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Abstract 51 

Background & Aims: Esophageal adenocarcinomas (EAC) are heterogeneous and often 52 

preceded by Barrett’s esophagus (BE). Many genomic changes have been associated with 53 

development of BE and EAC, but little is known about epigenetic alterations. We performed 54 

epigenetic analyses of BE and EAC tissues, and combined these data with transcriptome and 55 

genomic data, to identify mechanisms that control gene expression and genome integrity. 56 

Methods: In a retrospective cohort study, we collected tissue samples and clinical data from 57 

150 BE and 285 EAC cases from the Oesophageal Cancer Classification and Molecular 58 

Stratification consortium in the United Kingdom. We analyzed methylation profiles of all BE 59 

and EAC tissues and assigned them to subgroups using non-negative matrix factorization with 60 

k-means clustering. Data from whole-genome sequencing and transcriptome studies were 61 

then incorporated; we performed integrative methylation and RNA-seq analyses to identify 62 

genes that were suppressed with increased methylation in promoter regions. Levels of 63 

different immune cell types was computed using single-sample gene set enrichment 64 

methods. We derived 8 organoids from 8 EAC tissues and tested their sensitivity to different 65 

drugs. 66 

Results: BE and EAC samples shared genome-wide methylation features, compared to that 67 

with normal tissues (esophageal, gastric, and duodenum; controls) from the same patients 68 

and grouped into 4 subtypes. Subtype 1 was characterized by DNA hypermethylation with a 69 

high mutation burden and multiple mutations in genes in cell cycle and receptor tyrosine 70 

signaling pathways. Subtype 2 was characterized by a gene expression pattern associated 71 

with metabolic processes (ATP synthesis and fatty acid oxidation) and lack methylation at 72 

specific binding sites for transcription factors; 83% of samples of this subtype were BE and 73 
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17% were EAC. The third subtype did not have changes in methylation pattern, compared 74 

with control tissue, but had a gene expression pattern that indicated immune cell infiltration; 75 

this tumor type was associated with the shortest time of patient survival. The fourth subtype 76 

was characterized by DNA hypomethylation associated with structural rearrangements, copy 77 

number alterations, with preferential amplification for CCNE1 (cells with this gene 78 

amplification have been reported to be sensitive to CDK2 inhibitors). Organoids with reduced 79 

levels of MGMT and CHFR expression were sensitive to temozolomide and taxane drugs. 80 

Conclusions: In a comprehensive integrated analysis of methylation, transcriptome, and 81 

genome profiles of more than 400 BE and EAC tissues, along with clinical data, we identified 82 

4 subtypes that were associated with patient outcomes and potential responses to therapy. 83 

 84 

Keywords: prognostic factor, anti-tumor immune response, response to treatment, gene 85 

repression. 86 

  87 
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Esophageal Cancer is the eighth most common cancer type globally1. Esophageal 88 

adenocarcinoma (EAC) is the predominant subtype in the western world, particularly amongst 89 

white men2; most patients present at an advanced stage and despite some improvements in 90 

therapy overall five-year survival rate is under 15%3. Epidemiologically, long-term esophageal 91 

exposure to acid and bile reflux appear to be the major risk factors resulting in aberrant 92 

differentiation of the cells lining the lower oesophagus to intestinal metaplasia, otherwise 93 

known as Barrett’s esophagus4 (BE).  94 

Recent genomic studies have shown that BE harbours a number of point mutations even in 95 

cases that never progress to cancer5; however it has a relatively stable genome in terms of 96 

copy number alterations and structural variants6, 7. As BE progresses to EAC there is loss of 97 

p53 accompanied by an increasingly unstable genome, although the genetic trigger for 98 

disease progression has not been established 5, 8. DNA methylation is one of the key 99 

epigenetic mechanisms for regulating gene expression and maintaining genome stability9. In 100 

a number of different cancer types it has been shown that hypermethylation at CpG islands, 101 

including promoter regions, results in gene silencing of tumour suppressor genes, whereas 102 

regions undergoing hypomethylation are associated with increased expression of oncogenes 103 

and genome instability10.  104 

In EAC, two studies have demonstrated marked variation in the degree of methylation at CpG 105 

islands, denoted CpG island methylator phenotype (CIMP) positive and negative 106 

respectively11,12. The Cancer Genome Atlas (TCGA) study has shown that methylation profiles 107 

of Esophageal Squamous Cell Carcinoma (ESCC) and EAC are distinct and the methylation 108 

profile of EAC resembles that of intestinal cancers such as gastric and colon cancer13. 109 

However, the detailed landscape of methylation changes across BE and EAC in relation to 110 
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other genome-wide mutational processes determined from whole genome sequencing (WGS) 111 

data remains to be determined.  112 

Here we present methylation data integrated with genomic and transcriptomic information 113 

for a large cohort comprising more than 400 cases. The detailed clinical information has 114 

enabled us to examine the prognostic significance of the changes and we have used primary 115 

organoid models to test the therapeutic relevance of prevalent epigenetically regulated 116 

targets. 117 

 118 

Methods 119 

Cohort 120 

In this retrospective cohort study, we assessed 150 BE and 285 EAC cases derived from the 121 

Biomarker and ICGC study, for which samples are collected through the UK-wide OCCAMS 122 

(Oesophageal Cancer Classification and Molecular Stratification) consortium. The procedures 123 

for obtaining the samples, quality control processes, extractions and whole genome 124 

sequencing are as previously described6. Strict pathology consensus review was observed for 125 

these samples with a 70% cellularity requirement before inclusion.  126 

Methylation Profiling and Data Analysis  127 

Methylation profile for all samples were generated using the EPIC array platform. For all 128 

samples DNA from fresh frozen material was used. All raw data were processed using minfi14. 129 

Samples with less than 96% capture efficiency were not considered in analysis. We filtered 130 

probes if they were not significantly detected from background, and are not in CpG context, 131 

have known SNPs in the surrounding locus, align to multiple locations in the genome or if they 132 
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mapped to X and Y chromosomes. Processed methylation data were further normalized using 133 

BETA mixture model BMIQ15 implemented in ChAMP package16. Processed data were then 134 

corrected for batch effects using limma17.  135 

To identify methylation-dependent subgroups, we performed Non-negative matrix 136 

factorization (NMF)18 on 5,000 most variable probes together with k-means clustering. 137 

Through NMF we first estimated optimal ranks/metagenes by executing it in combinations of 138 

2–10 metagenes over 200 runs. This analysis identified four optimal metagenes assessed 139 

through the cophenetic index. Scores from all four metagenes were further subjected to k-140 

means clustering for identifying the optimal number of subtypes. Using silhouette width as a 141 

measure, four optimal subtypes were identified. 142 

Differential analysis on individual probes was performed using linear models implemented in 143 

limma17. We selected as differentially methylated only those probes with an absolute 144 

difference in β greater than 0.3 and adjusted p-value is less than 0.01.   On the other hand, 145 

for identifying regions with differential methylation we used the bumphunter19 function 146 

implemented in minfi. bumphunter was executed under the following parameter settings: 147 

maxGap=500, B=1000, cutoff=0.2 and minProbes=4. 148 

Whole genome sequencing data analysis  149 

WGS data were aligned using BWA-MEM program. We used Strelka20 for calling somatic 150 

mutations, ASCAT21 for calling copy number and Manta22 for calling structural variants under 151 

similar settings as previously described6. Our methods were benchmarked against various 152 

other available methods and have among the best sensitivity and specificity for variant calling 153 

(ICGC benchmarking exercise23).  154 
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RNA-seq data analysis 155 

Sequencing data were aligned using STAR aligner24. Using ENSEMBL gene annotation, counts 156 

of individual genes for all samples were computed using GenomicAlignments25 package from 157 

Bioconductor. Based on the counts, sequencing depth of individual samples and gene 158 

annotation, Transcripts Per Kilobase Million (TPM) for individual genes was computed across 159 

all samples. TPM were further corrected for batch effects using Combat26.  160 

Differential analysis of each individual subtype over all other subtypes was performed on 161 

counts using the edgeR27 package. Pathway analysis was performed on ranked data from 162 

differential analysis using Gene Set Enrichment Analysis (GSEA28). For such analyses, we 163 

considered pathways annotated from Gene Ontology, Reactome and other databases.  164 

Enrichment for different immune cell types was computed through gene set variant analysis 165 

(GSVA29). Markers for immune cell types were retrieved from publication30. 166 

Identifying epigenetically silenced genes 167 

For assessing which genes undergo transcriptional repression under the influence of gaining 168 

methylation in promoter regions, we performed integrative methylation and RNA-seq 169 

analysis. For this analysis, we considered samples for which both RNA-seq and methylation 170 

were available. For each gene, we identified all probes located 1500 bp both up and 171 

downstream from the transcription start site (TSS). We selectively removed all CpG sites that 172 

were methylated in normal tissues (mean β-value >0.2). Methylation data was then 173 

dichotomised using  β-value of ≥0.3 as a threshold (as used in TCGA studies13, 31) for positive 174 

DNA methylation, and discarded CpG sites methylated in fewer than 10% of samples. For each 175 

probe/gene pair, we then applied the following conditions: 1) categorized samples as either 176 
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methylated (β ≥0.3) or unmethylated (β <0.3); 2) Compare expression in the methylated and 177 

unmethylated groups using the Mann-Whitney test; 3) Compute the correlation between 178 

methylation beta and expression TPM. We labelled each individual tumour sample as 179 

epigenetically silenced for a specific probe/gene pair selected above if for the probes there is 180 

a difference in beta (>0.2) between two groups, difference in distribution of expression of 181 

(adjusted p-value < 0.05) and negative correlation between methylation and expression (r < -182 

0.1, adjusted p-value < 0.05). Only genes with multiple probes were considered for this 183 

analysis and a sample considered as epigenetically silenced if more than thirty percent of 184 

probes for the corresponding gene was also labelled as epigenetically silenced.  185 

Transcription Factor Analysis 186 

We used ELMER32 for understanding which transcription factors are regulated upon 187 

perturbations from regulatory regions. Briefly, this method is based on initially identifying 188 

differentially methylated distal probes and predicting enriched motifs across them. 189 

Methylation levels from motif associated probes are then correlated with expression levels 190 

of transcription factor and ranked for any significant associations. We performed supervised 191 

analysis where each subtype was compared with others. On doing so we did not find 192 

significant results for most of the comparisons except for one, that between Subtype 2 and 193 

Subtype 3. 194 

Ethics 195 

The study was registered (UKCRNID 8880), approved by the Institutional Ethics Committees 196 

(REC 07/H0305/52 and 10/H0305/1), and all subjects gave individual informed consent. 197 

Data availability 198 
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Methylation data is accessible from European Genome-phenome Archive under accession 199 

numbers EGAD00010001822, EGAD00010001838 and EGAD00010001834. 200 

Results 201 

To capture comprehensive genome wide methylation changes we used the Illumina 202 

MethylationEPIC BeadChip (EPIC, Illumina Inc.). EPIC measures methylation over 850,000 CpG 203 

sites covering wide range of regulatory regions of genome 204 

(https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-205 

epic.html).  Compared to its older version Illumina HumanMethylation450 BeadChip (450K, 206 

Illumina Inc.) over 90% of 450K probes are included in EPIC along with increased coverage 207 

over distal regulatory elements33. In total 435 samples comprising 285 EAC and 150 BE cases 208 

along with 100 controls were assayed using the EPIC array. We included control samples from 209 

neighbouring tissue types - squamous esophagus (n=39) and gastric cardia (n=38), as well as 210 

duodenum (n=23) as a comparison for intestinal differentiation, which is a defining feature of 211 

BE and also seen in well-differentiated EAC. Both methylation and RNA-seq specific analysis 212 

among the three control tissue types showed that each tissue harbours a unique pattern of 213 

methylation (Figure S1J) and RNA expression (Figure S1K). The gene ontology of differentially 214 

expressed genes shows enrichment of pathways specific to each individual tissue (Figure S1L). 215 

As expected, biological processes related to epidermis development and keratin 216 

differentiation are specifically enriched in squamous tissue. Similarly, in gastric tissue we 217 

observe upregulation of hormone and gastric acid secretion processes whereas lipid 218 

associated metabolic processes are enriched in duodenum. Biological processes such as 219 

digestion and ion transport are enriched in both gastric and duodenum tissues in keeping with 220 

https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
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some common functional roles. For 59% of BE cases and 62% of EAC cases, both WGS, and 221 

transcriptomic (RNA-seq) data were available to enable an integrated analysis (Figure S1A,B).  222 

The clinical features of the cohort generated from the UK-wide OCCAMS consortium are in 223 

keeping with the expected demographics for this disease (Supplementary Table 1 and 2). 224 

Most cases are male (85% EAC, 83% BE) with a median age of 67 years. The most common 225 

site of EAC cases is at the gastro-esophageal junction and the majority of patients included 226 

are stage 2 or 3 (89%), in keeping with our recruitment in the context of patients entering a 227 

curative pathway for whom sample collection is most feasible. Among the premalignant BE 228 

cases 57% are non-dysplastic and the remaining 43% are dysplastic. Most of these are taken 229 

from patients undergoing surveillance and represent their highest progression grade 230 

following multiple years of follow-up. We also included 34 cases with BE adjacent to invasive 231 

EAC (see Supplementary Table 2 and Fig. S2C-E for details). 232 

Methylation profiles of BE and EAC reveal four subtypes with independent replication  233 

To elucidate differences between BE and EAC in comparison with controls we carried out 234 

principal component analysis on the 5,000 most variable probes selected across all samples. 235 

It is apparent that, in keeping with their glandular phenotype, BE and EAC closely resemble 236 

gastric cardia and duodenum but are highly distinct from normal squamous esophagus (Figure 237 

S1C). Heterogeneous BE profiles overlap more strongly with EAC than with benign gastric and 238 

duodenal tissues.  239 

In view of the variability in methylation observed in BE and EAC (Figure S1C) we used Non-240 

Negative Matrix Factorization (NMF) based clustering to identify subtypes. Through this 241 

analysis, we were able to identify four optimal metagenes (Figure S1D). Expression measures 242 

of these four metagenes were further subjected to k-means clustering, which resulted in four 243 
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stable subtypes (Figure S1E-F). Figure 1A represents levels of methylation across 5,000 most 244 

variables with samples grouped into four identified subtypes. For comparative purposes, 245 

levels of methylation from different control samples are also displayed on the left. 246 

Interestingly the BE cases are distributed across the four subgroups: 83.2% of the cases in 247 

Subtype 2 are BE (n=119; BE=99, EAC=20) with 33.3% (n=99; BE=33, EAC=66) in Subtype 3, 248 

13.6% in Subtype 1 (n=125; BE=17, EAC=108) and a single case in Subtype 4 (n=92; BE=1, 249 

EAC=91), (figure 1).  250 

From the heatmap (figure 1A), we can observe that each subtype has a unique methylation 251 

pattern. 30.6% of the variable probes are localised within CpGi with the remainder falling in 252 

areas designated as shore (2kb outside CpGi boundaries), shelf (2kb outside shore) and open 253 

sea. Similarly, in gene centric terms, 42.7% of the most variable probes are localised in 254 

promoter regions. For ease of reference we have divided probes into three blocks, A, B and 255 

C. In block A, most probes overlap with CpGi (orange) and are located in promoter regions 256 

(blue), whereas the majority of probes in block B and C fall within gene bodies and intergenic 257 

regions. There is generally a gain in methylation for block A probes in Subtype 1 and 2 when 258 

compared to that of controls and the other subgroups. In contrast, probes in block B are 259 

relatively hypomethylated in subtype 4 and probes from block C are unmethylated in Subtype 260 

2. For EACs, except for differentiation status we did not find any significant association 261 

between subtypes and clinical variables such as tumour location, chemotherapy status, 262 

differentiation status (Figure S2A-B). The distribution of BE cases is influenced by the degree 263 

of dysplasia, with most of the non-dysplastic BE falling into subtypes 2 and 3 (Figure S2C-E).  264 

From here onwards in some figures Subtype 1 is denoted as ST_1, Subtype 2 as ST_2, Subtype 265 

3 as ST_3 and Subtype 4 as ST_4.  266 
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To determine whether these subtypes are specific to this cohort or a result of the 267 

methodology employed, we examined whether these findings could be replicated in an 268 

independent cohort. To do this we examined publicly available methylation data from 269 

Australia, comprising 19 BE and 125 EAC cases along with 106 controls (normal esophagus 270 

and gastric) profiled using the older 450K array platform11. Remarkably, although the probe 271 

overlap between the two platforms was only 55.4% (2,771 of the 5,000 most variable probes), 272 

we observed a similar number of metagenes and again four subtypes emerged with very 273 

similar methylation profiles to those seen in our cohort (Figure S2F-H).  274 

 275 

Methylation profiles in relation to DNA mutation 276 

When integrating the whole genome sequencing data, which were available for the majority 277 

of cases (n=391/435), Subtype 1 and 4 are observed to have a significantly higher mutation 278 

burden compared to subtypes 2 and Subtype 3 (Figure S1H). The low mutation burden in 279 

Subtype 2 is partly explained by the high proportion of premalignant Barrett’s cases but the 280 

difference persists in EAC cases 5, 8.  281 

We previously identified 77 genes which, based on their “driver gene” status, are likely to play 282 

a critical role in the pathogenesis of EAC7.  We mapped the 20 driver genes mutated in at least 283 

4% of EAC cases (Figure 1B, S3). TP53 and CDKN2A are the two most frequently altered genes 284 

across the cohort as expected7, wherein TP53 is more preferentially mutated in Subtype 1 285 

(78%) and Subtype 4 (78%) whereas in Subtype 2 and Subtype 3, 37% and 46% are altered. 286 

Similarly, CDKN2A is preferentially deleted in Subtype 2, commensurate with the high 287 

prevalence of BE (67%, p-value < 0.001). ERBB2 is amplified in both subtype 1 (19%) and 288 

subtype 4 (29%). Some genetic events appear to be subtype specific; for example, GATA4 289 
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(22%, p-value < 0.001), CCND1 (21%, p-value < 0.001), KCNQ3 (19%, p-value=0.01), MYC (23%, 290 

p-value < 0.01), CDK6 (17%, p-value<0.05), and KRAS (18%, p-value < 0.05) are preferentially 291 

altered in subtype 1 whereas CCNE1 (21%, p-value < 0.001) and APC (12%, p-value < 0.05) are 292 

preferentially altered in subtype 4. Mapping these events to their functional pathways we 293 

found that components of the receptor tyrosine kinase (RTK) pathway (GATA4, ERBB2, KRAS) 294 

and cell cycle (CCND1, CCNE1, MYC, CDK6) are altered in Subtypes 1 and 4. More specifically, 295 

all key drivers of cell cycle aside from CCNE1 are preferentially altered in Subtype 1, whereas 296 

components of the Wnt pathway (APC) are dysregulated in Subtype 4. MDM2 is amplified 297 

preferentially in subtype 3 (8%, p-value= 0.0643). 298 

 299 

Integrated analysis of methylation, genomic and expression features in each subgroup 300 

Subtype 1: To characterise the highly mutated subtype 1 in more detail we performed a 301 

differential analysis in comparison to the controls both at an individual base level and to broad 302 

regions for which probes clustered within a distance of 500bp. We found that the proportion 303 

of hyper and hypomethylated probes was similar. However, hypomethylation events are 304 

spread throughout the genome while hypermethylation is profound in localized regions, 305 

mainly promoters rich with CpGi (Figure 2A). Further we observed that 66% of 306 

hypermethylated probes and 1% hypomethylated probes overlap with CpG islands and most 307 

(59%) occur in promoter regions (Figure 2B), suggesting a CIMP-like phenotype.  308 

Since the state of chromatin can further affect gene regulation we explored markers of closed 309 

and open chromatin. To do this we took advantage of histone modification data available 310 

from ENCODE34, 35 and the ROADMAP epigenomics consortium36. Using methylation profiles 311 

we confirmed tissue specific similarity for normal controls between ENCODE and our dataset 312 
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(figure S1M-N). We then compared both repressive Histone 3 methylation at Lysine 27 313 

(H327me3) and activation marks with Histone 3 acetylation at Lysine 27 (H3K27ac) data from 314 

squamous, gastric and duodenum tissues available from the ENCODE34, 35 and ROADMAP 315 

epigenomics consortium36. This showed that for hypermethylation 77% of regions are marked 316 

by H3K27me3 and 23% by H3K27ac (Figure 2C) across all tissues. Hence, the effects of DNA 317 

methylation on gene regulation do not appear to be tissue specific.  318 

Transcriptome-based pathway analysis of Subtype 1 in comparison to all other subtypes 319 

shows a strong enrichment for pathways related to DNA repair and cell cycle (Figure 2D, 320 

supplementary table 6) which is also in line with driver gene alterations (CCND1, CCNE1, MYC, 321 

CDK6) described above. 322 

 323 

Subtype 2: Subtype 2 is dominated by BE cases with hypermethylated CpGi. We were 324 

interested to assess whether the hypermethylation changes in this subtype are also seen in 325 

EAC, so we compared differentially hypermethylated probes in Subtypes 1 and 2. This showed 326 

that the majority (85%) of hypermethylated probes are shared between these subtypes for 327 

BE and EAC, suggesting that hypermethylation is an early event (Figure 1A,B). 328 

Even though we observe strong similarities in hypermethylation patterns between BE and 329 

EAC there is also a prominent pattern of unmethylated block C probes (Figure 1A) which are 330 

highly specific to BE cases in this subgroup. We suspect that these are unique regions that 331 

maintain tissue specificity in BE and in keeping with this, the levels are comparable with 332 

gastric but not with squamous or duodenum phenotypes (Figure 3C). It has been observed 333 

through functional studies that different sets of key master transcription factors such as ELF3, 334 

GATA6, KLF5, TP63 through their self-regulatory networks can play an important role in 335 
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esophageal cancer progression37, 38. To predict the behaviour of different transcription factors 336 

we took advantage of distal probes and observed that key transcription factor motifs 337 

including HNF4A/G, FOXA1/2/3, GATA6 and CDX2 are significantly over-represented in probes 338 

specific to distal regulatory regions in Subtype 2 (Figure 3D). Correlation between the average 339 

DNA methylation levels at probes enriched for individual transcription factors and the 340 

relevant expression level across all subtypes is shown in Supplementary Figure S4. This 341 

demonstrates that the probes critical for regulation of master transcription factors to 342 

maintain the BE phenotype are unmethylated in Subtype 2 with a gain in methylation at these 343 

sites and reduced expression in EAC. At the RNA level there is selective enrichment of ATP 344 

synthesis, fatty acid metabolism and oxidation related processes in this subtype, especially in 345 

BE (Figure S5A, supplementary table 7).  346 

 347 

Subtype 3: Compared to other subtypes, we did not observe strong changes in methylation in 348 

Subtype 3, however from RNA-seq data we observe that subtype 3 has a strong enrichment 349 

of both innate and adaptive immune cell types. Particularly we notice strong positive 350 

enrichment of cytotoxic cells, B-cells, mast cells and neutrophils along with cancer associated 351 

fibroblasts (CAFs) and at the same time we also observe reduced levels of T-helper cells in this 352 

subtype (Figure 4A). This contrasts with Subtype 2 which shows no enrichment for immune 353 

infiltration (Figure 4A). Consistent with this we observe that all pathways related to immune 354 

regulation are strongly enriched (4B, S5B, supplementary table 8). Granzyme B (GZMB), a 355 

serine protease protein secreted by cytotoxic and natural killer cells, is well known for its vital 356 

role in immune defence mechanisms. Using GZMB as marker of cytotoxic cells we verified 357 

their abundance in multiple cases from different subtypes through immuno-histochemical 358 
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(IHC) staining and confirmed that the relative abundance of GZMB is substantially higher in 359 

Subtype 3 as compared to other subtypes (Figure 4C, S5D).  360 

The high level of immune infiltration in Subtype 3 also suggests a proportionally lower tumour 361 

content (see Figure S1G) as computationally predicted from whole genome sequencing data. 362 

To ensure that cellularity is not influencing our subtype classification, we repeated NMF based 363 

clustering on samples with computationally predicted cellularity greater than 0.3. On doing 364 

so we still retain similar subtypes, suggesting cellularity has no impact on classification. 365 

 366 

Subtype 4: Subtype 4 is dominated by hypomethylation events (figure 5A), which in other  367 

studies may be an indication of genome instability39. Widespread hypomethylation has been 368 

observed in both early and late stages of many cancer types40-44 including BE and EAC45, 46 369 

causing upregulation of certain coding and non-coding regions. In our analysis when 370 

compared to other subtypes, Subtype 4 shows a relatively high number of copy number 371 

alterations, which are spread throughout the genome (Figure 5B). For example, focal 372 

amplifications of CCNE1, ERBB2 and Chr13 and 20 amplifications are common as compared 373 

with other subtypes. Subtype 4 also has more extrachromosomal-like events affecting ERBB2 374 

characterized by more than 10 copies of the gene, whereas in Subtype 1 most events are low 375 

level amplifications (Figure 5C). This is consistent with our previous finding that these 376 

extrachromosomal-like events are strongly associated with chromosomal rearrangements7. 377 

When quantifying the total number of structural variants (SVs), Subtype 4 was found to have 378 

significantly more SVs as compared to other subtypes (Suppl. Fig 1I). On a case by case basis, 379 

patients in Group 4 with low levels of methylation harbour a high level of SVs (figure 5D), in 380 
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keeping with the idea that methylation levels may be important for maintaining genome 381 

stability.  382 

When considering the prognosis of EAC cases according to their methylation profiles (BE cases 383 

were removed for this analysis) there are differences in overall survival rates between the 384 

subgroups (Figure 5E). The small number of EAC cases in subtype 2 which cluster with the BE 385 

cases had the best survival. Surprisingly Subtype 3, which has an immune activation 386 

phenotype, a lower mutation burden and fewer oncogenic drivers, has poor survival 387 

compared to patients in other subtypes.  388 

Epigenetically silenced genes and relevance to therapy 389 

To understand which genes undergo transcriptional repression in association with 390 

methylation change, we performed an integrative methylation and transcriptomic analysis. 391 

Of the 237 genes with significantly lower expression in relation to increased methylation 392 

(Supplementary Table 3), few genes seem to be affected globally across all subtypes, with 393 

most silenced genes being more specific to Subtype 1 and 2 (Figure 6A).  394 

Gene ontology and pathway analysis of silenced genes showed enrichment for biological 395 

processes related to transcription and its regulation, along with pathways related to cell cycle 396 

(CCND2, RDX, UBE2E2), kinase signalling, stem cell pluripotency, nucleosome assembly, cell 397 

adhesion, wnt/-catenin signalling pathway which has been shown to play a role in the 398 

neoplastic transformation of BE47 (Figure S6A-B, Supplementary Table 4-5). We also observe 399 

that a few immune regulators (BLNK, CD40, VAV3, IRS2) are also affected by methylation.  400 

Previously we tested different sets of drugs in both EAC cell lines and primary derived 401 

organoids and have shown that their response correlates with the specific driver gene 402 
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alterations7, 48. In view of this, we were interested to identify methylation based drivers and 403 

predict their response to known drugs. Previous work has shown that the MGMT gene, a key 404 

regulator in DNA repair, is methylated in nearly 50% of glioblastoma cases and these patients 405 

benefited from temozolomide chemotherapy more than patients with an unmethylated 406 

MGMT promoter49. In our cohort MGMT is strongly regulated by a gain of methylation in 407 

promoter regions, affecting 32% cases (Figure 6B, S6C). To examine responses to 408 

temozolomide in EAC we took advantage of organoids generated from primary tumours from 409 

this cohort48. High sensitivity to Temozolomide was observed in organoids showing low 410 

expression of MGMT at both RNA and protein level such as CAM277, in contrast, organoids 411 

with stable MGMT expression showing resistance, for example in CAM408 (Figure 6D,E and 412 

S6E). 413 

Similarly, CHFR, a cell cycle check point inhibitor, is methylated in many cancer types; in 414 

squamous cell carcinoma CHFR methylation sensitizes to taxane chemotherapy50. In our 415 

cohort, we observe CHFR to be altered in 18% of cases most of which are preferentially 416 

affected in Subtype 1 (Figure 6C, S6D) and in organoid models CHFR expression levels 417 

correlate with a differential response to docetaxel (Figure S6D).  418 

In our earlier driver gene analysis, we have shown that more than 50% of EAC (n=551) are 419 

predicted to benefit from CDK4/6 inhibitors along with EZH2 and BET inhibitors in a smaller 420 

proportion of cases7. In view of this observation we were interested to determine whether 421 

the response rate to different inhibitors is also dependent on their methylation profiles. We 422 

observe CDK4/6 inhibitors to be effective in EAC, across all subtypes. In contrast, we also 423 

observe CDK2 (p-value < 0.001) inhibitors to be more effective in Subtype 4 (Figure 6F). This 424 

selective response is due to preferential amplification of CCNE1 in Subtype 4. 425 
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 426 

Discussion 427 

NMF based clustering demonstrated that both BE/EAC can be broadly classified into four 428 

subtypes each with a unique pattern of methylation, mutation (Figure 1) and expression 429 

(Figure 2D, S5A-C). Furthermore, these subtypes were shown to be reproducible in an 430 

independent cohort from Australia11, even though the data had been generated on a different 431 

array platform. 432 

Subtype 1 is dominated by EAC and some BE cases that show a gain in methylation in CpG 433 

islands which is representative of a CIMP-like phenotype, with preferential amplification for 434 

GATA4, CCND1 and signs of DNA repair. Subtype 2, with a preponderance of BE cases, also 435 

shows a gain in CPGi methylation like that of Subtype 1 but with a unique pattern of 436 

unmethylation. The transcriptomic profile of this subtype is uniquely enriched for ATP 437 

synthesis, fatty acid metabolism and oxidation processes. Methylation levels in Subtype 3 are 438 

unremarkable, but show a high-level presence of both myeloid and lymphoid cell lineages. 439 

Subtype 4 is characterised by hypomethylation and EAC cases harbouring a high degree of 440 

genome stability supported by a high number of copy number alterations and structural 441 

variants. Comprehensive molecular and biological features unique to each subtype identified 442 

through our analysis are presented in Figure 7. 443 

We note that although most BE cases cluster together, they are somewhat distributed 444 

amongst Subtypes 1 and 3 with the more stable genomes. Out of 108 cases in Subtype 1, 17 445 

cases are BE and detailed inspection revealed that 15/17 cases were dysplastic with high 446 

grade dysplasia or intramucosal carcinoma (Figure S2C). On the other hand, some EAC cases 447 

(n=20) cluster with the BE Subtype 2. Most of these tumours (11/20) have adjacent Barrett’s 448 
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oesophagus and are moderately differentiated (Figure S2A), in keeping with better prognosis. 449 

This is in keeping with our previous observation that EAC with adjacent BE have a better 450 

prognosis51. In future, we would like to compare and study metabolic changes underlying such 451 

behaviour. 452 

In terms of prognosis, patients from Subtype 3 with infiltration of immune related cells tend 453 

to show a poor prognosis compared to patients in other subtypes. The tumour 454 

microenvironment is a complex network of interactions between tumour cells, immune cells 455 

and stromal cells. Depending on their composition different immune infiltrates are associated 456 

with good or poor prognosis. In general, tumour infiltrating lymphocytes comprising cytotoxic 457 

CD8 T-cells, memory T-cells and T-helper cells are associated with a good prognosis, as is 458 

evident in many cancer types, such as breast52, ovary53, lung54 whereas regulatory T cells, 459 

stromal cells and immune cells of myeloid lineages (such as macrophages, neutrophils, mast 460 

cells and others) are indicators of bad prognosis and can promote tumour progression55, 56. In 461 

Subtype 3, along with cytotoxic cells we also notice a strong presence of macrophages, 462 

neutrophils and CAFs, which could perhaps explain the poor prognosis of cases in this 463 

subtype. It is also worth noting that Subtype 3 has a high prevalence of MDM2 amplification 464 

(8%), which is associated with resistance to and hyper-progression on immunotherapy57. 465 

In a recent study in EAC has shown that topoisomerase I inhibitors are effective in tumours 466 

with high levels of methylation12. Irinotecan is a topoisomerase I inhibitor chemotherapy 467 

which is currently used in EAC, however irinotecan treatment has a low monotherapy 468 

response rate (~7%). This low response rate could potentially be enhanced if therapy is 469 

targeted to methylated tumours. As the TCGA demonstrates EAC to be very similar to CIN 470 
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gastric cancer, we propose that Subtype 1 representative of CIMP could possibly be sensitive 471 

to DNA methyltransferase and topoisomerase I inhibitors.  472 

Through our integrated data analysis approach, we have shown how different genes from 473 

critical pathways are altered in EAC/BE. We also provide in vitro evidence from organoid 474 

models showing how key regulators of DNA repair (MGMT) and cell cycle (CHFR) can be 475 

targeted for effective treatment. In an extension of our previous work7, here we have shown 476 

other potential inhibitors like CDK2 could be preferentially effective towards subtype 4 cases. 477 

Taking all this information together, these results provide wider scope for better stratification 478 

and assignment of relevant targeted therapeutics. 479 

It is also worth noting that all observations made in this study are derived from only the CpG 480 

sites present on the EPIC array. This is a narrow representation of the whole genome, and 481 

may be a limiting factor, as we cannot draw conclusions or understand changes in other parts 482 

of the genome and their influence in tumorigenesis. In future, it would be worth studying 483 

methylation on a genome-wide scale, perhaps though whole-genome bisulfite sequencing 484 

approaches.  485 

In summary, this study elucidates diversity in the methylation landscape across BE and EAC 486 

and its influence on gene expression and genome integrity, suggesting a role for DNA 487 

methylation alteration in EAC carcinogenesis.  488 
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 500 

Figure Legends 501 

Figure 1 Methylation based BE/EAC subtypes. a. Heatmap representing methylation levels 502 

from top 5000 most variable CpGs across all cases categorised into four subtypes: Subtype 1, 503 

2, 3 and 4 including three different controls (squamous, gastric, duodenum) in extreme left 504 

along with annotation of CpG with different colour code. b. Mutation status of driver genes 505 

across all cases in same order as displayed in A.  506 

 507 

Figure 2 Hypermethylation driven Subtype 1. a. Total number of hyper and hypomethylation 508 

events observed in Subtype 1 at individual CpG base level (left) and regions with clustered 509 

probes (right). b. Annotation of both of hyper and hypomethylation events with respect to 510 

CpG island (left) and gene promoter (right). b. Heatmap quantifying levels of H3K27me3 and  511 

H3K27ac in all extend regions undergoing hypermethylation. d. Dot plot with top scored 512 

pathways identified in Subtype 1 when compared with other subtypes through gene get 513 

enrichment analysis. 514 
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 515 

Figure 3 BE specific Subtype 2. a. Venn diagram showing level of common probes undergoing 516 

hypermethylation between Subtype 1 and 2. b. Correlation plot comparing median level of 517 

methylation from all probes undergoing hypermethylation in Subtype 1/2. c. Boxplot 518 

comparing median level of methylation across four different subtypes including controls for 519 

all probes from block C from figure 1A (p-value: * (<0.05), ** (<0.01), *** (<0.001)). d. Plot 520 

shows Odds Ratio with 95% confidence interval for set of transcription factors motifs enriched 521 

in Subtype 2. Key transcription factors required for maintaining Barrett’s phenotypes are 522 

highlighted in red. 523 

 524 

Figure 4 Immune regulated Subtype 3. a. Boxplot displaying enrichment scores for different 525 

immune cell types computed from bulk RNA-seq data across all four different subtypes. b. 526 

Gene set enrichment plot for key immune regulated pathways identified on comparing 527 

Subtype 3 with all other Subtypes. c. IHC staining for Granzyme B on three different chemo-528 

treated cases representative of Subtype 1,3,4. 529 

 530 

Figure 5 Hypomethylation driven Subtype 4. a. Total number of hyper and hypomethylation 531 

events observed across all four subtypes. b. Genome wide copy number alteration profile for 532 

all cases within individual subtype. c. Proportion of cases harbouring different forms of ERBB2 533 

alternation across all four subtypes. d. Correlation between structural variants and median 534 

measure of methylation from probes undergoing hypomethylation from Subtype 4 across all 535 

samples from different subtypes. Circos plot (on top and right) representing genome wide 536 
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structural variants (deletions in red, duplication in light green, inversion in blue and 537 

translocations in grey) from individual case undergoing high and low levels of 538 

hypomethylation. e. Kaplan-Meier curves for EACs from four different subtypes. 539 

 540 

Figure 6 Epigenetically Silenced Genes and Clinical Relevance. a. List of genes which are 541 

preferentially silenced either in Subtype 1 or Subtype 2. b. Correlation between methylation 542 

and expression for MGMT gene across all cases from four different subtypes. c. Same as B for 543 

CHFR gene. d. Growth inhibition responses of eight primary tumour derived organoids and 544 

control gastric organoid (NG088) Drug response to Temozolomide. e. MGMT staining in low 545 

(CAM277) and stable (CAM408) expressing tumours and derived organoids (scale 546 

bar=100uM). f. Drug classes for which sensitivity is indicated by EAC driver genes with data 547 

from the Cancer Biomarkers database.  548 

 549 

Figure 7 Overview of different biological features unique to individual subtypes. 550 

 551 
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