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ABSTRACT 

Pharmaceuticals are most commonly studied in randomised controlled trials (RCTs) against 

a control arm (either active, or placebo). On occasions however treatments are licensed 

exclusively on the basis of uncontrolled study data - this thesis investigates how comparative 

effectiveness can be estimated under such circumstances. 

The role of RCTs in the approval and estimation of comparative effectiveness in 

pharmaceuticals is discussed, as well as potential methods for analysis where RCT data are 

not available. A review of all drug approvals from 1999-2014 by the European Medicines 

Agency and the US Food and Drug Administration is then presented. Performing literature 

searches in the majority of cases (80%), historical controls have been the primary source of 

estimates of comparative effectiveness, frequently without attempts to adjust for differences 

between studies. 

Given the high usage of historical controls, I focussed on the role of adjustment. This 

included a simulation study to understand where the method of Matching Adjusted Indirect 

Comparison (MAIC) is likely to be of use, looking specifically at the effect of model 

misspecification. Three novel methods (with practical examples) for the creation of historical 

controls are then presented; using extrapolation from the previous line of therapy, using non-

responders to therapy as a surrogate, and comparing to a patient’s own prior data. 

The conclusion of the work is that there are clearly situations where RCTs cannot, or will not 

be used – regardless of the statistical issues this raises. In such cases by proactively 

identifying appropriate historical data, and using appropriate analysis methods – the 

downsides can be ameliorated, at least in part. A flowchart presenting the available methods 

(split by data access) is presented. 

Further research is required on the appropriateness of different sources of historical control 

data (e.g. registries versus RCT arms), and how to synthesize multiple estimates of 

effectiveness (e.g. multiple MAICs). 
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mentor students. Without starting the PhD, my life would look quite different. 

Beyond the work contained in this thesis, the knowledge and skills I have gained have 

enabled me to have influence in areas beyond my niche. This includes journal articles not 

included in the thesis such as an editorial on the impact of ‘Brexit’ (Hatswell, 2017) which 

was picked up by the press (Johnston, 2017; Clark, 2017). The statistical knowledge 

(particularly Bayesian statistics) led to work on synthesis of utility values for health 

technology assessment (Hatswell et al., 2019) which has been widely used in decision 

making. Finally learning to code in the statistical software R has let me achieve things I 

simply could not have done otherwise – examples include research on reducing wastage in 

pharmaceuticals by rationally selecting vial sizes (Hatswell & Porter, 2018), and assessing 

the convergence of models in probabilistic sensitivity analysis (Hatswell et al., 2018). I now 

help organise and lecture on an annual ‘R in HTA’ workshop. 

As a return on investment, this would have been enough for me to be satisfied, however I 

think the main impact has been on the quality of my output as a whole. Whilst much of this 

thesis consists of (published) academic work, the reality is most of my work is consultancy 

which is proprietary and ephemeral. Little trace (save the decisions influenced) remains after 

even a few months, and most goes unattributed; HTA submissions do not list authors. The 

skills I have gained at UCL have had a clear impact on what I deliver, and how I assess / 

guide the work others produce – in this thesis three (public domain) examples are given. The 

main impact will therefore be better analyses for decision making – although unlikely to be 

directly attributable, it is no less real.  
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ABBREVIATIONS 

 

AHRQ Agency for Healthcare Research and Quality 

AIDS Acquired Immune Deficiency Syndrome 

ALD Aggregate Level Data 

ALL Acute lymphoblastic leukaemia 

AML Acute myeloid leukaemia 

APL Acute promyelocytic leukaemia 

AWMSG All Wales Medicines Strategy Group 

CAR T Chimeric Antigen Receptor T-cell 

CHMP Committee for Medicinal Products for Human Use 

CLL Chronic Lymphocytic Leukaemia 

CML Chronic Myeloid Leukaemia 

CPH Cox Proportional Hazards 

CTCL Cutaneous T-cell lymphoma 

EC European Commission 

ECOG Eastern Cooperative Oncology Group 

EMA European Medicines Agency 

EMR Electronic Medical Records 

EPAR European Public Assessment Report 

EPO Erythropoietin 

ERT Enzyme Replacement Therapy 

EU European Union 

FDA Food and Drug Administration 

FM First Moments 

GIST Gastrointestinal stromal tumours 

GLM Generalised Linear Model 

HIT Heparin-induced thrombocytopenia 

HIV Human Immunodeficiency Virus 

HL Hodgkin’s Lymphoma 

HM Higher Moments 

HPCT Haematopoietic progenitor cell transplantation 

HTA Health Technology Assessment 

ICH International Conference on Harmonisation 

ILD Individual Level Data 

IPTW Inverse Probability of Treatment Weighting 

ISPOR International Society for Pharmacoeconomics and Outcomes Research 

IV Intravenous 

KS Kaposi’s Sarcoma 

LPLD Familial lipoprotein lipase deficiency 

MAIC Match Adjusted Indirect Comparison 

MM Multiple Myeloma 

MRC Medical Research Council 

MRI Magnetic Resonance Imaging 

NICE National Institute for Health and Care Excellence 

NIHR National Institute for Health Research 

NSCLC Non-small cell lung cancer 

Ph+ ALL Philadelphia Chromosome positive Acute Lymphoblastic Leukaemia 

PSM Propensity Score Matching 

PSW Propensity Score Weighting 
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PTCL Peripheral T-cell lymphoma 

RCC Renal cell carcinoma 

RCT Randomised Controlled Trial 

RDD Regression Discontinuity Design 

RWD Real World Data 

sALCL Systemic anaplastic large cell lymphoma 

SCT Stem cell transplant 

SMC Scottish Medicines Consortium 

SPC Summary of Product Characteristics 

STC Simulated Treatment Comparison 

STS Soft Tissue Sarcoma 

TKI Tyrosine Kinase Inhibitor 

UK United Kingdom 

US United States of America 
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 INTRODUCTION 

Aspects of this introduction were published in an article in ISPOR Connections July 

2014 (Hatswell et al., 2014) 

The topic of my research has been pharmaceuticals without a controlled clinical trial – 

treatments used without ‘conventional’ evidence of their effectiveness compared to either 

placebo or active treatment; how frequently has the approach of non-randomised studies for 

licensing been taken? How have regulators approached the data? And how have 

statisticians and economists modelled outcomes compared to alternative treatments?  

In this context, uncontrolled clinical studies refer to clinical study programmes, where a trial 

versus control (either placebo, or active) has not been conducted. This can involve a ‘single 

arm trial’, or programmes where all of the treatment arms in a clinical trial involve the study 

drug - although patients may have been randomised, this is merely to different doses or 

dosing schedules of the active drug with all groups receiving the intervention. 

For this reason the terminology of uncontrolled studies or uncontrolled trials has therefore 

been adopted for this work as although a number of types of study are relevant (shown in 

Figure 1-1), the common feature is the lack of an internal control when compared to a RCT. 

Figure 1-1: A comparison of randomised clinical trials and different forms of uncontrolled clinical studies 

 

Circles denote arms of clinical studies; dotted lines denote comparisons within a single study 

 

In my literature search, I demonstrate that the vast majority of treatments licensed for use in 

the European Union and United States (the two largest single markets for pharmaceuticals) 
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are licensed on the basis of randomised controlled trials (RCTs), which on the whole, are 

conducted on a double blind basis, i.e. neither the physician, nor the patient is aware of 

treatment assignment. 

The use of RCTs is a key feature of most drug development programmes; although a 

number of alternative views exist on the ‘hierarchy of evidence’, there is a large degree of 

concordance between the different systems. In general, a meta-analysis of well conducted 

RCTs is placed at the top, with individual RCTs then ahead of all other forms of evidence 

(Evans, 2003). Shown below is an example of a hierarchy of evidence, taken from the 

Scottish Intercollegiate Guidelines Network (SIGN, 2011). 

Figure 1-2: Hierarchy of evidence, directly reproduced from Annex B of ‘SIGN 50: A guideline developer’s handbook’ 

(SIGN, 2011) 

 

In this hierarchy of evidence, without a RCT, a treatment cannot be said to have ‘Level 1’ 

evidence. Whilst in recent years there has been a move away from strict hierarchies of 

evidence (Rawlins, 2008), with increased recognition of the use of observational studies for 

safety data, and non-randomised studies to confirm efficacy estimates (and demonstrate 

efficacy in different risk groups), the RCT still plays a key part in the demonstration of 

efficacy for new interventions (Pearce, Raman & Turner, 2015; Tugwell & Knottnerus, 2015). 

To understand the limitations of single arm trials, it is therefore necessary to understand why 

the RCT is paramount, the advantages the technique provides, and on which aspects other 

designs cannot offer the same level of confidence in the effectiveness of treatments. 
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1.1 THE HISTORY AND THEORETICAL UNDERPINNING OF RANDOMISED 

TRIALS 

In considering why RCTs are generally acknowledged to be the ‘gold standard’ of clinical 

development (Goldacre, 2009; Kaptchuk, 2001), we must first consider the history of the 

scientific process surrounding clinical trials. 

Pharmaceuticals, as defined in the Oxford English dictionary, are ‘compounds manufactured 

for use as a medicinal drug’ (Oxford Dictionaries, 2010). As such, many compounds could 

be classed as pharmaceuticals, and each would have an effect on any given disease, from 

the minute to the dramatic. In the Platonic world of forms (Penrose, 2006) each 

pharmaceutical will have an effect on a medical condition (potentially with different effects for 

subgroups of patients) that is fully known and understood. However in practice we are not 

able to observe this true efficacy directly, and must instead perform studies to attempt to 

characterise these effects. Through the use of investigational studies, effects can be 

estimated and hypotheses can be tested, to understand whether the effect of a given 

substance on a condition is positive, neutral, or negative (though absolute certainty is never 

possible). 

The route that has been taken in much of science, which has been used in seeking to 

understand the effect of drugs, is Karl Popper’s scientific epistemology of ‘falsification’ 

(Kuhn, 1996). A hypothesis is formulated, and then observations are taken to attempt to 

disprove what has been stated. This idea was originally integrated in the language of formal 

statistics by Ronald Fisher, who laid out in his book ‘The Design of Experiments’ concepts 

such as a null hypothesis and factorial designs (Fisher, 1935). This work had a large and 

lasting impact on research methodology, importantly Fisher recognised that the importance 

of randomisation in ensuring the difference between groups was due to the treatment effect 

and not to the selection of subjects (Stanley, 1966). This built on previous work by those 

such as Galton (who first conceptualised correlation and association), (Karl) Pearson who 

provided much of the mathematical framework, and along with Neyman operationalised 

formal hypothesis statistical testing (Goodman, 1999). 

Although various (randomised) trials had been conducted in history, the first arguably being 

the testing of citrus for the treatment of scurvy by James Lind in 1747 (Milne, 2012), the 

concept was first put into practice in the Medical Research Council (MRC) trial of 

streptomycin for the treatment of tuberculosis in 1948, shortly after the end of the second 

World War. At the time the UK was still under rationing, and suffering with both the human 

and financial cost of the war. This had led to shortages of money and material, and with only 

a limited amount of the potentially effective drug streptomycin available, Austin Bradford Hill 
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at the MRC argued that, given the limited supply of the drug, it would be unethical not to find 

out what efficacy level the drug offered. A trial was designed with patients between the ages 

of 15 and 30 enrolled and given either streptomycin, or standard care (bed rest). After six 

months, the death rates were 4/55 in the streptomycin group compared with 15/52 for bed 

rest, thus establishing the efficacy of streptomycin (Crofton, 2006).  

This growth in the use of clinical trials was also encouraged by regulators. In 1938 the US 

Food and Drug Administration (FDA) mandated safety trials for new treatments, and after the 

widespread use of thalidomide caused catastrophic harm to many children, from 1962 the 

FDA required ‘substantial evidence’ of a drug’s efficacy, as well as its safety (White Junod, 

2015). The official guidance from the FDA (and other regulatory agencies) stresses RCTs as 

the most acceptable form of evidence for new treatments, comparing the experimental 

therapy against a control to which superiority is to be expected (French et al., 2010). Beyond 

the desire of regulators, the role of randomised trials grew with one of the strongest 

proponents being Archie Cochrane, a director of the MRC and a strong advocate of the 

RCT. His book ‘Effectiveness and Efficiency: random reflections on health services’ 

advocated the use of RCTs to provide reliable evidence (Cochrane, 1972), and ultimately led 

to the Cochrane Collaboration for systematic reviews.  

Another notable contribution of RCTs has been to stop harmful practice, where theoretical 

arguments have been in favour of a treatment working but RCT results have shown that the 

treatment actually has no benefit or causes more harm than good. One notable example was 

the CRASH trial, which demonstrated that in traumatic brain injury, steroids increased the 

mortality rate compared to no treatment, challenging what had been standard medical 

practice for 30 years on the basis of small studies and theoretical arguments (CRASH Trial 

Collaborators, 2004). 

In addition to RCTs demonstrating the efficacy treatments, a further factor is the harm that 

can be caused by pharmaceuticals not being studied in controlled trials. This may result in 

patients being given ineffective (or even harmful treatments), potentially in place of effective 

therapies. The uncertainties associated with unstudied treatments is a reason for the 

regulation of ‘off label’ promotion of pharmaceuticals, for which pharmaceutical companies 

have been fined large sums of money in recent years (Fugh-Berman & Melnick, 2008). 

Such is the acceptance of RCTs within medicine (as seen with the place in the hierarchy of 

evidence and more), even extremely rare conditions have been able to enrol for large RCTs 

within short periods of time (Gaddipati et al., 2012; Prasad & Oseran, 2015). In Phase 2 

studies randomisation to an internal control helps likely efficacy of treatment and thus 

reducing the number of treatments that fail (expensive) Phase 3 studies. Due to this, current 
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estimates are that around 28% of Phase 2 oncology trials include a placebo control (Grayling 

et al., 2019). 

1.2 ‘CONVENTIONAL’ RANDOMISED DOUBLE BLIND TRIALS 

As discussed by Fisher, Cochrane and others, RCTs have many advantages over other 

forms of study. These advantages are addressed in turn below, along with how each issue is 

relevant to the topic of uncontrolled studies 

1.2.1 RANDOMISATION AND EXCHANGEABILITY 

Randomisation provides an unbiased basis for the testing of an intervention. If randomisation 

is performed correctly any differences attributable only to the role of chance – according to 

Meier ‘the role of randomization is to distribute the effects of baseline variables, both the 

measured ones and those not observed, in such a way that the statistical analysis makes 

due allowance for them’ (Meier, 1975). 

The use of randomisation therefore leads to the removal of any selection bias that could 

otherwise be present. A typical example is the selection of patients based on which 

treatment physicians believe may be more appropriate, which may lead to a difference in 

outcomes with even an inert intervention. Although there is no conclusive evidence, data 

suggests that a degree of selection bias may occur in non-randomised studies (Fellow & 

Director, 2008). With randomisation providing two comparable groups, given an infinite 

sample size, the difference between groups should be attributable to the difference in 

treatment effect. As the sample size decreases, there is an increased role of chance in the 

process; however this is calculable and allows the estimation of a probability that the 

outcome is not a ‘true’ difference – dating back to the tests originally conceived by Neyman 

and Pearson (Sterne & Smith, 2001). 

When an uncontrolled trial design is employed, randomisation to a control arm is not 

possible and therefore any selection bias in patients cannot be accounted for or quantified – 

the trial results may be driven by the characteristics of the patients enrolled in the study, 

rather than the intervention under study. It may be that the ‘correct’ conclusion may be 

reached, but the results cannot be relied upon to be unbiased (unlike a well conducted 

RCT), and with no mechanism to verify the results seen. As previously discussed, it is 

possible for uncontrolled trials to have an element of randomisation to different dosages or 

administration schedules of the investigational drug (and not to a control group). This is the 

most obvious deficiency of uncontrolled trials: the lack of a control group, randomised, or 

otherwise. Thus, an uncontrolled trial will generate evidence of the outcomes seen with a 
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treatment, but does not answer the question relevant for regulators, physicians or 

economists: how well an intervention works compared to current practice. 

1.2.2 BLINDING OF PATIENTS AND PHYSICIANS 

A second factor in the ‘ideal’ study is the ‘blinding’ (or ‘masking’) of patients and clinicians to 

the intervention received. When this is performed, neither the clinician nor the patient is 

aware of which treatment arm the patient is assigned to, preventing any inbuilt bias for (or 

against) either treatment from affecting the outcome of the study. Concerns around ensuring 

that studies are blinded also lead to attention on other aspects of clinical study design, for 

example the use of independent central review committees, who verify clinical measures 

such as tumour size without seeing the patient, or having hints as to the assigned treatment. 

Although not essential to the conduct of a good study with an objective endpoint (for 

example overall survival), blinding is increasingly important when endpoints are subjective or 

open to interpretation on the part of the reviewer (for example the reading of scans). Schultz 

and Grimes (2002) discuss how these results may be affected. 

If investigators are not blinded, their attitudes for or against an intervention can be directly 

transferred to participants. Their inclinations could also be manifested in differential use of 

ancillary interventions of supplemental care or treatment (co-interventions) or differential 

adjustments to the medication dose. Investigators might also encourage or discourage 

continuation in a trial on the basis of knowledge of the intervention group assignment. (Schulz 

& Grimes, 2002:p.696) 

Empirical evidence of a bias from uncontrolled studies was shown in a study by Schulz et al., 

where unblinded trials had higher estimates of treatment effectiveness than studies where 

allocation was unclear. These in turn had higher estimates of effectiveness of studies that 

were adequately blinded (Schulz KF et al., 1995). More recent research has seen similar 

results in trials with binary outcomes, with unblinded assessors (compared to blinded 

assessors) reporting substantially biased effect estimates, exaggerating odds ratios by 36% 

in randomised controlled trials due to misclassification of some patients (Hrobjartsson et al., 

2012). 

In an uncontrolled trial, blinding is not feasible as all patients will be receiving the treatment – 

any concerns regarding bias would increase as the objectivity of the trial endpoint 

decreases. This lack of blinding increases the risk of bias (conscious or subconscious). To 

guard against this, open label trials often use independent review panels, which are charged 

with reviewing patient information to determine the effectiveness of interventions. 
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1.2.3 MULTI-CENTRE TRIALS 

A third important factor in a ‘good quality’ study is the use of multiple centres to increase the 

generalizability of results. Without this, results of any trials could be seen to be specific to the 

setting in which the trial was conducted. 

These specific outcomes could be linked, for example, to the types of patients at the centre 

(a specialist centre may attract more complex patients), the staff and protocols used at the 

centre (for example the approach to dose titration in the presence of adverse events), or to 

any number of other factors that may either be observable or unobservable. 

Although not necessarily subject to this limitation, uncontrolled studies are more likely to be 

conducted in low numbers of patients and low numbers of centres. As such, there may also 

be concerns regarding the reproducibility of study results. It should also be noted that these 

concerns may apply to historical controls, a method used for comparison with uncontrolled 

trial data; if patients in a historical control are all enrolled from one centre, they may not be 

representative of the wider population. 

1.3 MATHEMATICAL NOTATION FOR RANDOMISED CLINICAL TRIALS 

The above concepts can be summarised mathematically, using notation that will be used 

throughout this thesis. 

The goal of medical research, through the vehicle of RCTs can be said to estimate the effect 

of the interventions applied to the individuals/population of interest. For each individual 𝑖 =

1, … , 𝑛 included in the study, the treatment indicator is denoted as 𝑇𝑖. The interventions of 

interest will differ, and may well include a novel treatment 𝑇𝑖 = 𝑡, and a control 𝑇𝑖 = 𝑐. 

Although this latter is usually termed ‘control’, due to equipoise, more generally this 

represents ‘best standard care’ which may involve an active agent, or supportive care 

(potentially with a placebo element). Where placebo treatments are used, these are added to 

standard care, such that patients receive treatment on the study that is at least as good as 

they would have done otherwise - but are blind as to whether they are receiving the 

intervention. 

If the outcome of the study is denoted as 𝑌𝑖, the comparative effectiveness of treatment 

would therefore be defined as the population average outcomes seen with the novel 

treatment 

Equation 1: Population average outcomes from treatment 𝒕 
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𝑌𝑡 =
∑ 𝑌𝑖𝕀(𝑇𝑖 = 𝑡)𝑛

𝑖=1

∑ 𝕀(𝑇𝑖 = 𝑡)𝑛
𝑖=1

 

compared to the control 

Equation 2: Population average outcomes from control 𝒄 

𝑌𝑐 =
∑ 𝑌𝑖𝕀(𝑇𝑖 = 𝑐)𝑛

𝑖=1

∑ 𝕀(𝑇𝑖 = 𝑐)𝑛
𝑖=1

 

In the above equations, 𝕀(𝑇𝑖 = 𝑡) and 𝕀(𝑇𝑖 = 𝑐) are indicator functions, taking values 1 if the 

argument is true (i.e. if the 𝑖-th individual is in the active treatment or control group, 

respectively) and 0 otherwise. Thus, the denominators simply count the number of 

individuals in each treatment arm, while the numerators select the individuals to whom either 

of the treatments are applied. Typically, we are concerned with differences in these 

averages to describe the effect of interest, e.g. Δ = 𝑌𝑡 − 𝑌𝑐. However, other estimands of 

interest may be defined (e.g. ratios or other non-linear functions). 

The comparative effectiveness of treatments however is complex, as studies are conducted 

in real world populations which (even assuming the same condition) have differences in both 

observable and unobservable characteristics. Here the ideal would be that the patient 

populations exposed to each treatment are of infinite size, and independently and identically 

distributed (i.i.d). In reality this assumption can never be met – even aside from the need to 

limit sample size, in many cases exposure to a treatment would impact a patient’s outcomes 

and characteristics. This means a more general assumption is required, that of 

‘exchangeability’. 

Greenland and Robins in a seminal 1986 paper and then in a 2009 update, define 

populations as ‘exchangeable with respect to an outcome measure if their outcomes would 

be the same whenever they were subjected to the identical exposure history’ (Greenland & 

Robins, 1986, 2009). The assumption underpinning exchangeability is that treatment 

assignment is independent of patient characteristics (denoted by the vector 𝑿𝒊), 

mathematically 𝑇𝑖 ⫫ (𝑿𝒊). In the context of clinical studies, the matrix 𝑿 (collecting the values 

of the covariates for each individual) may be considered to be extremely broad, including 

factors such as the healthcare system in which a patient is treated (which will vary over time 

and space). Where the assumption of exchangeability is not met, the results (again using the 

terminology of Greenland and Robins) are said to be confounded, which would lead to bias 

in any comparison of outcomes (if not adjusted for). 

An RCT seeks to achieve exchangeability by enrolling patients and having chance determine 

treatment assignment, with others characteristics (both observable and unobservable) 



Page 25 of 181 

equally distributed between arms. Mathematically this would be shown as 𝑃𝑟(𝑇𝑖 =  𝑡|𝑿𝒊) =

𝑃𝑟(𝑇𝑖 =  𝑐|𝑿𝒊). To obtain a stable estimate of the difference in effects (which may include 

efficacy, and safety outcomes) between treatments, sufficient patients, 𝑛, are also needed in 

the study to account for variability in both patient outcomes, and treatment effect. This 

number of patients is one of the key parameters for a trial sample size calculation, along with 

the acceptable Type I (false positive) and Type II (false negative) error rates. Mathematically 

these are usually defined as probabilities 𝛼 and 𝛽 (Lachin, 1981). 

The issues that may be present without RCTs would apply to many of these areas; 

• The lack of blinding implied in an uncontrolled study (where there is no alternative 

arm) may be an issue if this affects the outcome assessment, leading to the non-

independence of outcome measurement and treatment assignment 

• In the absence of randomisation between groups and a need for cross study 

comparisons, there may be differences in the characteristics of patients included in 

studies (𝑿) which may mean groups are not exchangeable i.e. are confounded, and 

would be anticipated to have different outcomes; even with the same treatment 

assignment. This appears to be the major concern with uncontrolled studies 

• Without sufficient patients, 𝑁, there may be substantial uncertainty in the size of any 

effect as the randomisation may result in a difference (due to chance) of differences 

between arms; the sample size is therefore a key consideration in power calculations 

for clinical trials. This is compounded if comparing between - and not within - studies, 

as there is additional (potentially unquantifiable) uncertainty introduced - as raised by 

(Byar et al., 1990) 

• In comparing across studies there may have been differences in how endpoints were 

measured, for instance the type of scan or definition of progression. Should this be 

the case it may be that outcomes (𝑌) are non-comparable between studies, or at the 

very least, may need to be re-estimated 

• Beyond the outcome measurement, studies may also report (or not fully report) the 

methods used for determining outcomes; for instance having a primary endpoint of 

duration of response and therefore not providing information on non-responders – 

again meaning that outcome 𝑌 cannot be compared between studies 

• If a trial is not performed across multiple centres (as is often the case with 

uncontrolled studies, in being smaller), there may also be concerns that there are 

structural differences which could affect a number of parameters in our model; 

patients may be systematically different (affecting 𝑿), or outcome assessment may 

not be the same as in other centres (affecting 𝑌) 
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1.4 PREVIOUS WORK IN ASSESSING EVIDENCE WITHOUT RANDOMISED 

TRIALS 

There has been relatively little work in how best to assess the efficacy of interventions that 

do not have randomised controlled trials. The work that has been published is discussed 

below. 

1.4.1 ASSESSING THE COMPARATIVE EFFECTIVENESS OF TREATMENTS 

STUDIED WITHOUT A RANDOMISED CONTROL 

Much of the discussion in the literature describes criteria for the acceptance of treatment 

effectiveness without RCT data. To identify past work unstructured literature searches were 

conducted (as no specific key words are available for this issue), combined with hand 

searching the reference lists of relevant papers.  

In a BMJ letter (Black, 1994), Nick Black argued that a RCT is not required in cases where 

the effect size is extremely large (his example is ventricular fibrillation), where a RCT would 

need to be unfeasibly large (for example rare adverse events), where long term outcomes 

are needed (for example hip prostheses), where clinicians would not accept a RCT (and 

observational data may convince them of uncertainty in their beliefs), and where practical or 

ethical concerns make a RCT impossible (for example reorganisation of healthcare services, 

or admission to intensive care). 

The criteria of an extremely large effect size is similar to that proposed in the Oxford Centre 

for Evidence Based Medicine criteria for acceptance of uncontrolled studies (Phillips et al., 

2009). In their hierarchy, evidence can be judged to be of the highest grade (grade 1), if it 

meets the ‘all / none criteria’ where all patients experienced an outcome before the 

introduction of a therapy, whereas none experience the outcome with the intervention – 

death and ventricular fibrillation would meet this criteria. 

Other work of relevance is that by Glasziou et al. (Glasziou et al., 2007), and considers that 

interventions (not necessarily pharmaceuticals) can be deemed to be effective if the treated 

and untreated observations are taken from the same pool, and there is a ‘dramatic’ rate ratio 

for the intervention. The rate ratio was defined as the amount of time with the condition, 

divided by the amount of time for the intervention to take effect. For example if a patient’s 

heart has stopped for 60 seconds, and is restarted within one second of a defibrillator being 

used, the rate would be 60/1, i.e. 60. 
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For a dramatic effect size, a rate ratio of 10 is stated to be a rule of thumb, where the effect 

is unlikely due to chance or confounding variables (Glasziou et al., 2007). The authors 

conclude that the most obvious candidates for their criteria being met are mechanical 

interventions (where the intervention is obvious, and has a prior expectation and theory as to 

why it will work), on a stable background (i.e. no varying conditions where chance may play 

a part), where a dramatic improvement is made. Related to this idea of a dramatic effect size 

Gerstein et al. (2019) in dismissing the use of observational data as a routine part of drug 

development state that in order to believe data from observational sources, they would wish 

to see a ratio of four in the effect size to minimise the risk the result is due to confounding. 

Historically such values are also stated to be convincing to Austin Bradford-Hill, who stated a 

20-30x effect size was unlikely to be due to chance, but a 2-3x effect size might be (Hill, 

1965). 

Beyond this work, the majority of existing literature relates to the use of historical controls, 

which are discussed extensively in Section 1.4.3. 

1.4.2 EFFECT SIZES SEEN IN OBSERVATIONAL DATA, COMPARED TO 

RCTS 

Work by Colditz et al., looked at the effect sizes seen with randomised and non-randomised 

designs in the fields of cardiology, neurology, psychiatry and respiratory medicine. The 

results of the literature review showed that studies using a non-randomised design had 

larger effect sizes than unblinded RCTs, and that unblinded RCTs had larger effect sizes 

than blinded RCTs (Colditz, Miller & Mosteller, 1989). A comprehensive review of the 

literature found a similar pattern across 45 disease areas, with RCT results (𝑛 = 240) 

showing a smaller effect size than non-randomised studies (𝑛 = 168), although on the 

whole, the studies reached the same conclusion, i.e. the treatments remained effective (or 

ineffective), with the direction of effect not changing (Ioannidis et al., 2001). 

Two similar studies have been funded by the UK National Institute for Health Research 

(NIHR) and published as health technology appraisal (HTA) reports, on the effect sizes seen 

when comparing randomised study designs and observational study designs. 

The first report is titled ‘Choosing between randomised and non-randomised studies: a 

systematic review’ (Britton et al., 1998). The systematic review identified 18 treatments with 

both RCT and non-RCT evidence (for example case control studies) and found that whilst 

the effect sizes between the two types of study varied, there was no identifiable systematic 

bias in the direction of effect. They also highlight several issues that may lead to differences 

from a blinded RCT, most notably patient selection, patient preference in observational data, 
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and publication bias in observational studies (which are less likely to be published than 

RCTs, particularly if neutral). The authors conclude that for comparisons to be made 

between studies, the patient characteristics should be well matched, and that whilst baseline 

characteristics could be adjusted for, this should be done in a rigorous way. 

The second HTA report (MacLehose et al., 2000) is titled ‘A systematic review of 

comparisons of effect sizes derived from randomised and non-randomised studies’ and 

focusses on comparing effect sizes in two specific interventions; mammographic screening 

to reduce breast cancer mortality, and folic acid supplementation to prevent neural tube 

defects. The results of the review were that non-randomised studies assessed as low quality 

(using a checklist) were more likely to differ from RCT evidence than high quality non-RCT 

evidence (which gave approximately equal effect sizes). The authors conclude that provided 

the observational evidence is deemed to be high quality (with confounding data controlled 

for), these comparisons may be appropriate. However they caution against the 

generalizability of their findings to other contexts as they found relatively few papers 

discussing the topic (n=38), most of which were in the same diseases (cardiovascular 

conditions in particular), and temper their conclusions with concerns regarding publication 

bias. 

Although the majority of meta-studies have concluded that effect sizes are exaggerated in 

observational data, this is not a universal finding. Benson & Hartz (2000) found in 136 

reports of 19 treatments, that observational studies produced similar effect sizes to RCTs. Of 

the 19, only two estimates fell outside the 95% confidence interval (which statistically is 

around the number that might be expected). The differences in this study may be due to 

chance or the type of studies included – in specifically investigating published observational 

studies (with well designed protocols to attempt to reduce bias), the issue may more lie in 

the use of unconnected data and comparisons made from outcomes between studies. 

Whilst these studies provide interesting information and raise valid points, they are not 

directly relevant to this thesis due to the fields considered. The published work looks at 

either interventions with non-RCT evidence and RCT evidence in fields with large sample 

sizes and well conducted RCTs (Ioannidis et al., Colditz et al. & Britton et al.,), or at non-

pharmaceutical interventions (MacLehose et al.). Colditz et al. discuss this issue in their 

conclusion, stating: 

Studies that use external controls or an observational design occur rarely in the evaluation of 

medical therapies. This may reflect, in part, the requirements of the U.S. Food and Drug 

Administration (FDA) that evaluations of new therapies require randomized controlled trials. 

The small number of studies in these two categories of design preclude any firm conclusion 

regarding possible biases encountered with them. (Colditz, Miller & Mosteller, 1989:p.451) 
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As this work is aimed at precisely those treatments approved without RCT evidence, the 

published literature will inform the approach, but cannot necessarily be generalised to these 

cases where RCT evidence is not available for a variety of reasons – it is precisely these 

‘small numbers of studies’ in which I am interested. 

1.4.3 HISTORICAL CONTROLS 

The use of ‘historical controls’ appears to be the most widely used and referred to approach, 

with the different aspects of their use discussed in turn. 

1.4.3.1 ORIGINAL USAGE OF HISTORICAL CONTROLS 

The first use of a historical control I have been able to find (relating to medicine) was in 

1884. At the time a condition named ‘beriberi’ was rife throughout the Japanese Army and 

Navy, disabling (and killing) personnel, massively reducing the effectiveness of the services. 

The previous year, the Japanese naval ship Ryujo was on a training voyage which resulted 

in 45% of sailors falling ill (and 25/376 die). In order to prove his theory that the cause of the 

disease was not a virus or ethnic link (as was commonly believed), but linked to the diet of 

crews - the true cause being a deficiency in vitamin B1 - the vice-director of the Naval 

Medical Bureau, Kanehiro Takaki, persuaded the Japanese emperor to let him control the 

diet of a ship to prove his theory (Simpson, 2014). 

To prove that protein deficiency was the cause of the beriberi, Takaki took the ship Tsukuba 

on a training mission, using the same route and schedule as the ill fated Ryujo (but one year 

later) in order to minimise the potential for differences. Of the 333 sailors onboard, only 14 

developed the condition (all of whom had not been eating their rations properly). The impact 

was profound - 1878-1883 saw a mean of 1586 cases of beriberi, which fell to 41 in 1885 

(the year after Takaki’s theory was demonstrated), 3 in 1886, and then to zero thereafter 

(Sugiyama & Seita, 2013; Takaki, 1906; Simpson, 2014). In recreating the original conditions 

as much as possible to minimise confounding, Takaki had effectively used the voyage of the 

Ryujo as a historical control to demonstrate the effectiveness of his intervention (barley 

added to rice). 

The first formal usage of a historical control was published by Pocock (1976), suggesting 

that historical data from similar patients could be used to either add power to new trials 

(reducing the sample size), or provide a control group for a uncontrolled study. Pocock then 

defined similarity to be the historical control having met the following criteria: 

1. Such a group must have received a precisely defined standard treatment which must be 

the same as the treatment for the randomized controls.  
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2. The group must have been part of a recent clinical study which contained the same 

requirements for patient eligibility.  

3. The methods of treatment evaluation must be the same. 

4. The distributions of important patient characteristics in the group should be comparable 

with those in the new trial. 

5. The previous study must have been performed in the same organization with largely the 

same clinical investigators. 

6. There must be no other indications leading one to expect differing results between the 

randomized and historical controls. For instance, more rapid accrual on the new study might 

lead one to suspect less enthusiastic participation of investigators in the previous study so 

that the process of patient selection may have been different. (Pocock, 1976:p.177) 

The work then lays out several examples with trials conducted by the Eastern Cooperative 

Oncology Group in melanoma within a short time period. By using data from the historical 

controls as well as randomized controls, the sample size needed for a new study can be 

greatly reduced, assuming the historical controls are indeed exchangeable with new 

patients. 

In the article, Pocock is also mindful of the potential for bias (suggesting methods to reduce 

the effect size in the historical control for perceived bias) and stating that due to the absence 

of a control arm, there is no way to be certain that the groups are comparable. His 

conclusion is that the results of historical comparisons should be viewed as a tool to allow 

the estimation of effect size from uncontrolled studies, but not being as reliable as RCT 

evidence. 

1.4.3.2 THE APPROPRIATENESS OF COMPARISONS USING HISTORICAL 

CONTROLS 

Historical trials have been long suspected of ecological bias and ‘stage migration’, where 

due to advances in diagnostic technology patients are diagnosed earlier - for example from 

Magnetic Resonance Imaging (MRI) detection of lesions, rather than clinical diagnoses. The 

effect of this artefact is a seemingly improved prognosis for all stages of disease in the 

absence of any actual change (Sormani, 2009). Due to issues like this, several studies have 

investigated disease areas where both RCT and historical control information are available.  

The first study of this type identified was published by Sacks, Chalmers & Smith. For the six 

therapies investigated, 50 RCTs and 56 historically controlled trials were identified. In 79% of 

historically controlled trials the intervention was found to be effective, compared to only 20% 

of RCTs (Sacks, Chalmers & Smith Jr., 1982). The authors highlight that the results with the 

intervention were similar between studies, but that it was the control arm which 

underperformed in the historically controlled trials – speculating that a bias in patient 

selection may be the cause of the discrepancy. 
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Diehl & Perry investigated the same question looking at overall survival or relapse free 

survival in oncology, finding 43 examples in the literature of well-matched historical cohorts 

and RCT control groups. However when comparing the outcomes of the two groups, 18 of 

the 43 studies had a greater than 10% difference in effect size between the control groups – 

the randomised group performing better on 17/18 occasions (Diehl & Perry, 1986). 

The appropriateness of historical controls was also raised indirectly in a comparison of 

outcomes from a study comparing the results of Phase 2 and Phase 3 studies using identical 

chemotherapy regimens. Of the 43 chemotherapies identified, the mean response rate was 

12.9% higher in Phase 2 studies indicating that the role of chance and selection bias is 

notable (Zia et al., 2005). In paediatric oncology, Moroz et al. found a similar result using 42 

studies identified in the literature where historical data had been used to calculate the 

sample size and power of the study. They found that the randomised control (of the same 

intervention) had a median improvement in outcome of 5.0% over the time to event data 

from the historical control group (Moroz et al., 2014). The paper does not attribute the 

difference in outcomes to the selection criteria, improved standard of care, or drift over time, 

simply remarks on the difference.  

Where there may be differences in historical cohorts, other research has been conducted in 

the development of tests for use with historical controls (for example for futility in the case of 

superior treatments), with the authors suggesting stratifying patients by key characteristics 

so as to provide a similar patient group to the historical control (Wu & Xiong, 2016). 

Given these known issues, a simulation study by Tang et al. (2010) establishes that only a 

small ‘drift’ in patients over time is needed for false positives to occur in the estimates of 

effect size. Similarly the typically smaller sample size used in uncontrolled studies is also 

listed as a potential source of error due to chance, though even increasing this sample size 

does not counter the issues should the underlying control data have changed over time. 

The most directly relevant and perhaps concerning study however comes from Snyders et 

al. (2019), who performed a systematic review and meta-analysis of the outcomes of all 

docetaxel arms in advanced non-small cell lung cancer trials over a 17 year period; this 

amounted to over 10,000 patients from 63 studies. They found substantial heterogeneity in 

the outcomes, with response rate ranging from 0-26% (pooled estimate of 8%), and PFS 

ranging from 1.4 to 6.4 months (the ‘mean of the median’ was 3.0 months). The paper 

indirectly also gives an idea of the ‘drift’ seen in outcomes, with each year seeing an 

improvement of 0.3% in response rate, and 0.5% improvement in PFS – with similar results 

seen with changes in overall survival. 
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Although there appears to be no confirmation that historical controls are appropriate for 

naïve comparisons (and multiple sources to suggest they are indeed, inappropriate), recent 

work in the area has suggested the creation of a cross-industry historical controls database 

(Project Data Sphere, 2015; Desai et al., 2013). The aim for this project being the use this 

‘big data’ to emulate trials (Hernán & Robins, 2016). Other work has investigated how best to 

adapt estimates for perceived bias, or according to mean estimates of bias in study design 

(Turner et al., 2009). 

This litany of issues relating to historical controls is recognised in existing guidance for the 

use of uncontrolled Phase 2 oncology studies (Rubinstein et al., 2009; Seymour et al., 2010) 

where the suggestion is made to attempt to create a similar group based on observable 

characteristics using data from large meta-analyses, such as that by Korn et al. in melanoma 

(Korn et al., 2008), to avoid the potential for differences between stages. In part due to the 

issues in creating unbiased comparisons, there have also been a number of papers 

discussing the role of randomisation in Phase 2 studies – even if not used for registrational 

purposes (Rubinstein et al., 2009; Grayling & Mander, 2016). 

1.4.4 METHODOLOGIES FOR THE USE OF OBSERVATIONAL DATA IN 

ESTIMATION OF EFFICACY 

Whilst I am interested in the estimation of efficacy where RCT data are not available, there is 

a degree of overlap with methods for the estimation of efficacy using observational data. The 

research in this area is more developed, with methodologies such as propensity scoring 

used to estimate safety risks and efficacy using large datasets in areas such as 

cardiovascular disease (Freemantle et al., 2013). 

In the terminology used for this form of observational data, Mathes & Pieper (2017) draw an 

important distinction between the different forms of historical studies. In their work they are 

careful to discuss the difference between case series (where all patients receive an 

intervention) and cohort studies (where different patients will receive different interventions, 

allowing for cross group comparisons). The implication here being that the use of 

appropriate methods may allow for unbiased estimates to be drawn from cohort studies, 

whilst comparison between case series will necessarily include a further level of uncertainty 

from between study comparisons. 

Two key review papers in this area outline available methodologies - Rovithis (2013) 

conducted a literature review of all methods used to estimate effectiveness based on 

observational data. This work was conducted as a part of a wider review to investigate 

interventions in neonates (where limited evidence is generally available) and limits itself to 
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looking for evidence of matching (in different forms), regression analysis, propensity scores, 

instrumental variables, as well as difference-in-differences approaches, looking in particular 

where these methodologies have been used in cost-effectiveness analyses and finding few 

applications; 43 in total. The majority of the studies identified were for medical or surgical 

interventions, and mostly used retrospective observational data. None were analyses of 

pharmaceuticals. 

A more complete analysis is presented in NICE Technical Support Document 17 (Faria et 

al., 2015), which discusses the methodologies available to be used for the estimation of 

treatment effects when using observational data when individual level data (ILD) is available 

for both datasets. Following a review of all the methodologies available, recommendations 

are made on when each methodology is appropriate in the form of a (3 part) flow chart; 

Figures 1-3 in the document.  

The methods suggested are discussed below, in terms of their suitability for use with 

uncontrolled studies. In addition several additional methodologies or approaches not 

highlighted by Faria et al., but that are also relevant, are presented. 

1.5 THE ROLE OF UNCONTROLLED STUDIES IN DRUG APPROVALS 

Work from the International Conference on Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use (ICH), a multi-regulator consortium to set 

standards for drug approval across all participating nations, sets the standards for what 

evidence is expected. Due to the limitations of uncontrolled data, the ICH E10 guidelines 

(Choice of Control Group in Clinical Trials) state that a control group should be used ‘to allow 

discrimination of patient outcomes… caused by the test treatment from outcomes caused by 

other factors, such as the natural progression of the disease, observer or patient 

expectations, or other treatment’ (ICH Harmonised Tripartite, 2000:p.6). This recognises the 

issues raised by Pocock and others regarding the comparability of historical data, with the 

ICH expressing: 

serious concerns about the ability of [historically controlled] trials to ensure comparability of 

test and control groups and their ability to minimize important biases, making this design 

usable only in unusual circumstances (ICH Harmonised Tripartite, 2000:p.7) 

The ICH guidelines do discuss the appropriateness of trials without a control group. In the 

absence of formal mechanisms for effectiveness with the conclusion of the ICH regarding 

control groups is that: 

In unusual cases, the course of illness is in fact predictable in a defined population and it may 

be possible to use a similar group of patients previously studied as a historical control (see 
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Section 1.3.5). In most situations, however, a concurrent control group is needed because it is 

not possible to predict outcome with adequate accuracy or certainty (ICH Harmonised 

Tripartite, 2000:p.6) 

The unusual cases it describes as being appropriate for uncontrolled studies are described 

below. 

1.5.1 ‘OBVIOUSNESS’ 

Whilst randomised trials do have advantages, it has been noted that a degree of medical 

knowledge is supported by only observational data, some of which is given greater weight 

than data supported by well conducted randomised trials, meta-analysed together. Examples 

of such knowledge as cited by Glasziou et al. (2007) involve the causal role of acetylsalicylic 

acid in Reyes syndrome, and the role of a third copy of Chromosome 21 in causing Down 

syndrome. 

Similarly, there is a number of interventions either approved or in widespread use due to the 

‘obviousness’ of their efficacy. These include laser therapy for ‘port wine stain’ birthmarks, 

and ganciclovir for cytomegalovirus retinitis – all patients untreated went blind, whilst treated 

patients did not (Rawlins, 2013). A humorous article in the British Medical Journal by Smith 

& Pell (2003) describes a systematic review for the effectiveness of parachute use to prevent 

injury from ‘gravitational challenge’, underlining that not all interventions that are known to be 

effective are necessarily studied in randomised trials. This is reflected in the ICH guidance, 

which states: 

In some cases sensitivity to drug effects is clear from the consistency of results of prior 

placebo-controlled trials or is obvious because the outcome of treated and untreated disease 

is very different. For example, in many infectious diseases cure rates on effective treatment 

far exceed the spontaneous cure rates over the course of a short term study (ICH 

Harmonised Tripartite, 2000:p.13) 

The obviousness of treatment efficacy is difficult to ascertain with a degree of judgement 

needed as to the implication of results. This also relates to the difficulty of knowing whether 

an intervention works and the proposed ‘rate ratio’ (Glasziou et al., 2007), as well as the 

Sackett all / none criteria (Phillips et al., 2009). 

In this way, previously published evidence and a well understood disease pathway would be 

relevant – a progressive disease such as retinitis is a much better candidate for an 

uncontrolled trial than relapsing-remitting conditions such as Crohn’s disease or multiple 

sclerosis – the ICH give similar examples of conditions where uncontrolled studies are not 

appropriate: 
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such conditions tend to include those in which there is substantial improvement and variability 

in placebo groups, and/or in which the effects of therapy are small or variable, such as 

depression, anxiety, dementia, angina, symptomatic congestive heart failure, seasonal 

allergies, and symptomatic gastroesophageal reflux disease (ICH Harmonised Tripartite, 

2000:p.13) 

 

1.5.2 CLINICAL EQUIPOISE 

One issue in the design of clinical studies is that of clinical equipoise, which relates to the 

ethics of conducting a controlled trial. This problem was described by Freedman et al. (1987) 

as a clinician having genuine uncertainty regarding which treatment is superior. His 

conclusion (which mirrors that of other literature) is that as soon as the consensus is 

reached that one treatment is superior, this is the treatment that should be offered to 

patients, with the inferior treatment phased out. 

The issue of clinical equipoise manifests itself in different ways, depending on the condition 

considered 

• Where a standard of care exists, it determines that this standard of care should be 

the comparator used in a clinical trial, until the trial confirms either the new 

intervention or the standard of care to be ‘best’ (or shows similarity of effect between 

the two). By entering the trail however patients would receive treatment, and not be 

disadvantaged. 

• Where no standard of care exists to compare against, then an uncontrolled study 

may be the ethical choice. This can occur where a new intervention is to be trialled 

after existing proven therapies have failed (and re-challenge is unlikely to be 

effective), or the practitioner has reason to believe the new therapy has greater 

chance of being effective (implicitly this means outcomes without treatment must be 

poor). 

• A further argument can be made that a placebo control would be unethical if there is 

an immediate threat to life, and thus if no active therapy with evidence of efficacy is 

available (or off label treatment), then again an uncontrolled study may be the 

appropriate choice (Ellenberg & Temple, 2000; Temple & Ellenberg, 2000). 

The discussion of whether clinical equipoise is met is, in many ways, an extension of the 

discussion on whether new drugs should be compared to placebo or an active therapy. 

Whilst there is continuing disagreement regarding the ethical arguments for clinical 

equipoise (and indeed placebo controls), it would appear that the status quo of a preference 

for placebo controlled trials is ethical in restricted set of circumstances, with a placebo being 
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inappropriate if patients are put at risk of a well understood, substantial (and irreversible) 

harm from not being treated immediately with an effective therapy (Miller & Joffe, 2011). 

The issues concerning equipoise are reflected in the ICH guidelines, which implicitly include 

a description of equipoise within the discussion of ethics, stating: 

For example, deferred treatment of pain or other symptoms may be unacceptable to patients 

or physicians and they may not want to participate in a trial that requires this. Whether a 

particular placebo controlled trial of a new agent will be acceptable to subjects and 

investigators when there is known effective therapy is a matter of investigator, patient, and 

institutional review board (IRB)/independent ethics committee (IEC) judgment, and 

acceptability may differ among ICH regions (ICH Harmonised Tripartite, 2000:p.16) 

This is similar to a statement included in FDA guidance on endpoints in cancer trials for 

when single arm trials are appropriate, though noting the limitations of these studies: 

In settings where there is no available therapy and where major tumor regressions can be 

presumed to be attributed to the tested drug, the FDA has sometimes supported ORR and 

response duration observed in single-arm studies as substantial evidence supporting 

accelerated approval. Response rates have been used in settings such as acute leukemia for 

regular approval where complete responses have been associated with decreased 

transfusion requirements, decrease in infections, and increased survival. Single-arm trials do 

not adequately characterize time-to-event endpoints such as survival, TTP, or PFS. Because 

of variability in the natural history of many forms of cancer, a randomized study is necessary 

to evaluate time-to-event endpoints. (Food and Drug Administration, 2007:p.11) 

Equipoise however is however not something that can be objectively measured, and will vary 

depending on the context and belief in the intervention being discussed. This difficulty is 

highlighted in paper in the Journal of Clinical Epidemiology which combined reported data on 

lion attacks with his observed frequency of umbrella carrying and lion attacks in the US 

(Anderson, 1991). In his (statistically significant) finding that umbrellas prevent lion attacks, 

he states on the possibility of conducting a randomised trial ‘The study would have been 

unethical for me anyway, as I would not want to subject any participants randomly to the risk 

of being umbrella-less in the presence of a lion’. 

1.5.3 THE BENEFIT-RISK OF TRIAL PARTICIPANTS AND PATIENTS 

Another issue that may lead to the use of an uncontrolled study for the basis of a new drug 

application is related to the risk to participants of being included in a trial. The ICH Guideline 

E10 describes this issue as: 

Use of a placebo control may raise problems of ethics, acceptability, and feasibility, however, 

when an effective treatment is available for the condition under study in a proposed trial. In 

cases where an available treatment is known to prevent serious harm, such as death or 

irreversible morbidity in the study population, it is generally inappropriate to use a placebo 

control. There are occasional exceptions, however, such as cases in which standard therapy 
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has toxicity so severe that many patients have refused to receive it (ICH Harmonised 

Tripartite, 2000:p.16) 

An editorial by Emmanuel and Miller (2001) in the New England Journal of Medicine 

encourages the sample size included in a study to be thought of as the number of people put 

at risk to gain information. In some cases, should there already be deemed to be sufficient 

information, a controlled trial may be deemed inappropriate due to the harm caused to 

patients of being untreated, and the value of information gained either being unable to offset 

this risk or being ‘low value’. With a strong suspicion of effectiveness, the knowledge gain 

from a controlled trial may be therefore insufficient to justify the risk to patients of acquiring 

that knowledge. 

An example of this approach was the licensing of an extended release version of lamotrigine 

for the treatment of epilepsy. As the disease had been well studied previously, a large 

amount of information was available regarding the performance of a control condition; a 

dosage of antiepileptic too low to prevent seizures effectively (but sufficient to prevent the 

most serious types of seizure). A collection of eight historical control groups, all with similar 

performance, allowed the FDA to consider these to be a well-established control, to which an 

extended release formulation of lamotrigine (a drug that had been on the market for several 

years) could be compared (French et al., 2011, 2010). The extenuating circumstances here 

were that, firstly, this was a new formulation of an existing (proven) therapy, secondly, that 

the expected behaviour of the control arm was well understood due to the number of 

previous studies. Further, the risk to patients of being treated with a low dose control was 

unethically high as seizures can cause long-term damage as well as short-term distress. 

The issue of benefit-risk for trial participants is also related to the concept of clinical 

equipoise, where if a patient has no viable treatment option and a bleak prognosis, the 

potential benefits from a treatment with an unproven mechanism of action may outweigh the 

risk of receiving an ineffective (or even harmful) treatment. It should be noted that this should 

also not be seen as an all or nothing decision, as trials are frequently conducted maintaining 

a placebo arm, but having unequal treatment allocation (for instance 2:1) between 

investigational products and placebo (Chow & Chang, 2019), or using approaches such as 

‘crossover’ designs (Ishak et al., 2014). 

1.6 THE USE OF UNCONTROLLED STUDIES IN MODELLING AND HEALTH 

TECHNOLOGY APPRAISAL – GUIDANCE FROM AGENCIES 

Once treatments have been approved by regulatory agencies (with any associated analyses 

performed), in many healthcare systems (particularly publicly funded ones) they are 
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assessed for their cost-effectiveness; resources spent on one patient cannot then be spent 

on another patient. The principle of cost-effectiveness is that if a new treatment for one 

group of patients is funded, it should provide at least as much benefit as the treatment(s) 

that are displaced from the healthcare system (Eckermann & Pekarsky, 2014). 

Consequently, the population as a whole has better health outcomes as a result of the 

adoption of a new technology. 

To estimate the benefits of treatment, often extrapolation and the synthesis of different 

evidence sources is required – taking cost data from published sources, efficacy data from 

the relevant trials, and estimations of resource use, a coherent picture can be constructed of 

the decision problem that no single evidence source could provide (Buxton et al., 1997). The 

costs and benefits of the new treatment are compared to the outcomes that would be 

achieved without the new treatment (Paulden, McCabe & Karnon, 2014). 

When faced with uncontrolled clinical studies, however, there are issues relating to the 

fundamental concept of health economics and cost-effectiveness – how effective is the 

treatment compared to the next best alternative? It is this marginal gain that must be 

estimated to then calculate the incremental cost-effectiveness ratio – the cost for each 

additional event avoided or unit of outcome gained. This is a more complex question than in 

medicine in general, where the question most frequently is ‘which treatment is best?’. This 

problem can be illustrated using the example of the effectiveness of parachute use taken 

from Smith & Pell in Section 1.5.1. Whereas a clinician may be satisfied that a parachute 

represents an effective treatment, and a regulator may decide that the benefit-risk is positive, 

to calculate the benefits of parachute use fully, a health economist would not only need 

estimates of the effectiveness of parachute use but also of the survival rate without a 

parachute use. That not all people die without a parachute has been established (Hasler, 

2010); therefore, an estimation of the mortality rate both with and without a parachute would 

be needed to calculate the cost per life saved - which could then be compared with other 

safety interventions (Siegel et al., 1997).  

Regulators also do acknowledge the issue that although they may have sufficient evidence 

to approve a product, this may be insufficient for reimbursement (Jonsson, Martinalbo & 

Pignatti, 2017). Since beginning this research, a study has also been published 

demonstrating that reimbursement agencies struggle to interpret such evidence and worry 

about the risk of bias, with the German reimbursement system only approving products 

lacking RCTs in exceptional circumstances (Griffiths et al., 2017). 

A review of guidance to manufacturers regarding how to approach single arm data shows 

that no mention is made of this type of data, and as such, there is no best practice. Table 1-1 
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lists the modelling guidelines for major pharmacoeconomic organisations, and their 

relevance to uncontrolled studies. 
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Table 1-1: Relationship of modelling guidelines for economic evaluation to treatments with only uncontrolled study data available 

Institution Guidance 
Relevance to 
uncontrolled 

studies 
Reference 

International Society 
for 
Pharmacoeconomics 
and Outcomes 
Research 

‘While there are undoubtedly topics of 
interest that do not fit into these 6 papers, it 
was felt that these would cover the major 
areas and were at a stage of development 
appropriate for issuing guidelines.’ 

Not discussed within the 
relevant guidelines 

(Caro et al., 2012) 

Society for Medical 
Decision Making 

National Institute for 
Health and Care 
Excellence 

‘RCTs directly comparing the technology 
under appraisal with relevant comparators 
provide the most valid evidence of relative 
efficacy. However, such evidence may not 
always be available and may not be 
sufficient to quantify the effect of treatment 
over the course of the disease... Any 
potential bias arising from the design of the 
studies used in the assessment should be 
explored and documented.’ 

No specific guidance is 
made for the use of 
uncontrolled studies, only 
that biases and 
uncertainty in all types of 
evaluation should be 
explored 

(NICE, 2013:p.39) 

Scottish Medicines 
Consortium 

‘analyses should use the best evidence 
available, be explicit about data limitations 
and any attempts to overcome these and 
quantify as fully as possible how the 
limitations of the data are reflected in the 
uncertainty in the results of the analysis.’ 

No explicit mention is 
made of types of data only 
that the best available 
evidence should be used, 
and data limitations 
reflected in the 
submission 

(Scottish Medicines 
Consortium, 
2014:p.25) 

All Wales Medicines 
Strategy Group 

No specific guidance No specific guidance is 
given to manufacturers on 
the types of evidence, or 
how this should be used. 

(All Wales 
Medicines Strategy 
Group, 2013) 

Pharmaceutical 
Benefits Advisory 
Committee (Australia) 

‘If direct randomised trials are not available, 
then an indirect comparison of randomised 
trials, each including a common reference, 
or nonrandomised studies could be used to 
assess the comparative effectiveness of the 
proposed medicine. The results of these 
studies should form a basis for translation 
into a decision analysis to generate an 
economic evaluation’ 

No guidance is given 
regarding observational or 
uncontrolled studies 

(Australian 
Government 
Department of 
Health, 2013:p.35) 

Pharmaceutical 
Management Agency 
(New Zealand) 

‘PHARMAC acknowledges that in some 
cases it may be necessary to use lower 
levels of evidence if this is all there is 
available (for example, pharmaceuticals for 
rare diseases where data may be limited to 
case studies).’ 

The use of observational 
data are not 
recommended where RCT 
data are available, how 
observational data should 
be used when needed is 
not stated 

(Pharmaceutical 
Management 
Agency, 2012:p.24; 
New Zealand 
Government, 2015) 

Canadian Agency for 
Drugs and 
Technologies in 
Health 

‘A sound clinical review of the intervention 
should form the basis of the evaluation… 
The review may include studies with a 
variety of designs, reflecting different levels 
of internal and external validity’ 
 
‘Even valid justification does not improve 
the quality of data that has design 
limitations. A lack of “perfect information” 
(high-quality data that are needed to fully 
populate a lifetime horizon model) results in 
a need for alternative methods in a 
technology assessment and is accompanied 
by inherent uncertainty. The results should 
be interpreted with caution.’ 

No specific guidance is 
given regarding 
treatments with only 
uncontrolled study data 
 
Specific to oncology 
submissions - the need to 
interpret observational 
data with caution is stated; 
however no methods are 
prescribed for analysis. 

(Canadian Agency 
for Drugs and 
Technologies in 
Health, 2006:p.20) 
 
(Canadian Agency 
for Drugs and 
Technologies in 
Health, 2009:p.34) 
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Although the US healthcare system does not take cost-effectiveness into account formally, 

the comparative effectiveness of treatments is often estimated. The difficulties in assessing 

this without controlled data are highlighted in a review by the Agency for Healthcare 

Research and Quality reviews (Ip et al., 2013). This review found a lack of consistency in the 

inclusion of uncontrolled studies in guidance (only 21 of 33 reviews included uncontrolled 

data), with often no reason given for their inclusion, and no consistent methods used in 

assessing their contribution to estimates of efficacy. 

1.7 SUMMARY OF INTRODUCTION AND RESEARCH QUESTION 

This introduction discusses the theoretical and historical reasons for the dominance of the 

randomised controlled trial in drug development, as well as also how uncontrolled studies 

may be the appropriate study design for a new treatment. It then discusses the issues this 

raises for interpretation, estimates of comparative effectiveness and thus economic 

evaluations. 

In this section I show that the limitations of uncontrolled trials in terms of the evidence base 

then available for estimating comparative advantage are well understood. These limitations 

have been the focus of discussions in both the peer reviewed literature, and by 

pharmaceutical regulators. The general consensus reached in the literature (and in practice) 

appears to be that uncontrolled clinical studies, in specific circumstances, can be justified. 

These circumstances are generally a combination of an immediate risk to life or irreversible 

harm to patients, where the patient population is small, and where an objective endpoint can 

be used. 

Where relatively little work has been performed, is in how these trials should be interpreted 

for the estimation of comparative effectiveness, and thus economic modelling and health 

technology assessment. Here the question is not whether the benefit-risk is positive (the 

question a regulator faces), but of the gain from therapy compared to the current standard of 

care. This estimated gain can then be used to estimate whether compared to current 

practice the new treatment is clinically superior, value for money, and what the level of 

uncertainty is around any such estimates. This is the area I have focussed on as the thesis 

question: 

How can (statistical) modelling methods be used to estimate comparative effectiveness 

where pharmaceuticals have been licensed on the basis of uncontrolled clinical studies? 

To this end, this thesis accomplishes the following: 

• Chapter 1 
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o Gives context to the issue, summarises the relevant literature, available 

methods, and the thesis question 

o The work presented in this section is entirely my own; although ideas have 

been developed in discussions with others, the writing and categorisations 

are my interpretation. 

• Chapter 2 

o Discusses existing modelling methods and their applicability to the area of 

interest 

o The work summaries presented in this section are entirely my own work, 

referencing the original papers and applications of methods appropriately. 

• Chapter 3 

o Identifies drugs licensed on the basis of uncontrolled data by 

▪ Individually assessing all EMA and FDA approvals since 1999 for 

treatments licensed on the basis of uncontrolled clinical trials 

▪ Understanding the context and evidence on which the approval was 

based 

▪ Analysing the type of treatments licensed with only uncontrolled 

studies as an evidence base 

o Identifies and assesses the methods previously used in modelling of benefit 

in uncontrolled clinical trials by 

▪ Searching for published models and health technology appraisals of 

drugs licensed on the basis of uncontrolled clinical trials 

▪ Reviewing the identified methods, and categorising them 

o The work presented in this section was designed in conjunction with my 

supervisors before I performed the literature reviews, and summarising the 

work. This was then written up with input and debate with my supervisors and 

co-authors of papers 

• Chapter 4 

o Identifies a need for further work on the applicability of Matching Adjusted 

Indirect Comparison, with a simulation study conducted on its applicability 

o The simulation study on MAIC I designed, getting input from my supervisors, 

before I coded the study, I then analysed and interpreted the results which I 

then took to my supervisors for further discussion. The results and scenarios 

were then refined following extremely helpful comments from peer reviewers.  

• Chapter 5 
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o Proposes three novel ways in which historical controls can be created to 

estimate comparative effectiveness, alongside motivating examples 

o The novel methods proposed were all ones that I conceptualised, with two 

being implemented alongside others, and one (extrapolation from a previous 

line of therapy) being solely my work 

• Chapter 6 

o Gives two examples of using the methods discussed in practice 

o My contribution to each of the analyses was to perform the analysis of 

uncontrolled study data, which were then incorporated in to economic models 

by others. 

• Chapter 7 

o Summarises the results of the literature searches performed, and the findings 

of my research 

▪ A flow chart is presented of the options available to an analyst based 

on my research 

o This section is my work entirely and represents my summary of the issues, 

the areas where I believe further research is needed, and how the methods 

that are available I believe should be used to give the best possible estimates 

of comparative effectiveness 

The main body of the document is 39,070 words, with 245 references and 2 Appendices 

consisting of 3,013 words. In total the work has directly resulted in nine publications to date, 

and heavily influenced a further four.  



Page 44 of 181 

 EXISTING METHODOLOGIES THAT COULD BE USED TO ESTIMATE 

EFFECTIVNESS FROM UNCONTROLLED STUDIES 

In this chapter I review methodologies that can been used to estimate comparative 

effectiveness without RCT data, and discuss their suitability for estimating comparative 

effectiveness of pharmaceuticals where no RCT evidence is available. Where established 

methodologies are available, a description of the method is given, with published examples 

of their use summarised. 

The approaches available can broadly be separated into categories based on the amount of 

historical data available, with a further section on emerging methodologies (Section 2.4). 

2.1 METHODOLOGIES FOR THE ANALYSIS OF HISTORICAL CONTROLS 

2.1.1 METHODOLOGIES FOR USE WITH PUBLISHED HISTORICAL 

CONTROLS 

As discussed in Section 1.4.3, historical controls have frequently been used to estimate 

outcomes for patients not receiving investigational treatments. The most common approach 

(which does not attempt to adjust for bias), is naively to compare the outcomes for the new 

intervention to those seen in the historical controls. Whilst there commonly appears to be a 

lack of adjustment, this approach contains a variety of strong assumptions i.e. that the data 

are perfectly exchangeable between studies. 

Where this approach is used, evidence from Vickers et al. (2007) is relevant. This study was 

a review of 70 papers where a historical control was used to power clinical trials. An issue 

they note when discussing the use of historical controls is where multiple trials (and 

therefore estimates) are available. Their recommendation is that: 

A single estimate should be derived from the historical data: specifying only a range should be 

avoided. For instance, take the case where three prior studies had been reported with sample 

sizes of 1,000, 100, and 20 and response rates of 33%, 22%, and 15%. This is a total of 355 

responses in 1,120 patients (32%). It is preferable to give this single historical response rate of 

32% than to say only that “response rates in prior studies varied from 15% to 33%”, on the 

grounds that the latter offers no guidance as to the appropriate null: investigators tempted to 

pick the middle of the range would underestimate the true response rate and inflate the risk of a 

false positive. (Vickers, Ballen & Scher, 2007:p.975) 

Whilst this position is reasonable (the use of the entirety of the data to generate an estimate 

of the actual response rate), the use of pooling may also give an unreasonably narrow 

estimate of the uncertainty – an area where meta-analysis may be able to offer more 

relevant insight. A related issue is discussed by Thall & Simon (1990) - the incorporation of 

Phase 2 data to efficacy assessments, where they state historical data should be considered 
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as a distribution with a point estimate and, not using point estimates alone in decision 

making. They state: 

Unfortunately, many pilot studies ignore [randomness] and treat the control mean as a known 

constant. As shown in Tables I and II, this results in an elevated type I error rate. In addition, 

this approach leads to an inappropriately small sample size and thus a test with inadequately 

low power. Whereas it may be appropriate to carry out a pilot study with type I error rate 0.10, 

this should be done by design and not inadvertently. In any case, a control mean computed 

from historical data has an associated variance which must be taken into account, whether or 

not the data exhibit inter-study variability. (Thall & Simon, 1990:p.227) 

Even with uncertainty in estimates accounted for, this would only include the uncertainty in 

statistical distributions, and not the structural uncertainty in whether the patients are truly 

exchangeable. To account for potential differences in patient populations, more 

sophisticated analyses are required - these are described in the following sections. 

The existing methodologies are separated in to three categories; where individual level data 

(ILD) are available for both intervention and historical control, where ILD are available only 

for either the intervention or the historical control, and where ILD are not available for either 

study. 

2.1.1.1 WHERE INDIVIDUAL LEVEL DATA ARE AVAILABLE FOR BOTH THE 

INTERVENTION AND THE HISTORICAL DATA 

The methodologies available where ILD are available for both the intervention and 

comparator are discussed in the NICE Decision Support Unit Technical Support Document 

17 (‘The use of observational data to inform estimates of treatment effectiveness in 

technology appraisal: Methods for comparative individual patient data’). In the document, 

each method is explained fully, and an algorithm shown to determine the appropriate method 

to be used – this algorithm is available in Figures 1 to 3 on pages 37 to 39 of Faria et al. 

(2015). For this reason, the available methodologies are only summarised in this document. 

2.1.1.2 DIFFERENCE IN DIFFERENCES APPROACH 

The ‘difference in differences’ approach is a form of natural experiment. The method can be 

used where a change is made at different time points, for example if a drug was approved in 

Scotland before England, the differences over the time period between the two countries 

could be compared. 

The advantage of the method is that any background changes in outcomes over time can be 

controlled for through the use of the control(s), though this is based on the assumption that 
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there are no exogenous shocks in the time period, and the trends in data would otherwise 

remain parallel (Dimick & Ryan, 2014). 

In the context on pharmaceuticals approved without randomised clinical trials, this approach 

may be useful where hospital records exist and are accessible for patients who were treated 

before a trial of a new intervention began. Indeed one of the economic models identified in 

the literature review took this approach – investigating the outcomes of patients before the 

trial was set up, in the same centres the trial was conducted (Annemans et al., 2007). 

Whether sufficient detail would be available however in the patient records (for instance on 

disease stage, and other inclusion criteria) would be a separate question. It would also be 

inappropriate to compare all patients with, and without treatment, due to the likely difference 

between patients who meet the inclusion criteria for studies, versus those treated in general. 

As such although the method may be helpful for the area in which I am interested, it would 

be very specific to data availability. 

2.1.1.3 REGRESSION DISCONTINUITY DESIGN 

The regression discontinuity design (RDD) is a quasi-experimental approach, that 

investigates the impact of an intervention around a cut-off on a continuous variable which 

determines treatment selection. An example would be should a patient be required to be 18 

years of age (those under being similar, but untreated), or whether an intervention is 

required if a blood value falls below a given level. By looking at results either side of a 

margin (using regression techniques), the effect of the intervention can be observed by 

assuming the unobservable characteristics of patients either side of the margin are identical. 

The continuous variable may be deemed ‘sharp’ if it is a strict cut-off, or ‘fuzzy’ if there is a 

degree of overlap and ambiguity in the group allocation. The way the technique is 

implemented would be for a preferred regression model to be fit, with a coefficient for when 

the intervention is received; this is then the estimated effect of the intervention. 

The approach of RDD was first proposed in 1960 in education (Thistlethwaite & Campbell, 

1960) looking at the impact of merit certificates (and children who just achieved them, and 

just missed out). Since this time it has been used intermittently in medicine, for example to 

estimate the impact of having an accountable general practitioner for patients aged over 75 

in England (Barker, Lloyd & Steventon, 2016) and impact of ‘smoke free’ legislation on birth 

outcomes (Bakolis et al., 2016). Recent work has extended the approach to include a 

Bayesian approach, allowing the specification of prior beliefs (Geneletti et al., 2019, 2015). 
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It is unlikely that this approach will often be relevant for pharmaceuticals licensed without 

RCT evidence, as exclusion criteria for clinical trials are usually due to those criteria on 

which patients are selected being strongly linked to outcomes – for example the exclusion of 

patients with metastases or heart conditions. Indeed Geneletti et al. highlight that the 

examples in medical science are in public health, where large datasets with such cutoffs can 

be used to draw inferences about the effectiveness of interventions. In contrast the diseases 

where RCTs are not required are comparatively rare (or are at the end stage of common 

diseases, where few patients remain), so few patients would be either side of a continuous 

cut-off e.g. 17.5 years versus 18.5 years to be eligible for inclusion in a study. Even if 

possible to fit, further assumptions would be required to then obtain estimates of 

effectiveness in the whole population and not just the population on the margin. 

2.1.1.4 INSTRUMENTAL VARIABLE ANALYSIS 

The instrumental variable approach looks for a factor that is associated with treatment 

choice, but not with the outcome (apart from its impact on treatment allocation) – this is 

known as the exclusion restriction. Where a sharp cut-off is applied in treatment allocation, 

the regression discontinuity design (above) is a form of instrumental variable.  

The approach then involves looking at the differences in outcomes seen between groups – 

as the treatment allocation is not associated with patient characteristics, this should provide 

an unbiased comparison. In practice, finding a variable that meets this criteria is difficult 

though examples of the approach could include patients in different jurisdictions or time 

periods, which in turn are linked to treatment allocation.  

Even given such circumstances, this approach may be difficult to operationalise in the 

context of uncontrolled studies - given the relatively small patient populations and substantial 

heterogeneity in patient populations. A major issue is also that when conducting a study 

treatments are not given randomly, but to patients meeting certain criteria who are enrolled 

for their specific criteria, again making it difficult to see where the approach could be 

commonly used. 

2.1.1.5 PANEL DATA MODELS 

Panel data models involve a patients data being tracked over time, and their own historical 

data used as a form of control; in this sense they would form the type of data needed for the 

‘rate ratio’ to be calculated (Glasziou et al., 2007). There are a number of assumptions built 

in to the approach such as the disease course needing to be modelled – this does appear 

appropriate for many uncontrolled studies, which are often terminal (Section 1.5.2). However 
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even beyond terminal diseases the approach has potential to be used. For instance several 

haemophilia products (most recently emicizumab [Hemlibra®, Roche Products Limited]) 

have used this form of pre- and post- treatment comparison (Pipe et al., 2019) – fitting a 

model to the disease before and after treatment may allow for the estimation of comparative 

effectiveness (subject to a number of limitations). 

Although the use of this method use would need to be well planned for pre-treatment data to 

be collected systematically, there would seem to be the potential to use this approach in 

some instances as supportive evidence. This is particularly if an intervention is expected to 

have a dramatic effect that is unlikely to occur naturally – for instance with gene therapy in 

conditions linked to measurable enzyme levels. As such the approach could be considered, 

even if there are no examples to date. It should be noted that in being models fit to patient 

level data, an analyst would need access to the patient data and thus this method could only 

be used practically by the manufacturer, or by a group working with the manufacturer. 

2.1.1.6 THE USE OF PROPENSITY SCORES VIA MATCHING OR WEIGHTING 

Propensity scores were proposed in the 1980s (Rosenbaum & Rubin, 1983) as a method for 

balancing patients between studies using their observable characteristics. By creating 

comparable groups, a fair comparison can be made accounting for any confounding. Since 

their initial publication, they have been used extensively in medicine (Shadish, 2013). More 

simplistic matching methods (for example matching patients according to the type of surgery 

they had) are also widely used (Cundy et al., 2016). 

The propensity score is defined as the conditional probability of receiving an intervention, 

given all (observed) covariates to the point of receiving treatment. These covariates may 

include both patient, and disease characteristics – but importantly not outcomes. This is 

estimated by means of a logistic regression of exposure to the intervention (as a binary 

variable), given the set of observed covariates. Among patients with the same propensity 

score, treatment is conditionally independent of the covariates, allowing replacement of the 

covariates with a single summary value representing the probability of treatment assignment. 

To implement the method, each patient in the dataset has their propensity score estimated, 

after which balanced groups can be created for an unbiased comparison. Mathematically the 

propensity score was defined by Rosenbaum and Rubin (1983) as 𝑒(𝑥) = pr (𝑧 = 1|𝒙) 

where 𝒙 is a vector of vector of covariates, 𝑧 is an indicator of the treatment received (a 

variable taking value 1 or 0); for consistency with the source literature the original notation 

has been kept i.e. pr as opposed to Pr to denote probability. Balancing on the propensity 

score, estimates of the counterfactual treatment effect can be made, with (assuming 
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response 𝑟 in the notation of Rosenbaum and Rubin) the average treatment effect is then 

estimable. 

To create unbiased comparisons using the propensity score, there is a number of 

approaches that can be used (and multiple ways in which each can be implemented). 

Fundamentally however these reduce to two general approaches; matching and weighting.  

• In propensity score matching treated patients would be matched with a control 

patient with a similar propensity score (the allowable difference being termed the 

‘calliper’). This method may generate a ‘fair’ comparison by ensuring similar patients 

are matched, and is particularly useful where datasets may contain patients with a 

range of severities or even conditions; on the other hand it does mean that a 

potentially large amount of data would be discarded if matches are not achieved. 

When using matching, outcomes are then estimated using the matched samples (in 

this case assuming 1:1 matching, with 𝑁 patients in each group), working with the 

notation of Rosenbaum and Rubin as 

Equation 3: Difference in response of a treatment, given matching between studies 

1

𝑁
∑ 𝑟1𝑖

𝑁

𝑖=1

−
1

𝑁
∑ 𝑟0𝑖

𝑁

𝑖=1

 

Where 𝑟1𝑖 and 𝑟0𝑖 denote the outcomes for the 𝑖th treated, and untreated patient 

• Alternatively all the data may be weighted by the propensity score (though they may 

also be trimmed first to account for differences in patients included). When using 

propensity score weighting, inverse probability of treatment weighting is used on the 

propensity score, such that the mean score is matched between groups (Ho et al., 

2011). Although this approach uses the totality of the data (even if some patients 

have only a low weight), it should be noted that this may not be a positive; if datasets 

do include patients with different conditions, their inclusion may introduce bias 

(‘confounding by indication’). Where weighting is used, the estimate of the average 

treatment effect is therefore estimable (again using the notation of Rosenbaum and 

Rubin) as  

Equation 4: Difference in response of a treatment, given weighting between studies 

1
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Where 𝑧𝑖 represents treatment assignment for patient 𝑖 
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To be successful the approach of propensity scoring relies on the assumption being met that 

treatment assignment is ‘strongly ignorable’, conditional on the observed baseline 

characteristics. This relies on two conditions being met 

• Firstly that treatment assignment is independent of outcomes  

o Mathematically in the notation of Rosenbaum & Rubin, (𝑟1, 𝑟0) ⫫ 𝑧|𝒙 where 𝑟1 

and 𝑟0 represent the response of treated and untreated patients, 𝑧 the 

treatment assignment, and 𝒙 a vector of all covariates that are used to assign 

treatments and / or are related to the response 

• Secondly that all patients are not guaranteed to receive one treatment or the other 

i.e. there is overlap between the studies 

o Mathematically 0 < 𝑝𝑟(𝑧 = 1|𝒗) < 1 where 𝒗 represents a vector of 

covariates 

Whilst the number of studies using propensity scoring has increased dramatically in recent 

years (most likely due to the proliferation of data and software), there are some limitations 

with the method. First the assumption of treatment assignment being strongly ignorable 

which may not be the case (and is fundamentally unprovable). Secondly studies have shown 

that with ‘few’ patients – typically defined as under 200, propensity scoring may increase the 

bias seen in comparisons. Finally the groups to be matched (intervention and control) should 

be as closely matched as possible - for example in location and time, so as to minimise 

potential bias which is not always the case (Shadish, 2013). 

To understand the appropriateness of propensity score based approaches, researchers 

have sought to recreate published RCTs using observational data. In general although the 

direction of effects is generally similar with propensity score approaches, the magnitude of 

effect sizes can often differ markedly (Dahabreh & Kent, 2014). These findings are replicated 

in a comprehensive simulation study which compared many approaches to the 

implementation of propensity score based methods. The results of the analysis 

demonstrated that no one method performed best under all circumstances (Zagar et al., 

2017). 

In order to provide historical controls, Schmidli et al. (2019) discuss attempts to use 

propensity score matching to provide a matched control arm for a product in clinical 

development (though no details are provided). Similarly in the products identified in the 

systematic review performed in Chapter 3, several (exact number not stated) of the control 

arms were selected using propensity score based methods (Goring et al., 2019). The 

methodology therefore would seem relevant for use in selecting patients to form a control 
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arm, even if no explicit guidance is available for uncontrolled studies where several issues 

(such as differences between studies, and low patient numbers) are likely to be present. 

2.1.1.7 MULTIVARIABLE REGRESSION ADJUSTMENT 

Regression analysis is a statistical process for estimating the relationship between a 

dependent variable, and one (or more) explanatory variables. An simple example of linear 

regression is shown below, where 𝑌 is the dependent variable, 𝜷 a vector of the coefficients 

attached to the explanatory variables, 𝑿. The error term is denoted by 𝜀. 

Equation 5: Example of linear regression 

𝑌 = 𝜷𝑿 +  𝜀 

Many of the issues and concerns raised regarding historical controls in the literature stem 

from potential differences in patient populations. In this sense regression adjustment offers 

the chance to understand the difference each characteristic makes at the margin. Outcomes 

can then be re-estimated using fitted regression models to predict what may have been seen 

with different patient groups. For instance if a historical control population had been older 

with worse performance status, this could be reflected (assuming a good model fit) in 

predictions of outcomes. 

How regression adjustment should be performed is a large area of research in both statistics 

and econometrics, with questions such as the approach to model selection, appropriateness 

of model form, and degree of extrapolation beyond the available data being areas where 

judgment is needed (James et al., 2013). Should a reasonable model fit be possible it may 

be a viable approach to ameliorate concerns about differences in trial populations. 

Interestingly whilst propensity scoring appears frequently in the published literature, 

covariate adjustment appears to perform as well in simulation studies (Elze et al., 2017; 

Zagar et al., 2017). 

2.1.2 WHERE INDIVIDUAL LEVEL DATA (ILD) ARE AVAILABLE FOR EITHER 

THE INTERVENTION OR THE HISTORICAL DATA 

In pharmaceuticals, it is more common that an investigator will have access to ILD for one 

treatment (as the company who have developed the product will have conducted the clinical 

trial), but not the comparator data as this will either have been developed by another 

company, or will be taken from historical literature. In these cases only Aggregate Level Data 

(ALD) are typically available – limited data on baseline characteristics from ‘Table 1’ in 

publications (which seldom report the same characteristics), and deidentified outcomes data 
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– at best Kaplan-Meier or ‘swimmer’ plots (which plot the duration of responses by each 

individual), and at worst only summary statistics such as mean or medians. 

The lack of access to ILD from both studies necessitates different methods for performing 

analyses, which are described below and can be used to produce consistent estimates 

between studies - avoiding the potential biases of naïve comparisons. 

2.1.2.1 MATCHING ADJUSTED INDIRECT COMPARISONS 

In using naïve comparisons to historical data (as discussed in the introduction) the 

assumption is that patients are perfectly exchangeable between studies. This issue was 

noted by Vickers et al. in a review of 70 Phase 2 studies using historical controls, who state 

Noteworthy was that not a single study in our analysis incorporated any statistical method to 

account for the possibility of sampling error or for differences in case mix between the phase 

II sample and the historical cohort (Vickers, Ballen & Scher, 2007:p.974) 

A similar issue is raised by Mazumdar et al., (2001), who suggest reweighting patient data to 

account for differences between studies. They use the examples of bladder cancer and 

melanoma, and state 

The method also relies on having well-established risk factors for a particular disease. 

Although agreement on all prognostic factors for all disease systems is too optimistic, there is 

agreement on the most important prognostic factors for many of them. For example, risk 

factors for melanoma, bladder, breast, renal cancers and germ cell tumours are generally 

concurred upon. If there are relatively few prognostic factors, one could create risk categories 

based on their joint distribution. However, one must be aware that too many categories could 

lead to sparse data (Mazumdar, Fazzari & Panageas, 2001:p.891) 

The method of Matched Adjusted Indirect Comparison (MAIC) is designed to address these 

caseload differences between studies, where individual patient data are only available for 

one study. 

The approach suggested by Signorovitch et al. (2010, 2011) uses a propensity score 

weighting-like method to balance patient characteristics between studies. Assuming one 

study for which individual level data are available, and one for which they are not, 

Signorovitch et al. (2010) denote the patient characteristics and outcomes of the individual 𝑖 

patients in the study of the treatment (for which individual level data are available) as 𝒙𝒊
𝟎 and 

𝑌𝑖
0.and for the study where only aggregate characteristics are available, mean patient 

characteristics and outcomes as are used, denoted as 𝑿𝟏̅̅̅̅  and 𝑌̅𝟏. It should be highlighted 

that the notation of Signorovitch et al. is the opposite of Rosenbaum and Rubin for treatment 

(𝑡 = 0) and control (𝑡 = 1). For consistency with the original papers, the relevant notation (in 

this case by Signorovitch et al) has been kept. 



Page 53 of 181 

To implement the approach, a weight (𝑤𝑖) is calculated for each patient in the individual 

data, such that the overall mean of the weighted individual data 𝑿𝟎̅̅̅̅  (which is calculable), 

matches that of the aggregate data (𝑿𝟏̅̅̅̅ ). This weight for is thus the odds that a patient 

received treatment and not control and is defined in the notation of Signorovitch et al. as 

Equation 6: Calculation of weights for Matching Adjusted Indirect Comparison 

𝑤𝑖 =
𝑃𝑟(𝑡𝑖 = 1|𝒙𝑖)

𝑃𝑟(𝑡𝑖 = 0|𝒙𝑖)
 

To 𝑤𝑖 the difference between the reweighted individual level data and 𝑿𝟏̅̅̅̅  is minimised; a full 

mathematical proof is presented in the supplementary materials to Signorovitch et al. (2010) 

Equation A1, where this has been set to zero. Using the resulting weights it is then possible 

to estimate the reweighted outcomes of the study in a similar patient group that that were the 

outcomes 𝑌̅𝟏 of the control arm were obtained: 

Equation 7: Reweighting of outcomes to match and index study after calculation of weights from Matching Adjusted 

Indirect Comparison 

∑ 𝑦𝑖(1 −𝑛
𝑖=1 𝑡𝑖)𝑤𝑖

∑ (1 − 𝑡𝑖)𝑤𝑖
𝑛
𝑖=1

 

Implicit in the method is the assumption that the groups are similar with a reasonable level of 

overlap; the paper does suggest data be trimmed to ensure that patients would always have 

a chance of appearing in the other trial i.e. the same inclusion and exclusion criteria. This 

does however assume that the trial for which individual level data are available has broader 

(or at the very least, similar) inclusion criteria as the trial for which only aggregate data are 

available; this will not always be the case. 

Although the method is fairly novel (<10 years since first publication), as of December 2019 

there were 126 hits in PubMed, with around a half of these being applications of the method. 

As such it may represent a methodology which allows the comparison of trials, where patient 

level data are not available for both studies. At the point this research was started however, 

the accuracy of the method was unproven, with some conflicting reports presented and no 

established best practice to conduct MAIC (Shafrin et al., 2017). 

2.1.2.2 SIMULATED TREATMENT COMPARISONS 

Simulated treatment comparisons were proposed by Caro and Ishak (Caro & Ishak, 2010), 

and involve setting predictive equations to estimate outcomes using the available individual 

level data i.e. a regression model, before re-estimating outcomes in a different population – 

that of the aggregate data. This differs from MAIC as whilst MAIC attempts to reweight 
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patients to match the aggregate data (from where outcomes can be recalculated), STC 

attempts perform regression modelling and thus predict outcomes. 

The challenges involved in STC are similar to those with regression models (Section 

2.1.1.7); what type of regression model should be used? And variables should be included? 

Few clinical trials are likely to be amenable to modelling using a linear regression, and thus 

more complex regression forms (such as survival models) are likely required. Where this is 

the case, not only is there a challenge in selecting the appropriate model, but there is also a 

potential complexity in implementation for non-linear models, with calibration required when 

predicting in different populations to that in which the outcome model was fitted (Ishak, 

Proskorovsky & Benedict, 2015). 

To deal with the calibration issue, the authors propose an alternative of deriving a predictive 

equation, and then simulating patient profiles from the data available (taking in to account 

correlation between variables) such that the average of simulated patient profiles matches 

the aggregate of the aggregate data. This latter approach represents the novelty of STC, but 

adds further assumptions, (which again are unverifiable) regarding the correlation structures 

being similar between datasets. 

As a method, STC would appear to be reasonable to apply, and (unsurprisingly) well suited 

to use with historical controls. The application of the method (for instance model and variable 

selection) however would be key. It should also be noted that only one example of STC has 

been identified in the literature (outside of the original concept by Caro et al.) (Phillippo et al., 

2019) and there exists no standardised code implementation. As a concept however the 

method appears promising, with how it should be implemented being an area for future 

research. 

2.1.2.3 PREDICTION OF OUTCOMES USING SURROGATE ENDPOINTS 

A potential approach for estimating comparative outcomes across studies is the use of 

surrogate endpoints. If an intermediate endpoint in trials (ideally one that is measured 

objectively), can be linked to patient relevant outcomes - for example overall survival, this 

may be used for the estimation of benefit from a given timepoint. Such an approach means 

any differences from comparator trials in characteristics which may predict achieving the 

outcome can more readily be assessed, without the need to extrapolate over time. 

For a surrogate to have validity in such circumstances, it must have biological plausibility, 

and demonstrate good prognostic value in estimating the outcome of interest. The 

relationship between surrogate and outcome must also be causal, and be the same 
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regardless of treatment i.e. a given level of response should lead to the same outcome, 

irrespective of how that response was achieved. Equally there is a need for the measure 

used to be comparable across trials. A comprehensive history of the theory and use of 

surrogate outcomes is given by Buyse et al. (2016). 

The use of a surrogate approach could also be coupled with other approaches, for instance 

propensity score based approaches to create unbiased comparisons of an outcome like 

response rate, which could then be used in a surrogate outcomes based framework. 

2.1.3 WHERE INDIVIDUAL LEVEL DATA (ILD) ARE NOT AVAILABLE TO A 

RESEARCHER FOR THE INTERVENTION OR THE HISTORICAL DATA 

Whilst not a statistical method, where no access to ILD is available, narrative conclusions 

may still be helpful in describing the likely impact of any differences between studies (even 

where the magnitude cannot be quantified). This can include highlighting the likely sources 

of uncertainty, the magnitude of any apparent benefit, and any potential biases in the 

analyses. 

This wider understanding is important as studies are not conducted in a void; differences in 

between diseases (and understanding of diseases) may mean the same apparent effect size 

is interpreted differently – because of the context in which the study was conducted. Expert 

input to highlight likely biases can then inform decision making, even if formal methods are 

unable to account for such differences. 

2.2 METHODOLOGIES FOR THE SYNTHESIS OF MULTIPLE HISTORICAL 

CONTROLS 

Where multiple historical controls are available, as well as adjusting for any differences 

between studies, there may also be a desire to synthesize (in some form) the totality of 

information. This applies both to naïve estimates, but also once adjusted estimates. Where 

this is the case several methods are available. 

2.2.1 META-REGRESSION 

As discussed in Section 1.4.3, historical controls have frequently been used to estimate 

outcomes for patients not receiving investigational treatments, and are commonly used in 

the estimation of comparative effectiveness of pharmaceuticals. It is also possible that a 

researcher will not have access to ILD for either of the interventions, and may only have ALD 

for both; this would be typical of an academic researcher or a payer. Whilst this restricts the 
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analyses that can be performed, there are methods which allow credible estimates of 

effectiveness to be generated using all available data. 

Where multiple studies are available, the approach of meta-regression investigates the effect 

of study level covariates on outcomes; one covariate of which could include treatment 

assignment. The Cochrane handbook suggests that it should not be attempted with fewer 

than 10 studies (Fellow & Director, 2008) though more recent work on regression in general 

has shown fewer observations may still result in accurate, unbiased estimates (Austin & 

Steyerberg, 2015).  

The most general form of meta-regression would be a linear regression though (should the 

number of studies allow) more complex specifications are available including random effects 

models. Other factors to consider are the within trial variances of treatment effects, and the 

heterogeneity in studies not explained by the regression (Thompson & Higgins, 2002). 

Further issues may also be caused by the limited reporting of potentially important 

covariates, either as they were not reported in primary publications, or their importance was 

not understood at the time the study was conducted (for example disease markers that were 

not recognised, or measurable). 

Whilst there are potential issues in conducting meta-regressions, they may be helpful to 

understand the totality of data where a large number of studies exist. For example a meta-

regression of 28 studies of diabetes patient education demonstrated a positive impact on of 

intervention, with face-to-face delivery, cognitive reframing, and exercise content able to 

account for 44% of the variance in study results (Ellis et al., 2004). Although likely of limited 

utility to uncontrolled studies given the requirement for a large number of studies, NICE DSU 

TSD3 discusses the topic of meta-regression (Dias et al., 2011). 

2.2.2 META-ANALYSIS OF HISTORICAL CONTROLS 

Meta-analysis is a technique to combine multiple studies, assigning weights to each study 

which when aggregated produce a single summary statistic for the effect size across the 

included studies. If two studies were of equal size, with equal results, they would be given an 

equal weighting, equivalent to a simple mean. In reality studies will vary in their precision 

(one over the variance), with different sample sizes and standard deviations, leading to 

different weights being assigned – the two most common approaches being fixed effects and 

random effects meta-analysis. 

In fixed effects meta-analysis, it is assumed there is a common effect size (𝜇) shared by all 

the studies, in addition to an error term (𝜀) which may vary between studies. A random 
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effects model allows the effect of treatment to vary between studies (for example the effect 

size may be larger in sicker patients). The studies included in the meta-analysis are each 

assumed therefore to draw from the distribution of the effect size.(Borenstein, Hedges & 

Rothstein, 2007). 

Where data can reasonably expected to be similar to previous trials, for example with similar 

trials conducted in a short space of time at a single unit, it has been suggested that rather 

than using only one trial, or pooled results of trials, the technique of meta-analysis can be 

used to give a more accurate prediction of the expected response rate were a control arm 

included in a study. Previous uses for this approach have been in Phase 2 studies, with 

either a frequentist approach (where trials are simply meta-analysed) or a Bayesian form 

(incorporating a prior beliefs about the efficacy of treatment). When this is used as prior data, 

it can then be referred to as the Meta-Analytic Predictive prior (Schmidli, Wandel & 

Neuenschwander, 2012, 2012). 

2.2.3 THE BAYESIAN ‘POWER PRIOR’ 

A limitation with the use of a historical control, even if trials are meta-analysed together (to 

take in to account differences between trials), is that it is assumed that the patients in the 

historical study are exchangeable with the ones in the present study (Viele et al., 2014). 

Equally when historical data are not considered in a comparison, the implicit assumption is 

that the historical data are of no value. 

As an attempt to bridge these positions, the power prior was conceptualised by Ibrahim and 

Chen (Ibrahim & Chen, 2000), which ‘… raises the likelihood of the historical data to the 

power parameter 𝑎0 which quantifies the discounting of the historical data due to 

heterogeneity between trials’ (Neuenschwander, Branson & Spiegelhalter, 2009:p.3652). In 

this way historical data can be ‘borrowed’ to supplement a current trial and reduce the 

number of controls required. A modified version was developed by Duan (2005), and 

Neuenschwander, Branson and Spiegelhalter (2009) which can be set to apply different 

approaches – for instances pooling where data are similar, and discarding where dissimilar. 

The use of power priors has been an active area of research, with extensive theoretical work 

performed, and subsequently some applied examples emerging. One key area of difficulty 

appears in setting the level of weight attached to the prior data, with no clear consensus. 

Where this weight is high, the new data has little influence, whereas with a low weight, 

historical studies are effectively discarded. 
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In terms of applied examples, one area the idea seems promising is in bridging studies, 

where an intervention is demonstrated to work beyond the population in which it had 

originally been studied. Ollier et al. (2019) use this approach to ‘borrow’ strength from the 

original trials in studies demonstrating effectiveness in Asian (compared to Western) patients 

to reduce sample size. A more complex example is available in the form of ‘efficient platform 

designs’ which are trials designed to enrol patients in a randomised fashion - should the 

controls match the historical data, borrowing from historical data is implemented, skewing 

randomisation to the novel intervention. This has the effect of minimising exposure to 

placebo, and maximising statistical power (Normington et al., 2019). 

To set the level of discounting of historical data, two approaches have been proposed. Firstly 

a constant, set for example through expert opinion by which the evidence is down-weighted. 

This can even be adjusted for perceived bias (Turner et al., 2009) – this approach is best 

suited to the original power prior, as opposed to the modified form. The second approach is 

to calculate a parameter by looking at the level of heterogeneity between studies included in 

the analysis – this can be used with either form of the power prior, but allows more 

complexity with the modified version (for instance heavily penalising discordant studies). 

Initial uses of the power prior seem to have been in early clinical development to understand 

whether data from a historical control can be used to augment the control patients in early 

clinical studies, before large confirmatory studies are commenced (Strimenopoulou & 

Walley, 2014; Hobbs, Sargent & Carlin, 2012; Gsteiger et al., 2013; Dejardin, van Rosmalen 

& Lesaffre, 2014). Other applied examples are from Dron et al. (2019) who look at 

minimising the number of patients needed in trials by borrowing (using data from Project 

Data Sphere) with four applied examples. 

Later work however adds cation to the approach, with work by Schoenfeld et al. (2019) 

demonstrating that unless effect sizes are indeed large (a greater than 30% difference in 

response rate), there are no sample size savings in clinical trials using borrowing due to the 

heterogeneity in trials. Similar finds are seen in Lewis et al. (2019) who use colorectal cancer 

data with simulation studies to show that the ‘drift’ in outcomes over time can confound 

results. 

The approach however may offer a more sophisticated option than the simple acceptance or 

rejection of historical data, but giving less weight to the prior evidence where there are large 

differences in outcomes within the evidence base. 



Page 59 of 181 

2.2.4 COMPARISON BETWEEN APPROACHES FOR COMBING HISTORICAL 

CONTROLS, AND APPLICABILITY TO UNCONTROLLED STUDIES 

As the approaches of meta-analysis and the power prior are relatively new, there exists 

limited comparisons between the methods. Work from Isogawa et al. (2019) shows that the 

preferred approach can change depending on the structure of data (with no rules that can be 

determined). The approaches that have been attempted are also documented by Lim et al. 

(2018), who highlight where the ‘stringent’ Pocock criteria may be able to be relaxed, mainly 

in areas of high unmet need e.g. terminal diseases. 

Although the two approaches (meta-analysis and power prior) for combining multiple studies 

both have relevance for uncontrolled studies, some modifications are needed as the primary 

objective of both has been to supplement contemporary controls – not act as a replacement. 

In this sense, there exists no clear path for uncontrolled studies; the concerns regarding 

heterogeneity of outcomes and indeed existence of the power prior to down-weight historical 

data (rather than simply pool) implicitly assumes that differences likely exist between 

studies.  

The approaches may be useful however to meta-analyse (including any down-weighting 

brought in through the power prior) where multiple historical controls are available. How this 

down-weighting should be performed however is unclear, and will at this stage therefore be 

somewhat (unavoidably) arbitrary. 

2.3 WHERE NO HISTORICAL DATA ARE AVAILABLE 

Where no historical data are available for comparison, two methods have been used to 

estimate what the outcomes would have been were a control arm available. 

2.3.1 THE USE OF EXPERT OPINION 

Whilst expert opinion appears historically to have been done in an unstructured form, 

methods have been developed for the use of gathering such evidence robustly. The most 

widely cited of these is the Sheffield Elicitation Framework (SHELF), which consists of 

various methods implemented with a user guide and R package (Gosling, 2018). Whilst 

lower on the ‘hierarchy of evidence’ than trial data, the use of expert opinion may be required 

where data simply does not exist. An important distinction here is between expert evidence 

i.e. eliciting evidence from experts, and expert opinion, where the expert is then 

extrapolating based on their experience to project what may occur. 
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Though the SHELF frameworks acts as an ideal form, there exist several published practical 

demonstrations of structured elicitation from experts. To do this Sperber et al. (2013) 

adapted the SHELF method (specifically the quartile method) to work in the more realistic 

setting of geographically dispersed experts, whilst Grigore et al. (2016) tested two of the 

methods from SHELF (the quartile method, and the histogram method), and how they might 

apply to different problems. In a slightly different context Dallow et al. (2018) give examples 

of how formal priors can be elicited (again using the SHELF framework as a guide) in the 

drug development process – work that could relatively easily be adapted for later stage 

products. 

2.3.2 THRESHOLD ANALYSIS AND THE ‘E-VALUE’ 

Threshold analysis is used to distinguish where the point at which a model ceases to behave 

in a particular way – for instance how expensive a treatment would need to be before it was 

deemed not cost-effective. An example can be seen in the analysis by Tappenden et al. 

(2006), where the relative risk needed for a treatment to be cost effective was estimated, 

allowing decision makers to consider whether or not this threshold was likely to be reached. 

Work from the GetReal collaborative (an EU funded project including members from the 

EMA to develop the use of observational data in medical decision making) has also 

proposed a similar concept; ‘Threshold-crossing’. The method proposes a series of steps to 

be undertaken before a study is conducted, to ascertain the degree of heterogeneity in the 

disease area such that should this threshold for a ‘clear’ demonstration of efficacy (and 

without serious safety signals) then the product is deemed to be effective. If the threshold is 

not met then equipoise is still present i.e. it is not clear the intervention is effective, 

legitimising a RCT. The approach seems rational, and would ensure in depth analysis on the 

suitability of control data - and indeed whether historical control data are available - prior to 

the conduct of an uncontrolled study. In taking a systematic approach to evidence 

generation the approach seems reasonable, even if it would not directly allow a 

quantification of the amount of benefit. Interestingly in the paper they suggest that a 

Bayesian framework is more natural for such analysis (citing work on the power prior), but 

that they could not identify any successful uses of the approach to date. 

A similar approach has been proposed for use in observational studies, termed the ‘E-value’ 

(VanderWeele & Ding, 2017). The definition proposed is ‘the minimum strength of 

association, on the risk ratio scale, that an unmeasured confounder would need to have with 

both the treatment and outcome, conditional on the measured covariates, to fully explain 

away a specific treatment–outcome association’. The higher the E-value, the less likely the 
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effect seen is a result of unmeasured confounders. This is mathematically defined below, 

with Table 2 of the paper giving formulations for other common endpoints (for instance 

hazard ratios).  

𝐸 − 𝑣𝑎𝑙𝑢𝑒 = 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑖𝑠𝑘 + √𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑖𝑠𝑘 𝑥 (𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑖𝑠𝑘 − 1)2
 

Whilst proposed for observational studies, the use of E-values could logically be extended to 

uncontrolled studies, whether estimates are derived from historical controls, or from other 

methods. The authors propose the calculation of several E-values for any given analysis 

• a simple E-value between the point estimates of outcomes 

• one based on a covariate adjusted model 

• one based on the minimum E-value needed to reach the limit of the 95% confidence 

interval for outcomes.  

Although no firm conclusions can be drawn regarding the absolute size of the E-value, it may 

be helpful in informing decision making by quantifying the strength of evidence for the 

intervention (and providing reassurance where results are unlikely to be due to confounding). 

Given patient numbers are often small in uncontrolled studies this is particularly important 

(as a large effect size may be highly uncertain). Alongside the provision of E-values for the 

comparison in question, communication of their meaning also also be helped by provision of 

E-values from other interventions in the disease area. 

2.4 EMERGING METHODOLOGIES 

The above sections consider the methods which have been established for use in medicine, 

however there exist a number of other approaches which are in wide in other disciplines 

(such as computer science), and may be applied to medicine to estimate comparative 

advantage. 

2.4.1 THE USE OF ‘REAL WORLD DATA’ TO ESTABLISH CONTROL ARMS 

Although all data are from the ‘real world’, the term ‘real world data’ (RWD) is often used to 

describe data collected as a part of routine clinical practice, as opposed to collected for a 

specific purpose such as a trial, registry, or case series (Berger et al., 2017). With the growth 

in data availability and data science as a discipline - added to the increased use of Electronic 

Medical Records (EMR) there is the potential for control arms to be identified using these 

databases, as opposed to being taken from clinical studies. Whilst attempts to replace RCTs 

entirely are likely to face fierce resistance (Gerstein, McMurray & Holman, 2019), they may 

be able to be used to quantify outcomes and create historical controls. 
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Although work in the area is still relatively early, publications (largely from Flatiron Health, 

now purchased by Roche) are beginning to be able to estimate control group outcomes 

(Carrigan et al., 2019). An example of the approach is a paper estimating the comparative 

effectiveness of alectinib in lung cancer, using EMR data as a control group – this approach 

was required as the drug was licensed on the basis of an uncontrolled study (Davies et al., 

2018). 

Other work is also ongoing on a similar theme from the GetReal collaborative - here 

‘workpackage 1’ has the aim to ‘develop a framework for the acceptability of real world 

evidence for estimating the effectiveness of new medicines’ (Egger et al., 2016). 

Whilst the approaches used are still in their early stages (and yet to be fully validated), in the 

absence of other data, they may be able to assist decision makers to understand potential 

outcomes. As such approaches have only recently become possible, it appears policies 

towards the use of such data are yet to be fully defined (Makady et al., 2017), and it remains 

to be seen how the complex models underlying the derivation of the datasets will be 

received by regulators and payers.  

The idea that RCTs may be able to be replaced by observational data is also not a new one; 

in his 1980 paper ‘Why Data Bases Should Not Replace Randomised Clinical Trials’, Byar 

cites a 1972 book by Cochrane, which in turn states ‘Observational evidence is clearly better 

than opinion, but it is thoroughly unsatisfactory. All research on the effectiveness of therapy 

was in this unfortunate state until the early 1950's’ (Byar, 1980). It therefore appears that 

although the approach of using EMR data is promising, there are recognised issues which 

have yet to be solved, and repeated concern over the years about such an approach. 

2.4.2 MACHINE LEARNING 

Machine learning is a topical subject and active area of research across many fields. The 

concept being to allow algorithms to explore data; testing a wide array of models and finding 

associations that may not have been apparent to humans. These models have seen rapid 

uptake by internet advertising giants, where large datasets are available to obtain insight 

(James et al., 2013). 

In terms of medicine, there exist few practical examples, though this may change in the 

coming years. The most recent work published (McConnell & Lindner, 2019) shows the 

method has promise in estimating treatment effect sizes, though at present is unlikely to be 

practical when used in the context of uncontrolled studies; the sample size used in the 

McConnell and Lindner paper was 5000 patients (1000 was the smallest sample - where 
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performance was poor). In practical terms this therefore implies work will be needed to 

establish the preferred methods in related areas, before they are applied uniformly.  

2.5 SUMMARY OF EXISTING METHODOLOGIES FOR ESTIMATING 

COMPARATIVE EFFECTIVENESS USING UNCONTROLLED STUDIES 

In this section I show that there exist a variety of methods for the estimation of comparative 

effectiveness. In this section I classify them according to their purpose (analysis of pair of 

trials, versus creating estimates from a number of studies), and required access to individual 

level data.  

Over the time period I have been performing my research (with reading beginning in 2013) 

the most active area appears to have been that around the use of the power prior. In this 

area a number of papers and approaches have appeared (Isogawa et al., 2019; Banbeta et 

al., 2019; van Rosmalen et al., 2018; Ibrahim et al., 2015; Nikolakopoulos, Tweel & Roes, 

2018) where the method has been applied to different settings, and with different aims. The 

other growth that appears to have happened is in the uptake of MAIC, which was first 

published in the time before my research began, but by the end was in widespread use (with 

NICE DSU guidance). Despite these changes, over the time period there do not appear to 

have been substantial changes in the publicly stated willingness of regulators or payers to 

receive uncontrolled study data, or preferred methods of analysis. 

Although a number of methods are available, there are notable limits to existing knowledge. 

This applies to areas such as MAIC where there is uncertainty where the method is 

appropriate, to areas such as the power prior, where (despite developments) is no 

framework to determine for the degree of down weighting to apply to each study. There is 

also scope for new methods for the creation of historical control data, as evidenced by 

attempts to use RWD and machine learning techniques to create synthetic control arms.  
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 IDENTIFICATION OF THE NUMBER OF TREATMENTS INVOLVED, AND 

METHODS USED FOR MODELLING 

In order to understand the scale of the issue, I conducted reviews to establish how many 

treatments were licensed on the basis of uncontrolled studies, and how their comparative 

effectiveness had been modelled. The aim of this was to establish the disease areas where 

uncontrolled studies are frequently used, and the type of data (and approaches) used in the 

analysis of the data – both for regulators and for payers. This chapter describes these 

literature searches. 

3.1 TREATMENTS APPROVED ON THE BASIS OF UNCONTROLLED 

CLINICAL STUDIES 

A summary of the identification of treatments licensed on the basis of uncontrolled studies 

was published in BMJ Open (Hatswell et al., 2016), with a full details of each treatment 

published as a UCL research report (Hatswell, Baio & Freemantle, 2017) 

The first stage of this review was to identify treatments licensed on the basis of uncontrolled 

clinical studies. This was done for the EU using the EMA website, and the US using the FDA 

website. 

As this study relates to how modelled estimates of efficacy have been constructed, the 

search was limited to licenses granted since 1999, which also coincides with when NICE in 

the UK first began to appraise the cost-effectiveness of medicines – requiring the estimation 

of comparative effectiveness. The end date of the literature search was 7 May 2014, when 

this research began.  

3.1.1 REGULATORY PROCESSES IN THE UNITED STATES AND THE 

EUROPEAN UNION 

The regulatory approval process in the US and Europe is slightly different. In the US the role 

of the FDA dates back to the 19th century (Food and Drug Administration, 2014), with 

companies engaging with the FDA before the submission of a New Drug Application, which if 

approved, allows the manufacturer to promote and sell the drug in the US (Lipsky & Sharp, 

2001). Of particular relevance to this study is the accelerated approval process, in which 

there is no set process, but where the FDA are willing to approve products on the basis of 

surrogate outcomes pending confirmatory trials (Ciociola et al., 2014; Senderowicz & Pfaff, 
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2014). As a whole, however, the FDA require ‘substantial’ evidence from ‘adequate and well-

controlled’ studies (Chow & Chang, 2019). 

In Europe the situation is more complex – until recently each country was responsible for its 

own decisions on drug availability. In 1995 the EMA was formed, with a key part of their role 

being the administration of the ‘centralised authorisation procedure’ (Jefferys & Jones, 

1995). Any product approved under this programme is given a marketing authorisation valid 

in all EU countries, as well as Iceland, Norway and Liechtenstein – this approval route is 

mandatory for new biotechnologies, orphan medicines, and treatments for cancer, HIV/AIDS, 

diabetes, and other high profile / burden diseases (Netzer, 2006). The UK have now 

withdrawn from the EMA, though this did not occur until after the period the review covers. 

The alternative (and precursor) to the central authorisation procedure of the EMA is to gain 

approval in one nation state, after which companies may apply for mutual recognition, where 

that approval is converted to a Europe-wide approval. Should any individual regulatory body 

object to this approval, the dispute can then be taken to the EMA (Powell, 2000; Miguel et 

al., 2014). For this reason it is plausible that a product will be available within the EU but not 

approved by the EMA – either by pre-dating the centralised procedure or by falling outside 

the centralised procedure and being approved via mutual recognition. This underlines the 

importance of including FDA approvals in this literature review so as to identify as many 

possible drugs (and therefore economic models) that meet the criteria as possible. 

3.1.2 DETAILS OF THE SEARCH OF THE EMA AND FDA DRUG APPROVAL 

DATABASES 

To identify treatments licensed on the basis of uncontrolled clinical studies, all treatments 

licensed via the EMA centralised procedure and all label approvals by the FDA since 1999 

were reviewed. Full details of the inclusion and exclusion criteria (as well as search terms) 

are given in Appendix A, with details of the methods and search results described below. 

In addition to data on approvals, also extracted was whether the treatments were approved 

in an existing indication on the basis of RCT data (and applying for a license extension with 

uncontrolled data), and whether applications were for treatments with an existing RCT based 

approval. 
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3.1.2.1 FOOD AND DRUG ADMINISTRATION 

To identify drugs in the US, the database ‘‘Drugs @ FDA’ was downloaded on 8 May 2014 

from the FDA website. This is a relational database, the structure of which is shown in Figure 

3-1. 

Figure 3-1: Drugs@FDA database structure, taken from 

http://www.fda.gov/Drugs/InformationOnDrugs/ucm079750.htm on 8 May 2014 

 

Once the database tables had been downloaded, they were imported into Microsoft Excel 

2010 and linked with the use of the vlookup function. The list of drug approvals was then 

used to identify the treatments licensed on the basis of uncontrolled study data. The 

structure of this database is different to that of the EMA, in that it is arranged around label 

approvals and not around the drugs themselves. Consequently there are multiple entries for 

the majority of drugs. 

For each approval the relevant documents were accessed and downloaded. The evidence 

for each indication was reviewed in turn for the evidence included in the approval. The 

documents most frequently containing this information were the FDA label, or the clinical 

review of the New Drug Application. 

From the 774 listed labels approved since 1999 by the FDA, 403 were deemed relevant, with 

53 including at least one indication approved on the basis of uncontrolled study data. This 
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left a total of 60 indications approved on this basis, as shown in the PRISMA diagram in 

Figure 3-2 – some approvals were for more than one indication. 

Figure 3-2: PRISMA diagram of drug indications approved on the basis of single arm trials by the Food and Drug 

Administration 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2.2 EUROPEAN MEDICINES AGENCY 

To identify drugs approved in the EU, all treatments listed as on the EMA website as being 

given a central marketing authorisation were downloaded, and imported into a Microsoft 

Excel spreadsheet. This was completed on 7 May 2014.  

To identify relevant approvals, the EMA Summary of Product Characteristics (SPC) was 

searched for the main evidence in support of the product (generally found in Section 5.1 – 

Clinical efficacy and safety, or alternatively in the scientific discussion document). The 

documents most frequently containing this information were the EMA license (in Section 

5.1), or the Scientific Discussion, a document produced by the EMA detailing the evidence 

for an application, and the reasons a decision was made. Only those products that met the 

403 labels assessed 

FDA Approvals: 
1 January 1999 – 8 May 2014 

Total = 774 

53 labels included 
 

60 Indications approved on the basis of 
uncontrolled study data 

Labels excluded (n=371): 
Generics (n=268) 

Fixed-dose combinations (n=3) 
Duplicate listings (n=9) 

Imaging / diagnostic technologies (n=24) 
Antimicrobials (n=45) 
Medical device (n=1) 

Change in label, with no change in indication (n=17) 
No prescribing information available (n=4) 
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inclusion criteria and that were licensed exclusively on the basis of uncontrolled data were 

selected for extraction. 

Reviewing drug approvals led to the review of 795 drug approvals, of which 415 were 

deemed relevant drugs. This led to 37 drugs being identified as having been licensed in 44 

indications on the basis of uncontrolled studies, as shown in the PRISMA diagram in Figure 

3-3. 

Figure 3-3: PRISMA diagram of drug indications approved on the basis of since arm trials by the European Medicines 

Agency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2.2.1 ERRORS IN THE EMA DRUG DATABASE 

Whilst searching the EMA drug approval databases, I noticed an error on the Summary of 

Medicinal Product Characteristics (SmPC) for lipefilgrastim (Lonquex®) (European 

Medicines Agency, 2014b). The primary endpoint of many of the studies, ‘DSN’, was not 

415 Drugs assessed 

EMA Drug Approvals: 
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Total = 795 
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defined at any point. With further research on the primary studies, I believe this was intended 

to be defined as ‘Duration of Severe Neutropenia’.  

Based on this I contacted the EMA, who have confirmed this is an error, which was rectified 

on the next update of the license (European Medicines Agency, 2014a).  

3.1.2.3 HOW THE EVIDENCE WAS ASSESSED 

In order to establish the evidence used, the first item checked was the product label, where 

the evidence informing efficacy is typically stated (the relevant sections are noted under the 

headings for each agency).  

Where no randomised data was included in the product label, the original submission was 

consulted. For FDA approvals (which have an exceptional level of transparency) the clinical 

review for the product was reviewed – this included all data reviewed for the approval. For 

EMA approvals after each decision (positive or negative) a public ‘Assessment Report’ is 

produced. These documents (approximately 100 pages long), detail the disease 

background, evidence provided, and justification of the decision made by the regulator. If no 

RCT data with an active or placebo control was available (even in early stages), the product 

was deemed to be approved based on uncontrolled study data. 

After classification of each product, the dates of submission, decisions, and whether the 

approval was a first approval for the drug (or a follow on indication) were documented in a 

Microsoft Excel spreadsheet, along with any reasons for exclusion. After identification, this 

spreadsheet was then able to be used to not only count approvals, but also compare 

between agencies. 

3.1.2.4 FURTHER LITERATURE SEARCHING 

After the initial filtering of the FDA website, I searched for each of the drugs approved by the 

EMA but not by the FDA within the dates of my search, and vice versa. This was with the 

objective of identifying drugs that had been approved in both jurisdictions, but with one of the 

approvals having been granted outside the date range of literature search. 

As a result of this searching, four further approvals were identified, all for drugs licensed by 

the EMA after 1999 but approved by the FDA prior to this. These were 

• Paclitaxel, approved by the EMA in 1999, approved by the FDA 1997 

• Sodium Phenylbutyrate, approved by the EMA in 1999, approved by the FDA in 1996 
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• Zinc acetate, approved by the EMA in 2004, approved by the FDA in 1997 

• Anagrelide, approved by the EMA in 2004, approved by the FDA in 1997 

These were therefore also included in my review, as they facilitate comparisons of the 

approach of FDA and EMA to uncontrolled data. For completeness, any drug not listed as 

approved (or rejected) by an agency was searched for using Google, in case of press 

releases or financial statements that detailed a withdrawn or rejected application. 

3.1.3 CONSOLIDATED LIST OF TREATMENTS LICENSED ON THE BASIS OF 

UNCONTROLLED STUDIES FROM 1999 TO 2014 

The number of approvals based on uncontrolled clinical study data for each regulatory body 

and the consolidated number of approvals (taking into account treatments licensed in both 

jurisdictions for the same indication) are shown in Table 3-1. 

Table 3-1: Number of drugs and indications approved in the EU and US on the basis of uncontrolled clinical study data 

 Drugs Indications 

FDA approvals 54 64 

EMA approvals 35 44 

Total number of approvals 62 74 

 

A full list of the approved drugs, disease area, categorisation, approval status for each 

agency is shown in Table 3-2. 
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Table 3-2: Drugs submitted to the EMA and FDA containing only uncontrolled clinical studies 

Generic name Condition Categorisation 
FDA 

Status 
EMA 

Status 
RCT data 
available 

Abarelix Prostate cancer Solid tumour oncology A - No 
Alemtuzumab Chronic lymphocytic leukaemia (CLL) Haematological oncology A A No 
Alglucosidase Alfa Pompe disease Rare metabolic condition A A No 
Alipogene Tiparvovec Familial lipoprotein lipase deficiency (LPLD) Rare metabolic condition - A No 
Anagrelide Essential thrombocytopenia Blood count A* A No 
Argatroban Heparin-induced thrombocytopenia (HIT) Blood count A* - No 
Arsenic Trioxide Acute promyelocytic leukaemia (APL) Haematological oncology A A No 
Asparaginase Erwinia Chrysanthemi Acute lymphoblastic leukaemia (ALL) Haematological oncology A - No 
Bendamustine Hydrochloride Non-Hodgkin’s Lymphoma Haematological oncology A - Yes 
Betaine Anhydrous Homocystinuria Rare metabolic condition - A No 
Bexarotene Cutaneous T-cell lymphoma (CTCL) Solid tumour oncology A A No 
Bortezomib Multiple myeloma (MM) Haematological oncology A A No 
Bortezomib Mantle cell lymphoma (MCL)  Haematological oncology A - Yes 
Bosutinib Chronic myeloid leukaemia (CML) Haematological oncology A A Yes 
Brentuximab Vedotin Hodgkin's lymphoma (HL) Haematological oncology A A No 
Brentuximab Vedotin Systemic anaplastic large cell lymphoma (sALCL) Haematological oncology A A No 
Busulfan Haematopoietic progenitor cell transplantation (HPCT) Haematological oncology A A Yes 
Carfilzomib Multiple myeloma (MM) Haematological oncology A - No 
Carglumic Acid Chronic hyperammonemia Rare metabolic condition A A No 
Ceritinib Non-small cell lung cancer Solid tumour oncology A - No 
Cetuximab Colorectal cancer Solid tumour oncology A A No 
Cholic Acid (Kolbam) Inborn errors in primary bile acid synthesis Rare metabolic condition - A No 
Cholic Acid (Orphacol) Inborn errors in primary bile acid synthesis Rare metabolic condition - A No 
Cladribine Hairy cell leukaemia Haematological oncology - A No 
Clofarabine Acute lymphoblastic leukaemia (ALL) Haematological oncology A A No 
Crizotinib Non-small cell lung cancer Solid tumour oncology A - No 
Dasatinib Chronic myeloid leukaemia (CML) Haematological oncology A A No 
Dasatinib Philadelphia chromosome-positive acute lymphoblastic leukaemia (ALL) Haematological oncology A A No 
Defibrotide Veno-occlusive disease Poisoning - A Yes 
Dexrazoxane Hydrochloride Anthracycline extravasation Poisoning - A No 
Ferric Hexacyanoferrate(Ii) Internal contamination with radioactive caesium or thallium Poisoning A - No 
Gefitinib Non-small cell lung cancer (NSCLC) Solid tumour oncology A - No 
Gemtuzumab Ozogamicin Acute myeloid leukaemia (AML) Haematological oncology S S No 
Glucarpidase Toxic plasma methotrexate concentrations Poisoning A S No 
Hydroxocobalamin Treatment of cyanide poisoning Poisoning A A No 
Ibrutinib Mantle cell lymphoma (MCL)  Haematological oncology A - No 
Ibrutinib Chronic lymphocytic leukaemia (CLL) Haematological oncology A - No 
Imatinib Mesylate Chronic myeloid leukaemia (CML) Haematological oncology A A No 
Imatinib Mesylate Gastrointestinal stromal tumours (GIST) Solid tumour oncology A A No 
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Imatinib Mesylate 
Myelodysplastic / myeloproliferative diseases (MDS / MPD) associated with 
platelet-derived growth factor receptor (PDGFR) gene re-arrangements 

Haematological oncology A A Yes 

Imatinib Mesylate Soft tissue sarcoma - Dermatofibrosarcoma protuberans (DFSP) Solid tumour oncology A A Yes 
Imatinib Mesylate Philadelphia chromosome-positive acute lymphoblastic leukaemia (ALL) Haematological oncology A - Yes 
Imatinib Mesylate Aggressive systemic mastocytosis (ASM) Haematological oncology A S Yes 

Imatinib Mesylate 
Advanced hypereosinophilic syndrome (HES) and / or chronic eosinophilic 
leukaemia (CEL) with FIP1L1-PDGFR rearrangement 

Haematological oncology A A Yes 

Ixabepilone Breast cancer Solid tumour oncology A S Yes 
Lomitapide Mesylate Familial hypercholesterolemia (HoFH) Rare metabolic condition A A No 
Metreleptin Lipodystrophy due to leptin deficiency Rare metabolic condition A - No 
Nelarabine T-cell acute lymphoblastic leukaemia / lymphoma (T-ALL / T-LBL) Haematological oncology A A No 
Nilotinib Hydrochloride Monohydrate Chronic myeloid leukaemia (CML) Haematological oncology A A No 
Nitisinone Hereditary tyrosinemia Rare metabolic condition A A No 
Ofatumumab Chronic lymphocytic leukaemia (CLL) Haematological oncology A A No 
Omacetaxine Mepesuccinate Chronic myeloid leukaemia (CML) Haematological oncology A S No 
Paclitaxel Kaposi's sarcoma Solid tumour oncology A A Yes 
Pasireotide Diaspartate Cushing's disease Rare metabolic condition A A No 
Pentetate Calcium Trisodium Internal contamination with plutonium, americium, or curium Poisoning A - No 
Pentetate Zinc Trisodium Internal contamination with plutonium, americium, or curium Poisoning A - No 
Pomalidomide Multiple myeloma (MM) Haematological oncology A - No 
Ponatinib Hydrochloride Chronic myeloid leukaemia (CML) Haematological oncology A A No 
Ponatinib Hydrochloride Philadelphia chromosome-positive acute lymphoblastic leukaemia (ALL) Haematological oncology A A No 
Pralatrexate Peripheral T-cell lymphoma (PTCL) Haematological oncology A S No 
Raxibacumab Anthrax inhalation Poisoning A - No 
Romidepsin Peripheral T-cell lymphoma (PTCL) Haematological oncology A S Yes 
Sodium Ferric Gluconate Complex Iron deficiency Rare metabolic condition A - No 
Sodium Phenylbutyrate Urea cycle disorders Rare metabolic condition A* A No 
Sunitinib Malate Renal cell carcinoma Solid tumour oncology A - No 
Taliglucerase Alfa Gaucher's disease Rare metabolic condition A S No 
Temoporfin Head and neck cancer Solid tumour oncology - A No 
Temozolomide Anaplastic astrocytoma Solid tumour oncology A A Yes 
Tocofersolan Vitamin E deficiency due to cholestasis Rare metabolic condition - A No 
Tositumomab; Iodine I 131 
Tositumomab 

Non-Hodgkin's lymphoma Haematological oncology A - No 

Trabectedin Soft tissue sarcoma Solid tumour oncology - A No 
Vismodegib Basal cell carcinoma Solid tumour oncology A A No 
Vorinostat Cutaneous T-cell lymphoma (CTCL) Haematological oncology A S No 
Zinc Wilson's disease (hepatolenticular degeneration) Rare metabolic condition A* A No 

A=Approved, A*=Approved prior to 1999, S=Submitted but not approved 
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A full description of each the circumstances surrounding each individual drug approval has 

been presented in a separate working paper (Hatswell, Baio & Freemantle, 2017). These 

working papers summarise the evidence for the treatment, the regulatory milestone dates, 

and the decisions made by the FDA and EMA, including if a submission was withdrawn or 

rejected.  

3.1.4 DISEASE AREAS WHERE UNCONTROLLED STUDIES HAVE MOST 

FREQUENTLY BEEN THE BASIS FOR DRUG APPROVALS 

Of the 74 indications approved without controlled trial data, the largest single group (34 

treatments) can be categorised as treatments for haematological malignancies. These 

treatments (for example imatinib, ofatumumab, and carfilzomib) were licensed on the basis 

of uncontrolled trials using response rates as the primary outcome. The next most common 

types of approval are treatments for metabolic disorders (𝑛 = 15) such as taliglucerase for 

Gaucher’s disease, and solid tumour oncology treatments (𝑛 = 15) which used response 

rate as the primary outcome in trials - for example ixabepilone for the treatment of metastatic 

breast cancer.  

The remaining approvals were for poisonings (𝑛 = 8), and treatments based on 

haematological markers (𝑛 = 2), for example anagrelide for the treatment of essential 

thrombocytopenia. 

That the majority of approvals (49/74, 66%) were either haematological or solid tumour 

oncology corresponds with previous work regarding drug licensing, which shows a lower 

barrier to oncology drug approval in the US (Light & Lexchin, 2015). This particularly seems 

to be the case with FDA reviews – of the nine rejected EMA applications, seven were in 

oncology with the EMA highlighting uncertainty regarding the benefit-risk of the treatments. 

Of the total of 74 indications, 39 of the treatments would primarily be used by 

haematologists, whilst 60 of the 74 approvals were for treatments that were not already 

licensed on the basis of RCT evidence. All of the treatments that had other RCT evidence in 

another indication were in either haematological oncology, or solid tumour oncology. 

3.1.5 COMPARISON BETWEEN THE FDA AND EMA ON THE NUMBER OF 

APPROVALS, AND THE DATES OF REVIEWS 

In comparing the two agencies, the FDA and EMA received different numbers of applications 

for treatments based on uncontrolled clinical studies (counting only treatments approved in 

at least one jurisdiction).  
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3.1.5.1 CONSISTENCY OF DECISION BETWEEN THE EMA AND FDA 

Of the 44 applications made to both the FDA and EMA, there also appears to be a difference 

in the chance of approval. The FDA approved 43 of the 44 applications made rejecting 1, 

whilst the EMA approved 35 of the 44 - the nine applications not approved were either 

rejected by the EMA, or withdrawn by the submitting manufacturer, with a provisional 

negative decision in place.  

In addition to the nine rejections, in a further five cases the EMA approval was only given 

once results from a RCT were available. 

3.1.5.2 DIFFERENCES IN DATES OF SUBMISSIONS TO REGULATORS  

Based on the data in this review, companies appear to submit to the FDA before the EMA. 

Of the 44 treatments submitted to both the FDA and EMA, 35 were submitted first to the 

FDA. The mean delay from the FDA submission to the EMA submission was 7.1 months in 

treatments approved by both agencies, and 7.2 months including those rejected by one 

agency. 

Whilst it is to be expected the submissions cannot be conducted in parallel due to the same 

staff working on both (for example trial statisticians and researchers), the literature search 

conducted suggests a strong preference for submitting to the FDA first. Whilst we can only 

speculate on the reasons for this apparent difference, potential reasons could include a more 

favourable regulatory environment (either perceived or real), differences in review time, the 

market size (pharmaceuticals are typically priced higher in the US), differences in uptake 

rates, or familiarity with the US healthcare system (many pharmaceutical companies are 

headquartered in the US). 

3.1.5.3 COMPARISON OF FDA AND EMA REVIEW TIMES 

In comparing the review times, a clear difference between the two agencies is also apparent, 

with the FDA taking less time to reach a decision. Of the 34 treatments approved by both 

agencies, the FDA had a shorter review on 31 occasions. In these instances the mean FDA 

review time was 8.7 months, compared to a mean of 15.5 months for the EMA – a difference 

of 6.8 months. 

The differences in submission and review times is shown in  
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Figure 3-4: Timeline from submission to approval of pharmaceuticals licensed on the basis 

of uncontrolled study data by both the FDA and EMA 
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 for treatments approved in both regions – the diagram clearly shown the EMA review time 

(blue) beginning after the FDA review time (grey), and lasting longer. Including effects of the 

delay in submission, the mean delay to European approval after US approval was 13.1 

months. Not shown in the diagram are the five treatments approved only in Europe on the 

basis of comparative data, which were approved a mean of 21.5 months after US approval 

was granted. 
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Figure 3-4: Timeline from submission to approval of pharmaceuticals licensed on the basis of uncontrolled study data 

by both the FDA and EMA 
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3.1.6 CONGRUENCE OF FINDINGS WITH THE EXISTING LITERATURE 

3.1.6.1 DIFFERENCES BETWEEN FDA AND EMA APPROVALS 

The finding that the FDA reviewed applications faster than the EMA is not unique only to 

drugs licensed on the basis of uncontrolled study data. A study of tyrosine kinase inhibitors 

approved by the two agencies found the FDA reviewed products faster than EMA (205 vs 

410 days), however found that the difference was due to ‘clock stops’ within the EMA 

process, accounting for 0 vs 184 days of review time (Shah, Roberts & Shah, 2013). A 

second study also noted a difference in the speed of approval of cancer drugs, a median of 

182 days for the FDA compared to 350 days for the EMA (Roberts, Allen & Sigal, 2011). A 

further study has shown a similar trend of longer review times by the EMA in all 

pharmaceuticals (not specific to oncology) – 303 days for the FDA vs 366 days for the EMA 

(Downing et al., 2012).  

There are several potential reasons for the differences observed between agencies. Firstly 

the FDA’s extensive use of ‘accelerated approvals’, with products allowed to show results on 

a surrogate endpoint, with confirmatory RCTs completed at a later point (Dagher et al., 

2004). This may also explain why the difference in oncology treatments is much larger than 

that seen with pharmaceuticals in general. A second potential reason may be differences in 

the attitude of regulators to benefit-risk (which may in turn reflect differences in population 

attitudes). Qualitative interviews with American and US regulators found those in the US to 

be more willing to give patients the opportunity to benefit from treatments - even if the 

outcomes were less certain. In contrast a more conservative approach was seen in 

European regulators (Tafuri et al., 2014). This apparent difference in attitude however does 

not always lead to the FDA being more receptive to uncertainty; as a different study found 

that although regulatory processes between the two regions do occasionally lead to clinically 

meaningful differences in outcomes, the direction of these differences is not consistent 

(Trotta et al., 2011). 

Another potential reason for the differences between the two agencies in review time, and 

approval rate, is the level of interaction prior to a submission. When applying for approval to 

market a drug in the US, companies will frequently take advice from the FDA on trial design, 

and meet to discuss what outcomes are expected. For example FDA guidance on clinical 

trial endpoints states: 

Although general principles outlined in this guidance should help applicants select endpoints 

for marketing applications, we recommend that applicants meet with the FDA before 

submitting protocols intended to support NDA or BLA marketing applications. The FDA will 

ensure that these meetings include a multidisciplinary FDA team of oncologists, statisticians, 



Page 79 of 181 

clinical pharmacologists, and often external expert consultants. Applicants can submit 

protocols after these meetings and request a special protocol assessment that provides 

confirmation of the acceptability of endpoints and protocol design to support drug marketing 

applications (Food and Drug Administration, 2007:p.12) 

This is a different process to the EU, where companies may choose to take scientific advice 

from the EMA, though this is not a required step. It does seem logical however that if 

companies are encouraged to meet regularly with the FDA to ensure a submission package 

will be acceptable, provided the data from trials is supportive, there should be fewer 

questions regarding whether an application is approvable. Equally if questions around the 

applicability of endpoints have been discussed prior to the submission being received, this 

should speed the process. 

Another difference between the two agencies, is how interactions are conducted, and ‘stop 

clock’. The process for the EMA centralised procedure states that the Committee for 

Medicinal Products for Human Use (CHMP) must issue an opinion within 210 days of a 

review beginning. As a part of this process there are two opportunities for the EMA to ask 

questions of the manufacturer, during which the 210 day ‘clock’ is not counting, until the 

company responds (Jefferys & Jones, 1995). This is different to the FDA process of back 

and forth questions and continuous review until a decision is reached (Ciociola et al., 2014). 

Given the limited opportunities for questions from the EMA, it does seem logical that those 

asked will be extremely comprehensive, and may exceed what may be seen to be required 

as the review continues. This in turn may lead to a longer process than one where the 

regulator is allowed to ask questions on an ad hoc basis. 

A final factor influencing the timing of decisions may be that that once a recommendation 

has been made by the CHMP, it is then passed to the European Commission (a body of civil 

servants and politicians) to give a final decision, a step that takes 67 days (although this can 

take substantially longer). This stage adds to the time needed for treatments to be approved 

in the EU (Wade, 2010). 

3.1.6.2 NUMBER OF TREATMENTS APPROVED ON THE BASIS OF UNCONTROLLED STUDIES 

OVER TIME 

Whilst my review did not identify any clear trend for approvals over time based on 

uncontrolled studies, anecdotal evidence is that this rate is either increasing, or expected to 

increase. The reason for this relates to regulatory initiatives to allow patients access to 

medicines at earlier stages, for example the EMA Priority Medicines (PRIME) scheme. 

Under this scheme drugs will be allowed earlier market access (usually conditional on further 

trials) for diseases with an immediate threat to life (Antoñanzas, Terkola & Postma, 2016). In 
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practice such early data are likely to take the form of uncontrolled studies, though how the 

process will evolve is unclear. 

A second potential reason for not identifying a trend is that the cut-off date for my review was 

the date of searches (May 2014), shortly before the approval of a series of treatments for 

Hepatitis C – many of which were based on uncontrolled studies. Whilst these products may 

or may not have resulted in an increase in the number of treatments approved without RCT 

evidence in being for a large patient population (and with a high price), their availability may 

have raised awareness of such approvals (Kish, Aziz & Sorio, 2017). 

3.1.6.3 DISEASE AREAS WHERE UNCONTROLLED STUDIES ARE CONDUCTED 

That the majority of approvals were in cancer, and specifically haematology mirrors the 

finding of Saccà (2010) who found that whilst only 13% of ongoing chronic heart failure 

studies were uncontrolled, 66% of studies in acute myeloid leukaemia were uncontrolled. 

Although not directly comparable (the studies were not necessarily registrational studies), 

this finding does indicate that uncontrolled studies are more acceptable in some areas of 

medicine.  

3.1.7 SUBSEQUENT WORK PERFORMED BY OTHERS IN THE AREA 

The review published in 2014 as a part of my PhD has been referenced by other researchers 

(as of 4 August 2019 there were 42 citations listed in Google Scholar, 11 of which were 

listed in PubMed Central) who have used the paper in support of other work, or developed 

the research further. 

The papers most relevant to my work look further in to drug approvals based on uncontrolled 

studies. In this area work by Shepshelovich et al. (2018) found that drugs licensed with 

supporting RCT evidence had fewer label changes for safety reasons than the drugs I 

identified as having being licensed without supportive RCT data. Work by Djulbegovic et al. 

(2018) looked at the effect sizes seen with drugs licensed using only uncontrolled study 

data. They found these effect sizes larger (using a variety of techniques) than the effect 

sizes seen in drugs licensed with RCT data – indicating (as may be expected) that the 

decision to pursue a license with uncontrolled study data be indeed be linked to ‘better than 

could be expected’ outcomes. Also of relevance is a review by Davies et al. (2017) which 

showed that it is uncommon that further data become available for drugs licensed on 

uncontrolled studies (even when no RCT evidence is available). This highlights the 

importance of the question addressed in the thesis (of how best to estimate comparative 
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effectiveness), as in most cases it appears the evidence available from uncontrolled studies 

at launch will not be validated in confirmatory RCTs (or potentially in studies of any kind).  

The most relevant citation however would be by Goring et al. (2019) who updated the 

systematic review I performed (though not using as broad of a scope) to include newer 

products, and investigated the source of control arms further. Their findings were stated to 

corroborate those seen in my review – that uncontrolled studies are rarely (but consistently) 

used for drug approvals – with an apparent increase in the period from 2012 to 2017, 

compared to 2005 to 2011. This however represents an arbitrary date cutoff, and if other 

dates were used, the findings may have been different – it therefore remains to be seen if 

the rate of approvals increase. Should this be the case I suspect it will be due to the 

introduction of drugs with different mechanisms which have a more compelling reason for 

belief in a step change; for instance gene therapies and Chimeric antigen receptor therapies, 

as opposed to a differing willingness to accept uncontrolled data from TKIs, for instance. 

Citations which are less relevant to my work though still of interest, involve work around 

reimbursement.  The first paper suggests that the lack of a RCT does not hinder the 

reimbursement of treatments compared to drugs in similar indications (Anderson et al., 

2019). A second paper then found that the determining factor in drug approval by payers 

was the type of marketing authorisation, with the type of evidence available per se not being 

the determining feature of coverage decisions, but rather the evidence impacting the type of 

license granted, with lower rates of coverage from payers for drugs with conditional 

marketing authorisation (Vreman et al., 2019). 

3.2 METHODS USED FOR ESTIMATING EFFECTIVENESS FROM 

UNCONTROLLED STUDIES 

A summary of the identification of treatments licensed on the basis of uncontrolled studies 

was published in Pharmacoeconomics (Hatswell, Freemantle & Baio, 2017a), with a full 

report published as a UCL research report (Hatswell, Freemantle & Baio, 2017b) 

Having identified treatments licensed on the basis of uncontrolled clinical studies, the second 

stage of my review was to search for modelling approaches that have been used for drugs 

licensed on data from uncontrolled clinical studies. 

To do this, I searched published literature (via PubMed and the ISPOR Scientific 

Presentations Database) and HTA websites (NICE, SMC, and AWMSG) for modelling 

studies performed to estimate the effectiveness of the drugs identified in Chapter 3. The 

results of these literature searches are described in the sections below. 
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3.2.1 LITERATURE SEARCH FOR MODELLED ESTIMATES OF THE 

EFFICACY OF DRUGS LICENSED ON THE BASIS OF UNCONTROLLED 

CLINICAL STUDIES 

To identify models based on uncontrolled study data, three sources were searched, these 

were  

• Medline (via PubMed), for peer reviewed papers 

• The ISPOR Scientific Presentations Database 

• The databases of NICE, SMC and AWMSG, the UK Health Technology Assessment 

bodies 

The searches performed in each of these databases are discussed in turn, along with the 

rationale for the inclusion of each paper 

3.2.1.1 MEDLINE (VIA PUBMED) 

MEDLINE is the US National Library of Medicine journal citation database, with over 22 

million citations to biomedical and life sciences journal articles dating back to 1946. Journals 

are assessed for quality, before they are indexed in the database (National Institute for 

Health, 2014).  

PubMed is a website that searches the MEDLINE database, plus an additional number of 

publications – those available online ahead of print (prior to full citations being available from 

MEDLINE), the inclusion of other general science journals, and articles from journals before 

that journal was included on MEDLINE. In total, this adds approximately an additional two 

million items (National Institute for Health, 2014). Given the research I am interested in (i.e. 

medicine), this will only have been published in medical and health services research 

journals. The comprehensiveness of the PubMed search therefore negates the need to 

search other indexes. 

A series of search terms was used to find peer-reviewed modelled estimates of efficacy of 

the medicines identified in Chapter 3 – including extrapolations of trial data, economic 

models, and comparative effectiveness estimates. These search terms were then combined 

with each individual drug name, and 74 searches conducted; one for each of the drugs of 

interest. Full search terms are given in Appendix B. 

After potentially relevant searches were completed for each drug, the results were filtered by 

reviewing the title and abstracts to exclude irrelevant publications, with the reason for 

exclusion noted. The full papers extracted were then retrieved for review. The reasons for 
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exclusion were evaluated in a hierarchical fashion, with the first reason for exclusion listed, 

and the abstract not then assessed against the other criteria. 

Full text articles were then reviewed, either for inclusion as economic models based on 

uncontrolled study data or as irrelevant to the thesis, with the reason for exclusion noted. 

The result was that 29 full publications were included, from 1202 initial hits in PubMed. A full 

PRISMA diagram for the literature review is shown in Figure 3-5. 

 

Figure 3-5: PRISMA diagram of modelled comparisons retrieved from PubMed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

3.2.1.2 ISPOR SCIENTIFIC PRESENTATIONS DATABASE 

Health economic models are not always presented in full peer reviewed publications due to 

the different objectives of both pharmaceutical companies and employees – although 

Papers excluded (n=27): 
Different indication (n=7) 

Different drug or intervention (n=3) 
Clinical paper or commentary (n=1) 

Not an economic model (n=6) 
Model based on RCT data (n=9) 

Insufficient information reported (n=1) 
 

56 Full articles retrieved for review  

Initial PubMed hits from 74 literature 
searches: 

 Total = 1202 

56 papers reviewed 

Papers excluded (n=1146): 
Different indication (n=650) 

Different drug or intervention (n=50) 
Clinical papers or commentaries (n=314) 

Not models (n=94) 
Model based on RCT data (n=39) 
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publication is desirable in some instances, it is not a priority nor a metric for career 

achievement. In addition, work is likely to be presented at conferences before a full (peer 

reviewed) publication is available. In order to capture models that fit into these categories, 

posters and presentations from meetings of the International Society for 

Pharmacoeconomics and Outcomes Research conferences were also searched. In contrast 

to other conferences in the field ISPOR also has a large attendance from the pharmaceutical 

industry, who are responsible for the production of many models – this means the archives 

are more likely to contain relevant abstracts. 

Although the conference abstracts can be searched online (with the full poster or 

presentation available as a PDF if uploaded by the author), the database does not allow for 

complex searches. As only simple Boolean operators are possible, a search was conducted 

for each drug by generic OR US trade OR EU trade name. 

The results of these initial searches were then screened for relevance by initial reading of 

the abstract and title. Potentially relevant abstracts, or where there was uncertainty 

regarding relevance, the abstract was included for full review. After the initial review, a full 

review was performed of abstracts that passed the initial screening. Where available, this 

included downloading and reviewing the PDF of the poster / presentation. 

Based on these searches and review, 16 conference abstracts were included from 1780 

initial hits, with 43 abstracts reviewed in full. A full PRISMA diagram is shown in Figure 3-6. 
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Figure 3-6: PRISMA diagram of modelled estimates identified in the ISPOR Scientific Presentations database 

 

 

 

 

 

 

 

 

 

  

 

 

 

3.2.1.3 HEALTH TECHNOLOGY APPRAISAL BODIES (NICE, SMC, AND AWMSG) 

In the UK NHS, decisions on whether a new pharmaceutical will be approved for use, in 

general, are taken by health technology assessment bodies. In England and Wales, the 

National Institute for Health and Care Excellence (NICE) is the main agency, with some 

decisions (Multiple Technology Appraisal) also applicable in Scotland. In general for a NICE 

submission, the company will construct an economic model, which will be critiqued by an 

independent academic group (the Evidence Review Group, or ERG), who may also 

construct their own model. These models (along with the clinical data and other analyses 

provided) then form a part of the deliberative process for the appraisal committee, who then 

issue a decision of whether the drug should be funded in the NHS. 

Whilst NICE have topics referred to them by the Department of Health, on launch, the 

Scottish Medicines Consortium (SMC) will often ask to see a full submission for a new drug 

from the company (this decision is made by the SMC, following provision of outline 

information by the company). As a result, they conduct a lot more appraisals than NICE, with 
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a shorter process. Essentially for SMC submissions, the company submits a dossier with 

clinical and economic evidence to the SMC, who will have it reviewed by an independent 

economist and who will ask questions of the company to identify any issues with the 

submission. All the evidence is then taken into consideration at the SMC meeting, where a 

decision on whether the drug should be approved for use is made.  

The All Wales Medicines Strategy Group (AWMSG) has a similar process to the SMC, 

although it does not review drugs that are due to be reviewed by NICE, unless there are 

exceptional circumstances (for example a long delay in NICE guidance), as NICE guidance 

overrules AWMSG guidance. 

To identify guidance issued based on the drugs identified in Chapter 3, I searched the 

websites of each of the UK health technology appraisal bodies, with the results of these 

searches described below. 

3.2.1.3.1 NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE (NICE) 

APPRAISALS 

I searched the NICE website and downloaded the documentation surrounding each relevant 

appraisal, which was reviewed for economic models constructed as a part of the process, 

either by the manufacturer or the independent evidence review group (ERG). This search 

yielded 19 hits, with nine assessments having relevant models included after review. A full 

PRISMA diagram is shown in Figure 3-7. 
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Figure 3-7: PRISMA diagram of NICE appraisals involving economic models 

 

 

 

 

 

 

 

 

 

  

 

 

3.2.1.3.2 SCOTTISH MEDICINES CONSORTIUM SUBMISSIONS 

I searched the SMC website, with all relevant appraisal documents available then reviewed.  

Prior to 2005, SMC assessments offered limited publicly available information; with only a 

statement regarding a positive or negative decision available. Over time, the amount of 

information released has increased to be (at the time of the literature review) a summary of 

the clinical evidence provided, a summary of the health economic evidence provided, and an 

assessment of the strengths and weaknesses of each. This level of information has not been 

provided retrospectively; therefore, for some early SMC assessments, it is not possible to 

conclude how any economic model(s) were constructed, and even in later appraisals, there 

is often ambiguity in the methods. 

The resulting review of SMC submissions yielded 16 submissions describing economic 

evaluations of interest. Interestingly, 13/52 times the manufacturer of a product chose not to 

submit to the SMC. A full PRISMA diagram is shown in Figure 3-8. 
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Figure 3-8: PRISMA diagram of Scottish Medicines Consortium submissions 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1.3.3 ALL WALES MEDICINES STRATEGY GROUP (AWMSG) SUBMISSIONS 

The process for identifying AWMSG submissions of relevance was very similar to that used 

for identifying SMC submission, with similar issues relating to the level of reporting in the 

early 2000s and the number of non-submissions (13/27).  

Ultimately, five appraisals were included with a full PRISMA diagram shown in Figure 3-9.  
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Figure 3-9: PRISMA diagram of All Wales Medicines Strategy Group submissions 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1.4 CONSOLIDATED REPORTING OF IDENTIFIED MODELLED ESTIMATES OF EFFICACY 

After searching the two databases and websites of the three health technology assessment 

bodies, a total of 76 papers was identified from the various sources. A tabulation of the 

number of hits, reason for exclusion (shown in italics), and number included from each 

source is shown in Table 3-3. 
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Table 3-3: Number and source of modelled estimates of efficacy identified as being based on uncontrolled clinical 

study data, with reasons for exclusion shown in italics 

  NICE SMC AWMSG ISPOR PubMed Totals 

Number of hits 19 52 27 1780 1202 3136 

Non-submissions 2 13 13 - - 28 

For review 17 39 14 43 56 169 

Excluded 8 23 9 28 27 95 

Different indication 0 0 1 2 7 11 

Different drug or intervention 0 0 0 4 3 7 

Clinical paper or commentary 0 0 0 1 1 2 

Not an economic model 0 5 0 2 6 13 

Model based on RCT data 8 9 3 5 9 33 

Insufficient information 0 9 5 14 1 29 

Included 9 16 5 15 29 74 

3.2.2 DESCRIPTION AND DE-DUPLICATION OF PUBLISHED ESTIMATES  

During full review, it was apparent that a number of the models were reported multiple times, 

for example used in a NICE submission, an SMC submission, and then presented at ISPOR. 

Equally, other papers reported several approaches to modelling the uncontrolled data, and 

these different approaches were therefore more relevant than describing individual papers. 

De-duplication was performed by looking through the detailed descriptions of model 

structures, and approach to estimation of efficacy. Three examples of models without a 1:1 

relationship with publications are listed below to give examples of the results of the de-

duplication process. A full description of each of the models identified is given in Hatswell et 

al. (2017b)  

• Cost-utility decision tree of argatroban compared to alternative treatments in heparin-

induced thrombocytopenia 

o This model appears to have been used for both SMC and AWMSG 

submissions and compared argatroban to two alternatives and no treatment 

(AWMSG, 2012; Scottish Medicines Consortium, 2012).  

o Clinical efficacy data for argatroban was taken from the historically controlled 

trials used for the drug licensing (comparing argatroban to a historical case 

series of US patients). Comparisons were also made to other treatments 

(danaparoid and lepirudin), using a naïve comparison of the treatment arms.  

o The model structure, comparators, and clinical data were described as being 

the same in both the AWSMG and SMC documents, with the time frame also 

being identical 



Page 91 of 181 

• Comparison of temoporfin photodynamic therapy with palliative care or 

chemotherapy in advanced head and neck cancer  

o This model was described in a publication by Hopper et al., as being a 

comparison of palliative care, chemotherapy and photodynamic 

therapy(Hopper, Niziol & Sidhu, 2004). The model used trial results from the 

two clinical studies (without adjustment) as inputs for the effectiveness of the 

three treatments in the model – one RCT of chemotherapy vs. palliative care, 

and the temoporfin trial. No adjustments were made for differences in patients 

between trials. 

o The same model was adapted to Germany, with the same approach to the 

estimation of effectiveness but German costs used – the authors (some of 

whom are authors on the publication by Hopper et al) state that “an already 

published model developed on the base of English data was fed with German 

cost−data” (Kübler et al., 2005). 

• Trabectedin for the treatment of soft tissue sarcoma (STS) using a historical control 

o Trabectedin was assessed by NICE for the treatment of STS in TA185, with 

the company creating a model for submission to estimate the cost 

effectiveness of the drug. For comparative data, the model used data from the 

trabectedin clinical study, and compared this to a set of historical controls. In 

this case the historical controls consisted of four pooled trials published by the 

European Organisation for Research and Treatment of Cancer – Soft Tissue 

and Bone Sarcoma Group. The data from the historical controls were then 

adjusted to match the control group using a regression with dummy variables 

for performance status, histopathology of disease, age, and gender – this 

improved the estimated survival of best supportive care slightly. 

o The model was used in the submission to NICE (Simpson, Rafia & 

Stevenson, 2009), and later published in a HTA report (Simpson et al., 2010) 

and discussed in a review paper (Rafia et al., 2013). In addition to the NICE 

appraisal, the model was also used in two SMC submissions, first without 

controlling for differences between baseline characteristics (Scottish 

Medicines Consortium, 2010), and then in a resubmission, where the 

regression model used for NICE was applied, and price of the drug also 

reduced (Scottish Medicines Consortium, 2011). 

• Sunitinib compared to best supportive care in the treatment of second-line metastatic 

renal cell carcinoma 



Page 92 of 181 

o The model compared the results observed in the uncontrolled sunitinib trial, to 

the outcomes reported in a published case series, and to Medicare data from 

the US (Scottish Medicines Consortium, 2007). 

o The model is described in the SMC submission, with also a Belgian 

adaptation presented at ISPOR (Van Nooten et al., 2007). A Spanish 

adaption was also performed where only the comparison with Medicare data 

was presented, both as an ISPOR poster (Aiello et al., 2007) and in a peer 

reviewed journal (Paz-Ares et al., 2010). 

As a result of this full review and de-duplication, of the 74 publications, 91 approaches were 

identified (some publications contained more than one approach – for instance the 

argatroban and sunitinib models). The total is reduced to 51 individual models when taking 

duplicate reporting into account. 

Each of the approaches performed has been summarised in a separate working paper 

(Hatswell, Freemantle & Baio, 2017b), with references to the appropriate papers, abstracts, 

and health technology assessment submissions.  

3.2.3 A TAXONOMY OF MODELLING APPROACHES 

Of the 51 modelling approaches identified, the majority (43) were based on historical 

controls of various forms, shown in Figure 3-10. 
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Figure 3-10: Taxonomy of economic modelling approaches used for estimating incremental benefit from uncontrolled 

clinical studies 

 

 

 

 

 

 

 

 

 

 

 

 

Of the 43 historical controls, 22 used comparisons to arms from other clinical trials – 17 
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Of the approaches not using historical controls, three models could loosely be described as 

using the patient as their own control, taking the change from baseline as being due to the 

drug (with obvious concerns regarding regression to the mean). Three models were cost 

minimisations, which has been extensively criticised in the literature as being an 

inappropriate approach by simply sidestepping the question of comparative effectiveness 

and assuming equality of treatments (Briggs & O’Brien, 2001; Dakin & Wordsworth, 2013). 

One model assumed a ‘cumulative approach‘ (Hoyle et al., 2013), where patients who 

received the drug had benefit only for the time on treatment (and subsequent health states 

were unaffected), and one model was a threshold analysis of how effective the drug would 

need to be to show cost-effectiveness. 

3.3 SUMMARY OF FINDINGS FROM LITERATURE SEARCHES 

In reviewing drug approvals, it can be seen that although uncommon, approvals granted 

without RCT evidence are not rare, occurring several times per year. Although the majority 

are in oncology, many other disease areas are included. It is also not simply the case that 

follow on indications were granted for a drug known to be effective in RCTs, but in rarer 

subgroups – the vast majority (80%) of drugs had their first approval in an uncontrolled 

study. 

In terms of modelling it can be seen that there is no consensus on how best to model 

uncontrolled studies. Whilst the historical control does seem to be the main vehicle used, 

there was a large degree of variation in what comparisons were made and how data were 

adjusted (or not) to account for differences between trials. Trial data and registry data were 

also used interchangeably, with only a few studies accounting for patient selection. There 

was also no discernible pattern in the approaches by source (HTA, publication or conference 

presentation). 

Given the frequency of uncontrolled approvals and the use of historical controls in assessing 

comparative effectiveness, the next chapter focuses on the role of MAIC in addressing 

differences between study populations, and how historical controls may be created where 

none are currently available. 
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 SIMULATION STUDY REGARDING THE PERFORMANCE OF 

UNANCHORED MATCHING ADJUSTED INDIRECT COMPARISON (MAIC) 

The work described in this chapter has been published in Value in Health (Hatswell, 

Freemantle & Baio, 2020) 

As highlighted in the NICE DSU covering the adjustment methods of MAIC and STC 

(Phillippo et al., 2016), as well as the subsequent publication (Phillippo et al., 2017), a need 

for research on the performance of MAIC (ideally through the use of simulation studies) was 

noted. This was a need I had separately identified following my literature review of models 

as there were clear differences between studies, but uncertainty as to which circumstances 

MAIC may have been able to assist with. As a result this was a study I designed and 

conducted. 

Phillippo et al. in the NICE DSU guidance assess the two applications of MAIC separately; 

unanchored MAIC, where comparisons are made across individual study arms, and 

anchored MAIC, where controlled studies are reweighted (including a common comparator 

arm), for inclusion in Network Meta Analysis). Due to the types of problems frequently seen 

with uncontrolled studies, e.g. potential differences in patient characteristics between trials, 

the primary interest I had was in the robustness of unanchored MAIC under model 

misspecification. This would appear to be the area most relevant to uncontrolled studies due 

to uncertainty in which variables should be included, and how their structure would affect 

results. 

The reason MAIC as a method is relevant in this setting is that data availability when 

comparing to historical data is frequently an issue - with many patient and disease 

characteristics either not measured or not reported in historical publications. This can be 

seen in my literature review, where of historical controls the majority were of published 

studies, with few companies appearing to have access to the ILD of both studies of interest. 

As in such circumstances the studies included in analysis are conducted independently there 

is also a high chance of non-overlapping populations in at least some variables, due to 

difference in inclusion / exclusion criteria. The question of relevance to my research 

therefore is how MAIC performs in such situations, where there are incomplete data for 

matching, potential differences between patient populations, and whether MAIC is able to 

appropriately adjust for different relationships between explanatory covariates.  

A secondary question for me was around the implementation of MAIC; it is possible to match 

on mean values of characteristics, or also on higher moments (such as the variance) – as a 

measure of variability is also sometimes reported alongside mean values for patient 
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characteristics in studies. Whilst both approaches are described in the paper proposing 

MAIC as a method, no preference is stated (Signorovitch et al., 2010). Indeed reviewing 

previous publications using the approach, both approaches appear to have been used, as 

well as different approaches to the number of variables included – from matching on all 

available characteristics, to some studies which selected preferred variables. 

4.1 APPROACH AND DATA GENERATION 

In order to test to the robustness of the method, a simulation study was conducted mimicking 

data from end stage cancer – the most common area for MAIC to be used (23 of the 58 

published examples). Survival data were simulated based on each simulated patients’ 

underlying health, but also their baseline characteristics – the sum of these values was then 

used as a linear predictor of outcomes. In the case of treated patients this was then modified 

by a hazard ratio to create outcomes (𝑌) with presenting proportional hazards. Outcomes 

were generated for two arms – a contemporary study (Population A), whose units were 

assumed to have more favourable baseline characteristics, as well as receiving treatment 

(𝑇𝑇) and a historical control arm (Population B) made by individuals who received the control 

arm (𝑇𝐶). For all patients, outcomes were sampled and outcomes calculated including and 

excluding the effect of treatment. This allows to allow the performance of MAIC in estimating 

the ‘true’ difference to be calculated.  

To ensure that the data would be applicable to the type of problems seen, patients were 

assumed to have six uncorrelated characteristics (X1, … , X6) that influenced outcomes. Four 

assumed to be fully observed and available for weighting (X1, … , X4) whilst two (X5, X6) were 

assumed to be unobserved. Patient characteristics were sampled in a way such that there 

was a bias of half a standard deviation in favour of the intervention arm in observed 

characteristics, with unobserved characteristics drawn from the same distribution (an 

assumption which is varied in sensitivity analysis). A linear predictor was created using an 

intercept, and the sum of products of characteristics with the corresponding effect size 

(β1, … , β6 ). This outcome model is shown mathematically below 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑠ℎ𝑎𝑝𝑒 = 𝛼, 𝑠𝑐𝑎𝑙𝑒 = 𝜆) 

where: 

𝛼~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 1.3, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.1) 

𝜆 =  
exp(β0 + ∑ β1X1, … , β6X6)

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜
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NB: β0 is the intercept in the model, which is fixed as 2 

β1, … , β4 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.5, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.2) 

β5,  β6 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.2) 

For the intervention (𝑇𝑇): 

X1, … , X4 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.3, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.1) 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜 = 0.75 

For the control (𝑇𝐶): 

X1, … , X4 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.25, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.1) 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜 = 1 

For both intervention & control: 

X5, X6~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.25, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.1) 

Six characteristics were selected as this was loosely informed by work on predictive 

characteristics in different cancers - for example three identified in bladder cancer by 

Bellmunt et al. (2010), and work showing a median of six characteristics were adjusted for in 

published MAICs (range 1-13) (Phillippo et al., 2019). 

In the base case, the characteristics were assumed to be independent. Although it is likely 

that some predictive and prognostic characteristics are linked (for instance in the paper by 

Bellmunt et al. patients with liver metastases are likely to have worse ECOG status), the 

degree of correlation is uncertain, and how this would impact results is also unknown – for 

transparency therefore these are assumed not to be correlated in the base case, which is 

varied in sensitivity analysis. This approach also allows an independent assessment of the 

impact of each issue that may affect an individual analysis, as there are examples where 

variables would not be expected to be correlated – for example lung cancer studies where 

there may exist the two uncorrelated prognostic characteristics of race and gender. 

Each simulated characteristic (X1, … , X6) was multiplied by a corresponding effect size 

(β1, … , β6) with a linear predictor then created using the sum of products added to an 

intercept, which was set to 2 in the base case. This linear predictor was used in a Weibull 

proportional hazards survival model; a corresponding survival time (Y) was sampled for each 
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patient with and without receiving the intervention. For simplicity normal distributions were 

selected, which were varied in a sensitivity analysis. 

In each simulation the patient characteristics, effect sizes, and resulting survival times were 

resampled. The intention of the simulation was to address whether the method [MAIC] 

performs well in survival models. The interest however is in the class of survival model rather 

than in the specific parameters of the distribution chosen (a shape of 1.3 being the mean of 

what is simulated in the Weibull distribution for example). By allowing parameters such as 

the shape to vary, we are able to ensure the result holds for each distribution in general (at 

least as would apply to survival outcomes), as opposed to only being valid with specific 

parameters. This approach does mean that more simulations are needed (as variability is 

introduced) however this seems a fair compromise for a more generalisable result. 

To isolate the effect of MAIC (as opposed to just Monte Carlo error), a large number of 

patients (𝑛 = 1000) were sampled for both Population A and Population B and survival times 

were assumed to be fully observed with no missing data or censoring. This particular setup 

(a large number of patients, fully observed survival times, and no missing data) was selected 

to ensure the study assessed weighting methods – and was not overly influenced by the 

variability between samples, or approach to missing data; be that due to administrative 

censoring i.e. requiring extrapolation, or the type of ‘missingness’ assumed. In reality MAIC 

is likely to be conducted alongside techniques to account for missing data (Gabrio, Mason & 

Baio, 2019; Leurent et al., 2018) and / or extrapolation of survival times (Latimer, 2011). 

4.2 APPLICATION OF MATCHING ADJUSTED INDIRECT COMPARISON 

As would be seen with a historical control used without any adjustment, a naïve comparison 

contrasts the outcome from Population A who received the intervention (𝑡 = 0), with the 

outcomes from Population B, the historical control, who were assumed to receive control 

(𝑡 = 0). In keeping with the terminology of Signorovitch et al. where treatment is denoted by 

0 and control by 1, this is comparing 𝑌̅0
𝐴 with 𝑌̅1

𝐵. Due to the more favourable characteristics 

in Population A, such a comparison would be biased. Weighting methods (both MAIC and 

PSW), attempt to remove this bias by reweighting the patients in Population A to match 

those in Population B (assuming PSW was estimating the Average Effect on the Controls). If 

successful, the reweighting of 𝑌̅0
𝐴 would match the (unobserved - and unobservable) 𝑌̅0

𝐵, 

which can then be contrasted with 𝑌̅1
𝐵 to estimate the effect of the intervention in a similar 

population. 

This comparison (𝑌̅0
𝐵 vs 𝑌̅1

𝐵) is indeed what would be generated by an RCT in population B 

of the two treatments, through the use of exchangeable groups such that the only 
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meaningful difference between groups is treatment assignment. By comparing the estimated 

effect from MAIC to the (unobserved) true effect, the success of both MAIC and PSW in 

estimating this true effect can be assessed. Due to being a simulation study, we are able to 

perform this comparison as data generation mechanisms are known, and thus outcomes can 

be computed with and without the intervention for both treatment and control groups. By 

comparing the estimated effect to the (unobserved) true effect, the success of both MAIC 

and PSW in estimating the true effect can be assessed. 

In the simulation study MAIC was implemented using two approaches 

• Matching on first moments i.e. means of X1, … , X4, referred to in results as MAICFM 

• Matching on the means and higher moments i.e. matching on means and on 

standard deviations, as given as an option in the original paper by Signorovitch et al. 

(2010) which states 

For example, given the baseline mean and standard deviation of age, it is 

straightforward to compute the mean of squared age, which can then be treated as a 

separate mean baseline characteristic for matching.  

In results this is referred to as MAICHM 

PSW was also conducted using the same approach using inverse probability of treatment 

weighting (IPTW) with weights for all patients in both arms. Although not technically a 

comparator to MAIC (as calculating propensity scores requires full access to individual level 

data for both studies) PSW is a well-recognised approach with a long history, and a 

recognised standard in observational data. Its inclusion in the simulation study allows an 

assessment of how much accuracy is lost when patient level data are only available from 

one study. 

4.3 OUTCOMES OF THE STUDY 

A Cox Proportional Hazards (CPH) model was used to estimate the hazard ratio between 

the two arms in line with previous work in the field (Petto et al., 2019). The mean underlying 

value for the CPH was known to be 0.75; however, due to the difference in patient 

characteristics, a naïve comparison would overestimate the effectiveness of treatment (a 

CPH estimated using 𝑌̅0
𝐴 and 𝑌̅1

𝐵). This is because the more favourable patient 

characteristics give a further benefit to Population A. Each weighting method was then 

applied and used to estimate the CPH ratio using the reweighted Population A to give the 

estimated outcome in Population B with treatment (𝑌̅0
𝐵̂) compared with the observed 

outcomes for the control (𝑌̅1
𝐵). 
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In each simulation a number of outcomes were calculated: 

• The mean percentage error in the hazard ratio. If the methods are unbiased this 

should be approximately zero (with only Monte Carlo error keeping this from being 

zero); an unbiased method should be as likely to under-predict effectiveness as over-

predict 

• The mean absolute percentage error in the hazard ratio. This is a measure of the 

accuracy of methods. Whilst a method may be unbiased, if it regularly exhibits large 

prediction errors it would be imprecise, and unsuitable for use 

• The coverage probability - whether the 95% interval for each estimated hazard ratio 

contained the ‘true’ value which is helpful in understanding how much belief can be 

placed in a method given any individual result 

• In addition, for the weighting methods, whether the point estimate of the hazard ratio 

was more accurate than a naïve comparison was also calculated. Over all 

simulations if a method was likely to lead to an increase in bias compared to a naïve 

comparison, this would be a concern in recommending a method 

4.4 SCENARIO ANALYSES PERFORMED 

In order to understand how the method of MAIC performs under different circumstances, a 

number of scenario analyses was conducted. These included varying the setup of the study 

to ensure any findings were not specific to the simulation set up, testing how MAIC may 

apply under different conditions, and finally in violating the explicit and implicit assumptions 

of MAIC to understand the implications. 

In varying the setup of the simulation study scenarios included: 

• The use of binary variables (X1, … , X4)., as would be seen with characteristics such 

as male / female 

• An alternative survival function (the exponential); achieved by setting the shape (𝛼) in 

the Weibull survival distribution to 1 

• Changing the explanatory power of the patient characteristics (X1, … , X6)., to give 

them a lesser or greater importance 

• Reversing the direction of bias in X1, … , X4, such that the historical data had more 

favourable patient characteristics 

In testing MAIC under different conditions, the scenarios explored included: 
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• Setting some (or all) parameters (X1, … , X4) to be nuisance variables, uncorrelated 

with outcomes 

• Testing a non-linear effect of patient characteristics. This was done by taking the 

exponential of X1, … , X4, then dividing each by 5, to ensure the mean scores 

remained the same 

• Varying the degree of overlap in Population A and Population B from the base case 

(a 0.5 SD difference between groups) to have either little (1 SD) or large (0.1SD) 

overlap 

• Allowing for variables used in weighting (X1, … , X4) to be correlated. This was 

implemented by having an ‘underlying fitness’ parameter, defined as a normal 

variable with standard deviation 0.1, which had mean 0.3 for population A, and 0.25 

for population B. Parameters X1, … , X4 were then generated as the ‘underlying fitness’ 

plus sampling from a normal distribution with mean 0 and standard deviation 0.1 

Finally, when violating the implicit / explicit assumptions in MAIC, the following scenarios 

were tested: 

• Including imbalances in the unobserved characteristics of X5 and X6 with these 

characteristics being correlated, or uncorrelated with the observed patient 

characteristics. The same distributions were then used for these as for X1, … , X4 

• Sampling from non-normal distributions for Population A and Population B, as would 

be seen in the ages of patients enrolled in trials (many cancers having increasing 

incidence with age, though fewer people survive to older ages). This was 

implemented through the use of the lognormal distribution. 

• Sampling from trimmed distributions for patient characteristics (X1, … , X4) for 

Population A and Population B, as would be seen when inclusion criteria (such as a 

minimum or maximum age or performance status) are included in trial entry criteria. 

How each scenario was implemented in the simulation study is shown in Table 4-1. In 

addition to these scenarios, to understand whether it was more important to have more 

patients available to weight with, or match to, the number of patients sampled for Population 

A and Population B (using the base case approach) were varied in combination using 𝑛 =

30, 𝑛 = 300, and 𝑛 = 3000. 
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Table 4-1: Base case and sensitivity analysis parameters for the simulation study of the performance of MAIC 

Scenario Base case Scenario setting 

 
Varying the setup of the simulation study 

 

All variables are binary 

Covariates 1 to 4: 

Population: A XA~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.3, SD = 0.1):  

Population: B XB~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.25, SD = 0.1):  
 

Covariates 1 to 4: 

Population A: XA~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.3) 

Population B: XB~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.25) 

Exponential distribution used as 
the survival function 

Survival:  

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑠ℎ𝑎𝑝𝑒 = 1.3 
Survival:  

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝑠ℎ𝑎𝑝𝑒 = 1 

Explanatory variable power is low 

Covariates 1:4: 𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.5, SD = 0.2) 

Covariates 1:4: 𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.1, SD = 0.05) 

Explanatory variable power is 
high 

Covariates 1:4: 𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 1.0, SD = 0.4) 

Treatment effect is low 
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝑅 = 0.75 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝑅 = 0.9 

Treatment effect is high 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐻𝑅 = 0.2 

Covariate sampling is reversed 
i.e. Population A less favourable 

Covariates 1 to 4: 

Population A: XA~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.3, SD = 0.1) 
 

Covariates 1 to 4: 

Population A: XA~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.2, SD = 0.1) 

 
Testing MAIC under different conditions 

 

Half the matched parameters are 
nuisance parameters Covariates 1:4:  𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.5, SD = 0.2) 

 

Covariates 1:2: 𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 1.0, SD = 0.2) 
Covariates 3:6: 𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.0, SD = 0.2) 

All the matched parameters are 
nuisance parameters 

Covariates 1:4: 𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.0, SD = 0.2) 

The effect of parameters is non-
linear 𝜆 =  

exp(2 + ∑ β1X1, … , β6X6)

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜
 𝜆 =  

exp(2 + exp (∑ β1X1, … , β6X6)/5)

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜
 

Small difference is covariate 
sampling (0.1SD) 

Covariates 1 to 4: 

Population A: XA~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.3, SD = 0.1) 

 

Covariates 1 to 4: 

Population A: XA~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.26, SD = 0.1) 

Large difference in covariate 
sampling (1SD) 

Covariates 1 to 4: 

Population A: XA~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.35, SD = 0.1) 

Parameters correlated 
Underlying health: 

Population A: HA~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.3, SD = 0.1) 
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Population B: HB~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.25, SD = 0.1) 

Covariates 1:4: 

X~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0, SD = 0.1) + H 

 
Violating assumptions implicit / explicit assumptions 

 

Missing parameters correlated 
with observed parameters 

Covariates 5 & 6: 

X~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0, SD = 0.2) 

Covariates 5 & 6: 

𝑋~
∑ X1, … , X4

4
+ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0, SD = 0.1) 

Missing parameters uncorrelated 
with observed parameters 

Covariates 5 & 6: 

Population A: XA~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.3, SD = 0.1) 

Population B: XB~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.25, SD = 0.1) 

Covariates 1:6: 𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.35, SD = 0.15) 

Non-normal distributions sampled 
in Population A 

Covariates 1 to 4: 

Population A: XA~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.3, SD = 0.1) 

Population B: XB~𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.25, SD = 0.1) 

Covariates 1 to 4: 
Population A:  

XA~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛𝑙𝑜𝑔 = log (0.27),
SDlog = 0.5) 

Non-normal distributions sampled 
in Population B 

Covariates 1 to 4: 
Population A:  

XB~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛𝑙𝑜𝑔 = log (0.22),
SDlog = 0.5) 

Trimmed patient characteristics in 
Population A (no poor performers) 

Covariates: 

XA resampled if <0.2 
 

Trimmed patient characteristics in 
Population B (no good 
performers) 

Covariates: 

XB resampled if >0.35 
 

SD = standard deviation
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4.5 IMPLEMENTATION IN SOFTWARE AND MODEL CONVERGENCE 

The simulation study was programmed in R version 3.6.1 (R Core Team, 2020) using the 

following packages 

• stats to simulate survival curves 

• survival to implement CPH models and robust standard errors) 

• ggplot2 and ggsurvplot to produce graphics 

• msm to generate trimmed distributions for scenario analyses 

To allow for reproducibility of the implementation of MAIC, the code snippet (including 

additional functionality such as cross-checks and validation) is presented in Appendix C. 

To ensure the results of the simulations were stable, 5000 simulations of each scenario were 

performed. This number was selected using two different methods. Firstly convergence plots 

were generated showing how different variables changed as the number of simulations 

increased (including going beyond the number of simulations used); an example is given 

below showing the mean percentage error which beyond the first several hundred 

simulations does not appear to change for the base case. In the example (the base case) 

the lines for each of the methods overlap around zero, as they appear to be unbiased 
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Figure 4-1: Convergence plot of the base case MAIC simulation study; Up to 100,000 simulations for mean percentage 

error of naïve comparison MAICFM, MAICHM and PSW with vertical lines at 1,000 and 5,000 simulations 

 

Some metrics for some scenarios (for instance the coverage probability when faced with a 

large effect size) were more uncertain, and took longer to stabilise. This was seen through 

running repeated batches of the same scenario and plotting the routes to convergence on 

the same graph. This ‘route to convergence’ is shown below for 30 runs of the mean 

absolute percentage error in the simulation with only 30 patients included in each arm. 
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Figure 4-2: Convergence plot of 30 runs of 1000 simulations for the base case mean absolute percentage error of 

MAICFM in the scenario with n=30 in Population A and n=30 in Population B 

 

The above graph indicates that the results appear to be close to stable by 1000 simulations, 

though as runtime is not a primary consideration in the study, a cautious approach was 

taken of performing 5000 simulations, which appeared to be well in excess of the largest 

number of simulations needed for results to stabilise. 

A second approach was then taken at the request of a peer reviewer of the paper who 

desired a more objective measure of model convergence. This involved calculating Monte 

Carlo Standard Errors (MCSEs) using the mcmcse package. The values seen at 5,000 

simulation (all <0.01) demonstrate that the samples drawn are representative of the 

underlying distributions; and that the findings are many times larger than the MCSEs 

indicates they are likely not due to chance. 

4.6 FINDINGS FROM THE BASE CASE 

In looking at the base case of the simulation study, the setup was such that the outcomes of 

the historical control (Population B) with untreated patients (𝑌̅1
𝐵) had a mean survival of 11.4 

months – had the patients received the intervention (with the associated hazard ratio), 𝑌̅1
𝐵, 
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this would have been 15.2 months. Because of the more favourable characteristics in 

Population A the observed survival (𝑌̅0
𝐴) was 16.9 months; a bias of approximately 11% due 

to the healthier patients in Population A. 

When weighting was performed on the simulated data, across the 5,000 simulations all 

weighting methods (MAICFM, MAICHM and PSW) were unbiased (mean error close to zero), 

and had similar levels of accuracy in accounting for the bias inbuilt in the simulation i.e. had 

good accuracy. This is shown not only by the relatively low mean absolute percentage error, 

but importantly that few simulations (circa 1%) exacerbated the bias i.e. performed worse 

than a naïve comparison, with coverage probabilities over 90% (Table 4-2). 

Table 4-2: Tabulated results of MAIC simulation study base case, 5,000 runs 

Method 

Mean 
Percentage 

Error  
(MCSE) 

Absolute 
Percentage 

Error 
(MCSE) 

Mean 
Standard 

Error 

Coverage 
probability 

Percent of 
scenarios worse 

than a naïve 
comparison 

Base case 

Naïve 
comparison 11.8% (<0.01) 11.8% (<0.01) 0.03 0% - 

MAICFM -0.2% (<0.01) 2.6% (<0.01) 0.03 95% 2% 

MAICHM -0.2% (<0.01) 2.6% (<0.01) 0.03 95% 2% 

PSW -0.1% (<0.01) 2.7% (<0.01) 0.03 95% 2% 
MCSE = Monte Carlo Standard Error, MAIC = Matching Adjusted Indirect Comparison, FM = First moments, HM = 

includes Higher moments, PSW = Propensity Score Weighting 

The distribution of the error in the scenarios is shown in the violin plot in Figure 4-3, with 

overlaid box plots to short the quartiles of the error. This shows that all methods performed 

similarly given the setup of the base case scenario – as would be expected given the 

conditions are not set to challenge the way weighting is implemented. 
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Figure 4-3: Violin plot (with overlaid box plots) of the percent mean error in 5,000 runs of the MAIC simulation study 

base case 

 

4.7 FINDINGS FROM SCENARIO ANALYSES 

The results seen in the base case appear robust to altering the setup of the simulation study; 

whilst varying the characteristics of the study do results in some changes in the accuracy of 

the method, it remains unbiased. The only exception to this is the case of MAICHM when 

binary variables are used (where it appears biased); this result however should be discarded 

as in such an implementation would never be performed (the square of a binary variable not 

being meaningful). Results of these scenarios are shown in Table 4-3 and Figure 4-4. In 

particular it is interesting to see that where the explanatory variable power is high i.e. 

explains a large proportion of the difference between trials, the use of some form of 

weighting becomes increasingly important (though the results are more uncertain due to the 

sampling variability). The final scenario included in this section also indicates that MAIC 

performs well regardless of the directionality in any bias i.e. the method works even if the 

patient characteristics in the data matched to are more favourable. 
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Table 4-3: Tabulated results of MAIC scenario analysis varying the setup of the simulation study, 5,000 runs 

Method 

Mean 
Percentage 

Error  
(MCSE) 

Absolute 
Percentage 

Error 
(MCSE) 

Mean 
Standard 

Error 

Coverage 
probability 

Percent of 
scenarios worse 

than a naïve 
comparison 

Base case 

Naïve 
comparison 11.8% (<0.01) 11.8% (<0.01) 0.03 0% - 

MAICFM -0.2% (<0.01) 2.6% (<0.01) 0.03 95% 2% 

MAICHM -0.2% (<0.01) 2.6% (<0.01) 0.03 95% 2% 

PSW -0.1% (<0.01) 2.7% (<0.01) 0.03 95% 2% 

All variables are binary 

Naïve 
comparison 5.2% (<0.01) 5.2% (<0.01) 0.03 48% - 

MAICFM 0% (<0.01) 1.8% (<0.01) 0.03 98% 12% 

MAICHM 4.1% (<0.01) 4.2% (<0.01) 0.03 63% 4% 

PSW 0% (<0.01) 1.8% (<0.01) 0.03 98% 12% 

Exponential distribution used as the survival function 

Naïve 
comparison 9.4% (<0.01) 9.4% (<0.01) 0.03 3% - 

MAICFM -0.1% (<0.01) 2.6% (<0.01) 0.03 95% 4% 

MAICHM -0.1% (<0.01) 2.6% (<0.01) 0.03 95% 4% 

PSW -0.1% (<0.01) 2.7% (<0.01) 0.03 95% 4% 

Explanatory variable power is low 

Naïve 
comparison 2.5% (<0.01) 2.9% (<0.01) 0.03 84% - 

MAICFM -0.1% (<0.01) 2.8% (<0.01) 0.04 95% 43% 

MAICHM -0.1% (<0.01) 2.8% (<0.01) 0.04 95% 43% 

PSW -0.1% (<0.01) 2.8% (<0.01) 0.04 95% 44% 

Explanatory variable power is high 

Naïve 
comparison 21.7% (<0.01) 21.7% (<0.01) 0.03 0% - 

MAICFM -0.9% (<0.01) 7.1% (<0.01) 0.08 94% 2% 

MAICHM -1% (<0.01) 7.1% (<0.01) 0.08 94% 2% 

PSW 0.2% (<0.01) 7.7% (<0.01) 0.09 94% 4% 

Treatment effect is low (0.9 hazard ratio) 

Naïve 
comparison 11.9% (<0.01) 11.9% (<0.01) 0.03 0% - 

MAICFM 0% (<0.01) 2.5% (<0.01) 0.03 95% 1% 

MAICHM 0% (<0.01) 2.5% (<0.01) 0.03 95% 1% 

PSW 0% (<0.01) 2.6% (<0.01) 0.03 95% 1% 

Treatment effect is high (0.2 hazard ratio) 

Naïve 
comparison 11.7% (<0.01) 11.7% (<0.01) 0.04 10% - 

MAICFM -0.8% (<0.01) 4.3% (<0.01) 0.05 94% 10% 

MAICHM -0.8% (<0.01) 4.3% (<0.01) 0.05 94% 10% 

PSW -0.1% (<0.01) 4.4% (<0.01) 0.05 94% 9% 

Covariate sampling is reversed i.e. Population A are worse by 0.5SD 

Naïve 
comparison -13.6% (<0.01) 13.6% (<0.01) 0.03 0% - 

MAICFM -0.2% (<0.01) 3% (<0.01) 0.04 95% 1% 
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MAICHM -0.2% (<0.01) 3% (<0.01) 0.04 95% 1% 

PSW -0.1% (<0.01) 3% (<0.01) 0.04 95% 1% 
MCSE = Monte Carlo Standard Error, MAIC = Matching Adjusted Indirect Comparison, MM = Method of moments, HM = 

includes Higher moments, PSW = Propensity Score Weighting 



Page 111 of 181 

Figure 4-4: Violin plot (with overlaid box plots) of the percent mean error in 5,000 runs of the MAIC simulation study 

base case 

  

When testing MAIC under different conditions, some interesting results can be noted – in 

particular that whilst the inclusion of all nuisance parameters that have no bearing on the 

outcome does (predictably) often lead to errors. However if even half of the variables used 

for weighting do influence outcomes, the approach remains accurate. Also reassuring is that 

correlated variables in the analysis not only performed well, but that the method performed 

better than in the base case. 

What should also be noted is the importance of overlap between the datasets – where the 

overlap is especially close (0.1SD was used in the simulation), a non-trivial number of 

simulations (circa 30%) resulted in an estimated HR more inaccurate than a naïve 
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comparison – although the method was unbiased, it did introduce a level of uncertainty. 

Conversely where the overlap was low (a mean of a 1SD difference between datasets) the 

method again remained unbiased and a big improvement from a naïve comparison (shown 

by the coverage probability and the percent of scenarios worse than a naïve comparison). In 

this scenario although the mean percentage error was near zero, the absolute error was 

substantially inflated – showing the importance of reasonably similar groups. 
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Table 4-4: Tabulated results of MAIC scenario analysis varying the conditions of the study, 5,000 runs 

Method 

Mean 
Percentage 

Error  
(MCSE) 

Absolute 
Percentage 

Error 
(MCSE) 

Mean 
Standard 

Error 

Coverage 
probability 

Percent of 
scenarios worse 

than a naïve 
comparison 

Half the matched parameters are nuisance parameters 

Naïve 
comparison 11.7% (<0.01) 11.7% (<0.01) 0.03 0% - 

MAICFM -0.1% (<0.01) 2.6% (<0.01) 0.03 96% 2% 

MAICHM -0.1% (<0.01) 2.6% (<0.01) 0.03 96% 2% 

PSW 0% (<0.01) 2.6% (<0.01) 0.03 95% 2% 

All the matched parameters are nuisance parameters 

Naïve 
comparison 0% (<0.01) 2.1% (<0.01) 0.03 95% - 

MAICFM 0% (<0.01) 2.9% (<0.01) 0.04 95% 64% 

MAICHM 0% (<0.01) 2.9% (<0.01) 0.04 95% 64% 

PSW 0% (<0.01) 2.9% (<0.01) 0.04 95% 64% 

The effect of parameters is non-linear 

Naïve 
comparison 11.9% (<0.01) 11.9% (<0.01) 0.03 0% - 

MAICFM -0.1% (<0.01) 2.6% (<0.01) 0.03 96% 1% 

MAICHM -0.1% (<0.01) 2.6% (<0.01) 0.03 96% 1% 

PSW 0% (<0.01) 2.6% (<0.01) 0.03 96% 1% 

Small difference is covariate sampling (0.1SD) 

Naïve 
comparison 2.5% (<0.01) 3% (<0.01) 0.03 84% - 

MAICFM 0% (<0.01) 2.1% (<0.01) 0.03 95% 31% 

MAICHM 0% (<0.01) 2.1% (<0.01) 0.03 95% 31% 

PSW 0% (<0.01) 2.1% (<0.01) 0.03 95% 31% 

Large difference in covariate sampling (1SD) 

Naïve 
comparison 22.4% (<0.01) 22.4% (<0.01) 0.03 0% - 

MAICFM -0.7% (<0.01) 6.9% (<0.01) 0.08 95% 2% 

MAICHM -0.7% (<0.01) 6.9% (<0.01) 0.08 95% 2% 

PSW 0.2% (<0.01) 7.7% (<0.01) 0.09 94% 4% 

All parameters correlated 

Naïve 
comparison 10.7% (<0.01) 10.7% (<0.01) 0.03 1% - 

MAICFM -0.1% (<0.01) 2% (<0.01) 0.03 96% 1% 

MAICHM -0.1% (<0.01) 2% (<0.01) 0.03 96% 1% 

PSW 0.1% (<0.01) 2% (<0.01) 0.03 96% 1% 
MCSE = Monte Carlo Standard Error, MAIC = Matching Adjusted Indirect Comparison, FM = Method of moments, HM = 

includes Higher moments, PSW = Propensity Score Weighting 
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Figure 4-5: Violin plot (with overlaid box plots) of the percent mean error in 5,000 runs of the MAIC varying the 

conditions of the study 

 

 

Where the assumptions underpinning MAIC are violated, the method (in many cases) 

performs surprisingly well. As would be expected if an important (and uncorrelated) variable 

is omitted from analyses, this was not accounted for in weighting, and estimates remained 

biased – this underlines the importance of the inclusion of all prognostic variables in 

datasets. Where this missing variable was correlated with observed variables, though the 

results were more inaccurate than the base case (higher absolute percentage error and 

lower confidence intervals), the approach was then unbiased. 

Where problems did become apparent was in differences between datasets related to 

inclusion criteria; in particular with MAICHM. The inclusion of patients for who had a 

probability of zero of being in the opposite dataset appears challenging - these have an 

impact on the distribution of patients, and thus on the higher moments which can be 

matched. Similarly non-normal distributions appear to be a problem for MAICHM, which 

implicitly assumes normality in moments (unless even higher moments such as kurtosis are 

available to match to). 
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Table 4-5: Tabulated results of MAIC scenario analysis with scenarios that violate assumptions implicit or explicit in 

MAIC, 5,000 runs 

Method 

Mean 
Percentage 

Error  
(MCSE) 

Absolute 
Percentage 

Error 
(MCSE) 

Mean 
Standard 

Error 

Coverage 
probability 

Percent of 
scenarios worse 

than a naïve 
comparison 

Missing parameters correlated with observed parameters 

Naïve 
comparison 11.3% (<0.01) 11.3% (<0.01) 0.03 0% - 

MAICFM -0.2% (<0.01) 2.6% (<0.01) 0.03 96% 2% 

MAICHM -0.2% (<0.01) 2.6% (<0.01) 0.03 96% 2% 

PSW 0% (<0.01) 2.6% (<0.01) 0.03 96% 2% 

Missing parameters uncorrelated with observed parameters 

Naïve 
comparison 12.6% (<0.01) 12.6% (<0.01) 0.03 0% - 

MAICFM 4.3% (<0.01) 4.6% (<0.01) 0.03 75% 0% 

MAICHM 4.3% (<0.01) 4.6% (<0.01) 0.03 75% 0% 

PSW 4.4% (<0.01) 4.7% (<0.01) 0.03 74% 0% 

Non-normal distributions sampled in Population A 

Naïve 
comparison 14.6% (<0.01) 14.6% (<0.01) 0.03 0% - 

MAICFM 1% (<0.01) 6.4% (<0.01) 0.03 63% 12% 

MAICHM 17.6% (<0.01) 17.7% (<0.01) 0.03 1% 99% 

PSW -3.7% (<0.01) 3.9% (<0.01) 0.03 73% 1% 

Non-normal distributions sampled in Population B 

Naïve 
comparison 9% (<0.01) 9% (<0.01) 0.03 6% - 

MAICFM -2.9% (<0.01) 3.5% (<0.01) 0.03 88% 12% 

MAICHM -2.9% (<0.01) 3.5% (<0.01) 0.03 88% 12% 

PSW 5.9% (<0.01) 5.9% (<0.01) 0.03 38% 0% 

Trimmed patient characteristics in Population A (no poor performers) 

Naïve 
comparison 18% (<0.01) 18% (<0.01) 0.03 0% - 

MAICFM -1.8% (<0.01) 9.3% (<0.01) 0.11 92% 14% 

MAICHM -7.6% (<0.01) 17.8% (<0.01) 0.18 90% 38% 

PSW 6.8% (<0.01) 7% (<0.01) 0.04 60% 0% 

Trimmed patient characteristics in Population B (no good performers) 

Naïve 
comparison 18.3% (<0.01) 18.3% (<0.01) 0.03 0% - 

MAICFM -0.1% (<0.01) 4.3% (<0.01) 0.05 95% 0% 

MAICHM -0.3% (<0.01) 4.3% (<0.01) 0.05 95% 0% 

PSW -5.5% (<0.01) 9.3% (<0.01) 0.09 87% 13% 
MCSE = Monte Carlo Standard Error, MAIC = Matching Adjusted Indirect Comparison, FM = Method of moments, HM = 

includes Higher moments, PSW = Propensity Score Weighting 
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Figure 4-6: Violin plot (with overlaid box plots) of the percent mean error in 5,000 runs of the MAIC simulation study 

with scenarios that violate assumptions implicit or explicit in MAIC 

 

4.8 FINDINGS FROM VARYING THE NUMBER OF PATIENTS AVAILABLE IN 

EACH DATASET 

When the number of patients in each population is varied, it can be seen that with a 

relatively low number, in the context of the simulation study, the results of MAIC are 

inaccurate. As sample sizes in each population increase the level of error decreases - whilst 

no conclusions can be made about the required numbers for MAIC in the context of real 

world examples, a degree of caution should be used with matching to (or with) ‘low’ 

numbers. 

The relevant finding from this collection of scenarios however would appear to be that it is 

more important to have more patients to weight with (Population A) than to match to 

(Population B) – seen by comparing the results in Table 4-6, and visually inspecting the off-

diagonals in Figure 4-7. This makes sense when considered, as the means to be matched to 

should stabilise relatively quickly, whereas the variability between patients means that more 

are needed (especially with multiple characteristics) to be able to adequately match even 

well established means. 
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Table 4-6: Tabulated results of MAIC scenario analysis varying the number of patients available in Population A and 

Population B, 5,000 runs 

Method 
Mean 

Percentage 
Error 

Absolute 
Percentage 

Error 

Mean 
Standard 

Error 

Coverage 
probability 

Percent of 
scenarios worse 

than a naïve 
comparison 

Population A = 30, Population B = 30 

Naïve comparison 8.9% (<0.01) 23.1% (<0.01) 0.27 90% - 

MAICMM -15.3% (0.012) 41.5% (0.011) 0.37 88% 62% 

MAICHM -12% (<0.01) 38.7% (<0.01) 0.36 88% 61% 

PSW -4.4% (<0.01) 31.4% (<0.01) 0.33 90% 60% 

Population A = 30, Population B = 300 

Naïve comparison 8.8% (<0.01) 17.1% (<0.01) 0.19 90% - 

MAICMM -12.5% (<0.01) 31.1% (<0.01) 0.28 86% 63% 

MAICHM -12% (<0.01) 30.8% (<0.01) 0.27 86% 62% 

PSW -6% (<0.01) 23.6% (<0.01) 0.24 89% 56% 

Population A = 30, Population B = 3000 

Naïve comparison 8.9% (<0.01) 15.8% (<0.01) 0.18 89% - 

MAICMM -11.9% (<0.01) 28.8% (<0.01) 0.25 86% 63% 

MAICHM -12.2% (<0.01) 29.4% (<0.01) 0.25 85% 62% 

PSW -6.1% (<0.01) 21.7% (<0.01) 0.22 90% 56% 

Population A = 300, Population B = 30 

Naïve comparison 10.9% (<0.01) 18.1% (<0.01) 0.19 85% - 

MAICMM -1.2% (<0.01) 18% (<0.01) 0.21 92% 41% 

MAICHM -1.2% (<0.01) 18.1% (<0.01) 0.21 92% 41% 

PSW -0.9% (<0.01) 18.1% (<0.01) 0.21 91% 41% 

Population A = 300, Population B = 300 

Naïve comparison 11.4% (<0.01) 12% (<0.01) 0.08 68% - 

MAICMM -1% (<0.01) 8.7% (<0.01) 0.11 95% 30% 

MAICHM -1% (<0.01) 8.7% (<0.01) 0.11 95% 30% 

PSW -0.7% (<0.01) 8.8% (<0.01) 0.11 94% 30% 

Population A = 300, Population B = 3000 

Naïve comparison 11.4% (<0.01) 11.6% (<0.01) 0.06 47% - 

MAICMM -0.9% (<0.01) 6.9% (<0.01) 0.09 94% 23% 

MAICHM -0.9% (<0.01) 6.9% (<0.01) 0.09 94% 23% 

PSW -0.7% (<0.01) 6.9% (<0.01) 0.09 94% 23% 

Population A = 3000, Population B = 30 

Naïve comparison 10.7% (<0.01) 17.6% (<0.01) 0.18 83% - 

MAICMM -1.4% (<0.01) 16.4% (<0.01) 0.18 90% 37% 

MAICHM -1.4% (<0.01) 16.4% (<0.01) 0.18 90% 37% 

PSW -1.4% (<0.01) 16.4% (<0.01) 0.18 90% 37% 

Population A = 3000, Population B = 300 

Naïve comparison 11.8% (<0.01) 11.9% (<0.01) 0.06 45% - 
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MAICMM -0.1% (<0.01) 5.3% (<0.01) 0.07 94% 16% 

MAICHM -0.1% (<0.01) 5.3% (<0.01) 0.07 94% 16% 

PSW -0.1% (<0.01) 5.3% (<0.01) 0.07 94% 16% 

Population A = 3000, Population B = 3000 

Naïve comparison 11.9% (<0.01) 11.9% (<0.01) 0.03 0% - 

MAICMM -0.1% (<0.01) 2.7% (<0.01) 0.03 95% 2% 

MAICHM -0.1% (<0.01) 2.7% (<0.01) 0.03 95% 2% 

PSW 0% (<0.01) 2.7% (<0.01) 0.03 95% 2% 

 

Figure 4-7: Violin plot (with overlaid box plots) of the percent mean error in 5,000 runs of the MAIC simulation study 

varying the number of patients included in Population A and Population B 
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4.9 DISCUSSION ON THE MERITS AND APPROACH TO MAIC 

Based on the results of the simulation study, MAIC would seem to be a reasonable approach 

to address between study differences. In the majority of cases it is unbiased, and for the 

most part, accurate. In terms of the approach used however, it is difficult to recommend the 

use of MAIC including matching on higher moments – in no cases does it perform 

appreciably better than MAICFM, however in many instances it does exhibit severe problems. 

These instances include scenarios extremely common in pharmaceutical clinical trials, such 

as truncated distributions, and non-normal distributions of patient characteristics. 

Despite using on half the individual level data of PSW, MAIC did manage to perform 

similarly. The advantage of PSW approaches, however, was not truly utilised in this 

simulation study, for instance in having the ability to trim the data to align characteristics, and 

also the ability to choose which population to generate an estimate in. Despite these 

limitations, the inclusion of PSW does demonstrate that the performance of MAIC is 

acceptable, albeit in an artificial situation. 

Whilst on the whole MAIC did perform well, caution should be noted based on scenario 

analyses under certain circumstances. Where there are limited patient numbers, poor 

overlap (or near perfect overlap) between studies, or highly trimmed patient characteristics, 

MAIC should be used subject to appropriate caveats. Also a reasonable interpretation is that 

variables to be included in weighting methods should also be plausibly linked to outcomes, 

similar to the approach for propensity score creation. Equally, for the results to be relied 

upon, any unobserved variables which are known to be important should be, as a minimum, 

be correlated with the observed patient characteristics. The results of scenario analyses 

from this study also indicate that if an intervention has a very large effect size, MAIC may 

indeed not be needed, and may introduce more bias than it resolves – particularly if linked 

with other issues (such as low sample size). In such circumstances it may be better to let the 

‘obviousness’ of results speak for themselves, as opposed to present an analysis that is 

likely to be highly susceptible to the role of chance. The same would seem to apply if the 

studies have similar patient characteristics, where weighting may introduce more bias than it 

eliminates. 

4.10 THE USE OF MATCHING ADJUSTED INDIRECT COMPARISON OUTSIDE 

OF TIME TO EVENT OUTCOMES 

Although this simulation has been rooted in a single time to event outcome, the results 

should generalise to other outcomes for instance multiple time to event outcomes (i.e. time 

on treatment, progression free survival, and overall survival), response rates, or categorical 
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outcomes. The reason for this is that the technique of MAIC is performed only on baseline 

characteristics, with weights then produced for each patient to match between the datasets. 

Using these weights multiple outcomes could be calculated for each patient – unlike STC 

outcomes are not included in the model. 

The structure employed in the simulation study however may need to change should other 

data be simulated; the use of a CPH based model allowed a convenient metric for the 

(in)accuracy in estimates. If others were to replicate this study in other settings using a 

different outcome model - for instance a non-proportional hazards survival model or 

alternative endpoint, a different metric would be required to judge the success of the method. 

4.11 SUMMARY OF FINDINGS 

The work in this chapter demonstrates that although the limitations of MAIC should be noted, 

on the whole it does represent a substantial improvement on the use of naive comparisons.  

The main area of focus for analysts should be to ensure the data available (and the 

associated structure) meets the basic requirements for the technique, and the problem is 

carefully considered. Provided these criteria are broadly met however, the method is both 

accurate and unbiased when matching on first moments. Due to the poor performance of 

matching on higher moments however (with few, if any advantages) this method cannot be 

recommended. 
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 NOVEL METHODS FOR THE CREATION OF HISTORICAL CONTROLS 

In addition to the use of MAIC to account for differences between studies, an additional need 

I identified in my review of models (Section 3.2) was the complexity in estimating 

comparative effectiveness in the absence of historical data to act as a point of reference. In 

this chapter I propose three methods for the estimation of counterfactual outcomes based on 

historical data. 

5.1 THE USE OF NON-RESPONDERS AS A CONTROL ARM 

The method described in this section (5.1) was published in Cost Effectiveness and 

Resource Allocation (Hatswell et al., 2017) 

When treatments are licensed on the basis of uncontrolled study data, this is often linked to 

the response rate seen in trials (indeed early stage oncology trials often use a 20% response 

rate as a benchmark) – mirrored in ICH guidance (ICH Harmonised Tripartite, 2000). The 

assumption implicit in this is that a response (usually defined as improvement in disease 

measurement by a given percentage) would lead to better outcomes. By extension this 

assumes a non-responder had no appreciable benefit from the intervention. 

In such instances - where patients can be neatly divided into groups of responders and non-

responders, it may be possible to use the outcomes need in non-responders as a proxy for 

the outcomes that would have been seen in the absence of treatment. There are a number 

of assumptions inherent in the approach which if not met however could introduce bias 

(some in favour of the intervention, and some acting against it). 

If this approach is taken, should some patient characteristics not just be predictive of 

treatment success, but also prognostic (predictive of outcomes), it may be the case that 

patients who achieved a response would have performed regardless (and thus introduce a 

bias in the analysis in favour of the intervention). Similarly, it may be that patients who did 

not receive a response not only failed to benefit from treatment, but also experienced side 

effects from the intervention that worsened their outcomes. The approach however may bias 

against an intervention if other conditions are met, for instance if non-responders did receive 

a benefit (for instance in holding their disease stable) which did not reach the threshold for a 

clinical benefit. 

The utility of the approach can be demonstrated using the Hx-CD20-406 Study for the drug 

ofatumumab for the treatment of double refractory chronic lymphocytic leukaemia. In the 

study, 59 patients received treatment with ofatumumab, with an Overall Response Rate 

(ORR) of 58% and median OS of 13.7 months being sufficient for regulators to grant a 
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license (Wierda et al., 2010). As expected, the outcomes for non-responders were 

substantially worse than for responders; their median OS was 9.8 months, whereas this was 

not reached in responders. 

In order to estimate the comparative effectiveness of ofatumumab versus no treatment 

(using non-responders as a proxy for this), a comparison was made between all patients and 

the non-responders. All patients were used in the comparison (and not simply responders), 

as it is not possible to identify a priori which patients would have a response to treatment. To 

perform this modelling parametric survival curves were fitted to the data, with the best fit 

(according to AIC and visual inspection) being a Weibull model, with a Cox Proportional 

Hazards (CPH) model used to estimate outcomes in non-responders (Figure 5-1) including 

the effects of number of age, sex, Rai (disease) stage, ECOG performance status, number 

of prior therapies, years since diagnosis, and prognostic chromosomal deletions (11p and 

17q). The effect of this was to reduce the unadjusted Hazard Ratio from 0.49, to an adjusted 

hazard ratio of 0.53. 

Figure 5-1: Estimated overall survival in all patients and non-responders for ofatumumab in double refractory Chronic 

Lymphocytic Leukaemia 

 

Using this approach, ofatumumab was estimated to produce a gain of 0.550 LYs (1.494 vs 

0.945) using the CPH model. If instead independent curve fits were specified, this benefit 

reduced to 0.542 LYs (1.494 vs 0.952). The approach proposed is subject to a number of 
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important assumptions (not all of which are fully testable), however may allow the production 

of estimates where no suitable historical data can be identified. 

5.2 THE USE OF EXTRAPOLATION TO CREATE A HISTORICAL CONTROL 

Beyond the use of external data, it is also apparent that further use could be made of data 

from prior lines of therapy – the two methods proposed below allow for such methods to be 

used to create historical control arms. 

In order to aid the implementation of these methods, example R code (using simulated data) 

is presented in Appendix D. 

5.2.1 EXTRAPOLATION OF DATA FROM THE PREVIOUS LINE OF 

TREATMENT TO ESTIMATE THE COUNTERFACTUAL 

The methods approach described in this section (5.2.1) was published in Statistical Methods 

in Medical Research (Hatswell & Sullivan, 2019) 

In some disease areas, patients receive repeated treatment lines to control their disease, 

beginning with evidence-based treatment lines, and once all licensed treatment options are 

exhausted (either through non-response, intolerance, or unavailability in the patient’s 

region), they are treated with off label and experimental treatments. Despite the lack of 

evidence, such treatments may appear in treatment guidelines with a low evidence rating, 

due to the desire of physicians to control disease symptoms or extend life. Examples of 

diseases like this are typically found in haematology, such as multiple myeloma, Chronic 

Lymphocytic Leukaemia, and Non-Hodgkin’s Lymphoma. 

Where a patient has received all evidence-based treatments, the variety in treatment 

strategies is likely to increase dramatically as there is unlikely to be a consensus regarding 

the appropriate care. In this environment the acceptability of approvals without a controlled 

clinical trial increases as there is unlikely to be a consensus around what constitutes 

‘standard of care’ against which a drug can be assessed (alternative trial designs may 

include a ‘physician’s choice’ arm). In such circumstances, the lack of a defined standard of 

care adds an extra complexity in estimating the counterfactual outcomes – evidence is by 

definition sparse, and even if it is possible to identify historical control information for a 

specific treatment, it is uncertain how many will receive each. 

When faced with such evidence (an uncontrolled study with uncertain counterfactual 

outcomes), one promising area that could be used to estimate outcomes, is the trial of the 

previous line of therapy. Whilst treatments may be licensed where there is no standard of 
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care, typically the previous treatment line is the last data available. This can be seen with the 

example of ofatumumab, which was licensed for the treatment of double refractory Chronic 

Lymphocytic Leukaemia (DR-CLL) – all patients being refractory to treatment with first line 

fludarabine, and subsequent alemtuzumab. In the case of alemtuzumab, the main evidence 

for its use was taken from the CAM211 study (Keating et al., 2002), which enrolled 93 

patients with CLL refractory to fludarabine treatment. This uncontrolled study had a primary 

endpoint of Disease Free Survival (DFS), with a secondary outcome of Overall Survival, the 

results of which are shown in Figure 5-2; having been sourced from the FDA review of the 

product (Food and Drug Administration, 2001).  

Figure 5-2: Progression free survival and overall survival from the CAM211 study in refractory Chronic Lymphocytic 

Leukaemia extracted from the FDA review (Food and Drug Administration, 2001) 

Disease Free Survival: Overall survival: 

 

  

Whilst this evidence was designed to support the approval of alemtuzumab, it does however 

offer insight into the subsequent outcomes of patients after becoming refractory to 

alemtuzumab and having their disease return i.e. DR-CLL. This evidence can be seen in the 

gap between OS and DFS, if plotted together – in the period post DFS but before death, a 

patient is living with DFS, and being treated with standard of care. Whilst incomplete 

(patients are not followed until death), it is possible to estimate the outcomes over time using 

extrapolation, as is commonly used in health technology appraisal. 

To estimate the period between death, I digitised the Kaplan-Meir data using the method of 

Guyot et al. (2012). Parametric curves were fitted to the disease-free, and overall survival 
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curves, selecting the most appropriate fit according to the guidelines published by Latimer 

(2011). A lognormal curve fit was found to be the best fitting curve based on AIC, BIC and 

visual inspection – as shown in Figure 5-3. 

Figure 5-3: Recreated Disease-Free Survival and Overall Survival from the CAM211 study, with fitted (lognormal) 

parametric curve fits overlaid 

 

The resulting difference between DFS and OS was then estimated. To account for 

uncertainty in the curve fits, 100,000 bootstrap samples were taken of the curve fit 

parameters, with patients exhibiting a mean of 13 months survival post DFS with 

alemtuzumab. This estimate can then be used to compare with the survival of patients 

treated with ofatumumab obtained through a similar digitisation of data from the HX-C20-406 

study (Wierda et al., 2010) to which a Weibull curve was fitted (shown in Figure 5-4) 
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Figure 5-4: Digitized ofatumumab Kaplan-Meier survival data from Hx-CD20-406 and Weibull curve fit, plotted against 

survival post disease progression from the CAM211 study 

 

From this analysis, the overall survival gain of ofatumumab can be estimated, compared to 

our outcomes from a time prior to the availability ofatumumab, when by definition patients 

could only receive standard of care. Exactly how large the gain in OS is however, depends 

on the assumption used for how long elapsed between disease recurrence, and treatment 

with ofatumumab. In the protocol for the ofatumumab study, patients must have been 

treatment free for 28 days prior to beginning the study, with the mean patient having been 

treatment free for 3.6 months. The range of likely outcomes (calculated via 100,000 

bootstraps) is therefore shown in Figure 5-5. Using the approach (and accounting for 

uncertainty in fitted curves) if a 3.6-month delay in subsequent treatment is assumed (as 

seems most plausible), ofatumumab is estimated to increase survival in 72% of simulations 

and provide a mean net survival gain of 2.7 months. Also presented is a curve showing if 

each patient had only been disease free for the minimum interval required by the study 

protocol (28 days). 
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Figure 5-5: Density plot of estimated mean survival gain of ofatumumab over historical control, using assumptions of 

immediate treatment with ofatumumab, 28-day delay, and 3.6-month delay 

 

Whilst this method may allow for estimation of counterfactual outcomes where data are 

otherwise unavailable, it does however have several limitations. The first of these is the 

obvious need for data to be available at the previous line (in this instance fortunately the 

relevant time to event information was presented in the FDA review, as it was not in the trial 

publication). Where a treatment is for newly diagnosed patients for instance, this approach 

will not be possible to implement. Other assumptions are around the comparability of patient 

populations; whilst this may be possible to assess the overlap between inclusion criteria of 

studies, these may not remain the same at study exit of the prior line. For instance it may be 

that at the time of disease progression in the prior study, their performance status had 

deteriorated such that they would no longer have been eligible for the novel intervention (for 

example if their performance status had worsened). Even if patient level data are available (I 

had to estimate this from published information), such detail is unlikely to have been 

captured in the trial. 
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5.2.2 USING A PATIENT’S OUTCOMES FROM A PRIOR LINE OF TREATMENT 

TO ESTIMATE COUNTERFACTUAL OUTCOMES 

The methods approach described in this section (5.2.2) was published in Statistical Methods 

in Medical Research (Hatswell & Sullivan, 2019) and used by Gilead in NICE Appraisal 

ID1379, though I was not involved in this 

In some conditions, where the overall objective is of disease control (and whilst their disease 

is controlled, their risk of events is low), a further option for estimating the benefit of 

treatment may be found using a patient’s own treatment history. 

An example of this can be seen in Follicular Lymphoma (FL) – a condition of the lymphatic 

system where white blood cells multiply (creating abnormal B-cells), which collect in lymph 

nodes. The disease is treatable, though patients will eventually become resistant to the 

drugs used. At the point patients become resistant to treatment, their white blood cell count 

will begin to rise (again), with common symptoms of tiredness, weight loss, and fever. 

It is in the context of highly pre-treated patients that the drug idelalisib was licensed on the 

basis of a Phase 2 study (Gopal et al., 2014) which included 72 patients with FL (from a total 

of 125). All had been heavily pre-treated (a median of four prior regimens) and were now at 

the point where no single standard of care was agreed upon with patients generally receiving 

a variety of off-label chemotherapies. As the results of the Phase 2 study were promising (an 

overall response rate of over 50%), no further studies were conducted and the benefit-risk of 

the product deemed sufficient in the eyes of regulators in both Europe and the FDA. 

Whilst regulatory approval is a necessary condition for use in HTA driven countries, it is not 

sufficient, and the need to estimate the comparative effectiveness prompted a need to look 

for other methods, in the absence of a suitable historical control. Given the patients had all 

received previous treatments, and would in the absence of idelalisib, be given a different 

regiment to what they had previously (as there is no standard of care) – these treatments act 

as the counterfactual. The approach suggested is therefore to compare the outcomes at the 

previous line of treatment, as these may be broadly reflective of the outcomes achieved in 

this patient group. 

With access to patient level data from the study, to perform the analysis would be relatively 

straightforward. Without such access, in order to estimate the comparative effectiveness of 

idelalisib a different approach was needed. Whilst the main publication by Gopal et al. only 

contains outcomes for all patients in the study (not FL only), a kin paper by Salles et al. 

(2017) includes data on OS, and time to progression (TTP) for patients. Whilst medians for 

prior treatment (to allow validation) are not reported in the published study, this was found in 
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publicly available information from PBAC, and the FDA (Miller, Przepiorka & de Claro, 2014; 

PBAC, 2015). The available data were digitised and used to recreate pseudo patient level 

data for TTP for idelalisib, and the previous line of treatment to which parametric curves 

could be fitted (using the Latimer algorithm, independent Weibull curves provided the best fit 

to data). The fitted data was a close approximation to the live data, with medians of 11.1 and 

5.4 months TTP, compared to the reported 11.0 and 5.1 months.  

Figure 5-6: Digitized Kaplan-Meier data from idelalisib study 101-09, including fitted (Weibull) parametric survival 

curves 

 

The area between the curves represents the predicted extension in time to progression of 

idelalisib. In order to estimate the expected gain in TTP (including uncertainty) the fitted 

survival curves were bootstrapped 100,000 times, with the area under each curve summed, 

and the difference taken. The results of this analysis are shown in Figure 5-7, and estimate a 

mean gain of 7.6 months for idelalisib – given the prior line of therapy achieved a mean of 

only 7.4 months, this appears an impressive result, and explains how in all bootstraps 

idelalisib was superior.  
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Figure 5-7: Density plot of estimated Time To Progression gain of idelalisib over the previous line of treatment 

 

It should be noted that there is a number of assumptions / limitations around the approach. 

The first (and main) of these being that the data available for the prior line of therapy is, by 

definition, TTP and not the more widely used endpoint of PFS (in TTP deaths are counted as 

censors, whereas in PFS they are classified as events). This means that no data are 

available on how often patients died whilst on the prior line of therapy, or waiting to begin the 

next line – an assumption must therefore be made around the rate of deaths whilst on 

treatment (this could be informed by the difference between TTP and PFS in the 

contemporary study). 

The second major limitation is how survival gain must be estimated – the proposed approach 

gives an estimated gain in time on treatment, it does not inform what may happen to survival 

after treatment. Should there be differences in post treatment survival between lines, this is 

not something that is able to be estimated within this approach. 

5.3 SUMMARY OF NOVEL METHODS PROPOSED 
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The work in this chapter presents three novel methods for the creation of historical controls. 

Although not suitable on every occasion their use may facilitate the use of existing data to 

allow comparisons – indeed two of the methods have already been used in practice.  
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 PRACTICAL EXAMPLES OF THE IMPLEMENTATION OF METHODS 

In part due to the work discussed in previous chapters, I have been fortunate enough to 

have the opportunity to use some of the methods presented for HTA submissions, two of 

these pieces of work are presented as case studies below. They demonstrate how the 

different approaches can be implemented using publicly available information. 

6.1 AVELUMAB FOR THE TREATMENT OF MERKEL CELL CARCINOMA 

The approach described in this section were used to estimate comparative effectiveness in 

the NICE appraisal of avelumab in Merkel Cell Carcinoma (NICE TA517) and subsequently 

published in Bullement et al. (2019) 

Markel Cell Carcinoma is a rare aggressive skin cancer which is more common in older 

people and those with immunosuppression. Historically off label chemotherapy has been 

used in first line disease, with patients who progress potentially receiving chemotherapy, or 

going untreated. In this disease area the PD-1 immune checkpoint inhibitor avelumab was 

studied in 88 2nd line patients with no control arm (Kaufman et al., 2016). 

As this was an uncontrolled study for HTA the comparative effectiveness needed to be 

estimated. To do so the license holder of avelumab (Merck) performed a retrospective 

database study of patients who had previously been diagnosed with Merkel Cell Carcinoma, 

and gone on to receive second line therapy, identifying 20 patients in the EU (Cowey, 

Becker & Bharmal, 2016) and 34 patients in the US (Becker et al., 2017). A literature search 

was also performed (Nghiem et al., 2017), identifying a study by Iyer et al. (2016) which 

reports outcomes for 30 patients – a further study included 14/23 second line patients, but 

outcomes were not reported by line (Samlowski et al., 2010). 

To establish which patient characteristics are prognostic, and thus would be important to use 

for propensity scoring (in case of the database study where individual data was available) or 

MAIC (in the case of Iyer et al., where individual level data was not available), the data from 

the database study was interrogated. This was done using a variety of techniques; univariate 

regression, multivariate regression, and Kaplan-Meier plots (which may help identify trends, 

even if these do not reach statistical significance). This exercise was conducted for both PFS 

and OS. Candidate variables were selected with input from clinicians with experience in the 

disease area. 

The first stage in the analysis was to fit a variety of parametric survival curves to the data, 

selecting the most appropriate functional form for any regression analysis. In both visual 

inspection and AIC, the Weibull curve was preferred for both PFS and OS, and was 
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therefore used for multivariable and univariable regression. In the multivariate regression, 

none of the suggested patient characteristics (stage at diagnosis, gender, age, 

immunosuppression status, ECOG) were predictive of outcome. Where results began to 

approach statistical significance at the threshold of p=0.1, this was in the opposite direction 

to what would be expected; for instance older patients (over the age of 75) having better 

survival than younger patients. 

Based on the analysis performed, no matching or weighting methods were therefore used in 

the Merck submission to NICE – in performing matching between the trial data and historical 

controls, we would have been unlikely to improve on a naïve comparison, and may indeed 

have introduced further bias and uncertainty. Whilst this was questioned in the NICE 

process, the end result was the acceptance of the case made by Merck, and the approval of 

the product for use. 

6.2 BRENTUXIMAB VEDOTIN FOR THE TREATMENT OF HODGKIN’S 

LYMPHOMA 

The approach described in this section was used to estimate comparative effectiveness in 

the NICE appraisals of brentuximab vedotin for Hodgkin’s Lymphoma (NICE TA446 & 

TA524) and are currently under review for publication 

Brentuximab vedotin was studied in several positions in Hodgkin’s lymphoma, including in 

randomised clinical studies (Moskowitz et al., 2015), one indication it received however, was 

for use in patients who were refractory to two prior lines of chemotherapy, and unsuitable for 

multi-agent chemotherapy. The data collected in this group was observational in nature, and 

involved small numbers of patients (40) – standard of care would likely have been single 

agent chemotherapy, which was known to have poor outcomes in this group (who had failed 

all prior treatments). 

At the time brentuximab vedotin was licensed (2010) the UK had a mechanism known as the 

‘Cancer Drugs Fund’ (CDF) in which treatments needed to show only clinical efficacy, and 

not cost-effectiveness, to gain routine use. When this system was revised, all medicines 

currently approved were then re-appraised by NICE for their cost-effectiveness including any 

new evidence generated under the older system (Grieve et al., 2016). At this point Takeda 

(the manufacturer of brentuximab vedotin) were required to demonstrate the comparative 

effectiveness of brentuximab vedotin. 

Fortunately for Takeda, whilst the drug had been available on the NHS, data had been 

collected by a collaboration of clinicians in the UK, which was subsequently published (Eyre 

et al., 2017). This included data on 99 patients treated with brentuximab vedotin, and 
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allowed the modelling of outcomes using parametric curve fitting to account for the 

movement between health states (Event Free Survival, Post Progression Survival, and 

SCT). External (published) data was then used to model the outcomes of SCT (Sureda et 

al., 2012, 2001). Applying these curves in a Microsoft Excel model led to the Markov Trace 

shown in Figure 6-1. 

Figure 6-1: Markov trace of modelled patient survival with brentuximab vedotin in Hodgkin’s lymphoma 

 

To model the outcomes of standard of care, a literature search performed for the benefit of 

regulators identified four publications giving historical outcomes for single agent 

chemotherapy (Haim, Ben-Shahar & Epelbaum, 1995; Little et al., 1998; Mead et al., 1982; 

Zinzani et al., 2000). One of these studies (Mead et al.) however reported data only on 

patients who had survived for at least six months, thus introducing ‘immortal time bias’ 

(Lévesque et al., 2010) meaning it had to be excluded. Due to the age of the publications, 

little information was reported on patient baseline characteristics, with only one study (Little 

et al.) reporting time to event endpoints – and even then, in only 17 patients, thus preventing 

direct modelling of outcomes.  

To overcome this limitation, a surrogate outcomes approach was used. The ORR and SCT 

rates (which were reported in each of the publications) were meta-analysed using a random 

effects model in the R package meta. This gave an estimated ORR rate of 64.3%, and 

estimated SCT rate of 7.8% (higher rates than would have been seen with a naïve pooling). 

To model the effects of these outcomes, patients were assumed to follow the same 
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outcomes as with brentuximab vedotin for a given level of response e.g. the same EFS to 

PPS distribution, weighted for the number of responders and SCTs. Following this approach 

led to the Markov Trace shown in Figure 6-2. 

Figure 6-2: Markov trace of modelled patient survival with single agent chemotherapy in Hodgkin’s lymphoma 

 

When the outcomes are compared on a per health state basis, it can be seen that the large 

survival gain is primarily given by the increased rate of SCT for brentuximab vedotin (41.0% 

versus 7.8%) – as SCT is curative in around a half of patients this leads to a substantial 

improvement in outcomes. 

Table 6-1: Estimated life years in each health state for brentuximab vedotin and single agent chemotherapy in 

Hodgkin’s lymphoma 

Health state Brentuximab vedotin Standard of Care Incremental 

EFS 0.8 1.3 -0.5 

SCT 25.2 5.7 19.5 

PPS 1.0 0.3 0.7 

Palliative care 0.8 0.6 0.2 

Total 27.7 7.9 19.9 

The weaknesses of the study were noted in the NICE appraisal - most notably the potential 

for different patient characteristics, and the age of the historical data. This meant there was 

the potential the data were no longer relevant due to the ‘drift’ in patients and outcomes. 

Despite these limitations, in the first appraisal (TA446) brentuximab vedotin was given 

‘access with evidence development’ in the revised CDF, before being fully approved in 

TA524 after further evidence on the rate SCT seen in practice was collected.  
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 DISCUSSION 

7.1 THE USE OF UNCONTROLLED CLINICAL STUDIES IN 

PHARMACEUTICAL LICENSING 

The literature review performed as a part of this project was completed in 2014, and covered 

approximately 15 years of pharmaceutical licensing in Europe and the US. Throughout the 

period approvals were made on the basis of uncontrolled studies, with no clear time pattern; 

any cluster of approvals was more linked to a drug being approved with multiple indications, 

as opposed to a number of drugs arriving simultaneously. Whilst it is possible this pattern 

may have changed (or indeed may change in the future) with novel mechanisms promising 

large ‘obvious’ improvements (such as chimeric antigen receptor and gene therapies), the 

framework of regulators to assess benefit-risk seems adequately equipped to handle these. 

Indeed when the review I conducted was updated by others (Goring et al., 2019), no 

differences were seen in approval types or patterns. 

One interesting aspect to the review completed was that it does seem the FDA are more 

accepting of uncontrolled studies; of the 44 comparable applications made, 43 were 

approved, whilst the EMA approved only 35. Similarly the review time was much shorter 

from the FDA; whilst this may be to a degree process driven, the magnitude of difference in 

time from application to approval (8.7 vs 15.5 months, a 6.8-month difference) indicates that 

the EMA asked more questions of manufacturers, and were ultimately more reluctant to give 

approval. Fundamentally however, the majority of applications to regulators for marketing 

authorisation were successful, showing that in many instances the benefit-risk was deemed 

to be favourable. Given the indications investigated (mainly end stage cancers with a poor 

prognosis) this is unsurprising, but does demonstrate the need for methods to estimate the 

comparative effectiveness of products for payers. 

Although not containing novel arguments (other papers are referred to), one of the best 

summaries of the position of uncontrolled studies in drug approval was given by Byar et al. 

(1990), when discussing the appropriateness of placebo controls for AIDS. The paper came 

from a discussion in 1989 at the height of the epidemic, with the recent licensing of AZT 

(zidovudine), the first antiretroviral. The authors state that randomisation is ‘essential’ in 

AIDS studies, and high levels of evidence will do the most good: 

Previous research in chronic diseases has taught us that many proposed treatments were of no 

benefit, some did more harm than good, and those that were beneficial generally yielded only 

moderate gains. Unrealistic expectations of benefits may lead to unrealistic research strategies 

that might be suitable to detect large benefits but not moderate ones. Although in special 

situations uncontrolled or historically controlled trials might be considered, we believe that 
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progress in the treatment of AIDS will be most rapid and certain if researchers devote their 

energies chiefly to the design of randomized trials. 

Yet despite this position some of the clearest (and most frequently cited) examples of 

uncontrolled studies come in AIDS research; ganciclovir is cited as an example by the 

authors (separately it is used by Rawlins et al. as an example of where RCTs are not 

needed due to the ‘obvious’ benefit – Section1.5.1). The drug however was licensed for use 

in AIDS linked cytomegalovirus reactivation, on the basis of data from only 41 patients over 

a five year period (Food and Drug Administration, 1989). Similarly one of the best examples 

to explain the necessity of uncontrolled study approvals in the systematic review detailed in 

Chapter 3 was paclitaxel for Kaposi’s sarcoma (a symptom of AIDS). For this treatment a 

RCT could not be conducted for several reasons including equipoise - the prognosis was 

exceptionally poor for patients, the results from early studies were impressive, and the drug’s 

safety established in other indications. More relevant however was the development of 

antiretrovirals (such as zidovudine) which had led to the incidence of the disease 

plummeting. A RCT would not recruit sufficient patients as within two years it was anticipated 

that given the fall in incidence, there would be few Kaposi’s sarcoma patients to benefit from 

the findings (which would likely be confirmation of the efficacy of paclitaxel). 

These examples show the paradox inherent in such approvals; whilst they are not the 

preferred approach (and are discouraged by the majority of authors), there remain situations 

where the evidence on effectiveness is sufficiently compelling that despite the lack of control 

arm, a rational regulator will be convinced of the benefit-risk of a product. At this stage 

payers (amongst others) will need to quantify the magnitude of benefit in order to make 

coverage decisions – regardless of whether such information is optimal. 

7.2 TECHNIQUES FOR ESTIMATING EFFECTIVENESS BASED ON 

UNCONTROLLED CLINICAL STUDIES 

The results of my review of models used to estimate comparative effectiveness found that by 

far the most common approach used was that of a historical control, seen in around 80% of 

approaches. At the time however few attempted to control for any differences between 

datasets, or even investigated any potential imbalances between studies i.e. they assumed 

populations were exchangeable. Given previous work in the area, this appears 

inappropriate. 

Although only anecdotal, it does seem like this situation is improving; the technique of MAIC 

was first published in 2010 (towards the end of the period covered by my literature search for 

models), but has been then used in over 50 publications since (shown in Chapter 4). Though 

seemingly not as widely used, the same applies to the technique of STC. 



Page 138 of 181 

Fundamentally however the understanding of the limitations of historical controls is now 

more widespread (in part due to the proliferation of methods and guidance about how to 

account for these differences). These initiatives, such as the NICE TSDs, do then suggest 

the assessment of similarity of datasets, ultimately meaning some may be deemed not 

suitable for use. The work performed in this thesis around MAIC may also help in this regard; 

in showing some differences which may be problematic – such as non-overlapping 

populations. 

In my opinion, other methods I highlight should also be more widely used, such as the E-

value, and threshold analysis. These may help to provide interpretation of uncontrolled 

studies, and highlight the strength (or fragility) of any conclusions drawn, in a way similar to 

which the p-value, for all its flaws, allows interpretation of the strength of findings from RCTs. 

7.3 IMPLICATIONS FOR THE DESIGN AND CONDUCT OF UNCONTROLLED 

STUDIES 

The work I have conducted has been around the application of methods for the estimation of 

comparative effectiveness from uncontrolled studies – separate to the question of whether 

randomised studies should be performed, which is addressed in detail elsewhere in the 

literature. There are however implications of the work I have performed for data collection by 

pharmaceutical companies which happens both in, and alongside uncontrolled studies. 

Statistical modelling of efficacy forms the basis for health technology appraisal (HTA) which 

determines reimbursement in many countries. Even where HTA is not required for market 

access, plausible estimates of the incremental benefit of treatment can aid in gaining 

regulatory approval and promoting uptake amongst clinicians. Indeed the increased 

sophistication of regulatory agencies may also result in statistical analyses being requested 

to provide context to an application dossier – to this end companies should be mindful of the 

data required to construct such estimates.  

A considered approach would look at the availability of historical data prior to the final study 

design if there is a possibility that a trial may lead to a regulatory application, a similar 

approach to ‘Threshold-crossing’ proposed by some regulators (Eichler et al., 2016). Should 

a suitable historical control be available, then the study design data collection should be 

carefully considered to facilitate comparisons between the data sources. For example 

although a metric (such as an older version of a disease staging tool) may not be relevant for 

understanding the behaviour of the new intervention, if it is available in the historical control 

then collecting this data may reassure reviewers as to the similarity of patients (or provide 

data for matching methods). 
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Conversely, if no historical control is available that would match with a study design, 

adequate planning would allow this to be addressed in some form. Approaches that could be 

used include commissioning observational studies to collect such data – either prospective 

in locations where the trial is not recruiting, or retrospective using databases and hospital 

records. An example here are the database studies conducted by Merck in Merkel Cell 

Carcinoma in parallel to the uncontrolled clinical study of avelumab, where inclusion criteria 

for both studies were very similar with the aim of producing a good basis for comparison 

(Becker et al., 2016; Cowey, Becker & Bharmal, 2016). Alternative approaches include those 

discussed in Chapter 5 to create historical controls - if such methods are appropriate, further 

data collection within the uncontrolled study may also be merited. For example if the 

intention is to create a control based on patients’ previous line of therapy, this requires 

information to be collected with as much fidelity possible from patient histories at the time of 

the study. 

The conclusion of my research therefore is that although there are statistical techniques 

which may help to provide robust estimates of comparative effectiveness, their use needs to 

be adequately planned for. Should companies engage ahead of time, it may be possible to 

gain access to ILD for historical trials, or as a minimum, ensure that there are historical 

studies which could be compared against, should their study merit such a comparison. A 

larger focus on planning for such eventualities may avoid the need for some of the more 

speculative comparisons that are presently required. 

7.4 POTENTIAL IMPROVEMENTS AND MODIFICATIONS TO TRIAL DESIGNS 

In addition to data collection efforts, improvements could also be made to the way trials are 

designed – particularly if there is a chance they will be used for regulatory applications. 

Ideally a systematic approach to the setup of uncontrolled studies (as with the Threshold 

Crossing approach), but at the very least having a ‘run in’ phase to clinical studies, where 

data are collected from patients who would be eligible, but before the drug is made available. 

This could provide some data on the natural history of patients and could be performed 

whilst manufacturing or ethics approval for administration of the investigational drug is being 

finalised (though ethics approval would be required for the observational period). A similar 

approach was taken in haemophilia for the drug emicizumab (Pipe et al., 2019) where 

patient histories (or varying lengths) were available before patients crossed over to receive 

treatment. Were the length of this ‘run in’ period to be randomised on a per patient level, 

depending on the disease area, it could also be amenable to analysis using an interrupted 

time series (Section 2.1.1.3) to provide more formal estimates of the treatment effect. 
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Other approaches could be further improved to leverage data; Jiao et al. (2019) based at the 

FDA, suggest the use of ‘platform’ trials, in which control arms are shared between different 

products. These are similar to the multi-arm studies proposed by others to allow the 

assessment of multiple products simultaneously (Parmar et al., 2017; Zeissler et al., 2020; 

Grayling & Wason, 2020). Whilst this would be advantageous (in reducing ethical concerns 

but maintaining power), it has practical limitations in that companies are unlikely to wish their 

products to be investigated in the same studies as even if underpowered an implicit head to 

head comparison will be made between treatments (with a non-trivial chance of giving an 

incorrect point estimate of relative effectiveness). A development to the approach would be 

removing the explicit link within a single study between treatments. This could be done by 

having continuous recruitment, meaning there would be a high correlation between the 

effective control arms for each product, but without them being exactly the same, and thus 

avoiding direct comparisons being able to be made. This approach would be a variation on 

‘master protocol’ studies though would only be possible in well-defined disease areas where 

inclusion and exclusion criteria could be shared, and sufficient patients enrolled. Although 

complex the approach would be similar to the ‘cohort multiple randomised trial’ design of 

Relton et al. (2010) whereby a cohort study is conducted at the same time as patients are 

enrolled from the same population for uncontrolled studies. 

7.5 SUGGESTED DECISION PROCESS FOR METHOD SELECTION 

In reviewing the methods available for the estimation of comparative effectiveness, 

depending on the circumstances (and data) available, different methods would seem 

appropriate depending on circumstances. As seen in the review of existing approaches (both 

in those used, but also those available), this mainly revolves around the availability of 

historical control(s), and the level of access to individual patient data available for the 

datasets of interest. 

Where individual level data are available for all studies of interest, the methods of NICE DSU 

TSD 17 would seem applicable, and the flowchart in that document should be followed. 

Similarly where no patient level data are available the route forward seems relatively 

straightforward; meta-regression can be used if sufficient studies are available (Following the 

guidance in NICE DSU TSD 3), but more likely a narrative conclusion should be given. 

If limited individual patient data are available (i.e. data from one, but not both studies), 

options to minimise bias should be considered. These will vary depending on the 

circumstances, but could include MAIC, STC, and surrogate outcome based approaches. 
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Where no historical information is available consideration should be given to identifying one, 

either through the use of literature searching, emulation of a trial from other data, or 

statistical approaches such as those presented in Chapter 4. After any historical controls 

have been analysed with appropriate methods, presenting results of both naïve and adjusted 

comparisons seems appropriate. No method can be conclusively shown to remove all 

potential issues with data, and thus given the limitations in data and methods, the impact 

made by any statistical approaches (for instance reweighting) is likely to be important for 

decision makers to be aware. 

Finally, regardless of whether a historical control is available, consideration should be given 

to threshold analysis, and the use of the E-value (VanderWeele & Ding, 2017). Threshold 

analysis allows decision makers to understand how much a parameter (such as hazard ratio) 

may need to change by for the decision to be incorrect, whilst the E-value performs a similar 

function in helping decision makers to understand the robustness of the evidence they are 

being asked to appraise. To understand how much ‘clearance’ there is in any given decision 

may allow a more open discussion of the uncertainties around comparisons, and avoid a 

focus on point estimates. 

This suggested approach is laid out as a flowchart in Figure 7-1, and incorporates the 

findings of the thesis, in considering what circumstances each of the methods will be 

required (Chapter 3), categorising the approaches based on the type and level of data 

available (Chapter 2), the suitability of MAIC (Chapter 4), incorporating the novel methods 

proposed (Chapter 5) as well as other methods identified in the process of completing the 

work (Section 2.3 and Section 2.4).  

Although it is not possible (due to the nature of the evidence) to be conclusive, I believe the 

use of this flowchart as a decision aid would represent best practice, and ensure 

opportunities for improvements in the evidence presented to decision makers is optimal. 

Optimal in this context being allowing the most accurate estimate of comparative 

effectiveness, and also an understanding of the strength of findings. 

In due course it may also be possible to create a flowchart for how to synthesize multiple 

estimate of effectiveness. Some form of synthesis would seem appropriate - however if not 

all studies have the same face validity or applicability to the decision problem, a level of 

down weighting to those studies i.e. the power prior approach, would seem appropriate. At 

this point in time however it is not clear how the level of down weighting should be 

determined. 
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Figure 7-1: Suggested algorithm for estimation of effectiveness based on uncontrolled clinical studies  
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7.6 MY CONTRIBUTION TO THE LITERATURE 

There are several areas where I feel my work has advanced the literature. The first of these 

in defining the scale of the issue of drug approvals without RCT data. Anecdotally I had been 

told, including by my supervisors, that such approvals were rare but increasing in number. 

The work in reviewing drug approvals (which has been widely cited) demonstrates such 

approvals are not a recent phenomenon, not necessarily rare, and with a rate of use that 

does not have a clear trend (Section 3.1). That others have updated this literature review I 

believe emphases its relevance. 

Subsequently, being able to investigate approaches taken to modelling these approvals 

(Section 3.2) has emphasised the role of historical controls, but also the potential biases 

involved in using a naïve comparison to historical data. In this area I have then outlined the 

relevant approaches depending on the availability of historical data, signposting the relevant 

work where needed (Chapter 2). In identifying a gap relating to the suitability of one of the 

more widely used techniques to adjust for imbalances seen with historical controls (MAIC) I 

then performed a simulation study to understand what assumptions must be met for the 

method to be both accurate an unbiased (Chapter 4). 

In addition to examining existing techniques, I also propose three new methods (with 

associated examples) for the estimation of comparative effectiveness where historical 

control data are not available (Section 5.1 and Section 5.2). I then give two (real world) 

examples of using the methods and approaches I have identified (Chapter 6). 

In summarising my findings, I then propose a flowchart for what I consider to the be options 

available to an analyst, which is presented in Section 7.5. 

7.7 LIMITATIONS OF THE WORK PERFORMED 

Whilst I have attempted to be comprehensive in the work I have performed, there are a 

number of limitations which relate to the scale of the issue, and in defining the scope of the 

thesis. 

One limitation is in my review of approvals granted by the EMA – whilst the vast majority of 

drugs now go down this route, individual countries in the EU may have approved treatments 

on the basis of uncontrolled studies (which are then able to be used in other countries via 

the process of mutual recognition). Whilst this is mitigated by the (intentional) inclusion of 

FDA approvals in my review, it does mean there may have been some treatments, 
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particularly earlier in the review period when the EMA processes were still being established, 

which were not included. 

A second limitation is that reality decisions on benefit-risk, and indeed clinical development 

are seldom as neat as being based entirely on uncontrolled data versus using RCTs. In the 

majority of cases even a large Phase 3 RCT would usually be supported by some level of 

uncontrolled data – for instance an open label extension trial which collects further data on 

sustained safety and effectiveness. Whilst in some ways a limitation (I do not look at the role 

of uncontrolled data in all areas), it does mean that the work I have done is not limited in 

utility simply to uncontrolled studies - it does have broader implications. As an example the 

work on the appropriateness of MAIC would be helpful in interventions that have RCTs , but 

no complete network to perform network meta-analysis (for instance due to different 

comparator arms). 

Another limitation is that decisions on the use of uncontrolled trials for drug approval are 

made for a variety of reasons which may include clinical need, financial, competitive, and 

strategic reasons. As drugs themselves are not randomised to being investigated in 

uncontrolled versus controlled trials, this limits what can be inferred about them, for instance 

their precise effectiveness. If such drugs are seen as being highly efficacious early in 

development then the existing literature, for example on bias in historical controls (developed 

where historical, and randomised controlled estimates are available), may not apply. 

A final limitation is that there are, necessarily, many areas which are out of scope, or would 

be developments of the work I have performed which I feel deserve further research. These 

areas I have I have discussed below. 

7.8 FURTHER RESEARCH 

Based on the work performed, there is a number of areas where I believe further research 

would be useful. These can be separated in to areas relating to methodology, areas relating 

to clinical data, and finally research on decision making. 

In terms of statistical methods, both MAIC and STC would seem in need of further work to 

establish when they should be used, and how they should be used:  

• For MAIC I believe it is important to understand the interplay between sample size, 

and number of characteristics that can / should be included in any matching. For 

instance it would be good to know (given the limited size of many studies), when it 

would be important to omit a variable from matching if it is linked to outcomes, but 

only weakly 
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• STC is less investigated, but in being a different (regression based) approach I 

believe research would be helpful on how STC should be conducted with multiple 

outcomes (such as PFS and OS). Each outcome could be modelling with different 

explanatory variables (as determined by clinical input, and statistical relevance), or 

the same covariates used, regardless of say statistical significance. Which of the two 

approaches should be used appears relevant 

• Both MAIC and STC would benefit from the availability of standardised approaches – 

for instance open source code, or software implementations (such as an R package) 

• Both MAIC and STC result in estimates of treatment effectiveness for the intervention 

with individual level data, but in the population for which only aggregate information is 

available. When multiple sets of aggregate level data are available, it is not clear how 

these varied estimates should be synthesized (if indeed, they should be synthesized 

at all) 

Further methodological research around the use of historical data would also be helpful, in 

particular how multiple sets of historical data should be synthesized. This thesis highlights 

meta-analytic predictive and power priors, but how these should be used without 

contemporary controls to determine acceptability is uncertain. Specifically how weights 

should be assigned to each set of historical data represents an area of uncertainty which 

does not appear to have been resolved in the literature. 

In terms of clinical data, further research in to the differences between case series, 

registries, and clinical trials would be helpful. Whilst I have identified a number of papers that 

demonstrate differences between outcomes, these do not attempt to provide a systematic 

approach, nor help to pinpoint the source of this difference. For instance are different 

patients enrolled in trials vs registries? Are outcome measurements taken on different 

schedules, or does investigator versus independent assessment affect the metrics 

recorded?  

Similarly with the increasing availability of electronic health records (particularly in the US), it 

may become increasingly possible to generate synthetic control arms at low cost. Whilst this 

has been done to a limited extent by companies such as Flatiron Health (Carrigan et al., 

2019; Davies et al., 2018) the approach may help reduce the uncertainty inherent in 

decisions made by payers and clinicians, but first must be appropriately validated before 

being relied upon for decision making. 
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The final area where I believe further research is needed is in helping to decide which 

approaches should be recommended to estimate comparative effectiveness. I have 

highlighted the methods available throughout this thesis, and provided a diagram of which 

may be suitable (depending on the various levels of access to data) in Section 7.5, but 

further research is needed to understand which methods are most appropriate for a given 

decision problem. For instance what level of model fit is needed for STC to be preferred to 

MAIC? The availability of such recommendations would help to reduce the variability seen in 

assessments, and ensure decisions on access to treatments are made on the best available 

evidence and analysis.  
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APPENDIX A EXCLUSION CRITERIA FOR LITERATURE SEARCH FOR 

DRUGS APPROVED USING UNCONTROLLED CLINICAL TRIALS 

This literature search was performed to identify the treatments licensed on the basis of 

uncontrolled clinical studies in the EU and US since 1999; the point where economic 

evaluation began to play a formal role in the use of pharmaceuticals in the UK, with the 

establishment of NICE. 

To identify drugs licensed on this basis, the European Medicines Agency (EMA) website, 

and the US Food and Drug Agency (FDA) website were searched, for all approvals since 1 

January 1999 based on uncontrolled clinical studies, i.e. where all arms of a trial involve the 

investigational product. The search included both new drug approvals, and new indications 

granted, provided these were on the basis of uncontrolled studies only, with control arm data 

available in the patient population.  

A number of exclusion criteria were applied to the search – these are listed below and 

applied in the order given. 

• Generic drugs and biosimilar drugs – Generic versions of existing products are 

licensed at the point of patent expiry. However, they are licensed on the basis of 

similarity to the existing product, with efficacy shown by the trials that were 

completed by the original product. As such, they do not fit the criteria of being 

licensed on the basis of only single arm data. Biosimilar drugs are excluded for the 

same reason as these are copies of existing biological drugs, which base their 

efficacy data on that of the original biological product 

• Diagnostic technologies and medical devices – Some diagnostic technologies (for 

example radioimaging) are required to be licensed by regulators. However, as they 

do not have a therapeutic effect, they do not fit the research question. The same 

rationale applies to medical devices, which may need to undergo the regulatory 

process as they include a licensed medicine (for example delivery systems) – as 

these generate evidence on the effectiveness of the delivery system, and not the 

efficacy of a drug treatment, they have been excluded from the literature search 

• Vaccines – Newly licensed vaccines are based on known and well understood 

technologies, building on a base of existing evidence of their efficacy. For example, 

although influenza vaccines must be licensed each year, the underlying technology is 

the same, only the influenza strains of influenza included in the vaccine vary (which 

are specified by the World Health Organisation). Whilst there may be little or no direct 

trial evidence to demonstrate the efficacy of an individual vaccine, the efficacy of the 
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concept has been shown. As such, they have been excluded from this literature 

search 

• Antimicrobial products – The standard of proof for antimicrobial treatments is different 

to that of new chemical entities – as stated by the FDA ‘Antimicrobial drugs differ 

from other classes of drugs in that they are intended to affect microbial, rather than 

patient physiology. For this reason, the technical reports of in vivo and in vitro effects 

on microorganisms are critical for establishing effectiveness’ (Center for Drug 

Evaluation and Research, 1997). The drug approval path for antimicrobials therefore 

often involves in vitro experiments, calculation of ‘break points’, along with trials in an 

initial indication to demonstrate efficacy. Additional indications may then be approved 

based on in vitro work coupled with case series for treating different strains of 

bacteria. Due to these different regulatory standards (due to a well understood 

pathophysiology for these products (Powell, 2000)), they have been excluded from 

the literature review 

• Blood products and recombinant blood products – Where blood products require 

licensing from regulatory bodies for manufacturing standards, if identical to human 

blood products, the question of mechanism of action and proof of efficacy is not 

relevant. Consequently the regulatory question is different, in not requiring proof of 

concept / efficacy, but instead equivalence to the naturally occurring version, with the 

manufacture of the products also examined. For this reason they have been 

excluded from this literature search 

• Fixed-dose combinations of existing pharmaceuticals – Whilst requiring regulatory 

approval for sale, fixed-dose combination products are combinations of already 

approved products whose efficacy has already been demonstrated. Unless additional 

claims are made of the combination product (for example an additional benefit of 

combining the products), these have been excluded from this literature review 

• Treatments that were refused a marketing authorisation – These do not fit the criteria 

of having been licensed on the basis of uncontrolled data due to not receiving a 

license. Treatments that were licensed but subsequently withdrawn, however, are 

included in the review 

All other treatments are included in this review. 
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APPENDIX B LITERATURE SEARCH FOR ECONOMIC EVALUATIONS OF 

DRUGS LICENSED ON THE BASIS OF UNCONTROLLED CLINICAL 

TRIALS 

To identify economic models constructed based on uncontrolled clinical trial data, a number 

of databases were searched, which are listed below: 

• Medline  

• International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 

Scientific Presentations Database 

• The National Institute for Health and Care Excellence (NICE), Scottish Medicines 

Consortium (SMC), and All Wales Medicines Strategy Group (AWMSG) health 

technology assessments 

The search strategies taken for each database searched are discussed in turn 

 

B1 MEDLINE (SEARCHED USING PUBMED) 

Medline is the main database in the biomedical sphere, with all important research findings 

indexed.  

To find economic models, the search strategy shown below was used for all 66 drugs found 

to be licensed based on uncontrolled study data. 

Figure B-1: PubMed search strategy for economic models of drugs based on uncontrolled study data 

1. Generic drug name 

2. Drug brand name EU 

3. Drug brand name US 

4. Or 1-3 

 

5. Cost-Benefit Analysis 

6. Cost-utility 

7. Cost-effectiveness 

8. Pharmacoeconomic* 

9. health economic* 

10. cea 

11. cua 

12. markov* 

13. “patient level simulation” 

14. “discrete event simulation” 

15. “monte carlo” 

16. “decision tree” 

17. “quality adjusted life” 

18. qaly* 
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19. qald* 

20. qale 

21. “disability adjusted life” 

22. hta 

23. “health technology assessment” 

24. or 5-23 
 

25. 4 AND 24 

Search strings 1-3 are to identify each individual drug, and were repeated for each treatment 

individually. 

Search strings 5-23 are to identify economic evaluations, and are the same for all 

treatments. 

Search 24 identifies economic models related to the drugs identified as being licensed on 

the basis of uncontrolled clinical studies. 

Where a generic name included a chemical type (for example bosutinib monohydrate), the 

chemical type (in this case monohydrate) was omitted to give broader results. If a generic or 

trade name included a space, the term was included in quotation marks. Radiogardase 

(Prussian Blue) was also searched for as two separate terms using an OR term – 

Radiogardase OR “Prussian Blue”.  

Due to the number of results for Zinc OR Wilzin, coupled with cost-effectiveness search 

terms (461 hits) the term “AND Wilson*” was added. Likewise for paclitaxel (361 hits), the 

term “AND Kaposi*” was added. 

The resulting hits were then filtered by abstract review, to find papers describing economic 

evaluations in the relevant indication. Exclusion criteria were abstracts that were for other 

indications, solely modelling other drugs, clinical or scientific data, or using subsequently 

available randomised controlled trial data. 

The full text for papers likely to describe models or modelling approaches were then 

retrieved and reviewed fully. The resulting dates of the searches, number of hits, and 

number of full-text papers retrieved is shown in Table B-1. 

Table B-1: Results of PubMed searches for economic evaluations of drugs licensed on the basis of uncontrolled study 

data 

Generic name Date of search 
Publication 

hits 

Full 
publications 

retrieved 

Relevant 
publications 

Zinc 05/08/2014 1 0 0 

Sodium Phenylbutyrate 08/08/2014 1 0 0 
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Anagrelide 04/08/2014 4 2 2 

Paclitaxel 08/08/2014 1 0 0 

Argatroban 04/08/2014 13 3 2 

Sodium Ferric Gluconate Complex 08/08/2014 8 3 0 

Busulfan 04/08/2014 11 0 0 

Temozolomide 08/08/2014 46 1 0 

Bexarotene 04/08/2014 1 0 0 

Temoporfin 08/08/2014 3 2 2 

Gemtuzumab Ozogamicin 05/08/2014 4 1 1 

Alemtuzumab 04/08/2014 14 2 1 

Nitisinone 08/08/2014 2 0 0 

Arsenic Trioxide 04/08/2014 3 0 0 

Tositumomab; Iodine I 131 Tositumomab 08/08/2014 14 0 0 

Abarelix 04/08/2014 1 0 0 

Imatinib Mesylate 05/08/2014 83 3 3 

Imatinib Mesylate 05/08/2014 83 4 2 

Cetuximab 04/08/2014 92 8 3 

Trabectedin 08/08/2014 11 6 5 

Cladribine 05/08/2014 7 1 1 

Gefitinib 05/08/2014 55 1 0 

Bortezomib 04/08/2014 43 1 1 

Ferric Hexacyanoferrate(Ii) 05/08/2014 19 0 0 

Clofarabine 05/08/2014 2 0 0 

Pentetate Calcium Trisodium 08/08/2014 0 0 0 

Pentetate Zinc Trisodium 08/08/2014 0 0 0 

Nelarabine 05/08/2014 0 0 0 

Betaine Anhydrous 04/08/2014 9 0 0 

Dexrazoxane Hydrochloride 05/08/2014 8 3 0 

Alglucosidase Alfa 04/08/2014 4 2 2 

Sunitinib Malate 08/08/2014 61 4 2 

Imatinib Mesylate 05/08/2014 83 0 0 

Imatinib Mesylate 05/08/2014 83 0 0 

Imatinib Mesylate 05/08/2014 83 0 0 

Dasatinib 05/08/2014 23 0 0 

Dasatinib 05/08/2014 23 0 0 

Imatinib Mesylate 05/08/2014 83 0 0 

Imatinib Mesylate 05/08/2014 83 0 0 

Vorinostat 05/08/2014 6 0 0 

Bortezomib 06/08/2014 45 0 0 

Hydroxocobalamin 05/08/2014 9 0 0 

Nilotinib Hydrochloride Monohydrate 08/08/2014 13 0 0 

Ixabepilone 05/08/2014 6 3 0 

Tocofersolan 08/08/2014 1 0 0 
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Bendamustine Hydrochloride 04/08/2014 6 1 0 

Romidepsin 08/08/2014 0 0 0 

Ofatumumab 08/08/2014 2 1 1 

Pralatrexate 08/08/2014 1 0 0 

Carglumic Acid 04/08/2014 1 0 0 

Cholic Acid 05/08/2014 2 0 0 

Omacetaxine Mepesuccinate 08/08/2014 0 0 0 

Alipogene Tiparvovec 04/08/2014 0 0 0 

Taliglucerase Alfa 08/08/2014 1 0 0 

Asparaginase Erwinia Chrysanthemi 04/08/2014 9 2 1 

Brentuximab Vedotin 04/08/2014 0 0 0 

Brentuximab Vedotin 04/08/2014 0 0 0 

Crizotinib 05/08/2014 7 2 0 

Defibrotide 05/08/2014 3 0 0 

Glucarpidase 05/08/2014 14 0 0 

Carfilzomib 04/08/2014 1 0 0 

Vismodegib 05/08/2014 0 0 0 

Bosutinib 04/08/2014 1 0 0 

Pasireotide Diaspartate 08/08/2014 2 0 0 

Cholic Acid 05/08/2014 2 0 0 

Lomitapide Mesylate 05/08/2014 1 0 0 

Pomalidomide 08/08/2014 1 0 0 

Raxibacumab 08/08/2014 1 0 0 

Ponatinib Hydrochloride 08/08/2014 0 0 0 

Ponatinib Hydrochloride 08/08/2014 0 0 0 

Metreleptin 05/08/2014 0 0 0 

Ibrutinib 05/08/2014 1 0 0 

Ibrutinib 05/08/2014 1   

Ceritinib 04/08/2014 0 0 0 
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B2 INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND 

OUTCOMES RESEARCH (ISPOR) SCIENTIFIC PRESENTATIONS 

DATABASE 

ISPOR is the main organisation for economists working in economic evaluation. The 

calendar for the organisation revolves around two pivotal meetings – in late May, ISPOR 

International, a conference held in North America (2013 attendance: 2975), and in 

November, ISPOR Europe (2013 attendance: 3800) (ISPOR, 2020). As a part of the 

meetings, a large number of research posters and podiums are presented (in excess of 

1000), which are not all subsequently published in peer reviewed journals. Due to the large 

number of pharmaceutical company personnel in attendance, and specialist audiences, this 

is also likely to be a venue for the presentation of models. To find any models that were 

identified, the ISPOR Scientific Presentations Database, a database of all accepted 

presentations was searched for each product identified in Appendix A, which were then 

filtered to identify relevant economic models. The results of these searches are shown in 

Table B-2 

Table B-2: Results of searches for economic evaluations of drugs licensed on the basis of uncontrolled study data in 

the ISPOR Scientific Presentations Database 

Generic name 
Date of 
search 

Hits 
ISPOR 

hits 
ISPOR Abstracts 

for review 
Relevant ISPOR 

abstracts 

Zinc 01/08/2014 0 0 0 0 

Sodium Phenylbutyrate 01/08/2014 0 0 0 0 

Anagrelide 28/07/2014 1 1 0 0 

Paclitaxel 30/07/2014 141 158 0 0 

Argatroban 28/07/2014 2 2 1 0 

Sodium Ferric Gluconate Complex 01/08/2014 3 0 0 0 

Busulfan 30/07/2014 4 4 1 1 

Temozolomide 01/08/2014 24 24 0 0 

Bexarotene 30/07/2014 1 1 0 0 

Temoporfin 01/08/2014 0 0 0 0 

Gemtuzumab Ozogamicin 30/07/2014 5 5 0 0 

Alemtuzumab 24/07/2014 13 17 0 0 

Nitisinone 30/07/2014 2 2 0 0 

Arsenic Trioxide 28/07/2014 2 4 2 0 

Tositumomab; Iodine I 131 Tositumomab 01/08/2014 1 1 0 0 

Abarelix 24/07/2014 0 0 0 0 

Imatinib Mesylate 30/07/2014 119 119 1 0 

Imatinib Mesylate 30/07/2014 119 119 2 1 

Cetuximab 30/07/2014 96 106 1 0 
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Trabectedin 01/08/2014 6 6 2 1 

Cladribine 30/07/2014 2 2 1 0 

Gefitinib 30/07/2014 42 48 2 1 

Bortezomib 30/07/2014 62 70 0 0 

Ferric Hexacyanoferrate(Ii) 30/07/2014 0 0 0 0 

Clofarabine 30/07/2014 2 2 1 0 

Pentetate Calcium Trisodium 01/08/2014 2 2 0 0 

Pentetate Zinc Trisodium 01/08/2014 2 2 0 0 

Nelarabine 30/07/2014 0 0 0 0 

Betaine Anhydrous 28/07/2014 0 0 0 0 

Dexrazoxane Hydrochloride 30/07/2014 0 0 0 0 

Alglucosidase Alfa 28/07/2014 2 0 0 0 

Sunitinib Malate 01/08/2014 111 113 5 4 

Imatinib Mesylate 30/07/2014 119 119 0 0 

Imatinib Mesylate 30/07/2014 119 119 0 0 

Imatinib Mesylate 30/07/2014 119 119 1 0 

Dasatinib 30/07/2014 62 68 6 1 

Dasatinib 30/07/2014 62 68 0 0 

Imatinib Mesylate 30/07/2014 119 119 0 0 

Imatinib Mesylate 30/07/2014 119 119 0 0 

Vorinostat 01/08/2014 0 0 0 0 

Bortezomib 02/08/2014 1 70 3 1 

Hydroxocobalamin 30/07/2014 0 0 0 0 

Nilotinib Hydrochloride Monohydrate 30/07/2014 47 54 2 2 

Ixabepilone 30/07/2014 4 4 1 0 

Tocofersolan 01/08/2014 0 0 0 0 

Bendamustine Hydrochloride 28/07/2014 24 29 1 0 

Romidepsin 01/08/2014 0 0 0 0 

Ofatumumab 30/07/2014 10 15 3 2 

Pralatrexate 01/08/2014 0 0 0 0 

Carglumic Acid 30/07/2014 1 1 0 0 

Cholic Acid 30/07/2014 1 2 0 0 

Omacetaxine Mepesuccinate 30/07/2014 1 1 1 0 

Alipogene Tiparvovec 28/07/2014 0 0 0 0 

Taliglucerase Alfa 01/08/2014 1 1 0 0 

Asparaginase Erwinia Chrysanthemi 28/07/2014 1 1 0 0 

Brentuximab Vedotin 30/07/2014 5 7 1 1 

Brentuximab Vedotin 30/07/2014 3 7 1 0 

Crizotinib 30/07/2014 13 19 2 0 

Defibrotide 30/07/2014 0 0 0 0 

Glucarpidase 30/07/2014 0 0 0 0 

Carfilzomib 30/07/2014 1 1 0 0 

Vismodegib 01/08/2014 0 1 0 0 

Bosutinib 30/07/2014 5 8 1 1 

Pasireotide Diaspartate 30/07/2014 3 3 0 0 
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Cholic Acid 30/07/2014 1 2 0 0 

Lomitapide Mesylate 30/07/2014 0 0 0 0 

Pomalidomide 01/08/2014 1 3 0 0 

Raxibacumab 01/08/2014 0 0 0 0 

Ponatinib Hydrochloride 01/08/2014 4 6 1 0 

Ponatinib Hydrochloride 01/08/2014 4 6 0 0 

Metreleptin 30/07/2014 0 0 0 0 

Ibrutinib 30/07/2014 0 0 0 0 

Ibrutinib 30/07/2014 0 0 0 0 

Ceritinib 30/07/2014 0 0 0 0 
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B3 NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE (NICE), 

SCOTTISH MEDICINES CONSORTIUM (SMC) AND ALL WALES 

MEDICINES STRATEGY GROUP (AWMSG) HEALTH TECHNOLOGY 

APPRAISALS 

To identify economic evaluations, the website of each organisation was searched for each of 

the 66 drugs identified and indication approved on the basis of uncontrolled study data. The 

results were then filtered for health technology assessments in the relevant indication, with 

the relevant appraisals downloaded for further review. The results of these searches are 

shown in Table B-3. 

Table B-3: Results of searches for health technology assessments of drugs licensed on the basis of uncontrolled 

study data 

Generic name 
Date of 

searches 
NICE 

Appraisal 
SMC Appraisal 

AWMSG 
Appraisal 

Zinc 01/08/2014 - - - 

Sodium Phenylbutyrate 01/08/2014 - - Reference 280 

Anagrelide 28/07/2014 - SMC ID 163/05‡ Reference 23 

Paclitaxel 30/07/2014 - - - 

Argatroban 28/07/2014 - SMC ID 812/12‡ Reference 1405 

Sodium Ferric Gluconate Complex 01/08/2014 - - - 

Busulfan 30/07/2014 - SMC ID 337/06 - 

Temozolomide 01/08/2014 TA23 - - 

Bexarotene 30/07/2014 - SMC ID 14/02 - 

Temoporfin 01/08/2014 - SMC ID 96/04 - 

Gemtuzumab Ozogamicin 30/07/2014 - - - 

Alemtuzumab 24/07/2014 - SMC ID 494/08† Advice 2208 

Nitisinone 30/07/2014 - - - 

Arsenic Trioxide 28/07/2014 - - - 

Tositumomab; Iodine I 131 Tositumomab 01/08/2014 - - - 

Abarelix 24/07/2014 - - Reference 354* 

Imatinib Mesylate 30/07/2014 
TA50, TA70, 

TA251 
SMC ID 01/02, SMC ID 

46/02 
- 

Imatinib Mesylate 30/07/2014 TA86, TA209  
SMD ID 08/02, SMC ID 

584/09§ 
Reference 1653 

Cetuximab 30/07/2014 
TA118, 
TA150*, 
TA242 

SMC ID 155/05, SMC ID 
543/09 

Reference 81, 
Reference 400 

Trabectedin 01/08/2014 TA185 SMC ID 454/08¶ Reference 318 

Cladribine 30/07/2014 - Reference 537/09 - 

Gefitinib 30/07/2014 - - - 

Bortezomib 30/07/2014 TA129 SMC ID 126/04 Reference 65 

Ferric Hexacyanoferrate(Ii) 30/07/2014 - - - 

Clofarabine 30/07/2014 - Reference 327/06 Reference 92 

Pentetate Calcium Trisodium 01/08/2014 - - - 

Pentetate Zinc Trisodium 01/08/2014 - - - 
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Nelarabine 30/07/2014 - SMC ID 454/08 Reference 216 

Betaine Anhydrous 28/07/2014 - SMC ID 407/07§ - 

Dexrazoxane Hydrochloride 30/07/2014 - - - 

Alglucosidase Alfa 28/07/2014 - SMC ID 352/07 Reference 17* 

Sunitinib Malate 01/08/2014 TA169 SMC ID 343/07‡ Reference 294 

Imatinib Mesylate 30/07/2014 - SMC ID 428/07* - 

Imatinib Mesylate 30/07/2014 - SMC ID 430/07* - 

Imatinib Mesylate 30/07/2014 - 
SMC ID 426/07*, SMC ID 
427/07*, SMC ID 923/13* 

Reference 2014* 

Dasatinib 30/07/2014 TA241 SMC ID 370/07 Reference 103 

Dasatinib 30/07/2014 - SMC ID 371/07 Reference 102 

Imatinib Mesylate 30/07/2014 - - - 

Imatinib Mesylate 30/07/2014 - SMC ID 429/07* - 

Vorinostat 01/08/2014 - - - 

Bortezomib 02/08/2014 - - - 

Hydroxocobalamin 30/07/2014 - - - 

Nilotinib Hydrochloride Monohydrate 30/07/2014 
TA241, 
TA251 

SMC ID 440/08 - 

Ixabepilone 30/07/2014 - - - 

Tocofersolan 01/08/2014 - SMC ID 696/11 Reference 1180* 

Bendamustine Hydrochloride 28/07/2014 TA206* SMC ID 701/11* Reference 39* 

Romidepsin 01/08/2014 - - - 

Ofatumumab 30/07/2014 TA202 SMC IS 626/10 - 

Pralatrexate 01/08/2014 - - - 

Carglumic Acid 30/07/2014 - SMC ID 899/13 Reference 2371* 

Cholic Acid 30/07/2014 - - Reference 929* 

Omacetaxine Mepesuccinate 30/07/2014 - - - 

Alipogene Tiparvovec 28/07/2014 - - Reference 645* 

Taliglucerase Alfa 01/08/2014 - - - 

Asparaginase Erwinia Chrysanthemi 28/07/2014 - - - 

Brentuximab Vedotin 30/07/2014 - SMC ID 845/12* Reference 1255* 

Brentuximab Vedotin 30/07/2014 - SMC ID 845/12* Reference 1255* 

Crizotinib 30/07/2014 TA296 SMC ID 865/13‡ - 

Defibrotide 30/07/2014 - SMC ID 867/14 - 

Glucarpidase 30/07/2014 - - - 

Carfilzomib 30/07/2014 - - - 

Vismodegib 01/08/2014 - SMC ID 924/13* Reference 1037* 

Bosutinib 30/07/2014 TA299 SMC ID 910/13 - 

Pasireotide Diaspartate 30/07/2014 - SMC ID 815/12* Reference 642* 

Cholic Acid 30/07/2014 - - - 

Lomitapide Mesylate 30/07/2014 - SMC ID 956/14* Reference 1182* 

Pomalidomide 01/08/2014 - SMC ID 972/14 - 

Raxibacumab 01/08/2014 - - - 

Ponatinib Hydrochloride 01/08/2014 - - - 

Ponatinib Hydrochloride 01/08/2014 - - - 

Metreleptin 30/07/2014 - - - 

Ibrutinib 30/07/2014 - - - 
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Ibrutinib 30/07/2014 - - - 

Ceritinib 30/07/2014 - - - 

* No submission received from manufacturer, † Unable to retrieve due to product withdrawal, ‡ Two submissions available 
under the same reference number, § Three submissions available under the same reference number, ¶ Four submissions 
available under the same reference number 
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APPENDIX C CODE USED FOR THE IMPLEMENTATION OF MAIC IN THE 

SIMULATION STUDY 

Should others wish to implement the approach to MAIC tested in the simulation study presented in 

Chapter 4, the code snippet below demonstrates the implementation of MAIC on both first and 

higher moments. Also included (commented out for faster runtime) are cross-checks that can be 

performed on the weighting performed – should the code be used for running an individual analysis, 

it is advised these be presented. 

#set up the simulation 

    # print(paste0("Scenario ", i, " in scenarios ", 

simulation.scenarios.start, ":", simulation.scenarios.end, ", Simulation: 

", j, "/", simulation.n, ". Last scenario: ", time.scenario)) 

    set.seed(simulation.seed.table[i,j]) #set the seed for the simulation 

     

    #set up effect of coefficients for individuals 

    run.coefficient.effect <- 

matrix(coefficient.effect(simulation.theoretical*simulation.C), nrow = 

simulation.theoretical, ncol = simulation.C) 

         

    #simulate Population A 

    ##set up covariates 

    run.intervention.X <- matrix(NA, nrow = simulation.theoretical, ncol = 

simulation.C) 

    run.intervention.X[,1:simulation.J] <- 

popa.betas.J(simulation.theoretical*simulation.J) 

    if (simulation.C>simulation.J) { 

      run.intervention.X[,(simulation.J+1):simulation.C] <- 

popa.betas.C((simulation.C-simulation.J)*simulation.theoretical) 

    } 

    ##calculate outcomes 

    run.intervention.Y <- matrix(NA, nrow = simulation.theoretical, ncol = 

2) # 2 columns - 1. untreated outcomes, and 2. treated outcomes 

    run.intervention.Y[,1] <- outcome.notreat(simulation.theoretical, 

run.intervention.X) 

    run.intervention.Y[,2] <- outcome.treat(simulation.theoretical, 

run.intervention.X) 

 

    #simulate popb 

    ##set up covariates 

    run.control.X <- matrix(NA, nrow = simulation.theoretical, ncol = 

simulation.C) 

    run.control.X[,1:simulation.J] <- 

popb.betas.J(simulation.J*simulation.theoretical) 

    if (simulation.C > simulation.J) { 

        run.control.X[,(simulation.J+1):simulation.C] <- 

popb.betas.C((simulation.C-simulation.J)*simulation.theoretical) 

    } 

    ##calculate outcomes 

    run.control.Y <- matrix(NA, nrow = simulation.theoretical, ncol = 2) # 

2 columns - 1. untreated outcomes, and 2. treated outcomes 

    run.control.Y[,1] <- outcome.notreat(simulation.theoretical, 

run.control.X) 

    run.control.Y[,2] <- outcome.treat(simulation.theoretical, 

run.control.X) 

     

    #sample from popa and popb to create analysis sets 
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    run.popa.sample <- sample(1:simulation.theoretical, run.popa.n, replace 

= FALSE) 

    run.popa.X <- run.intervention.X[run.popa.sample,] 

    run.popa.Y <- run.intervention.Y[run.popa.sample,] 

    run.popb.sample <- sample(1:simulation.theoretical, run.popb.n, replace 

= FALSE) 

    run.popb.X <- run.control.X[run.popb.sample,] 

    run.popb.Y <- run.control.Y[run.popb.sample,] 

     

    #Save individual mean survival times for future diagnostics 

    simulation.diagnostics[i,j,1,1] <- mean(run.control.Y[,1]) 

    simulation.diagnostics[i,j,1,2] <- mean(run.popb.Y[,1]) 

    simulation.diagnostics[i,j,1,3] <- mean(run.control.Y[,2]) 

    simulation.diagnostics[i,j,1,4] <- mean(run.popb.Y[,2]) 

    simulation.diagnostics[i,j,1,5] <- mean(run.intervention.Y[,2]) 

    simulation.diagnostics[i,j,1,6] <- mean(run.popa.Y[,2]) 

     

    #True difference i.e. from non-sampled data 

    run.sampled.true.surv <- Surv(c(run.popb.Y[,1], run.popb.Y[,2]), 

c(rep(1, run.popb.n*2))) 

    run.sampled.true.cox <- coxph(formula = run.sampled.true.surv ~ 

c(rep(0, run.popb.n), rep(1, run.popb.n)), robust = TRUE) 

    # run.sampled.true.cox2 <- coxph(formula = run.sampled.true.surv ~ 

c(rep(0, run.popb.n), rep(1, run.popb.n)), 

cluster(as.factor(1:nrow(run.sampled.true.surv)))) #exploring clustering 

    simulation.result[i,j,1,1] <- exp(run.sampled.true.cox$coefficients) 

     

    #Naive difference i.e. from sampled data, cross comparison 

    run.sampled.naive.surv <- Surv(c(run.popb.Y[,1], run.popa.Y[,2]), 

c(rep(1, run.popb.n+run.popa.n))) 

    run.sampled.naive.cox <- coxph(formula = run.sampled.naive.surv ~ 

c(rep(0, run.popb.n), rep(1, run.popa.n)), robust = TRUE) 

    simulation.result[i,j,1,2] <- exp(run.sampled.naive.cox$coefficients) 

    simulation.result[i,j,1,3:4] <- exp(confint(run.sampled.naive.cox)) 

    ##SE; i,j,*2* is the key 

    simulation.result[i,j,2,2] <- sqrt(diag(run.sampled.naive.cox$var)) 

#summary(run.sampled.naive.cox)$coefficients[,3] 

 

    #Perform MAIC 

    if (simulation.options.maic == "Yes") { 

      ##create summary data of the popb 

      # colMeans(run.popa.X[,1:simulation.J]) #summary of popa if wanted 

for comparison 

      run.popb.X.summaries <- matrix(NA, nrow = 2, ncol = simulation.J) 

      for (k in 1:simulation.J) { 

        run.popb.X.summaries[1,k] <- mean(run.popb.X[,k]) #row 1 - mean 

        run.popb.X.summaries[2,k] <- sd(run.popb.X[,k]) #row 2 - sd 

      } 

      ##recentre popa data for matching 

      run.maic.zerod <- run.popa.X[,1:simulation.J] 

      run.maic.zerod <- sweep(run.maic.zerod, 2, run.popb.X.summaries[1,], 

"-") 

      # colMeans(run.maic.zerod) #summary of zerod data if wanted for 

comparison 

      ##set up starting weights - assume 1 unless we know better 

      run.maic.startvalues <- rep(1, simulation.J) 

      ##set up function to be minimised 

      maic.minimise <- function(theta) { 

        sum(exp(as.matrix(run.maic.zerod) %*% theta)) 

      } 

      #find optimum 
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      run.maic.result <- optim(fn = maic.minimise, par = 

run.maic.startvalues, method = "BFGS") 

      #extract betas 

      run.maic.betas <- run.maic.result$par 

      #calculate resulting weights 

      run.maic.weights <- exp(as.matrix(run.maic.zerod) %*% run.maic.betas) 

      run.maic.weights <- ifelse(run.maic.weights < simulation.weight.min-

6, simulation.weight.min-6, run.maic.weights) 

      #check resulting matching 

      ##effective sample size 

      # run.maic.ess <- (sum(run.maic.weights)^2) / sum(run.maic.weights^2) 

      ##weight with original data should be mean of the popb for each 

variable 

      # run.maic.confirmation <- matrix(NA, nrow = 3, ncol = simulation.J) 

      # for (k in 1:simulation.J) { 

      #   run.maic.confirmation[1,k] <- wt.mean(run.popa.X[,k], 

run.maic.weights) #row 1 - mean 

      #   run.maic.confirmation[2,k] <- wt.sd(run.popa.X[,k], 

run.maic.weights) #row 2 - sd 

      #   run.maic.confirmation[3,k] <- wt.mean(run.maic.zerod[,k], 

run.maic.weights) #row 3 - zerod point estimate (to see errors) 

      # } 

      ##present results for checking: 

      ###weighted with original data - should be close 

      # colMeans(run.popa.X[,1:simulation.J]) # popa means 

      # run.popb.X.summaries # popb 

      # run.maic.confirmation[1:2,]# popa weighted to match popb 

      ###weighted with zerod data, should be 0 (or close to it) 

      # run.maic.confirmation[3,]# zerod popa weighted to match popb 

      ##calculate resulting HR and save outputs 

      run.sampled.maic.cox <- coxph(formula = run.sampled.naive.surv ~ 

c(rep(0, run.popb.n), rep(1, run.popa.n)), robust = TRUE, weights = 

c(rep(1, run.popb.n), run.maic.weights)) 

      simulation.result[i,j,1,5] <- exp(run.sampled.maic.cox$coefficients) 

      simulation.result[i,j,1,6:7] <- exp(confint(run.sampled.maic.cox)) 

      ##SE; i,j,*2* is the key 

      simulation.result[i,j,2,5] <- sqrt(diag(run.sampled.maic.cox$var)) 

#summary(run.sampled.naive.cox)$coefficients[,3] 

     

      #Perform MAIC with higher moments 

      ## from Signorovitch's paper:  

      #"For example, given the baseline mean and standard deviation of age, 

it is straightforward to compute the mean of squared age, which can then be 

treated as a separate mean baseline characteristic for matching." 

      ##create summary data of the popb 

      # colMeans(run.popa.X[,1:simulation.J]) #summary of the popa if 

wanted for comparison 

      run.popb.X.summaries <- matrix(NA, nrow = 2, ncol = simulation.J) 

      for (k in 1:simulation.J) { 

        run.popb.X.summaries[1,k] <- mean(run.popb.X[,k]) #row 1 - mean 

        run.popb.X.summaries[2,k] <- sd(run.popb.X[,k]) #row 2 - sd 

      } 

      ##calculate mean squared values from popb summaries 

      run.popb.X.meansquared <- matrix(NA, nrow = 1, ncol = simulation.J) 

      for (k in 1:simulation.J) { 

        run.popb.X.meansquared[1,k] <- mean(rnorm(n=1000, mean = 

run.popb.X.summaries[1,k], sd = run.popb.X.summaries[2,k])^2) 

      }  

      ##recentre popa data for matching - including squared values 

      run.maichm.values <- cbind(run.popa.X[,1:simulation.J], 

run.popa.X[,1:simulation.J]^2) 
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      run.maichm.zerod <- sweep(run.maichm.values, 2, 

c(run.popb.X.summaries[1,], run.popb.X.meansquared[1,]), "-") 

      # colMeans(run.maichm.zerod) #summary of zerod data if wanted for 

comparison 

      ##set up starting weights - assume 1 unless we know better 

      run.maichm.startvalues <- rep(1, (simulation.J*2)) 

      ##set up function to be minimised 

      maichm.minimise <- function(theta) { 

        sum(exp(as.matrix(run.maichm.zerod) %*% theta)) 

      } 

      #find optimum 

      run.maichm.result <- optim(fn = maichm.minimise, par = 

run.maichm.startvalues, method = "BFGS") 

      #extract betas 

      run.maichm.betas <- run.maichm.result$par 

      #calculate resulting weights 

      run.maichm.weights <- exp(as.matrix(run.maichm.zerod) %*% 

run.maichm.betas) 

      run.maichm.weights <- ifelse(run.maichm.weights < 

simulation.weight.min, simulation.weight.min, run.maic.weights) #in case 

weight is too low, set a min 

      #check resulting matching 

      ##effective sample size 

      # run.maichm.ess <- (sum(run.maichm.weights)^2) / 

sum(run.maichm.weights^2) 

      ##weight with original data should be mean of the popb for each 

variable 

      # run.maichm.confirmation <- matrix(NA, nrow = 3, ncol = 

simulation.J) 

      # for (k in 1:simulation.J) { 

      #   run.maichm.confirmation[1,k] <- wt.mean(run.popa.X[,k], 

run.maichm.weights) #row 1 - mean 

      #   run.maichm.confirmation[2,k] <- wt.sd(run.popa.X[,k], 

run.maichm.weights) #row 2 - sd 

      #   run.maichm.confirmation[3,k] <- wt.mean(run.maichm.zerod[,k], 

run.maichm.weights) #row 3 - zerod data to see errors 

      # } 

      ##present results for checking: 

      ###weighted with original data - should be close 

      # colMeans(run.popa.X[,1:simulation.J]) # popa 

      # run.popb.X.summaries # popb 

      # run.maichm.confirmation[1:2,]# popa weighted to match popb 

      ###weighted with zerod data, should be 0 (or close to it) 

      # run.maichm.confirmation[3,]# zerod popa weighted to match popb 

      ##calculate resulting survival and save outputs 

      run.sampled.maichm.cox <- coxph(formula = run.sampled.naive.surv ~ 

c(rep(0, run.popb.n), rep(1, run.popa.n)), robust = TRUE, weights = 

c(rep(1, run.popb.n), run.maichm.weights)) 

      simulation.result[i,j,1,8] <- 

exp(run.sampled.maichm.cox$coefficients) 

      simulation.result[i,j,1,9:10] <- exp(confint(run.sampled.maichm.cox)) 

      ##SE; i,j,*2* is the key 

      simulation.result[i,j,2,8] <- sqrt(diag(run.sampled.maichm.cox$var)) 

#summary(run.sampled.naive.cox)$coefficients[,3] 

    } 
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APPENDIX D EXAMPLE R CODE TO IMPLEMENT METHODS 

CONCEPTUALISED IN SECTION 5.2 

The R code presented was written in R version 3.6.1, and uses simulated data to demonstrate the 

approaches proposed. 

 

tic.project <- Sys.time() 

 

# Details --------------------------------------------------------------- 

 

# Creation of controls using 

# Approach 1. Difference between previous line and current line of TTP 

# Approach 2. Difference between PFS and OS from previous line publication 

 

# Install & load packages ------------------------------------------------- 

 

# if needed install package install.load 

#install.packages("install.load") 

library("install.load") 

# Packages to be installed 

packages <- c( 

  "MASS", #bivarate normal sampling 

  "ggplot2", #plotting density 

  "survminer", #survival plotting 

  "flexsurv", #survival regression 

  "survival" #used for Surv objects 

) 

install_load(packages) 

rm(packages) 

 

# Settings ---------------------------------------------------------------- 

 

n.patients <- 250 #number of patients to simulate in each trial 

n.sims <- 50000 #number of simulations for sampling from 

rich6equal = c("#000043", "#0033FF", "#01CCA4", "#BAFF12", "#FFCC00", "#FF3300") #r Colours 

 

#plot heights and widths 

graphheight <- 6 

graphwidth <- 10 

 

#set seed for replicable results 

set.seed(1337) 

 

# Approach 1. Difference between previous line and current line ---------- 

 

# Step 1: Data for previous and current line. 

#for ease, here we simulate data using Weibull distributions 

approach1.previous.line <- rweibull(n = n.patients, shape = 1.2, scale = 9.5) 

approach1.current.line <- rweibull(n = n.patients, shape = 1.2, scale = 10) 

 

#create survival objects 

approach1.previous.line.surv <- Surv(approach1.previous.line, rep(1, n.patients)) 

approach1.previous.line.survfit <- survfit(approach1.previous.line.surv ~ 1) 

approach1.current.line.surv <- Surv(approach1.current.line, rep(1, n.patients)) 

approach1.current.line.survfit <- survfit(approach1.current.line.surv ~ 1) 

 

#plot the resulting survival data 

ggsurvplot(fit = approach1.previous.line.survfit, data = approach1.previous.line.surv, 

           xlab = "Time", 

           ylab = "Survival", 

           risk.table = TRUE, 

           conf.int = TRUE, 

           conf.int.style = "step") 

 

ggsurvplot(fit = approach1.current.line.survfit, data = approach1.current.line.surv, 

           xlab = "Time", 

           ylab = "Survival", 

           risk.table = TRUE, 

           conf.int = TRUE, 

           conf.int.style = "step") 

 

# Step 2: Fit survival curves to the data 
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approach1.previous.line.weibull <- flexsurvreg(approach1.previous.line.surv ~ 1, 

dist="weibull") 

approach1.current.line.weibull <- flexsurvreg(approach1.current.line.surv ~ 1, dist="weibull") 

 

#Step 3: Take samples from the data 

#samples 

approach1.previous.line.samples <- mvrnorm(n = n.sims, mu = 

approach1.previous.line.weibull$coefficients, Sigma = approach1.previous.line.weibull$cov) 

approach1.current.line.samples <- mvrnorm(n = n.sims, mu = 

approach1.current.line.weibull$coefficients, Sigma = approach1.current.line.weibull$cov) 

 

#exponentiate as needed 

approach1.previous.line.samples <- exp(approach1.previous.line.samples) 

approach1.current.line.samples <- exp(approach1.current.line.samples) 

 

approach1.previous.line.predicted <- matrix(NA, 1, n.sims) 

approach1.current.line.predicted <- matrix(NA, 1, n.sims) 

for (i in 1:n.sims) { 

  approach1.previous.line.predicted[i] <- mean(rweibull(100, shape = 

approach1.previous.line.samples[i,1], scale = approach1.previous.line.samples[i,2])) 

  approach1.current.line.predicted[i] <- mean(rweibull(100, 

approach1.current.line.samples[i,1], approach1.current.line.samples[i,2])) 

} 

 

#Step 4: Calculate which offers better survival 

#estimate benefit by taking one from the other 

approach1.netbenefit <- as.vector(approach1.current.line.predicted) - 

as.vector(approach1.previous.line.predicted) 

 

##Likely benefit, accounting for uncertainty 

summary(as.vector(approach1.previous.line.predicted)) 

summary(as.vector(approach1.current.line.predicted)) 

summary(approach1.netbenefit) 

 

#plot the density of the difference in survival 

plot(density(approach1.netbenefit), col = rich6equal) 

 

#What percent are above zero i.e. how often is the intervention superior? 

100*length(as.vector(approach1.netbenefit[approach1.netbenefit>0]))/n.sims 

 

 

 

# Approach 2. Difference between PFS and OS from previous line -------- 

 

# Step 1: Import data from the external study for OS and PFS, as well as the OS from the 

current study.  

#Usually this would be digitsed, but to keep the example self contained, we have used 

simulated data 

approach2.external.PFS <- rweibull(n = n.patients, shape = 1.1, scale = 9.5) 

approach2.external.PPS <- rweibull(n = n.patients, shape = 1.1, scale = 4) 

approach2.external.OS <- approach2.external.PFS + approach2.external.PPS 

 

#create a data frames of all data 

approach2.external.PFS.dataframe <- data.frame(Time = approach2.external.PFS, Event = rep(1, 

n.patients), Data = "PFS") 

approach2.external.OS.dataframe <- data.frame(Time = approach2.external.PFS, Event = rep(1, 

n.patients), Data = "OS") 

approach2.external.dataframe <- rbind(approach2.external.PFS.dataframe, 

approach2.external.OS.dataframe) 

 

# Step 2: Fit survival curves 

#We suggest the approach of Latimer et al. featured as a NICE DSU report, and also in MDM, 

though in this case we assume this has been performed, and a weibull is used 

approach2.external.PFS.surv <- Surv(approach2.external.PFS, rep(1, n.patients)) 

approach2.external.PFS.fit <- flexsurvreg(approach2.external.PFS.surv ~ 1, dist="weibull")   

approach2.external.OS.surv <- Surv(approach2.external.OS, rep(1, n.patients)) 

approach2.external.OS.fit <- flexsurvreg(approach2.external.OS.surv ~ 1, dist="weibull")   

 

#Step 3: Simulate data from the fitted curves 

#samples 

approach2.external.PFS.samples <- mvrnorm(n = n.sims, mu = 

approach2.external.PFS.fit$coefficients, Sigma = approach2.external.PFS.fit$cov) 

approach2.external.OS.samples <- mvrnorm(n = n.sims, mu = 

approach2.external.OS.fit$coefficients, Sigma = approach2.external.OS.fit$cov) 

 

#exponentiate as needed 

approach2.external.PFS.samples <- exp(approach2.external.PFS.samples) 
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approach2.external.OS.samples <- exp(approach2.external.OS.samples) 

 

#calculate predicted values 

approach2.external.PFS.predicted <- matrix(NA, 1, n.sims) 

approach2.external.OS.predicted <- matrix(NA, 1, n.sims) 

for (i in 1:n.sims) { 

  approach2.external.PFS.predicted[i] <- mean(rweibull(100, shape = 

approach2.external.PFS.samples[i,1], scale = approach2.external.PFS.samples[i,2])) 

  approach2.external.OS.predicted[i] <- mean(rweibull(100, approach2.external.OS.samples[i,1], 

approach2.external.OS.samples[i,2])) 

} 

 

#Step 4: calculate expected outcomes of the post progression survival 

#subtract PFS from OS, calculate summary statistics of the likely PPS time, and plot hisograms 

and density plots 

approach2.external.PPS.predicted <- as.vector(approach2.external.OS.predicted) - 

as.vector(approach2.external.PFS.predicted) 

summary(approach2.external.PPS.predicted) 

hist(approach2.external.PPS.predicted) 

plot(density(approach2.external.PPS.predicted)) 

 

#Step 5: Import survival data and fit a curve to the contemporary study 

#Here again we use simulated data for ease, again assuming a weibull distribution is known 

approach2.contemporary.OS <- rweibull(n = n.patients, shape = 1.1, scale = 7) 

approach2.contemporary.OS.surv <- Surv(approach2.contemporary.OS, rep(1, n.patients)) 

approach2.contemporary.OS.fit <- flexsurvreg(approach2.contemporary.OS.surv ~ 1, 

dist="weibull")   

 

#Step 6: Sample from the fitted contemporary survival fitting, and estmate predicted OS for 

comparison (to account for uncertainty) 

#samples 

approach2.contemporary.OS.samples <- mvrnorm(n = n.sims, mu = 

approach2.contemporary.OS.fit$coefficients, Sigma = approach2.contemporary.OS.fit$cov) 

 

#exponentiate as needed 

approach2.contemporary.OS.samples <- exp(approach2.contemporary.OS.samples) 

 

#calculate predicted values 

approach2.contemporary.OS.predicted <- matrix(NA, 1, n.sims) 

for (i in 1:n.sims) { 

  approach2.contemporary.OS.predicted[i] <- mean(rweibull(100, shape = 

approach2.contemporary.OS.samples[i,1], scale = approach2.contemporary.OS.samples[i,2])) 

} 

 

#Step 6: Calculate and plot the expected net survival gain of treatment 

approach2.netbenefit <- as.vector(approach2.contemporary.OS.predicted) - 

as.vector(approach2.external.PPS.predicted) 

 

##Likely benefit, accounting for uncertainty 

summary(as.vector(approach2.external.PPS.predicted)) #historical data 

summary(as.vector(approach2.contemporary.OS.predicted)) #contemporary data 

summary(approach2.netbenefit) #net benefit 

 

#plot the density of the difference in survival 

plot(density(approach2.netbenefit), col = rich6equal) 

 

#What percent are above zero i.e. how often is the intervention superior? 

100*length(as.vector(approach2.netbenefit[approach2.netbenefit>0]))/n.sims 

 

 

toc.project <- Sys.time() 

timetorun.project <- toc.project - tic.project 

timetorun.project 

 


