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Abstract. We solve the linearised Vlasov-Fokker-Planck (VFP) equation to show that heat
flow or an electrical current in a magnetized collisional plasma is unstable to the growth of
a circularly polarised transverse perturbation to a zeroth order uniform magnetic field. The
Braginskii (1965) transport equations exhibit the same instability in the appropriate limit. This
is relevant to laser-produced plasmas, inertial fusion energy (IFE) and to dense cold interstellar
plasmas.

1. Introduction
In plasmas, particle momentum distributions are rarely Maxwellian and isotropic. They
frequently carry a large energy flux or a component of energetic particles. This is especially
so where there is a large localised deposition of energy. A dimensionless measure of an energy
flux is its ratio to the so-called free-streaming heat flow, Qf = nemev

3
t , where ne is the electron

density and vt =
√
eT/me is the electron thermal velocity if the plasma can be characterised

by a temperature T in eV. In ablating systems, the heat flow is naturally of the order of
10% of the free-streaming heat flow. This is particularly a feature of laser-irradiated dense
plasmas that constitute the main interest of this paper (eg Craxton et al 2015). A number of
plasma instabilities are known to be associated with strong heat flow in laser-plasmas. These
include the Tidman & Shanny instability (Tidman & Shanny 1974, Sherlock & Bissell 2020),
the Weibel instability (1959), the electrothermal instability (Haines 1981), the ion-acoustic
instability that generates an anomalous resistivity (Forslund 1970, Rozmus et al 2018), and
the field-compressing magnetothermal instability of Bissell et al (2010). Apart from the field-
compressing magnetothermal instability these instabilities do not require a pre-existing zeroth
order magnetic field. The Tidman-Shanny instability is driven by the Biermann battery and
relies upon the presence of the density gradient found in ablating plasmas. The Weibel instability
is essentially collisionless and grows on the scale of a skin depth c/ωpe. In contrast, the instability
considered in this paper requires the existence of a zeroth order magnetic field which is parallel
to the heat flow. The field-compressing magnetothermal instability combines Nernst advection
and Righi-Leduc heat flow to amplify a pre-existing magnetic field that is perpendicular to the
heat flow.

Plasma instabilities driven by heat flow are also well-known in space plasmas. These have
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Figure 1. The lines give the temperature at which Ωeτ = 1 for a range of densities and magnetic
fields with Z log Λ = 10.

been studied extensively over many decades (Forslund 1970, Gary et al 1975, Gary 1985) where
they are known as ‘Heat Flow Instabilities’. Many different instabilities have been identified
(Schwartz 1980, Davidson 1983), and a recent discussion can be found in Lee et al (2019).
Although collisions may be important in the formation of the heat flow in solar wind plasmas,
they are too weak to affect their instability on small scales. Our analysis includes collisions,
but contains the collisionless case as a limit. The dispersion relation derived in section 4 below
gives the growth rate for a range of different unstable modes depending on the values of various
dimensionless parameters.

Electron collisions and Larmor gyration are essential ingredients of the instability focussed
on here. We also include the relatively slow ion response and find that it is important in the long
wavelength limit where the instability transitions into the non-resonant instability that is known
to drive magnetic field amplification during cosmic ray (CR) acceleration (Bell, 2004). We find
that magneto-collisional instabilities are present (i) in relatively relaxed plasmas in which the
energy flux is carried by electrons in the high velocity tail of a Maxwellian distribution and (ii)
in plasmas far from equilibrium in which an independent population of high velocity charged
particles, such as cosmic rays or laser-produced energetic protons or electrons, pass through a
thermal plasma.

We consider the case in which a strong heat flow or current of energetic particles propagates
parallel to a zeroth order magnetic field. This is a common configuration since collisionless
electrons in a uniform plasma are mobile along magnetic fields lines, but cannot pass easily
across a uniform magnetic field. We add a small perturbation to the magnetic field and show
that it grows exponentially.

‘Cross-field’ transport perpendicular to the local magnetic field can be enabled by collisions,
electric field, curvature in magnetic field lines, gravitational fields, or hydrodynamic acceleration
of the bulk plasma (equivalent to the effect of gravity). These processes have different
dependences on electron velocity. For example, the strong velocity dependence of the Coulomb
collision rate means that collisions can dominate at low velocities while Larmor gyration
dominates at high velocities. We find that the competition between collisions and Larmor
gyration produces instability. This ‘magneto-collisional instability’ is strongest when Ωeτ is of
the order of one where Ωe is the electron Larmor frequency and τ is the collision time of a
thermal electron. Under these conditions, an electric field is generated to maintain electrical
neutrality and satisfy ∇×B = µ0j. The curl of this electric field causes unstable growth of the
perturbed magnetic field.

The conditions for Ωeτ ∼ 1 are plotted in figure 1. As shown in figure 1, the conditions for
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strong growth occur naturally in laser-produced plasmas. In low density astrophysical plasmas
relevant to CR acceleration, the collisionality is usually low, Ωeτ � 1, but the magneto-collisional
instability may be strong where CR propagate into a dense cold cloud, or where a dense cold
cloud is ablated by thermal conduction with a heat flow close to free-streaming. The magneto-
collisional instability may also be relevant in low density weakly collisionless plasmas where the
growth time is of the order of the collision time which, despite being long compared to the
Larmor gyration time, may be short compared to the timescale for hydrodynamic evolution.

Since both collisions and Larmor gyration are important, the derivation of the general
dispersion relation requires solution of the Vlasov-Fokker-Planck (VFP) equation in which
advection, collisions, the effect of magnetic and electric field, and high order anisotropies are
modelled.

This paper is structured as follows. The central core of the paper is contained in sections
3 to 6. Section 3 sets out the basic equations consisting of the Maxwell equations for the
electromagnetic fields, the VFP equation for the electron response, and the cold ion fluid
equations. Section 4 derives the dispersion relation. Section 5 solves the dispersion relation
for a heat flow parallel to a magnetic field. Section 6 solves the dispersion relation for a thermal
plasma carrying a return current that balances the electric current carried by streaming energetic
charged particles.

Before embarking on the main general derivation in section 3, we insert in section 2 a
demonstration of instability in a simple special case. Our aim in section 2 is to orientate the
reader to the basic physics underlying the mathematics in the following sections.

Following on from the VFP derivations in sections 3 to 6, we show in section 7 that the
long wavelength limit of the same instability can be derived from the Braginskii transport
equations. Braginskii’s analysis starts from the Boltzmann equation which is equivalent to the
VFP equation. Braginskii solves the linearised equations in the limit of spatial scalelengths
much larger than the electron Larmor radius and the electron mean free path. We find that
the Braginskii and VFP growth rates are mutually consistent within Braginskii’s scheme of
approximation.

2. Setting the scene
The dispersion relation derived in later sections of this paper contains a number of unstable
modes. In this section we illustrate the common underlying principle by a simple demonstration
of instability in one specific configuration.

Consider a laser-plasma experiment in which a high intensity laser pulse is directed at the
front surface of a thin solid foil. The interaction produces a stream of energetic protons that
emerges from the rear of the foil with an efficiency that can reach ∼ 10% (eg Snavely et al
2000). The experimental parameters can be chosen such that the protons have energies in the
range 100keV-10MeV. The streaming protons are then passed through a second ‘target’ plasma.
Because of their high momentum, the protons form a directed rigid beam that is only weakly
deflected by collisions and electromagnetic fields. Neutrality and magnetic induction require the
electrons in the target plasma to carry a return current that cancels the electrical current carried
by the energetic protons. The small deflection of the energetic protons as they pass through the
target plasma is often used for proton radiography to diagnose a target plasma (eg Mackinnon
et al 2004, Tzeferacos et al 2018). The target plasma might contain magnetic fields generated
by a variety of processes, for example by the Biermann battery. Consider the case in which the
target plasma is threaded by a magnetic field B0 that is aligned in the direction of the proton
beam. Such a magnetic field may arise naturally in the experiment with a magnitude in the
range 10kG - 1MG. Or alternatively, in an experiment designed to investigate the response of
the target, an external magnetic field could be imposed with a magnitude that can exceed 1MG
(eg Santos et al, 2018). We now show that this configuration is unstable to the growth of helical
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Figure 2. Components of the current (dotted lines) when a perturbed magnetic field δB is
added perpendicular to the zeroth order field B0.

perturbations in the magnetic field.
Figure 2 illustrates the role of a perturbed transverse magnetic field δB in generating an

electric field with a curl that causes the perturbed magnetic field to grow exponentially. The
streaming protons, passing with negligible deflection through the target plasma, draw a return
current j0 in the opposite direction to the proton flux and parallel to the zeroth order magnetic
field. Since the target plasma is collisional, an electric field is needed to draw the return current.
The resistivity of the plasma is η‖ parallel to the local magnetic field, and η⊥ perpendicular to
the local field. The perturbed magnetic field δB is transverse to the zeroth order field B0, so
the return current has a component perpendicular to the local magnetic field and a component
aligned with the local magnetic field. As shown in figure 2, the electric field needed to draw the
return current has a component η‖j0 cos θ parallel to the local magnetic field, and a component
η⊥j0 sin θ perpendicular to the local field. The component of the electric field perpendicular
to B0 in the plane of figure 2 is δE = (η⊥ − η‖)j0 cos θ sin θ perpendicular to the B0. In the
linear limit of |δB| � |B0|, δE = (η‖ − η⊥)j0δB/B0. The curl of δE increases the perturbed
magnetic field δB and causes exponential unstable growth of the perturbation. The equation
for the evolution of the perturbed field is

∂(δB)

∂t
+ (vj .∇)(δB) = (η⊥ − η‖)

j0
B0
∇× (δB) (1)

where vj is the Nernst-like advection velocity parallel to j0 arising from the component of the
electric field out of the plane of figure 2. The resulting dispersion relation for wavenumber k
and frequency ω is

ω − kvj = ± ikv0
Ωeτ

∆η

η0
(2)

where ∆η = η⊥ − η‖, v0 = j0/nee is the mean velocity of electrons as they carry the current j0,

and η0 = me/nee
2τ is a fiducial resistivity. The ± sign depends on the sense of rotation of the

helical instability. One sense of rotation is stable and the other is unstable.
Our purpose in the derivation of equation 2 is to illustrate the physics without recourse to

complicated mathematics. Detailed calculations are presented in the rest of the paper where
we show that, in the limit appropriate to this section, the maximum growth rate occurs when
Ωeτ ∼ 0.1− 1 (see figure 6). For Z =∞, Braginskii (1965) gives ∆η/η0 = 0.038 (η‖ = 0.294η0,
η⊥ = 0.332η0) for Ωeτ = 0.1 and ∆η/η0 = 0.16 (η‖ = 0.294η0, η⊥ = 0.454η0) for Ωeτ = 1. The
maximum growth rate is correspondingly

γmax ∼ 0.3kv0 . (3)
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As an example, a numerical estimate of the growth rate for characteristic experimental
parameters can be obtained as follows. The electron return current must be equal and opposite
to the proton forward current if neutrality is to be maintained. If the protons of energy Tp in eV
carry an energy flux Qp, then j0 = Qp/Tp. As an order of magnitude estimate, the maximum
growth time γ−1 is ∼ 30psec if B0 = 100kG, Qp = 1016Wcm−2, Tp = 100keV, Te = 1keV,
ne = 1022cm−3, and k is equal to the inverse Larmor radius of the thermal electrons.

The essential physics of the instability arises from the difference in electron mobility across
and along a magnetic field. An electric field is needed to ensure that the electron return current
is exactly anti-parallel to the forward proton current. The curl of the electric field generates the
magnetic field.

As shown below, a related form of the instability occurs during thermal electron transport.
The heat-carrying electrons on the tail of the Maxwellian distribution play the role of the
streaming protons, while the thermal majority of the electrons carry a return current.

3. Instabilities derived from the VFP equation
Beginning from the electron VFP equation for a plasma that is magnetised and collisional we
derive a dispersion relation when the plasma carries a heat flow or an electric current. We
include the self-consistent motion of ions, but assume that the ions are cold. The derivation can
be applied to an arbitrary zeroth-order electron distribution function F (v), but here we limit
our discussion to zeroth order distribution functions that can be expressed as the first two terms
in a Chapman-Enskog expansion in degrees of anisotropy:

F (v) = F0(|v|) + (v/|v|)F1(|v|) . (4)

Note that the subscripts ‘0’ and ‘1’ in F0 and F1 relate to the order of anisotropy, and not
to unperturbed and perturbed (zeroth order and first order) quantities. F0 is taken to be
Maxwellian. F1 is determined by solution of the linearised VFP equation. Equations 20 and
21 give its form for a plasma carrying a heat flow and a current respectively. In contrast, the
perturbed part f(v) of the electron distribution function is allowed arbitrary anisotropy and
expressed as an expansion in spherical harmonics,

f(x,v, t) =
nmax∑
n=0

m=n∑
m=−n

fmn (x, |v|, t)Pmn (cos θ)eimφ (5)

where cos θ = vx/|v|, sin θ cosφ = vy/|v|, sin θ sinφ = vz/|v|, f−mn = (fmn )∗, and nmax is
sufficiently large to accommodate all the relevant physics. In some of the calculations presented
here nmax has to exceed 100. We assume the Lorentz (high Z) approximation for electron
collisions in which the dominant collision process is angular scattering of electrons by ions in
the local rest frame of the ions.

The derivation proceeds by linearising the VFP equation for the m = 1 components of the
perturbed electron distribution function, the equations of motion for cold ions, and the Maxwell
equations for electromagnetism. The zeroth order heat flow or the electric current (carried in
each case by F1) is assumed to be aligned with the zeroth order magnetic field in the x direction
along the unit vector x̂. The perturbation is taken to be circularly polarised. The perturbed
vectors are all transverse and lie in the (y, z) plane. The equations for the ion velocity and
electromagnetic fields are

nemA
∂u

∂t
= neeE + neeu×B + R

∂B

∂t
= −∇×E ∇×B = µ0J + µ0neeu (6)

where mA = (A/Z)mp = ρ/ne, and the resistive frictional collisional force exerted by electrons
on ions is

R = −
∫ (

∂f

∂t

)
c
mevd

3v (7)
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where (∂f/∂t)c is the electron collision term. The electric current carried by the electrons (with
charge −e) in the lab frame, is

J = −
∫
evfd3v . (8)

The spatial differential operator ∇ and the zeroth order magnetic and electric fields are in the
x direction.

When expressed in terms of spherical harmonics (Bell et al 2006), the VFP equations for the
m = 1 components are (n = 1, 2, 3...)

∂f1n
∂t

=
eEx
me

[
n− 1

2n− 1
G1
n−1 +

n+ 2

2n+ 3
H1
n+1

]
+
e(Ey − iEz)

2me

[
G0
n−1

2n− 1
−

H0
n+1

2n+ 3

]

− n− 1

2n− 1
v
∂f1n−1
∂x

− n+ 2

2n+ 3
v
∂f1n+1

∂x
− ieBx

me
f1n+

ie(By − iBz)
2me

f0n+

(
∂f

∂t

)1

c,n
(9)

where

Gmn = vn
∂(v−nfmn )

∂v
Hm
n = v−(n+1)∂(vn+1fmn )

∂v
. (10)

and (∂f/∂t)1c,n represents the effect of collisions:

(
∂f

∂t

)1

c,n
= −1

2
n(n+ 1)ν(v)f1n −

δn1
2
uν(v)

∂F0

∂v
where ν(v) =

3.76

τ

(
mev

2

eT

)−3/2
(11)

and τ = τNRL/Z, where τNRL = 3.44 × 105(log Λ)−1(ne/cm−3)−1(T/eV)3/2 is the collision
frequency in the NRL plasma formulary and log Λ is the Coulomb logarithm. All components
of the perturbed electron distribution for m ≥ 2 are multiples of perturbed quantities and can
be neglected as small in the linear analysis.

In the above, f1n, Ey, Ez, By, Bz, G
1
n & H1

n are all first order perturbed quantities, and f0n,
Ex, Bx, G0

n & H0
n are all zeroth order. In order to distinguish the zeroth order quantities, we

label them as f0n = Fn, Ex = E0 and Bx = B0.
These equations result in a dispersion relation for a range of unstable modes with differing

underlying physics. Some of these are already known, especially in the collisionless limit. Other
unstable modes are, to our knowledge, previously unknown.

In the derivation, we will assume that the frequency ω is small compared with the maximum of
the electron Larmor frequency Ωe, the electron collision frequency 1/τ and the rate kvt at which
electrons transit one wavelength 2π/k of the mode. This allows us to neglect ∂f1n/∂t from the
VFP equation. It removes the faster growing modes, such as velocity-resonant inverse Landau
damping, from the dispersion relation, making the dispersion relation more easily expressed in
a closed form.

We also neglect the term proportional to Ex (= E0) on the right hand side of equation 9. This
can be justified on either of two counts: (i) the local approximation that k−1eE0 � mev

2
t , which

for heat flow in a temperature gradient is equivalent to k−1 � T/|∇T |, or (ii) E0 � vtB0, which
is equivalent to the condition that the electron Larmor radius is much smaller than T/|∇T |.
These are also the conditions that allow us to assume that F0 and F1 are constant over a
wavelength of the perturbation.

When discussing the features of the unstable modes, we will primarily focus on those relevant
to thermal heat flow and non-thermal energy fluxes in dense plasmas irradiated by a high power
laser with relevance to IFE.
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4. The dispersion relation
In the following derivations, the spatial differential operator ∇ and the zeroth order magnetic
and electric fields are aligned with the unit vector x̂ such that ∇ → ikx̂. First-order quantities
oscillate such that ∂ξ⊥/∂t = −iωξ⊥ where ξ⊥ = ξyŷ + ξzẑ is a general vector perpendicular to
B0, giving

−iωnemAu⊥ = neeE⊥−ineeB0u⊥+R⊥ ωB⊥ = kx̂×E⊥ ikx̂×B⊥ = µ0J⊥+µ0neeu⊥ .
(12)

Circular polarisation is imposed such that x̂× ξ⊥ = iξ⊥. The sense (handedness) of polarisation
is determined by the sign of k. The terms dependent on the perturbed electron distribution in
the VFP equation can be collected onto the left hand side of the equation to give

n− 1

2n− 1
v
∂f1n−1
∂x

+
n+ 2

2n+ 3
v
∂f1n+1

∂x
+ iΩef

1
n +

n(n+ 1)ν(v)

2
f1n

=
δn1
2

{
ie

me
(By − iBz)F1 +

e

me
(Ey − iEz)

∂F0

∂v
− ν(v)(uy − iuz)

∂F0

∂v

}
. (13)

As shown in Appendix A for circular polarisation, equations (13) can be reconfigured to give

f⊥(v) = g∗1(v)

{
eB⊥
meΩe

F1 +
ieE⊥
meΩe

∂F0

∂v
− iu⊥

ν

Ωe

∂F0

∂v

}
(14)

where f⊥ = 2ŷ<(f11 ) − 2ẑ=(f11 ) is the vector part of the perturbed electron distribution
function when expressed as a tensor expansion (Johnston, 1960), and g1(v) is the solution of the
tridiagonal sequence of simultaneous equations (n = 1, 2, 3...)(

1− in(n+ 1)ν

2Ωe

)
gn +

n− 1

2n− 1

kv

Ωe
gn−1 +

n+ 2

2n+ 3

kv

Ωe
gn+1 = δn1 . (15)

The perturbed current and collisional force are given by

J⊥ = −e
∫ ∞
0

4π

3
f⊥v

3dv R⊥ = me

∫ ∞
0

4π

3
f⊥v

3ν(v)dv + u⊥me

∫ ∞
0

4π

3

∂F0

∂v
v3ν(v)dv . (16)

As shown in Appendix B, these linearised equations can be combined to give the dispersion
relation:

(ω − ω1)(ω − ω2) + ω3(ω − ω4) = 0 . (17)

The frequencies ω1, ω2, ω3 and ω4 are given by

ω1 =
kI1g
I0g
−k

2c2

ω2
pe

Ωe

I0g
ω2 = Ωi (1− iI0ν − I0gνν) ω3 =

Ωi(1− iI0gν)2

I0g
ω4 =

kI1gν
I0gν + i

(18)
where Ωi = (me/mA)Ωe is the ion Larmor frequency, and

I0ν = −
∫ ∞
0

4π

3ne

ν

Ωe

∂F0

∂v
v3dv I0g = −

∫ ∞
0

4π

3ne

∂F0

∂v
v3g∗1(v)dv

I0gν = −
∫ ∞
0

4π

3ne

ν

Ωe

∂F0

∂v
v3g∗1(v)dv I0gνν = −

∫ ∞
0

4π

3ne

ν2

Ω2
e

∂F0

∂v
v3g∗1(v)dv

I1g =

∫ ∞
0

4π

3ne
F1v

3g∗1(v)dv I1gν =

∫ ∞
0

4π

3ne

ν

Ωe
F1v

3g∗1(v)dv .

(19)
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Equations (19) show that the dispersion relation depends on velocity integrals of ∂F0/∂v and
F1. The integrals of F1 drive the instability. The integrals of ∂F0/∂v represent the plasma
response to the driving terms. In many circumstances, the frequency ω1 and the integral I1g
play the dominant role in driving the instability. In the case of stationary ions, Ωi = 0 and the
dispersion relation reduces to ω = ω1.

The function g∗1(v) describes the response of electrons at each velocity. In a collisional plasma,
the instability is strong when g∗1(v) is real at some velocities but imaginary at others, thus
representing different ways in which electrons cross the magnetic field at different velocities. In
the next two sections we consider (i) thermal heat flow when the isotropic part of the electron
distribution is Maxwellian, and (ii) an energy flux carried by a separate population of high
energy streaming particles.

5. A plasma carrying a heat flow
In the Lorentz limit of high Z, and when non-local effects can be neglected, the zeroth order
electron distribution function for Spitzer heat flow along a magnetic field is composed of isotropic
and anisotropic parts

F0(v) =
ne

v3t (2π)3/2
exp(−v2/2v2t ) and F1(v) = 9.79× 10−3

Q

Qf

(
v6

v6t
− 8v4

v4t

)
F0(v) (20)

respectively, where Q/Qf is the ratio of the heat flow Q to the free-streaming heat flow
Qf = nemev

3
t . The expression for F1 is derived by solution of of the 1D VFP equation either

for heat flow in the absence of a magnetic field or for heat flow aligned with a magnetic field
(Atzeni & Meyer-ter-Vehn 2004, Craxton et al 2015). The expression for F1 can be related to
the Braginskii thermal conductivity by substituting Q = −κ‖∇T where κ‖ = 13.58vtτQf/T .

In ablating laser-produced plasmas, Q/Qf reaches a maximum of about 0.1. As is well
known (Gray & Kilkenny 1980, Bell et al 1981), the heat flow is carried by a small fraction
of low-collisionality electrons with velocities greater than 3vt. The majority of electrons are
collisional and carry a return current to balance the forward current carried by the high velocity
electrons.

There are four dimensionless free parameters in the system. These can be chosen to be Q/Qf ,
Ωeτ , kvt/Ωe & k2c2/ω2

pe. Q/Qf is the heat flow normalised to free-streaming, and represents
the magnitude of the anisotropy. The Hall parameter Ωeτ is the ratio of the collision time to
the Larmor gyration time. kvt/Ωe is the ratio of the electron Larmor radius to the wavelength
of the instability.

With four free parameters, a full parameter scan would require an extended discussion.
Instead, we plot the growth rate against wavelength for a single standard reference case, relevant
to laser-plasma experiments, with the following parameters: ne = 1022cm−3, T = 1keV,
B = 1MG, Q/Qf = 0.1, Z log λ = 4, A/Z = 2. For these parameters, Ωe = 17.6psec−1,
τ = 0.27psec, c/ωpe = 0.053µm, rg = vt/Ωe = 0.75µm, giving Ωeτ = 4.8.

Figure 3 plots the growth rate =(ω), where it is positive, against the wavelength 2π/k for
the standard parameters for the two senses of polarisation. In the left hand plot, the electrons
carrying the heat flow rotate with the magnetic field as they propagate, meaning that some of
the heat-carrying electrons track along a magnetic field line. In this polarisation the instability
is strongest when there are a large number of electrons moving resonantly with magnetic field
lines. This we label as the resonant polarisation. Conversely we label the other polarisation
as non-resonant. This designation derives from similarities with the resonant and non-resonant
instabilities driven by streaming cosmic rays (Bell 2014). The right hand plot shows that the
instability is present at long wavelengths in the non-resonant case in which few electrons follow
magnetic field lines. The designation of polarisations as resonant and non-resonant is useful, but
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Figure 3. Log-log plot of the imaginary part of the frequency ω when the instability is driven
by heat flow. The left and right plots are for the resonant and non-resonant polarisations
respectively. The full lines are for the electron mode that is unchanged by forcing the ions to be
stationary. The dashed lines give the growth rate for the mode that is present only when ions
are allowed to move.

can be misleading since the electrons carrying the return current rotate in the opposite direction
in space and hence can be spatially resonant when the heat-carrying electrons are non-resonant.

There are two roots to the quadratic dispersion relation, giving rise to two different modes
that we label as an electron mode and an ion mode. The more slowly growing mode is designated
as the ion mode because it disappears if the ions are forced to be stationary. With stationary
ions, the dispersion relation is linear instead of quadratic, and only the electron mode remains.
The curves in figure 3 for the growth rate of the electron mode are indistinguishably changed if
the ions are forced to be stationary.

The resonant instability has the fastest growth rate. With a growth time of about 10psec for
these parameters, the resonant instability has ample time to grow during an IFE implosion,
potentially disrupting its symmetry. However, the non-resonant instability may be more
dangerous because it grows on a larger spatial scale while still potentially growing through
multiple e-foldings during an implosion. The instability in either polarisation requires the
pre-existence of a magnetic field that would be absent in an implosion with perfect spherical
symmetry. However, the symmetry can be broken by capsule imperfections or non-uniformities
in laser energy deposition. Pre-existing fields might be generated by a combination of the
Biermann battery, non-local effects (Kingham & Bell 2002), resistive magnetic field generation
(Davies et al 1997), the Rayleigh-Taylor instability, and other instabilities such as the Weibel
instability. A zeroth order magnetic field is inevitably present in experiments on planar targets
irradiated by finite laser beams.

The instability in its resonant form is related to previously known instabilities driven by beams
of electrons in collisionless plasmas, particularly occuring in the solar wind (see references in
section 1). It also has similarities with the unstable driving of Alfven waves by streaming cosmic
rays in the interstellar medium (Lerche 1967, as reviewed by Wentzel 1974). The non-resonant
magneto-resistive instability at longer wavelengths has not to our knowledge been previously
identified.
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5.1. The limit of long wavelength
An analytic expression for the growth rate can be derived in the limit in which ion motion is
neglected, the wavelength is much larger than the algebraic mean of the electron Larmor radius
and the electron mean free path, and Z � 1. The neglect of ion motion simplifies the expression
for the frequency to ω = kI1g/I0g.

If additionally Ωeτ � 1, then g∗1 → 1 + iν/Ωe, and the frequency can be expressed as
an expansion in powers of 1/(Ωeτ). The first term in the expansion is imaginary, ω =
0.138ikvt(Q/Qf )(Ωeτ)−1. The first real term in the expansion is proportional to (Ωeτ)−2. Hence
the mode is predominantly growing rather than advective in this limit.

If instead, Ωeτ � 1, then g∗1 → −iΩe/ν + Ω2
e/ν

2, and the frequency can be expressed as an
expansion in powers of (Ωeτ). The first two terms in the expansion are ω = kvt(Q/Qf )(0.72 +
10.18iΩeτ). In this collisional limit of small Ωeτ , the dominant term is advective and the
imaginary part of the frequency is first order in Ωeτ .

The growth rate in the limit of long wavelength is plotted in figure 6 over the full range of
Ωeτ . The growth rate γQ,VFP is normalised to kvQ0 where vQ0 = vt(Q/Qf ). The instability
grows most rapidly when Ωeτ ∼ 0.1− 1.

6. A plasma carrying a current
The previous section considered a plasma electron distribution function consisting of an isotropic
Maxwellian plus an anisotropic part carrying the heat flow and the return current. In some laser-
plasma experiments the energy deposited at low density by the laser is carried to high density by
a separate, much more energetic, population of electrons, while electrons at all velocities in the
thermal population carry the return current. The energetic electrons could be included in the
above formalism by modifying F0 and F1 to include the high velocity population. However, if
energy-carrying electrons have energies much larger than the thermal electrons, a simpler model
can be adopted as formulated in section 2. In this model, the high velocity electrons are treated
as a rigid uniform current that is undeflected by the magnetic field because of the much larger
Larmor radius of the electrons.

In this simpler model, the energetic population is removed from the analysis and replaced by
the requirement that the thermal population carries an imposed return electric current j. The
isotropic and anisotropic parts of the zeroth order distribution are then

F0(v) =
ne

v3t (2π)3/2
exp(−v2/2v2t ) and F1(v) = 0.0783

j

jf

v4

v4t
F0(v) (21)

where j is parallel to the zeroth order magnetic field, and jf = neevt is the ‘free-streaming
current’. As for heat flow in section 5, the anisotropic part F1 is derived by solution of
the 1D VFP equation. The expression for F1 can be related to the electrical Braginskii
resistivity by substituting j = E/η‖ where η‖ = 0.294me/nee

2τ , which is equivalent to
j/jf = 3.40(eτ/mevt)E.

When normalised to characteristic experimental values,

j

jf
= 0.12

(
Qh

1016Wcm−2

)(
Th

100keV

)−1 ( ne
1022cm−3

)−1 ( T

keV

)−1/2
(22)

where eTh is the energy of the energy-carrying particles which are assumed to be monoenergetic.
T is the temperature of the thermal electrons with a thermal velocity vt = (eT/me)

1/2. Qh is
the energy flux carried by the energetic particles, which might be 0.1-30% of the laser intensity,
depending on the efficiency of their generation and the geometry of their propagation.

The growth rates are plotted in figure 4 for j/jf = 0.1. The plasma parameters of density,
temperature and magnetic field are the same as those assumed in section 5 and figure 3.
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Figure 4. Log-log plot of the imaginary part of the frequency ω when the instability is driven
by the presence of a return current balancing a rigid current carried by streaming high energy
charged particles. The left and right plots are for the resonant and non-resonant polarisations
respectively. The full lines give the growth rate when ions are allowed to moved. The dotted
line gives the growth rate when the ions are forced to be stationary.

Figure 5. The imaginary parts of ω1 and (ω1ω2)
1/2 for the two polarisations when the instability

is driven by the presence of a return current as in figure 4. Comparison with figure 4 shows that
these frequencies dominate the dispersion relation at small and large wavelengths respectively.

From Braginskii (1965) the resistivities for these parameters are η⊥ = 1.1 × 10−6Ohm m and
η‖ = 3.8× 10−7Ohm m.

For comparison with the illustrative calculation in section 2, these parameters give ∆η/η0 =
0.55, Ωeτ = 4.8 and vt = 1.33 × 107m sec−1. The growth rate given by equation 2 is then
γ = 1.0× 1012sec−1(wavelength/µm)−1, which agrees with the line labelled ‘stationary ions’ in
the right hand plot of figure 4 for wavelengths exceeding 10µm. Resonance effects take over at
wavelengths shorter than 10µm.

The plots in figure 4 show features similar to those for the electron mode in figure 3. However,
there are differences. The dispersion relation is still quadratic (equations 17-19), but only one
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of the two modes is unstable. The ion modes in figure 3 have disappeared from figure 4.
Nevertheless, ions still play a significant role. Ion motion is responsible for the increased growth
rate at long wavelengths at the right of the right-hand plot. The dotted curve in figure 4 gives
the growth rate when ion motion is neglected and the ions are forced to be stationary. The full
line shows that an increased growth rate is seen when ion motion is included.

The form of the curves in figure 4 for the growth rates can be understood by examining how
the frequencies ω1, ω2, ω3 & ω4 affect the growth rate at different wavelengths. ω1 and ω4 drive
the instability since they consist of integrals of the anisotropy F1. ω2 & ω3 contain the ion
response since they are proportional to Ωi. Another difference between ω1 & ω4 and ω2 & ω3 is
that ω1 & ω4 are proportional to k whereas ω2 & ω3 are independent of k. Hence, ion motion
is relatively more important at long wavelengths. This is responsible for the increased growth
rate at large wavelengths in the right hand plot in figure 4 when ion motion is included.

Comparison of the growth rates plotted in figure 4 with ω1 and (ω1ω2)
1/2 as plotted in figure

5 shows that ω = ω1 is a good approximation at short wavelengths, but ion motion takes over
at long wavelengths where ω ≈ (ω1ω2)

1/2 ∝ k1/2.
If collisions are weak in the sense that Ωeτ � 1, then ω1 → kj/nee and ω2 → Ωi. In this

limit, the mode with ω = (ω1ω2)
1/2 transitions into the non-resonant mode responsible for the

amplification of magnetic field (Bell 2004) in diffusive shock acceleration of CR.

6.1. The limit of long wavelength
As with the instability driven by a heat flow, the growth rate can be derived in the limit of large
wavelength, Z � 1, no ion motion, and Ωeτ much greater or much less than 1.

If Ωeτ � 1, ω = kvt(j/jf )(1− 0.706i(Ωeτ)−1). In contrast to the heat flow-driven instability
in section 5.1, the frequency has a real part to zeroth order in Ωeτ . This represents advection with
the electron current. The leading term in the imaginary part of the frequency is proportional
to (Ωeτ)−1 for both the current-driven and heat flow-driven instability.

If Ωeτ � 1, ω = kvt(j/jf )(1.932 − 7.312iΩeτ). As with the heat flow-driven instabiity, the
growth rate is proportional to Ωeτ .

The growth rate in the limit of long wavelength is plotted in figure 6 over the full range of
Ωeτ . The growth rate γj,VFP is normalised to kvj0 where vj0 = vt(j/jf ). The instability grows
most rapidly when Ωeτ ∼ 0.1− 1.

7. The instability as it appears in the Braginskii transport equations
Heat flow, the return current and the electric field can be described by the Braginskii equations
(1965). The Braginskii equations apply in the limit of small heat flow or current and large spatial
and temporal scales. The Braginskii transport coefficients are derived by fitting polynomial
approximations to solutions of the Boltzmann equation. The starting point of Braginskii’s
analysis is equivalent to out starting point with the VFP equation. Hence we should expect to
find that a heat flow or current aligned with a magnetic field is unstable when described by the
Braginskii equations. We now show this to be the case by linearising the Braginskii equations
for a circularly polarised perturbation.

The Braginskii equations include an Ohm’s law relating the electric field E to an electron
current j, an electron pressure P , and a temperature gradient ∇T :

−eneE + j×B−∇P + α.j/nee− β.∇T = 0 (23)

where α and β are tensors such that

α.j = α‖(b.j)b + α⊥b× (j× b)− α∧b× j

β.∇T = β‖(b.∇T )b + β⊥b× (∇T × b) + β∧b×∇T (24)
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where b = B/|B|. α⊥ and α‖ are related to the resistivities η⊥ and η‖ that appear above

in section 2: α⊥ = n2ee
2η⊥, α‖ = n2ee

2η‖. Alternative expressions for α and β (with minor
differences in notation) derived by Epperlein & Haines (1986) are in many circumstances more
accurate than those of Braginskii, but they can be less accurate when used to calculate to the
differences α⊥ − α‖ and β⊥ − β‖.

A temperature gradient has a scalelength L along the direction of the zeroth order heat flow
such that |∇T | = T/L. For the Braginskii equations to apply, L must be larger than all other
relevant scalelengths.

As in the VFP analysis, we couple these equations to the Maxwell equations, but here for
simplicity we assume that the ions are stationary. The resulting equation for the perturbed
magnetic field in a plasma with uniform density is

∂B⊥
∂t

=

[
(α⊥ − α‖)B0.j

n2ee
2B2

0

+
(β‖ − β⊥)B0.∇T

neeB2
0

]
∇×B⊥+

(
α⊥

n2ee
2µ0

)
∇2B⊥

+

[(
1 +

α∧
neeB0

)
B0.j

neeB2
0

+
β∧B0.∇T
neeB3

0

]
(B0.∇)B⊥ −

(
1 +

α∧
neeB0

)
(B0.∇)(∇×B⊥)

neeµ0
(25)

where B0 is the zeroth order magnetic field. For a circularly polarised harmonic mode, as
assumed in the VFP analysis in section 4, this reduces to

ω = i

[
k(α‖ − α⊥)B0.j

n2ee
2B2

0

−
k(β‖ − β⊥)B0.∇T

neeB2
0

]
− i

[
α⊥
neme

k2c2

ω2
pe

]

−
[(

1 +
α∧

neeB0

)
kB0.j

neeB0
+
kβ∧B0.∇T
neeB2

0

]
−
[
Ωe

(
1 +

α∧
neeB0

)
k2c2

ω2
pe

]
. (26)

The term in the first square bracket leads to stability or instability depending on the sign of
k and hence the sense of polarisation as in the VFP analysis. The growth rate is proportional
to the current j or the temperature gradient −∇T producing the heat flow. The term in the
second square bracket is the damping term that appears as k2c2/ω2

pe in the VFP analysis. The
term with the third square bracket advects the perturbed magnetic field with the current or the
heat flow. The term with the fourth square bracket is dispersive and advective at a velocity
proportional to k.

The first square bracket in equation 26 is the growth rate γ which can be expressed as the
sum γ = γj + γQ of a growth rate γj due to the current j and a growth rate γQ due to the heat
flow Q. Braginskii’s polynomial approximations for α⊥, α‖, β⊥ and β‖ give

γj,Brag = kv0j
(α′1δ0 − δ1α′0)Ωeτ − α′0Ω3

eτ
3

δ0(δ0 + δ1Ω2
eτ

2 + Ω4
eτ

4)

γQ,Brag = kv0Q
(β′1δ0 − δ1β′0)Ωeτ − β′0Ω3

eτ
3

γ0δ0(δ0 + δ1Ω2
eτ

2 + Ω4
eτ

4)
(27)

where v0j = vt(j/jf ) and v0Q = vt(Q/Qf ). The numerical values of the constants δ, α and β
can be found in Braginskii’s table 2 for various values of Z. For Z =∞,

γj,Brag = −6.75kv0j
(1 + 1.088Ω2

eτ
2)Ωeτ

1 + 77.86Ω2
eτ

2 + 10.41Ω4
eτ

4

γQ,Brag = −6.32kv0Q
(1 + 0.201Ω2

eτ
2)Ωeτ

1 + 77.86Ω2
eτ

2 + 10.41Ω4
eτ

4
. (28)
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Figure 6. The Braginskii growth rates (equations 28) for the instability driven by a current
(red full line) and the heat flow (blue full line) normalised to |k|v0j and |k|v0Q respectively.
The dashed and dotted lines are the comparable growth rates when calculated from the VFP
equation in the limit of a large wavelength.

Instability occurs in the polarisation for which k is negative. These growth rates are plotted
in non-dimensional form in figure 6 where they are compared with the growth rates calculated
from the VFP equation in the limit of long wavelength. Figure 6 shows that the growth rate is
largest when Ωeτ ∼ 0.1− 1.

In the limit of small Ωeτ , γj,Brag = −6.75(Ωeτ)kv0j and γQ,Brag = −6.32(Ωeτ)kv0Q. In the
limit of large Ωeτ , γj,Brag = −0.705(Ωeτ)−1kv0j and γQ,Brag = −0.122(Ωeτ)−1kv0Q.

With allowance for Braginskii’s method of approximation, the growth rates calculated from
Braginskii agree with the more accurate growth rates calculated directly from the VFP equation.
Braginskii’s choice of polynomial approximation gives the correct dependence on Ωeτ in the
limits of small and large Ωeτ . In contrast, the form of the polynomial approximations adopted
by Epperlein & Haines (1986) gives an incorrect dependence in the limit Ωeτ � 1 in which the
differences between α‖ & α⊥ and β‖ & β⊥ are very small.

8. Conclusions
We have solved the linearised electron VFP equations coupled to the Maxwell equations and the
cold ion equation of motion for a magnetised collisional plasma. The resulting dispersion relation
contains a number of unstable modes. Some of these modes are well known in their collisionless
limit in other contexts as described in sections 1, 5 and 6. Others are previously unknown to
our knowledge. We find that the Braginskii transport equations exhibit the same instability
in the appropriate limit. The growth rates are large enough to make our analysis relevant to
IFE experiments. The instability driven by streaming cosmic rays during shock acceleration is
contained as the collisionless limit within our dispersion relation. Application to other plasmas
is a subject for future analysis.

We have analysed only the linear phase of the instability. Its practical importance will
depend on its non-linear development and the amplitude at which it saturates. The CR-driven
form of the instability has been shown to grow by orders of magnitude beyond δB/B0 ∼ 1. The
existence of the non-linear non-resonant CR-driven instability has been confirmed by observation
of supernova remnants (SNR) where initial fields of a few µG are seen to be amplified non-linearly
to 100s µG (Vink & Laming 2003, Völk et al, 2005). Substantial amplification is possible because
the instability is non-resonant and is not hampered by loss of resonance when δB exceeds B0.
Further theoretical analysis and experiment is needed to investigate the possibility of magnetic
field amplification by large factors in the magneto-collisional case considered here. If the
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magneto-collisional instability follows the behaviour of the CR-driven instability (eg Matthews
et al 2017), a fully non-linear numerical simulation will be needed. A quasi-linear mode-coupling
approach would not naturally capture the essential physics of this non-resonant instability.

One possible beneficial application of an amplified magnetic field might be to erect a transport
barrier that shields the fuel from preheat in IFE implosions, especially in the case of shock
ignition where the laser intensity is raised at the end of the implosion to launch a shock into the
fuel (eg Betti et al 2007).
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Appendix A
Here we derive equation (14), as required for the dispersion relation. Equation (13) expresses
the perturbed distribution function in terms of the complex coefficients of equation (5). We
replace ∂/∂x with ik to obtain

n− 1

2n− 1
ikvf1n−1 +

n+ 2

2n+ 3
ikvf1n+1 + iΩef

1
n +

n(n+ 1)ν

2
f1n

=
δn1
2

{
ie

me
(By − iBz)F1 +

e

me
(Ey − iEz)

∂F0

∂v
− ν(uy − iuz)

∂F0

∂v

}
. (A1)

f11 (the n = 1 component of the sequence) is needed for the electron current and the resistive force
(equations 16). J⊥ and R⊥ are integrals over fy and fz where these constitute the first order
anisotropy in the tensor expansion of the distribution function. Johnston (1960) demonstrated
the equivalence of the tensor and spherical harmonic expansions. With our definition of the
coefficients of the spherical harmonic expansion, fy = 2fR1 and fz = −2f I1 where fR1 = <(f11 )
and f I1 = =(f11 ).

We define the complex sequence of functions gn(v) such that

f1n(v) = − ign(v)

2Ωe

{
ie

me
(By − iBz)F1 +

e

me
(Ey − iEz)

∂F0

∂v
− ν(uy − iuz)

∂F0

∂v

}
(A2)

in which case, g1(v) can be found by solution of the tridiagonal sequence of simultaneous
equations, (

1− in(n+ 1)ν

2Ωe

)
gn +

n− 1

2n− 1

kv

Ωe
gn−1 +

n+ 2

2n+ 3

kv

Ωe
gn+1 = δn1 . (A3)

The n = 1 element of the set of equations (A2) is

f11 = − gR1
2Ωe

{
− e

me
(By − iBz)F1 +

e

me
(iEy + Ez)

∂F0

∂v
− ν(iuy + uz)

∂F0

∂v

}

+
gI1

2Ωe

{
e

me
(iBy +Bz)F1 +

e

me
(Ey − iEz)

∂F0

∂v
− ν(uy − iuz)

∂F0

∂v

}
(A4)

where g1 = gR1 + igI1 , giving

fR1 =
gR1
2Ωe

{
e

me
ByF1 −

e

me
Ez
∂F0

∂v
+ νuz

∂F0

∂v

}
+

gI1
2Ωe

{
e

me
BzF1 +

e

me
Ey

∂F0

∂v
− ν(v)uy

∂F0

∂v

}

f I1 =
gR1
2Ωe

{
− e

me
BzF1−

e

me
Ey

∂F0

∂v
+νuy

∂F0

∂v

}
+
gI1

2Ωe

{
e

me
ByF1−

e

me
Ez
∂F0

∂v
+νuz

∂F0

∂v

}
. (A5)
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In the tensor formalism, the vector electron drift is f⊥ = 2fR1 ŷ − 2f I1 ẑ. Similarly, we define
B⊥ = Byŷ +Bzẑ, E⊥ = Eyŷ + Ezẑ, u⊥ = uyŷ + uzẑ, giving the purely real equation

f⊥ =
gR1
Ωe

(
eF1

me
B⊥ +

e

me

∂F0

∂v
x̂×E⊥ − ν

∂F0

∂v
x̂× u⊥

)

+
gI1
Ωe

(
−eF1

me
x̂×B⊥ +

e

me

∂F0

∂v
E⊥ − ν

∂F0

∂v
u⊥

)
. (A6)

We now apply circular polarisation such that x̂× → i (x̂× ξ⊥ = iξ⊥), giving

f⊥ =
gR1
Ωe

(
eF1

me
B⊥ + i

e

me

∂F0

∂v
E⊥ − iν

∂F0

∂v
u⊥

)
+
gI1
Ωe

(
−ieF1

me
B⊥ +

e

me

∂F0

∂v
E⊥ − ν

∂F0

∂v
u⊥

)
(A7)

which is equivalent to

f⊥ =
g∗1
Ωe

(
eF1

me
B⊥ +

ie

me

∂F0

∂v
E⊥ − iν

∂F0

∂v
u⊥

)
(A8)

as required for equation (14) in the main text.

Appendix B
Here we derive the dispersion relation, equations (17-19). When circular polarisation is imposed
such that x̂× ξ⊥ = iξ⊥, equations (12) become

−iωnemAu⊥ = neeE⊥ − ineeB0u⊥ + R⊥ ωB⊥ = ikE⊥ − kB⊥ = µ0J⊥ + µ0neeu⊥
(B1)

From equations (16) for J⊥ and R⊥,

J⊥ = −e
∫ ∞
0

4π

3
f⊥v

3dv R⊥ = me

∫ ∞
0

4π

3
f⊥v

3ν(v)dv + u⊥me

∫ ∞
0

4π

3

∂F0

∂v
v3ν(v)dv (B3)

where from equation (14),

f⊥ = g∗1

{
eB⊥
meΩe

F1 +
ieE⊥
meΩe

∂F0

∂v
− iu⊥

ν

Ωe

∂F0

∂v

}
. (B3)

Together, these equations determine the dispersion relation. Substituting the expression for f⊥
into the integrals for J⊥ and R⊥ gives

J⊥ = −e
2B⊥
meΩe

∫ ∞
0

4πv3g∗1
3

F1dv−
ie2E⊥
meΩe

∫ ∞
0

4πv3g∗1
3

∂F0

∂v
dv+

ieu⊥
Ωe

∫ ∞
0

4πv3νg∗1
3

∂F0

∂v
dv

R⊥ =
eB⊥
Ωe

∫ ∞
0

4πv3νg∗1
3

F1dv+
ieE⊥
Ωe

∫ ∞
0

4πv3νg∗1
3

∂F0

∂v
dv− imeu⊥

Ωe

∫ ∞
0

4πv3ν2g∗1
3

∂F0

∂v
dv

+u⊥me

∫ ∞
0

4πv3ν

3

∂F0

∂v
dv . (B4)

For ease of notation, equations (B4) can be written as

J⊥ = −nee
2I1gB⊥
meΩe

+
inee

2I0gE⊥
meΩe

− ineeI0gνu⊥

R⊥ = neeI1gνB⊥ − ineeI0gνE⊥ + inemeΩeI0gννu⊥ − nemeΩeI0νu⊥ (B5)
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where

I1g =

∫ ∞
0

4πv3g∗1
3ne

F1dv I0g = −
∫ ∞
0

4πv3g∗1
3ne

∂F0

∂v
dv I0gν = −

∫ ∞
0

4πv3νg∗1
3neΩe

∂F0

∂v
dv

I1gν =

∫ ∞
0

4πv3νg∗1
3neΩe

F1dv I0gνν = −
∫ ∞
0

4πv3ν2g∗1
3neΩ2

e

∂F0

∂v
dv I0ν = −

∫ ∞
0

4πv3ν

3neΩe

∂F0

∂v
dv .

(B6)
Eliminating J⊥, R⊥ and E⊥ between equations (B1) and (B6) gives[

kc2Ωe

ω2
pe

− I1g +
ωI0g
k

]
B⊥ = B0

[
iI0gν − 1

]
u⊥

[
ω

k
(iI0gν − 1)− iI1gν

]
B⊥ = B0

[
1− I0gνν − iI0ν −

ω

Ωi

]
u⊥ (B7)

where Ωi = (me/mA)Ωe. These two equations can be combined to give the dispersion relation[
k2c2Ωe

ω2
pe

− kI1g + ωI0g

] [
1− I0gνν − iI0ν −

ω

Ωi

]
−
[
ω(iI0gν − 1)− ikI1gν

][
iI0gν − 1

]
= 0 . (B8)

We define the following frequencies:

ω1 =
kI1g
I0g
− k

2c2

ω2
pe

Ωe

I0g
ω2 = Ωi (1− iI0ν − I0gνν) ω3 =

Ωi(1− iI0gν)2

I0g
ω4 =

kI1gν
I0gν + i

.

(B9)
The dispersion relation is then

(ω − ω1)(ω − ω2) + ω3(ω − ω4) = 0 (B10)

as required for equation (17) in the main text.
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