies upon the presence of the density gradient found in ablating plasmas. The Weibel instability

>4 is essentially collisionless and grows on the scale of a skin depth ¢/wpe. In contrast, the instability

33 considered in this paper requires the existence of a zeroth order magnetic field which is parallel

g? to the heat flow. The field-compressing magnetothermal instability combines Nernst advection

58 and Righi-ILeduc heat flow to amplify a pre-existing magnetic field that is perpendicular to the

59 heat flow.
60 Plasma instabilities driven by heat flow are also well-known in space plasmas. These have



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - PPCF-102832.R2

Magnetic field
o)

=
=1
Q

1nG

1 106 1012 1018 10%
density (cm3)
~

Figure 1. The lines give the temperature at which .7 = 1 for a rangeof dengities and magnetic
fields with Zlog A = 10.

been studied extensively over many decades (Forslund 1970pGary et al 1975, Gary 1985) where
they are known as ‘Heat Flow Instabilities’. Many différent instabilities have been identified
(Schwartz 1980, Davidson 1983), and a recent discussion can be found in Lee et al (2019).
Although collisions may be important in the formation of the heat flow in solar wind plasmas,
they are too weak to affect their instability on small scales:; 4Our analysis includes collisions,
but contains the collisionless case as a limit. The dispersion relation derived in section 4 below
gives the growth rate for a range of different unstable modés depending on the values of various
dimensionless parameters.

Electron collisions and Larmor gyration are essential ingredients of the instability focussed
on here. We also include the relatively slowsion response and find that it is important in the long
wavelength limit where the instability transitionsinto the non-resonant instability that is known
to drive magnetic field amplification during c¢esmic ray (CR) acceleration (Bell, 2004). We find
that magneto-collisional instabilities are present (i) in relatively relaxed plasmas in which the
energy flux is carried by electronsdn the high velocity tail of a Maxwellian distribution and (ii)
in plasmas far from equilibriuni in which an independent population of high velocity charged
particles, such as cosmic rays_or laser-produced energetic protons or electrons, pass through a
thermal plasma. N

We consider the case in which a strong heat flow or current of energetic particles propagates
parallel to a zeroth erdér magnetic field. This is a common configuration since collisionless
electrons in a uniform plasma are mobile along magnetic fields lines, but cannot pass easily
across a uniform magnetic field{’ We add a small perturbation to the magnetic field and show
that it grows exponentially.

‘Cross-field’ transport perpendicular to the local magnetic field can be enabled by collisions,
electric field, curvature insmagnetic field lines, gravitational fields, or hydrodynamic acceleration
of the bulk /plasma (équivalent to the effect of gravity). These processes have different
dependences onvelectron velocity. For example, the strong velocity dependence of the Coulomb
collision /rate means that collisions can dominate at low velocities while Larmor gyration
dominates at high velocities. We find that the competition between collisions and Larmor
gyration preduces instability. This ‘magneto-collisional instability’ is strongest when .7 is of
theforder of one where (). is the electron Larmor frequency and 7 is the collision time of a
thermal electron. Under these conditions, an electric field is generated to maintain electrical
neutrality-and satisfy V x B = pgj. The curl of this electric field causes unstable growth of the
perturbed magnetic field.

The'conditions for Q.7 ~ 1 are plotted in figure 1. As shown in figure 1, the conditions for
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strong growth occur naturally in laser-produced plasmas. In low density astrophysical plasmas
relevant to CR acceleration, the collisionality is usually low, Q.7 > 1, but the magneto-collisional
instability may be strong where CR propagate into a dense cold cloud, or where a dense cold
cloud is ablated by thermal conduction with a heat flow close to free-streaming. The magneto-
collisional instability may also be relevant in low density weakly collisionless plasmas where the
growth time is of the order of the collision time which, despite being long compared to.the
Larmor gyration time, may be short compared to the timescale for hydrodynamic evelution.

Since both collisions and Larmor gyration are important, the derivation of the general
dispersion relation requires solution of the Vlasov-Fokker-Planck (VFPj)wequation in which
advection, collisions, the effect of magnetic and electric field, and high' order anmisetropies are
modelled.

This paper is structured as follows. The central core of the paper is contained in sections
3 to 6. Section 3 sets out the basic equations consisting of the Maxwell equations for the
electromagnetic fields, the VFP equation for the electron respense, and/{the cold ion fluid
equations. Section 4 derives the dispersion relation. Section 5 solves the dispersion relation
for a heat flow parallel to a magnetic field. Section 6 solves the.dispersion relation for a thermal
plasma carrying a return current that balances the electric current carried by streaming energetic
charged particles.

Before embarking on the main general derivationdin, section 3, we insert in section 2 a
demonstration of instability in a simple special cases#Our aim in section 2 is to orientate the
reader to the basic physics underlying the mathematics an thefollowing sections.

Following on from the VFP derivations in sections 3 to 6, we show in section 7 that the
long wavelength limit of the same instability, can be derived from the Braginskii transport
equations. Braginskii’s analysis starts from the Boltzmann equation which is equivalent to the
VFP equation. Braginskii solves the linearised, equations in the limit of spatial scalelengths
much larger than the electron Larmotiradius and the electron mean free path. We find that
the Braginskii and VFP growth rates are mutually consistent within Braginskii’s scheme of
approximation.

2. Setting the scene

The dispersion relation derived/in later sections of this paper contains a number of unstable
modes. In this section we illustrate.the common underlying principle by a simple demonstration
of instability in one specific/econfiguration.

Consider a laser-plasma experiment in which a high intensity laser pulse is directed at the
front surface of a thin,solid foil. The interaction produces a stream of energetic protons that
emerges from the rear ofithe foil with an efficiency that can reach ~ 10% (eg Snavely et al
2000). The experimental parameters can be chosen such that the protons have energies in the
range 100keV-10MeV. The streaming protons are then passed through a second ‘target’ plasma.
Because of their high momentum, the protons form a directed rigid beam that is only weakly
deflected by collisions andelectromagnetic fields. Neutrality and magnetic induction require the
electrons in the target plasma to carry a return current that cancels the electrical current carried
by the energetie/protons. The small deflection of the energetic protons as they pass through the
target plasma is often used for proton radiography to diagnose a target plasma (eg Mackinnon
et al 2004, Tzeferacos et al 2018). The target plasma might contain magnetic fields generated
by awvarietyyof processes, for example by the Biermann battery. Consider the case in which the
target plasma is threaded by a magnetic field By that is aligned in the direction of the proton
beam. Such a magnetic field may arise naturally in the experiment with a magnitude in the
range 10kG - 1MG. Or alternatively, in an experiment designed to investigate the response of
the target, an external magnetic field could be imposed with a magnitude that can exceed 1IMG
(eg Santos et al, 2018). We now show that this configuration is unstable to the growth of helical
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Figure 2. Components of the current (dotted lines) when a perturbed.magnetic field éB is
added perpendicular to the zeroth order field By. ~

perturbations in the magnetic field.

Figure 2 illustrates the role of a perturbed transverse méagnetic field B in generating an
electric field with a curl that causes the perturbed magnetic field to.grow exponentially. The
streaming protons, passing with negligible deflection through the target plasma, draw a return
current jo in the opposite direction to the proton flux and parallel'to the zeroth order magnetic
field. Since the target plasma is collisional, an electricdield issneeded to draw the return current.
The resistivity of the plasma is 7 parallel to the lgcal magnetic field, and 1, perpendicular to
the local field. The perturbed magnetic field 0B is transverse to the zeroth order field By, so
the return current has a component perpendicular to the local magnetic field and a component
aligned with the local magnetic field. As shown imfigure 2, the electric field needed to draw the
return current has a component 7, jo cos ¢ parallel tothe local magnetic field, and a component
11 josin @ perpendicular to the local field. The component of the electric field perpendicular
to Bg in the plane of figure 2 is 0E = — Mj)docos 0 sin 6 perpendicular to the By. In the
linear limit of [0B| < [Bo|, 0E = () — 71)jedB/Bo. The curl of JE increases the perturbed
magnetic field §B and causes expenential unstable growth of the perturbation. The equation
for the evolution of the perturbed field. is

9(6B)
at

Ry V)FB) = (1.~ )3V x (6B) 1)

where v; is the Nernst-liketadwvection velocity parallel to jo arising from the component of the
electric field out of the'plane ofifigure 2. The resulting dispersion relation for wavenumber k
and frequency w is

ikvo A77

Qo1 Mo

w—kv; ==+ (2)
where An = 1=, Yo.=Jo /nee is the mean velocity of electrons as they carry the current jo,
and 79 = me[n.e’s is a fiducial resistivity. The 4 sign depends on the sense of rotation of the
helical instability. One sense of rotation is stable and the other is unstable.

Our purpose inthe derivation of equation 2 is to illustrate the physics without recourse to
complicated mathematics. Detailed calculations are presented in the rest of the paper where
we show that, in'the limit appropriate to this section, the maximum growth rate occurs when
Qe ~ 0.1 —1(see figure 6). For Z = oo, Braginskii (1965) gives An/no = 0.038 (1 = 0.294no,
n1'= 0.332mg) for Qe = 0.1 and An/no = 0.16 () = 0.294n9, 1 = 0.454n) for Q7 = 1. The
maximum growth rate is correspondingly

Ymax "~ 0.3kvg . (3)
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As an example, a numerical estimate of the growth rate for characteristic experimental
parameters can be obtained as follows. The electron return current must be equal and opposite
to the proton forward current if neutrality is to be maintained. If the protons of energy T}, imeV
carry an energy flux @, then jo = Q,/T,. As an order of magnitude estimate, the maximum
growth time 7! is ~ 30psec if By = 100kG, Q, = 101Wem™2, T, = 100keV, Tp = 1keV,
ne = 10%22cm ™2, and k is equal to the inverse Larmor radius of the thermal electfons.

The essential physics of the instability arises from the difference in electrom mobility across
and along a magnetic field. An electric field is needed to ensure that the electron return ¢urrent
is exactly anti-parallel to the forward proton current. The curl of the electriesfieldigenerates the
magnetic field.

As shown below, a related form of the instability occurs during thermal electron transport.
The heat-carrying electrons on the tail of the Maxwellian distribtition _playsthe role of the
streaming protons, while the thermal majority of the electrons carry aseturn current.

3. Instabilities derived from the VFP equation

Beginning from the electron VFP equation for a plasma thathis magnetised and collisional we
derive a dispersion relation when the plasma carries a heat, flowyorfan electric current. We
include the self-consistent motion of ions, but assume that the ions are cold. The derivation can
be applied to an arbitrary zeroth-order electron distribution function F'(v), but here we limit
our discussion to zeroth order distribution functions thatican'be expressed as the first two terms
in a Chapman-Enskog expansion in degrees of anisotropy: L 4

F(v) = Fo(lyh+ (v/IVDEL(V]) - (4)

Note that the subscripts ‘0’ and ‘1’ in Fy and Fy relate to the order of anisotropy, and not
to unperturbed and perturbed (zeroth order ‘and first order) quantities. Fp is taken to be
Maxwellian. Fj is determined by solution,of the\linearised VFP equation. Equations 20 and
21 give its form for a plasma carrying a heat flow and a current respectively. In contrast, the
perturbed part f(v) of the electron distribution function is allowed arbitrary anisotropy and
expressed as an expansion in spherical harmonies,

Nomags. M=N

fla,vitf= > D S, [v],6) P (cos )e™™? (5)

n=0 m=-—n
where cosf = v, /|v|, sinflcos¢ = v,/|v|, sinfsing = v./|v|, f;,™ = ()", and npae is
sufficiently large to accommodate all the relevant physics. In some of the calculations presented
here n,q, has to exteed 100. »We assume the Lorentz (high Z) approximation for electron
collisions in which thé 'deminant collision process is angular scattering of electrons by ions in
the local rest frame/f the,ions:

The derivation proceeds by linearising the VFP equation for the m = 1 components of the
perturbed electron distribution function, the equations of motion for cold ions, and the Maxwell
equations for @lectromagnetism. The zeroth order heat flow or the electric current (carried in
each case by F}) is assimed to be aligned with the zeroth order magnetic field in the z direction
along the unit vectorsx. The perturbation is taken to be circularly polarised. The perturbed
vectors are all transverse and lie in the (y,z) plane. The equations for the ion velocity and

electromagnetic fields are
0 0B
nemAa—l::neeE—l—neeuxB—i—R E:_VXE V x B = pupJ 4+ poneeu  (6)

where my.= (A/Z)m, = p/ne, and the resistive frictional collisional force exerted by electrons

on ions 18 5
R = —/ (({i)cmevdgv (7)
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where (0f/0t), is the electron collision term. The electric current carried by the electrons/(with
charge —e) in the lab frame, is

J= —/evfdgv . (8)

The spatial differential operator V and the zeroth order magnetic and electric fields are.in the
x direction.

When expressed in terms of spherical harmonics (Bell et al 2006), the VFP equations for the
m = 1 components are (n = 1,2,3...)

% _eby[n—1 4 X n+2 Hl +€(Ey —iE.) | Ghy _ Hy 4
ot me [2n—1 "1 2p 437 2me 2n—1 2ns3
~
n—1 0f , n+2 0fL., ieB, , ie(Bp=iB.) o (0f\*
Tom—1" oz _2n+3v or  me Jat 21 f”—’_(f)t)cm 9)
e o) B L)
,Ufn m ,UTL m
m_ ,m n H™ — o Antl) n_/. 1
G = dv n =Y ov (10)
and (9f/0t);,, represents the effect of collisions:
L —3/2
If\?! 1 . On1 OFy 3.76 [ mev?
(at>c,n = —in(n + Dv(v)f, — TUV(U)W where "\ v(v) = — | =7 (11)

and 7 = Typr/Z, where Tnrr, = 3.44 x 10%(log A): ! (n./em=3)~1(T/eV)3/? is the collision
frequency in the NRL plasma formulary,and logA is the Coulomb logarithm. All components
of the perturbed electron distribution for./m > 2rare multiples of perturbed quantities and can
be neglected as small in the linear analysis.

In the above, f}, E,, E., By, B, Gl & H}are all first order perturbed quantities, and f2,
Ey, By, GO & H? are all zeroth ordér. In order to distinguish the zeroth order quantities, we
label them as f0 = F),, E, = Eqfand B, = By.

These equations result in a dispersion relation for a range of unstable modes with differing
underlying physics. Some of these‘aresalteady known, especially in the collisionless limit. Other
unstable modes are, to our'knowledge, previously unknown.

In the derivation, we will assume that the frequency w is small compared with the maximum of
the electron Larmor frequency €, the electron collision frequency 1/7 and the rate kv, at which
electrons transit one.wavelength,27/k of the mode. This allows us to neglect df} /0t from the
VFEP equation. It removesithe faster growing modes, such as velocity-resonant inverse Landau
damping, from the dispersion relation, making the dispersion relation more easily expressed in
a closed form.

We also neglectghe term. proportional to E, (= Ep) on the right hand side of equation 9. This
can be justified.oft either of two counts: (i) the local approximation that k~'eEy < m.v?, which
for heat flow'in a temperature gradient is equivalent to k= < T/|VT)|, or (ii) Eg < v; By, which
is equivalent to ¢he condition that the electron Larmor radius is much smaller than 7'/|VT|.
These_areralso the conditions that allow us to assume that Fy and F; are constant over a
wayelength of the perturbation.

When discussing the features of the unstable modes, we will primarily focus on those relevant
to thermal heat flow and non-thermal energy fluxes in dense plasmas irradiated by a high power
laser with relevance to IFE.
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4. The dispersion relation
In the following derivations, the spatial differential operator V and the zeroth order magnetic
and electric fields are aligned with the unit vector X such that V — ikx. First-order/quantities

oscillate such that 0, /0t = —iw&| where £ = &,y + £.2 is a general vector perpendicular to

By, giving

—iwnemau| = neeE | —inc.eBou +R | wB| = kxxE | tkxxB | =quoJ i tponceu
(12)

Circular polarisation is imposed such that x x £, = i£, . The sense (handedness)ef polarisation
is determined by the sign of k. The terms dependent on the perturbed glectron distribution in
the VFP equation can be collected onto the left hand side of the equation to give

n—1 0ff , n+2 oft., 1 nn+ D) 4 -
n n .Qe —
m—1" ox +2n+3v Ox +iflefn + 2 In
5n1 ie . € . 8F0 . 8-FO
As shown in Appendix A for circular polarisation, equations (13) can be reconfigured to give
EBJ_ ieEJ_ GFO . 14 aFo}
£ — g > — 14
L) = st { P+ g o (14)

where f| = 29R(f}) — 22S(f1) is the vector partl of the perturbed electron distribution
function when expressed as a tensor expansion (Johnstonyd960), and g;(v) is the solution of the
tridiagonal sequence of simultaneous equations\(n'=1,2,3...)

<1in(n—|—1)u> ) m—1 kv n+2 kv . (15)

20, Sn— 11 T 5 T3, I

The perturbed current and collisional force are given by
o0 4 o 4 ® A1 O F
J, = —e/ %fj_v dv R = me/ %fj_’l) v(v)dv + uJ_me/ —F—OUBV(v)dU . (16)
0 0 0

As shown in Appendix B, these}nearised equations can be combined to give the dispersion
relation:
(w—wi)(w—w2) + wz(w—wy) =0 . (17)

The frequencies wy, wg, ws and w4 are given by

kIlg k‘QCQ Qe . Ql(l — iIQ ,/)2 k?.[l v
_ 19 PN = O (1 —iloy — ooy I S L _ _lgv
w1 Toy  Podug ) i (1 =1l Ogu) w3 Tog Wy Togy + 7
(18)
where Q; = (me /i 4)e is the ion Larmor frequency, and
® 47 v 0F) 3 > 47 0Fy 3
] v = d I = — * d
0 0 3neQ 81} 09 0 3ne v vigr(v)dv
© 47 v 0Fy o Ar 12 9Fy
I L= — 3 * d T - _/ 3 * dv
09 /0 SneQ v vigr(v)dv 0g 0 3ne QZ 81} g1(v)
> Ar ® 47 v
I, = Fiv3gi(v)d Iy = —Fv dv .
W= [ g Ftgi)de = [ g P ()
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Equations (19) show that the dispersion relation depends on velocity integrals of 0Fp/@v_and
Fy. The integrals of F} drive the instability. The integrals of 0Fy/0v represent the plasma
response to the driving terms. In many circumstances, the frequency w; and the integralu,
play the dominant role in driving the instability. In the case of stationary ions, €2; =0 and the
dispersion relation reduces to w = ws.

The function gj (v) describes the response of electrons at each velocity. In a collisional plasma,
the instability is strong when g7 (v) is real at some velocities but imaginary” at others, thus
representing different ways in which electrons cross the magnetic field at different velocities. In
the next two sections we consider (i) thermal heat flow when the isotropiespart of the electron
distribution is Maxwellian, and (ii) an energy flux carried by a separate population of high
energy streaming particles.

~
5. A plasma carrying a heat flow
In the Lorentz limit of high Z, and when non-local effects can ‘be.neglected, the zeroth order
electron distribution function for Spitzer heat flow along a magnetic field.is composed of isotropic
and anisotropic parts

Te

FO(U) = U§(27T)3/2

2 /0,2 5.0 [(v5 8t
exp(—v”/2v;) and  Fi(v) = 9479 x 107 %= | - — — | Fo(v)  (20)
Qp\v v

respectively, where Q/Qy is the ratio of the heat flow @ fo the free-streaming heat flow
Qr = nemevy. The expression for Fy is derived by solution of of the 1D VFP equation either
for heat flow in the absence of a magnetic field, or for heat flow aligned with a magnetic field
(Atzeni & Meyer-ter-Vehn 2004, Craxton et al, 2015). The expression for Fy can be related to
the Braginskii thermal conductivity by substituting Q= —r V1 where x| = 13.58v,7Q ¢ /T.

In ablating laser-produced plasmas, @Q/@y. reaches a maximum of about 0.1. As is well
known (Gray & Kilkenny 1980, Bell et al,1981), the heat flow is carried by a small fraction
of low-collisionality electrons with velocities greater than 3v;. The majority of electrons are
collisional and carry a return current,to balance the forward current carried by the high velocity
electrons.

There are four dimensionless free parameters in the system. These can be chosen to be Q/Qy,
Qer, kv /Qe & k22 /%2;@- Q /@y is:the heat flow normalised to free-streaming, and represents
the magnitude of the anisotropys The Hall parameter 2.7 is the ratio of the collision time to
the Larmor gyration time. ‘kvy/€ is the ratio of the electron Larmor radius to the wavelength
of the instability.

With four free parameters, a full parameter scan would require an extended discussion.
Instead, we plot thegrowth rate against wavelength for a single standard reference case, relevant
to laser-plasma experiments, with the following parameters: n, = 10*?2cm™3, T = 1keV,
B = 1MG, Q/Qf = 0.1, Zlog\ = 4, A/Z = 2. For these parameters, {2, = 17.6psec™?,
T = 0.27psec, £/wpe = 0.053pum, ry = v;/Qe = 0.75um, giving Q.7 = 4.8.

Figure 3 plots/the growth rate (w), where it is positive, against the wavelength 27 /k for
the standard parameters for the two senses of polarisation. In the left hand plot, the electrons
carrying/the heat flow rotate with the magnetic field as they propagate, meaning that some of
the heat-carrying electrons track along a magnetic field line. In this polarisation the instability
is strongest'when there are a large number of electrons moving resonantly with magnetic field
lings. Thiswe label as the resonant polarisation. Conversely we label the other polarisation
as non-resonant. This designation derives from similarities with the resonant and non-resonant
instabilities driven by streaming cosmic rays (Bell 2014). The right hand plot shows that the
instability is present at long wavelengths in the non-resonant case in which few electrons follow
magnetic field lines. The designation of polarisations as resonant and non-resonant is useful, but
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Figure 3. Log-log plot of the imaginary part of the frequenéy. w when the instability is driven
by heat flow. The left and right plots are for the resonant and nen-resonant polarisations
respectively. The full lines are for the electron mode that/is unchanged by forcing the ions to be
stationary. The dashed lines give the growth rate for the mode that is present only when ions
are allowed to move.

L

can be misleading since the electrons carrying the return current rotate in the opposite direction
in space and hence can be spatially resonant when the heat-carrying electrons are non-resonant.

There are two roots to the quadratic dispersion relation, giving rise to two different modes
that we label as an electron mode and an ion mode. The more slowly growing mode is designated
as the ion mode because it disappears if therions are forced to be stationary. With stationary
ions, the dispersion relation is linear instead.of quadratic, and only the electron mode remains.
The curves in figure 3 for the growth rate of the electron mode are indistinguishably changed if
the ions are forced to be stationary.

The resonant instability has the fastest growth rate. With a growth time of about 10psec for
these parameters, the resonant!instability has ample time to grow during an IFE implosion,
potentially disrupting its symmetry. However, the non-resonant instability may be more
dangerous because it grows on/a larger spatial scale while still potentially growing through
multiple e-foldings during ‘an/implosion. The instability in either polarisation requires the
pre-existence of a magnetic field-that would be absent in an implosion with perfect spherical
symmetry. However, the symmetry can be broken by capsule imperfections or non-uniformities
in laser energy deposition. Pre-existing fields might be generated by a combination of the
Biermann battery, non-local effects (Kingham & Bell 2002), resistive magnetic field generation
(Davies et al 1997), the Rayleigh-Taylor instability, and other instabilities such as the Weibel
instability. A zeroth order magnetic field is inevitably present in experiments on planar targets
irradiated by finite laser beams.

The instability.in its resonant form is related to previously known instabilities driven by beams
of electrons in collisionless plasmas, particularly occuring in the solar wind (see references in
section 1) It also has similarities with the unstable driving of Alfven waves by streaming cosmic
raysdn the interstellar medium (Lerche 1967, as reviewed by Wentzel 1974). The non-resonant
magneto-registive instability at longer wavelengths has not to our knowledge been previously
identified.
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5.1. The limit of long wavelength
An analytic expression for the growth rate can be derived in the limit in which ion motionis
neglected, the wavelength is much larger than the algebraic mean of the electron Larmor radius
and the electron mean free path, and Z > 1. The neglect of ion motion simplifies the expression
for the frequency to w = kli4/1Iog.

If additionally Q.7 > 1, then ¢f — 1+ iv/Q,, and the frequency can be,expressed. as
an expansion in powers of 1/(€7). The first term in the expansion is{imaginary, w =
0.138ikv(Q/Q ) ()L, The first real term in the expansion is proportionalito. (Q.7) %" Hence
the mode is predominantly growing rather than advective in this limit.

If instead, Q.7 < 1, then g} — —iQ./v + Q?/1?, and the frequency fcan be expréssed as an
expansion in powers of (7). The first two terms in the expansion are w.= kv,(Q/Q)(0.72 +
10.18i€Q2.7). In this collisional limit of small .7, the dominant ferm is advective and the
imaginary part of the frequency is first order in §.7.

The growth rate in the limit of long wavelength is plotted in{figure 6 over the full range of
Qe7. The growth rate yg vrp is normalised to kvgy where vgy = wp(@/Qf). The instability
grows most rapidly when Q.7 ~ 0.1 — 1.

6. A plasma carrying a current
The previous section considered a plasma electron distribution function consisting of an isotropic
Maxwellian plus an anisotropic part carrying the heatflow.and.the return current. In some laser-
plasma experiments the energy deposited at low density by the faser is carried to high density by
a separate, much more energetic, population of electrons, while electrons at all velocities in the
thermal population carry the return current. The energetic electrons could be included in the
above formalism by modifying Fy and F; to include the high velocity population. However, if
energy-carrying electrons have energies much larger than the thermal electrons, a simpler model
can be adopted as formulated in section 2mln. this model, the high velocity electrons are treated
as a rigid uniform current that is undeflected by the magnetic field because of the much larger
Larmor radius of the electrons.

In this simpler model, the energetic population is removed from the analysis and replaced by
the requirement that the thermalspopulation carries an imposed return electric current j. The
isotropic and anisotropic parts of the zeroth order distribution are then

nd” b o j vt
Fy(v) = Wexp(»v /2vi) and Fi(v) = 0.0783;?}—?&](2)) (21)

where j is parallel to the zerotherder magnetic field, and j; = neev; is the ‘free-streaming
current’. As for heat, flownin ssection 5, the anisotropic part Fj is derived by solution of
the 1D VFP equation. © The expression for F; can be related to the electrical Braginskii
resistivity by substituting j = FE/n where 1 = 0.294m, /nee’r, which is equivalent to
J/if = 3.40(e/mgvy) E.

When normalised to characteristic experimental values,

- -1 1 ~1/2
22 (Gvens) Goote) (omens) (ew) @)
Jr 1016Wem ™2 100keV 1022¢m—3 keV

where €T}, is the energy of the energy-carrying particles which are assumed to be monoenergetic.
T is the temiperature of the thermal electrons with a thermal velocity v, = (eT/me)'/2. Q, is
the'energy flux carried by the energetic particles, which might be 0.1-30% of the laser intensity,
depending on the efficiency of their generation and the geometry of their propagation.

The growth rates are plotted in figure 4 for j/j; = 0.1. The plasma parameters of density,
témperature and magnetic field are the same as those assumed in section 5 and figure 3.

Page 10 of 18
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Figure 4. Log-log plot of the imaginary part of the frequeneyw when the instability is driven
by the presence of a return current balancing a rigid currentycarried by streaming high energy
charged particles. The left and right plots are for the resonant and non-resonant polarisations
respectively. The full lines give the growth rate when‘ions are allowed to moved. The dotted
line gives the growth rate when the ions are forced to bestationary.

- 4

1012 1012 A
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Figure 5. The imaginary parts.of wi and (wiwy)'/? for the two polarisations when the instability
is driven by the presence of'a return current as in figure 4. Comparison with figure 4 shows that
these frequencies‘dominate the dispersion relation at small and large wavelengths respectively.

From Braginskii{(1965) the resistivities for these parameters are n; = 1.1 x 107°0Ohm m and
1) = 3.8 X710 "Ohmsin.

For comparisen with the illustrative calculation in section 2, these parameters give An/ny =
0.55, Q7= 4.8/and v; = 1.33 x 10'm sec™'. The growth rate given by equation 2 is then
v =1.0 x 10%2sec ! (wavelength/um) !, which agrees with the line labelled ‘stationary ions’ in
the right hand plot of figure 4 for wavelengths exceeding 10pum. Resonance effects take over at
wavelengths shorter than 10um.

The plots in figure 4 show features similar to those for the electron mode in figure 3. However,
thererare differences. The dispersion relation is still quadratic (equations 17-19), but only one
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of the two modes is unstable. The ion modes in figure 3 have disappeared from figure 4.
Nevertheless, ions still play a significant role. Ion motion is responsible for the increased growth
rate at long wavelengths at the right of the right-hand plot. The dotted curve in figure 4 gives
the growth rate when ion motion is neglected and the ions are forced to be stationary. The full
line shows that an increased growth rate is seen when ion motion is includeds

The form of the curves in figure 4 for the growth rates can be understood by4examining how
the frequencies wy, wo, ws & wy affect the growth rate at different wavelengthsi w, and w4 drive
the instability since they consist of integrals of the anisotropy Fi. we & 4ws contain the ion
response since they are proportional to €2;. Another difference between widpw,s and wy & ws is
that wy; & wy4 are proportional to k whereas wo & w3 are independent of k. Henege, fon motion
is relatively more important at long wavelengths. This is responsible forithe increased growth
rate at large wavelengths in the right hand plot in figure 4 when ion' motionissincluded.

Comparison of the growth rates plotted in figure 4 with w; and (w1w2)1/ >"as plotted in figure
5 shows that w = w; is a good approximation at short wavelengths, but iom motion takes over
at long wavelengths where w =~ (w1w2)1/2 o k12,

If collisions are weak in the sense that Q.7 < 1, then wi’— kj/nee and we — ;. In this
limit, the mode with w = (wle)l/ 2 transitions into the non-resonantnode responsible for the
amplification of magnetic field (Bell 2004) in diffusive shock aegeleration of CR.

6.1. The limit of long wavelength
As with the instability driven by a heat flow, the growth/rate:can be derived in the limit of large
wavelength, Z > 1, no ion motion, and .7 much greater or much less than 1.

If Qer > 1, w = kv (5 /j¢) (1 — 0.706i (Qe7) L), In contrdst to the heat flow-driven instability
in section 5.1, the frequency has a real part to zerothhorder in {2.7. This represents advection with
the electron current. The leading term in the imaginary part of the frequency is proportional
to (Qe7)~! for both the current-driveft andsheat flow-driven instability.

If Qe < 1, w = kvg(j/57)(1.932 — 7.312:€2.7)."As with the heat flow-driven instabiity, the
growth rate is proportional to (7.

The growth rate in the limit of\long wavelength is plotted in figure 6 over the full range of
Qe7. The growth rate v; vrp is nermalised to kvjo where vjo = v¢(j/jr). The instability grows
most rapidly when Q.7 ~ 0.1 — 1.

7. The instability as it appea?s in the Braginskii transport equations
Heat flow, the return current and the electric field can be described by the Braginskii equations
(1965). The Braginskibequations.apply in the limit of small heat flow or current and large spatial
and temporal scales. “The,Braginskii transport coefficients are derived by fitting polynomial
approximations to golutiens of the Boltzmann equation. The starting point of Braginskii’s
analysis is equivalent to out'starting point with the VFP equation. Hence we should expect to
find that a heat flowor current aligned with a magnetic field is unstable when described by the
Braginskii equations. 'We now show this to be the case by linearising the Braginskii equations
for a circularly polarised perturbation.

The Braginskii equations include an Ohm'’s law relating the electric field E to an electron
current j, an electron pressure P, and a temperature gradient V1"

—enE+jxB—-VP+aj/ne— VT =0 (23)
where o and 5 are tensors such that
aj=q)bj)b+arbx(jxb)—abxj

B.VT = B(b.VT)b + B1b x (VI x b) + fab x VT (24)

Page 12 of 18
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where b = B/|B|. «ay and q are related to the resistivities 7, and 7 that appeariabove
in section 2: a; = nZe’n,, o = nge%”. Alternative expressions for a and f (with miner
differences in notation) derived by Epperlein & Haines (1986) are in many circumstances meore
accurate than those of Braginskii, but they can be less accurate when used to calgulate to the
differences ay — oy and B, — B

A temperature gradient has a scalelength L along the direction of the zeroth‘order heat flow
such that |VT'| = T/L. For the Braginskii equations to apply, L must be larger than,all other
relevant scalelengths.

As in the VFP analysis, we couple these equations to the Maxwell equationsy but here for
simplicity we assume that the ions are stationary. The resulting equation for he perturbed
magnetic field in a plasma with uniform density is

OBy (a1 —o)Bo.j (B —B1)Bo. VT o 2
ot [ n2e2B2 + neeB? VXBL—F( )V i

Bo.j Bo.VT
+K1+ om) 0d , BaBo.V

QN (BoV)(v X BL)
By.V)B, — |1
neeBy neeBg neeBS’ ] (Bo.-V)B. ( & )

2
neeBy Ne€llo (25)

where By is the zeroth order magnetic field. For a circularly pelarised harmonic mode, as
assumed in the VFP analysis in section 4, this reduces_to

o [k(% —a1)Boj k(B - 5L)BO-VT] /'3 l & kzﬂ

n2e?B3 néeB? NeMe W
kBo.j  kBABo. VT k2c?
_KH aA) 0 | kPnBoY }—QE(H aA) = (26)
neeBy ) neeBy nee B neeBy Wie

The term in the first square bracket leadsito stability or instability depending on the sign of
k and hence the sense of polarisation as in the,VFP analysis. The growth rate is proportional
to the current j or the temperature, gradient —V7T" producing the heat flow. The term in the
second square bracket is the damping term that appears as kc?/ wge in the VFP analysis. The
term with the third square bracket advects the perturbed magnetic field with the current or the
heat flow. The term with the foqth square bracket is dispersive and advective at a velocity
proportional to k.

The first square bracket in £quation 26 is the growth rate v which can be expressed as the
sum 7y = v; + 7 of a‘growth rate 45 due to the current j and a growth rate g due to the heat
flow Q. Braginskii’s polynemial approximations for a, a), 81 and | give

. — (@60 — d100)QeT — Q373
JoBrag = H00I5 (50 + 610277 + QirY)

o (B0 — B8R — B0

1@ Brag = FY0Q ~Y000(00 + 012272 + Qi74)

where vp; = vi(jifgr) and vog = v¢(Q/Q¢). The numerical values of the constants 6, o and
can be found in Braginskii’s table 2 for various values of Z. For Z = oo,

(27)

(14 1.088Q272)Q.7
77.8602272 4+ 10.41Q474

7Yj,Brag = —6.75kv0j 1+

(14 0.201027%)Q.7
77860272 +10.41Q474

’YQ,Brag = —6.32k’l)oQ 1 T (28)
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Figure 6. The Braginskii growth rates (equations 28) for the instability driven by a current
(red full line) and the heat flow (blue full line) normalised to‘|kjug; andd|k|vog respectively.
The dashed and dotted lines are the comparable growth rates when calculated from the VFP
equation in the limit of a large wavelength.

Instability occurs in the polarisation for which & is négative. These growth rates are plotted
in non-dimensional form in figure 6 where they are compared with the growth rates calculated
from the VFP equation in the limit of long wavelength./Figure/6 shows that the growth rate is
largest when Q.7 ~ 0.1 — 1.

In the limit of small Qc7, ¥j Brag = —6.78(Re7)kvoj a0d Y0 Brag = —6.32(Qe7)kvog. In the
limit of large Qe7, VjBrag = —0.705(Qe7) " kvg; and Y0 Brag = —0.122(Qe7) T kvog.

With allowance for Braginskii’s method of approximation, the growth rates calculated from
Braginskii agree with the more accurategrowth rates calculated directly from the VFP equation.
Braginskii’s choice of polynomial appreximationtgives the correct dependence on 2.7 in the
limits of small and large Q.7. In contrast, the form of the polynomial approximations adopted
by Epperlein & Haines (1986) gives an incorrect’ dependence in the limit Q2.7 < 1 in which the
differences between o & ) and fy'&, 3, are very small.

8. Conclusions N

We have solved the linearised electron VFP equations coupled to the Maxwell equations and the
cold ion equation of motion for a magnetised collisional plasma. The resulting dispersion relation
contains a number of@nstable modes. Some of these modes are well known in their collisionless
limit in other contexts asndescribed in sections 1, 5 and 6. Others are previously unknown to
our knowledge. Wedfind, that,the Braginskii transport equations exhibit the same instability
in the appropriate limit. The growth rates are large enough to make our analysis relevant to
IFE experiments. The instability driven by streaming cosmic rays during shock acceleration is
contained as thie collisionléss limit within our dispersion relation. Application to other plasmas
is a subject for future @nalysis.

We have analysed /only the linear phase of the instability. Its practical importance will
depend on its non-linear development and the amplitude at which it saturates. The CR-driven
form of the instability has been shown to grow by orders of magnitude beyond §B/By ~ 1. The
existence ofithe non-linear non-resonant CR-driven instability has been confirmed by observation
of supernova remnants (SNR) where initial fields of a few uG are seen to be amplified non-linearly
to 100s uG (Vink & Laming 2003, Volk et al, 2005). Substantial amplification is possible because
the instability is non-resonant and is not hampered by loss of resonance when §B exceeds By.
Further theoretical analysis and experiment is needed to investigate the possibility of magnetic
field “amplification by large factors in the magneto-collisional case considered here. If the
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magneto-collisional instability follows the behaviour of the CR-driven instability (eg Matthews
et al 2017), a fully non-linear numerical simulation will be needed. A quasi-linear mode-coupling
approach would not naturally capture the essential physics of this non-resonant instability.

One possible beneficial application of an amplified magnetic field might be to erecta transport
barrier that shields the fuel from preheat in IFE implosions, especially ingthe case of shock
ignition where the laser intensity is raised at the end of the implosion to launch ashock inte,the
fuel (eg Betti et al 2007).
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Appendix A

Here we derive equation (14), as required for the dispersion relation. FEguation (13) expresses
the perturbed distribution function in terms of the complex coefficients of equation (5). We
replace 0/0x with ik to obtain

n— n(n+ 1)v

1
M — lkvfn 1 + 2 n SlkvfnJrl + lQefn 9 fn
On1 [ i€ , e A JOFy . OF
— ) g, - By — iENEE  yuy, — i) 0L 1
5 {me (By —iB,)F1 + - (By —iE.) 5 v(uy —iuy) 5 } (A1)

fi (the n = 1 component of the sequence) is needed for thé@lectron current and the resistive force
(equations 16). J; and R, are integrals over f, and f, where these constitute the first order
anisotropy in the tensor expansion of the distribution function. Johnston (1960) demonstrated
the equivalence of the tensor and sphericaltharmonic expansions. With our definition of the
coefficients of the spherical harmonic expamsion, f, = 2 ftand f. = —2f1 where fff = R(f})
and I = S(f1).

We define the complex sequenceof functions g, (v) such that

oF
ov

() = ) {ie(By BB+ (B, i) 5 — vl — i) (42)

" 20, | me ~ e

in which case, g1(v) can be found¢by solution of the tridiagonal sequence of simultaneous

o)
ov

equations,
m(n + v n—1 kv n+2 kv
12 7 — g1+ — — = A3
< 20 )g”+2n—1969"1+2n+3969”“ nl (43)
The n = 1 element|of the set of equations (A2) is
R
1 91 € . e . 0Fy . 0Fy
7= P, iBIF + (iBy + )G vy ) )
I
91 e e . 8F0 . 6F0
+2Q { (B —|—B )Fl—{—mie(Ey—'LEZ)W—V(U?J—Z'LLZ)W (A4)

wheregy =gl +ig!, giving

- L gl{ g0, 00
/i 29{ Byby = B vy 20, U DA T Eyav v(v)uy 5,

e e 0Fy 0Fy

gR
i 1{ —B.F| — E
Me

200, Y ov

+(TQe
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In the tensor formalism, the vector electron drift is f; = 2ff'y — 2f{2. Similarly, wedefine
B, =Byy+B.z, E, =E,y+ FE.z, u; =u,y + u.z, giving the purely real equation

R /oF OF, F{
£ =9 (6 1BJ_+€O>A(XEJ__V80§(X11J-)
ov ov

Qe \ me Me
1
g1 [ eFi e 0y B OFy )
+Qe< meXXBL—'_me Ov B, Vou M) (46)

We now apply circular polarisation such that xx — i (x x £, =1, ), giving

R /el OF, OF, ! F F OF,
fJ_:gl<e IBJ_—I—Z'eOEJ_—Z'I/OuL>—|—gl<—Z’e IBJ_—F—e‘ﬁEJ_—l/OUJ_)

Q. \me me OV ov Q. Me Me QU ov
(A7)
which is equivalent to
g7 (el ie 0Fy L0F >
fi = = B ——E,| —iv— A
= Qe(me J‘+me ov W@vuj' (48)

as required for equation (14) in the main text.

Appendix B
Here we derive the dispersion relation, equations (17-19). Wihen! circular polarisation is imposed
such that x x £, = i€, equations (12) become

—iwnemau] = neeE | —ineeBou; + R wBy. = kE | — kB, = pod 1 + poneeuy
(B1)
From equations (16) for J, and R,

4 QL > 4 OF
J, = —e/ —Wﬂv?)dv R, = me/ —WfLU?)l/(U)dU + ulme/ —W—Ov‘?u(v)dv (B3)
0 0 3 0 3 Ov

where from equation (14),

* ‘QBJ_ Z'BEL 8F0 . v aFo}
f = F — — % B
L79% {meﬂe T+ me$de OV L Q. Ov (B3)

Together, these equations determiné the dispersion relation. Substituting the expression for f|
into the integrals for J; and R gives

2B, [® 471'113ng . ie?E [ 4mv3gt OF, ieu) [ 4nvdvgl OF,

J, = d d
+ me$e Jo 3 meQe Jo 3 ov vt Q. Jo 3 ov v
eBL [* 4xv3vgs ieE, [ 4mvdvgl OF imeu | /OO 4rvdvgr OF,
R, = Fid dv— d
LT S 3 T o 0 T3 e b T 3 ™
o A3y OF,
—dv . B4
—i—uLme/O T o v (B4)

Forfease of notation, equations (B4) can be written as

J HQGQIlgBJ_ Z"I’LSSQIOQEL
1 =-

—ineelp,u
meSde MeSde g

R, =ncel1g,B | —incelog, B + inemeQelogru) — nemeQelo,u (B5)
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where
o 4rydgr © 4rv3gt OF © 4rvdv gt OFy
I :/ LFd I :—/ L= 2d IV:—/ —— LT d
lg 0 3ne Lav 09 0 3n. Ov v 0g 0 31 Ov )
7 /OO 47rv3yg>fF d I /°° 4rvdv2 gt 8F0d 7 <43y OFy
= —— == Fidv = — = ——dv =— —dv .
Lgv 31, ! Ogrv 0 3n02 v o o 3MeRe 81)( ;
B6
Eliminating J; , R and E; between equations (B1) and (B6) gives
kc2Q wl )
[ 26—Ilg+k?q‘|BL:BO[ZIOQV—1‘|UL
Wpe ~
W . . . w
[k(lfogy — 1) — ZIIQV] BJ_ = Bo [1 — IOgl/l/ — ZIOZ/ — Q] u| <B7)
(2

where Q; = (m./m4)Q. These two equations can be combined te give the dispersion relation
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We define the following frequencies:
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The dispersion relation is then
(W=w)(w —w2)F wi(w—wy) =0 (B10)

as required for equation (17) in fhe maimtext.
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