
Cost Measures Matter for Mutation Testing Study Validity
Giovani Guizzo, Federica Sarro, Mark Harman

g.guizzo@ucl.ac.uk,f.sarro@ucl.ac.uk,m.harman@ucl.ac.uk
Department of Computer Science, University College London, London, United Kingdom

ABSTRACT
Mutation testing research has often used the number of mutants as
a surrogate measure for the true execution cost of generating and
executing mutants. This poses a potential threat to the validity of
the scientific findings reported in the literature. Out of 75 works
surveyed in this paper, we found that 54 (72%) are vulnerable to this
threat. To investigate the magnitude of the threat, we conducted
an empirical evaluation using 10 real-world programs. The results
reveal that: i) percentages of randomly sampled mutants differ from
the true execution time, on average, by 44%, varying in difference
from 19% to 91%; ii) errors arising from using the surrogate correlate
with program size (𝜌 = 0.74) and number of mutants (𝜌 = 0.76),
making the problem more pernicious for more realistic programs;
iii) scientific findings concerning sampling strategies would have
approximately 37% rank disagreement, indicating potentially dra-
matic impact on experiment validity. To investigate whether this
threat matters in practice, we reproduced a seminal study on Se-
lective Mutation (widely relied upon for more than two decades).
The impact is stark: an inconclusive scientific finding using the
surrogate is transformed to an unequivocal finding when using the
true execution cost.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • General and reference→ Empirical studies; Measure-
ment.

KEYWORDS
Software Testing, Mutation Testing, Mutation Analysis, Cost Re-
duction, Number of Mutants, Execution Time, Mutant Reduction
ACM Reference Format:
Giovani Guizzo, Federica Sarro, Mark Harman. 2020. Cost Measures Matter
for Mutation Testing Study Validity. In Proceedings of The 28th ACM Joint
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE 2020). ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Mutation Testing has been widely studied and empirically eval-
uated in academia for several years [41, 67]. A mutant program
is a copy of the original program with a seeded fault, which is
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

revealed when the output of a test case for the original program
differs from the output of the same test case when executed against
the mutant (in which case the mutant is said to be killed). If no
possible test case can kill a mutant, then the mutant is defined to
be an equivalent mutant. Assessing the equivalence of mutants
is generally undecidable [8] and usually is done, at least partly,
manually by the engineer. The primary goal of mutation testing is
to kill as many non-equivalent mutants as possible, increase the
mutation score (i.e., percentage of killed mutants), and improve
the test suite as a consequence. The greater the mutation score,
the better the test suite. This makes mutation analysis1 one of the
strongest testing criteria for evaluating or guiding the creation of
test suites [42, 57, 58]. However, its high cost is one of the primary
reasons why it has not been extensively adopted in industry.

The cost of mutation analysis [14, 16, 64, 75] comes mainly from:
i) mutant generation; ii) mutant execution; and iii) equivalent mu-
tant assessment. During the first step, mutants are generated by
mutation operators that seed a fault (mutation) in the original pro-
gram. Then, test cases are executed against mutants in the second
phase to try to reveal the faults represented by such mutants. Alive
mutants are then evaluated to check for equivalence. As one can
infer, generating several mutated programs, executing them against
multiple test cases, and manually deciding which ones are equiva-
lent demand a large amount of computational andmanual resources.
In the end, the cost of mutation analysis can be broken down into
two: i) mutant generation and execution time (i.e., computational
cost); and ii) person-hours for assessing mutant equivalence (i.e.,
human cost).

Several cost reduction techniques have been proposed to min-
imise the computational cost [75]. These techniques can be classi-
fied into three main categories [65]: i) “do faster”; ii) “do smarter”;
and iii) “do fewer”. “Do faster” approaches focus on generating
and executing mutants as fast as possible, e.g., mutating compiled
programs instead of source code, or using compiler related optimisa-
tion [9, 17]. “Do smarter” approaches try to distribute the execution
of mutants over several machines or even avoid their complete exe-
cution, e.g., stopping the mutant execution after the mutated line
is executed [37, 91]. “Do fewer” strategies try to generate or exe-
cute fewer mutants, consequently reducing the computational time
needed for such tasks, e.g., by randomly sampling and executing
𝑥% out of all the generated ones (RandomMutant Sampling – RMS),
or by using only a subset of operators to generate the mutants
(Selective Mutation – SM) [64, 94, 95].

“Do faster” and “do smarter” approaches usually measure the
cost reduction in terms of execution speed-up. On the other hand,
“do fewer” approaches usually rely on the assumption that there is a
correlation between the number of mutants and the computational

1Mutation analysis can be defined as the testing criterion used to measure the quality
of a test suite, whereas mutation testing is the process of testing the software based
on the results of mutation analysis [65].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Guizzo et al.

cost of generating and executing them. The existence of a correla-
tion is undeniable: the fewer mutants generated and executed, the
faster the mutation analysis. This assumption is so widespread that,
according to the recent findings of Pizzoleto et al. [75], number of
mutants has become the single most used cost reduction measure
in the mutation testing literature. However, even though the as-
sumption of correlation holds, it does not mean that a reduction of
𝑥% mutants necessarily translates into 𝑥% reduction in the compu-
tational cost of executing them. Hence, stating that “by reducing
the number of mutants, the mutation cost is also reduced” is not
the same as stating that “by reducing the number of mutants by 𝑥%,
the mutation cost is also reduced by 𝑥%”. This is a threat to validity
that can lead to misleading conclusions about which strategy will
be more effective on reducing the cost of mutation analysis.

Despite being a known threat to validity [20, 24, 29, 59, 93], re-
searchers usually report the cost reduction in terms of 𝑥% fewer
mutants and do not measure the reduction in execution time. As
described in Section 2, out of 75 analysed papers, only 15 (20%)
report execution time, and 54 of them (72%) are vulnerable to the
threat presented in this work. This might seem to be a mere de-
tail concerning the choice of measures, but we present results that
demonstrate that this choice has a profound impact on the scien-
tific conclusions that have been and will continue to be drawn on
mutation analysis.

To the best of our knowledge, there is no work in the literature
that investigates the validity of using number of mutants as a sur-
rogate for execution cost, nor the magnitude of the error that may
result in consequent threats to the validity of scientific conclusions.
Therefore, in this paper we investigate the effects of using and
reporting number of mutants rather than the actual execution time.

To this end, we carry out an empirical study encompassing 10
programs and 19 cost reduction strategies (based on RMS and SM),
for which we measure both number of mutants and execution time
percentages in relation to all mutants. The results of our study show
that there is an error of, on average, 44% between number ofmutants
and execution timemeasurements. This error varies from 19% to 91%
depending on the program.We also found that the mean percentage
error is significantly (p-values < 0.05) and positively correlated to
the size of the program (Spearman’s 𝜌 = 0.74), and to the number of
generatedmutants (𝜌 = 0.76), i.e., as the program grows, the relative
errors also grow, thus making number of mutants an unreliable
measure for assessing the cost of mutant cost reduction techniques
in large real-world programs.

When ranking and comparing RMS and SM strategies using both
number of mutants and execution time, we found that 37% of the
ranks are disrupted. The changes of ranks are always favourable
to SM, i.e., for 9 out of 10 programs at least one SM strategy that
is considered more expensive than RMS according to number of
mutants turns out to be cheaper according to execution time.

In order to determine whether this threat to validity matters in
practice, we reproduce the work by Offutt et al. [63] with 10 real-
world large scale Java programs. The results show that RS-Selective
is the cheapest strategy according to execution time for all 10 pro-
grams. However, if we use number of mutants instead, this scientific
conclusion changes from “unequivocal” to “inconclusive”: both E-
and RS-Selective generate fewer mutants for 5 programs each. As a
result, we conclude that all work that relies on selective mutation

needs to be re-evaluated to take account of the true execution time
rather than the widely used surrogate.

The main contributions of this work are:
(1) Relevance: a survey of 75 mutant reduction papers. 60 of

them (80%) do not report execution time, and 54 (72%) also
use the number of mutants as a proxy for cost, being directly
affected by the threat presented in this work.

(2) Problem: the quantification of this threat. There is an av-
erage error of 44% between the number of mutants and ex-
ecution cost, varying from 19% to 91% depending on the
program.

(3) Problem is worse at scale: an assessment of correlations
between the program’s properties and errors. Positive signif-
icant correlations (p-values < 0.05) with the programs size
(𝜌 = 0.74) and the number of generated mutants (𝜌 = 0.76).

(4) Changes scientific findings: an analysis of the impact of
these errors when comparing RMS and SM strategies. Dis-
agreement on 37% of the ranks when using execution time
instead of number of mutants.

(5) Changes foundational scientific conclusions: the repro-
duction of an SM work [63]. Ranks between the cheapest
strategies change for 5 out of 10 programs, fundamentally
changing the scientific conclusions as a consequence.

The rest of the paper is organised as follows. We survey previous
work on cost reduction in Section 2, assessing which ones report
execution cost and which ones acknowledge the investigated threat.
Section 3 describes the Research Questions (RQs) and the empirical
evaluation conducted to answer them. In Section 4 we report the
results, answer the RQs, and then highlight our main observations.
Section 5 discusses the threats to validity. In Section 6 we describe
related work that acknowledges the threat to validity investigated
in this paper. Section 7 concludes the paper and presents future
work.

2 MUTATION ANALYSIS COST REDUCTION
In a recent systematic review of the Mutation Cost Reduction liter-
ature, Pizzoleto et al. [75] collected and reported the most common
types of strategies, goals, and metrics used for achieving cost reduc-
tion. After analysing 153 peer-reviewed papers published between
1989 and 2018, the authors found that “do fewer” approaches are
the most common ones (approximately 74% of all analysed papers),
for which the goal is usually to reduce the number of mutants in
general or equivalent mutants. Furthermore, among all types of
strategies, the number of mutants is the single most used measure
and mutant execution speed-up follows as second.

Starting from the literature review of Pizzoleto et al. [75], we
collected and then evaluated works that use “do fewer” strategies
and that report number of mutants and/or execution time as a
cost measure. Then, we performed snowballing on the selected set,
and also searched for more papers in popular repositories such
as Google Scholar. Based on this process, we identified 75 papers
(while Pizzoleto et al. [75] include only 66 papers as “do fewer”).
We analysed these papers with respect to two main aspects: the
specific type of mutant reduction technique with a simplified cate-
gorisation (random mutation, selective mutation, or others), and
if they acknowledge the threat investigated in our study (which

Cost Measures Matter for Mutation Testing Study Validity ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

was not analysed by Pizzoleto et al. [75]). In other words, we are
interested in identifying which of those papers report both number
of mutants and execution time, and which ones acknowledge the
threat investigated in this paper about the accuracy of number of
mutants in capturing execution time. Table 1 presents the results
of our survey.

We observe that RMS and SM are the two most used strategies
among the papers, whereas 39 of them use other kinds of strate-
gies such as Higher Order Mutation (HOM) [35] or Evolutionary
Algorithms [26]. 60 papers use either RMS, SM or both, usually
comparing them to different types or even newly proposed strate-
gies. These two strategies are also commonly used as a baseline
for comparison, serving as “sanity check”. Among all papers, 25
different tools are used, targeting C, C++, C#, Java, Python, and
other languages.

Out of the 75 papers surveyed, only 15 use execution time to
measure cost reduction. Similarly to what was observed by Pizzoleto
et al. [75], number of mutants is the most common measure for
cost reduction among the papers found. 46 out of 75 (61.3%) of the
surveyed papers claim a relation between the number of mutants
and cost reduction, and subsequently use it as a direct measure for
comparisons in computational cost saving or efficiency gain. 8 out
of 75 (10.7%) of the papers use the number of mutants indirectly
(e.g. as an efficiency baseline for effectiveness comparison), but do
not use it to draw a direct cost comparison. 21 out of 75 (28%) of
the papers report the number of mutants, but either compare the
computational cost in terms of execution time, or use it for other
purposes (e.g. proxy for equivalence determination cost), thus they
are not affected by the threat. All in all, 54 out of the 75 (72%) papers
we surveyed are susceptible to the threat.

Six papers acknowledge that this is a threat [20, 24, 29, 34, 59, 93]
and five of those try to deal with it [20, 24, 29, 34, 59], but none
of them evaluated the degree to which this threat affects scientific
conclusions of previous work. Only three [20, 24, 34] of the 15
papers that measure the time also acknowledge the threat of using
number of mutants as a surrogate for execution time. The other
12 papers implicitly mitigate such threat by simply measuring and
reporting the execution time.

If the assumption of equal ratio between the two measures does
not hold, then it is a construct validity threat to the 54 papers that
do not report execution time and use number of mutants as a proxy
for real computational cost. The underlying questions are: what
is the difference (if any) between the number of mutants and the
true execution time, and how does this affect previous scientific
conclusions?

3 EMPIRICAL STUDY DESIGN
This section describes the design of the empirical study we con-
ducted to evaluate the differences between the execution time and
number of mutants measures in mutation analysis. We do not eval-
uate the whole cost of mutation testing, i.e., we do not measure the
manual or computational cost of determining mutant equivalence,
neither the cost of creating and assessing new test cases, because
our objective is to focus on the generation and execution of mu-
tants during the mutation analysis task. During this evaluation,
we consider execution time as a direct measurement of cost: the

less execution time spent on mutation analysis, the cheaper it is.
Therefore, execution time means computational cost in the context
of this work. For all RQs, the mutants are executed until they are
killed, i.e., we use Partial Mutation as opposed to generating the
whole killing matrix. With this approach, we intend to evaluate the
cost of mutants in a real-world setting.2

3.1 Research Questions
The goal of this evaluation is to answer the following four RQs:

RQ1 – Random Mutant Sampling: What is the difference
between execution time and number of mutants when using
RMS?

RQ2 – Statistical Correlations: What are the statistical cor-
relations (if any) between errors and the properties of the
systems under test?

RQ3 – Strategy Differences: How the rankings of RMS and
SM strategies change when comparing their cost based on
number of mutants and execution time?

RQ4 – Does it Matter? Can we reproduce previous founda-
tional results on mutant selection?

3.1.1 RQ1 – Random Mutant Sampling: The first RQ is designed to
assess the differences between execution time and number of mu-
tants obtained by RMS strategies. By randomly sampling subsets of
mutants in different percentages, we can evaluate whether the ratio
is 1 for the percentage of sampled mutants to the execution time
needed to execute the strategy. In other words, we are investigating
whether by randomly reducing the number of mutants by 𝑥% we
also reduce the execution time by 𝑥%; the ratio assesses how close
the empirical data come to this idealised parity. RMS is arguably the
most naive type of mutant reduction approach, as mutants are dis-
carded with no particular preference, thus representing an unbiased
reduction. This strategy has also served as a baseline comparison
for several other work in the literature [24, 53, 94, 97]. Therefore,
assessing the error for this type of strategy provides a meaningful
overview of what to expect from mutant reduction strategies in
general.

To answer this question, we execute RMS strategies with per-
centages varying from 10% to 90% in steps of 10% (for a total of nine
strategies). Setting a 𝑥% step is a common practice when dealing
with such kind of strategy [75], since it would be impractical to
evaluate all percentages in the 0%–100% range.

In order to generate and execute mutants, we use PIT v1.2.0 [10],
one of the most common and fastest Java mutation tools in the
literature [52]. PIT has seven default operators and several default
execution cost reduction strategies, such as bytecode manipulation,
test case prioritisation, and test case filtering based on coverage. We
used the default configuration of PIT in order to minimise threats
to internal validity (see Section 5).

These nine RMS strategies are evaluated with 10 real-world pro-
grams and their original test suites. Table 2 presents data concerning
the characteristics of the 10 programs used as subjects to answer
all RQs. These systems are also used in other related work on cost
reduction in mutation analysis [33, 42, 52, 92]. We selected the lat-
est version of open source programs of various sizes, coverages,

2This is a threat to validity discussed in Section 5.

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Guizzo et al.

Table 1: “Do fewer” papers that use number of mutants or execution time as cost measure. #M: use number of mutants as cost
measure. Time: report execution time. RMS, SM and Other: use RandomMutant Sampling, Selective Mutation and other types
of “do fewer” strategies, respectively. Ack: papers that acknowledge the validity threat of using number of mutants as cost
indicator. Mitigates: if the paper acknowledges, how does it try to mitigate the threat? The last row shows the sum of each
column (venue and mutation tool sums present unique values). Papers are sorted by authors.

Paper Year Venue Mutation Tool Metrics Strategies Ack Mitigates#M Time RMS SM Other
Al-Hajjaji et al. [1] 2017 VACE Proteum X X X
Ammann et al. [2] 2014 ICST Proteum X X X
Barbosa et al. [4] 2001 JSTVR Proteum X X
Bluemke and Kulesza [5] 2013 AISC MuJava X X
Bluemke and Kulesza [7] 2014 AISC MuJava X X
Bluemke and Kulesza [6] 2014 ICSOFT-EA MuJava X X
Delamaro et al. [12] 2014 ICST Proteum X X
Delamaro et al. [14] 2014 ICST Proteum X X
Delamaro et al. [13] 2014 SBES Proteum X X X
Delgado-Pérez et al. [16] 2017 JSTVR MuCpp X X
Delgado-Pérez et al. [15] 2017 IST MuCpp X X X
Deng et al. [18] 2013 ICST Mothra X X
Derezińska and Rudnik [23] 2012 TOOLS CREAM X X X X
Derezińska [19] 2013 AISC CREAM X X X
Derezińska and Hałas [21] 2014 ICSTW MuPy X X X X
Derezińska and Hałas [22] 2015 AISC MuPy X X X X
Derezińska [20] 2016 AISC CREAM X X X X X Measures execution time
Derezińska and Rudnik [24] 2017 FedCSIS CREAM X X X X Measures execution time
Domínguez-Jiménez et al. [25] 2011 IST GAmera X X X
Gligoric et al. [29] 2013 ISSTA Comutation X X X X Measures the number of states
Gong et al. [30] 2017 IST MuJava X X X
Gopinath et al. [32] 2015 ISSRE PIT X X X
Gopinath et al. [33] 2016 ICSE PIT X X X
Gopinath et al. [31] 2017 TR PIT X X X X
Guizzo et al. [34] 2020 TSE PIT X X X X X X Measures execution time
Harman et al. [36] 2014 ASE Bacterio X X
Iida and Takada [38] 2017 Mutation MuJava X X X
Inozemtseva et al. [39] 2013 FSE GiGAn X X X
Ji et al. [40] 2009 SEKE MuJava X X
Just and Schweiggert [44] 2014 JSTVR Major X X X
Just et al. [43] 2017 ISSTA Major X X
Kaminski and Ammann [45] 2009 ICST TRF-TIF X X
Kaminski et al. [47] 2011 IST TRF-TIF X X X
Kaminski et al. [46] 2013 JSS MUMCUT X X
Kintis et al. [49] 2010 APSEC MuJava X X
Kurtz et al. [50] 2016 FSE Proteum X X X
Lacerda and Ferrari [51] 2014 SAST Proteum/AJ X X
Lima et al. [53] 2016 SAST MuJava X X X X
Ma et al. [54] 2009 ETRI MuJava X X
Madeyski et al. [55] 2014 TSE Judy X X X
Mateo et al. [56] 2013 TSE Bacterio X X
Mresa and Bottaci [59] 1999 JSTVR Mothra X X X X X Proposes a different metric
Nam et al. [60] 2011 ICSTW Javalanche X X X
Siami-Namin and Andrews [80] 2006 Mutation Proteum X X
Namin et al. [61] 2008 ICSE Proteum X X
Nobre et al. [62] 2012 IJNCR Proteum/IM X X X X
Offutt et al. [64] 1993 ICSE Mothra X X
Offutt et al. [63] 1996 TOSEM Mothra X X
de Oliveira et al. [11] 2013 CEC MuJava X X X
Omar and Ghosh [66] 2012 ISSRE HOMAJ X X
Papadakis and Malevris [70] 2010 ICSTW Proteum X X X
Papadakis and Le Traon [68] 2014 SAC Proteum X X
Papadakis and Le Traon [69] 2013 JSTVR Proteum X X
Parsai et al. [71] 2016 QRS LittleDarwin X X
Parsai et al. [72] 2016 EASE LittleDarwin X X
Patrick et al. [74] 2012 ICST MuJava X X
Patrick et al. [73] 2014 ICSTW MuJava X X
Polo et al. [76] 2008 JSTVR MuJava X X
Praphamontripong and Offutt [77] 2017 ICSTW webMuJava X X
Quyen et al. [78] 2016 ICEIC MuSimulink X X
Reuling et al. [79] 2015 SPLC SPLAR X X X
Sridharan and Siami-Namin [82] 2010 ISSRE Proteum X X
Steimann and Thies [83] 2010 ICSE MuJava X X X X
Sun et al. [85] 2017 IST Proteum X X X
Sun et al. [84] 2017 CJ 𝜇BPEL X X
Tuya et al. [86] 2007 IST SQLMutation X X
Untch [87] 2009 ACM-SE Proteum/IM X X
Vincenzi et al. [88] 2001 JSTVR Proteum/IM X X
Wong et al. [90] 1995 SQP Mothra X X X
Wong and Mathur [89] 1995 JSS Mothra X X X
Zhang et al. [95] 2010 ICSE Proteum X X X X
Zhang et al. [94] 2013 ASE Javalanche X X X X X
Zhang et al. [93] 2014 ISSRE Javalanche X X X
Zhu et al. [96] 2017 Mutation PIT X X X X
Zhu et al. [97] 2018 ICST PIT X X X X
Total: 75 - 35 25 75 15 28 47 39 6 5

Cost Measures Matter for Mutation Testing Study Validity ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

mutation score, number of mutants, number of test cases, that could
be used with PIT, and that had green test suites (all test cases pass).3

Each strategy was executed for 30 independent runs. The ex-
ecution of multiple independent runs is conducted to minimise
the threat related to variations in the mutants’ execution, such as
the order in which mutants and test cases are executed. It is also a
common practice to cater for stochastic behaviour of algorithms [3],
in this case, the prioritisation of test cases (default in PIT) that de-
pends on the test case execution times, and the random sampling of
mutants done by RMS. Running the mutation analysis process and
the strategies multiple times is done to mitigate these uncertainties
(more details in Section 5). Hence, in the end of the experiment
execution, we have 30 execution times for each strategy per system.

The execution time of a strategy is computed from the start of
its execution until the end of the execution of the sampled mutants.
Therefore, the execution time measure comprises the whole process
of generating, sampling, and then executing the mutants, which re-
portedly represents the computational cost of the mutation analysis
activity [41, 67, 75]. The execution time of each strategy 𝑠 is then
compared to the execution time of the conventional mutation pro-
cess 𝐶𝑀 (without any mutant reduction) for a given independent
run 𝑟 as follows:

𝑡𝑖𝑚𝑒 (𝑠, 𝑟) = 𝑡𝑖𝑚𝑒 (𝑠𝑟)
𝑡𝑖𝑚𝑒 (𝐶𝑀𝑟)

(1)

Equation 1 computes the percentage of execution time needed by
a strategy to perform the mutation in relation to using the full set of
operators and mutants. Similarly, the relative number of mutants is
computed using Equation 2. It computes the percentage of mutants
in𝑀𝑠 obtained by 𝑠 in relation to all mutants𝑀 .

𝑛𝑢𝑚𝑏𝑒𝑟 (𝑠) = |𝑀𝑠 |
|𝑀 | (2)

Since our goal is to analyse the difference (i.e., error) between the
two measures, we use a set of traditional error measures to quantify
such errors. We compute and report the Mean Signed Difference
(MSD) between execution time and number of mutants for each
tested RMS strategy across 30 independent runs. The MSD of a
given strategy 𝑠 is computed using Equation 3.

𝑀𝑆𝐷 (𝑠) =
∑30
𝑟=1 𝑡𝑖𝑚𝑒 (𝑠, 𝑟) − 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑠)

30 (3)

MSD indicates the difference (error) between the two measures
and its direction (sign). A negative MSD means that 𝑠 obtained a
lower execution time than predicted by the number of mutants
measurement, or greater execution time otherwise. For complete-
ness, we also report the Mean Absolute Error (MAE), Mean Squared
Error (MSE), and the Mean Absolute Percentage Error (MAPE) for
each strategy. MAE, MSE, and MAPE values for a given strategy 𝑠
are computed using Equations 4–6 respectively.

𝑀𝐴𝐸 (𝑠) =
∑30
𝑟=1 |𝑡𝑖𝑚𝑒 (𝑠, 𝑟) − 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑠) |

30 (4)

𝑀𝑆𝐸 (𝑠) =
∑30
𝑟=1 (𝑡𝑖𝑚𝑒 (𝑠, 𝑟) − 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑠))2

30 (5)

3The replication package and all other information about the programs can be found
at: https://doi.org/10.5522/04/11927208.

𝑀𝐴𝑃𝐸 (𝑠) =
∑30
𝑟=1

|𝑡𝑖𝑚𝑒 (𝑠,𝑟)−𝑛𝑢𝑚𝑏𝑒𝑟 (𝑠) |
𝑡𝑖𝑚𝑒 (𝑠,𝑟)
30 (6)

We also report the averageMAE, MSE, andMAPE values for each
system and for the complete set of observed data. If the MSD, MAE,
MSE, and MAPE values are close to zero, then the ratio between
those two measures is close to 1 and the number of mutants can
reliably be used as a surrogate for execution time.

3.1.2 RQ2 – Statistical Correlations: Based on the error values
found when answering RQ1, we investigate if there are statistical
correlations between these errors and system properties such as
size of the test suite, testing time, mutation score, and number of
mutants (shown in Table 2). For instance, we suspect that there
might be a positive correlation between the sizes of the programs
under test and the errors between number of mutants and the exe-
cution time when sampling mutants for that program. By assessing
the correlations of properties such as size of the test suite, number
of test cases, and mutation score, we can verify if any of those prop-
erties can indicate smaller or larger error when using execution
time vs. number of mutants.

We use the Spearman’s rank correlation coefficient test [81]
to assess the correlations, because we cannot assume that any
correlation is necessarily linear. According to Finkelstein et al. [27],
a Spearman’s 𝜌 threshold of ±0.7 indicates a strong correlation
between the variables, thus following previous work, in this paper
we consider as positive correlation any result of 𝜌 ≥ 0.7 and as
negative correlation any result of 𝜌 ≤ −0.7. Furthermore, we discard
any correlation with a 𝑝-value that is not ≤ 0.05.

3.1.3 RQ3 – Strategy Differences: The random sampling of mutants
gives each mutant an equal probability of being chosen. Observing
differences for this kind of strategy gives us an overview of how
much the differences can affect an unbiased mutant reduction. How-
ever, other strategies such as SM [63, 64] rely on specific properties
of operators (e.g., type of mutation and number of generated mu-
tants) to select or discard mutants. Removing operators from the set
of operators before generating and executing mutants might affect,
not only the cost of generating mutants, but also the execution cost
of the reduced set depending on the type of the mutants discarded.
For example, a mutant operator that changes the return value of a
method might not have the same cost as an operator that changes
conditions in for loops. Selecting such operators using SM may
change the execution cost results for the same number of mutants
when compared to RMS.

We chose to investigate both SM and RMS because they are the
two most used mutant reduction strategies in the literature [75].
As we showed in Section 2, 60 out of 75 evaluated papers use either
one or the other. Furthermore, they both are commonly used as a
baseline for comparison in mutant reduction work [24, 53, 94, 97].

For evaluating the differences between these two types of strate-
gies, we compare the results of the same RMS strategies used in
RQ1 to the results of six SM strategies also executed for 30 inde-
pendent runs. Each SM strategy removes 𝑁 operators from the set
of operators to be executed. To do so, the strategy first sorts the
operators in descending order based on the number of mutants they
generate and then removes the first 𝑁 operators from the list. This
is a type of Selective Mutation also called Constrained Mutation or

https://doi.org/10.5522/04/11927208

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Guizzo et al.

Table 2: Subject programs. LLOC: number of logical lines of code (executable lines); #T: test suite size of the program; T. LLOC:
number of logical lines of test code; Cov: statement and branch coverage percentages; #M: number of mutants generated by
PIT; #AM: number of alive mutants after executing T; MS: mutation score of the test suite; Mut. Time: execution time for the
conventional mutation process with the test suite T; Test Time: execution time for the test suite against the original program.

Program LLOC #T T. LLOC Cov #M #AM MS Mut. Time Test Time
beanutils 11 645 1 293 21 808 64/64 24 349 3 652 0.85 20M 32S 3S
codec 9 044 1 081 13 276 96/92 48 729 6 335 0.87 1H 49M 38S 26S
collections 28 955 24 946 34 412 86/81 61 695 7 403 0.88 1H 47M 43S 2M 31S
lang 27 646 4 119 49 146 95/91 127 824 23 008 0.82 5H 05M 02S 20S
validator 7 409 536 8 352 86/75 18 738 3 185 0.83 24M 59S 2S
jfreechart 94 203 2 174 39 883 54/46 339 301 84 825 0.75 4H 11M 57S 4S
jgrapht 36 930 5 266 47 836 90/83 103 923 21 824 0.79 15H 46M 57S 01M 16S
joda-time 28 791 4 230 55 608 89/81 108 148 21 630 0.80 1H 50M 28S 10S
ognl 17 012 893 8 412 70/60 64 936 5 494 0.90 44M 39S 27S
wire 1 597 79 1 933 65/58 5 169 620 0.88 4M 30S 1S

𝑁 -Selective Mutation [75]. We use six strategies because PIT has
seven default operators [10], thus we test all six possible strategies
of this type (removing 1 ≤ 𝑁 < 7 of available operators).

Both types of strategies are evaluated using the execution time
and number of mutants, as done for RQ1. For assessing the differ-
ence, we rank the strategies according to the two measures. Then
we assess the disagreement between the two rankings. If the ranks
of strategies change, then it indicates that reporting results based
on one measure may yield different conclusions than reporting
results based on the other measure.

3.1.4 RQ4 – Does it Matter? Whereas RQ3 asks whether scien-
tific findings might be affected in general, RQ4 targets a specific
previous finding to check whether the practice of using surrogate
cost measures impacts a specific important foundational finding
on which the testing community relies. In order to assess the sci-
entific impact of the differences between number of mutants and
execution time, we conduct a set of experiments with the aim of
reproducing the seminal work of Offutt et al. [63]. Offutt et al. an-
swered the foundational problem of how to tackle the potentially
prohibitive cost of mutation analysis. This was and remains one
of the most important problems for the practical application of
mutation testing.

In their work, Offutt et al. compare four types of SM strategies:
i) Replacement and Statement operators (RS-Selective); ii) Replace-
ment and Expression operators (RE-Selective); iii) Expression and
Statement operators (ES-Selective); and iv) Expression operators
(E-Selective). One of the key actionable questions asked by the
authors was “which mutant operators generate the most mutants?”.
This question was answered in 1996 by Offutt et al., and the answer
has been relied upon in much of the subsequent work over the past
quarter of a century.

Offutt et al. applied the four strategies to 10 small Fortran-77
programs with the Mothra mutation tool [48]. Of course, two and a
half decades of change means that we now use different tools and
platforms. It is also now customary for empirical software engi-
neering research to use larger programs. Indeed, this is necessary
in order to enhance the generalisability of any findings to real-
world systems. With this in mind, our reproduction experiment

uses programs that are two orders of magnitude larger than the
original set in LLOC. However, for due diligence, we also repeated
the experiment with the same set of programs that were used in
the original work (modulo translation from Fortran-77 to Java).

To answer RQ4, we divided PIT’s mutation operators4 into the
three categories defined by Offutt et al. [63] (expression, statement,
and replacement) and then applied the RS-, RE-, ES-, and E-Selective
strategies. We rank all strategies according to both measurements
and then compare the ranks across the 10 real-world programs.

4 RESULTS
This section presents the results and answers to the RQs.

4.1 Answer to RQ1 – RandomMutant Sampling
Table 3 shows the MSD, MAE, MSE, and MAPE (Equations 3–6)
between the obtained percentages for the average execution time
and number of mutants. A positive MSD indicates that the strategy
costs more in terms of execution time than number of mutants,
whereas a negative error means that the strategy executed faster
than expected, compared to number of mutants. Errors closer to 0
indicate a ratio closer to 1 for the two measures.

The MSD error between execution time and number of mutants
varies widely from 46 to -26. For example, the mean error of 46 was
yielded by RMS 10% when executed on wire, thus the execution
time of this strategy for this system is on average 56% (10% number
of mutants + error) of the total time used to perform the mutation
analysis procedure with all mutants for this system. Conversely,
this same strategy yielded an error of -6 for jfreechart, meaning
that it takes on average 4% (10% + error) of the total mutation anal-
ysis time for this system to generate, select, and then execute the
mutants. The MAE value of all observations is 14 and MAPE is 44%.
In other words, the number of mutants differs from the execution
time on average ±14 absolute percentage units representing a per-
centage error of ±44%. The relative MAPE variation between the

4We used PIT v1.4.12 as opposed to PIT v1.2.0 (RQs 1–3). The latest version has more
operators (we use 39 of them), including specific operators used by Offutt et al. [63],
thus allowing a more faithful implementation of the original strategies.

Cost Measures Matter for Mutation Testing Study Validity ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Table 3: RQ1 – MSD of execution time percentage minus percentage of mutants for each strategy. The last three columns
present the MAE, MSE and MAPE error indicators for each program, and the last three rows present the MAE, MSE and MAPE
for each strategy. The bottom right cells present the MAE, MSE andMAPE for all observations. The stronger the cell highlight,
the greater the difference between the two measures.

Program Random Mutant Sampling MAE MSE MAPE
10% 20% 30% 40% 50% 60% 70% 80% 90%

beanutils 24.86 16.89 10.12 4.54 0.19 -3.06 -5.26 -6.24 -6.27 9.07 0.0145 21.35%
codec 17.41 9.68 3.18 -2.04 -5.92 -8.68 -10.31 -9.96 -9 8.46 0.0091 20.46%
collections -1.21 -8.61 -14.47 -18.91 -21.61 -22.84 -22.54 -20.69 -17.76 16.52 0.0328 58.17%
lang -3.63 -11.13 -17.14 -21.55 -24.45 -25.87 -25.71 -23.89 -20.64 19.33 0.0433 83.11%
validator 21.36 13.53 7 1.74 -2.13 -4.75 -6.2 -6.29 -5.03 7.56 0.0092 18.76%
jfreechart -6.18 -13.09 -18.09 -21.13 -22.17 -21.41 -18.83 -14.41 -8.06 15.93 0.0285 91.05%
jgrapht 11.92 4.48 -1.62 -6.15 -9.3 -11.31 -11.63 -10.53 -8.19 8.35 0.0083 20.91%
joda-time 5.52 -2.22 -8.41 -12.98 -16.06 -18.13 -18.29 -17.46 -14.91 12.67 0.0197 34.65%
ognl -1.51 -8.98 -14.78 -19.3 -21.97 -23.12 -22.71 -20.77 -17.11 16.7 0.0332 60.34%
wire 46.25 37.89 30.54 24.04 18.26 13.2 8.94 5.38 2.63 20.79 0.0635 33.43%

MAE 13.99 12.65 12.54 13.27 14.51 15.28 15.05 13.57 10.98 13.54
MSE 0.0375 0.0248 0.0223 0.0247 0.0279 0.0297 0.0283 0.0236 0.0169 0.0262
MAPE 62.76% 69.03% 62.82% 53.99% 45.51% 37.58% 29.59% 21.86% 14.86% 44.22%

two measures is 19%–91% across all systems studied, and 15%–69%
over all strategies studied.

When analysing the relative error (MAPE) between number of
mutants and execution time across strategies (last row), we observe
a trend: the more mutants sampled, the less relative error between
the measurements. Hence, as both measurements increase, the av-
erage relative gap between them decreases. This makes sense, since
MAPE is computed in relation to the execution time percentage
(Equation 6), thus the errors are relatively less meaningful when
considering higher percentages, but potentially more impacting
for lower sampling/execution times. This is an important observa-
tion, since several papers conclude that a lower percentage such as
10% [75, 94, 95] or even a constant sample of 1 000 mutants [32] are
sufficient for testing the software. However, as shown by our anal-
ysis, MAPE values for low sampling percentages such as 10% can
represent 63% of relative error to the real execution cost on average,
thus making these sampling strategies cost from approximately a
third (jfreechart) to 5.62 times more (wire) than the inaccurate
prediction given by number of mutants. The MAE and MSE values
do not catch the same problem, since these two indicators are based
on absolute values.

Given the observed errors between the two measures, we can
answer RQ1 as follows:

Answer to RQ1: When sampling mutants, the average differ-
ence between percentage of sampled mutants and percentage of
execution time of the sampled mutants is 44%, i.e., when compared
to the whole set of mutants, a subset of mutants obtain a relative
execution time that is on average 44% erroneous to the relative
number of mutants (estimated cost). Hence, there is a non-trivial
error between using number of mutants and execution time as a
cost measure.

4.2 Answer to RQ2 – Statistical Correlations
There is a series of factors that can relate to the results presented
in Section 4.1, such as the test suite of the program, the size of the
program, and others. We found two positive correlations between
the error metrics and the attributes presented in Table 2: i) MAPE
vs. LLOC (𝜌 = 0.74, p-value = 0.018); and ii) MAPE vs. total number
of mutants generated for the program (𝜌 = 0.76, p-value = 0.016).
In other words, the greater the program in LLOC, the greater the
MAPE for the sampledmutant sets. Furthermore, when the program
grows in LLOC, the number of generated mutants also increases,
thus the correlation with MAPE also holds for this property. Hence,
the bigger the program, the less reliable the number of mutant
measure is in predicting the real cost of the mutant subset.5

We did not find any correlation between the remaining programs
attributes and the error metrics. All in all, program size and number
of mutants that can be generated for a given program are the only
observed indications of errors between the number of mutants and
execution time measurements. With that in mind, we can answer
RQ2 as follows:

Answer to RQ2: The bigger the program, the greater the MAPE
(errors) between the number of mutants and execution time mea-
sures for sampled subsets (𝜌 = 0.74, p-value = 0.018). The MAPE
results of RQ1 are also positively correlated to number of generated
mutants (𝜌 = 0.76, p-value = 0.016). In other words, the bigger the
program, the less reliable the “number of mutants” measure is at
capturing the true mutation cost of a given reduced mutant set.

4.3 Answer to RQ3 – Strategy Differences
Table 4 presents the disagreement between rankings for the strate-
gies we considered. There are 15 evaluated strategies: nine RMS

5We are not implying causation, as we have not tested for causation links.

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Guizzo et al.

and six SM.6 We can observe that, for 9 out of 10 systems, there
is at least one rank change, i.e., a strategy that would be believed
to be costlier than others when using number of mutants becomes
cheaper when using execution time. There is a difference in 37% of
the ranks across all systems.

Interestingly, all rank upgrades (cheaper than expected) from
number of mutants to execution time happen for the SM strategies,
whereas all rank downgrades (costlier than expected) happen for
the RMS strategies. For 5 out of 10 systems, some SM strategies
upgraded by two ranks, meaning that they were revealed to be
actually cheaper than two other RMS strategies, i.e., the number
of mutants of an SM strategy is greater than an RMS strategy in
at least 20 percentage points, but the SM strategy is still cheaper
in terms of execution time. This is most likely happening for two
main reasons:

(1) Removing operators with SM from the mutation procedure
further reduces the cost of generating mutants, not only
executing them, whereas RMS first generates all mutants
and then sample them. This means that if an SM and an RMS
strategy both select the same number of mutants, the former
has the advantage of also reducing the mutant generation
time. This reduces the overall computational time for the
whole mutation process, and is specially impactful on smaller
programs for which the overhead of generating mutants can
be as costly as the execution of a small set of mutants.

(2) Different mutation operators generate different mutants.
Therefore, depending on the removed mutation operators
and the program under test, the tester may exclude mutants
that are potentially more expensive (as the results of Sec-
tion 4.4 show). RMS does not distinguish mutants by their
operators and sample them uniformly at random, thus it
does not benefit from the same feature.

Summarising, there are two major implications about these ob-
servations: i) even though a given SM strategy generates more
mutants than an RMS strategy, sometimes the general execution
cost of using SM to generate mutants and then executing them
is lower than the cost of the previously considered cheaper RMS
strategy; and ii) when reporting results about which SM strategy is
costlier than RMS, if one considers only number of mutants, then
they may end up making incorrect scientific conclusions. These
are important findings, because they suggest that some scientific
conclusions drawn in previous work could be reversed when ac-
counting for this threat to validity.With that inmind, we can answer
RQ3 as follows:

Answer to RQ3: When ranking strategies based on execution
time instead of number of mutants, we observed a disagreement
in 37% of the ranks on average. Rank changes usually favour SM
rather than RMS, i.e., even though some SM strategies select more
mutants than other RMS strategies, they can actually be cheaper in
terms of execution cost.

4.4 Answer to RQ4 – Does it Matter?
Figure 1 presents slopegraphs summarising the results for our re-
production study of Offutt et al.’s [63] work. The graphs show the

6For some systems, strategy S6 is missing because it failed to generate any mutant.

differences observed when using the two different ways of measur-
ing mutation cost: true execution time and its surrogate (number
of mutants). As revealed by Figure 1, using true execution time
yields an unequivocal finding: RS-Selective is superior for all ten
programs. However, using number of mutants (current practice)
the results would have been inconclusive.

That is, E-Selective generated fewer mutants for 5 out of 10 pro-
grams (i.e., beanutils, collections, ognl, validator, and wire),
whereas RS-Selective generated fewer mutants for the other 5 pro-
grams (i.e., codec, lang, jfreechart, jgrapht, and joda-time).
By computing the true execution time, we can see that, in fact, RS-
Selective is the cheapest selection strategy for all 10 programs; even
for the 5 programs for which E-Selective generated fewer mutants
(change of ranks is highlighted in the picture).

For completeness we also collected results for the ten original toy
programs used in the 1996 study. We used EvoSuite [28] to generate
test cases, similarly to the original study in which Godzilla was used
as a test data generation tool. For these ten programs, RS-Selective
is the cheapest in terms of number of mutants for 9 of them. Offutt
et al. [63] observed that E-Selective was the cheapest for 9 out of
the Fortran-77 versions, using Mothra [48]. This difference in the
strategy that generates fewer mutants may be explained by the
different experimental set-up, i.e., we used a different mutation tool
(i.e., PIT) and programming language (i.e., Java). Also, and arguably
more importantly, we know from RQ2 (Section 4.2), that results
for toy programs will likely differ from those collected for more
realistic larger programs. Nevertheless, we include these results for
the original ten toy programs for completeness and in order to fully
observe due diligence in our reproduction of the original study.

Considering the results presented in this section, we can answer
RQ4 as follows:

Answer to RQ4: The reproduction of Offutt et al. [63] work
shows that it does, indeed, matter whether experiments use number
of mutants or execution time. A key finding, relied upon for 25 years
is transformed from “inconclusive” to “unequivocal” by choosing
to use the true execution cost in place of its surrogate (number of
mutants).

5 THREATS TO VALIDITY
Threats to External Validity: As happens with most software en-

gineering experiments, the program subjects used in our empirical
evaluation might not be representative of the whole software pop-
ulation. In order to minimise this threat, we selected systems of
various sizes, types, mutation scores and levels of test coverage.
To increase the relevance to the mutation literature we also chose
systems used in previous work [33, 42, 52, 92]. Another threat to
the external validity is that we only compared results for Java pro-
grams and used only one, yet popular, mutation tool (PIT). Caution
is required when generalising to other languages and mutation
tools.

We limited our experimentation to RMS and SM strategies. We
decided to study those two strategies because they are two of the
most common mutant reduction strategies in the literature [41, 67,
75] and because they are commonly used as a baseline for newly
proposed strategies [53, 59, 94, 95]. In fact, 60 out of 75 papers we

Cost Measures Matter for Mutation Testing Study Validity ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Table 4: RQ3 – Disagreement between rankings with each measure in ascending order. SM strategies are labelled S𝑥 and RMS
strategies are labelled R𝑥 , where 𝑥 is respectively the number of discarded operators and the sampling percentage. The #M
column shows the ranking based on number of mutants and the Time column shows the ranking based on execution time.
Highlighted cells represent upgrades (blue with ↑) and downgrades (red with ↓).

beanutils codec collections lang validator jfreechart jgrapht joda-time ognl wire
#M Time #M Time #M Time #M Time #M Time #M Time #M Time #M Time #M Time #M Time
S5 S5 S5 S5 S5 S5 S6 S6 S5 S5 S6 S6 S6 S6 S6 S6 S5 S5 S5 S5
S4 S4 R10 ↑ S4 S4 S4 S5 S5 S4 S4 S5 S5 S5 S5 S5 S5 S4 S4 R10 ↑ S4
S3 S3 S4 ↑ S3 R10 ↑ S3 R10 ↑ S4 R10 ↑ S3 S4 S4 R10 ↑ S4 S4 S4 R10 ↑ S3 S4 ↑ S3
R10 ↑ S2 R20 ↓ R10 S3 ↓ R10 S4 ↓ R10 S3 ↑ S2 R10 R10 S4 ↑ S3 R10 ↑ S3 S3 ↓ R10 R20 ↑ S2
S2 ↓ R10 S3 ↓ R20 R20 R20 S3 S3 R20 ↓ R10 R20 R20 R20 ↓ R10 S3 ↓ R10 R20 R20 S3 ↓ R10
R20 R20 R30 R30 S2 S2 R20 R20 S2 ↓ R20 S3 S3 S3 ↓ R20 R20 ↑ S2 R30 ↑ S2 R30 ↓ R20
R30 R30 R40 ↑ S2 R30 R30 R30 ↑ S2 R30 R30 R30 R30 R30 ↑ S2 S2 ↓ R20 S2 ↓ R30 R40 ↓ R30
R40 ↑ S1 S2 ↓ R40 R40 R40 S2 ↓ R30 R40 R40 R40 R40 S2 ↓ R30 R30 R30 R40 R40 S2 ↓ R40
R50 ↓ R40 R50 R50 R50 R50 R40 R40 R50 R50 S2 S2 R40 R40 R40 R40 R50 R50 R50 R50
S1 ↓ R50 R60 ↑ S1 R60 R60 R50 R50 R60 ↑ S1 R50 R50 R50 R50 R50 R50 S1 S1 R60 ↑ S1
R60 R60 R70 ↓ R60 S1 S1 R60 ↑ S1 S1 ↓ R60 R60 R60 S1 S1 R60 ↑ S1 R60 R60 S1 ↓ R60
R70 R70 S1 ↓ R70 R70 R70 S1 ↓ R60 R70 R70 S1 S1 R60 R60 S1 ↓ R60 R70 R70 R70 R70
R80 R80 R80 R80 R80 R80 R70 R70 R80 R80 R70 R70 R70 R70 R70 R70 R80 R80 R80 R80
R90 R90 R90 R90 R90 R90 R80 R80 R90 R90 R80 R80 R80 R80 R80 R80 R90 R90 R90 R90

R90 R90 R90 R90 R90 R90 R90 R90

Figure 1: RQ4: Slopegraph for the results of the reproduction study. The findings enclosed in rectangles fundamentally change
when we adopt the true execution time measure in place of the previously used surrogate (number of mutants). The x-axis
represents the two cost measures: points on the left represent the number of mutants (Equation 2) and points on the right
represent the true execution time (Equation 1). The y-axis represents the percentages (of mutants or time) needed to perform
the mutation analysis. Increasing slopes represent strategies that have an execution cost greater than the surrogate, whereas
decreasing slopes represent strategies that are cheaper than the surrogate. The E-, RS-, ES-, and RE-Selective strategies are
represented each by a different symbol.

surveyed on mutant reduction (Section 2) use either RMS or SM,
and 15 of them use both.

The reproduction study conducted to answer RQ4 (Section 4.4)
was done in a different setting than that of Offutt et al. [63]. There-
fore, our assessment might not generalise to the Mothra tool and to
Fortran-77 programs. In order to minimise this threat, we checked
the results on Java implementations of the same toy programs used

by the authors in their original paper (while also testing the gener-
alisability on real-world large scale Java programs), and we used a
similar approach to generate test cases for the testing phase.

Threats to Internal Validity: PIT is one of the fastest Java muta-
tion tools in the literature [10], as it performs several cost reduction
tasks before generating and executing mutants. For instance, PIT

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Guizzo et al.

mutates bytecode directly instead of source-code, and it uses test
case prioritisation and coverage analysis to avoid running test cases
that cannot reach a mutated line. Each of these optimisations may
change the execution time of a strategy, yielding an undesirable
cause of result variation and introducing bias that would reduce the
internal validity of the study. Furthermore, RMS strategies sample
different mutant sets in each execution, which can also introduce
uncertainty to the results. In order to minimise this threat, we ex-
ecuted multiple independent runs for each of the strategies and
computed their respective execution times. The average Coefficient
Variation of the execution times across independent runs is 0.0569,
which indicates that inter-execution variations are low. Moreover,
we do not include non-default optimisations because these might
introduce further bias that would reduce the internal validity of
the study (for example, parallelisation and history-based mutation
might be biased due to thread synchronisation and the use of dif-
ferent mutants in different histories, respectively).

Our experimental design tries to reflect as much as possible the
real-world scenariowheremutation analysis is applied. For example,
we use the “partial mutation” procedure (each mutant is executed
until it is killed), as opposed to the execution of all mutants against
all test cases (generation of killing matrices). Partial mutation is
what we expect an engineer to perform when applying mutation
analysis, thus our cost evaluation aims to measure the differences
in a real-world scenario.

We grouped PIT’s mutation operators in three categories in
order to allow the creation of the required SM strategies for the
experiments conducted to answer RQ4. During this task, operators
might have been misclassified. However, several operators have the
same name and functionality as the ones used by Offutt et al. [63],
making the grouping mostly straightforward.

Threats to Construct Validity: Measuring execution time for the
multiple executions of strategies and mutants is not a trivial task.
Several factors may add noise to the measurement. In order to miti-
gate this threat, we used the exact same environment for answering
the RQs and performed multiple independent runs.

The indicators we used to assess the differences between number
of mutants and execution time are mainly based on error differ-
ences and ranks. Other indicators may capture other views on the
differences between number of mutants and execution time. More-
over, we carefully applied the statistical tests and verified all the
assumptions required.

6 RELATEDWORK
We consider as related work the papers that acknowledge the threat
to validity of using number of mutants as a direct measurement of
computational cost. 60 of the 75 (80%) papers surveyed in Section 2
do not consider nor report execution time. However, 15 papers
do, correctly, account for the time, being less susceptible to the
mentioned threat to validity. Such a threat is observed and directly
reported in six papers, three of which address it by also computing
and reporting execution time. We describe next what these six
papers report in regard to this topic.

In terms of individual mutant cost, Mresa and Bottaci [59] ob-
serve that different types of mutants have different costs. Gligoric

et al. [29] observe that the cost of mutants varies widely in con-
current code, for which multi-thread scheduling states impact the
overall cost of mutants. They also could not tell beforehand how
reducing the number of mutants affects the execution of multiple
scheduling states in concurrent code. This reported variation in
execution costs of different types of mutants is aligned to the results
we reported in Sections 4.3 and 4.4 (answer to RQ3 and RQ4): by
removing specific operators, and consequently not generating the
respective mutant types, we observed changes in ranks where the
strategy revealed to be cheaper than expected.

When reducing sets of mutants, Mresa and Bottaci [59] state
that “50% reduction in the number of mutants does not imply a
50% reduction in the cost of the test”. Derezińska [20] states that,
based on her experiments, the lower the number of mutants, the
lower the time needed to execute them, but on the other hand the
mutant generation process demanded more time. She argues that
the number of mutants cannot be overstated as a cost factor, the
mutation time does not depend linearly on the number of mutants,
and that a real cost measure is the mutation testing time including
generation and execution of mutants. Derezińska and Rudnik [24]
observe differences between number of mutants and execution time
using RMS and state that, in practice, the number of mutants is not
the most important factor. The authors suggest that the test suites,
number of executed test cases, number of equivalent mutants, and
other factors play more important roles in the cost of mutation
analysis.

Regarding strategy comparisons, Mresa and Bottaci [59] observe
that when considering the number of generated test cases, for
instance, the cost reduction of SM is less impactful. Moreover, Zhang
et al. [93] acknowledge that mutants have different compilation and
execution times depending on the operator, while also suggesting
that the investigation of SM scalability considering mutants’ cost
may incur in different results. Finally, Guizzo et al. [34] observe that
the number of mutants is an inaccurate proxy for computational
cost of mutation analysis and suggest engineers to use execution
time whenever possible.

As other authors have observed [41, 67, 75], the real cost of
mutation analysis is more than just the size of the set of mutants:
it also depends on the set of test cases [24], number of equivalent
mutants [75], whether the test cases were automatically created or
designed by a tester [44, 59], program type (e.g., concurrent [29]),
and many other factors. In fact, the results our work are aligned to
the observations of these papers. Our work shows concrete evidence
that the ratio of number of mutants to execution time is not 1 for
the programs and strategies we investigated, while also quantifying
the error between these two measures and showing that it indeed
matters by reproducing a previous work.

7 CONCLUSION AND FUTUREWORK
In this paper we investigated the differences between measuring
number of mutants and measuring execution time to assess compu-
tational cost reduction in mutation analysis. When surveying the
mutation cost reduction literature, we found only 15 papers which
compare “do fewer” strategies in terms of execution time, and only
six of them acknowledge that number of mutants may not be able
to fully capture the real cost of mutation analysis.

Cost Measures Matter for Mutation Testing Study Validity ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

With our experiments, we show that when using RMS strategies,
the error between number of mutants and execution time is on
average 44%. Depending on the system, this difference varies from
19% to 91%. These errors are positively correlated to the size of
the programs and to the number of mutants that can be generated
according to the Spearman’s rank correlation coefficient test, i.e.,
the errors increase as the programs grow in size. After ranking RMS
and SM strategies using the number of mutants and the execution
time, we observed that 37% of the ranks would have been incorrectly
reported by empirical studies. We further evaluated the impact of
these findings by reproducing the work of Offutt et al. [63]. We
found that the scientific conclusion as to which strategy is the
cheapest changes from “inconclusive” to “unequivocal” when using
the true execution time instead of the traditional number of mutants
measurement. As a consequence, the findings of previous work are
vulnerable to the notable and overlooked threat to validity reported
in this paper. Taken together, our results indicate that it is important
to consider and report on mutant execution time (and number of
mutants) to avoid a potent threat to scientific validity. Previous
results on mutation analysis cost need to be revisited in the light of
this finding.

In future work we intend to compare the execution cost of HOM
and assess if it is indeed the expected 1

𝑜𝑟𝑑𝑒𝑟
. Moreover, the real cost

of determining mutant equivalence might be assessed by measuring
the human effort required for this task as opposed to estimating
the cost by using the number of alive mutants.

ACKNOWLEDGMENTS
Mark Harman, Federica Sarro and Giovani Guizzo are supported
by the ERC advanced fellowship under grant number 741278 (https:
//cordis.europa.eu/project/rcn/210972/factsheet/en) – EPIC: Evolu-
tionary Program Improvement Collaborators. We also would like to
thank Microsoft for sponsoring this work with a Microsoft Azure
Sponsorship.

REFERENCES
[1] M. Al-Hajjaji, J. Krüger, F. Benduhn, T. Leich, and G. Saake. 2017. Efficient

Mutation Testing in Configurable Systems. In Proceedings of the IEEE/ACM 2nd
International Workshop on Variability and Complexity in Software Design (VACE).
Buenos Aires, Argentina, 2–8. https://doi.org/10.1109/VACE.2017.3

[2] P. Ammann, M. E. Delamaro, and J. Offutt. 2014. Establishing Theoretical Minimal
Sets of Mutants. In 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation. 21–30.

[3] A. Arcuri and L. Briand. 2014. AHitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering. Software Testing, Verification
and Reliability 24, 3 (2014), 219–250.

[4] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi. 2001. Toward the deter-
mination of sufficient mutant operators for C. Software Testing, Verification and
Reliability 11, 2 (2001), 113–136.

[5] I. Bluemke and K. Kulesza. 2013. Reduction of Computational Cost in Mutation
Testing by Sampling Mutants. In Proceedings of the 8th International Conference
on Dependability and Complex Systems (DepCoS-RELCOMEX). Brunów, Poland,
41–51.

[6] I. Bluemke and K. Kulesza. 2014. Reduction in Mutation Testing of Java Classes.
In Proceedings of the 9th International Conference on Software Engineering and
Applications (ICSOFT-EA). Vienna, Austria, 297–304.

[7] I. Bluemke and K. Kulesza. 2014. Reductions of Operators in Java Mutation
Testing. In Proceedings of the 9th International Conference on Dependability and
Complex Systems (DepCoS-RELCOMEX). 93–102. https://doi.org/10.1007/978-3-
319-07013-1_9

[8] T. Budd and D. Angluin. 1982. Two Notions of Correctness and their Relation to
Testing. Acta Informatica 8, 1 (1982), 31–45. https://doi.org/10.1007/BF00625279

[9] B. Choi and A. P. Mathur. 1993. High-Performance Mutation Testing. Journal of
Systems and Software 20, 2 (1993), 135–152.

[10] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque. 2016. PIT: A
Practical Mutation Testing Tool for Java (Demo). In International Symposium on
Software Testing and Analysis. ACM, 449–452.

[11] A. A. L. de Oliveira, C. G. Camilo-Junior, and A. M. R. Vincenzi. 2013. A coevo-
lutionary algorithm to automatic test case selection and mutant in Mutation
Testing. In Congress on Evolutionary Computation. 829–836.

[12] M. E. Delamaro, L. Deng, V. H. S. Durelli, N. Li, and J. Offutt. 2014. Experimental
Evaluation of SDL and One-Op Mutation for C. In International Conference on
Software Testing, Verification and Validation. 203–212.

[13] M. E. Delamaro, L. Deng, N. Li, V. H. S. Durelli, and A. J. Offutt. 2014. Grow-
ing a Reduced Set of Mutation Operators. In Proceedings of the 28th Brazilian
Symposium on Software Engineering (SBES). 81–90.

[14] M. E. Delamaro, A. J. Offutt, and P. Ammann. 2014. Designing Deletion Mutation
Operators. In Proceedings of the 7th International Conference on Software Testing,
Verification and Validation (ICST). 11–20.

[15] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano, A. García-Domínguez, and
J. J. Domínguez-Jiménez. 2017. Assessment of Class Mutation Operators for C++
with the MuCPP Mutation System. Information and Software Technology (2017),
169–184. https://doi.org/10.1016/j.infsof.2016.07.002

[16] P. Delgado-Pérez, S. Segura, and I. Medina-Bulo. 2017. Assessment of C++ Object-
Oriented Mutation Operators: A Selective Mutation Approach. Software Testing,
Verification and Reliability 27, 4-5 (2017), 1630–1649. https://doi.org/10.1002/
stvr.1630

[17] R. A. DeMillo, E. W. Krauser, and A. P. Mathur. 1991. Compiler-integrated
Program Mutation. In Proceedings of the 15th IEEE Annual Computer Software and
Applications Conference (COMPSAC). Tokyo, Japan, 351–356. https://doi.org/10.
1109/CMPSAC.1991.170202

[18] L. Deng, A. J. Offutt, and N. Li. 2013. Empirical Evaluation of the Statement
Deletion Mutation Operator. In Proceedings of the 6th International Conference
on Software Testing, Verification and Validation (ICST). Luxembourg City, Luxem-
bourg, 84–93. https://doi.org/10.1109/ICST.2013.20

[19] A. Derezińska. 2013. A Quality Estimation of Mutation Clustering in C# Programs.
In Proceedings of the 8th International Conference on Dependability and Complex
Systems (DepCoS-RELCOMEX). Brunów, Poland, 119–129.

[20] A. Derezińska. 2016. Evaluation of Deletion Mutation Operators in Mutation
Testing of C# Programs. In Proceedings of the 11th International Conference on
Dependability and Complex Systems (DepCoS-RELCOMEX). Brunów, Poland, 97–
108. https://doi.org/10.1007/978-3-319-39639-2_9

[21] A. Derezińska and K. Hałas. 2014. Experimental Evaluation of Mutation Testing
Approaches to Python Programs. In 2014 IEEE Seventh International Conference
on Software Testing, Verification and Validation Workshops. 156–164. https://doi.
org/10.1109/ICSTW.2014.24

[22] A. Derezińska and K. Hałas. 2015. Improving Mutation Testing Process of Python
Programs. In Proceedings of the 4th Computer Science On-line Conference Software
Engineering in Intelligent Systems (CSOC). 233–242. https://doi.org/10.1007/978-
3-319-18473-9_23

[23] A. Derezińska and M. Rudnik. 2012. Quality Evaluation of Object-Oriented and
Standard Mutation Operators Applied to C# Programs. In Proceedings of the
50th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS). Prague, Czech Republic, 42–57. https://doi.
org/10.1007/978-3-642-30561-0_5

[24] A. Derezińska and M. Rudnik. 2017. Evaluation of Mutant Sampling Criteria
in Object-Oriented Mutation Testing. In Proceedings of the Federated Conference
on Computer Science and Information Systems (ACSIS). Polskie Towarzystwo
Informatyczne, Prague, Czech Republic, 1315–1324. https://doi.org/10.15439/
2017F375

[25] J. J. Domínguez-Jiménez, A. Estero-Botaro, A. García-Domínguez, and I. Medina-
Bulo. 2011. Evolutionary Mutation Testing. Information and Software Technology
53 (2011), 1108–1123. Issue 10. https://doi.org/10.1016/j.infsof.2011.03.008

[26] A. E. Eiben and J. E. Smith. 2003. Introduction to evolutionary computing. Springer
Science & Business Media.

[27] A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and Y. Zhang. 2017. Inves-
tigating the relationship between price, rating, and popularity in the Blackberry
World App Store. Information and Software Technology 87 (2017), 119–139.

[28] G. Fraser and A. Arcuri. 2011. Evolutionary Generation of Whole Test Suites. In
International Conference On Quality Software (QSIC). 31–40.

[29] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam. 2013. Selective Mutation Testing
for Concurrent Code. In Proceedings of the 22nd International Symposium on
Software Testing and Analysis (ISSTA). Lugano, Switzerland, 224–234.

[30] D. Gong, G. Zhang, X. Yao, and F. Meng. 2017. Mutant reduction based on domi-
nance relation for weak mutation testing. Information and Software Technology
81 (2017), 82–96.

[31] R. Gopinath, I. Ahmed, M. A. Alipour, C. Jensen, and A. Groce. 2017. Mutation Re-
duction Strategies Considered Harmful. IEEE Transactions on Software Reliability
66, 3 (2017), 854–874. https://doi.org/10.1109/TR.2017.2705662

[32] R. Gopinath, A. Alipour, I. Ahmed, C. Jensen, and A. Groce. 2015. How hard
does mutation analysis have to be, anyway?. In 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE). 216–227.

https://cordis.europa.eu/project/rcn/210972/factsheet/en
https://cordis.europa.eu/project/rcn/210972/factsheet/en
https://doi.org/10.1109/VACE.2017.3
https://doi.org/10.1007/978-3-319-07013-1_9
https://doi.org/10.1007/978-3-319-07013-1_9
https://doi.org/10.1007/BF00625279
https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1002/stvr.1630
https://doi.org/10.1002/stvr.1630
https://doi.org/10.1109/CMPSAC.1991.170202
https://doi.org/10.1109/CMPSAC.1991.170202
https://doi.org/10.1109/ICST.2013.20
https://doi.org/10.1007/978-3-319-39639-2_9
https://doi.org/10.1109/ICSTW.2014.24
https://doi.org/10.1109/ICSTW.2014.24
https://doi.org/10.1007/978-3-319-18473-9_23
https://doi.org/10.1007/978-3-319-18473-9_23
https://doi.org/10.1007/978-3-642-30561-0_5
https://doi.org/10.1007/978-3-642-30561-0_5
https://doi.org/10.15439/2017F375
https://doi.org/10.15439/2017F375
https://doi.org/10.1016/j.infsof.2011.03.008
https://doi.org/10.1109/TR.2017.2705662

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Guizzo et al.

[33] R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen, and A. Groce. 2016. On The
Limits of Mutation Reduction Strategies. 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE) (2016), 511–522.

[34] G. Guizzo, F. Sarro, J. Krinke, and S. R. Vergilio. 2020. Sentinel: A Hyper-Heuristic
for the Generation of Mutant Reduction Strategies. Transactions on Software
Engineering (2020).

[35] M. Harman, Y. Jia, and W. B. Langdon. 2010. A Manifesto for Higher Order
Mutation Testing. In International Conference on Software Testing, Verification,
and Validation Workshops. 80–89.

[36] M. Harman, Y. Jia, P. R. Mateo, and M. Polo. 2014. Angels and monsters: An
empirical investigation of potential test effectiveness and efficiency improvement
from strongly subsuming higher order mutation. In International Conference on
Automated Software Engineering. 397–408.

[37] W. E. Howden. 1982. Weak Mutation Testing and Completeness of Test Sets.
IEEE Transactions on Software Engineering 8, 4 (1982), 371–379.

[38] C. Iida and S. Takada. 2017. Reducing Mutants with Mutant Killable Precondition.
In Proceedings of the 12th International Workshop on Mutation Analysis (Mutation).
Tokyo, Japan, 128–133. https://doi.org/10.1109/ICSTW.2017.29

[39] L. Inozemtseva, H. Hemmati, and R. Holmes. 2013. Using Fault History to Improve
Mutation Reduction. In Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering: New Ideas Track (ESEC/FSE). Saint Petersburg, Russia, 639–
642.

[40] C. Ji, Z. Chen, B. Xu, and Z. Zhao. 2009. A Novel Method of Mutation Clustering
Based on Domain Analysis. In International Conference on Software Engineering
and Knowledge Engineering, Vol. 9. 422–425.

[41] Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (2011), 649–678.
https://doi.org/10.1109/TSE.2010.62

[42] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser. 2014. Are
Mutants a Valid Substitute for Real Faults in Software Testing?. In Proc. of FSE.
654–665.

[43] R. Just, B. Kurtz, and P. Ammann. 2017. Inferring Mutant Utility from Program
Context. In Proceedings of the 26th International Symposium on Software Testing
and Analysis (ISSTA). Santa Barbara, CA, USA, 284–294. https://doi.org/10.1145/
3092703.3092732

[44] R. Just and F. Schweiggert. 2015. Higher Accuracy and Lower Run Time: Efficient
Mutation Analysis Using Non-redundant Mutation Operators. Software Testing,
Verification and Reliability 25, 5-7 (2015), 490–507. https://doi.org/10.1002/stvr.
1561

[45] G. Kaminski and P. Ammann. 2009. Using a Fault Hierarchy to Improve the
Efficiency of DNF Logic Mutation Testing. In Proceedings of the 2nd International
Conference on Software Testing, Verification and Validation (ICST). Denver, CO,
USA, 386–395.

[46] G. Kaminski, P. Ammann, and A. J. Offutt. 2013. Improving logic-based testing.
Journal of Systems and Software 86, 8 (2013), 2002–2012. https://doi.org/10.1016/
j.jss.2012.08.024

[47] G. Kaminski, U. Praphamontripong, P. Ammann, and A. J. Offutt. 2011. A Logic
Mutation Approach to Selective Mutation for Programs and Queries. Information
and Software Technology 53, 10 (2011), 1137–1152.

[48] K. N. King and A. J. Offutt. 1991. A Fortran Language System for Mutation-based
Software Testing. Software – Practice and Experience 21, 7 (1991), 685–718.

[49] M. Kintis, M. Papadakis, and N. Malevris. 2010. Evaluating Mutation Testing
Alternatives: A Collateral Experiment. In Proceedings of the 17th Asia-Pacific
Software Engineering Conference (APSEC). Sydney, Australia, 300–309.

[50] B. Kurtz, P. Ammann, A. J. Offutt, M. E. Delamaro, M. Kurtz, and N. Gökçe.
2016. Analyzing the Validity of Selective Mutation with Dominator Mutants.
In Proceedings of the 24th International Symposium on Foundations of Software
Engineering (FSE). Seattle, WA, USA, 571–582. https://doi.org/10.1145/2950290.
2950322

[51] J. T. S. Lacerda and F. C. Ferrari. 2014. Towards the Establishment of a Sufficient Set
of Mutation Operators for AspectJ Programs. In Proceedings of the 8th Brazilian
Workshop on Systematic and Automated Software Testing (SAST). Maceio, AL,
Brazil, 21–30.

[52] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. L. Traon, and A. Ventresque.
2017. Assessing and Improving the Mutation Testing Practice of PIT. In 2017 IEEE
International Conference on Software Testing, Verification and Validation. 430–435.

[53] J. A. P. Lima, G. Guizzo, S. R. Vergilio, A. P. C. Silva, H. L. J. Filho, and H. V. Ehren-
fried. 2016. Evaluating Different Strategies for Reduction of Mutation Testing
Costs. In Simpósio Brasileiro de Teste de Software Sistemático e Automatizado.

[54] Y.-S. Ma, Y.-R. Kwon, and S.-W. Kim. 2009. Statistical Investigation on Class
Mutation Operators. ETRI Journal 31, 2 (2009), 140–150. https://doi.org/10.4218/
etrij.09.0108.0356

[55] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala. 2014. Overcoming the
Equivalent Mutant Problem: A Systematic Literature Review and a Comparative
Experiment of Second Order Mutation. IEEE Transactions on Software Engineering
40, 1 (2014), 23–42. https://doi.org/10.1109/TSE.2013.44

[56] P. R. Mateo, M. P. Usaola, and J. L. F. Alemán. 2013. Validating Second-Order
Mutation at System Level. IEEE Transactions on Software Engineering 39, 4 (2013),

570–587.
[57] A. P. Mathur. 1991. Performance, effectiveness, and reliability issues in software

testing. In Computer Software and Applications Conference. 604–605.
[58] A. P. Mathur and W. E. Wong. 1994. An empirical comparison of data flow

and mutation-based test adequacy criteria. Software Testing, Verification and
Reliability 4, 1 (1994), 9–31.

[59] E. S. Mresa and L. Bottaci. 1999. Efficiency of Mutation Operators and Selec-
tive Mutation Strategies: an Empirical Study. Software Testing, Verification and
Reliability 9, 4 (1999), 205–232.

[60] J. Nam, D. Schuler, and A. Zeller. 2011. Calibrated Mutation Testing. In 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation
Workshops. 376–381.

[61] A. S. Namin, J. Andrews, and D. Murdoch. 2008. Sufficient mutation operators for
measuring test effectiveness. In International Conference on Software Engineering.
351–360.

[62] T. Nobre, S. R. Vergilio, and A. Pozo. 2012. Reducing Interface Mutation Costs
with Multiobjective Optimization Algorithms. International Journal of Natural
Computing Research (2012), 21–40. https://doi.org/10.4018/jncr.2012070102

[63] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. 1996. An Experimental
Determination of Sufficient Mutant Operators. ACM Transactions on Software
Engineering and Methodology 5, 2 (1996), 99–118.

[64] A. J. Offutt, G. Rothermel, and C. Zapf. 1993. An experimental evaluation of
selective mutation. In International Conference on Software Engineering. 100–107.

[65] A. J. Offutt and R. H. Untch. 2001. Mutation Testing for the New Century. Springer,
Chapter Mutation 2000: Uniting the Orthogonal, 34–44.

[66] E. Omar and S. Ghosh. 2012. An Exploratory Study of Higher Order Mutation
Testing in Aspect-Oriented Programming. In Proceedings of the 23th International
Symposium on Software Reliability Engineering (ISSRE). Dallas, TX, USA, 1–10.

[67] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman. 2017.
Mutation Testing Advances: An Analysis and Survey. Advances in Computers
(2017).

[68] M. Papadakis and Y. Le Traon. 2014. Effective Fault Localization via Mutation
Analysis: A Selective Mutation Approach. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing (Gyeongju, Republic of Korea) (SAC ’14). ACM,
New York, NY, USA, 1293–1300. https://doi.org/10.1145/2554850.2554978

[69] M. Papadakis and Y. Le Traon. 2015. Metallaxis-FL: mutation-based fault local-
ization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605–628.

[70] M. Papadakis and N. Malevris. 2010. An Empirical Evaluation of the First and
Second Order Mutation Testing Strategies. In International Conference on Software
Testing, Verification and Validation Workshops. 90–99.

[71] A. Parsai, A. Murgia, and S. Demeyer. 2016. A model to estimate first-order mu-
tation coverage from higher-order mutation coverage. In 2016 IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE, 365–373.

[72] A. Parsai, A. Murgia, and S. Demeyer. 2016. Evaluating RandomMutant Selection
at Class-level in Projects with Non-adequate Test Suites. In Proceedings of the 20th
International Conference on Evaluation and Assessment in Software Engineering
(EASE). Limerick, Ireland, 1–10. https://doi.org/10.1145/2915970.2915992

[73] M. Patrick, R. Alexander, M. Oriol, and J. A. Clark. 2014. Probability-based
semantic interpretation of mutants. In 2014 IEEE Seventh International Conference
on Software Testing, Verification and Validation Workshops. IEEE, 186–195.

[74] M. Patrick, M. Oriol, and J. A. Clark. 2012. MESSI: Mutant Evaluation by Static
Semantic Interpretation. In Proceedings of the 5th International Conference on
Software Testing, Verification and Validation (ICST). Montreal, QC, Canada, 711–
719.

[75] A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro. 2019. A
systematic literature review of techniques and metrics to reduce the cost of
mutation testing. Journal of Systems and Software 157 (2019), 110388. https:
//doi.org/10.1016/j.jss.2019.07.100

[76] M. Polo, M. Piattini, and I. García-Rodríguez. 2009. Decreasing the cost of
mutation testing with second-order mutants. Software Testing, Verification and
Reliability 19, 2 (2009), 111–131.

[77] U. Praphamontripong andA. J. Offutt. 2017. Finding Redundancy inWebMutation
Operators. In Proceedings of the 12th International Workshop on Mutation Analysis
(Mutation). Tokyo, Japan, 134–142. https://doi.org/10.1109/ICSTW.2017.30

[78] N. T. H. Quyen, K. T. Tung, L. T. M. Hanh, and N. T. Binh. 2016. Improving Mutant
Generation for Simulink Models Using Genetic Algorithm. In Proceedings of the
International Conference on Electronics, Information, and Communications (ICEIC).
Da Nang, Vietnam, 1–4. https://doi.org/10.1109/ELINFOCOM.2016.7562970

[79] D. Reuling, J. Bürdek, S. Rotärmel, M. Lochau, and U. Kelter. 2015. Fault-based
Product-line Testing: Effective Sample Generation Based on Feature-Diagram
Mutation. In Proceedings of the 19th International Conference on Software Product
Line (SPLC). Nashville, TN, USA, 131–140.

[80] A. Siami-Namin and J. H. Andrews. 2006. Finding Sufficient Mutation Operators
via Variable Reduction. In Proceedings of the 2nd Workshop on Mutation Analysis
(Mutation). Raleigh, NC, USA, 1–10. https://doi.org/10.1109/MUTATION.2006.7

[81] C. Spearman. 1904. The proof and measurement of association between two
things. American journal of Psychology 15, 1 (1904), 72–101.

https://doi.org/10.1109/ICSTW.2017.29
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1002/stvr.1561
https://doi.org/10.1016/j.jss.2012.08.024
https://doi.org/10.1016/j.jss.2012.08.024
https://doi.org/10.1145/2950290.2950322
https://doi.org/10.1145/2950290.2950322
https://doi.org/10.4218/etrij.09.0108.0356
https://doi.org/10.4218/etrij.09.0108.0356
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.4018/jncr.2012070102
https://doi.org/10.1145/2554850.2554978
https://doi.org/10.1145/2915970.2915992
https://doi.org/10.1016/j.jss.2019.07.100
https://doi.org/10.1016/j.jss.2019.07.100
https://doi.org/10.1109/ICSTW.2017.30
https://doi.org/10.1109/ELINFOCOM.2016.7562970
https://doi.org/10.1109/MUTATION.2006.7

Cost Measures Matter for Mutation Testing Study Validity ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

[82] M. Sridharan and A. Siami-Namin. 2010. Prioritizing Mutation Operators based
on Importance Sampling. In Proceedings of the IEEE 21th International Symposium
on Software Reliability Engineering (ISSRE). San Jose, CA, USA, 378–387.

[83] F. Steimann and A. Thies. 2010. From Behaviour Preservation to Behaviour
Modification: Constraint-Based Mutant Generation. In Proceedings of the 32th
International Conference on Software Engineering (ICSE). Cape Town, South Africa,
425–434.

[84] C. Sun, L. Pan, Q. Wang, H. Liu, and X. Zhang. 2017. An Empirical Study on
Mutation Testing of WS-BPEL Programs. Computer Journal 60, 1 (2017), 143–158.
https://doi.org/10.1093/comjnl/bxw076

[85] C. Sun, F. Xue, H. Liu, and X. Zhang. 2017. A Path-aware Approach to Mutant
Reduction in Mutation Testing. Information and Software Technology 81 (2017),
65–81.

[86] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva. 2007. Mutating database queries.
Information and Software Technology 49, 4 (2007), 398–417.

[87] R. H. Untch. 2009. On Reduced Neighborhood Mutation Analysis Using a Sin-
gle Mutagenic Operator. In Proceedings of the 47th Annual Southeast Regional
Conference (ACM-SE). Clemson, SC, USA, 71–75.

[88] A. M. R. Vincenzi, J. C. Maldonado, E. F. Barbosa, and M. E. Delamaro. 2001. Unit
and Integration Testing Strategies for C Programs Using Mutation. Software
Testing, Verification and Reliability 11, 4 (2001), 249–268.

[89] W. E. Wong and A. P. Mathur. 1995. Reducing the Cost of Mutation Testing: An
Empirical Study. Journal of Systems and Software 31, 3 (1995), 185–196.

[90] W. E. Wong, A. P. Mathur, and J. C. Maldonado. 1995. Software Quality and
Productivity: Theory, practice, education and training. Springer, Chapter Mutation

versus All-uses: An Empirical Evaluation of Cost, Strength and Effectiveness,
258–265.

[91] M. R. Woodward and K. Halewood. 1988. From weak to strong, dead or alive?
an analysis of some mutation testing issues. In Workshop on Software Testing,
Verification, and Analysis. 152–158.

[92] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and L. Zhang. 2016.
Predictive Mutation Testing. In International Symposium on Software Testing and
Analysis. 342–353.

[93] J. Zhang, M. Zhu, D. Hao, and L. Zhang. 2014. An empirical study on the scalability
of selective mutation testing. In 2014 IEEE 25th International Symposium on
Software Reliability Engineering. IEEE, 277–287.

[94] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid. 2013. Operator-based and
random mutant selection: Better together. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 92–102.

[95] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. 2010. Is Operator-based Mutant
Selection Superior to Random Mutant Selection?. In Proc. of the 32Nd ACM/IEEE
International Conference on Software Engineering (ICSE’10). 435–444.

[96] Q. Zhu, A. Panichella, and A. Zaidman. 2017. Speeding-Up Mutation Testing via
Data Compression and State Infection. In Proceedings of the 12th International
Workshop on Mutation Analysis (Mutation). Tokyo, Japan, 103–109. https://doi.
org/10.1109/ICSTW.2017.25

[97] Q. Zhu, A. Panichella, and A. Zaidman. 2018. An Investigation of Compression
Techniques to Speed up Mutation Testing. In Proceedings of the 11th Interna-
tional Conference on Software Testing, Verification and Validation (ICST). Västerås,
Sweden, 274–284. https://doi.org/10.1109/ICST.2018.00035

https://doi.org/10.1093/comjnl/bxw076
https://doi.org/10.1109/ICSTW.2017.25
https://doi.org/10.1109/ICSTW.2017.25
https://doi.org/10.1109/ICST.2018.00035

	Abstract
	1 Introduction
	2 Mutation Analysis Cost Reduction
	3 Empirical Study Design
	3.1 Research Questions

	4 Results
	4.1 Answer to RQ1 – Random Mutant Sampling
	4.2 Answer to RQ2 – Statistical Correlations
	4.3 Answer to RQ3 – Strategy Differences
	4.4 Answer to RQ4 – Does it Matter?

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

