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ABSTRACT

Recent years have witnessed great success of applying deep
convolutional neural networks (CNNs) to single image super-
resolution (SISR). However, most of these algorithms fo-
cus on increasing modeling capability through developing
deeper and wider networks, improving the performance
but at a cost of huge computation. Targeting at a bet-
ter trade-off between efficiency and effectiveness, we pro-
pose ESASN, an efficient second-order attention spindle net-
work for lightweight SISR. ESASN is built upon efficient
second-order attention spindle (ESAS) blocks, each of which
contains two well-designed new modules, efficient multi-
scale (EMS) module and second-order attention (SOA) mod-
ule. EMS reduces a considerable number of parameters
while retaining the multi-scale structure to explore rich fea-
tures. SOA further rescales the multi-scale feature maps, cap-
turing the inter-dependencies among channels pixel-wisely
with little additional cost. Both qualitative and quantita-
tive experimental results demonstrate that the combination
of EMS and SOA works out favorably for SISR, lifting the
performance with fewer parameters. Code is available at
https://github.com/yiyunchen/ESASN.

Index Terms— Lightweight super-resolution, multi-scale
features, spindle network, second-order attention

1. INTRODUCTION

Single image super-resolution (SISR) is a fundamental com-
puter vision task, aiming at restoring the high resolution (HR)
image from a single low resolution (LR) image. It is widely
used in real-world applications, such as surveillance and med-
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ical imaging. However, SISR is also a challenging ill-posed
problem notoriously hard to solve.

Since Dong et al. [1] introduced a three-layer convolu-
tion neural network (SRCNN) for SISR, convolution neural
network (CNN)-based models, characterized by their strong
representation learning capability, have attracted considerable
attention [2, 3, 4, 5, 6, 7, 8, 9]. A trend of designing such
CNN-based models is to deepen and widen the CNN archi-
tecture for stronger modeling capacity. Although deeper and
wider networks indeed can often achieve better results, they
inevitably lead to an upsurge of model parameters, bringing in
unaffordable computational cost and thus infeasible for low-
resource scenarios in real-world applications.

To address this issue, some lightweight networks [10, 11,
12, 3] have been proposed. DRRN [3] employed a recursive
parameter sharing strategy, reducing the number of param-
eters but not necessarily the computation cost due to its re-
cursive nature. CARN-M [10] adopted group convolution to
lower the number of parameters. However, simply applying
group convolution may result in information interchange dif-
ficulty among different groups and thus drastically degrade
performance. In LFFN [11], a well-designed block, named
spindle, was proposed to efficiently improve the representa-
tion capability of the model by incorporating multi-scale fea-
tures. Unlike CARN-M, LFFN incorporated multi-scale fea-
tures by first slicing the feature maps into different groups,
and then integrating information from different groups using
1 × 1 convolution. However, the spindle block extracts fea-
tures at different scales independently through different net-
work branches, which neglects the hierarchy among different
scales and introduces otherwise avoidable redundancy into
the network. Moreover, a naive fusion strategy like 1×1 con-
volution fails to emphasize informative features that could be
important for effective multi-scale feature fusion.

In this paper, we propose an efficient second-order spin-
dle block (ESAS) to tackle the aforementioned drawbacks.
Specifically, an efficient multi-scale module (EMS) is devised
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to exploit the hierarchical relationship among features at dif-
ferent scales. Considering that large-scale features can be
obtained from further processing small-scale features by us-
ing convolutional layers, EMS uses the output of the small-
scale feature extraction branches as additional inputs to those
for large-scale features. Benefiting from the assistance of
small-scale branches, large-scale branches can directly ex-
plore large-scale features without first exploring small-scale
features by themselves. As a result, we manage to remove
a large number of inessential model parameters from the
large-scale branches and greatly improve the efficiency of the
multi-scale structure. Moreover, ESAS also integrates a novel
second-order attention module (SOA) to pixel-wisely capture
the inter-dependencies among channels with second-order in-
formation. By examining the feature importance adaptively at
the pixel level, SOA helps the network focus on more infor-
mative features. Hence, by adding SOA before the 1× 1 con-
volution, ESAS achieves a more effective multi-scale fusion
than the original spindle block, as well as less computation
needed to achieve a competent extraction of rich features. An
efficient second-order attention spindle network (ESASN) for
lightweight SISR can be developed by stacking ESAS blocks.

In summary, the main contributions of this paper are
threefold. First, we propose to remove the redundancy of
spindle network by leveraging the hierarchy of multi-scale
features, which results in a new module, EMS. Secondly, by
modeling the inter-dependencies among channels at the pixel
level, we devise another novel module, SOA, for more in-
formative feature fusion. Last but not the least, EMS and
SOA constitute ESAS, a powerful and efficient building block
for lightweight SISR. On the bedrock of ESAS, we develop
ESASN, an efficient second-order attention spindle network,
which achieves state-of-the-art results in lightweight SISR.

2. ESASN: EFFICIENT SECOND-ORDER
ATTENTION SPINDLE NETWORK

In this section, we will first present the overall architecture of
ESASN in Section 2.1 before diving into details of its building
blocks, ESAS in Section 2.2 and SOA in Section 2.3.

2.1. Overall Network Architecture of ESASN

The overall architecture of our proposed ESASN is shown in
Fig. 1. The input and output of ESASN are denoted by Ilr
and Isr, respectively. At the beginning, a 3× 3 convolutional
layer is used to extract shallow feature maps G0:

G0 = Fsf (Ilr), (1)

where Fsf denotes the convolution operation. The G0 is then
used for deep feature exploration byG stacked groups of local
feature fusion, where each group consists of B ESAS blocks.

The flow of each local feature fusion group can be ex-
pressed as

Gg = Fg(Gg−1)

= Fgf ([Bg,1, ..., Bg,b, ..., Bg,B ]),
(2)

where Fg denotes the g-th group’s function, Fgf is the 1 × 1
convolution for local feature fusion, Gg denotes the output of
the g-th group, and Bg,b is the output of the b-th block inside
the g-th group.
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Fig. 1. The architecture of our proposed efficient second-
order attention spindle network (ESASN)

The output G of the whole feature extraction is then gen-
erated by global feature fusion with skip connections:

G = FGf ([G1, ..., Gg, ..., GG]) +G0, (3)

where FGf is a 1× 1 convolution.
The final output Isr is given by

Isr = Flast(Fup(G)), (4)

where Flast is a 3 × 3 convolution, and Fup denotes upsam-
pling, which is ESPCN [13] in our paper.

2.2. ESAS: Efficient Second-order Attention Spindle
Block

In this subsection, we introduce the ESAS block and its EMS
module. ESAS is an advanced version of the spindle block
[11], targeting at more efficient multi-scale feature extraction.

In order to produce large-scale features, a multi-scale fea-
ture extraction module usually entails large convolution ker-
nels or many convolutional layers. For example, as shown in
Fig. 2(a), the large-scale branch in the spindle block [11] gen-
erates large-scale features by stacking convolutional layers,
where two 3 × 3 convolutional layers can achieve the same
receptive field as a 5 × 5 convolutional layer with fewer pa-
rameters [14]. Stacking convolutional layers for large-scale
branches can be regarded as first extracting small-scale fea-
tures, and then using the extracted features to further explore
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large-scale features. Inspired by this observation, we make
large-scale branches directly use the features provided from
small-scale branches to assist feature exploration, rather than
individually extracting features from scratch.

Following this inspiration, we propose our EMS module
in the ESAS block as shown in Fig. 2(b). Firstly, ESAS
uses a dimension extension 1 × 1 convolution to produce
high-dimensional feature maps X ∈ RCw×H×W . Then, the
feature maps are sliced into four groups X1,X2,X3 and X4

fed into four different branches for multi-scale information
exploration. The first two branches in EMS are similar to
the spindle block, except that we replace the PreLU with
LeakyReLU to reduce the computation caused by the acti-
vation functions during the training phase:

f3,L = Conv3(X1) (5)

f3,NL = LeakyReLU(Conv3(X2)), (6)

where the subscript 3 means that each point of this branch’s
output has a 3 by 3 receptive field at the corresponding inputs,
the subscript L/NL represents that this branch is used for lin-
ear/nonlinear information exploration, Conv3 denotes a 3×3
convolution and LeakyReLU is the activation function.

(a) Spindle block

𝐶𝑠 

𝐶𝑠 

𝐶𝑤  

(b) Our ESAS block

Fig. 2. Block comparison. (a) The spindle block proposed in
[11]. (b) Our efficient second-order attention spindle (ESAS)
block

EMS uses the outputs of small-scale branches as addi-
tional inputs to larger-scale branches while reducing the num-
ber of convolutional layers. Element-wise addition is used to
merge the raw inputs and the ones extracted by small-scale
branches. The outputs of large-scale branch are then given by

f5,NL = LeakyReLU(Conv3(f3,NL + X3)), (7)

where + denotes the element-wise addition. This merging op-
eration connects information from the second branch to that
of the third branch and provides small-scale features for the

third branch to facilitate further extraction of large-scale fea-
tures. Likewise, the output of the fourth branch is given by

f7,NL = LeakyReLU(Conv3(f5,NL + X4)). (8)

An SOA module, which will be elaborated in Section 2.3,
is applied before the 1×1 feature fusion convolution to avoid
ignoring nuanced features:

Y = Conv1(SOA(Concat(f3,L, f3,NL, f5,NL, f7,NL)),
(9)

where Conv1 means the 1 × 1 convolution, and Concat de-
notes the concatenation operation. Then the final output of
our ESAS is Bg,b = Y +Bg,b−1.

2.3. SOA: Second-order Attention Module

In this subsection, we introduce the design of SOA module
for smarter feature fusion.

Several CNN-based methods [6, 15, 16] rescaled the
feature maps using the channel attention (CA) mechanism,
which models the inter-dependencies among channels. How-
ever, for image restoration tasks, some detail-sensitive fea-
tures are more prone to being ignored when fed into a
channel descriptor with the global average pooling or max-
imum pooling. In order to keep as much details as possi-
ble, SOA generates an attention map by modeling the inter-
dependencies among different channels adaptively at the pixel
level. Inspired by the mixed high-order attention for person
re-identification in [17], and taking into account that we want
a lightweight network, we build our SOA module by using
only second-order information, as shown in Fig. 3.

Fig. 3. Second-order attention module

In SOA, the second-order information is expressed by a
linear quadratic polynomial predictor:

a(x) = 〈w,⊗x〉 (10)

where x ∈ RC denotes a local descriptor at a specific spa-
tial location of X , C denotes the number of channels, ⊗x
is the second-order outer-product of x, w corresponds to the
weights of the elements in ⊗x, and 〈., .〉 means the inner
product of two same-sized tensors. According to tensor de-
composition [18], we approximate w as the sum of a finite
number of rank-1 tensors, w =

∑D2

d=1 α
dud1 ⊗ ud2, where
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ud1 ∈ RC , ud2 ∈ RC are vectors, ⊗ denotes outer-product, αd

is the weight for d-th rank-1 tensor, and D2 denotes a finite
number. As shown in [17], we can rewrite Eq.(10) as

a(x) = 〈w,⊗x〉

=

〈
D2∑
d=1

αdud1 ⊗ ud2,⊗x

〉

=

D2∑
d=1

αd
2∏

s=1

〈
uds , x

〉
= 〈α, z〉
= 1T (α� z),

(11)

where α =
[
α1, ..., αd, ..., αD2

]T
is the weight vector,

z =
[
z1, ..., zd, ..., zD

2
]T

with zd =
∏2

s=1

〈
uds , x

〉
, � is

Hadamard Product and 1T is a row vector of ones. We intro-
duce the auxiliary matrix P to obtain a vector-like predictor
â(x) ∈ RC , then Eq.(11) becomes

â(x) = PT (α� z), (12)

where P ∈ RD2×C . Since P, α are parameters to be learned,
we can integrate P, α into α̂ ∈ RD2×C . Then Eq.(12) can be
rewritten as

â(x) = α̂T z. (13)

Then, we introduce a non-linear activation function into
SOA to further improve the representation capacity. Using
the Sigmoid function as a proper gating function, we get the
final attention map as

A(x) = Sigmoid(α̂Tσ(z)), (14)

where σ denotes an arbitrary non-linear activation function,
which we use LeakyReLU in our experiments. A(x) ∈
RC and the value of each entry lies in the interval [0, 1].
Extending from A(x), defined on a local descriptor x, to
A(X ), defined on 3D feature maps, we obtain A(X ) =[
A(x(1,1)), ..., A(x(i,j)), ..., A(x(H,W ))

]
, where x(i,j) indi-

cates a local descriptor at point (i, j) of X . Then we get
our rescaled feature maps by X � A(X ). Inspired by the
success of residual blocks, we add the input to the rescaled
feature maps, the final output of SOA module is given by
Y = X �A(X ) + X .

3. EXPERIMENTS

3.1. Experimental Setting

We describe the experimental settings including datasets,
evaluation metrics, and training details.

Datasets and metrics. We selected 800 training images
from the DIV2K dataset [19] as the training set. For testing,

we use five standard benchmark datasets: Set5 [20], Set14
[21], B100 [22] and Urban100 [23]. The SR results are eval-
uated with the signal to noise ratio (PSNR) and the structural
similarity index (SSIM)[24] on the Y channel of transformed
YCbCr space.

Implementation details. In our experiments of ESASN,
the number of groups and blocks per group were G = 6, B =
6, and the channel number before and after dimension exten-
sion 1 × 1 convolution were Cs = 48 and Cw = 96, re-
spectively. ESASN-S was built with G = 4, B = 4, Cs =
36, Cw = 64, and the depth-wise convolution was introduced
to further reduce the computation. We set D2 = Cw//4, and
set groups = 4 in the 1 × 1 convolution of SOA module.
In each training batch, we randomly cropped 16 patches with
a size of 48 × 48 from the LR images as input. Data aug-
mentation was performed on the training set, including data
randomly rotated by 90◦, 180◦, 270◦ and flipped horizontally.
Our model was trained with the ADAM optimizer to mini-
mize the L1 loss function, where the parameters of the opti-
mizer are β1 = 0.9, β2 = 0.999, and ε = 10−8. The leaning
rate is initially set to 4× 10−4 which decreased by half every
2× 105 iterations of back-propagation.

3.2. Effects of EMS module and SOA module

In this subsection, we perform experiments to verify the ef-
fectiveness of the proposed the EMS and SOA modules. In
order to check whether they are helpful to the efficiency of
spindle block, we compare four variants of the spindle net-
work: 1) Spindle network (SN) was built by the plain spindle
block almost the same as Fig. 2(a) except that PreLU was re-
placed by LeakyReLU . 2) Efficient spindle network (ESN)
was built by the EMS module based spindle block. 3) Second-
order attention spindle network (SASN) was built by the spin-
dle block with the SOA module. 4) Two ESAS block based
ESASNs with different numbers of model parameters were
built in order to make a fair comparison: ESASN1 was ob-
tained by aligning the depth with other variants, and ESASN2

was built by aligning the number of parameters.

Table 1. Effects of the SOA module and the EMS mod-
ule. ”X” means the corresponding module is used while ”×”
means not. PSRN and SSIM are calculated on Set14(2×).

Network Params(K) SOA EMS PSNR SSIM
SN 1300.323 × × 33.69 0.9180

ESN 909.723 × X 33.66 0.9180
SASN 1343.523 X × 33.77 0.9190

ESASN1 952.923 X X 33.67 0.9185
ESASN2 1331.631 X X 33.79 0.9192

According to Table 1, we can observe that the EMS mod-
ule reduces the number of parameters of SN by about 30%
while retaining a similar performance. This indicates that our
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Table 2. Comparison on benchmark datasets. Best results are highlighted.

Network Scale Params(K) Mult-Adds(G) Set5 Set14 B100 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DRRN[3] 2 297 6796.9 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188
MemNet[8] 2 677 2662.4 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195
CARN[10] 2 1592 222.8 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256
LFFN[11] 2 1522 342.8 37.95 0.9597 - - 32.20 0.8994 32.39 0.9299
MSRN[7] 2 5930 1365.4 38.08 0.9607 33.70 0.9186 32.23 0.9002 32.29 0.9303
ESASN 2 1332 305.7 38.10 0.9608 33.79 0.9192 32.25 0.9005 32.42 0.9312

ESASN-S 2 173 39.8 37.82 0.9598 33.34 0.9155 32.03 0.8980 31.45 0.9215
DRRN[3] 3 297 6796.9 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378

MemNet[8] 3 677 2662.4 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376
CARN[10] 3 1592 118.8 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493
LFFN[11] 3 1534 153.6 34.43 09266 - - 29.13 0.8059 28.34 0.8558
MSRN[7] 3 6114 625.7 34.46 0.9278 30.41 0.8437 29.15 0.8064 28.33 0.8561
ESASN 3 1436 147.3 34.50 0.9280 30.46 0.8445 29.17 0.8070 28.39 0.8575

ESASN-S 3 231 24.2 34.08 0.9245 30.12 0.8381 28.96 0.8016 27.64 0.8410
DRRN[3] 4 297 6796.9 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638

MemNet[8] 4 677 2662.4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630
CARN[10] 4 1592 90.9 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837
LFFN[11] 4 1531 87.9 32.15 0.8945 - - 27.52 0.7377 26.24 0.7902
MSRN[7] 4 6078 349.8 32.26 0.8960 28.63 0.7836 27.61 0.7380 26.22 0.7911
ESASN 4 1415 96.4 32.26 0.8966 28.69 0.7844 27.64 0.7385 26.28 0.7926

ESASN-S 4 219 21.4 31.91 0.8912 28.42 0.7775 27.44 0.7316 25.63 0.7706

EMS can reduce network redundancy while maintaining the
capability of extracting multi-scale features. What’s more,
the SOA module improves the performance of PSNR from
33.69 dB to 33.77 dB by increasing only 3% number of pa-
rameters of SN. This indicates that the SOA module is helpful
to fuse multi-scale information sufficiently at a low cost. Fi-
nally, with both the SOA module and the EMS module, our
ESASN2 achieves a better performance than SASN and en-
joys the benefit of using fewer parameters.

3.3. Comparisons with the State-Of-The-Arts

We compare our ESASN with five state-of-the-art SISR meth-
ods, including DRRN [3], MemNet [8], CARN [10], LFFN
[11], MSRN [7]. The results are shown in Table 2. The pa-
rameters and Muti-adds of models are also given for a intu-
itive comparison. Mult-adds is calculated by assuming that
the spatial resolution of HR is 1280 × 720. The results show
that our ESASN obtains the best PSNR and SSIM against all
the other SISR networks, across the four test benchmarks. Es-
pecially, even though MSRN[7] has five times as many pa-
rameters as ESASN, our ESASN still performs better than
MSRN. This indicates that our design of ESAS block endows
the network with the capability of achieving better perfor-
mance with fewer parameters.

We also provide visual comparisons of various methods

in Fig. 4. It can be observed that our ESASN is able to re-
store clearer and more visually pleasing images, compared
with other methods.

HR Bicubic LFFN CARN MSRN ESASN 

Fig. 4. Visual comparison for×4 SR on “img024”, “img034”,
“img067”, “img070” from the Urban100 Dataset.

Both quantitative and qualitative results demonstrate that
our ESASN outperforms CARN and LFFN, reaching the
state-of-the-art results in lightweight SISR.
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4. CONCLUSION

In this paper, we propose an ESASN for lightweight sin-
gle image super-resolution. Specifically, an EMS module
is proposed to reduce the number of parameters while re-
trieving multi-scale features. Meanwhile, an SOA module
is proposed to emphasize informative features adaptively at
pixel-level. By combining EMS with SOA, an ESAS block
can fully explore rich features for super-resolution tasks.
ESASN achieves a better trade-off between efficiency and
effectiveness by stacking ESAS blocks. Extensive exper-
iments demonstrate that the proposed ESASN outperforms
other lightweight SISR methods.
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