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Abstract

This work models the behavior of a liquid-particle suspension on the surface of a tablet during the

pharmaceutical film-coating process. The model uses the “mixture modeling” approach and the

lubrication approximation method to simulate how the suspension moves and dries on the surface

of a tablet, considering how important physical properties of the suspension, such as the density

and viscosity, change when the carrier fluid evaporates. The model also accounts for the absorption

of the coating suspension inside the core of the porous tablet, yielding the tablet water content, a

key quantity characterizing the coating process. The numerical results, obtained with the gPROMS

Modelbuilder platform, agree with experimental data taken from the literature and Volume-Of-Fluid

CFD simulations.

1. Introduction

Coating of tablet cores is one of the oldest manufacturing processes used by the pharmaceutical

industry (Cole et al., 1995). Among the various coating methods, aqueous film-coating has recently

gained in popularity (Felton, 2013). During this process, a suspension of water and polymer particles

is atomized and sprayed on tablets lying in a rotating drum. Following spray impact, the droplets of

coating suspension spread and form thin films onto the surfaces of the tablets that are facing the spray

(tablet wetting). After the initial wetting, the continuous phase of the suspension (water) evaporates,

while the suspension absorbs in the porous tablets (Felton, 2013). Once water has sufficiently depleted

from the tablet surfaces, a dry polymer film generates (Muliadi and Sojka, 2010). As the tablets move

inside the rotating drum, they pass under the spray several times, each time with different orientation.

Owing to the this variability in tablet orientation, the surfaces facing the spray frequently change, so

in the end the tablets are entirely coated. The process completes when the dry polymer films reach

the desired thickness (∼10−5 to 10−4 m; Freireich et al., 2015).

Owing to the complexity of the coating process, the final product often presents defects, the most

common being coating bridging, cracking, orange-peel roughness and picking/sticking (Cole et al.,

1995). These defects arise primarily because the values of process parameters, such as spray flow

rate, drum rotation speed, temperature and relative humidity, are chosen incorrectly; this leads to an

uneven distribution of the coating on the tablet surface (especially at the tablet edges) and so to final

product imperfections. In particular, when the water drying rate is uncontrolled, overwetting and

overdrying problems are likely to occur (especially close to the tablet edges) and the coating process

may take longer (Muliadi and Sojka, 2010).

To investigate the behavior of a coating suspension on a pharmaceutical tablet, one needs to consider

its flow over the surface and edges of the tablet, its evaporation from the surface of the tablet, and

its absorption into the porous matrix of the tablet. Previous work concerning the simulation of thin

films over rigid substrates either dealt with pure liquids or neglected the absorption of the suspension

and/or the evaporation of its continuous phase (i.e. the carrier fluid). In this work, we aim to account

for all these concurrent phenomena, because all of them strongly affect the tablet coating process.
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The wetting and spreading phenomena of pure liquid films on impermeable, non-porous substrates

have been investigated employing the lubrication approximation method (de Gennes, 1985; Schwartz,

1999; Craster and Matar, 2009). This method exploits the small value of the ratio between the

thickness and the width of a film to derive a set of simplified continuity and Navier-Stokes equations

describing the film flow in the absence of inertia. Alleborn and Raszillier (2004) extended this method

to investigate how droplets spread over porous substrates while absorbing into them.

Many other researchers have developed mathematical models for the absorption of pure liquids into

porous substrates. Most of their work is based on the Lucas - Washburn or Darcy’s equations, which

allow predicting the spreading and penetration depth of the liquid in the porous medium (Siregar,

2012). In our previous work (Christodoulou et al., 2018), we developed a model that yields the wetting

front profile inside a porous pharmaceutical tablet after a pure water droplet impinges on its surface.

However, most coating formulations employed by the pharmaceutical industry are not pure liquids,

but aqueous polymer suspensions. To model their flow on the surface of pharmaceutical tablets, one

can adopt the “mixture modeling” approach. This holds for fluid-particle systems in which the mean

velocity fields of the continuous and disperse phases relax to local dynamical equilibrium rapidly, a

condition that is often met in liquid-particle suspensions (Jamshidi et al., 2019). Weidner et al. (1996)

and O’Brien and Schwartz (2002) combined this approach and the lubrication approximation method

to simulate the drying of suspension films and their flow over impermeable substrates.

Absorption models for suspensions in porous media should take into account particle retention

(Bradford et al., 2002). This phenomenon has been investigated theoretically and experimentally

by many researchers, such as Bradford et al. (2003), Civan (2011) and Holloway et al. (2011). Even

though their work is not specific to pharmaceutical formulations, it provides a valuable theoretical

background for the modeling of their absorption in pharmaceutical tablets.

The main limitation of the models described above is that they neglect evaporation, a phenomenon

that is crucial at the high temperature at which the film-coating process takes place and that generates

a dry crust over the tablet surface (Felton, 2013). Both phenomena are well described by the models of

Croll (1987) and Kiil (2006). More recently, Niblett et al. (2017) studied the application and drying of

coating suspensions on tablets both experimentally and numerically, presenting a model that predicts

the suspension drying rate. Their model, among other things, simulates droplet application and drying

on the tablet, and their numerical results are validated against data from the actual process.

Recent models which simulate coating application on tablets have focused on single droplet impact

cases and/or have neglected coating evaporation and absorption into the tablet (Bolleddula et al.,

2010; Niblett et al., 2017). In this work, we developed a model that is able to predict the behavior of a

pharmaceutical suspension film after it is applied on a tablet during a pass under the spray, accounting

for film spreading, suspension absorption with particle retention and carrier fluid evaporation. All these

phenomena should be considered to accurately predict the amount of water and solid polymer inside the

tablet core. This model can be used by the pharmaceutical industry (together with models describing

tablet movement under the spray, as well as spray atomization and evaporation) to understand the

process better and enhance tablet shelf-life and dry film adhesion.

Upper
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Edge

Figure 1: Coating film applied on the upper surface of a cylindrical tablet.
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2. Mathematical model

Film coatings are generally applied on pharmaceutical tablets by spraying a polymer-based suspension

on their surface. The atomized suspension may dry significantly during the flight from the spray nozzle

to the tablet passing under the spray; in some cases, the drying can be substantial to the point that

some droplets are effectively “spray-dried”. After impinging onto the tablet, the liquid droplets spread

on its dry surface (Christodoulou et al., 2020). As droplets continuously impinge, the wetted area on

the tablet expands, eventually forming a liquid (suspension) film that covers part of the tablet surface

facing the spray (upper surface in Fig. 1). According to the work of Bolleddula et al. (2010), this

process is driven by inertia and its time scale (milliseconds) is far shorter than those (seconds) of the

absorption and drying processes (Felton, 2013).

Following the inertia-driven spreading, the coating suspension penetrates into the core of a porous

tablet and flows over adjacent dry parts of the tablet surface; concurrently, the carrier fluid evaporates

from the film surface. This last phenomenon strongly affects the motion of the film (absorption into

the tablet pores and spreading over the dry parts of the tablet surface), because it raises the solid

volume fraction in the suspension, and with it the suspension density and viscosity. The viscosity,

in particular, diverges when the solid volume fraction increases sufficiently (Mueller et al., 2009).

The critical value at which this happens has not been precisely identified; following Rutgers (1962a),

here we take it to be 0.67, which is in the range of accepted values. When the solid volume fraction

reaches this value, the particles come into close contact, start coalescing and form a porous wetted

solid (Taylor and Winnik, 2004). At this point, the carrier fluid evaporates through the pores of the

wetted solid or “crust”, while the film essentially stops absorbing into the tablet and flowing over its

surface (Kiil, 2006). After the film has dried, the tablet passes again under the spray (probably with

different orientation) and the above process repeats itself until the dry coating film reaches the desired

thickness on all the surfaces of the tablet.

In this article, we are interested in the behavior of a pharmaceutical coating suspension (consisting of

water and particles) after this has been applied on a tablet that is no longer under a spray; that is,

after the initial inertia-driven spreading process has completed. The inertia-driven regime was studied

in our previous work (Christodoulou et al., 2020). We assumed that the tablet is cylindrical (even

though the model can work for tablets of different shapes) and initially the suspension film covers part

of its flat “upper” surface and of its edges (Fig. 1). The film can then penetrate into the tablet and

flow over its flat surface and curved edges, while the suspension carrier fluid can evaporate. The model

accounts for the particle retention in the pores, since this may hinder the suspension from absorbing

into the core. We regarded a simulation as completed when the particle concentration everywhere in

the coating film reaches its critical value and the suspension turns into a porous wetted crust (Kiil,

2016). After the crust has formed, water evaporates from it; this process is not investigated because

it was studied in our previous work (Christodoulou et al., 2018).

To summarize, the model presented here can calculate the time required by the coating film to turn

into a crust, the amount of coating suspension absorbed into the tablet core, the thickness of the

film as it evaporates, flows over the tablet and penetrates into its pores, and the profile of the solid

volume fraction within the film and inside the tablet. All the above predictions concern a single pass

of the tablet under the spray. In this section we describe the mathematical model; this is presented in

three subsections: Subsections 2.1 and 2.2 concern the behavior of the coating film on the flat surface

and on the edges of the tablet, respectively, and Subsection 2.3 deals with the penetration of the

coating suspension into the porous tablet. Subsection 2.4 reports the steps needed to solve the model

numerically.
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2.1 Coating behavior on a flat tablet surface

After a coating suspension film has been applied on a flat region of the tablet surface, it can spread

over the adjacent flat regions of the surface or over the adjacent edges (see Subsection 2.2), absorb

into the porous tablet core, and dry while the coating carrier fluid (water) evaporates (Fig. 1). In this

subsection, we present the part of our mathematical model that describes how the suspension flows

and dries over the adjacent flat regions of the tablet surface.

Pharmaceutical coatings are multiphase media (liquid-particle suspensions). To simplify the problem,

we assumed that the coating film consists of one carrier liquid (liquid phase) containing identical

particles (solid phase). We also assumed that the velocity fields of the two phases relax rapidly; this is

true in the simulations performed in this study, because the Stokes number is small

(St << 1; see Appendix). The last assumption allowed us to use the mixture modeling approach.

This approach is based on a set of four balance equations, which are reduced to three by expressing

the slip velocity between the phases with a constitutive equation. The remaining balance equations

are two continuity equations (one for the mixture, treated as an effective fluid, and one for the solid

phase) and one linear momentum balance equation for the mixture.

To obtain the continuity equation for the mixture one has to sum the continuity equations written for

the solid and liquid phases (Jamshidi et al., 2019). Doing so yields:

∂tρ = − ∂x · (ρu) (1)

where ρ and u are the density and velocity of the mixture (that is, of the coating suspension),

respectively, and are defined as follows:

ρ ≡ ερe + φρs ; ρu ≡ ερeue + φρsus (2)

where ε and ρe are the volume fraction and density of the liquid phase, respectively, and φ and ρs are

the volume fraction and density of the solid phase, respectively. Moreover, ue and us are the velocities

of the liquid and solid phases, respectively.

To derive a linear momentum balance equation for the mixture one needs to follow the same procedure

as for the continuity equation. Summing the dynamical equations for the fluid and solid phases yields

the equation of motion for the coating suspension:

∂t (ρu) = − ∂x · (ρuu) + ∂x · σm + ρg (3)

where g is the gravitational field and σm is the mixture stress tensor. The equation above is unclosed;

to make it solvable, one needs a constitutive equation for the mixture stress tensor. We discuss this

equation below, in this subsection.

As mentioned before, an additional continuity equation for the solid phase (particles in the suspension)

is needed to model the behavior of the coating film. Since the coating particles are incompressible,

this equation can be written as follows:

∂t φ = − ∂x · (φu)− ∂x · j (4)

The term ∂x · j arises because the particles do not move at the same velocity as the mixture. j can

be interpreted as a particle migration flux and its closure is also discussed below.
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Figure 2: a) Coating film covering part of the “upper” tablet surface facing the spray,
b) Tablet “upper” surface during a single pass under the spray.

By solving Eqs. (1), (3) and (4) along with appropriate expressions for σm and j, one can determine

the solid volume fraction and velocity of the mixture. But solving these is computationally demanding.

To reduce the computational effort without sacrificing accuracy, one can employ the lubrication

approximation method, a technique that exploits the small value of the ratio between the thickness

and the width of a film to simplify its equations of motion. In this method, the modeler identifies,

via scaling and order-of-magnitude analysis, and then neglects terms that are too small to affect the

dynamics of the suspension. For the present problem, these terms turn out to be inertia and gravity

(Szeri, 2010).

In the literature it is reported that pharmaceutical suspension films formed by impinging droplets are

approximately cylindrical (Niblett et al., 2017). Assuming this shape for the film and employing the

lubrication approximation method, we obtained the following dynamical equations, which we express

in cylindrical coordinates:

∂rp = ∂zτzr ; ∂zp = 0 (5)

where r and z are the radial and axial (vertical) coordinates, respectively (Fig. 2), p is the pressure of

the mixture and τzr is the zr-component of the deviatoric stress tensor of the mixture. Eqs. (5a) and

(5b) are derived in the appendix. The second indicates that the pressure does not depend on the z

coordinate; therefore, assuming axisymmetry, we conclude that p is a function of the radial coordinate

and of the time only.

In the literature, pharmaceutical coating suspensions have been reported to exhibit either Newtonian

or slight shear-thinning behavior (Bolleddula et al., 2010; Ketterhagen et al., 2017; Niblett et al.,

2017) over a range of shear rates (10−3 − 103 1/s) of interest for the coating-application process. The

rheology of these suspensions depends on their composition (type of polymer) and solid volume fraction

(Cole et al., 1995). In this work, we considered power-law suspensions, because these can capture both

Newtonian and shear-thinning behavior. We thus write:

τzr = m
∣∣∂zv∣∣n−1

∂zv (6)

where v is the radial component of the mixture velocity, m is the consistency index and n is the flow

index. Substituting Eq. (6) into Eq. (5a) gives:

∂rp = ∂z

[
m
∣∣∂zv∣∣n−1

∂zv
]

(7)

We now integrate Eq. (7) twice between z = 0 (the tablet-film interface), where we impose no-slip,

and z = h (the film-air interface), where we impose no-shear-stress. With the boundary conditions

just specified, which read:

v
∣∣∣
z=0

= 0 ; ∂zv
∣∣∣
z=h

= 0 (8)

we obtain:

v =
n

n+ 1

(
− ∂rp

m

)1/n [
h(n+1)/n − (h− z)(n+1)/n

]
(9)

Setting n = 1 gives the expression for a Newtonian fluid. In Eq. (9), the pressure field is unknown;
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to determine it, we use the following equation that accounts for the pressure jump at the film-air

interface due to surface tension:
p =− γ ∂x · ∂xh (10)

where γ is the surface tension at the film-air interface (assumed to be constant). Eq. (10) was employed

by O’Brien and Schwartz (2002), who investigated the flow of films over impermeable substrates. When

the substrate is flat, the curvature of the film-air interface is approximately equal to ∂x · ∂xh(r, t),

which in cylindrical coordinates yields (1/r) ∂r(r∂rh).

As the film flows over the tablet surface, it spreads over a dry substrate. This “contact-line” motion

does not agree with the no-slip boundary condition at the film-tablet interface, which we employed to

derive the velocity profile in Eq. (9). To overcome this problem, we followed the approach of Schwartz

and Eley (1998), who assumed that a precursor film of coating suspension covers the dry substrate.

Inside the submicroscopic precursor film, a “disjoining” pressure πc arises (Slattery et al., 2007); this

accounts for the Van der Waals forces between the film and the tablet and is significant at the contact

line. We calculated the disjoining pressure using the Frumkin-Derjaguin model (Schwartz, 1999):

πc = β

( ĥ
h

)N
−

(
ĥ

h

)M ; β =
1

ĥ

(N − 1)(M − 1)

2 (N −M)
γ (1− cosϑ) (11)

where ĥ is the precursor film thickness, N and M are positive constants withN >M > 1 and ϑ is the

equilibrium contact angle of the film on the tablet. Following Schwartz et al. (2001), we took N and

M equal to 3 and 2, respectively. The precursor film thickness ĥ is much smaller than the coating film

thickness (ĥ = 0.1 μm). Modeling the disjoining pressure using the Frumkin-Derjaguin model (Eq.

11) allowed us to prescribe the equilibrium contact angle. The final pressure equation reads:

p =− γ ∂x · ∂xh− πc (12)

Here, the thickness of the film is unknown but can be obtained from the mass balance equation for

the mixture, Eq. (1). If we use a scaling analysis, this can be approximated as follows:

∂tρ =− (1/r) ∂r (rρv)− ∂z (ρw) (13)

where w is the axial component of the mixture velocity. Integrating Eq. (13) with respect to z, from

z = 0 to z = h, gives:
∂t (ρh) =− (1/r) ∂r (ρrQ)− ρWa − ṁe (14)

The derivation of Eq. (14) and the necessary boundary conditions are given in the Appendix; in this

equation, Wa is the absorption velocity, ṁe is the evaporation mass flux and:

Q ≡
∫ h

0
v dz (15)

To solve Eq. (14), we need to assign an initial condition and two boundary conditions. The former

poses no problem, if the initial shape of the film is known; we assumed that the film initially has a

cylindrical shape (Niblett et al., 2017). The latter are easily specified at r = 0, where the gradient of

h vanishes by symmetry, and at the edge of the film, where the thickness of the film is equal to the

precursor film thickness h = ĥ. Film spreading over the curved edges of a tablet cannot be described

by Eq. (14). This is because the cylindrical coordinate system does not hold for the flow over the

edges. For that reason, we derived another evolution equation that can calculate h at the end of the

flat “upper” surface and over the tablet edges (see Subsection 2.2).
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Finally, to solve Eq. (14), one needs expressions for the absorption velocity and the evaporation mass

flux. We calculated the former from the boundary condition at the film-tablet interface:

Wa = ϕwp at z = 0 (16)

where wp is the (volume averaged) mixture velocity in the vertical direction inside the tablet (discussed

in Subsection 2.3) and ϕ is the porosity of the tablet.

To calculate the evaporation mass flux ṁe, we assumed that as the film dries, and before the wetted

crust forms, the carrier fluid finds its way to the film-air interface without being hindered by the

particles (Kiil, 2006). The evaporation flux from a thin film is approximately constant over the

film-air interface (Weidner et al. 1996; Kiil, 2006) and given by:

ṁe =
kmMw

<

[
p∗ν(Ts)

Ts
− RHp∗ν(T∞)

T∞

]
(17)

where km is the mass transfer coefficient, Mw is the molecular weight of the evaporating liquid

phase (water), RH is the relative humidity in the air bulk, < is the universal gas constant, and p∗ν
is the saturated vapor pressure calculated at the film-air interface temperature Ts and at the bulk

gas temperature T∞. Eq. (17) neglects the film curvature effect on the evaporation rate (negligible

Kelvin effect), an approximation already adopted in the literature for similar systems (Weidner et

al., 1996; O’Brien and Schwartz, 2002). The mass transfer coefficient km can be estimated with the

Ranz-Marshall correlation (Kiil, 2006):

Sh = 2 + 0.65 Re1/2 Sc1/3 ; for Re < 3 · 105 (18)

where Sh, Re and Sc are the Sherwood, Reynolds and Schmidt numbers, respectively. In Eq. (18),

which is valid for laminar flow of thin films (Kiil, 2006), the Reynolds and Schmidt numbers are defined

as follows:

Re ≡ ρgvgLs
µg

; Sc ≡ µg
ρgDν

(19)

where ρg, µg and vg are the density, viscosity and characteristic velocity of the gas (air + vapor) above

the tablet, respectively, Dν is the vapor diffusivity and Ls is the characteristic length of the film. In

our simulations, Ls was taken to be equal to the diameter of the wetted area of the coating film

covering the surface of the tablet. We obtained the vapor diffusivity Dν (m2/s) using the following

empirical relation (Mezhericher et al. 2007):

Dν = 3.564 · 10−10(Ts + T∞)1.75 (20)

To calculate the evaporation flux ṁe (Eq. 17), one needs to estimate the temperature at the film

surface Ts. Following Kiil (2006), we assumed that the temperature (T1) is uniform throughout the

film, since this is very thin. We then calculated Ts = T1 from the following energy balance equation:

〈ρcp1〉V1∂tT1 =− ṁe ∆HeA12 − hH (T1 − T2∞) A12 − k3 ∂zT3

∣∣∣
z=0

A13 (21)

where A12 and A13 are the areas of the film-air and film-tablet interfaces, respectively, V1 is the volume

of the film, cp1 is the heat capacity of the film, T3 is the temperature field within the tablet, hH is

the heat transfer coefficient, k3 is the thermal conductivity of the tablet and ∆He is the enthalpy

of vaporization. Eq. (21) refers to a control volume coinciding with the entire film. The equation

is derived in the appendix, where the heat conduction term (the last on the right-hand side) is also

analyzed.
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The solid volume fraction field in the film indicates how uniform this is. An evolution equation for

this field is obtained from Eq. (4), the continuity equation for the solid phase of the mixture. In

cylindrical coordinates, this reads:

∂tφ =− (1/r) ∂r (rφv)− ∂z (φw)− (1/r) ∂r (rjr)− ∂zjz (22)

where jr and jz denote the components of the particle migration flux in the radial and axial directions,

respectively. Particle migration in the axial direction can be neglected, because in this direction the

solid volume fraction varies mildly (Weidner et al., 1996). Eq. (22) then reduces to:

∂tφ =− (1/r) ∂r (rφv)− φ∂zw − (1/r) ∂r (rjr) (23)

Similar steps to those presented in the derivation of Eq. (14) (see Appendix) yield the following

equation:

∂tφ =− ρQ

h
∂r(φ/ρ) +

φṁe

ρh
− 1

h

1

r
∂r (rhjr) +

φ

ρ
∂tρ (24)

To solve Eq. (24), we need a constitutive equation for the flux jr. To derive it, we first need to estimate

the particle Peclet number Pe ≡ a2γ̇/D, where D is the particle Brownian diffusion coefficient, a is the

particle radius (assuming the particles are spherical) and γ̇ is the scale of the shear rate (that is, of the

magnitude of the rate of deformation tensor). For the cases considered in this work, Pe ∼ 10−6 (see

Appendix). Because Pe is much less than unity, the coating suspension is Brownian and the following

constitutive equation applies:

jr = −D ∂rφ (25)

where D is a function of the solid volume fraction (Batchelor, 1975; Yiantsios et al., 2006). Following

Buyevich and Kapbsov (1999), we used the following expression to calculate D:

D = D0/χ(φ) ; χ(φ) =
1− 0.5φ

(1− φ)3
+ 1.08

(φ/φ∗)3

1− φ/φ∗
(26)

where φ∗ represents the solid volume fraction at maximum packing, equal to 0.67 for hard spheres,

and D0 = (kBTw)/(6πµa) is the Einstein diffusivity, where kB is the Boltzmann coefficient, Tw and

µw are the carrier fluid temperature and viscosity, respectively. When the value of φ reaches φ∗, the

diffusion coefficient approaches zero and no particle migration takes place (Buyevich and Kapsov,

1999). According to Buyevich and Kapsov, Eq. (26) holds for the whole region of φ considered in this

article (0.1→φ∗) and thus offers a good estimate for the concentration-dependent Brownian diffusivity.

As mentioned before, pharmaceutical coatings can be Newtonian or slightly shear-thinning (Bolleddula

et al., 2010; Ketterhagen et al., 2017). In the latter case, since the mixture viscosity depends on the

solid volume fraction, we must write:

η(γ̇, φ) = m(φ)
∣∣∂zv∣∣n(φ)−1

(27)

where η is the non-Newtonian mixture viscosity, while m(φ) and n(φ) are rheometric functions that

must be determined experimentally (Mueller et al., 2010).

For coating formulations that behave as Newtonian fluids, the mixture viscosity is a function of the

solid volume fraction only. A constitutive equation that allows calculating it is that of Krieger and

Dougherty (1959), which reads:

µ(φ) = µw (1− φ/φ∗)−1.82 (28)

where µ is the Newtonian mixture viscosity.
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Eq. (28) is accurate for Brownian suspensions with solid volume fractions up to 0.55; for denser

suspensions, the equation of Brady (1993) applies:

µ(φ) = 1.3µw (1− φ/φ∗)−2 (29)

When the film temperature increases, the mixture viscosity decreases (Ketterhagen et al., 2017). This

effect is captured by the following constitutive equation:

η(γ̇, φ, T1) = η(γ̇, φ)
∣∣
20oC
· exp[Ac/(T1 − Tc)] (30)

where Ac (oC) and Tc (oC) are coefficients determined experimentally (Civan, 2008b), and η(γ̇, φ)
∣∣
20oC

is given by Eq. (27), or Eqs. (28) and (29) for the Newtonian case.

The simulation of the film flow was stopped when the suspension reached maximum packing. At this

point, the suspension film can no longer be regarded as a liquid (the viscosity becomes infinite) but

as a wetted solid - at this stage, a wetted crust forms in the entire thin film.

In this subsection, we presented the part of our model describing how the suspension flows and dries.

Eqs. (14) and (24) yield the film thickness and the solid volume fraction profiles in the film over

the surface of the tablet. However, they can be solved only if the absorption velocity (Wa) at the

film-tablet boundary is known (see Eq. 16). In Subsection 2.3, we investigate the absorption of the

coating suspension into the tablet and derive an expression for Wa.

2.2 Coating behavior on a tablet edge

When tablets are sprayed, their flat regions are exposed more than their edges (Freireich et al., 2015);

the latter, therefore, are less covered with coating suspension and may even remain dry. The flow over

these peripheral regions is driven by the large gradients in surface curvature present over the edges of

the tablet (Roy et al., 2002). In the case of a film covering a convex tablet edge, the curvature gradient

is expected to drive the suspension away from the edge thus leading to film thinning (Schwartz and

Weidner, 1995) and to tablet defects (Freireich et al., 2015). In this subsection we investigate this

flow, considering edges that initially are either dry or lightly coated.

To describe the flow over the edges of the tablet, we introduced an orthogonal curvilinear coordinate

system (s1, s2, z), where the coordinate directions are chosen as shown in Fig. 3. For most tablet

shapes (cylindrical, round biconvex, etc.), the surface curvature at the edge in the s1 direction is much

larger than that in the s2 direction. We can thus neglect the flow in the s2 direction and treat the

problem as a two-dimensional flow in the (s1, z) plane, as shown in Fig. 4.

Following Schwartz and Weidner (1995), who simulated thin film flow over curved surfaces using the

curvilinear two-dimensional coordinate system described above, we write the evolution equation for

the film thickness hc over the tablet edge as follows:

∂t (ρhc) =− ∂s1(ρQc)− ρWa − ṁe (31)

where the absorption velocity Wa and the water evaporation flux ṁe are given by Eqs. (16) and (17),

respectively, and:

Qc ≡
∫ h

0
vc dz (32)

where the velocity component vc(s1, z, t) is given by the equivalent of Eq. (9) written in the coordinate

system of the edge:
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Figure 3: Curvilinear coordinate system for the tablet edge.

vc =
n

n+ 1

(
− ∂s1p

m

)1/n [
h(n+1/n)
c − (hc − z)(n+1/n)

]
(33)

In Eq. (33) the pressure field is unknown. Following Roy et al. (2002) and accounting for the disjoining

pressure, we can calculate the pressure in the film over the edge using the following equation:

p =− γ[κ+ κ2hc + ∂2
s1hc]− πc (34)

where κ is the curvature of the 2D edge (Fig. 3).

At the point where the flat surface and the tablet edge meet (s1 = 0) the curvature κ is zero. We

considered that at this point it is hc = h(r=Rt), where h is the thickness of the film covering the

flat surface of the tablet and Rt is the radius of the flat tablet surface (Subsection 2.1). Additionally,

similarly to the case of coating flow on a flat surface, we assumed that at the edge of the film, hc is

equal to the precursor film thickness ĥ.

The evolution equation for the solid volume fraction inside a suspension flowing over a 2D edge is

given by Schwartz and Weidner (1995):

∂tφ =− ρQc
hc

∂s1(φ/ρ) +
φṁe

ρhc
− 1

hc
∂s1(hcjs1) +

φ

ρ
∂tρ (35)

where the component of the particle migration in the s1-coordinate is given by:

js1 =−D∂s1φ (36)

In this subsection, we presented the part of our model which deals with the suspension flow and drying

over a curved edge of the tablet. With Eqs. (31) and (35), one can predict the film thickness and the

particle volume fraction profiles over the edge of the tablet.

z

s1

1/κ

Figure 4: Flow over the tablet edge.

2.3 Coating behavior into the tablet core

As mentioned before, the coating suspension penetrates into the porous tablet at the same time

as it dries and flows over its surface. Since the characteristic size of the particles of a coating

suspension (a∼10−8 to 10−9 m; Cole et al., 1995) is much smaller than the diameter of the tablet pores

(dp ∼ 10−6 m; Collins et al., 2007), the pores do not clog immediately. However, particle retention on

the pore walls takes place and reduces the permeability of the tablet. When the coating suspension

dries at the surface of the tablet, the imbibition stops.



Christodoulou et al., 2019 11

In this subsection, we present the part of the model which predicts the wetting front depth inside

the tablet. Here, we neglected coating absorption from the tablet edges, because the amount of

suspension that penetrates into the tablet from the edges is negligible compared to the overall amount

of suspension absorbed, a consequence of the wetted area of the flat tablet surface being much larger

than that of the tablet edges. To calculate the wetting front depth (hp), we need expressions for

the suspension velocity (up) and pressure (pp) fields inside the tablet. Additionally, we must account

for the effect of particle retention on the porosity and permeability of the porous tablet. For that

reason, it is necessary to calculate the volume fraction of the particles in the suspension (φp) and of

the particles deposited on the walls of the pores (εp).

To calculate up, we used Darcy’s equation:

up =− 1

ϕ

Kp
η
∂xpp (37)

where ϕ is the tablet porosity and Kp is the tablet permeability. The latter was estimated from the

modified Kozeny-Carman equation (Civan, 2011):

Kp =
d2
pϕ

3
0

180 (1− ϕ0)2

(
1− εp

ϕ0

)2

(38)

where ϕ0 is the tablet porosity before any suspension gets absorbed and dp is the average pore diameter

of the tablet. Eq. (38) does not account for the variation of the permeability with the temperature,

because this is negligible compared to the variation induced by particle retention. The tablet porosity

is calculated at any time by:

ϕ = ϕ0 − εp (39)

We calculated εp from the mass balance equation for the mixture over a differential volume containing

only the pore walls. The particles being incompressible, this equation reads:

∂tεp = Γ (40)

where Γ represents the volume rate of particles depositing on the pore walls per unit bulk volume of

porous medium. The constitutive equation for Γ will be discussed later on.

To calculate the mixture pressure inside the tablet pp, we substituted Darcy’s equation into the mass

balance for the suspension over a differential control volume containing only the bulk volume of the

pores, but not the pore wall, which reads:

∂t (ϕρ) =− ∂x · (ϕρup)− ρsΓ (41)

and obtained:

∂t (ϕρ) = ∂x · [(Kp/η) ρ ∂xpp]− ρsΓ (42)

For pp, one can write two boundary conditions; one at the tablet core surface and one at the wetting

front depth:

pp = p at z = 0 ; pp = pc at z = hp (43)

where pc is the capillary pressure and hp is the wetting front depth inside the tablet (Fig. 5). The

capillary pressure depends on the dimensions of the average pore and the solid-liquid contact angle

(ϑ) and is equal to the Laplace pressure in the capillary, given by:

pc =− (4/dp) γ cosϑ (44)
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r

z

hp

Figure 5: Wetting front depth inside the tablet.

To calculate hp, we employed the function Fp(r, z, t) ≡ hp(r, t)− z (Leal, 2007). The coordinates (r, z)

of the points belonging to the wetting front surface satisfy the condition Fp(r, z, t) = 0. Consequently,

the substantial derivative of Fp along the pathlines of these points is zero:

DtFp = 0 ⇒ ∂tFp + up · ∂xFp = 0 (45)

In Eq. 45, if we express Fp in terms of hp, we obtain a differential equation that allows calculating

the latter:

∂thp + vp
∣∣
z=hp

∂rhp − wp
∣∣
z=hp

= 0 (46)

where vp and wp are the radial and vertical velocity components of the mixture inside the porous

medium, respectively. To calculate these velocity components, one needs to express Darcy’s equation

(Eq. 37) in cylindrical coordinates. At t = 0, the wetting front depth is zero, namely the tablet core is

dry. At r = 0, the gradient of hp vanishes by symmetry, and at the edges of the wetted area it is hp = 0.

The volume fraction of particles in the suspension is given by the mass balance equation for the

suspended particles (solid phase) over a differential control volume containing only the bulk volume

of the pores. This equation reads:

∂t(ϕφp) =− ∂x · (ϕφpup)− ∂x · jp − ρsΓ (47)

where jp is the particle migration flux. Following Civan (2011), this is given by:

jp =− ϕDp ∂xφp (48)

where Dp is the coefficient of dispersion of suspended particles migrating in the mixture. According to

Civan (2011), an appropriate empirical relation that relates Dp with the Brownian diffusion coefficient

was derived by Hiby (1962):

Dp
D

= 0.67 +
0.65 Peg

1 + 6.7 Pe
−1/2
g

, for 0.01 ≤ Peg ≤ 100 (49)

where Peg is the Peclet number based on the porous media mean grain diameter (dg) defined as

Peg ≡ updg/D, where up denotes the order of magnitude of the velocity field of the mixture into the

pores, and D is given by Eq. (26). According to Sarkar and Wassgren (2009), the mean diameter of

grains (powder) used to create pharmaceutical tablets is 1 mm.

In our model, to calculate the particle volume fraction inside the porous tablet we combined Eqs. (41)

and (47). The resulting equation reads:

ρϕ∂t(φp/ρ) =− ρϕup · ∂x(φp/ρ)− ∂x · jp − [1− (ρs/ρ)φp] Γ (50)

At the surface of the tablet, we set φp = φ, where φ is given by Eq. (24). Additionally, at the wetting

front (Fp = 0), the particle migration flux normal to the boundary (wetting front) is zero. The last

boundary condition does not allow particles to migrate outside of the wetted tablet core.
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Iwasaki (1937) derived an expression for the particle retention rate on pore walls assuming this to be

proportional to the magnitude of the total particle flux:

Γ = Fp |ϕφpup + jp| (51)

where Fp is the particle “filter” coefficient. Following Elimelech et al. (2013), we estimated Fp from:

Fp = (3/2)
[
(1− ϕ0) /dp

]
βkrk (1− εp/εm)2 (52)

where rk denotes the single-collector contact efficiency, which represents the rate of collisions between

the tablet pores and the solid particles within the coating suspension, εm is the maximum deposited

volume fraction at which the filter coefficient becomes zero and βk is the attachment efficiency

coefficient, which represents the fraction of particle collisions leading to particle attachment to the

walls of the pores.

According to Elimelech et al. (2013), βk is of order one and can be determined experimentally. In this

work, since we do not have any data regarding pharmaceutical suspensions, we set βk = 1, as assumed

in Civan (2011). For different porous media εm is determined experimentally (εm = 0.95ϕ; Civan,

2011). Finally, the single-collector contact efficiency coefficient can be calculated from the empirical

equation (Tufenkji and Elimelech, 2004):

rk = (3/2) As

(
a

dp

)2

; As =
2
(
1− λ5

p

)
2− 3λp + 3λ5

p − 2λ6
p

; λp = (1− ϕ)1/3 (53)

Notice that the above equations are valid for particles of small radius a (10−8 m to 10−9 m) and in the

absence of external forces (Civan, 2011). We assumed these criteria are met in our simulations.

In this section, we presented the part of our model which deals with the coating film flow inside the

tablet. From Eqs. (46) and (50) one can predict the wetting front depth and the particle volume

fraction inside the porous tablet, respectively. Together with Eqs. (46) and (50), we solved the

expressions for the mixture velocity (Eq. 37) and pressure (Eq. 42), and the particle retention rate

(Eqs. 40, 51) and migration flux (Eq. 48). For the case study investigated in this work (absorption

into a cylindrical tablet), the equations need to be expressed and solved in cylindrical coordinates.

They are not reported here in component form for the sake of brevity.

2.4 Numerical solution

To solve numerically the equations that model the behavior of the coating suspension film on the flat

surface and edges of the tablet, we first made them dimensionless using the following variables:

h ≡ H0h
∗ ; Wa ≡ (γ/µw)W ∗a ; ṁe ≡ ρe (γ/µw) ṁ∗e ; Qs ≡ Q∗s (γ/µw)R0 ; t ≡ H0 (µw/γ) t∗

ji ≡ (γ/µw) j∗i ; p ≡ (γ/R0) p∗ ; ρ ≡ ρeρ∗ ; η ≡ µwη∗ ; r ≡ R0r
∗ ; z ≡ H0z

∗ ; s1 ≡ R0s
∗
1

where H0 and R0 denote the initial maximum film thickness and the characteristic length of the tablet

surface including its edges, respectively. We then solved the dimensionless versions of the equations

for the film thickness profile (Eqs. 14, 31) and the solid volume fraction profile (Eqs. 24, 35) together

with the necessary closure equations for the suspension density (Eq. 2), velocity (Eqs. 9, 33), pressure

(Eqs. 12, 34), evaporation flux (Eq. 17), viscosity (Eq. 27-30), and particle migration flux (Eq. 25).
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Moreover, we made dimensionless the evolution equations that yield the coating suspension wetting

front depth (Eq. 46) and polymer volume fraction inside the porous tablet (Eq. 50) together with the

necessary closure equations for the suspension velocity and pressure inside the tablet, and the particle

retention and migration flux in the tablet (Eqs. 37, 42, 51 and 48, respectively) using the following

dimensionless variables:

hp ≡ H0 h
∗
p ; up ≡ (γ/µw)u∗p ; jp ≡ (γ/µw) j∗p ; pp ≡ (γ/R0) p∗p

The equations describing the behavior of the coating mixture inside the tablet are defined in a moving

domain [0 < z∗ < h∗p(r
∗, t∗)]. This is because the wetting front position changes with time. It is

possible to turn the integration domain into one with fixed boundaries through a suitable change of

independent variables. The transformation proposed by Landau (1950) is ξ = z∗/h∗p. Implementing

this transformation in the dimensionless equation for the vertical velocity component of the mixture

inside the porous medium w∗p yields:

w∗p =− 1

ϕ

Kp
H2

0

1

h∗p
∂ξp
∗
p (54)

By using Landau’s transformation the moving boundary in the above equation is fixed at ξ = 1. The

rest of the equations defined in a moving domain were treated in the same way as Eq. (54), but are not

reported here for the sake of brevity. More examples of equations transformed via Landau’s technique

can be found in Kutluay et al. (1997) and Christodoulou et al. (2018).

In Section 2, we presented the equations of the model we developed in order to predict the film

thickness, imbibition depth and coating particle volume fraction onto and into a tablet. The model

can also estimate the crust formation time tcr required for the polymer concentration to reach the

critical value at which the coating suspension film must be considered as a solid.

3. Numerical results and validation

In this section, we present the numerical results of the model. Because the experimental data were

taken from multiple sources, we did not investigate a single case study, instead we validated parts

of the model separately with experimental and theoretical studies of different researchers and CFD

Volume-Of-Fluid (VOF) simulations.

In Subsection 3.1, we use experimental and numerical data from the work of Niblett et al. (2017) to

validate the numerical predictions concerning the drying rate of pharmaceutical coating suspension

films. In Subsection 3.2, we compare the predictions of our model for the absorption of pure liquid films

into porous media with the corresponding experimental results of Léang et al. (2019), who investigated

the absorption of liquids of different viscosity into porous media of different permeabilities.

Furthermore, in Subsection 3.3, we present the results of our model for the flow of a non-Newtonian

suspension that initially covers a curved tablet edge and its adjacent flat neighborhood, comparing

them to the results of VOF simulations performed using ANSYS Fluent (ANSYS, 2019). Our numerical

results are in good agreement with the VOF results.

We were unable to find experimental data suitable to validate the part of the model that accounts

for the effect of particles on the absorption of a suspension into a pharmaceutical tablet. Thus, in

Subsection 3.4, we only present results of the model that showcase the influence of different process

parameters on the rate of suspension absorption. We performed all the numerical calculations in

gPROMS (PSE, 2019), employing the Modelbuilder modeling platform.
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3.1 Coating film drying rate

In this work, we have developed a model that can predict the drying rate of a coating suspension

on a tablet surface. The model calculates the concentration of particles into the coating suspension

as it dries, taking into account that when the particle volume fraction becomes sufficiently high

(φ = 0.67) the coating film can no longer be regarded as a liquid with suspended particles, but

behaves as a wetted solid (wetted crust; Kiil, 2006). The model yields the wetted crust formation time

tcr for given film-coating process conditions (temperatures, relative humidity, air flow rate). According

to Niblett et al., (2017), calculating this time is important since for t > tcr no coating suspension can

be exchanged among tablets as they move (rotate) in the drum and thus no tablet defects (inter-tablet

coating variability) can be created.

In this subsection, we show the ability of our model to calculate the drying rate of an aqueous

pharmaceutical coating suspension (Aquarius Prime, 10%w/w solid particles, ρs = 1438 kg/m3,

γ = 0.046 N/m). The viscosity and density of the gas inside the drum were set to ρg = 1.092 kg/m3

and µg = 2 ·10−2 cP, respectively. We compared the results of our model with the findings of Niblett et

al. (2017). They performed experiments to study the drying rate of pharmaceutical suspensions and

its effect on tablet appearance. Based on their experimental observations, they developed a model that

can estimate the drying rate of the coating suspensions used in the experiments. They reported that

the experiments and their model are in good agreement but did not explicitly report the experimental

values for the evaporation flux nor the overall drying time. Thus, we validated our model with the

equivalent numerical results reported in their work.

The tablet in both this study and that of Niblett et al. (2017) was taken to be cylindrical (7 mm in

diameter). The suspension film was also considered to be approximately cylindrical and cover only

the “upper” round surface of the tablet (Ls = 7 mm). Since Niblett et al. (2017) did not report initial

temperatures of the tablet or of the suspension after application, we considered that the tablets are

preheated close to the temperature of the bulk air (Möltgen et al., 2012) and that the suspension is

sprayed at 25oC. Finally, because Niblett et al. (2017) modeled the coating suspension behavior on

flat, impermeable substrates and thus did not simulate the coating suspension flow or absorption into

the tablet, we neglected these processes (for this case study only) and validated here the part of the

model related to coating suspension drying presented in Section 2.1.

In Table 1, we compare the carrier fluid (water) evaporation flux ṁe predictions of our model

to those estimated by the model of Niblett et al. (2017). The conditions (drying gas velocity vg,

relative humidity RH, and temperature T∞) of the coating runs and simulations performed by Niblett

et al. (2017) appear in Table 1 as well. These conditions were used in our validation simulations. From

the model output we can deduce that higher temperature and air flow rate in the coating drum as

well as lower relative humidity lead to larger evaporation rates. The model agrees well with equivalent

numerical data by Niblett et al. (2017) as seen also in Figure 6 (|%Error| < 12%). In this figure, the

dotted lines represent the 10% error lines.

Table 1: Current model predictions for coating carrier fluid evaporation mass flux ṁe.
Validation with numerical results from the model of Niblett et al. (2017).

Bulk gas Relative Gas velocity Evaporation mass flux (kg/m2s)
temperature (oC) humidity (m/s) Niblett et al., 2017 Model

60 0.50 0.20 0.0075 0.0074
70 0.42 0.22 0.0139 0.0134
60 0.58 0.16 0.0065 0.0060
65 0.40 0.15 0.0084 0.0092
65 0.40 0.15 0.0096 0.0101
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Figure 6: Validation of numerical results for pharmaceutical coating (Aquarius Prime) drying rate.
Comparison with data by Niblett et. al. (2017).

3.2 Pure solvent absorption rate

In this subsection, we validate our model predictions for the absorption of pure liquids into porous

media with the corresponding experimental results of Léang et al. (2019). We were unable to find

experimental data to validate the part of our model that predicts the absorption of a coating suspension

inside a pharmaceutical tablet. Thus, we only show here the ability of the model to simulate the

absorption of pure liquid films (of ranging viscosity) into different porous substrates while the films

evaporate. Coating suspension penetration into porous media and the influence of particle retention

on the absorption rate are discussed in Subsection 3.4.

In Figure (7.a), we compare the model predictions for the maximum water (Mw = 18 g/mol,

ρ = 998 kg/m3, µw = 1 cP, γ = 0.072 N/m) penetration depth into a porous medium with the

corresponding experimental data of Léang et al. (2019). In the simulation and experiment, the initial

film thickness, the porosity and the pore radius of the substrate were hmax = 200 μm, ϕ = 0.33± 0.02

and rp = 4.8− 5 nm, respectively. The water contact angle ϑ with the porous substrate was measured

by Léang et al. (2019) to be 31 ± 2o. The values of the relative humidity (RH = 54 ± 2%) and the

air, film and substrate temperatures (20oC) used in the simulations were the same as those used in

the experiments. The water evaporation mass flux reported by Léang et al. (ṁe = 4.9 · 10−5 kg/m2s)

was very close to that calculated by our model (ṁe = 5.01 · 10−5 kg/m2s).

In Figure (7.b), we validate the model predictions for viscous liquid absorption into a porous medium

(glycerol, Mw = 92 g/mol, ρ = 1260 kg/m3, µ = 1500 cP, γ = 0.063 N/m). In the simulation

and experiment, the initial film thickness, the porosity and the pore radius of the substrate were

h = 200 μm, ϕ = 0.31 ± 0.03 and rp = 7.9 − 8 nm, respectively. The water contact angle ϑ with

the porous substrate was measured by Léang et al. (2019) to be 20 ± 2o. Again, the values of the

relative humidity (RH = 54 ± 2%) and the air, film and substrate temperatures (20oC) used in the

simulations were the same as those used in the experiments. The absorption of glycerol (Fig. 7.b) is

significantly slower than the one of water (Fig. 7.a). This is due to the high viscosity of glycerol that

is inversely proportional to the flow in the pores (see Eq. 37). The results in Figures (7.a) and (7.b)

are in reasonable agreement with the experimental data (|%Error| < 15%) given the uncertainty of

the model input/experimental parameters.



Christodoulou et al., 2019 17

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 50
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 00

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

Pen
etr

atio
n d

ept
h (

µm
)

T i m e  ( s )

 E x p e r i m e n t a l  d a t a
 N u m e r i c a l  r e s u l t s
 P r o p a g a t e d  m o d e l  o u t p u t  e r r o r

a ) b )

��
��

���
�	�

��
��


�
��

��



�

T i m e  ( s )

 E x p e r i m e n t a l  d a t a
 N u m e r i c a l  r e s u l t s
 P r o p a g a t e d  m o d e l  o u t p u t  e r r o r

Figure 7: Validation of numerical results for pure liquid (7a. water, 7b. glycerol) absorption rate
into porous substrates. Comparison with experimental data reported by Léang et al. (2019).

The red dotted lines in Figure 7 represent the propagated error due to input parameter uncertainty.

Some of the input parameters of our model were difficult to determine precisely from the experimental

results reported in the literature. To account for this, we propagated the experimental measurement

errors (reported by Léang et al., 2019) of the input parameters to the numerical results of the

model following the stochastic sampling method of Cacuci and Cacuci (2003). First, we defined

the probability distributions (measurement error) of the input parameters based on experimental data

we found in the literature. Subsequently, we used these distributions to generate a sample and create

multiple scenarios using gPROMS Modelbuilder. Lastly, we performed a series of simulations and we

calculated the standard deviation of the response variable, which in our case is the maximum wetting

front depth (penetration depth). The above method is made possible by the ability of the current

model to predict the wetting front in a reasonably short time (< 1 min). Such analysis would be

impossible with more computationally expensive CFD simulations.

In the case of pharmaceutical coating dispersion, the solid particles can hinder carrier fluid absorption

by clogging the pores and reducing the tablet permeability. It is reported in the literature that water

penetrates into the porous core (Möltgen et al., 2012) and that coating suspension absorption into the

tablet promotes film adhesion (Muliadi and Sojka, 2010). Thus, we investigate qualitatively the effect

of particle retention on coating absorption in Subsection 3.4.

3.3 Coating film flow over a tablet edge

Pharmaceutical tablets can have different shapes (round biconvex, cylindrical, oval etc.) and surfaces

of different curvature. In this subsection, we study coating suspension flow in the special case where

the coating suspension film covers initially a tablet edge as well as the adjacent surfaces of negligible

curvature. According to O’Brien and Schwartz (2002), the thin film approximation for flow along a

curved substrate, followed in this work, is still valid provided the film thickness is much less than the

radii of curvature of the tablet (h/R < 0.1).

It is reported in the literature (Ketterhagen, 2010; Freireich et al., 2015), that less coating suspension

per unit area is applied on the tablet edges than on the flat surfaces. This is due to the tablet

orientation when it passes under a spray. This means that the probability of coating thickness

variability is high in these tablet regions. Thus, in order to avoid defects, it is important to model the

flow of a coating film, which is applied on the tablet edges.
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Figure 8: CFD Volume-Of-Fluid simulation of a coating film applied over a curved tablet edge. a)
Radius of curvature 0.1 cm, b) Radius of curvature 0.2 cm.

We performed detailed two-dimensional CFD Volume-Of-Fluid (VOF) simulations and compared the

results with the current model predictions for thin film flow over surfaces of different curvatures. In

all the simulations, the coating suspension film was initially assumed to cover a tablet edge and the

adjacent surfaces of negligible curvature (Fig. 8). To highlight the effect of tablet curvature on the

film flow, we set the drying and absorption rates of the coating suspension, which were investigated

in previous sections, to zero. Since no significant liquid phase evaporation occurs, we considered that

the polymer particle volume fraction φ is constant. The coating suspension was assumed to behave

as a non-Newtonian power law fluid (n = 0.90, m = 0.5 Pa sn). The initial film thickness covering all

the surfaces was set to be 100 μm.

In Figure 8, we show the film thickness 0.1 s after its application on a curved surface. The film

thickness was calculated by VOF simulations employing ANSYS Fluent (ANSYS, 2019). As it was

expected based on previous work (Schwartz and Weidner, 1995; Weidner et al., 1996), the thickness

over the edge reduces significantly compared to the initial value. In Table 2, we compare the results

for the minimum film thickness along the edge and the film thickness directly outside the edge (where

the curvature is negligible compared to the edge) between our model and the VOF simulations. The

results are in good agreement (|%Error| < 15%). It should be noted that the computational cost

of our mathematical model is significantly smaller (CPU time < 1 min) than the VOF simulations

(CPU time ≈ 2 days).

From both the current model and the VOF calculations, we can deduce that the intra-tablet coating

thickness variability is significant (hmin << hmax). To conclude, tablet edges are not only sprayed

less compared to the flat tablet surfaces (Freireich et al., 2015), but also do not “hold” the coating

that is applied on them, thus leading to intra-tablet coating non-uniformity.

Table 2: Tablet edge curvature effect on coating film thickness after 0.1 s.

Edge curvature radius 0.1 cm Edge curvature radius 0.2 cm

Current model CFD simulation Current model CFD simulation

Min h along the edge (μm) 63 60 78 80

h outside the edge (μm) 118 120 111 110
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3.4 Coating flow, absorption and evaporation

In this subsection, we present numerical results of the overall model that highlight the influence of

different process and suspension parameters on film flow and absorption into the tablet. Understanding

how different parameters affect the amount of water and solid particles entering the tablet can be

used to optimize the final product. Excess water inside the tablet may lead to shorter tablet shelf-life,

whereas lack of particle penetration into the pores can lead to poor film adhesion (Cole et al., 1995).

Figure 9 shows the model (Section 2) predictions for the thickness and particle volume fraction profiles

of a suspension film which is applied onto a tablet. In the simulation, the thin film (h(t=0) = 100 μm)

was considered to initially cover part of the upper surface of a cylindrical tablet 1 cm in radius (wetted

area radius is 0.8 cm). The coating suspension drying, flow over the dry parts of the tablet surface,

and penetration into the tablet were simulated. The temperature and relative humidity of the gas

above the film were set to T∞ = 50oC and RH = 0.50, respectively. The tablet was assumed to be at

the same temperature as the gas. The temperature profile inside the tablet during the simulation is

shown in 12 in the Appendix (Section A3). These conditions are representative of the conditions in a

coating process. The coating suspension was considered to have an initial volume fraction of particles

of 0.20, an initial temperature of 25oC, and to exhibit a shear thinning behavior. For the range of

shear rates in this simulation, it was regarded that the coating suspension behaves as a power law

fluid. The flow and consistency indices were calculated from the experimental data of Bolleddula et al.

(2010) for OpadryII White pharmaceutical suspensions: n(φ) = 0.85φ−0.04, m(φ) = m̂ (1− φ/0.67)−2

where m̂ = 10 Pa sn and φ ≥ 0.20. Finally, the initial tablet porosity and temperature were set

to 0.3 and 50o C, respectively, and the suspension particle size to be smaller than the pore radius

(a = 10−9m << dp = 10−6m).

As seen in Figure (9.a), after 7 s the coating suspension has spread over the dry parts of the tablet.

The model predicted that the wetted area radius expands over the dry surface by 0.015 cm. Due to

the high viscosity of OpadryII suspensions the film does not spread a lot as it dries. According to

our numerical results film spreading is very important over the curved edges of the tablet (see Section

3.3). Moreover, the model calculated that after 7 s the maximum coating suspension penetration is

55 μm. Figure (9.b) shows the solid particle volume fraction inside the suspension film after 7 s. The

concentration of particles is higher towards the film contact line where there is less carrier fluid as the

coating film flows over its edge, shifting the latter further along the tablet surface. This was expected

based on the work of Pham and Kumar (2019) who investigated the formation of coffee-ring patterns

during the evaporation and imbibition of droplets containing solutes.
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Figure 9: a) Suspension film thickness and penetration depth profiles, and b) particle volume
fraction distribution in the film after 7 s.
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In Figure (10.a), we study how the coating suspension wetting front depth is influenced by the water

evaporation velocity (E ≡ ṁe/ρe). We set different process conditions (temperatures, drying air

velocity and RH) so that the evaporation velocity ranges from 5 ·10−6 m/s to 5 ·10−8 m/s. The initial

particle volume fraction of the suspension and the initial porosity and pore radius of the tablet were

the same in all simulations (φ0 = 0.15, ϕ0 = 0.33, dp = 10−6 m). In all case studies presented in

Figure 10, the particle size was taken to be smaller than the pore radius (a/dp < 10−2) and the initial

film thickness was taken to be 100 μm. The numerical results suggest that higher evaporation velocities

lead to less suspension in the tablet. This is expected since more coating dries on the surface when

the evaporation rate is high. Notice that when the evaporation velocity is significantly lower than the

absorption velocity (calculated here: Wa∼10−6 m/s) the effect of evaporation is small.

Figure (10.b) shows the effect of the initial solid volume fraction on the wetting front depth. The

coating suspension was considered to be Newtonian and the initial porosity and pore diameter of the

tablet as well as the evaporation velocity were the same in all simulations (ϕ0 = 0.33, dp = 10−6 m,

E = 5 · 10−6 m/s). Since the volume fraction of particles is connected to the viscosity of the coating

suspension, higher initial concentration of particles leads to higher viscosity and thus the film spreads

and penetrates into the tablet more slowly. Slower absorption means that more coating dries on the

surface of the tablet and therefore the final wetting front depth is lower in the case of high initial

particle volume fraction in the suspension.
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Figure 10: Effect of the a) evaporation velocity, b) initial solid volume fraction, c) tablet initial
permeability, and d) filter coefficient on the coating suspension absorption rate.
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In Figure (10.c), we present numerical results of our model that highlight the influence of tablet initial

permeability on coating suspension absorption into the tablet. In these simulations the evaporation

velocity was calculated to be E = 5 · 10−6 m/s and the particle radius and initial volume fraction were

taken to be 10−8 m and 0.15, respectively. It is observed that lower initial permeability makes the

effect of particle retention on the absorption rate stronger. As it was expected, the model predicts

that higher initial permeability leads to more suspension into the tablet.

Particle retention can affect coating absorption by blocking tablet pores and reducing permeability.

The filter coefficient Fp used in all case studies presented before was estimated from Eq. (52). Since

Eq. (52) is not validated for the specific case concerning this work, we investigated the effect of the

initial filter coefficient on the suspension penetration depth prediction. In Figure (10.d), we show that

increasing the filter coefficient increases the volume fraction of retained particles (εp) and thus hinders

coating absorption. The coating suspension was considered to have an initial particle volume fraction

of φ0 = 0.15 and the initial porosity and pore diameter of the tablet as well as the evaporation velocity

were the same in all simulations (ϕ0 = 0.33, dp = 10−6 m, E = 5 · 10−6 m/s). Estimating accurately

Fp is important, because it allows predicting the particle retention inside the tablet more accurately.

In all case studies presented in Figure 10, the wetting front grows initially linearly in time and then

sub-linearly at later times. This behavior is mainly due to the particle retention in the pores which

hinders absorption.

In Figure 11, we study how the particle diameter/pore diameter ratio affects coating absorption. In the

first case, we have 2a/dp = 0.06, whereas in the second 2a/dp = 0.01. The initial tablet porosity and

pore diameter of the tablet as well as the water evaporation velocity were the same in both simulations

(ϕ0 = 0.30, dp = 10−7 m, E = 5 · 10−6 m/s). From the figure, we can observe that if 2a/dp ≥ 0.06

significant particle retention can hinder absorption after 3 s. After this stage, the particle volume

fraction in the pores is too high and the tablet becomes almost impermeable (ϕ = ϕ0 − εp → 0).

According to Holloway et al. (2011), the critical particle diameter/pore diameter ratio at which a

concentrated suspension clogs a capillary tube is 0.06. The model predicts that indeed in this case

clogging occurs after a few seconds of absorption (3 s). Low water content and solid particles retention

close to the tablet surface (as in the case study where 2a/dp = 0.06) are welcome by the pharmaceutical

industry, because they increase the tablet shelf-life and avoid defects such as peeling of the dry coating

film (Cole et al., 1995; Muliadi and Sojka, 2010).

0 1 2 3 4 5 6 7 8 9 1 00

5

1 0

1 5

2 0

2 5

3 0

3 5

We
ttin

g f
ron

t d
ept

h (
µm

)

T i m e  ( s )

 2 α / d p  =  0 . 0 6
 2 α / d p  =  0 . 0 1

Figure 11: Effect of the particle diameter/pore diameter ratio on the suspension wetting front depth.
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4. Conclusions

Film-coating, a process widely used by the pharmaceutical industry, is complex to simulate accurately

with reasonable computational cost. In this work, we developed a mathematical model that can

quickly simulate the flow and evaporation of the coating suspension over tablet surfaces and edges,

and its absorption into porous tablets. This information allows predicting the evolution of the film

penetration depth inside the porous structure of the tablets and the time required for the formation of

a porous crust on the tablets after a pass under the coating spray. The detailed derivations of the main

equations of our mathematical model are presented in the main article and in the appendix. The results

of the model, which was implemented in the gPROMS Modelbuilder platform, were validated with

experimental and numerical data found in the literature and CFD Volume-Of-Fluid simulations. In

Section 3, we showed that the model predictions agree well with the experiments and computationally

expensive CFD numerical results.

Pharmaceutical coating film behavior on a tablet surface is affected by many parameters. To find out

which ones affect the process more, we ran the model multiple times. Simulating many scenarios was

possible owing to the short time required by a single run (CPU time < 1 min). Indeed, an advantage

of our model when compared to traditional CFD models is the computational speed. The numerical

results suggested that an increase in the drying rate and initial particle concentration of the coating

suspension leads to reduced coating penetration into the tablet and so less water content in the pores.

Finally, we investigated the influence of the particle retention rate on the tablet permeability, finding

that particles can hinder the absorption of the coating suspension into the tablet, thus affecting the

amount of water and solid polymer that penetrates into the tablet.

This model can assist the pharmaceutical industry to understand the coating process better. Moreover,

by predicting the amount of water and solids inside pharmaceutical solid dosage forms, it should assist

in enhancing tablet shelf-life and dry film adhesion (Felton, 2013).
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Appendix

In this appendix, we present the derivations of the simplified linear momentum balance equation

written for the coating suspension which forms a thin film onto the tablet (Eq. 5), the film thickness

evolution equation (Eq. 14), the energy equation that yields the coating film temperature (Eq. 21)

and the particle volume fraction evolution equation (Eq. 24). Finally, we discuss the estimation of

the Peclet and Stokes numbers for the flows investigated in the main article.

A1. Simplified momentum balance equation

In the main article, we use the lubrication approximation theory to simplify the linear momentum

balance equation written for the coating formulation (Eq. 3). The main assumption of the lubrication

approximation is that, if R designates the length scale of the film in the radial direction on a round

tablet surface, and H designates its length scale across its thickness in the direction normal to the

tablet surface, then: H/R << 1. Having two greatly differing length scales allows simplifying the

three-dimensional problem. According to Szeri (2010), one can also neglect inertial and gravitational

effects in most lubricant thin films.

In this section, we derive the simplified the linear momentum balance equation (Eq. 5) of the main

article in cylindrical coordinates using the lubrication approximation theory assumptions. Note that

in the above derivation we neglected all changes in the azimuthal coordinate. This is because we take

advantage of the axisymmetric shape of the coating film covering the tablet surface. To the best of our

knowledge, the following analysis has never been reported for a suspension (pharmaceutical coating

formulation) whose density and viscosity change in time.

In the radial cylindrical coordinate Eq. (3) becomes:

ρ∂tv =− ρv ∂rv − ρw∂zv − ∂rp+ (1/r) ∂r (rτrr) + ∂zτzr − τθθ/r (a1)

By scaling Eq. (a1) we get:

∂t̄v̄ =− V tc
R
v̄ ∂r̄v̄ −

Wtc
H

w̄ ∂z̄ v̄ −
pctc
ρ V R

∂r̄ p̄+
µtc
ρR2

1

r̄
∂r̄ (r̄τ̄rr) +

µtc
ρH2

∂z̄ τ̄zr −
µtc
ρR2

τ̄θθ
r̄

(a2)

where the following scales were used:

r̄ ≡ r/R ; z̄ ≡ z/H ; w̄ ≡ w/W ; v̄ ≡ v/V ; p̄ ≡ p/pc ; t̄ ≡ t/tc ; τ̄zr ≡ (H/µU) τzr

τ̄rz ≡ (H/µU) τrz ; τ̄rr ≡ (R/µU) τrr ; τ̄zz ≡ (H/µV ) τrr ; τ̄θθ ≡ (R/µU) τθθ (a3)

where where ρ and µ are the density and viscosity of the suspension, respectively (which, for simplicity,

are taken to be constants), while tc and pc are the characteristic time and pressure scales of the flow.

In Eq. (a2) we see that various time scales arise:

τc,1 ≡ R/V ; τc,2 ≡ H/W ; τd,1 ≡ ρR2/µ ; τd,2 ≡ ρH2/µ

From the continuity equation we conclude that τc,1 = τc,2. Additionally, comparing τd,1 and τd,2

yields: τd,2 = (H/R)2 τd,1 << τd,1. Finally, we note that:

τd,2/τc,1 =
H2 V ρ

µR
=
H

R

ρHV

µ
=
H

R
Re (a4)
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Knowing that H/R << 1 and also Re << 1 we conclude that the shortest characteristic time is τd,2.

Substituting tc ≡ τd,2 into Eq. (a2) gives:

∂t̄v̄ =− H

R
Re v̄ ∂r̄v̄ −

H

R
Re w̄ ∂z̄ v̄ −

H

R

pcH

µV
∂r̄p̄+

(
H

R

)2 1

r̄
∂r̄ (r̄τ̄rr) + ∂z̄ τ̄zr −

(
H

R

)2 τ̄θθ
r̄

(a5)

Assuming that the pressure term is as important as the viscous term, we obtain pc ≡ (R/H)(µV/H).

Substituting the pressure term in Eq. (a5) and eliminating the negligible terms yields:

∂t̄v̄ =− ∂r̄p̄+ ∂z̄ τ̄zr (a6)

Let us assume that the system evolves toward steady state. This assumption is valid for a thin

suspension film that is deposited on the surface of a tablet. At steady state, the pressure term is equal

in magnitude to the viscous term, and their combination vanishes. Before this happens, the convective

terms cease to be negligible. In fact, they start dictating the time scale. This is no longer τd,2, but

becomes τc,1. In this part of the time domain, a new approximation holds, which we get by rescaling

the equation of motion.

We now choose tc ≡ τc,1 and Eq. (a2) becomes:

H

R
Re ∂t̄v̄ =− H

R
Re (v̄ ∂r̄v̄ + w̄ ∂z̄ v̄)− H

R

pcRe

ρV 2
∂r̄p̄+

(
H

R

)2 1

r̄
∂r̄ (r̄τ̄rr) + ∂z̄ τ̄zr −

(
H

R

)2 τ̄θθ
r̄

(a7)

which reduces to:
H

R

pcRe

ρV 2
∂r̄p̄ = ∂z̄ τ̄zr (a8)

Since the left-hand side must have unit order of magnitude, we obtain pc ≡ (R/H)(1/Re)ρV 2 and the

final leading order equation is:

∂r̄p̄ = ∂z̄ τ̄zr (a9)

Written in dimensional form this yields Eq. (5a) of the main article.

In the vertical cylindrical coordinate Eq. (3) becomes:

ρ∂tw =− ρv ∂rw − ρw∂zw − ∂zp+ (1/r) ∂r (rτrz) + ∂zτzz (a10)

Scaling Eq. (a10) with the scales appearing in Eq. (a3) and considering again that the system

evolves toward steady state and that the characteristic time is the convection characteristic time

(τc,1 ≡ H/W ≡ R/V ) gives:

H

R
Re ∂t̄w̄ =− H

R
Re (v̄ ∂r̄w̄ + w̄∂z̄w̄)− pcRe

ρV 2

R

H
∂z̄ p̄+

1

r̄
∂r̄ (r̄τ̄rz) + ∂z̄ τ̄zz (a11)

which reduces to:
pcRe

ρV 2

R

H
∂z̄ p̄ =

1

r̄
∂r̄ (r̄τ̄rz) + ∂z̄ τ̄zz (a12)

Substituting in Eq. (a12) the scale of the pressure pc obtained above for the case when the system

evolves towards steady state, yields:

∂z̄ p̄ =

(
H

R

)2 [1

r̄
∂r̄ (r̄τ̄rz) + ∂z̄ τ̄zz

]
(a13)

In the limit of H/R << 1, we can thus regard ∂z̄ p̄ equal to zero. This yields Eq. (5b) of the main

article.
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A2. Film thickness evolution equation

In this section, we derive the film thickness evolution equation from the continuity equation written

for the mixture. The latter in cylindrical coordinates reads:

∂tρ =− (1/r) ∂r (rρv)− ∂z (ρw) (a14)

Integrating Eq. (a14) over the vertical direction z, from z = 0 to z = h, gives:∫ h

0
∂tρ dz =− (1/r)

∫ h

0
∂r (rρv) dz −

∫ h

0
∂z (ρw) dz (a15)

The term on the left-hand side can be written as:∫ h

0
∂tρ dz = ∂t

∫ h

0
ρ dz − ρ

∣∣∣
z=h

∂th = ∂t

∫ h

0
ρ dz − ρe∂th (a16)

where we have assumed that the mixture (coating suspension) density at the film-air interface is the

density of the water that evaporates. The first and second terms on the right-hand of Eq. (a15) side

can be expanded as follows:

− (1/r)

∫ h

0
∂r (rρv) dz =− (1/r) ∂r

∫ h

0
ρrv dz + (ρv)

∣∣∣
z=h

∂rh (a17)

−
∫ h

0
∂z (ρw) dz =− (ρw)

∣∣∣h
0

=− (ρw)
∣∣∣
z=h

+ (ρw)
∣∣∣
z=0

(a18)

Substituting Eqs. (a16) to (a18) into Eq. (a15) yields:

∂t

∫ h

0
ρ dz − ρe∂th =− (1/r) ∂r

∫ h

0
ρrv dz + (ρv)

∣∣∣
z=h

∂rh− (ρw)
∣∣∣
z=h

+ (ρw)
∣∣∣
z=0

(a19)

At z = 0 the boundary does not move. So, the last term on the right hand side represents the mass

that leaves the control volume. This term represents the mass loss owing to absorption. In the main

article, this term is taken equal to −ρWa, where Wa is the absorption velocity at the film-tablet

interface. The term immediately preceding the absorption flux in Eq. (a19) cannot be regarded as

the mass loss owing to evaporation (ṁe). This is because the interface (or equivalently the boundary

of the control volume) moves. However, we can use the mass jump condition and write:

ṁe = n · (u− us)ρ
∣∣∣
z=h

(a20)

where n is the unit vector normal to the interface pointing from the mixture into the air, u is the

mixture velocity, us is the velocity of the interface and ρ is the mixture density. At the interface

(z = h), the latter is equal to the density of the pure liquid (water) that evaporates. In cylindrical

coordinates Eq. (a20) becomes:

ṁe = [nr(vi − usr) + nz(wi − usz)] ρe (a21)

where vi and wi are the radial and vertical velocity components of the mixture at the film-air interface,

respectively, and ρe is the density of the suspension at the interface. To proceed we need to relate nr

and nr to the film thickness h(r, t). To do this, we write:

F = z − h(r, t) ; n =
∂xF

|∂xF |
(a22)
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From Eq. (a22) one obtains:

n =− ∂rh√
1 + (∂rh)2

r̂ +
1√

1 + (∂rh)2
ẑ (a23)

where r̂ and ẑ denote the unit vector in the radial and vertical direction, respectively. The vector of

unit magnitude tangent to the film and normal to n is given by:

t =
1√

1 + (∂rh)2
r̂ +

∂rh√
1 + (∂rh)2

ẑ (a24)

We assume that the velocity of the mixture tangent to the interface is equal to the velocity of the

interface. So:

ui · t = us · t⇒ vitr + witz = usrtr + usztz (a25)

Since tr = nz and tz = −nr we get:

(vi − usr)nz = (wi − usz)nr (a26)

Substituting Eq. (a26) into the jump condition yields:

ṁe =

[
n2
r

nz
(wi − usz) + nz(wi − usz)

]
ρe =

1

nz
(wi − usz) (a27)

The vertical velocity of the interface usz is given by:

usz = ∂th+ usr ∂rh (a28)

From Eqs. (a26) and (a28) we get:

usz =
∂th+ [vi + (nr/nz)wi] ∂rh

1− (nr/nz) ∂rh
(a29)

Since it is nz = 1/
√

1 + (∂rh)2 and nr/nz = −∂rh, substituting Eq. (a29) into the jump condition

(a27) yields:

ρewi =
1√

1 + (∂rh)2
ṁe + ρe

∂th+ (vi + wi · ∂rh) ∂rh

1 + (∂rh)2
(a30)

In this work, we are interested in thin films where ∂rh << 1. Thus, Eq. (a30) becomes:

ρewi = ṁe + ρe [∂th+ vi∂rh] (a31)

Substituting the above equation into the mass balance equation (Eq. a19) gives:

∂t

∫ h

0
ρ dz =− (1/r) ∂r

∫ h

0
rρv dz − ṁe − ρWa (a32)

Following Weidner et al. (1996), we considered that the density of the thin film does not change

significantly in the vertical direction. Assuming that the mixture density is uniform over (most of)

the film thickness, one can see that Eq. (a32) reduces to Eq. (14) of the main article.
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A3. Energy equation

The equation of change for temperature reported in Bird et al. (2007) reads:

ρ1cp1DtT1 =− ∂x · q1 + τ1 : ∂xu1 −
(
∂lnρ1

∂lnT1

)
p

Dtp1 (a33)

where Dt is the substantial time derivative and cp, q, u and τ denote the heat capacity, heat flux,

velocity field, and deviatoric stress tensor, respectively. Here we have used the subscript 1 to identify

the mixture. The last term on the right-hand side is zero for fluids with constant density. The mixture

has not constant density, but it is expected to vary very little, in particular with the temperature. The

generation term (conversion of kinetic energy into internal energy) is very small and can be neglected

as well. So, we write:

ρ1cp1DtT1 =− ∂x · q1 (a34)

We now integrate over the region R1 occupied by the film, which is bounded by the surfaces S12

(film-air interface) and S13 (film-tablet interface). Therefore, we write:∫
R1

ρ1cp1DtT1 dx =−
∫
R1

∂x · q1 dx (a35)

To manipulate the term on the right-hand side, we use the divergence theorem:∫
R1

∂x · q1 dx =

∫
S12
q1 · n12 dx+

∫
S13
q1 · n13 dx (a36)

where nij denotes the unit vector normal to Sij pointing from phase i into phase j.

Since the film is very thin, to manipulate the term on the left-hand side, we assume that T1 is uniform.

Note that this assumption cannot be used for the term on the right-hand side, because if we did, the

term would vanish. So, we obtain:

DtT1

∫
R1

ρ1cp1 dx =−
∫
S12
q1 · n12 dx−

∫
S13
q1 · n13 dx (a37)

If T1 is uniform we can write: DtT1 = ∂tT1.

Moreover, the term ρ1cp1 is given by:

ρ1cp1 = ρe (1− φ) cpe + ρsφcps (a38)

and is therefore a function of the φ, which in turn is a function of r and t.

We now define:

〈ρ1cp1〉 ≡
1

V1

∫
R1

ρ1cp1 dx (a39)

where V1 is the volume of the film.

The simplified enthalpy jump condition at the film-gas interface S12, reads (Delhaye, 1974):

ṁe(Ĥ1 − Ĥ2) =− n12 · (q1 − q2) (a40)

To derive an expression for q1 we considered that ∆He ≡ Ĥ2 − Ĥ1 and n12 · q2 ≡ hH(T1 − T2∞),

where ∆He, hH and T2∞ denote the enthalpy of vaporization, heat transfer coefficient and bulk air

temperature.
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Eq. (a40) finally becomes:
n12 · q1 = ṁe∆He + hH(T1 − T2∞) (a41)

The simplified enthalpy jump condition written for the film-tablet interface S13 yields an expression

for the heat conduction from the tablet to the film:

n13 · q1 = n13 · q3 = k3 ∂zT3

∣∣∣
z=0

(a42)

where k3 is the heat conductivity of the tablet core and T3 is the tablet core temperature.

Substituting Eqs. (a39), (a41) and (a42) into (a37) gives:

〈ρ1cp1〉V1∂tT1 =−
∫
S12
ṁe ∆He ds−

∫
S12
hH(T1 − T2∞) ds−

∫
S13
k3 ∂zT3

∣∣∣
z=0

ds (a43)

On the right-hand side all the integrated functions are uniform over the surfaces. Thus:

〈ρ1cp1〉V1∂tT1 =− ṁe ∆HeA12 − hH(T1 − T2∞)A12 − k3 ∂zT3

∣∣∣
z=0

A13 (a44)

where A12 and A13 are the areas of the film-air and film-tablet interfaces respectively. We used the

above energy equation (Eq. 21) in the current model to calculate the film temperature.

A3. Heat conduction from the tablet to the film

The last term in Eqs. (21) and (a44) denotes the heat conduction from the tablet core to the coating

film. To estimate this term, we must calculate the temperature profile in the tablet (T3, seen in Figure

12) using the following equation of energy conservation:

∂tT3 = [k3/(cp3ρ3)] ∂2
zzT3 (a45)

with boundary conditions:

T3 = T1 at z = 0 ; ∂zT3 = 0 at z =− ` (a46)

where ` is the distance between the tablet-film interface (z = 0) and the tablet core center (` ∼ 1 mm),

and T1 is the temperature of the coating film [at t = 0, T1 = 25oC]. The tablet density, heat capacity

and thermal conductivity were taken from the literature (ρ3 = 1300 kg/m3, cp3 = 1000 J/kg K, k3 =

0.7 J/s m K; Krok et al., 2017). In writing Eq. (a45), we assumed that T3 depends only on z. That is,

we neglected radial temperature gradients inside the tablet core, because these are significantly milder

than those in the z direction (especially close to the film-tablet boundary; see Fig. 12).
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Figure 12: Temperature profile in the z direction inside the tablet. The case study parameters are
reported in Section 3.4 (used to produce the numerical results shown in Fig. 9).
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Fig. 12 shows that ∂zT3 is significant close to the film-tablet interface and negligible in the tablet

core. Away from the film-tablet interface, T3 remains uniform during the process.

A4. Particle volume fraction evolution equation

Here, we rigorously derive a particle volume fraction evolution equation (Eq. 33) from the continuity

equation written for the solid phase inside the coating film. Integrating Eq. (24) over z gives:∫ h

0
∂tφdz =− (1/r)

∫ h

0
∂r (rφv) dz −

∫ h

0
∂z(φw) dz − (1/r)

∫ h

0
∂r (rjr) dz (a48)

The term on the left-hand side can be written as:∫ h

0
∂tφdz = ∂t

∫ h

0
φdz − φ

∣∣
z=h

∂th (a49)

The first term on the right-hand side can be expanded as:

(1/r)

∫ h

0
∂r (rφv) dz = (1/r) ∂r

∫ h

0
rφv dz − (φv)

∣∣
z=h

∂rh (a50)

The second term on the right-hand side becomes:∫ h

0
∂z (φw) dz = (φw)

∣∣
z=h
− (φw)

∣∣
z=0

(a51)

Performing the same analysis as in the Section A2 and assuming that no particles evaporate allow us

to write:
(φw)

∣∣
z=h
− (φw)

∣∣
z=0

= φ
∣∣
z=h

∂th+ (φv)
∣∣
z=h

∂rh+ φ
∣∣
z=0

Wa (a52)

Finally, the third on the right-hand side becomes:

(1/r)

∫ h

0
∂r (rjr) dz = (1/r) ∂r

∫ h

0
rjr dz − jr

∣∣
z=h

∂rh (a53)

Substituting Eqs. (a52), (a53), (a55) and (a56) into (a51) yields:

∂t

∫ h

0
φdz − φ

∣∣
z=h

∂th =− (1/r) ∂r

∫ h

0
rφv dz + (φv)

∣∣
z=h

∂rh

− φ
∣∣
z=h

∂th− (φv)
∣∣
z=h

∂rh− φ
∣∣
z=0

Wa − (1/r) ∂r

∫ h

0
rjr dz + jr

∣∣
z=h

∂rh (a54)

Making use of the “well mixed” approximation (uniform φ across the thickness of the film) and that

the migration flux at the film-air interface are zero we get:

∂t(φh) =− (1/r) ∂r

(
rφ

∫ h

0
v dz

)
− φWa − (1/r) ∂r(rhjr) (a55)

Using the film thickness evolution equation the first term on the right-hand side of the above equation

can be expanded:

(1/r) ∂r

(
rφ

∫ h

0
v dz

)
= (1/r) ∂r

[
(φ/ρ) ρrQ

]
= (1/r)

[
ρrQ∂r (φ/ρ) + (φ/ρ) ∂r (ρrQ)

]
= ρQ∂r (φ/ρ)− (φ/ρ) ∂t (ρh)− φWa − φ (ṁe/ρ) (a56)

where Q is the surface flux given by Eq. (15).
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Eq. (a55) then becomes:

∂t(φh) =− ρQ∂r(φ/ρ) + (φ/ρ) ∂t(ρh) + φ (ṁe/ρ)− (1/r) ∂r(rhjr) (a57)

which simplifies to Eq. (24) of the main article.

A5. Estimation of the Peclet and Stokes numbers

To derive an expression for the particle migration flux in the main article, it is important to first

estimate the Peclet number Pe ≡ a2γ̇/D where D is the Brownian diffusion coefficient of the particles

in the suspension, a is the particle radius (assuming the particles are spherical) and γ̇ is the shear

rate scale. In this work it is γ̇ ∼ 1 s−1 and a ∼ 10−8 m.

The particle Brownian diffusion coefficient D is estimated by Eq. (27) of the main article. The term

in front of the Einstein diffusivity D0 is of order 1 for all the values of φ of interest in our simulations

(φ < φ∗). At high particle volume fractions (at the maximum packing limit; φ → φ∗), the diffusivity

diverges and the simulation is completed as discussed in the main article. Thus, for the Brownian

diffusion coefficient it is D ∼ D0 = (kBTw)/(6πµwa) where kB = 10−23J/K is the Boltzmann constant,

and Tw ≈ 320 K and µw = 0.001 Pa s are the carrier fluid temperature and viscosity, respectively. Thus,

we get D ∼ 10−10 m2.

The Peclet number can be estimated:

Pe ≡ a2γ̇

D
∼ (10−8)2

10−10
∼ 10−6 (a58)

Since in this work Pe << 1, the dispersions can be considered Brownian.

To determine if the motion of the particles of the coating suspensions investigated in the main article

is dictated by that of the carrier fluid, we calculated the Stokes number (St). This is defined as the

ratio of the particle relaxation time (τa) to the characteristic flow time scale (τc).

For a concentrated suspension the particle relaxation time is defined as (Jackson, 2000):

τa ≡
(1− φ)2.65

1 + (φρp)/[(1− φ)ρe]

ρpa
3

Kaµ
(a59)

where ρs and ρe are the densities of the particle and carrier fluid, respectively (∼ 103 kg/m3), a is

the particle radius, µ is the carrier fluid viscosity (∼ 10−3 Pa s) and Ka is a coefficient that depends

on the shape, size and orientation of the particle (Coussot and Ancey, 1999). The characteristic flow

time scale, as discussed in A1, is the convection characteristic time τc = R/V . Based on the above,

for the values of φ of interest in our simulations, we get:

St ≡ τa

τc
=

(1− φ)2.65

1 + (φρp)/[(1− φ)ρe]

ρpa
3

Kaµ

V

R
∼ 10−11 (a60)

In the above equation, we have taken Ka ∼ a ∼ 10−8 m, V ∼ 10−3 m/s and R ∼ 10−2 m which is true

in the simulations performed in the current study.

Since St << 1 the motion of the particles in the suspension is mainly dictated by that of the carrier

fluid. Therefore, employing the mixture modeling approach is valid for the case studies investigated

in this work.
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