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Abstract

Over the last decade a variety of new techniques for the treatment of chaotic time series has 

been developed. Initially these concentrated on the characterisation of chaotic time series but 

attention soon focused on the possibility of predicting the short term behaviour of such time 

series and we begin by reviewing the work in this area. This in turn has lead to a growing 

interest in more sophisticated signal processing tools based on dynamical systems theory. In 

this thesis we concentrate on the problem of removing low amplitude noise from an 

underlying deterministic signal. Recently there has been a number of algorithms proposed 

to tackle this problem. Originally these assumed that the dynamics were known a priori. 

One problem with such algorithms is that they appear to be unstable in the presence of 

homoclinic tangencies.

We review the original work on noise reduction and show that the problem can be viewed 

as a root-finding problem. This allows us to construct an upper bound on the condition 

number for the relevant Jacobian matrix, in the presence of homoclinic tangencies. 

Alternatively the problem can be viewed as a minimisation task. In this case simple algorithm 

such as a gradient descent algorithm or a Levenberg-Marquardt algorithm can be using to 

efficiently reduce noise. Furthermore these do not necessarily become unstable in the 

presence of tangencies. The minimisation approach also allows us to compare a variety of 

ad hoc methods that have recently been proposed to reduce noise. Mzmy of these can be 

shown to be equivalent to the gradient descent algorithm.

The problem can then be extended to include the unknown parameters used to estimate the 

mapping function when the dynamics are unknown. Here we incorporate these into the noise 

reduction process and we show that this appears to improve the stability of the noise 

reduction algorithm. Finally we conduct a number of numerical investigations using our noise 

reduction algorithm. These include applications to data from the Lorenz equations and some 

experimental laser data.

- 3 -



ACKNOWLEDGEMENTS

First and foremost I would like to thank my parents for their encouragement over the years. 

I would also like to thank all the members of the Centre for Nonlinear Dynamics and my 

brother, Chris, for many interesting discussions.

- 4 -



CONTENTS

Introduction

1. Preliminaries 10

1.1 State Space Models and Dynamical Systems 10

1.2 Stability of Solutions 11

1.3 Lyapunov Exponents 12

1.3.1 Calculating Lyapunov Exponents 15

2. State Space Reconstruction 17

2.1 Motivation 17

2.2 Takens’ Embedding Theorem 18

2.3 Linear Filters and Embedding 22

2.3.1 FIR Filters 22

2.3.2 HR Filters 23

2.3.3 Singular Systems Analysis 24

2.4 System Identification 27

2.4.1 Mutual Information 31

2.4.2 Predictability Criteria 32

2.4.3 Further Optimisation 35

2.5 Function Approximation 35

2.5.1 Interpolation, Extrapolation and Approximation 36

2.5.2 Global Function Approximation 37

2.5.3 Local Function Approximation 41

2.6 Approximation Errors versus Measurement Noise 43

- 5 -



3. Noise Reduction: Theory 45

3.1 Pseudo-Orbits and Shadowing 46

3.2 2^ro-finding and the Shadowing Problem 53

3.2.1 Manifold Decomposition 55

3.2.2 Approximation of the Stable and Unstable Manifolds 56

3.2.3 Tangencies Imply ill-conditioning of D 58

3.2.4 Solution by SVD 60

3.3 Implicit and Explicit Shadowing 62

3.4 Minimising Noise and Weak Shadowing 66

3.4.1 Solution by Gradient Descent 67

3.4.2 A Comparison with Other Methods 69

3.4.3 Solution by Levenberg-Marquardt 72

3.4.4 Other Minimisation Methods 76

3.4.5 Exact Shadowing in the Hyperbolic case 76

3.5 A Worked Example 78

4. Function Approximation for Noise Reduction 86

4.1 Shadowing Nearby Maps 87

4.2 Estimating the Dynamics 90

4.2.1 Alternating Noise Reduction and Dynamics Estimation 91

4.2.2 An Extended Levenberg-Marquardt Algorithm 95

4.3 Explicit Shadowing 99

4.3.1 An Extended Manifold Decomposition Algorithm 101

4.3.2 Explicit Shadowing and the Restricted Step Method 104

4.4 Improved Deterministic Modelling 108

- 6“



5. Noise Reduction: Numerical Properties 109

5.1 End Effects and Error Propagation 110

5.2 Convergence of Zero Dynamic Error 113

5.3 Improvements in Signal-to-Noise Ratio 117

6. Noise Reduction: Applications. 119

6.1 Noise Reduction Applied to the Lorenz System 120

6.1.1 Data from a Chaotic Attractor 121

6.1.2 Data from a Periodic Orbit 125

6.1.3 A Comparison with Linear Filtering 128

6.2 Signal Separation 133

6.3 Improved Deterministic Modelling: Experimental Laser Data 134

7. Conclusions 141

References 145

- 7 -



Introduction

Our aim in this thesis is to develop a theory for methods of reducing low amplitude noise 

from an underlying deterministic time series. For our purposes we can define a time 

series as a sequence of observations that are a function of time. Furthermore we only 

consider discrete time series and whenever examining continuous time series we will 

convert it into a discrete form by sampling it at a finite rate.

Traditional time series analysis is not new and many signal processing tools, including 

noise reduction techniques, have been developed based on such analysis. However 

traditional methods (FFT, ARMA, etc...) are, in general, restricted to linear 

transformations. This means that noise reduction techniques often involve identifying 

regions of the frequency domain where the desired signal predominantly lies. However 

the performance of such spectral methods is inevitably restricted if the noise is broad 

band.

A better approach would be to try to identify a discriminator that completely distinguishes 

between the wanted signal and the noise. Here we develop such an approach using low 

dimensional determinism to separate the two signals. This would not make a particularly 

interesting discriminator if we limited ourselves to traditional linear models since the 

resultant time series would merely have a number of discrete spikes in its frequency 

spectrum. However the same is not true for nonlinear models and possibly one of the 

most important lessons to be drawn from the study of nonlinear dynamics is that an 

apparently random signal, from a traditional statistical viewpoint, can be generated by a 

simple nonlinear deterministic system. Such signals are termed ‘chaotic’ and generally 

have broad band frequency spectra. Thus standard spectral methods for noise reduction 

are not directly applicable. This, and the recent growth in the study of experimental 

chaotic systems have led to a demand for good noise reduction techniques for such 

systems based on dynamical systems theory. It is this problem that we aim to address 

here.

To this end we begin in chapters 1 and 2 by reviewing state space methods for low 

dimensional dynamical systems and how to reconstruct an equivalent state space from a
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single scalar time series. For this purpose we include a discussion on the important result 

of Takens’ embedding theorem which demonstrates that, under suitable constraints, such 

equivalent state spaces exists and can be used approximate the dynamics and therefore 

to predict the short term furture behaviour of the time series.

We can then use these methods to construct various procedures of noise reduction. 

Initially we describe the noise reduction methods that are based loosely on the shadowing 

lemma. The shadowing problem can then interpreted as a rank deficient root-finding 

problem. In this context a noise reduction algorithm that has been proposed by Hammel 

can be seen as applying a set of reasonable constraints to the problem to make it full 

rank. However we demonstrate that even with these additional constraints the problem 

becomes ill-conditioned when the embedded trajectory becomes close to a homoclinic 

tangency. We then show that the problem can be reformulated as a minimisation task. 

This allows us to treat tangencies in a more stable manner by using either a gradient 

descent or a Levenberg-Marquardt minimisation procedure. It also provides us with a 

framework in which we can compare various other noise reduction schemes that have 

been proposed.

In chapter 4 we go on to extend these ideas to include the problem of modelling the 

dynamics within the noise reduction algorithm. This makes sense since both procedures 

aim to minimise the same approximation errors. We compare this approach to modelling 

the dynamics and reducing the noise separately. Our results show that intergrating the two 

steps together makes the noise reduction both more stable and more accurate.

In chapters 5 we investigate the performance of our methods under certain conditions. 

Finally, in chapter 6 we apply our noise reduction algorithm to time series from a variety 

of systems. These include both chaotic and non-chaotic attractors from the Lorenz 

equations and some experimental laser data.
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1. Preliminaries

This chapter contains some of the basic definitions and concepts that are required in 

studying nonlinear dynamical systems. We have made no attempt to make this section 

complete and we have concentrated on the ideas that are specifically used in subsequent 

chapters. In section 1.1 we introduce definitions for continuous and discrete time 

dynamical systems. Then we discuss the possible solutions for such systems along with 

their stability properties. Here we include a definition of the important class of hyperbolic 

sets. Finally we define the Lyapunov exponents and explain how they gives us 

information about the stability of a solution. We also discuss a method for calculating 

these exponents for a given orbit since we will need to use this in chapter 3.

1.1 State Space Models and Dynamical Systems

We define a dynamical system as a map or vector field on some finite dimensional 

manifold M (usually compact) such that either (continuous time):

^  =/(AT(/)) , / €  E (1.1.1)

where x(t) is a point on the d  dimensional manifold A/, or (discrete time):

= /( ^ ,- |)  . « e  N (1.1.2)

where, again E M. We will also require in both cases that the dynamical system ,/, 

is to some extent smooth (i.e. to have continuous derivatives to some order). For a 

discussion of the existence and uniqueness of solutions for such systems see, for example, 

Guckenheimer and Holmes [1983]. The manifold M on which the dynamics acts is then 

called the state space (it is also referred to in some texts as the phase space) and 

knowledge of the position of a point in state space defines a unique solution with respect 

to the dynamics.

In fact these ideas can be generalised to infinite dimensional dynamical systems, as long 

as the asymptotic dynamics can be restricted to some finite dimensional compact
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manifold. This concept has been greatly enhanced in recent years by the work on the 

existence of inertial manifolds (see Constantin et al [1989] or Temam [1988]).

1.2 Stability of Solutions

We can now consider the solutions for such systems and their stability. We are 

particularly interested in some concept of ‘steady state’ solutions. For example, one 

simple steady state solution of equation 1.1.2 is a periodic point, which is a point, x, 

where there exists an n such that/"(xj =  x. The stability of a periodic point can then be 

evaluated from the eigenvalues of the derivative of the function at this point: %. This 

can be divided into stable and unstable subspaces. Solutions on the linear subspace, 

spanned by the stable eigenvalues, whose moduli || X || < 7 ,  will contract onto the fixed 

point at an exponential rate. Similarly points on the subspace, E /, spanned by the 

unstable eigenvalues (|| X || >  7) will diverge away from the fixed point at an exponential 

rate.

However one of the interesting features of nonlinear dynamics is that complex aperiodic 

steady state motion is possible and we would like to be able to extend the idea of stability

to more general invariant sets. An important concept in this respect is that of

hyperbolicity. We take the following definition from Shub [1986]:

Definition: We say that A is a hyperbolic set for a map f:M  ^  M if

there is a continuous splitting of the tangent bundle of M 

restricted to A, TM ,̂ which is Tjf invariant:

TM  ̂ = 0  E “; Tf{E )̂ = E'; 7/(E“) = E “ (1.2.1)

and there are constants c >  0  and 0 <  X <  7, such that:

||37"|j.| < c r  , niO q  2 2)
||7T"|£.| < cX" ,m O

11



Here the linear subspaces and E “ can be considered to be generalisations of the stable 

and unstable eigenspaces of %  for the periodic case.

Finally we can extend these stability concepts from the infinitesimal to the local. Here 

we define the local stable and unstable manifolds in the e neighbourhood of a point, x, 

in a hyperbolic set as follows:

K ( x f )  = tv I d ( f \x )J ^ iy ) )  ^ 0 as /I ^  + 0 0  (1.2.3)
and (y)) <e, V«>0}

= tv E M  I #"(%),/"Cv)) 0 as n ^  -00  (1.2.4)
and d (f \x )J '^  (y)) <e, V/z<0}

These can be related to the linear sub spaces discussed above by the stable manifold 

theorem (see Shub [1986] for a definition and proof) which states that these local 

manifolds have the same dimension as, and are tangential to their linear counterparts 

and £ “. This idea is illustrated in figure 1.2.1.

Thus, if a set is hyperbolic, we know that in the neighbourhood of this set the solutions 

to the associated nonlinear map behave in a qualitatively similar way to the solutions in 

the linearised system. This is important when considering the properties of solutions close 

to a hyperbolic set and we will specifically use these ideas when discussing the shadowing 

problem in chapter 3.

1.3 Lyapunov Exponents

A hyperbolic set provides us with a splitting of the tangent space at a point into stable 

and unstable directions. We can now discuss the possibility of quantifying the expansion 

and contraction rates associated with these directions. Furthermore we are particularly 

interested in the existence of average expansion rates in the case o f aperiodic motion. For 

this purpose we can take the following definition for Lyapunov exponents from 

Guckenheimer and Holmes [1983]:
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Figure 1.2.1: The invariant manifolds for a rixed point of a two 
dimensional mapping function f(x) and the linearised stable and 
unstable eigenspaces.
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Définition: Let f:M  -» M  and x E. M. Suppose there exist nested

subspaces in the tangent space Tfi at f '(x )  such that

R" =  D D ... D and the following holds:

(1) Tf(E/») =

(2) dim EP =  n +  1 - j

(3) l i m ^  In ( I /N ) \[ (T f f a 'fn '^ .v \ \  =  h ’ ^ v €

Then the set \ j  are the Lyapunov exponents o f /a t x .

It is clear from this definition that if jc is a periodic point then there is a strong 

relationship between the Lyapunov exponents and the eigenvalues of the tangent map Tfi. 

Indeed the Lyapunov exponents are simply the logarithm of the moduli of the 

eigenvalues. However the importance of the Lyapunov exponents stems from the fact that 

they are also applicable to aperiodic solutions such as chaotic attractors.

The concept of Lyapunov exponents can be extended to general invariant sets if we 

assume that the set possesses an invariant probability measure (i.e. one that is invariant 

under the action of f)  and that this probability measure is ergodic (essentially that time 

averages equal spatial averages). We can then make use o f the remarkable theorem of 

Oseledec [1968]:

Theorem (Eckmann and Ruelle [1985]): Let p be a probability measure on a space M, 

and f:M  M a measure preserving map such that p is ergodic. Let T:M the m x  m 

matrices be a measurable map such that

j  p{dx)\og* II T{x) II < oo (1.3.1)

where log^ u =  max(0,log u). Define the matrix 7 ” =  T(f'''^x)...T(fic)T(x). Then, fo r  

p-almost all x, the following limit exists:

M2n
Urn ((7;)^(7r)) = (1.3.2)

Note that the logarithms of the eigenvalues of are Lyapunov exponents, as defined 

above. This theorem then tells us that the Lyapunov exponents are constant almost
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everywhere with respect to the invariant measure. A more detailed discussion of this 

theorem and a proof are given in Johnson, Palmer and Sell [1989].

Physically we can interpret the Lyapunov exponents as a measure of the sensitive 

dependence upon initial conditions. That is, the rate of exponential growth of an 

infinitesimal vector is given, in general, by the largest Lyapunov exponent. Similarly the 

exponential expansion of an infinitesimal ^-dimensional surface is given by the sum of 

the largest k Lyapunov exponents. Note that this means that, if the system is dissipative 

then the sum of the Lyapunov exponents must be negative.

1.3.1 Calculating Lyapunov Exponents

Finally we consider how we could calculate the Lyapunov exponents for an attractor, 

given a fiducial trajectory from the system. Here we make use o f the physical 

interpretation described above. That is we know that a vector chosen in the tangent space 

will, in general, align itself with the most expanding direction under the action of Tp. 

It will then asymptotically expand at the rate defined by the largest Lyapunov exponent. 

Similarly an k-dimensional linear subspace chose in the tangent space, under the action 

of Tjf”, will align itself with the k-dimensional subspace associated with the k largest 

Lyapunov exponents.

Hence we need to identify such nested subspaces from a fiducial trajectory. One method 

for doing this is to decompose T f  in terms of % (the derivative o f /a t  the iih point in 

the trajectory) in the following way (see Eckmann and Ruelle [1985]):

Tf,Q, =

=  Q2^2^
(1.3.3)

T f n Q n - \  =  Q n K '

where Q, is an orthonormal matrix and /?, is upper triangular with positive diagonal 

elements. Then we can write T f  as:
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7T  Ô„= Ô, n
i*rt

Thus if we choose Qq to be the identity matrix this method provides a stable method for 

decomposing Tf" into an orthonormal matrix and an upper triangular matrix (the product 

of upper triangular matrices is upper triangular). Thus the kih diagonal element of the 

product of upper triangular matrices provides information about the expansion of the 

direction in the ^-dimensional linear subspace spanned by the first k vectors in Qq that is 

orthogonal to the k-1 dimensional subspace spanned by the first k~l vectors in Qq. 

Finally, since the diagonal elements of the product of upper triangular matrices are 

merely the product of the individual diagonal elements we can obtain an estimate for the 

Mh Lyapunov exponent as:

IS ,=i

where Ri(k,k) is the kih diagonal element of R̂ .
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2. State Space Reconstruction

So far we have considered the modelling of dynamical systems in a state space. However 

in an experimental environment it may not be possible to measure all the variables to 

produce a state space. Indeed it may not be obvious what the actual state space is. It is 

therefore useful to consider how much information from a system is required to allow an 

adequate model to be constructed. This chapter reviews the work that has been done in 

this area with respect to modelling dynamics from one, or a few, scalar time series. The 

most important result here is Takens’ embedding theorem which provides the basis for 

all the other methods discussed in this chapter. However before considering the theory 

in detail the motivation for the problem is set out.

2.1 Motivation

We have already mentioned that finite dimensional dynamical systems can be studied by 

constructing their state spaces, such that each point in the state space can be uniquely 

identified with a possible state of the physical system. This, and the knowledge of the 

dynamics, provides us with the ability to predict the future state of the system due to the 

uniqueness of the solutions for any given state. Our aim is to achieve something similar 

when faced with a time series measured from some dynamical system.

This is essentially the idea behind state space reconstruction. We are trying to construct 

a state space that is observable from the time series. This space therefore must reproduce 

the original state space under a smooth transformation, in some way. Then, if  we can 

associate a point in the time series to a uniquely point in our reconstructed space, the 

dynamics can be realised by a map that takes these states to the next associated state in 

time.

In general the reconstructed space will be an « dimensional Euclidean space but the 

original state space on which the dynamics is defined may be some complicated m 

dimensional manifold. Thus the original state space will map into a submanifold of the
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reconstructed space. Takens’ embedding theorem demonstrates that it is possible to 

construct such a state space, thus opening up a whole host of opportunities for 

identification and prediction of time series from experimental dynamical systems.

2.2 Takens’ embedding theorem.

Takens’ observed that the effect of the dynamics on the time series provides us with 

enough information with which to reconstruct a space that contains a submanifold 

equivalent to the manifold on which the original dynamics acted. The proposed space is 

constructed using "delay coordinates", which are defined by a ^/-dimensional vector of 

the form:

{y(x), y{<t>{x)), y{<l>‘‘' \x ) ) ]

where % E M is a point in the manifold Af on which the mapping function (t)(x) : M M 

acts and y is the real valued function by which the dynamical system has been observed. 

If the dynamical system under consideration is continuous in time we can regard <t>(x) to 

be the time t  map such that x(t-\-T) =  4>(x(t)).

Loosely speaking Takens’ theorem shows that ‘typically’, as long as the dimension of the 

delay space is large enough, we have created a mapping from the manifold M  into the 

delay space that is an embedding, where an embedding is defined as follows:

Definition'. Let f:M  -* TV be a smooth map. We say that /  is an 

immersion if the tangent map D f is one-to-one everywhere.

We say th a t /is  an embedding if it is an immersion and 

everywhere one-to-one.

The concepts of immersions and embeddings are illustrated in figure 2.1.1 mapping 

^  The top picture shows a mapping of a circle onto the plane that is an immersion, 

but not one-to-one. whereas the bottom picture shows a mapping that is one-to-one but 

not an immersion.
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a.

b.

>

Figure 2.2.1: The top picture illustrates a mapping from a circle to 
the plane that is an immersion but is not one-to-one. The bottom 
picuture shows a similar mapping that is one-to-one but is not an 
immersion.
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Finally the term ‘typical’ here means that this property is generic in the space o f mapping 

functions and observables. Here we will use this to mean that the subset for which the 

property holds forms an open set that is dense within the relevant space (conversely this 

means the set where the property is not satisfied is closed and nowhere dense).

The strict statement of the theorem is as follows:

(Takens 1981) Let M be a compact manifold o f dimension m. For pairs (4>,y), <b: M -^M  

a smooth diffeomorphism and y:M R  a smooth function. It is a generic property that 

the map ^(4>,y):M defined by:

= (y(x), y{4>{x)), ..., y(<i>^(x)) ^

X e  M

is an embedding (smooth is at least C )̂.

Sketch of Proof.

The proof of Takens’ theorem follows closely to that of Whitney’s embedding theorem 

(see Brocker and Janich [1982] or Hirsch [1976]). However some additional work is 

required since the ^ is not a typical mapping function. We briefly discuss the method of 

the proof.

Initially we impose some restrictions upon <̂ . We assume that there is a finite number of 

points X 6  the set of periodic points in M with period less than 2m+7 and that the 

eigenvalues of are all distinct for x  E 7̂ 2̂  of period k. These restrictions are

acceptable since they are generic properties of 0. We further assume that y  maps all the 

points in 7̂ 2̂  onto distinct points in R. Finally we now note that both immersions and 

embeddings are open in the set of all mappings. Hence we only need to show that the set 

of (<f),y) for which ^ is an embedding is dense.

We begin by considering the set It can be shown that, given, a perturbation of y
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the derivatives dÿ,, dy(^^,..,dy4>^ span the tangent space TM̂  for x E A detailed 

description of how to do this is given in Noakes [1991]. Thus for the map associated 

with the adjusted y  there is a neighbourhood V of such that y is an immersion and 

locally an embedding.

We can now consider the points contained \n M \ V. First we construct a finite open 

cover on M \ V, {U j  and a compact cover {K j  such that C Î7, (some extra conditions 

also have to be imposed on {U j:  see Takens’ [1981]). We can then show that y  can be 

perturbed to ensure ^ 11, restricted to some f/ is an immersion on a closed set K C U. 

This can be done by following the immersion proof in Brocker and Janich [1982]. Hence 

for any we can adjust y to immerse K̂ . To make this property global we can then 

apply it individually to each open set, Û , in turn composed with a suitable bump function 

whose support is contained in L/,. Since the set of immersions is open we can always 

choose the adjustment to make 4» | ^ an immersion on so small that our previous work 

is not destroyed.

Once 4» has been made an immersion on M, we can produce a new open cover {U j  such 

that each is so small that $  | i s  an embedding. Thus we only need to show that we 

can perturb y  so that [(/, O 0 |yj =  0  for i ^  j .  Again we can follow the embedding 

theorem in Brocker and Janich [1982] and the global results can be constructed in the 

same manner as above. This means that we can perturb y so that it one-to-one on M 

as well as being an immersion. Hence 4» for the perturbed y is an embedding.

Recently these ideas have been extended by Sauer et al [1991] to investigate embeddings 

from a probabilistic point of view (generic does not necessarily guarantee probability one 

and some counter examples are given in Hunt et al [1992]). They also relaxed the 

smoothness condition from C“ to C . Noakes [1991] has also produced an alternative 

proof for Takens’ theorem which relaxes the smoothness condition to C . This can be 

done since every O  manifold has a compatible structure (see Hirsch [1976]).
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2.3 Linear Filters and Embedding

It is worth considering the extensions of Takens’ embedding theorem beyond delay 

embeddings to more general reconstructed spaces. One obvious candidate for an 

embedding space is linearly filtered time series. Often, intentionally or otherwise, the 

experimentalist’s data will have already been filtered when it is analyzed, therefore it is 

necessary to ask whether a reconstructed space can be made from this data. The two 

types of linear filters described here are called Finite Impulse Response (FIR) filters and 

Infinite Impulse Response (HR) filters. An FIR filter is one with the following structure:

y. = Y ,
7=0

where Uj are the constants of the filter and y, is the time series resulting from filtering 

An HR filter has an additional relation to the past values of y,:

7=0 *=1

where b,, are additional constants for the HR filter. There are also acausal filters where 

the value of y, is determined from data in the future as well as the past, but they are not 

considered here.

It is important to distinguish between these two types of filters since an FIR filter has 

only a limited "memory" of past data whereas an HR filter, because it is recursive in 

nature, has a response that typically decays exponentially with time. This, it will be 

shown can lead to problems when filtering chaotic data. However first we should address 

the problem of FIR filters.

2.3.1 FIR Filters

The main result that shows that a bank of FIR filters can be used to create a 

reconstructed space was presented in Broomhead et al [1992] (a similar result based on 

measure-theoretical concepts was given by Sauer et al [1992]).
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Theorem; Let V be a time series o f measurements made on a dynamical system (<t>,M), 

which satisfies the hypotheses o f Takens* theorem. Then fo r  triples (a,<f>,v), where a =  

(ao,aj,..aJ are the constants o f an FIR filter, it is a generic property that the method o f  

delays, which constructs, from the time series U, vectors o f the form:

(Uj,Uj.i,...,Uj.i+i) where I >  2m I and Uj =  a.Vj 

with finite n, gives an embedding o f M.

The proof of this theorem follows closely to that of Takens’ original theorem. However 

it is possible to interpret this reconstructed space as a linear projection from a delay space 

of dimension l-\-n-l to a new space of dimension I. Thus it is necessary to consider 

whether this projection destroys either uniqueness or differentiability. Broomhead et al 

showed that generically these properties were preserved if / >  2m-\-l.

2.3.2 HR Filters

Unfortunately it is not possible to produce a similar theorem for HR filters. This is 

because HR filters are recursive in nature and therefore possess their own dynamics. 

Farmer, Ott and Yorke [1983] studied a one dimensional linear system that was driven 

by an observable from the cat map:

yi = (2.3.3)

where y, is the output of the linear filter, a  is the contraction rate of the linear system, 

and Zi is the observable from the cat map. They noted that the torus of the original cat 

map when viewed in the extended dynamical system (that is including the linear system) 

ceased to be smooth when || a || >  X. (the smallest Lyapunov exponent of the cat map).

However, the Lyapunov exponents are averaged properties of an invariant set. Therefore 

any relationship between the contraction rate of an HR filter and the smallest Lyapunov 

exponent of the dynamical system will only provide information about smoothness almost 

everywhere. To see this we can consider the smoothness of the simple linear HR filter 

given above, in the neighbourhood of a fixed point (this can easily be extended to 

periodic points). We can expand this filter in the following way:
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j'i = s  (2.3.4)
J-o

where || a  || <  1 and h ( x ± )  is the observation of the state variable x ± .  Then we can 

regard the filtering as part of the observation process. That is, instead of using the 

observation function in Takens’ theorem h ( x ) , we observe the system via g  ( x )  , g ;  M-* R,  

where y ±  = g  ( x ± ) . Then we can consider whether g  ( x )  satisfies the requirements for 

Takens’ theorem to hold. In particular we are interested in the smoothness of the 

function, g  ( x ) .

Consider a fixed point, p, of the observed dynamical system p  = f  ( p ) . Then we can write 

the partial differential of g ( p )  along the direction of the eigenvector v associated with the 

smallest eigenvalue, y of D f p .

M s l \  = V  g> I o r H  (2.3.5)
dx ^  dx ''

but, by our choice of v, we know that Df~^  | , = 1 /  . Thus for the partial derivative of

g ( x )  I, to remain bounded at p  requires || a / y  || < I . This means that the delay map based 

on g ( x )  will not be immersive at p. Furthermore, although g ( x )  may still be small 

perturbations io g  ( x )  will not improve the situation. This is because, by the definition of 

the HR filter, we are constrained to a very particular set of observation functions. Thus 

if II a / y II > I  there will be at least one point on the manifold that is not emmbedded. 

This may be more severe than results based on the smallest Lyapunov exponent and we 

should really consider the Lyapunov exponents of every invariant measure on the attractor 

to ensure that the reconstructed manifold is smooth.

2.3.3 Singular System Analysis

A more sophisticated use of linear FIR filters is to construct a set of linearly independent 

(with respect to the time series) vectors using singular system analysis (this is also known 

as Karhunen-Loève decomposition or principal component analysis). This was proposed 

by Broomhead and King [1987] for over-sampled data from deterministic flows and
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effectively uses a bank of orthogonal FIR filters for the reconstructed space. It is based 

on the trajectory matrix formed from the data set using the method of delays. First the 

data must be organised into vectors or ’windows’ of a certain length. Then the matrix 

takes the following form:

X = (2.3.6)

where m is the window length. The trajectory is thus made up of m-windows of the data. 

We can now construct basis vectors in the m-window that are linearly independent with 

respect to the time series. This is done by diagonalising the covariance matrix X^X using 

eigen-decomposition :

XX'^ = V 52 (2.3.7)

Where is a diagonal matrix containing the eigenvalues of X^X and V is the matrix 

whose columns are the eigenvectors associated with 5"̂ . Since the covariance matrix is the 

product of X  ̂and X  it can be shown that it is symmetric and positive semi-definite. Thus 

the eigenvalues are all positive and the eigenvectors are mutually orthogonal. We can 

now define m new time series that are linearly independent by rotating the trajectory 

matrix X  with V to get XV. These new directions are the principal directions in which the 

data lies and the eigenvalues define the extent to which the data lies in the associated 

direction. These are also called the principal values. S and V can also be calculated from 

the singular value decomposition of the trajectory matrix, X  =  VSV .̂

However there is no point in merely rotating the elementary delay space. Therefore we 

wish to choose a subset of a large delay space such that the data embeds in this subspace. 

The basic idea is to determine a linear subspace within the delay space that predominantly 

contains the data. Obviously, if the data comes from a nonlinear dynamical system, the 

data will in general not lie completely on a linear subspace of the delay space. However 

when the data is over-sampled from a deterministic flow (this was the application 

proposed by Broomhead and King [1987]) then the delay space C2ui be divided into two
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distinct sets by considering the effects of noise. In such a situation, it is likely that some 

of the principal values of the trajectory matrix will be small since, if the window length 

is chosen to be such that its time span <  2ir/w where w is the band limiting 

frequency, the principal values will drop off quickly. Then the data will lie predominantly 

in linear subspace associated with the first few principal values. This can be seen as the 

redundancy of over-sampling.

We can now divide the simple delay space into linear subspaces that do and do not 

predominantly contain the embedded data by considering the effect of any additive noise. 

If the signal is corrupted by white noise then the covariance matrix will take the 

following form:

2 = 2 +  (2.3.8)

where I is the identity matrix and e is the variance of the additive noise. The new 

principal values are simply modified by:

0̂  = Ô? + (2.3.9)

The space can then be divided into two parts. The sub space with principal values that 

are very much greater than and the subspace with singular values approximately equal 

to ê . We can now consider the data projected into the first principal directions to be 

approximately deterministic. These can be considered the best directions in the sense that 

they have maximum variance and hence maximum signal-to-noise ratio. However the 

number of dominant principal values has no relationship with the embedding dimension 

of the data. This is clear since raising the noise level will reduce the number of dominant 

principal values whereas reducing it will increase their number, independent o f the true 

embedding dimension.

Although singular system analysis is fundamentally a linear approach if the data lies 

predominantly on a linear subspace we can hope that maximising the signal-to-noise from 

a linear perspective will provide a good workable state space. Gibson et al [1992] 

developed this idea and showed that if the window width in the analysis tends to zero 

then the eigenvectors tend to normalised Legendre polynomials. In turn these can be seen 

as being proportional to the derivatives of the time series (again when the window width
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tends to zero).

To illustrate this form of embedding we took a 5000 point time series from the Lorenz 

equations, using a delay window of length 10. The differential equations are:

^  = a (Y - X )  
at

—  = r X - Y  -  XZ (2.3.10)
dt

—  = -b Z  + XY
dt

where a =  10, b =  8/3 and r =  28. The equations were integrated using a Runge-Kutta 

fixed step integration routine with a step size of 0.001. After the transients had died 

down a time series of 5000 points was obtained. The time series was then corrupted with 

1 % additive white noise. The top picture in figure 2.3.1 shows the plot o f the normalised 

eigenvalues for the covariance matrix using a delay window of 10 points. It is clear from 

the figure that the singular values can easily be divided into the first three that are above 

the noise floor and the others.

The first three associated principal directions are also shown in figure 2.3.1 and there is 

obviously a strong resemblance between these basis functions and the first three Legendre 

polynomials. The projections of the delay space into the associated principal directions 

are shown in figure 2.3.2.

2.4 System Identification

The theorems reviewed in the last sections demonstrate that it is possible to reconstruct 

a state space using some transformation applied to a delay embedding of a sufficiently 

high dimension. However, in practice, data will be corrupted by noise and will only have 

a finite length. This will, in general, result in some embeddings being better than others. 

This is a statistical concept whereas the embedding theorems are geometrically based and 

therefore they do not provide any direct insight into how to choose an optimal embedding
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Figure 2.3.1: The top picture shows a plot of the 
singular values of the trajectory matrix for data from the 
Lorenz system. The bottom picture shows the shape of 
the first three associated singular directions.
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Figure 2,3.2: Three projections of data from the Lorenz 
system using the first three principal directions and a 
simple ten point delay window.
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(i.e. what dimension and delay vectors to use).

It has previously been stated, [Kennel et al 1992], that the problem of choosing an 

embedding dimension and the problem of choosing delay time (the latter can be 

generalised to the choice of any linear filtered state space) are independent since the 

former is a geometric problem and the latter is a statistical problem, however this is not 

the case. Even when the ideal situation of no noise and infinite data length is considered 

it can be shown that delay times and dimension choice are linked. Although Takens’ 

theorem states that the data will generically be embedded when the embedding dimension, 

d^, is greater than 2m+7 it is commonly known that many data sets can be embedded in 

lower dimensional spaces (Whitney showed that there always exists an embedding of an 

m-dimensional manifold in 2m dimensions: see, for example Sauer et al [1992]). Thus 

for many data sets there are open sets of the pairs {4>,y} for which the manifold 

containing the data is embedded in a reconstructed space for < 2m +  L  However a 

corollary to Takens’ theorem is that for d^ <  2m 4-7 the space of the pairs {<t>,y} will 

always contain open sets for which the manifold is not embedded and the dimension of 

the bad set in these cases is 2m-(7g. These can easily be found by choosing an observation 

function such that two parts of the manifold are mapped into the same local 

neighbourhood in the state space then generically the intersection of the two local parts 

of the manifold will be 2m-(7g. Therefore it may be possible to have an embedding for 

one choice of delay space for d  ̂ <  2m 4-7 whereas another choice of delay space may 

require d  ̂ =  2m+1  before an embedding is possible. The problem becomes even less 

well defined when finite noise levels are considered.

It is not obvious at present what the best approach to obtaining a good embedding is. 

Even so there has been much work done on constructing systematic ways of approaching 

these problems, some of which are described below. Casdagli et al [1991] provided a 

good review of the main criteria by which the dimension (and sometimes the delay time) 

of the reconstructed space can be optimised. The basic method that is used (independent 

of the criteria) is to repeatedly add new state vectors to the state space until some cost 

function ceases to increase with embedding dimension. The two broad categories of 

criteria that have been investigated are information theoretic measures and predictability 

measures. These are briefly discussed below.
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2.4.1 Mutual Information

Shaw [1985] proposed using the concepts of mutual information to achieve an optimal 

embedding and this idea was taken up by Fraser and Swinney [1986] and Fraser [1989], 

where they argued that the choice of dimension and vectors used in singular systems 

analysis was intrinsically linear, whereas optimal choices of coordinates should be based 

on nonlinear criteria. It was proposed that minimising the mutual information between 

coordinates would provide coordinates that were most independent and therefore in some 

sense optimal. The mutual information between two variables %, and y  is 

U^>y) =  - fi(x \y) where H(x\y) is the entropy associated with the conditional

probability of x given y . Thus it measures how much information y  provides about the 

variable x. Unfortunately this idea is flawed for two main reasons.

First of all a chaotic attractor has positive entropy and therefore creates information. This 

means that as the delay time, t, tends to infinity the mutual information between x(t) and 

x(t-¥T) tends to zero: this is obviously not optimal! To overcome this problem Fraser 

suggested choosing the first local minimum. However the mutual information function 

may not always have a minimum. In fact, it is quite common in maps for the mutual 

information function to monotonically decrease with r since the positive entropy is the 

dominating factor.

The main problem of this method is the heuristic idea that maximum information will be 

gained about the state space by choosing a variable that is most independent from the 

previously chosen variables. This is not necessarily true and it would be a more 

justifiable approach to explicitly aim to maximise the information about the state (this was 

the idea originally proposed by Shaw).

Finally the success of using information theoretic methods in general is very dependent 

on what the reconstructed space is intended for. Casdagli et al [1991] pointed out that 

information theoretic measures do not impose any a priori constraints on the shape of 

probability distributions. In this case we are interested in minimising the uncertainty of 

the position in state space for a given point in the time series. An information theoretic 

measure will favour any probability distribution that is highly peaked whereas we may
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intend to approximate the dynamics in the state space with a method that requires the 

variance of the probability distribution to be small (this is essentially the case when we 

aim to construct a one-to-one map). Therefore we favour the use of predictability criteria.

2.4.2 Predictability Criteria

In this section we discuss error estimates as criteria for estimating when the data has been 

successfully embedded. The main idea is that an error function provides a good measure 

of how well the embedding can be considered to possess a one-to-one mapping from the 

embedded data onto itself. This method has been implemented in a variety of different 

forms: Aleksic [1991], Savit and Green [1991], Cenys and Pyragas [1988], Kennel et al 

[1992] and Sugihara and May [1990]. Although these methods are similar their 

implementations and the interpretations given to the methodology vary significantly. Some 

of the interpretations are geometric in nature. Others are more statistical.

The main idea of the above papers is based on local techniques although there appears 

to be no reason why this cannot be extended to global descriptions of the embedding (see 

the end of this section). The method depends on the effect of increasing the embedding 

dimension on nearby points. If the data is fully embedded in some reconstructed space 

of dimension d  then the addition of an extra state variable will create a new space in of 

dimension d-\-l 'm which the data will also be embedded. Hence two close points will 

remain close in a higher dimensional space. This idea is illustrated pictorially in 

figure 2.4.1.

The geometric interpretation of this method can be made by choosing a distance threshold 

such that close points in dimension d  whose distance is above the threshold when 

measured in a J + 7  dimensional state space are said not to be embedded. When all the 

data remains close enough to near by points in the previous dimension then the data can 

be considered to have been successfully embedded to within this tolerance. Savit and 

Green [1991] noted that the embedding dimension defined in this way is inevitably a 

function of the tolerance chosen.
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Figure 2.4.1: An illustration of the method of estimating the 
embedding dimension using nearby points. Both pictures 
show a two dimensional space being extended into three 
dimensions. In (a) the data lies on a two dimensioal surface 
and the points remain close. In (b) the embedding dimension 
is greater than two and the points are mapped far apart.
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It should be noted that the closeness test may not itself be necessarily straight forward. 

For example the threshold criterion used in Kennel et al [1992] is:

r I

where is the distance between a point and its nearest neighbour in the rf-dimensional 

reconstructed space. However they noted that this criterion alone is not a satisfactory 

measure since, for finite data, as the dimension increases the distance between nearest 

neighbours tends to the span of the data set in that dimension, hence the criterion above 

will tend to zero as the dimension, d, becomes large. To solve this problem Kennel et 

al introduced a second test to determine whether the distance of nearest neighbours was 

too large to regard the data points as close.

We can see why this happens by considering the relation between R /  and R +̂î -

where Ri^(Xd+],yd+j) is the distance between x and y in the new coordinate direction. Thus 

it is obvious that when R /  becomes very large the test in equation 2.4.1 will fail to be 

of use. However, if we only consider the size of Ri^(Xa+i,yd+i), we automatically get 

around this problem.

This then leads us to a statistical interpretation of the method since what we are 

measuring with Ri^(x^+i,yd+i) is the mapping error associated with the local zeroth order 

map defined by the nearest neighbour (see section 2.5.3 for more details) which maps 

the ^/-dimensional reconstructed space into the new coordinate direction. Thus we are 

considering the data to be embedded when all the errors are sufficiently small. Once the 

concept is viewed in this light it is possible to consider more generalised error measures. 

For example, we could choose our optimal embedding dimension when the mean squared 

error or the absolute error is sufficiently small. Sugihara and May [1990] split the data 

into two halves and then used a local linear interpolated map constructed on the first half 

to predict the second half. On increasing the dimension the correlation coefficient 

(another measure of predictability) increased until it reached a plateau.
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Finally there is no reason why the predictability criterion cannot be extended to global 

descriptions of the embedding. That is we could use the prediction error from a global 

function approximation for the dynamics (see section 2.5.2) as a measure to ascertain 

when the data has been embedded. Indeed, if our ultimate aim is to produce a predictive 

model for the data, it would seem that a good criterion for optimising our state space 

parameters would be the success of our predictive model.

2,4.3 Further Optimisation

The methods described above construct embeddings by repeatedly choosing an additional 

delay vector that is optimal in some sense with respect to the present set of state vectors, 

until the improvement is insignificant. However this does not necessarily optimise the 

whole space. To attempt to find such an optimal state we would need to search through 

the set of all reconstructions that are to be considered. In this respect, Meyer and Packard 

[1992] have looked at determining local embeddings for high dimensional attractors. They 

used a predictability criterion to choose the optimal local embedding for a given point in 

a high dimensional attractor. Obviously this problem is going to be nonlinear and to 

obtain a good minimum a sophisticated minimisation technique is required. Meyer and 

Packard [1992] solve this by using a genetic algorithm. However, in general, if a global 

embedding is required the gains are unlikely to warrant the extra effort.

2.5 Function Approximation

Once the data has been embedded into a reconstructed space it is possible to estimate the 

dynamics that produced the time series. This can be done by approximating the function 

f:K^ ^  that maps the state space onto itself.

If the reconstructed space has been produced from a single scalar time series (this is the 

only case that will be considered here, although it is easy to extend the ideas to the more 

general case) then all that is required to approximate f(x) is to model the mapping 

g:K^ -> R  from the reconstructed space onto the real line such that g predicts the next
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g:K^ -» R  from the reconstructed space onto the real line such that g predicts the next 

point in the time series:

~ (2,5.1)

then the remainder of the new point in the state space is defined by a simple shift in the 

delay window so that the new state vector is:

Î  -  (2.5.2)

Once the dynamics have been modelled the system can be investigated further: e.g. 

prediction, control, filtering, etc...

2.5.1 Interpolation, Extrapolation and Approximation.

If the data is noise free and arbitrarily long then the dynamics will be uniquely defined 

on the embedded data set. However, in reality, a data set will always have a finite length. 

Therefore, in general we will not be able to ascertain a prediction directly from the data 

and it will be necessary to interpolate between data points. Also, in some cases, it may 

be useful, although more dangerous, to extrapolate from some data points. This requires 

us to select a subset of the relevant function space since there are an infinite number of 

functions that can be interpolated through any finite data set.

Furthermore, if noise is present in the data, then we will no longer wish to merely 

interpolate between the data points since this will wrongly incorporate the noise into the 

function model. In such a case we have to fall back on statistical concepts by 

approximating the data using a function model that is sufficiently constrained so that it 

does not fit the noise. The most commonly used method is to minimise some 

approximation error, although other methods, such as régularisation (for example see 

Press et al [1992]), do exist. Here we will restrict ourselves to minimising an 

approximation error defined by an ordinary least squared estimate. In the case of fitting 

a prediction function of the form given in equation 2.5.1 the error function can be written 

as:
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i=d
(2.5.3)

Although the least squared estimate is statistically based on quite strict assumptions about 

the nature of the noise present it does, in general, provide a good estimate for function 

approximation even when some of the assumptions are relaxed. This and the fact that it 

can often be solved directly makes it our preferred choice.

Finally we have to consider the choice of the function set from which we intend to make 

our approximation. Unfortunately it is difficult to identify what defines a good 

approximation function and most of the function forms used are, at best, based on weak 

ideas about the type of functions that are good and, at worst, on historical accident. 

Although there are no real optimal methods some techniques have advantages over others. 

There are two main categories of function approximation that have been applied to fitting 

nonlinear state space models. These are briefly discussed below.

2.5.2 Global Function Approximation

This approach restricts the approximation to a single set of functions that can usually be 

defined by a parameter set, p. Since there are no rigorous arguments for choosing one 

function form over another the speed at which a solution can be obtained plays a major 

role in the type of function forms that are used. In practice, this means that the function 

model should be chosen such that the parameters can be calculated directly which 

requires the model to be linear with respect to the parameters:

g(2) = 4).(x) (2.5.4)
i=l

where is the /th predefined basis function and w, is its associated weight. It is 

important to note that, as long as the basis functions are nonlinear there is no problem 

with the approximation being linear in parameter. Indeed it is a positive advantage since 

it allows us to calculate the weights for a given data set directly.
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We can see this by considering the error function in terms of the weighting parameters:

*  = E  -  E '*'; t /Ü ,)
î d \  y=l

(2.5.5)

Because the function model is linear in parameters the error function is quadratic in 

parameter and has a unique minimum that can be calculated directly using linear algebra. 

Equation 2.5.5 can be rewritten in matrix form:

H = e^e = ( x  -  P w Y ( x  -  P w ) (2.5.6)

where e is the error vector for the time series, x is the vector of points from the time 

series to be predicted and P  is the design matrix that has the following form:

' <1>2̂ ) ••• 4>̂ (̂ i) '

4>2(̂ 2) •••

P  = (2.5.7)

whose i j  element is the value of theyth basis function at the /th state vector. We can now 

solve for the minimum value of H by differentiating and equating to zero:

ÈK
d w

= 2P^(x -  Pw) = 0 (2.5.8)

Hence the values of Wj that minimise the error are:

w = (P'^P)-^P^x (2.5.9)

At this point we should note that calculating the covariance matrix, is not the only 

way in which to solve this least square problem. (P^P)'^P  ̂is the Moore-Penrose pseudo­

inverse for P and can be directly calculated for P using singular value decomposition (for 

example, see Golub and Van Loan [1983]). Similarly other orthogonalisation methods can 

be used (i.e. Gram-Schmidt). These methods also have the benefit o f enabling the user 

to calculate truncated approximations to the least squared problem. This is particularly
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useful when P  is badly conditioned.

Thus we have shown that it is possible to reduce the approximation of nonlinear functions 

to a simple linear problem that can be solved directly by matrix inversion. However this 

method requires that the function model is linear with respect to the weighting 

parameters. We will now discuss below some of the function models that fit into this 

category:

Polynomials. Polynomial expansions are probably the most obvious choice of function 

form and can easily be written as a linear sum:

gW  = ÛQ + f l j i  + + ^ 3 ^ ... (2.5.10)

However when the order of the polynomial or the dimension of the domain become large 

the number of free parameters grows rapidly and will in general such fits are most useful 

when the order of the polynomial can be kept small (for example in local function 

approximation). A better alternative is to use rational polynomials.

Rational Polynomials. These are a simple extension from the polynomial expansion. A 

rational polynomial is the ratio of two polynomial expansions:

g(2) = 7 - ^  (2.5.11)
(1 + «)

where both p  and q are polynomial expansions. The above equation is obviously not 

linear in parameters. However direct solutions can be obtained by minimising a slightly 

different error function (see Casdagli [1989] and the references therein):

/I* = E (  (1 * -  P ( î )  f
i=d

This cost function can now be minimised directly and in the case of strict interpolation 

this solution will give be a zero solution (and a minimum) for the cost function H 

(equation 2.5.5). However this is unlikely to be the case when rational polynomials are 

being used for approximation and it is not at all clear exactly how this will effect the 

quality of the function approximation.
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Radial Basis Functions. These provide an alternative global function fit that is not based 

on polynomial expansions. Radial basis functions are functions that are solely dependent 

upon some distance measure, usually Euclidean, from the basis function’s centre, c. Thus 

the global model takes the following form:

/ k )  = 53^1  4>(ll2E -  CjN) (2.5.13)
i=l

where w, is the weight associated with the fth basis function. It can be seen that, as long 

as the centres are defined a priori, this model is linear in parameters and can therefore 

be solved directly.

Radial basis functions were initially introduced as a means of performing multi­

dimensional function interpolation (see, for example, Powell [1985]). In this case the 

centres are automatically chosen as the data points themselves. The basic incentive in 

using radial basis functions is that they can exhibit good localisation properties. That is 

the value of the resulting function at a point is mainly defined by nearby points in the 

space. In this sense radial basis functions are similar to the local methods described in 

the next section. They can also be shown to possess other desirable properties: see, for 

example Michelli [1986]. One example of a radial basis function model is the basis 

function r l̂og r. If this basis set is applied in 3 dimensions it can be shown to be 

equivalent to interpolating the data with thin plate splines. Some other commonly used 

basis functions are: exp(kr), (r̂  +  -f and / .  In each case  ̂ is an arbitrary

scaling factor that has to be predefined.

Casdagli [1989] originally proposed using radial basis functions for interpolating between 

data from a time series in a reconstructed state space. However this ignores the problems 

of noise. This was addressed by Broomhead and Lowe [1988] who showed that if there 

were less basis functions than data points this method could be used for multi-dimensional 

function approximation. They also showed that such a function model could be viewed 

as a neural network with a specific architecture that allows the weights to be calculated 

directly.
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Finally it is important to mention that there are methods of nonlinear function 

approximation that are not linear in parameter, such as neural networks. However these 

methods require iterative procedures to minimise the error function and therefore the 

fitting procedure takes orders of magnitude longer. For this reason we favour function 

approximations such as radial basis functions which appear to be able to achieve good fits 

without being computationally too costly.

2.5.3 Local Function Approximation

Another approach to function approximation is to construct local models. The incentive 

for this is that, if the surface to be approximated is quite complicated then a global 

approximations may perform poorly. However if we assume that the function is to some 

extent smooth we can exploit the local structure that this imposes. Consider the Taylor 

expansion of a function/around a point in state space x:

fix  + 6%) «  fix) + b x ^  + bx^—  bx + . . .  (2.5.14)
 ̂ dx dt^

Then we know that the function of a small enough neighbourhood of x is closely 

approximated by its Taylor expansion to some order. Thus, instead of approximating the 

function globally, we can approximate the Taylor expansion locally.

To implement this method we need to define a metric with which to construct a 

neighbourhood of the point we wish to predict. We then find all the points in the training 

set that lie in that neighbourhood and fit a local model over the neighbourhood in the 

same way that was described in the last section. The most natural function model to use 

when approximating a Taylor expansion is to use a simple polynomial expansion. Unlike 

global polynomial expansions, the order of the polynomial can be kept small such that 

each individual fit is well behaved.

The simplest model is the zeroth-order model where the value of the function over the 

neighbourhood is approximated by a local constant. Hence the global model is a piece- 

wise constant fit. This was originally used by Lorenz [1969] in an attempt to make
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atmospheric forecasts. However the most popular method is to use local linear 

approximation (see, for example Farmer and Sidorowich [1987] and Sugihara and May 

[1990]). This also provides derivative information which is useful for calculating 

Lyapunov exponents and also for performing noise reduction (see chapter 3). Higher 

order polynomials have also been investigated by Farmer and Sidorowich [1988]. 

Although some improvement can be gained by increasing the order of the polynomial this 

gain is likely to be limited by the size and accuracy of the data set.

However we have so far not specified how to chose a neighbourhood. The most natural 

way is to chose all the data points that lie within a specific distance from the point, y, to 

be predicted. However it is not obvious what the distance should be or whether there will 

be enough points within the neighbourhood to make a good prediction. Hence another 

method for choosing a neighbourhood of y  is to find the k nearest data points to the y. 

This then guarantees that there will be enough points to make the approximation well 

defined. Finally a more systematic approach that has been used to define neighbourhoods 

in a different context was presented by Broomhead et al [1987] in calculating topological 

dimension of attractors. They looked at the scaling of the local prediction error with the 

neighbourhood size, a. When the scaling changes as then the neighbourhood is 

becoming too big. Therefore it should be possible to devise an algorithm to use the 

maximum possible neighbourhood before curvature errors become dominant.

Finally, once a mechanism for choosing neighbourhoods has been found and the type of 

local function approximation has been chosen, we need a method for efficiently searching 

through the data set to locate the nearest neighbours. If we were to use a simple 

sequential search we would soon find that the this type o f function approximation was too 

costly, since we would be spending all our time searching through the data set. However 

there are fast search algorithms available that speed up this process to an acceptable level. 

These generally involve partitioning the data in the state space and then ordering these 

regions in a manner that is easy to search. Two examples of quick search algorithms that 

have been used in local function approximation are k-d trees and box-assisted algorithms. 

See Bentley and Friedman [1979] for a full comparison of the various methods available.

One major problem with local function approximation is that it does not allow the
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functional form to be described by a parameter space. Although parameters are calculated 

for the functions in each neighbourhood this creates a vast number of free parameters 

many of which are unlikely to be independent. Thus it is not easy to consider a family 

of functions related to perturbations of the data set. Although this appears to be a small 

point we will show in chapter 4 that such a family of functions can be used effectively 

to enhance the performance of noise reduction algorithms.

2.6 Approximation Errors versus Measurement Noise

In the next chapter we will discuss methods by which the noise in the time series can be 

reduced. However before looking at these techniques it is necessary to consider how 

different types of noise will effect the data in the reconstructed space. Broadly speaking, 

dynamical systems can be contaminated by two types of noise;

Dynamic noise is a stochastic process within the dynamical system 

such that the actual trajectory is perturbed by the random process.

Measurement noise is a random component that corrupts the time 

series but does not effect the dynamics or the underlying trajectory.

We will restrict ourselves to additive dynamic noise and additive measurement noise, 

although in practice, noise does not have to take these forms.

From the description that we gave of the function approximation methods it is clear that 

the resulting approximation errors act as additive dynamic noise. This is irrespective of 

the actual type of noise present. However, if we believe that our time series has been 

corrupted by some additive measurement signal (for example we may have some prior 

knowledge of the type of the noise) we would like to be able to decompose the time 

series into the deterministic trajectory and the measurement noise. Unfortunately this 

cannot be obtained directly from the embedded data, even when the dynamics are known 

a priori. To separate out the measurement noise from a time series requires the
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relationship between dynamic errors and measurement errors to be explored. This 

relationship is set out in the next chapter and we then go on to investigate some ways in 

which we can use this to construct algorithms to determine measurement noise from 

dynamic noise.
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3. Noise Reduction: Theory

In this chapter we investigate methods of reducing low amplitude noise from an 

underlying deterministic time series. At this stage we will assume that the data has 

already been embedded and that the dynamics are known a priori. Thus we have a 

‘noisy’ trajectory that can be identified with some nonlinear dynamical system. To reduce 

the dynamic noise associated with the trajectory we aim to adjust the trajectory such that 

it is less noisy. This makes sense since the original trajectory can be interpreted as the 

new trajectory with additive measurement noise. Hence noise reduction, in this context, 

is a method of transforming dynamic noise into measurement error.

The idea for noise reduction of this type using state space methods was proposed by, 

among others, Kostelich and Yorke [1990]. Their method involved breaking the time 

series up into overlapping sections and adjusting these sections to make them more 

deterministic, while remaining ’close’ to the original sections of the data. Unfortunately 

this does not provide a unique minimization process since it involves simultaneously 

minimizing the distance of the new trajectory from the old one and the distance o f the 

data points from deterministic ones. Thus the cost function is a combination of these two 

aims:

s  = [ wj i  -  + II -  a:, I + II f ( x )  -  AT..., 1̂  ] (3.0.1)

where f(x) is the local mapping function, is the original trajectory and x  ̂ is the new 

’cleaner’ trajectory. The weighting w between the two parts is arbitrary. This 

arbitrariness is intrinsic in the problem of any noise reduction method and much of the 

work in this chapter looks into ways of solving this and other indeterminacies.

However in this chapter instead of solving the noise reduction problem proposed by 

Kostelich and Yorke we will concentrate on the problem of finding a completely 

deterministic orbit that is close to the noisy orbit, although later in section 3.4 we will 

relax this constraint slightly. The original work on finding ‘close’ deterministic orbits was 

done by Hammel [1990] whose method is based on the ‘shadowing problem’ of Bowen

[1970,1978]. It is therefore useful to review Bowen’s shadowing lemma before we 

consider Hammel’s noise reduction algorithm.
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In section 3.2 we return to the task of noise reduction and present the problem of finding 

a deterministic orbit close to the original data as a badly conditioned root finding 

problem. Hammel’s algorithm, which was later called manifold decomposition, is then 

described in terms of a modified Newton-Raphson method. Then it is necessary to 

investigate the potential problems of applying this algorithm in practice. The major 

obstacle here is the presence of homoclinic tangencies. These manifest themselves by 

making the linearised problem singular, which in turn suggests that one solution may be 

to apply SVD. This is discussed in section 3.2.4 as well as some of its practical 

difficulties.

In section 3.4 the problem is reformulated as a minimisation problem. Although in many 

cases the minimum is equivalent to the zero in the root-finding problem and the problem 

is still badly posed it does allow more stable algorithms to be applied to reduce the noise. 

This approach is also compared to other methods that have recently been proposed in the 

literature. Although these new ideas have approached the problem from a different 

direction there is a great deal of similarity with the minimisation solution.

Finally to demonstrate the potential effectiveness of these methods a simple example of 

noise reduction is given applied to a time series from the Henon map. The mapping 

function is assumed to be known (the case where the function is approximated is dealt 

with in the next chapter) and the levels of noise reduction are shown to be impressive 

away from the regions near tangencies.

3.1 Pseudo-Orbits and Shadowing

The discussion at the end of the last chapter about the nature of the error term indicated 

that the relationship between dynamic error and measurement error needs to be explored 

in order to construct an algorithm that will separate a time series into true dynamics and 

measurement error. In fact much of the work required has already been done by Bowen

[1970,1978], who was working on the problem of constructing Markov Partitions for 

Axiom A systems.
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But before discussing this it is necessary to define certain terminology that is used in 

Bowen’s work on the shadowing problem and will also help to put his work in the 

context of noise reduction algorithms.

Definition: a-pseudo-orbit: A sequence of points JC, E M for

some mapping/’M -» Af, will be described as an a-pseudo- 

orbit o f / i f  it satisfies:

d(f(x),x^^i) < a  V i E [ a , b - l ]  

where d  is some measure o f distance defined on M.

Definition: j3-shadow: A point y E A is said to jg-shadow a sequence

if:

d if ' iy )^ )  < /3 V f E \aM (3.1.2)

From these definitions a pseudo-orbit can be viewed as an approximation for an orbit 

with mapping errors at each point in the trajectory and an orbit that jS-shadows it is a 

true orbit that is a close approximation to the pseudo-orbit. Thus the difference between 

the shadowing orbit and the pseudo-orbit can be interpreted as measurement noise. 

Therefore identifying a shadowing orbit for a given pseudo-orbit can be viewed as a noise 

reduction algorithm. Under suitable constraints this is what Bowen’s proof of the 

Shadowing Lemma provides. The statement of the relevant theorem, which is slightly 

different to Bowen’s is as follows:

Shadowing Lemma (Alekseev and Yakobson [1981]): Let A be a hyperbolic set o f  

f:M-*M. Then there is a neighbourhood U D A such that fo r  every ^ >  0, there is an 

a >  0 such that every a-pseudo-orbit {xJi=f C U is ^-shadowed by a point y E A.

The proof of this shadowing lemma is constructed by identifying the method by which 

a shadowing orbit can be found for a given pseudo-orbit. Since the explanation of the 

proof provides the basis for a noise reduction algorithm a sketch of it is presented below:
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Sketch of the Proof

By the definition of a hyperbolic invariant set there exist c and 0 < \ < 1  such that:

I l l s ' l l  (3.1.3)
l|7r"lg.l <c X" , mO

where E" and £ “ are defined as in chapter 1. This is a statement of the exponential 

expansion and contraction for the stable and unstable subspaces of the tangent space 

respectively. Similarly, as a direct consequence of the stable manifold theorem, this 

property can be extended from the infinitesimal to a local e neighbourhood in the 

following way. There exists an e such that:

y  e  W (̂x), n  ̂ 0 d(f'"x/y)  ̂ cX^d{x,y)
(3.1.4)

y e  W^ixX n  ̂ 0 ^  ^

where W/fxj is the e-neighbourhood of the local stable manifold of x and W “fyJ is the 

e-neighbourhood of the local unstable manifold of x, as defined in chapter 1. We also 

know from the stable manifold theorem that there exists a ô such that given x and y  with 

dfx,yj <  Ô there is a unique point p  by:

n  W“(y) =  p  6 A  (3.1.5)

Both these properties can be seen from the fact that these manifolds are locally a graph 

of the stable and unstable subspaces in the tangent space. Equation 3.1.5 is illustrated in 

Figure 3.1.1.

The basic idea behind the proof is to construct a sequence of orbits such that each new 

orbit will shadow more and more of the a-pseudo-orbit. This is achieved by choosing 

points that lie in intersections of stable and unstable manifolds as described above. Given 

e and 6, as above, we can find a constant k such that:

6cX* < 6 / 2  (3 I Q

This is required to guarantee that the ki\\ iterate of the map provides a sufficient 

contraction forwards along the stable manifold and backwards along the unstable

- 48 -



s

Figure 3.1.1: A graphical representation of the intersection of the 
local stable manifold of x and the local unstable manifold of y. This 
intersection can be shown to be unique in the e-neighbourhood when 
X and y  are less than <5 apart.
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manifold. Then there exists an a  to satisfy:

)   ̂ , 0  ̂ k (3.1.7)

Now we consider a finite kn +  1 length a-pseudo-orbit and define a sequence

of points {yjjj^o setting = Xq and then recursively setting:

This can only be defined if the distance between and x,̂  can be guaranteed to be

within Ô (equation 3.1.6). We prove this recursively by repeated application of the

triangle inequality:

s. (3-1-9)

So that if d (y i,x j <  e then <  ecX* <  d/2 (from equation 3.1.4 and the

definition of k) and d(fx,,(i,i^,x,J <  b/2 (from our choice of a: equation 3.1.7). Therefore 

d ( fy i . i ,x j  <  Ô and d(yi+i,x^a+i)) <  e (from equation 3.1.5 and Figure 3.1.1). So, since

d(yo,Xo) =  0, we can extend this upper bound from for the distance between y, and x,̂  to

all i.

diyiyXj^) ^ e (3.1.10)

We now claim that/'^y„ will jS-shadow the pseudo-orbit for some ]8. This is because y„ 

lies in the unstable manifolds of all y„ 0 <  i <  n and therefore we expect the distance 

from jCfe a n d t o  be bounded. This can be shown as follows:

7=0
 ̂ e + ecA* + ecX^ + ecA^* . . . 

which is a geometric sum and since || X || < 7  this sum converges:

s e + (3.1.12)
1 -  A*

Finally to show shadowing for the complete trajectory we must include the points 

where i is not divisible by k but we have already bounded this distance in equation 3.1.7. 

Thus to include these points merely requires an additional 5/2 and we can bound |8 in
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terms of ô and e from the stable manifold theorem as follows:

p s  Ô/2 + e + (3.1.13)

This proves shadowing for any finite length pseudo-orbit. To extend this argument to a 

bi-infinite pseudo-orbit it is sufficient to consider a sequence of points that shadow finite 

segments o f it. Since the hyperbolic set is compact there exists a limit of some sequence 

of these points that shadows the whole pseudo-orbit.

A further corollary to this theorem is that the shadowing orbit for a bi-infinite pseudo­

orbit is unique. This is obviously necessary when trying to find a true orbit associated 

with noisy data. Although, in reality, this uniqueness does not hold for finite length orbits 

a sensible implementation of the process will circumvent this problem. Further discussion 

of this is postponed until sections 3.2 and 3.3.

Before detailing the implementation of practical algorithms it is important to consider 

some of the limitations of adopting the shadowing approach to noise reduction. The major 

problem of the Shadowing Lemma is that it can only be applied to hyperbolic systems, 

although it can be extended to cover any hyperbolic trajectory. Indeed, in general, 

pseudo-orbits from non-hyperbolic systems are unshadowable. This is because whenever 

a e-pseudo-orbit approaches within e of a tangency (or even a near-tangency: see 

Figure 3.1.2) there is a chance that it will cross the separatrix thus making it impossible 

to shadow. Whereas simple examples of non-hyperbolicity are non-generic it is believed 

that many chaotic attractors contain homoclinic tangencies and hence are non-hyperbolic. 

Furthermore the presence of homoclinic tangencies in an invariant set can be shown to 

persist under perturbation (see Guckenheimer and Holmes [1983] and the references 

therein).

Although this puts a severe limitation on finding shadowing trajectories for pseudo-orbits 

in general chaotic attractors it was pointed out by Hammel et al [1988] that the ideas in 

the shadowing lemma can still be applied to finite lengths o f trajectory as long as they 

are sufficiently hyperbolic. Whereas the method in the proof of the Shadowing Lemma, 

given above, is not directly applicable as a stable algorithm, the basic ideas of splitting
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Figure 3.1.2: An e-pseudo orbit is unshadowable if the error is large 
enough to cross over a stable manifold. This is likely to happen for any 
€ in a chaotic attractor that is not strictly hyperbolic if the trajectory is 
long enough.
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the space into stable and unstable subspaces was used by Hammel et al to practically 

implement a shadowing algorithm to numerically prove the existence of nearby true orbits 

to numerically calculated ones.

Unfortunately Hammel’s algorithm requires very low levels of noise whereas in practical 

noise reduction an algorithm should be robust to realistic noise levels. However the mere 

application of a noise reduction algorithm, in general, implies the belief that the noise is 

measurement noise and not dynamic error and this in turn implies that the resulting 

pseudo-orbit automatically has a shadowing orbit. In such a situation implementation of 

Hammers algorithm can still lead to problems since if the pseudo-orbit is not hyperbolic 

then Hammers algorithm becomes unstable even though a true shadowing orbit exists. 

The remaining sections of this chapter investigate practical solutions to these problems 

in order to produce a noise reduction algorithm that is robust to large noise levels and 

the ill-conditioning introduced by non-hyperbolicity.

3.2 Zero-Finding and the Shadowing Problem

Before any noise reduction can be considered it is necessary to make several definitions. 

First it is assumed that the time series originates from a low dimensional deterministic 

dynamical system and that the time series has been reconstructed in some suitable state 

space to produce a vector series of n points in state space where is defined as the iih 

point in the series. The deterministic mapping function is then approximated in some 

manner, if  it is not known a priori, and the approximation errors are defined as

f, = X ,  -  /(ï,..,) (3.2.1)

where e, is the approximation error associated with the zth point in the series and f() is 

the mapping function.

The aim then is to remove the approximation errors from the orbit. Unfortunately in 

general the measurement errors cannot be directly decomposed from the observed data. 

However if  we consider the error function as a function o f the trajectory then the 

shadowing problem becomes one of finding the adjusted trajectory for which the error
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function is zero. This approach to noise reduction is equivalent to solving an 

«-dimensional root finding problem and the obvious choice of algorithm by which to do 

this is to use a Newton-Raphson method. This is well known and commonly found in 

numerical procedures. It is based on linearizing the function as an estimate for the 

position of the root. If the root is approximated by its Taylor expansion it can be assumed 

to be a linear function of the initial guess the position of the root can be determined 

directly:

(3.2.2)

where g(x) is the error function in this case and Dg(x) is the derivative with respect to 

X.  As long as the initial guess is close enough to the zero the algorithm will converge 

onto it at a quadratic rate, see for example Press et al [1992].

To apply it to the noise reduction problem the error function, given in equation 3.2.1, 

must first be linearised around the solution and set to zero:

(3.2.3)

where 7, is the Jacobian of the mapping function f(x j  at the fth data point. Then 

substituting equation 3.2.1 back in we have:

*̂ i-l ^^i-1

This can be written in matrix form in the following way:

D (x - X  ) = - e
new cur

(3.2.4)

D  =

1 -7.

1 “7,

1 -A -i

(3.2.5)

It is immediately apparent from equation 3.2.5 that to solve this for.x„^ requires inverting 

the matrix D  which is not possible since D is not a square matrix but instead is an n-1 x«
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matrix with (/-dimensional elements, where d  is the dimension of the reconstructed state 

space. This is because the number o f data points is greater than the number of error 

terms (this comes back to the non-uniqueness of solution mentioned at the end of 

section 3.1). It can only be solved by adding extra constraints. One method of applying 

a reasonable set of additional constraints is to constrain the ends in the stable and unstable 

subspaces. This was proposed by Hammel [1990] and is briefly reviewed below.

3.2.1 Manifold Decomposition

Hammel [1990] devised a method for noise reduction by finding a deterministic trajectory 

that shadows the whole data set. The approach used was based on earlier work on the 

shadowing problem, Hammel et al [1988], in which they proved that finite lengths of 

numerical approximations to the Henon map actually shadowed real trajectories to within 

a small distance.

The algorithm to find the shadowing orbit assumes that the dynamics can be linearized 

around the time series embedded so that a Newton-Raphson type approach can be 

adopted. If we start from equation 3.2.4 it is clear that one of the zero solutions for this 

equation can then be obtained by initially choosing an arbitrary value for (e.g. zero) 

and then solving for the remaining Ax, iteratively. Of course this solution would only be 

a sensible one as long as the errors in the initial choice of AX; are not amplified under 

iteration: this would invalidate the linearisation assumption used in Newton-Raphson.

Unfortunately if  the trajectory is chaotic then along the unstable directions this solution 

will be unstable. However this can be solved by decomposing the problem into stable and 

unstable subspaces and setting A x/ and A x/ equal to zero. Then as long as the subspaces 

span the full linear space the iterative procedure can be applied forwards along the stable 

direction and backwards along the unstable direction, resulting in the following recursive 

solutions:

Ax/i = 7/Ax,^ -  ej.i (3.2.6)
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and

Ax,“ = ( / r ) ‘ (Ax,:, + 6 :,) <3.2.7)

where the superscripts s and u denote the stable and unstable subspaces respectively. The 

resulting adjusted orbit will then be deterministic to within the limits of the local linear 

assumption. The process can then be repeated several times in the usual way to improve 

the accuracy o f the estimate of the shadowing orbit.

3.2.2 Approximation of the Stable and Unstable Manifolds

The method of manifold decomposition cannot be implemented without first dividing the 

local neighbourhoods in state space into stable and unstable subspaces. Unfortunately 

however it is not practical to try to calculate the actual manifolds for each 

neighbourhood, since this requires the knowledge of the forward trajectory t  oo and 

the backward iterated trajectory, In fact the exact decomposition is not necessary

and it is possible to approximate this decomposition in a way that is sufficient for the 

above algorithm. Manifold decomposition requires the local tangent spaces of the data 

to be decomposed into two invariant subspaces such that adjustments restricted to the 

stable subspace contract on average when iterated forwards along the time series. 

Similarly adjustments restricted to the unstable subspace contract on average when 

iterated backwards.

If the dynamical system is only two-dimensional then we can use the fact that generically 

the angle between any arbitrary vector in the local tangent space iterated forwards along 

the time series and the direction of the maximal expansion will reduce and tend to zero 

in the limit r -> oo. Thus, this method provides a good approximation of the unstable 

directions along the time series. Similarly an arbitrary choice of stable direction can be 

made for the last point in the time series and iterated backwards to approximate the local 

stable manifold.

For higher dimensional data sets it is necessary to calculate the directions associated with 

the Lyapunov exponents since the directions associated with the positive Lyapunov
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exponents span the unstable manifold and similarly the negative Lyapunov directions span 

the stable manifold. Therefore to implement manifold decomposition in higher 

dimensional systems we can turn to the methods for calculating Lyapunov exponents, as 

described in chapter 1.

Consider the factorisation of a sequence of matrices, 7, G If̂ , that was described in 

section 1.4 into orthogonal matrices and upper triangular matrices with positive 

diagonals, /?,. Setting Qq to the identity, we have:

J i Q i  = <?2^ (3.2.8)

•^,0,-1 = Q fii

such that the product of these matrices can be written as:

f [ J i  =  Q n K K - v  •  •

1-1

Since the all 7?, are upper triangular the first k column vectors of Û  provide a k- 

dimensional subspace that is invariant under the mapping 7,+;:

7.,i(?.(l-7,l-^k) = (3.2.10)

where the notation Q (l^ ,l-^ k )  means the submatrix with the elements for l < i < d  

and ] < j < k .  Since this subspace will span a k-dimensional subspace tending onto the k 

most expanding directions we can identify the dimension of the local unstable manifold, 

(i.e. the number of Lyapunov exponents greater than zero) and then the invariant 

subspace spanned by the first column vectors in each Qi provides an approximation for 

the unstable manifold at

Unfortunately the remaining column vectors in g  do not provide an invariant basis for 

the local stable manifold at jc, since they are constrained to be orthogonal to the unstable 

subspace and are therefore not invariant. This is not really surprising since the local 

stable manifold is only defined in terms of the limit o f backwards iterates of and we 

can consider a backwards factorisation of 7, with the same form as equation 3.2.8:
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0 .  = /

(3.2.11)

•^n-lQn-l ~ ^ n -2 ^ -2

Thus we can calculate a basis for an invariant d,-dimensional subspace (d̂  =  d  - and 

in a similar way to the construction of the unstable subspace this basis will span the d̂  

most expanding directions with respect to the mappings 7 / .  Therefore this approximates 

the stable manifold as f 7.

Although this method will not accurately approximate the stable subspace at the end of 

the time series and the unstable subspace at the beginning of the time series this is not 

important. In manifold decomposition the requirements of the stable and unstable 

subspaces is that the mapping restricted to the stable subspace typically contracts and the 

mapping restricted to the unstable subspace typically expands. The decomposition method 

described here will in general satisfy these conditions.

3,2.3 Tangencies Imply Ill-conditioning of D

It has already been mentioned that many chaotic attractors are likely to be non-hyperbolic 

and in a non-hyperbolic attractor almost all bi-infinite orbits will pass arbitrarily close to 

some given tangency. Since in general a pseudo-orbit from a non-hyperbolic system 

cannot be shadowed by a true orbit we can expect the presence o f tangencies or near- 

tangencies to make the zero shadowing problem ill-conditioned (as well as being rank 

deficient) and solutions using the method of manifold decomposition are liable to fail. 

This manifests itself is the form of the matrix D  in equation 3.2.5 becoming singular, as 

we will show below.

In this context our definition of a near-tangency in the linearised problem is as follows:

Definition (-near-tangency. There exists an e-near-tangency at the mth 

point in a pseudo-orbit if  we can find unit vectors in the
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unstable subspace, and in the stable subspace such that

Sm-u„ =  cosB and 0 <  e.

where the unstable and stable subspaces here are defined by the directions associated with 

the singular values o f /"  that are greater than or less than one respectively. Initially we 

will find a lower bound for the condition number o f D, with the added constraints, 

Ajc/ =  Ax„“ =  0, as a function of the angle between the directions s„ and u„ at some 

position m in the trajectory.

First we can show that D  has at least one singular value greater than or equal to one: i.e. 

there exists an Ax such that || Ax |  <  || e | | , where e =  DAx. Choose Ax such that 

Ax, — 0, if i 9̂  m and Ax„ ^  0. Then we can calculate e from equations 3.2.6 and 

3.2.7: e, =  0, if f  X {m,m+l},e„  =  -Aï„ande„+, =  Since ||c„|| =  ||A%.|| we 

know that |{ Ax || <  |  e || and thus D  has a singular value greater than or equal to one.

Now given an e-near-tangency at the mih point we can construct an upper bound for the 

smallest singular value. To do this it is necessary to find an e such that there is a constant 

K >  II Ax II / II g II for all Ax that satisfy DAx =  e. In terms of the solution by manifold 

decomposition this means: for all choices o f Ax'; and Ax"„.

Let us choose e such that e, =  0, if i ^  m and Initially let

Ax'; =  Ax"„ =  0. Then we can solve for Ax using the method outlined in section 3.2.1. 

Thus we know that:

Ax- = 0  , i <  m

AXi = 0  , i >  m (3.2.12)

Ax: =

and II Ax II >  || || =  || jS | | . If we now choose e„.s =  0  we can write:

a  = e .u  -  ^cosd
(3.2.13)

= acosd

and since e„.s -  0, and u.s =  cos6 then e„M =  || e„ \\sin6 and we can write in terms
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o f  e .

g  ̂ Il gm II sing (3.2.14)
(1 + COS^g)

and by construction ||c|| =  || e„ | | . Therefore we have:

k l
 -----  s e (3.2.15)
(1 + COŜ 0) I

Thus, under the assumptions set out above, we have shown that the condition number of 

D  with the additional constraints is greater than 1/e.

To consider the condition number of D  without constraints would require us to 

demonstrate that Hammel’s method is ill-conditioned for any constraints on A%/ and Ax„“ 

chosen. However, to extend this argument to any constraints applied to D  is more 

difficult. Here we merely provide a heuristic explanation of why D  is ill-conditioned. If 

we attempted to select a value for A x/ that kept || Ax„, || / 1| e || small this would require 

A x/ to be o f the order of 7/e since:

Axj, = ny,.Axf -  (3.2.16)
I"!

and we expect vectors in the stable subspace to contract when mapped forwards. Thus 

the condition number would still be large since || AX; || / 1| e || would be large. A similar 

argument can be constructed for the selection of A x/ and indeed for any combination of 

the two (this can be done since we chose the stable and unstable subspaces such that they 

were mutually orthogonal at the ends of the trajectory).

3.2.4 Solution by SVD

Since tangencies appear to be common in chaotic systems it is worth considering now 

best to deal with the singularities they induce in the matrix D. The most robust method 

for solving badly conditioned problems is to use singular value decomposition and the 

Moore-Penrose pseudo-inverse. If we treat the small singular values as exactly zero this
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will result in a k-dimensional family of solutions for the problem Dx =  e, where k is the 

number of small singular values. Then the problem becomes one of choosing the best 

solution for our particular needs. This can be achieved by applying the Moore Penrose 

pseudo-inverse. Let D  =  JJSV  ̂be the singular value decomposition where U and V are 

orthonormal matrices and 5* is a diagonal matrix whose elements are the singular values 

of D. Then it is simple to write the solution io Dx =  e in terms of U, S, and V\

X = eVS'^U'^ (3.2.17)

where S'̂  is just the diagonal matrix whose elements are This immediately identifies 

the problem of a badly conditioned matrix since if -* 0 then -> oo .  The Moore- 

Penrose pseudo-inverse replaces 7/y„ by 0  whenever =  0  (or in our case whenever 5̂  

is numerically small). This method makes sense since it chooses the point from the family 

of solutions that minimises the norm of ||% ||/||c|| and thus chooses the smallest 

solution that satisfies the problem. In fact, if this method for inverting D  is used, the 

manifold decomposition is redundant since it was a mechanism for applying stable 

constraints to overcome the problem of D  not being a square matrix and hence there 

being no unique solution for the problem. As we have seen above this problem is 

automatically solved by the application of the Moore-Penrose pseudo-inverse.

Unfortunately, although a solution by singular value decomposition is very attractive it 

is not always a practical option. One of the major benefits of manifold decomposition is 

its speed: it is an order N  process. This is because it is able to exploit the banded 

structure of D. However singular value decomposition does not have a fast banded 

algorithm since U and V will generally have no zero elements. This means we cannot 

make the process faster than order b f  which is the standard process time for singular 

value decomposition. Thus the application of this method to the problem will soon 

become impractical if the data length used becomes too large.

Obviously we cam resort to compromise solutions using this method. For example, in the 

same way as Kostelich and Yorke [1990] broke up their data into small overlapping sets, 

we could apply singular value decomposition repeatedly to small lengths of data, however 

it then becomes a problem to choose how large these lengths of data should be, since the 

smaller the length of the data is the less effective the resulting noise reduction is. Another
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compromise would be to apply manifold decomposition where the decomposition is stable 

and to apply singular value decomposition in the regions where tangencies are a problem. 

This method was proposed by Farmer and Sidorowich [1991] for the solution of a slightly 

different problem (see next section).

3.3 Implicit and Explicit Shadowing.

At the end of section 3.1 we mentioned that finite length pseudo-orbits do not possess 

unique shadowing orbits. Instead there is a d-dimensional family of shadowing orbits, 

where d  is the dimension of the state space. In terms of Hammel’s method this set can 

be realised by perturbing the end constraints in the stable and unstable directions. 

Therefore if we chose a non-zero end constraint we will obtain a different shadowing 

orbit.

This poses the question: can we do any better? The answer is, theoretically, yes we can. 

To start with the solution given in the last section finds the closest (in the L2 norm) 

estimate for the shadowing orbit at each iterate of the linearised equations but even here 

the is an implicit assumption that optimising each linear step provides a good solution to 

the global nonlinear problem. A better approach would be to explicitly search for the 

closest shadowing orbit to the original pseudo-orbit. This was proposed by Farmer and 

Sidorowich [1991] and was rightly called ‘optimal shadowing’ since in finding the 

deterministic orbit that is closest to the pseudo-orbit it can be viewed as a maximum 

likelihood estimate. They applied this by minimising the following cost function:

N-\

I
k=l  A=1

where f(x) is the mapping function as before, is the deterministic trajectory, is the 

noisy trajectory and are the Lagrange multipliers. Farmer and Sidorowich linearised 

this function and solved the approximation iteratively using the Newton-Raphson method. 

The resulting linearised equations are:

= J n \  -  K i  ~ K  (3.3.2)
K . ,  = A  K  *
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where the new variables are defined as:

—

~ f ( ^ n )  ~

y.  =  y , - K

K  =  K -X n  

This can be written in matrix form as:

present estimate for 

approximation error 

deviation from the noisy orbit 

deviation from new estimate for

Mv = w

-1 7,
7j 0 -1

-1 -1 7.

n -\ 0 -1 

—  1 “ 1

&c, 7i

1̂
ÔX2 72

= (2

n̂-1

_7„_

(3.3.3)

Since optimal shadowing provides a unique solution even for finite length data sets the 

rank deficiency o f D  is removed by solving the problem with M  which is square. 

However in Farmer zmd Sidorowich, it was conjectured that the matrix M  would be badly 

conditioned if the data came from a chaotic system. This can be shown to be incorrect 

by considering the following simple counter example. If the data came from the 2c mod 

1 map then the Jacobian of the system would be constant and the matrix M would be:

-1 2 
2 0 - 1  

-1 -1 2

M  = (3.3.4)

2 0 - 1  
—1 —1

The condition number for this matrix remains small for even large values o f n and so the 

matrix is not ill-conditioned. Figure 3.3.1 shows a plot o f the numerical calculated 

condition number of this matrix for n <  50  and it appears that the condition number is
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the 2 x  m o d  1 m ap against size o f the m atrix. It is clear that the 
condition num ber does no t grow  exponentially w ith the m atrix 
size.
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not likely to increase much beyond 6 for large n. Certainly this is not the exponential 

growth of the condition number predicted. Although the presence o f chaos does not 

necessarily introduce ill-conditioning into M  this does not mean that manifold 

decomposition would not be necessary if the data came from a hyperbolic chaotic 

attractor. It is clear from equation 3.3.3 that M  is not diagonally dominant since it has 

zeros along the diagonal. Therefore if standard methods of matrix inversion are used to 

solve this equation, such as, Gaussian elimination, pivoting will be required. This means 

that it would not be possible to exploit the banded structure of the matrix and a straight 

forward approach to solving Mv =  w would not result in an order N  process. Here 

manifold decomposition can be used, not to stabilise an ill-conditioned matrix, but to 

provide a faster solution.

The ill-conditioning that Farmer and Sidorowich observed was, in fact, due to the 

presence of homoclinic tangencies. At first it might appear that the minimisation process 

could remove these singularities in the same way that it does for the rank deficiency 

described above but there is a fundamental difference. The singularities in the matrix D  

were due to the fact that it was a non-square matrix and therefore had singular values that 

were zero, whereas generically a finite length orbit from a dynamical system will not 

have any exact tangencies. Instead near-tangencies will result in some singular values 

becoming very small but while the singular values remain strictly positive the linearised 

equations still have an exact solution (however absurd this is). This is a common 

predicament in least squared estimation since a problem can be ill-conditioned even when 

a set of equations may be over-determined.

To stabilise their scheme Farmer and Sidorowich proposed a joint application of manifold 

decomposition and SVD. They proposed identifying approximations to the stable and 

unstable subspaces for the trajectory and then finding any near-tangencies present. Then 

away from near-tangencies manifold decomposition can safely be applied whereas in the 

regions of the tangencies SVD can be applied.

It is clear that the formulating the problem in terms of explicit shadowing has not made 

the algorithm any more stable in the presence o f tangencies therefore it is necessary to 

consider what benefits will be gained by this additional work. Obviously it is likely to
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find an orbit that is closer to the pseudo-orbit than the methods o f manifold 

decomposition, but how much closer is "closer"? This can be determined by decomposing 

the problem into the method of Hammel and the optimisation of the initial constraints of 

and (i.e. a general elimination method: see section 4.3 for more details). If the 

system has well defined Lyapunov exponents then perturbations applied to the initial 

conditions will introduce changes predominantly at ends o f the shadowing orbit and these 

changes will tend to decrease exponentially. The only other points that are badly defined 

are the tangencies due to the problem being badly conditioned. Also since most of the 

orbit is "nearly" unique except at the ends and the homoclinic tangencies the maximum 

likelihood estimate is only using information local to these bad points and is therefore not 

going to produce a statistically significant improvement. This emphasises the importance 

of the uniqueness of the shadowing orbit (and the convergence of finite length orbits onto 

it as the length tends to infinity). It is this fact and not a statistical argument that makes 

chaotic noise reduction so powerful.

3.4 Minimising Noise and Weak Shadowing

In this section the problem is reformulated as a minimisation problem. This is a less 

ambitious aim and is not confined to the assumption that a deterministic orbit and the 

original noisy orbit are approximately within the same linear neighbourhood because the 

minimisation problem merely searches for a less noisy orbit close to the original noisy 

data. One consequence of this is that a minimisation algorithm will not necessarily be 

forced to be unstable in situations where there are no close true orbits as is the case when 

homoclinic tangencies occur in the dynamics.

In the minimisation problem the aim becomes one of minimising the following cost 

function.

/ /  = (3.4.1)
i=2

where the error term is the same as that defined earlier in equation 3.2.1. Two methods 

are discussed below to solve the «-dimensional minimisation problem. The first method
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is a solution by gradient descent and the second approach is a compromise between the 

gradient descent method and the minimisation analogue of the Newton-Raphson 

algorithm.

3.4.1 Solution by Gradient Descent

The simplest and most robust method for minimising a function is to take small steps 

‘down hiir. This is best achieved using a steepest descent method. One major advantage 

of this over the Newton method is that it makes no assumption of the form of the cost 

function and merely requires a smoothness criterion. The basic algorithm is:

= x^  ̂ -  constant x  VH{x) (3.4.2)

where the constant defines the size of the step. VH can be determined by differentiating 

equation 3.4.1.

= 2 V  i f i  (3.4.3)
bx̂  M bx̂

This evaluates the partial gradient for the kih point in the state space. Although 

equation 3.4.3 has to be evaluated for each point in the state space this is not difficult, 

since the definition of the error function in equation 3.2.1 means that virtually all the 

terms in the summation are zero:

h  . 0  , i  ^  k ,k * l  (3.4.4)
dx,

Therefore equation 3.4.3 can be rewritten as:

(3.4.5)

where is the Jacobian of the approximating function f ( x j  at the Xlh point. VH can

therefore be calculated in order n operations and the routine can be iterated until the level

of noise is low enough.

It is interesting that the gradient descent approach does not suffer from the fact that the
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problem is ill-posed or the ill-conditioning that will be introduced by homoclinic 

tangencies, thus no extra constraints need to be added. This is essentially because these 

singularities in D  are equivalent to directions on the cost function that are flat, therefore 

the gradient descent method of equation 3.4.2 will always go perpendicular to the 

singular directions (it is no coincidence that VH =  -D^e and hence the gradient descent 

direction projects out the singular directions in D).

However homoclinic tangencies do still cause some problems when using a gradient 

descent algorithm since when the gradient of the cost function becomes almost flat 

repeated iterations of the algorithm cease to reduce the error at a linear rate. This was 

also observed numerically by Grassberger et al [1992]. However it is infinitely more 

preferable for a noise reduction algorithm to grind to a halt at tangencies than for it to 

become unstable.

It is worth briefly mentioning that there is nothing particularly magical about the least 

squared norm and any other norm would be equally valid for the error function given in 

equation 3.4.1. Obviously whatever function is chosen should not require excessive 

computation but within this restriction there are alternatives to the Euclidean norm that 

may have some advantages in terms of their convergence rates. A gradient descent 

method based on the least squared error will converge to a minimum at a rate 

approximately proportional to the size of the error. This convergence rate could easily 

be improved by simply using a norm with a faster convergence. For example Zak [1989] 

proposed minimising:

(3.4.6)
«■i 

i-1

in a neural network problem. However changing the norm will change the size of the 

maximum step that can be taken without losing stability and this may well limit the extent 

to which any improvements in speed can be made.
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3.4.2 A Comparison with Other Methods

It is convenient, at this point, to compare the ideas presented in the last section to some 

other schemes that have been proposed for noise reduction algorithms. The methods of 

Hammel [1990] and Farmer and Sidorowich [1991] have already been reviewed in some 

detail above, but recently some new ideas for stable noise reduction algorithms in the 

presence of large noise levels have been proposed by Sauer [1992], Cawley and Hsu 

[1992] and Schreiber and Grassberger [1992]. The aim of these new methods is to be 

able to filter data when the noise levels are too high to be able to successfully apply the 

methods of Hammel or Farmer and Sidorowich. We have already shown that in the 

context of the minimisation problem presented above stable noise reduction for high noise 

levels can be achieved by taking small enough steps down the cost function. In this 

section we will demonstrate that these new ideas can be considered in terms of 

minimisation and they can be classed as generalised gradient descent methods.

The algorithms presented by Cawley and Hsu and Sauer are very similar and we will 

concentrate on the method of Cawley and Hsu here. Although these algorithms 

incorporate advanced methods for embedding the data (global and local singular systems 

analysis) if we assume that the method of noise reduction can be evaluated independently 

from the function approximation and the embedding (this assumption is discussed in detail 

in chapter 4) then we can compare the algorithm of Cawley and Hsu directly to the 

method of gradient descent.

Cawley and Hsu apply local singular systems analysis to the data to produce local 

neighbourhoods that linearly map the state vector jc, to This is a local linear 

approximation for the mapping function. Then, having identified the function locally, the 

data can be projected down onto, or at least towards, the graph of the map from 

such that the error is reduced for each pair o f points in the trajectory. 

However, given a linear co-dimension 1 subspace in there are many directions in 

which the data can be projected onto the surface but the natural direction is orthogonal 

and this is the one that is used (this is illustrated in Figure 3.4.1). The result o f this 

projection is two new values for each point, one for the when the point is in the domain 

and one for when it is in the range:
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Figure 3.4.1 : A graphical representation of the projection noise 
reduction method of Cawley and Hsu [1992] and Sauer [1992]. 
This method can be shown to be equivalent to noise reduction 
by gradient descent.
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and

=  h d d  *

where J, is the linear mapping function and ô is a small constant defining the extent to 

which the points are adjusted towards the corrected values. Therefore in this approach 

a compromise has to be sought to obtain a single consistent orbit. This is achieved by 

averaging the two corrections;

hne. = -  (  ((,-, -

A comparison of this equation to equation 3.4.2 makes it immediately obvious that the 

method of Cawley and Hsu (and similarly Sauer’s method) is a reformulation of the 

steepest descent method for the cost function given in equation 3.4.1.

Finally the steepest descent approach can be compared to an algorithm proposed by 

Schreiber and Grassberger ([1991] and Grassberger et. al. [1992]). This method makes 

similar small adjustments to the trajectory to reduce the overall dynamic error. However 

the adjustment is just delta times the approximation error:

(3.4.10)

If this error was the same as that defined in equation 3.2.1 then the resulting noise 

reduction would only take place in the stable direction, therefore they used a function 

approximation that contained information from both the past and the future, for example:

X {  -  (3.4.11)

where d l  and d2 are the dimensions of the past and future parts of the delay vector. In 

such a case the steepest descent adjustment for the error function would be:

^ • «. -  -

where everything is defined as above. The argument for just using the error term is that 

since the function approximation is non-predictive the additional terms will on average
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be small and can therefore be ignored. This was proved for a simple case using the Baker 

map, Schreiber and Grassberger [1991]. Thus the method is similar although not identical 

to the steepest descent algorithm, although it is not at all obvious that it will always 

reduce noise in the general case.

3.4.3 Solution by Levenberg-Marquardt

The minimisation analogue to solving the root-finding problem by Newton-Raphson is 

trivial and provides no real advantages over the method described in section 3.2. 

However it is presented briefly since it will be used below. The Newton method for 

solving equation 3.4.1 is to assume that the trajectory for the minimum error lies within 

the linear neighbourhood o f the noisy trajectory. The cost function can then be modelled 

with a quadratic form and a closed form solution can be written for the minimum:

= ĉur ~ VH (3.4.13)
dx^

Using the linearisation of the dynamical system given in equation 3.2.4 this can be 

written as:

^0» = VH  (3-4.14)

where D  is the matrix that was defined as before. In fact further inspection will show that 

this equation can be arrived at by merely pre-multiplying equation 3.2.5 by and 

rearranging (remember VH =  -D^e).

However equation 3.4.14 cannot easily be solved since the problem is still rank deficient. 

What we would like would be to achieve the stability of the gradient descent method 

described in the last section without sacrificing the speed of the Newton method (Newton 

methods converge quadratically when stable, whereas gradient descent methods only 

converge at a linear rate). This is in fact possible by constraining the solution to have 

a restricted step. Such an approach falls under the category of Levenberg-Marquardt 

methods (see for example Fletcher [1980]). This method provides a simple way of 

stabilising the Newton method while retaining the order N  speed and quadratic
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convergence.

Heuristically the idea is to produce an algorithm that can smoothly be changed from the 

gradient descent algorithm of equation 3.4.3 to the Newton method of equation 3.4.14. 

A closer look at these two equations shows that they are identical apart from the term in 

front of VH. Thus one obvious compromise is to use:

4. «/)■' v f fw  (3.4.15)

where I is the identity matrix and Ô is an arbitrary weight that defines whether the 

algorithm behaves more as a gradient descent or more as a Newton approach. If ô is zero 

then equation 3.4.15 is identical to equation 3.4.14. However when ô becomes large then 

the inverse becomes approximately (l/ô)I, which is equivalent to equation 3.4.2. 

Figure 3.4.1 demonstrates the effect of this algorithm for a simple two dimensional cost 

function. The curve shows the set of solutions for different values of ô that map the point 

A towards the minimum B. For large values of 8 the curve descends down the line of 

steepest gradient, however as ô 0 then the solution moves more towards the minimum. 

In fact the theoretical arguments for the Levenberg-Marquardt procedure are more 

rigorous than this and it can be shown to find the minimum value for H  under the 

constraint that the step size is restricted. Also if an appropriate method for selecting d is 

used the resulting algorithm can be proved to be globally convergent and it can be shown 

that the convergence rate is quadratic (see Fletcher [1980] for a detailed exposition of the 

subject).

The most important benefit of this method is its effect on the singularities of D. Consider 

the singular value decomposition of D =  USV .̂ Then the matrix M =  (D^D +  81) can 

be written as:

M  = V(S^ * g / ) y  (3.4.16)

Hence even though D  may be singular the singular values of the M are bounded from 

below by 8. Indeed a further impressive feature o f this algorithm is that if the non-zero 

singular values are bounded away from zero then, as ô 0, the solution for x  from 

equation 3.4.15 will tend to the solution of the rank deficient minimisation problem by 

the Moore-Penrose pseudo-inverse which, as we mentioned in section 3.2.4 is in some
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Figure 3.4.2: Levenburg-Marquaidt applied to a simple two dimensional 
quadratic porential well. Starting at A the estimate for the minimum lies 
on the dotted line between A and B. If 5 is small the solution is near B 
and is equivalent to the Newton method. If Ô is large the solution is near 
A and is equivalent to the steepest desert solution.
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sense optimal. In practice however 6 cannot be allowed to become too small otherwise 

implementation of the algorithm will lead to numerical instabilities.

So in the directions where the singular values are identically zero this algorithm reverts 

completely to the steepest descent algorithm (i.e. it does not step in these directions). 

Also in the case of near homoclinic tangencies, where the singular values will be small 

but finite, although the gradient descent will dominate, this algorithm will step a small 

amount in the associated directions. This appears to be enough to solve the convergence 

problem that can occur when gradient descent is used on its own.

Finally implementation of this method is simple since M can be forced to be well- 

conditioned (and diagonally dominant) which allows the use of sparse matrix techniques 

to exploit the matrix’s banded structure. Therefore equation 3.4.15 can be solved by 

applying Cholesky decomposition to M  such that M =  GG ,̂ where G is a lower 

triangular matrix and then solving this by applying forward and backward substitution to 

G and G  ̂respectively. All these procedures are order N  and are readily found in various 

numerical texts, for example Golub and Van Loan [1983]. In the case of high noise levels 

when the linearity assumption needs to be relaxed, a larger ô can be used to restrict the 

step size allowable at each iteration thereby increasing the stability of the algorithm, ô 

can then be reduced as the data becomes cleaner.

The flexibility of the Levenberg-Marquardt algorithm makes it our preferred choice for 

a noise reduction procedure since the extra overheads of using this algorithm as opposed 

to the gradient descent method are minimal and indeed trivial if the dynamics are also 

being estimated (this is discussed in chapter 4), whereas the speed gains can be 

significant. A comparison between this method, gradient descent and manifold 

decomposition is given in section 3.5.
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3.4.4 Other Minimisation Methods

So far we have only discussed a limited set of optimisation algorithms as methods for 

tackling the noise reduction problem but there are obviously other candidates that might 

be worth considering. Here we briefly explain our preference for the Levenberg- 

Marquardt and gradient descent algorithms. Our major aims in choosing one particular 

method over another are speed and stability. Also it must be remembered that we are also 

aiming to implicitly achieve shadowing. This latter aim rules out the application of any 

global optimisation methods such as genetic algorithms and pretty much restricts us to 

trying to efficiently solve the linearised problem. Two other algorithms that might seem 

suited to this problem are: the conjugate gradient method and a variable metric method. 

However these algorithms excel in solving the problem without having to calculate the 

full Hessian matrix. In the application here, due to the banded structure of the Hessian: 

there is no real overhead in calculating this matrix and therefore these methods are 

unlikely to prove to be significantly better than the Levenberg-Marquardt method. This 

leaves the problem of stability as the deciding factor and it is this criterion that makes the 

Levenberg-Marquardt algorithm ideally suited to this particular minimisation problem 

since neither of the other two methods have the ability to restrict the size of the step 

taken.

3.4.5 Exact Shadowing in the Hyperbolic case

Although we have now placed the problem of noise reduction in the context of 

minimisation it is obvious that a shadowing orbit will be a the minimum of the cost 

function given in section 3.4. However this tells us nothing about any other minima that 

might exist. In fact if the data length is finite it is obvious that there are no minima apart 

from the set of deterministic orbits. This can be seen from the fact that e, is not defined 

for i <  d  (the dimension of the state space). Thus for the slope to be zero =  0. 

Then by induction if e, is zero e,+; must be zero. Although, in practice any time series 

will be finite this result relies on the lack of constraint at the ends of the time series and 

thus the deterministic orbit that will eventually be arrived at may well not resemble the 

original data at all.
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A more meaningful result can be obtained by considering the case when the trajectory is 

of arbitrary length (the cost function will have to be divided by Vn to keep the sum 

bounded) and the data comes from a hyperbolic system (i.e. the attractor is hyperbolic 

and globally attracting). Under these conditions we can show that the only bounded 

minima that exist have zero error. This can be shown as follows:

If H(z) is a minimum then:

Hence from equation 3.4.5:

Vi —  = 0 (3.4.17)
dZ:

Vf e. = (3.4.18)

Now since the system is hyperbolic we can decompose this into stable and unstable 

subspaces such that:

“ i = “ i+i (3.4.19)

and

now this allows us to derive a relation between jS, and as « »  :

(3.4.20)

fn-l \
n ^ ;

\y=» /
p . (3.4.21)

If is non-zero then jS, would be unbounded, hence the only bounded solution is for 

=  0. Then the argument for finite data length applies and ft must be zero for all i. A 

similar argument can be constructed for the errors in the stable directions.

There is of course the problem that most chaotic attractors are non-hyperbolic. In such 

a case the angle between the stable and unstable subspaces can become arbitrary close. 

In this case ft and a, will not necessarily be bounded even when e, is. This means that 

the slope can become arbitrarily close to zero (this is identical to the concept that 

tangencies lead to the ill-conditioning of the root finding problem).
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3.5 A Worked Example

In this section we take a deterministic time series from a simple two-dimensional 

dynamical system (the Henon map) and add measurement noise onto it. Then it is 

possible to compare the effects of filtering the data with the 3 different methods described 

in this chapter. The details of the comparison are given below.

The time series came from the Henon map (given in chapter 2) with the usual parameter 

settings: a =  1.4» b =  0.3. The time series taken was the x  coordinate starting at 

X} — X2 =  0.5. Onto this a random i.i.d. signal with uniform distribution and mean zero 

was added. Then the data was embedded in a delay space (delay =  1). Figure 3.5.1 

shows plots of the embedded data both with and without the noise added. Throughout the 

comparison the equations of the mapping function are assumed to be known (the 

alternative case is considered in detail in the next chapter) and are used to calculate the 

values o f the derivatives for the algorithms. Each algorithm (manifold decomposition, 

gradient descent and Levenberg-Marquardt) is iterated 10 times and the resulting filtered 

time series are compared. Two measures of performance are taken. The first, dynamic 

error, defined as z, where z,- is the filtered time series, measures how

deterministic the resulting trajectory is. The second, measurement error, defined as the 

distance between the original deterministic time series, and the filtered time series, z,, 

measures how well the noise reduction algorithm has located the original data.

The manifold decomposition uses approximate manifolds, as described in section 3.2.2, 

with the initial stable and unstable directions set to [1 ,0]. Figure 3.5.2 shows plots of 

both measurement error and dynamic error, comparing the filtered time series to the 

unfiltered (noisy) data. It is clear from the figure that the filtered orbit is deterministic 

to within machine precision almost everywhere although the final orbit located is not 

precisely the initial deterministic orbit. If the system had been uniformly hyperbolic we 

would have only expected discrepancies to exist between the two "shadowing" 

deterministic orbits at the ends of the time series. Here we see that the presence of 

homoclinic tangencies means that when a shadowing orbit exists then it is not unique (the 

new orbit can be considered to be a shadowing orbit since the measurement error does 

not go above the maximum measurement error for the noisy orbit). Although the resulting
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Figure 3.5.1 Plots of the delay embeddings of the 
deterministic signal (top) from the Henon map and 
then the signal after 10% noise was added (bottom)
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Figure 3.5.2 A comparison between the unfîltered signal 
(dotted) and the same signal after 10 iterates of the manifold 
decomposition noise reduction algorithm (continuous), (a) is a 
plot of dynamic error, whereas (b) is a plot of the distance 
from the original clean time series.
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orbit is not everywhere close to the original time series, when the data is in regions of 

hyperbolicity the measurement error reduces down to machine precision. This is far 

superior to standard noise reduction method in signal processing that are based upon 

statistical estimates.

Figure 3.5.3 shows similar plots for the Levenberg-Marquardt algorithm. Although it is 

possible to implement an adaptive process to select ô at each iterate this was not used 

here. If only a few iterates of the algorithm are being undertaken the additional overheads 

of an adaptive process becomes costly (details of methods for selecting Ô are described 

in Press et al [1992] and Fletcher [1980]). Here we set 6 to be a constant, d =  0.00001, 

which has the effect of providing a guaranteed upper bound for the condition number of 

M  in equation 3.4.16:

cond(M) <  10̂  (3.5.1)

and therefore this algorithm is likely to be more stable than the manifold decomposition. 

If we compare the results of this algorithm to those produced using manifold 

decomposition we can draw two basic conclusions. First, the regions where the dynamic 

error has not been reduced to machine precision are larger (although the difference 

between 10^ and 10'̂  ̂ is small). Thus the algorithm is slightly (but trivially) slower than 

manifold decomposition. Had we iterated the process further the dynamic error would 

probably have been reduced to the same level. Secondly, although the performance on 

the dynamic error is slightly worse, the measurement error is virtually indistinguishable.

In fact we can compare the two filtered time series by looking at the their absolute 

difference. This is plotted in figure 3.5.4. Although the difference (measurement error) 

between the true signal and a filtered one had many large errors due to homoclinic 

tangencies this is not evident in the difference between the two filtered signals does not 

have large errors due to tangencies. The only large differences between the two time 

series 2u*e at the ends and where the Levenberg-Marquardt algorithm had not converged 

to machine precision. This indicates that the filtered signal is practically unique ignoring 

the end effects. Thus the Levenberg-Marquardt method can be seen to be just as effective 

as manifold decomposition in ideal circumstances such as these and yet it is far easier to 

implement. Furthermore it is intrinsically more stable and will probably be significantly
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Figure 3.5.3 A comparison between the unfîltered signal (dotted) 
and the same signal after 10 iterates of the Levenberg-Marquardt 
noise reduction algorithm (continuous), (a) is a plot of dynamic 
error, whereas (b) is a plot of the distance from the original clean 
time series.

-82-



s

i

eoo soo

Time Step

Figure 3.5.4: A plot of the absolute difference between 
the filtered time series using Levenberg-Marquardt and 
the time series using manifold decomposition.
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superior for practical applications.

Finally we compare the gradient descent method to the other two algorithms. The step 

size chosen for the descent was 0.1. This was in no way optimised and it was selected 

as a reasonable value that was not unstable. The plots are shown in Figure 3.5.5. It is 

clear that the improvements in both deterministic error and in measurement error are very 

much less than were achieved with either o f manifold decomposition or the Levenberg- 

Marquardt approaches. To a certain extent it could be argued that this is due to the speed 

of the gradient descent algorithm since all three algorithms were only iterated 10 times 

even though the gradient descent method converges at a far slower rate. However further 

iterations do not make significant gains over this one. This is because the algorithm tends 

to halt when the trajectory becomes virtually non-hyperbolic. Grassberger et al [1992] 

has observed that a non-predictive version of the gradient descent type method did not 

suffer from this halting problem. However in their test the algorithm had to be iterated 

500 times before it could achieve a similar level of reduction in dynamic error to that 

shown in figures 3.5.2 and 3.5.3.

However before we write off this method we should realise that the example given here 

is very idealised since we have a good embedding and know the dynamics perfectly. In 

the following chapters we will consider more realistic scenarios where the dynamics is 

unknown and where a less "natural" delay space has to be chosen. It will then become 

apparent that the gradient descent algorithm is superior in its stability and similarly, to 

retain stability in the Levenberg-Marquardt algorithm, the value of b has to be increased.
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and the same signal after 10 iterates of the gradient descent noise 
reduction algorithm (continuous), (a) is a plot of dynamic error, 
whereas (b) is a plot of the distance from the original clean time
series.
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4. Function Approximation for Noise Reduction

In the previous chapter the problem of noise reduction was formulated as either a root 

finding or minimisation task. However such an approach can only really be justified when 

the underlying dynamical system is known a priori. In the case when the dynamics is 

unknown a method for approximating the mapping function (and its derivatives) is 

necessary but this makes the interpretation of noise reduction as a simple minimisation 

task less well defined since it is not immediately clear what the relationship between the 

estimation process and the noise reduction process is. Most of the algorithms that have 

tackled the problem of noise reduction for data from an unknown dynamical system 

(Farmer and Sidorowich [1991], Cawley and Hsu [1992], Schreiber and Grassberger 

[1991] and Sauer [1991]) have all used the ad hoc approach of alternating between the 

estimation of the dynamics and applying one iterate o f their particular noise reduction 

scheme. This creates a variety of questions: how much noise reduction should be done 

between each new approximation of the dynamics; does re-fitting the dynamics improve 

the noise reduction at all; and is there not a more systematic approach altogether? In this 

chapter we investigate these problems and the relationship between estimating the 

dynamics and cleaning the noise towards the determinism so defined. Finally we aim to 

go some way to producing a more systematic approach such that the mapping function 

approximation can be absorbed more naturally into an extended minimisation scheme.

In section 4.1 we discuss the implications of using an inaccurate mapping function for 

noise reduction. This explains to some extent why the results obtained in the last chapter 

are difficult to reproduce when the dynamics are estimated. However, if  the dynamics 

estimation is the bottle-neck of the process, it also opens up the possibility of further 

improvement by using a more appropriate method for incorporating the function estimate 

into the noise reduction algorithm that takes account of the relation between the two 

steps.

This relationship is set out in section 4.2, allowing us to conjecture what the effect of 

alternating the two steps would be. We then use the Levenberg-Marquardt algorithm to 

numerically investigate these ideas. The results agree with the general opinion that the
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Newton based methods, in general cannot be applied to experimental data due to the 

stability problems. However we also find that even for the two step approach it is 

advantageous to use the Levenberg-Marquardt method to speed the algorithm up.

In section 4.2.2, we use the relationship between the two steps to propose a Levenberg- 

Marquardt algorithm that is extended to optimise the function approximation. This 

method is shown to work well even when Ô is reasonably small (i.e. when the algorithm 

is utilising the Newton method to a large degree). This also reverses the idea that 

gradient descent cannot be improved upon when the dynamics are unknown.

In section 4.3 we reconsider the ideas of explicit shadowing since the arguments against 

it for the trajectory adjustment do not necessarily carry over to adjustments in the 

function parameters. An algorithm based on the method of Hammel is then outlined and 

this algorithm can be shown to provide a maximum likelihood estimate for the mapping 

function in the context of measurement noise. Unfortunately Hammel’s method is still a 

full Newton method and this optimisation suffers the resulting instabilities. We go on to 

explain why it is not practical to implement a restricted step method and therefore we 

argue that it is preferable to use the implicit algorithm proposed in section 4.2.3.

Finally we discuss the different interpretations that can be put on the mapping estimates 

derived above, in comparison with the standard least squared estimate described in 

chapter 2. We argue that the former estimate will provide a superior model if the system 

from which the data came is to be viewed as purely deterministic (this is important when 

wishing to investigate the geometric properties of an attractor), whereas the least squared 

estimate will be superior for prediction.

4.1 Shadowing Nearby Maps

Any acceptable method of function approximation is required to be flexible enough to be 

able to provide good approximation of the dynamics being investigated while retaining 

enough "rigidity" to not over fit the data and merely interpolate between the points in the
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data set. In practice the function approximation will not be able to exactly model the 

dynamics even in the absence of any noise since a finite data set requires a finite 

parameter set for the mapping function. This, in turn, means that it will, in general, not 

be possible to exactly model the dynamics. Thus there will always be a level of 

approximation error, as well as any measurement noise that might be present, when 

analyzing experimental data.

It is important to consider what effect this will have on the noise reduction process. In 

fact we have already touched on this problem in the last chapter when discussing Bowen’s 

Shadowing Lemma. If we define a map f ( x j  as being 5-close to the real system, 

g (x j  =  by:

where || . || is some norm. It is immediately obvious from the above definition that a 

trajectory from the real system is a 5-pseudo orbit, as defined in the Shadowing Lemma 

of Bowen [1970], of the m a p p i n g T h u s ,  if we assume the trajectory only lies in a 

hyperbolic part of the map, there exists a b such that there is a shadowing orbit in all 

maps that are 5-close to the real system and remain hyperbolic along the trajectory. 

However, hitherto we have assumed that the noise that we are reducing is measurement 

noise, i.e. there always exists a shadowing orbit even if the system is non-hyperbolic, 

whereas this approximation noise will act as true dynamic noise since we will not be 

working with the true system that produced the data. Although this will have little effect 

when the system (or at least the pseudo-trajectory) is hyperbolic it can lead to big 

problems when homoclinic tangencies are present. In the worked example at the end of 

chapter 3 a trajectory from the Henon map was cleaned such that the remaining noise was 

down at the level of machine precision. This indicates that a shadowing orbit for this 

trajectory was accurately found, although not exactly the original orbit (there is a non­

uniqueness of shadowing orbits, when they exist, for non-hyperbolic systems). If we take 

a deterministic orbit from the Henon map with a =  1.4  and b =  0.3 and try to clean it 

towards a deterministic orbit for the Henon map with a =  1.39 and b =  0.3  using the 

Levenberg-Marquardt algorithm (5 =  0.00001) the process fails to reduce the dynamic 

noise to zero. Figure 4.1.1 shows the result of applying the Levenberg-Marquardt
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Figure 4.1.1: A plot of the dynamic error for a 1000 point time 
series from the Henon map b=0.3) measured with
respect to different parameters: a ’=L39, b=0.3. The dotted line 
shows the original dynamic error. The continuous line shows 
the dynamic error after 10 iterates of the Levenberg-Marquardt 
noise reduction algorithm with ô -  0.00001.
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algorithm 10 times to a 1000 point orbit. In section 3.5 the dynamic error was reduced 

to near machine precision whereas here there are points where the dynamic error has 

actually increased. Thus, for non-hyperbolic systems, the limitations of noise reduction 

associated with poor function approximation will not just be of the order o f the 

approximation errors, as they would be with hyperbolicity. This means that function 

approximation plays a very important role in achieving good noise reduction and it may 

well be the bottle-neck of the process as a whole.

However this does not necessarily mean that if we do not know the dynamics exactly we 

must reconcile ourselves to being able to, at best, obtain moderate performance from our 

algorithms. This would only be true if there where no nearby mapping functions that 

contained shadowing trajectories of the orbit of interest. In fact we can hope that there 

will be plenty. The work by Nusse and Yorke [1988] on the shadowing of pseudo-orbits 

from a one-parameter family of one-dimensional maps by true orbits from nearby systems 

lends weight to this idea. Furthermore we are only interested in achieving this shadowing 

for a finite length trajectory. If there exist nearby functions that satisfy this weaker 

shadowing condition it is clear that some nearby maps will be far more effective than 

others when applying noise reduction. It would therefore be wise to try to optimise this 

in the noise reduction algorithm. Although may this appear to be a daunting task, in the 

next two sections, we will discuss some ideas that go some way towards achieving this 

aim.

4.2 Estimating the Dynamics

It is not immediately clear what the relationship between function approximation and the 

noise reduction process is. However if we consider the problem of noise reduction in 

terms of the minimisation of the cost function H  as in chapter 3 this is the same cost 

function that is minimised in an Ordinary Least Squared function approximation, as 

described in chapter 2. The only difference between the two is that in each case the 

minimisation is with respect to different parameters.
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Thus it is possible to consider the two processes simultaneously by using the extended 

cost function H(x,p). That is: a function of both the trajectory and the parameter family, 

p, o f the function approximation (although the sets of local approximations do not have 

explicit independent families of parameters defining them it is fair to assume their 

existence). This is used in section 4.2.1 to investigate how the choice of the mapping 

function is chosen in the two step method. In section 4.2.2 we go on to propose an 

optimised algorithm.

4.2.1 Alternating Noise Reduction and Dynamics Estimation

When the problem is posed in terms of the cost function H(x,p), alternating between 

function estimation and noise reduction can be seen as minimising H  by means of 

zigzagging down the cost function. This idea is illustrated graphically in Figure 4.2.1. 

However this still ignores the problem that minimising the error by making adjustments 

to the trajectory only implicitly tackles the shadowing problem. The cost function is still 

degenerate due to the existence of a d-\-dp dimensional minimum set, where dp is the 

dimension of the parameter vector p, and thus how well the cleaned orbit shadows the 

original data depends on the resulting point in the minimum set that is reached. This will 

now be a function of how the final mapping function is chosen.

Since the shadowing problem requires that the adjustments to the trajectory are kept small 

the bias between reducing the error by trajectory adjustment or parameter adjustment 

should overwhelming tend towards optimising the mapping function estimate. This 

method can be justified if a gradient descent algorithm is used, since, in this case, the 

process takes small steps down the extended cost function, constrained to the best 

estimate for the mapping function. Although, theoretically, it is better to take small steps 

followed by repeatedly refitting the mapping function, in practice, the gradient descent 

method suffers on speed and the best approach will be somewhere in between a Newton 

type method and the gradient descent approach.

To evaluate what a good compromise might be the Levenberg-Marquardt is an ideal
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Figure 4.2.1 A graphical representation of the two step approach to noise 
reduction, where the adjustments to p  and the adjustments to x are made 
independently. The resulting minimisation scheme involves zigzagging 
down the cost function H(x,p).
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algorithm since it allows us to consider the performance on a whole spectrum of methods 

from almost Newton to almost gradient descent by varying the Levenberg-Marquardt 

parameter 5. The data for this comparison was from the Henon map and was the same 

as that used at the end of chapter 3. The function approximation used was a set of 

Gaussian radial basis functions placed at the first 10 points in the embedded data set, 

once the data had been rescaled to span [-0.5,0.5]. The rescaling parameter in the 

Gaussian was set to 0.1. This function approximation was chosen since it produced a 

good fit, although no attempt was made to formally optimise it and the same function 

approximation was used in each case. Finally the embedding dimension used was 2, as 

before.

The mapping function was estimated using an ordinary least squared estimate and was 

followed by a single step of the Levenberg-Marquardt algorithm detailed in section 3.4.3. 

Both these stages were then repeated 10 times, after which the distance between the 

cleaned trajectory and the original deterministic orbit was measured, where is defined 

as:

-  y f

where x  is the filtered trajectory and y  is the original deterministic orbit. The sum of the 

dynamic error was also measured:

Ê
This was done for a variety of values of fixed ô until, as ô tended to zero the algorithm 

became unstable. The results of these tests are summarised in figure 4.2.2. It is clear 

from these graphs that, in practise, some benefits can be gained by using the additional 

information available in the quadratic form. However the algorithm loses stability as 

6 -^ 0  and a compromise is necessary to maximise the noise reduction. Without the 

Levenberg-Marquardt algorithm this compromise would not be possible since, even when 

the dynamics were known, the gradient descent method became unstable well before the 

step size got close to 1.0. Similarly it can been seen from the figure that a Newton type 

approach would also be unstable.
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Figure 4.2.2: This picture shows the dynamic error (top) and 
measurement error (bottom) as functions of ô for data from 
the Henon map after applying the algorithms in sections 4.2.1 
(dashed) and 4.2.2 (continuous). The dotted line in the both 
pictures is the level of the error in the unfîltered data.
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Obviously this test is not conclusive since the results would probably be sensitive to the 

levels of noise present in the data as well as the origin of the dynamical system from 

which the data came. However it will serve as a good benchmark against which the 

algorithm in the next section can be compared. Furthermore these results are significant 

if  the type of function approximation is local (i.e. Farmer and Sidorowich [1987]). This 

is because the methods described below require an explicit parameterisation of the 

approximation function set. Local models do not possess such a parameterisation and 

therefore it may not be possible to improve upon the two step method discussed here. In 

this case it would be sensible to either apply the Levenberg-Marquardt algorithm with a 

modest value of delta, or to use the gradient descent method.

4.2.2 An Extended Levenberg-Marquardt Algorithm

If we have a set of mapping functions identified by a vector p  in some parameter space 

and a starting point in this space of maps p* then the first order Taylor expansion of the 

extended error function can be written in terms of perturbations, Ap, from p* as well as 

the trajectory adjustments, A%:

e = e* -  DAjc + PAp (4,2.3)

where D  is the same as the definition in equation 3.2.5 and P  is the matrix of partial 

derivatives of the mapping function around p*, whose elements are df(Xi,p*)/dpj (if the 

mapping is a linear function with respect to p then P  is the design matrix discussed in 

chapter 2). It is clear from this equation that the inclusion of the freedom to alter the 

mapping parameter p will introduce additional singularities to the problem. Later we 

will show that these can be removed by providing extra minimisation costs to impose 

explicit shadowing, however initially the shadowing problem will be treated implicitly 

and the singularities will be removed by a Levenberg-Marquardt parameter in a similar 

way to section 3.4.3. For the moment let us ignore the singularities and construct the 

least squares cost function. This results in having to solve the following equation:
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D^D -D^P

-P D p V

Ax

Ap

(4.2.4)

We can attempt to solve this by splitting up the problem into two simultaneous equations, 

the first o f which is:

A% = (D^D)-^ D^(e-PAp) 

which can then be substituted into the second equation to solve for Ap: 

P^PAp -  P^D(D^Dy^D^(PAp -  e) = P^e

(4.2.5)

(4.2.6)

As we have already stated these equations are rank deficient and in the non-singular 

directions of D  the above equation is trivial. Here, as before, we can solve this problem 

by adding an adjustment to the matrix on the left hand side in equation 4.2.4 to make it 

full rank and, hence, invertible.

Heuristically, and in contrast to the previous Levenberg-Marquardt adjustment, we do not 

wish to restrict all the free parameters since the shadowing problem only requires that the 

trajectory adjustment. Ax, is kept small and inflicts no constraints on the size of Ap 

(obviously we still need to maintain the validity o f the truncation of the Taylor 

expansion). Therefore we only add the Levenberg-Marquardt parameter to the D^D term 

by replacing it by D^D-\-vL Then equations 4.2.5 and 4.2 .6  can be replaced by:

(4.2.7)Ax = (D^D + viy^ D ^(e-PAp)

and

P^U -  D(D^D  + yf)-'D'^{PAp -  e) = P^e (4.2.8)

which is solvable for v >  0. This is an extended version o f the noise reduction algorithm
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presented in section 3.4.3 that optimises both the trajectory and the mapping function.

More rigorously, we can show that this approach has a theoretical basis, in that, it 

provides the solution to the following constrained optimisation problem:

minimise: q(Ax,Ap) =  (e-DAx-^PAp/(e-DAx+PAp) 

w.r.t. {Ax,Ap} 

subject to: Ax^Ax =

where h defines the step size that Ax is restricted to. We can now prove that this is 

equivalent to the heuristic method described above. First we need to introduce a 

Lagrangian multiplier v then we can write the Lagrangian function as:

X{Ax,Ap,v) = (e -  DAx + PA p)\e -  DAx + PAp) . . (4.2.9)
+ v(Ax^Ax -  h )̂

A solution to the constrained optimisation can now be found by solving the =  0  (see 

Fletcher [1981]). This can be solved by considering the following equations:

= -2D^(e -  DAx + PAp) + 2vAx = 0 (4.2.10)

= 2P^(e -  DAx + PAp) = 0 (4.2.11)

= Ax^Ax -  = 0 (4.2.12)

The first two equations, above, can be rearranged so that they are equivalent to 

equations 4.2.7 and 4.2.8. This merely leaves the third equation to be solved. However 

the freedom to choose the value of h can be substituted for the freedom to choose p since, 

for every positive value of y, there will exist a solution for Ax and Ap and consequently 

a value of h that solves equation 4.2.12. Thus any choice of p can be regarded as an 

implicit choice of h.

In a similar way to the solution of the usual Levenberg-Marquardt, this algorithm has 

some useful properties. As p -* 0, this restricted step method tends to the solution for the
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redundant problem (equation 4.2.4) that minimises the norm, || A% | | . Furthermore, as 

V -* oo, the solution tends to a gradient descent method constrained to the set of minimal 

least squared estimates for p . This we have already stated is the two step method 

described in the last section. We can see this by considering equation 4.2.8, remembering 

that, as y 0 0 , (D^D+vl)'^ ~  0(1 /b). This then becomes:

P^Pàp = P ê + 0(1/6) (4.2.13)

which is equivalent to the least squared estimate for Ap and then Ax can be solved 

substituting this into equation 4.2.7. Here the term, (e+PAp), is the error for the new 

mapping function, defined by p+Ap.

The effectiveness of this method when the dynamics are unknown is demonstrated by 

repeating the test described in the last section. Again and were evaluated for a 

range of fixed values of b and these are given in Figure 4.2.2 for comparison with the 

previous results. Initially, as predicted above, the two methods appear synonymous when 

b is large. Then, as b is reduced below 0.1, the extended Levenberg-Marquardt method 

performs better than the ad hoc approach of treating the function estimation and the noise 

reduction separately. Furthermore this extended method can be seen to be stable for a far 

broader range of b than could be achieved with the two step method.

Although neither method reduces the measurement error below about 0.3 this is 

misleading and should not be judged as poor performance from the noise reduction 

algorithms. We can see this by considering the distance between the cleaned orbit found 

for b =  0 .1 and the unfîltered data: E^, =  5 .148, in comparison with the distance from 

the initial deterministic orbit and the unfîltered data: E^, =  5.257. It is clear that the 

algorithm has actually found a "deterministic" orbit (although this orbit is not strictly 

deterministic we argue that we can ignore this since the dynamic error is only ~  10^) that 

is closer to the noisy data than the initial orbit. This is therefore a statistical limitation 

of noise reduction since without a priori knowledge the unfiltered orbit would appear to 

be more likely to have come from the filtered data, as opposed to the original 

deterministic orbit. Because the limitation of the noise reduction is statistical in nature we 

can expect the performance to increase with the length of the data set.
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However to fully compare these two approaches it is necessary to look at the speed of 

each algorithm. The extended Levenberg-Marquardt requires more computation and since 

the function approximation tends to dominate the computational expense with the 

manipulation of P  we can see from equation 4.2.2 that the evaluation of will be 

quicker than the evaluation of P^D(D^D-{-pI)D^P. However, in practice both algorithms 

have to perform other calculations where there is no speed difference (i.e. the calculation 

of the derivatives of the mapping function) and thus we do not expect the method 

proposed in this section to be substantially slower.

A crude comparison between the speeds of the two methods can be obtained from the 

user times (on the same RS6000 workstation) required to iterate each method 10 times. 

The two step method required 13.7 seconds of user time while the extended method 

required 16.98 seconds. Thus the overheads are not prohibitively increased when using 

this method.

4.3 Explicit Shadowing

The above approaches can be considered to be extensions of the implicit methods 

described in the last chapter. Here we look at optimising the mapping function parameters 

explicitly by minimising the distance from the original noisy data. This is analogous to 

the method of Farmer and Sidorowich [1991] described in section 3.3, although here we 

will still locate trajectory adjustments implicitly (the arguments for doing this are the 

same as before). A further difference between the approach taken here and that done by 

Farmer and Sidorowich is that they introduced Lagrangian multipliers to solve the 

constrained optimisation problem and then looked for a stationary point in the resulting 

Lagrangian function. This was done by assuming that the noise level was low and that 

the dynamical system could be approximated by a first order Taylor expansion. This, in 

turn, linearises the Lagrangian function and the approximate problem can be solved 

directly. Thus, using the Newton-Raphson algorithm the process can be iterated to find 

the stationary point.
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In contrast, instead of formulating the Lagrangian and then linearising, we linearise the 

equations and then solve the resulting quadratic programming problem. That is: the 

optimisation problem has a quadratic cost function and a linear set of constraints:

minimise: q(x) =  1/2 j^Gx +  g^x 

w.r.t. X

subject to: A^x =  b

where x  €  If”, G  and define the quadratic cost function. The m linear constraints are 

then defined by an mXn  matrix, and the vector b. This we solve using a general 

elimination method. This involves eliminating the number of variables by substituting the 

constraints into the cost function. To achieve this the variable x must be partitioned into 

two parts, {Xi,X2}  such that we have:

G|,

^ 2 1  ^ 2 2
[̂ 1 ^2]

&2
[X, (4.3.1)

where Xj E  and X2 E U"'". We partition the constraints in a similar way and, 

assuming that A ĵ is invertible, we can write:

= Ai^ [b - (4.3.2)

Substituting this into q(Xj,X2) results in an unconstrained quadratic optimisation problem 

just in terms of This can then be solved directly. For further details about the general 

elimination method see Fletcher [1981].

In fact this method is solving the same linear problem that is introduced by the Newton- 

Raphson step in the Lagrangian function. Indeed, if  this method had been employed by 

Farmer and Sidorowich it would have been immediately clear that their optimisation only 

improved the end effects. This can be seen since Hammel’s method provides a solution 

to the linearised problem. Thus all that remains is to optimise the end constraints, xfj 

and x“„.

The method therefore consists of finding a solution to the zero finding problem (here we
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will use manifold decomposition) and then optimising that solution restricted to the set 

of possible solutions (the feasible region). Unfortunately, because Newton methods are 

not very stable we were unable to obtain reasonable results for a general function estimate 

such as radial basis functions. However, at the end of the next section, we demonstrate 

the idea by optimising the parameters a and b for data in the Henon map. Here it is clear 

that the estimated values using this method are superior to repeated least squared 

estimates for the parameters.

Although, in this form, this method cannot be practically applied with a general function 

estimate, it does provide a method that is theoretically an optimal solution in the sense 

of being a maximum likelihood estimate. We can also discuss the relationship between the 

implicit method described in section 4.2.2 and this method. Finally the problems of trying 

to stabilise this algorithm with a restricted step method are discussed.

4.3.1 An Extended Manifold Decomposition Algorithm

In this section we develop an explicit shadowing algorithm for the manifold 

decomposition method of Hammel. This work was originally proposed in Davies [1992]. 

As in the previous section, this algorithm is based around approximating the dynamics 

with a global parametric model, such as a combination of radial basis functions. This 

allows us to explicitly construct a dp dimensional space of possible maps with which to 

model the dynamics. The extended zero-finding problem can be written as:

/(x.+Ax. , p+A p) -  x._i -  Ax._i = 0 (4.3.3)

and we wish to find the closest orbit to the original data that satisfies the above 

constraints. To apply the general elimination method we need to initially linearise the 

constraints:

£>Ajc -  P ^ p  -  e  = 0  (4.3.4)

Since we are linearising we should aim to select our initial guess close to where we 

expect the optimal solution to be. The initial estimate we use for the dynamics is made
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using a least squared fit to the mapping function for the reconstructed space (i.e. the cost 

function H(p)). Intuitively, minimising the approximation errors gives a good estimate 

for the true dynamics, although this is not a maximum likelihood method with respect to 

measurement errors. A more theoretical argument for using this as the initial guess for 

p  is that the shadowing lemma relates the size o f the approximation errors to the 

measurement errors and thus minimising the former provides a good estimate o f p  such 

that the linearisation assumptions in the algorithm are valid when minimising the latter.

To eliminate Ax from the minimisation problem we have to invert the matrix D. This we 

can do by using manifold decomposition (c.f. section 3.2.1). Therefore we split the 

problem into the stable and unstable subproblems:

D'Ax' -  e" -  P"Ap = 0 (4.3.5)

and

D “Ajc“ -  e“ -  P “Ap = 0 (4.3.6)

Since the columns of P  define the error e as a linear function of Ap we can decompose 

these into stable and unstable directions in the same way that we decomposed e into P and 

e“. We can now use any solution to the above to approximate a point in the solution set. 

A simple way to obtain a solution is to fix Ap and not to consider the extended parameter 

space at all. Therefore we select the solution. Ax*, as the solution to the zero-finding 

problem given in section 3.2.1 (i.e. the zero of the above equations with Ap =  0). We 

can now rewrite the problem in terms of this estimate:

Ax = Ax* -  D'^PAp (4.3.7)

where D'^P is defined as the direct sum:

D 'P  := (DO‘‘P  ̂ @ {Dy^P'* (4.3.8)

where (iy)'^P^ and (ITy^P'* can be solved using the algorithms proposed in equations 

3.2.6 and 3.2.7 by replacing the error terms ^  and with the columns of and P “ 

respectively. Equation 4.3.7 hence provides a local dj, dimensional parameterisation of 

the zero solution set. We now wish to choose the solution that minimises the distance
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from the original data, z:

(4.3.9)mm E ( z ,  - ^ i1-1

where x  is the present estimate for the zero solution. Since the problem has already been 

linearised we can make a new estimate for Ap by calculating the least squared solution 

directly:

Ap = ( ( p - ' P f  (D-'P) )■' ( p - ' F )  (z -  X -  A x ’ ) (4.3.10)

This is not that costly to compute since the bracketed expression that has to be inverted 

is 2i dp X dp matrix. Now the new estimate for Ax can be obtained by substituting the 

solution for Ap back into equation 4.3.7.

If the original data is assumed to be a deterministic orbit plus Gaussian noise then the 

maximum likelihood estimate for the mapping function is the one that is associated with 

the smallest (in a mean squared sense) measurement error. This is precisely what this 

algorithm sets out to do and, in this sense is optimal.

Although this method can be described as optimal it is not really that different from the 

method proposed in section 4.2.2 when v -*> 0. This can be seen if  we assume the 

linearisation of the problem to be precise. Then the problem can be solved directly by 

a single iterate. In such a situation both algorithms minimise the distance from the 

original data, ignoring the end effects. In fact the extended Levenberg-Marquardt method 

even minimises the distance from the original orbit with respect to the end effects.

One major difference between the two methods is in their stability. This explicit 

shadowing approach is still a full Newton based algorithm. Although the additional 

optimisation does tend to improve its stability to a certain extent (see Davies [1992]) we 

could not make the method stable for general function approximation (restricting the step 

for this method is discussed in section 4.3.2).

However we found that the algorithm was stable when used to estimate the function
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parameters a and 6, of the Henon map when the basic form of the equations are known. 

We include a comparison of this method to the standard two step method for 

completeness. We applied it to the same 1000 point time series that was used in previous 

comparisons with a =  1.4  and b — 0.3 and the data was again embedded in a two 

dimensional delay space. Then the initial estimates for a and b are made using an 

ordinary least squared fit.

In the case of the two step algorithm manifold decomposition is applied using the 

estimated map. This is then followed by re-estimating the parameters by an ordinary least 

squared fit. The process was repeated ten times. In the explicit method proposed in this 

section the parameter estimates were made within the noise reduction procedure. This 

process was similarly repeated ten times. Figure 4.3.1 shows the estimates of the 

parameters a and b over the ten iterations for the method proposed here. The estimates 

for the two step method are not included in the plot since after 4 iterates the 2 step 

method had become completely unstable. This clearly demonstrates that, contrary to 

previous conjectures (Farmer and Sidorowich [1991]), refitting the dynamics after a 

Newton-based noise reduction step can actually deteriorate the estimate for the dynamics. 

Instead of improving the mapping, the errors in the vicinity of tangencies can distort the 

fit such that a new estimate is actually worse than the original.

In contrast, however, the explicit shadowing approach results in a significant 

improvement in the function estimates over the initial estimate. Furthermore figure 4.3.2. 

shows that the algorithm managed to reduce the noise level down to almost 10'* and the 

measurement error was reduced to approximately 10"̂ .

4.3.2 Explicit Shadowing and the Restricted Step Method

At first sight it might appear that the most natural improvement upon the last section 

would be to introduce into the problem a Levenberg-Marquardt parameter to enforce 

stability onto the algorithm. Unfortunately this is not that easy and due to the 

computational cost it essentially makes the algorithm impractical to implement.
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Figure 4.3.1: A comparison between the ordinary least squared 
estimate (dotted) and the optimised estimate (continuous) for the 
parameters a and b in the Henon map.
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The main problem with attempting to apply a restricted step method to a constrained 

optimisation task is that the standard approaches to solving such problems do not 

transform it into a simple minimisation scheme. Instead the solution is a stationary point 

of the associated Lagrangian function. Thus the solution could be a saddle instead of a 

minimum. In this case, the steepest descent direction will not step towards the solution. 

Indeed Levenberg-Marquardt adjustments are often used, in the vicinity of saddles, 

specifically to stop Newton-based algorithms from finding the saddle instead of the 

required minimum (see Fletcher [1980]).

We can still consider transforming the saddle into a minimum. This is easily done by 

decomposing the Hessian matrix into its corresponding eigenvectors and eigenvalues. 

Then reversing the negative eigenvalues (the eigenvalues are necessarily real since the 

Hessian matrix is the square of matrix with real elements) will result in a positive semi- 

definite matrix. This we can guarantee has a minimum and it is then a simple task to 

incorporate a restricted step into the solution. However, eigen-decomposition, like SVD, 

cannot take advantage of the banded structure of the matrix. Therefore the speed of the 

algorithm would require in the order of operations. In practice this is too costly to 

implement.

It may be possible to develop some other form of restricted step method, or at least one 

that forces the problem to be well conditioned. However we have not pursued this 

direction here. Instead we favoured using the implicit algorithm proposed in 

section 4.2.3. Although this does not explicitly minimise the distance between the filtered 

trajectory and the original data, it does minimise the adjustment at each linearised step. 

It also is easy to implement and can be adjusted from a gradient descent approach to a 

Newton approach with ease.
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4.4 Improved Deterministic Modelling

If we are to incorporate the mapping function during the noise reduction process whether 

by the two step method or one of the other methods proposed here, we should consider 

what the difference is between the estimate by an ordinary least squared fit and, for 

example, the optimal estimate proposed in section 4.3. The difference between them is 

in the assumptions that are implicit in the methods. An ordinary least squared estimate 

assumes that the embedded data is exact and that any inaccuracies are due to dynamic 

error. This type of estimate is best suited to one-step prediction.

In contrast, the optimal method described in section 4.3 assumes that the dynamic error 

is zero and that any errors present are due to measurement noise. This estimate provides 

the best model for a system that possesses an orbit close to the original data. Therefore, 

if we believe that the behaviour of the series can be solely attributed to a deterministic 

dynamical system the best model for the dynamics is to assume that the inaccuracies are 

measurement noise. For example if we wished to investigate the geometric properties of 

the attractor from which the data came, we need our model to be able to exhibit all the 

long term behaviour that the time series does. This is not guaranteed if an ordinary least 

squared estimate is used.

In reality there will be both measurement noise and dynamic noise and the statistical 

problem becomes less well defined. However if we wish to ignore the dynamic noise to 

allow us to study a deterministic system (this assumes some form of shadowing) we still 

require a mapping function that models the system’s long term behaviour. This is 

precisely what we achieve if we can reduce the dynamic noise to zero and, heuristically, 

we argue that a mapping function estimate that improves the ability to reduce the dynamic 

noise by trajectory adjustment is more likely to model the long term behaviour observed 

in the time series. This argument is necessary since we will never actually be able to 

reduce the dynamic noise to zero. An application of this idea to some experimental laser 

data is presented in chapter 6.
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5. Noise Reduction: Numerical Properties

This chapter discusses some of the properties that we can expect from the noise reduction 

algorithms described previously. We will concentrate on the Levenberg-Marquardt 

procedures (using the algorithm from section 3.4.4 when the dynamics are known and 

the algorithm from section 4.2.2 otherwise) since this encompasses most o f the basic 

characteristics of the other methods.

In section 5.1 we consider the end effects on the measurement error resulting from 

filtering the data when the dynamics are known. These effects also govern the error 

propagation in the vicinity of homoclinic tangencies. From the linearised equations in 

chapter 3 we predict the rate of growth or decay of the errors at the ends as a function 

of the Lyapunov exponents of the underlying dynamical system. We then go on to 

compare the actual scaling in a numerical example to our prediction and we show that 

they are in general agreement. Finally we note that, although these effects are prominent 

when the dynamics are known, if we are approximating the dynamics then the associated 

errors o f the approximation will tend to swamp the predicted scaling.

Section 5.2 contains a numerical investigation of the rate at which the noise reduction 

algorithm converges towards a deterministic orbit. We would expect the algorithm to 

converge at a linear rate for large 8 and at a quadratic rate for small ô unless the 

presence of tangencies reduces the performance. This is investigated for a variety of 

values of ô and the rate of convergence is seen to agree with the theory for small noise 

levels. However at higher noise levels the ability to attain quadratic convergence is 

reduced.

Finally, in section 5.3, we look at the performance of the noise reduction algorithm as 

a function of the noise level. Although it is not surprising that the performance decreases 

as the noise level is increased we find that the same occurs at very small noise levels. 

This is due to the approximation errors inherent in the modelling procedure which swamp 

the added noise for small noise levels.
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5.1 End Effects and Error Propagation

The noise reduction algorithms described in chapter 3 rely on using information from 

upstream and downstream of a given point to reposition that point. Thus at the ends of 

the time series where there is less data to use we would expect the noise reduction 

algorithm’s performance to be worse. We can see this by considering the linearised 

problem set out in section 3.2 and its solution by manifold decomposition (although the 

resulting scaling laws apply to any Newton based solution). This reduces the set of 

possible solutions to initial guesses for and e“„. Then the error between the filtered 

time series and the original clean time series (assuming the linearisation assumption to 

be accurate) will depend on the difference between the actual values for and e“„ and 

the assumed values (usually zero). The effects of these differences will then propagate 

up or down the time series. As we have already discussed these errors should decrease 

when propagated along the time series as long as the manifold decomposition used is 

‘typical’. In fact, if the linearisation is accurate we can write an expression for the 

propagated error:

e\ ^  Q

(5.1.1)

r i // •

similarly if we consider the last point in the time series it is obvious that:

e: 0

n-i (5.1.2)

C i  = n  ( ; / ) - '  • <
j* n - \

Furthermore if we assume that the system that produced the original time series is 

ergodic then the product terms in the above expressions can be approximated as functions 

of the Lyapunov exponents associated with the attractor:

lim n log n  ■*
i=l
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and

lim n log H  ^“ -*• -X_ (5.1.4)
n -»-oo

where X. is the largest negative Lyapunov exponent (i.e. the one closest to zero) and X+ 

is the smallest positive Lyapunov exponent. Thus we can expect the propagated error to 

approximately reduce at an exponential rate as a function of the relevant Lyapunov 

exponents as follows:

e, (5.1.5)

and

n̂-k *   ̂ ^  (5.1.6)

It is important to note that the critical Lyapunov exponents are those that are closest to 

zero. This immediately implies that applying any noise reduction algorithm to a flow will 

be limited by the flow direction.

The scaling of errors at the ends of the time series it is equally applicable to points 

anywhere along the signal if the dynamics are not hyperbolic. This is where the 

linearisation breaks down and hence inaccuracies are introduced to the filtering process. 

Then the propagation of these errors will tend to scale in the same manner as described 

above. The result of this is that the measurement error after filtering has a jagged zigzag 

appearance.

As an example of this scaling a 500 point data set from the Henon map, with 10% noise 

added, was filtered with the Levenberg-Marquardt procedure (ô =  0.00001) using the 

known dynamics. For this time series the Lyapunov exponents were computed to be:

X+ =  0.397 

X. =  -1.596

using the QR algorithm described in chapter 1 (see also Eckmann and Ruelle [1985]). 

These values should then approximate the positive and negative slopes in the absolute 

value of the measurement error when plotted on a log scale. This is shown in Figure 

5.1.1. In the blown up section the solid line is the measurement error and the dotted line
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Figure 5.1.1: The top plot shows the measurement error for a 500 
point time series from the Henon map after noise reduction. The 
bottom plots compare the negative (left) and positive (right) slopes 
in the measurement error with the predicted gradient using the 
Lyapunov exponents.
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is the gradient of the relevant Lyapunov exponent. Clearly the scaling laws accurately 

predict the error propagation along the time series.

So far we have only observed the scaling when the known dynamics have been used in 

the noise reduction process, unfortunately such scaling does not appear to persist when 

the dynamics have to be approximated. This is not really surprising since, as we noted 

in chapter 4, the ability to reduce the measurement error is severely restricted when 

approximating the dynamics and therefore there is not such a large range in the 

measurement error over which to identify the Lyapunov scaling. This means the statistical 

noise due to the approximation of the mapping function swamps any scaling, which is 

itself only a statistical observation. Even when the correct dynamic model is being used 

and only the parameters are being fitted (cf. section 4.3.1) it is questionable whether any 

scaling due to the end effects and tangencies is discernable (see figure 4.3.2).

5.2 Convergence to Zero Dynamic Error

In chapter 3 we introduced the Levenberg-Marquardt algorithm to try to preserve the 

stability of the gradient descent approach while improving the convergence rate of the 

algorithm. The Levenberg-Marquardt parameter, ô, should provide a spectrum of 

algorithms with convergence rates spanning from linear to quadratic. However as ô is 

reduced the stability of the algorithm becomes less certain. Thus we need to investigate 

to what extent we can achieve quadratic convergence. Assuming that we are close to the 

minimum, the theory states that, for a fixed value of ô, in the well conditioned directions 

the convergence will be virtually quadratic, and in the badly conditioned directions the 

convergence will be approximately linear. Therefore we should expect that initially the 

overall errors will reduce at a quadratic rate until the errors in the well conditioned 

directions are negligible. Then the errors in the badly conditioned directions will 

dominate in the process and the convergence will be no better than linear. Also the choice 

of Ô should govern how soon the convergence rate ceases to be quadratic, at least until 

the linearisation assumption breaks down.

To examine the performance in practice we initially took a KXX) point time series from
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the Henon map and added 1 % additive noise. We then used the Levenberg-Marquardt 

algorithm proposed in section 4.2.2, along with the same radial basis function 

approximation used in that section. Then for a variety of fixed values of 6 we determined 

the dynamic error after each iterate of the noise reduction procedure. The results are 

presented in figure 5.2.1. The figure shows the graph o f the square root of the dynamic 

error for the it+ 7th iterate of the algorithm against the square root of the dynamic error 

for the kxh iterate, plotted on a log-log scale. This makes sense since the convergence 

relationship is expected to be:

e I ' ]  oc I (5.2.1)
( )

where E is the dynamic error and q is the rate o f convergence. Thus the gradient on the 

plot in figure 5.2.1 indicates the rate of convergence q. It is not surprising that for the 

larger values of ô the algorithm becomes increasingly stable and the measured rate of 

convergence is approximately the expected linear (q =  7) rate. At smaller values of 5, 

the graphs in figure 5.2.1 can, in general, be seen as having two distinct gradients. The 

initial slope of the graph for 5 <  70 is greater than one and at Ô =  0.01 is 

approximately two. In all cases the gradient of the lower sections o f the curves is 

practically one. Finally as ô is decreased below 0.01 to 0.001 the two stage structure of 

the curve is destroyed and initially the convergence rate is less than two, although when 

»  7(7̂  the rate does appear to increase. Then at Ê „̂ «  7(X the convergence rate 

becomes linear. Thus for small noise levels, until linearisation assumptions break down 

due to ill-conditioning, the convergence rates agree in general with those predicted for 

the algorithm.

If we then repeat the test with an added noise level of 10% we find that the convergence 

rates do not perform as well although, as before, for each value of d the algorithm still 

eventually converges at a linear rate. This is shown in figure 5.2.2. Here the two stage 

structure appears to break down when ô is less than 0 .1 and at ô =  0.001 there is little 

evidence of any quadratic convergence. Thus the Levenberg-Marquardt algorithm does 

allow us to achieve an improvement in the convergence rate over the gradient descent 

approach. However, as the level of noise is increased the improvements obtainable are 

reduced.
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Figure 5.2.1: A plot of the root of the dynamic error against 
the value for the previous iterate. The value of delta for each 
curve is indicated on the plot. The initial noise level was set 
at 1%.
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Figure 5.2.2: A plot of the root of the dynamic error against 
the value for the previous iterate. The value of delta for each 
curve is indicated on the plot The initial noise level was set 
at 10%.
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5.3 Improvements in Signal-to-Noise Ratio

As we have already seen in section 5.1, approximating the dynamics appears to limit the 

performance of the noise reduction algorithm in terms of measurement error. Here we 

look at how this limitation is effected by the level o f the added noise and as before we 

can expect the function approximation to be the limiting factor.

Initially we took a 1000 point time series from the Henon map corrupted with various 

amounts of uniformly distributed additive noise. The noise reduction algorithm used was 

the Levenberg-Marquardt algorithm (ô =  0.7) described in section 4.2.2 and the 

dynamics was modelled in exactly the same way with 10 radial basis functions. The 

performance of the algorithm is measured as the percentage increase in signal-to-noise 

ratio, 6:

r* = _  (5.3.1)
d̂ist

where is the measurement error after k iterates of the noise reduction algorithm 

(here, as before we will use k =  10). The results are shown in figure 5.3.1. From this 

graph it is clear that there is an optimal level of noise at which the noise reduction 

algorithm performs best. This is because there are two major limitations in the function 

approximation. First the need to choose a restricted set of functions with which to model 

the dynamics automatically means that even in the case of no added noise there will be 

a residual level of approximation errors. Thus the noise reduction algorithm will clean 

the data towards a deterministic orbit in the approximated map and if the noise is 

dominated by the approximation errors the performance, r, will be less than one. In our 

test the performance was less than one for 0.1% noise. Then as the noise level was 

increased the performance rose rapidly to a maximum at around 10%. At higher levels 

of noise the algorithm will be limited by the statistical uncertainties in the fitting 

procedure and thus we expect the performance to monotonically decrease as more noise 

is added. The graph in figure 5.3.1 confirms this to be the case.
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6. Noise Reduction: Applications.

We are now in a position to apply our noise reduction techniques to some more general 

problems. In this chapter we show that this kind of noise reduction can equally be applied 

to data that is embedded in a state space using more sophisticated embedding techniques 

than delays. The particular method that is used here is the Singular Systems approach 

discussed in chapter 2, although we could have used any linearly filtered (FIR) delay 

space.

In section 6.1 we apply the noise reduction algorithm proposed in section 4.2.2 to data 

sets from two different attractors from the Lorenz system. The first is the classic chaotic 

attractor that occurs in the Lorenz equations at the parameter values: r =  28, b =  8/3 

and a — \0. The second is a periodic orbit that occurs at the parameter values: 

r =  100.5, b =  8/3 and a =  10. These two attractors allow us to assess the performance 

of the noise reduction algorithm in cleaning data that was produced by a flow as opposed 

to a map. Furthermore we show that this method is just as applicable to a non-chaotic 

time series as it is to a chaotic one. Also, since these time series are significantly over­

sampled a traditional low-pass filter should perform well at reducing the noise. Thus we 

compare the performance of our algorithm to that of a standard low-pass filter.

We then go on to consider reversing the roles o f the dynamics and the noise. That is we 

address the problem of removing an unwanted dynamical signal from an unknown "non- 

deterministic" one. This is, in fact, the problem that noise reduction already solves since 

we can think of the algorithm as separating two signals using low dimensional 

determinism as the discriminator. Once this is done it is our choice which signal we 

choose to keep and which to throw away.

Finally in our last application we demonstrate how a deterministic model for a time series 

can be improved by applying noise reduction. The basic idea has already been discussed 

in section 4.4. The aim is to find a mapping function that has an orbit that is close to the 

original orbit and has no dynamic noise. In practice, we merely reduce the dynamic noise 

as much as possible. We then assume that the map associated with the filtered data is 

more likely to possess the correct dynamical behaviour of the true system. To
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demonstrate the effectiveness o f this method we apply it to some experimental laser data.

6.1 Noise Reduction Applied to the Lorenz System

The Lorenz model for convection provides a good example o f a low dimensional 

nonlinear vector field that can exhibit chaos. There are two important reasons for wanting 

to test our noise reduction method on a time series that has come from a flow. First of 

all, a time r map from a flow cannot, in general, be expressed as an analytic function. 

This provides added difficulties in modelling the dynamics since most global function 

models seem to be able to approximate analytic functions better than non-analytic ones.

The second challenge is that, if the data is sampled at a fairly high rate, a simple delay 

state space will not necessarily produce a good embedding of the data in the presence of 

noise. Thus we have to adapt the noise reduction algorithm to cope with a more 

sophisticated embedding procedure. Here we will use singular systems analysis to choose 

our embedding space. However the alterations required to work in such a space are minor 

and apply to any reconstructed space produced from a set of linear FIR filters .

We have to work with vectors =  L where L is an p x  q matrix and X, is the q- 

dimensional delay window: ... and is the p-dimensional state space

vector for X,. We can now define the map that we intend to approximate:

= / ( / , )  = f{L X .)  (6.1.1)

The only other change required to the algorithm is to adjust the derivatives of the map 

with respect to the data points,

The algorithm used below was the extended Levenberg-Marquardt method proposed in 

section 4.2.2 with the Levenberg-Marquardt parameter kept fixed at 0.1. This does not 

allow us to completely eliminate the noise, but it does ensure stability. In both cases the 

data was initially rescaled to span [-0.5,0.5] and the delay window was chosen to be 10 

data points in length. The embedding space was then constructed using the first 3 singular 

directions. The dynamics were approximated with 100 Gaussian radial basis functions
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with the centres chosen from the data set and the rescaling parameter set at 1.0. 

Finally the algorithm was applied ten times to the data sets in each case.

6.1.1 Data from a Chaotic Attractor

For our first data set we used the standard chaotic attractor that occurs in the Lorenz 

equations at parameter values: r ^  28, b — 8/3 and a =  10. The equations were 

integrated with a fixed step size Runge-Kutta algorithm with a step size of 0.01. Initially 

the equations were integrated for 1000 steps to allow the trajectory to settle down onto 

the attractor. We then took the next 5000 iterates as our data set. The time history of the 

data is shown in the top picture in figure 6.1.1. The bottom picture shows the state space 

reconstruction with the first two singular directions (c.f. section 2.3.3).

Figure 6.1.2 shows the same data with some noise added. The noise was I.I.D. with a 

uniform probability distribution. The noise level was set so that the total range of the 

noise was 10% of the total range of the data. It is clear from figure 6.1.2 that it is no 

longer possible to identify adjacent points in time from the embedded data. However the 

time history shows that there is still a lot of the data’s structure visible in the noisy time 

series. This is because the sample rate for the data was quite high (we will discuss the 

ability to clean the time series with a low-pass filter below).

We then applied our noise reduction algorithm to this noisy time series. Figure 6.1.3 

shows the results. The initial dynamic error prior to applying noise reduction was 4.88 

and after noise reduction it had been reduced to 2.18x10^. This can be seen in the time 

history plot where the data looks very similar to the original deterministic trajectory. Also 

looking at the state space (bottom) we can see that it is now possible to identify adjacent 

points in time from the embedded data (i.e. determine the direction of the flow). The one 

noticeable difference between the embedded data in figures 6.1.1 and 6.1.3 is that the 

outer most points have been contracted inwards due to the noise reduction. This can also 

be seen in the time history at around 4500 where the peak in the filtered data has been 

reduced. However this is not surprising since these points are at the edge of the attractor 

and thus there will be less points in their neighbourhood to define the flow accurately.
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Figure 6.1.1: The top picture shows a 5000 point time series 
taken from the x coordinate of the Lorenz equations with 
parameter values: r -  28, b -  8/3 and a -  10. The bottom 
picture shows the projection of the reconstructed data using 
the first two singular directions.
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Figure 6.1.2: The top picture shows the data in figure 6.1.1 
with 10% noise added. The noise is I.I.D. with uniform 
distribution. The bottom picture shows the projection of the 
reconstructed data using the first two singular directions.
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Figure 6.1.3: The top picture shows Lorenz data that was 
corrupted with 10% noise and then filtered 10 times using the 
extended Levenberg-Marquardt algorithm. The bottom picture 
shows the same data reconstructed using the first two singular 
directions of the trajectory matrix.
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We can rate the performance of this noise reduction by looking at the measurement error 

as well (equation 4.2.1, section 4.2). The original measurement error between the noisy 

time series and the deterministic orbit was 5.48 x  10̂ . After applying noise reduction the 

error was reduced to 3.25 X 10̂ . Thus we have achieved an improvement of just over an 

order of magnitude with respect to the original data.

The second test we performed was to add 50% noise (in the same sense as above) to the 

original deterministic orbit. In this case the a great deal of the detail o f the data has been 

lost (figure 6.1.4). Although there is still evidence of the orbit switching between two 

states, the mechanism by which this happens has been lost. Furthermore when the data 

is plotted in the reconstructed space none of the structure is evident to the eye.

The filtered data for this test is shown in figure 6.1.5. One immediately obvious 

observation that can be made is that all the high frequency noise has been removed (to 

smooth the time series this much with a conventional low pass filter would have distorted 

the orbit much more) and the trajectory looks smooth again. The state space shows that 

the attractor has been severely distorted in comparison with the bottom picture in 

figure 6.1.1. However the basic structure of the attractor has still been captured. The 

flow direction is still discernable for most points in the embedded space and the two foci 

of the attractor are clearly recognizable. The dynamic error was 60.4 before noise 

reduction and this was reduced to 1 .64x10  ̂which is roughly the same improvement that 

was achieved with 10% noise. The measurement noise before filtering was 1.37x10^ . 

After filtering this was reduced to 7.23x10^ which is, again, an improvement of about 

an order of magnitude. Thus, even when the noise level is high, the algorithm does an 

impressive job of filtering the data towards a deterministic orbit.

6.1.2 Data from a Periodic Orbit

So far we have described the noise reduction method as one for application to chaotic 

data sets. However the algorithm is only based on the idea of low dimensional 

determinacy and it is equally valid to apply it to reduce the noise in non-chaotic data sets. 

There are several parameter values at which periodic orbits exist in the Lorenz equations
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Figure 6.1.4: The top picture shows the data in figure 6.1.1 
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reconstructed data using the first two singular directions.

- 1 2 6 -



I

Data Number

2

1 .5

0 . 5

o

— 0 . 5

— 1 . 5

—  2
— 5 O 5

VI

Figure 6.1.5: The top picture shows Lorenz data that was 
corrupted with 50% noise and then filtered 10 times using the 
extended Levenberg-Marquardt algorithm. The bottom picture 
shows the same data reconstructed using the first two singular 
directions of the trajectory matrix.
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(see Sparrow [1982]). Here we use the parameter values: r =  100.5, b =  8/3 and 

a =  10. The periodic orbit is shown in figure 6.1.6. along with the same orbit after 10% 

noise had been added. We then applied 10 iterates of the noise reduction algorithm as 

above. This orbit is shown in the top picture in figure 6.1.7. Before filtering the time 

series the dynamic error for the approximated map was: 4.34 whereas after noise 

reduction this was reduced down to 1.42x10^. Thus, in this case the reduction in 

dynamic error about the same for the chaotic attractor with 10% noise and for the limit 

cycle with 10% noise.

The improvement in measurement error was much greater than for the chaotic attractor. 

Before the noise reduction it was 1.42x10^ and afterwards it was reduced to 6.44x10^. 

This is an increase in signal-to-noise ratio of approximately 50 times. This improvement 

relative to the chaotic example is probably due to the fact that the density of points 

defining the mapping in any given region for the limit cycle is likely to be higher.

6.1.3 A Comparison with Linear Filtering

Although the performance of the noise reduction scheme in the last two sections appears 

to be excellent this is a little misleading. This is because the signal we are cleaning is 

predominantly low frequency, whereas the additive noise is chosen to be broad band. To 

be fair, we should therefore compare the performance of our noise reduction method with 

that of a traditional linear filter. Here we compare it to a 15th order low-pass Butterworth 

filter with the cut-off frequency set at the point where the noise floor becomes visible in 

the power spectrum of the noisy data (Other comparisons between nonlinear noise 

reduction and linear filters can be found in Kostelich and Yorke [1990] and Grassberger 

et al [1992]). A butterworth low-pass filter is commonly used in linear signal processing 

and has the following frequency response function, H(u))\

|/ï(“)l = ,  ̂ =  (6.1.2)y 1 + [w /w, f"

where is the cut-off frequency and N is the order of the filter. For the periodic orbit 

in the last section the cut-off frequency was chosen to be 0.08, where a frequency of 1.0
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Figure 6.1.6: The top pictire shows the plot of a limit 
cycle from the Lorenz equations using the first two 
singular directions.. The bottom picture shows the 
same data with 10% additive noise.
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Figure 6.1.7: The top picture shows a singular systems plot of 
the noisy limit cycle filtered with the Levenberg-Marquardt 
algorithm. The bottom picture shows the same signal filtered 
with a 15th order Butterworth low pass filter.
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corresponds to half the sampling rate. The state space plot for this filtered orbit is given 

in the bottom picture of figure 6.1.7 and a comparison of the power spectra for the noisy 

and clean orbits is given in figure 6.1.8. From this it is clear that the low-pass filter has 

successfully removed the high frequency noise floor. However the state space plot 

(figure 6.1.7) allows us to see the difference between the two filtered signals more 

clearly. The low-pass filter has merely smoothed the orbit. This has not produced a clear 

periodic orbit. In contrast our noise reduction algorithm concentrates on making the 

signal deterministic. Hence, although our filtered orbit is more deterministic than the 

linearly filtered one the power spectrum contains more energy at the higher harmonics 

(see figure 6.1.8).

Although our noise reduction method has produced a more periodic orbit this does not 

mean that it is necessarily closer to the original clean orbit. These comparisons are made 

in the table below. We also compare the measurement error for the two chaotic signals 

considered in section 6.1.1. For the chaotic signal with 10% noise the cut-off frequency 

was set at 0.08 and for the chaotic signal with 50% noise the cut-off was 0.06

We should mention that a Butterworth filter is an HR linear filter an therefore we do not 

expect it to preserve the dynamics. This also has the effect of introducing transients at 

the ends of the filtered time series that degrade the signal. To overcome this we compare 

the all the signals both with and without the end effects (the end effects were removed 

by simply excluding the first and last 50 points from the error calculations). The order 

of the Butterworth filter was chosen as a compromise between producing a filter with a 

sharp frequency cut-off and minimising the end effects.

Below we list the measurement error (with and without end effects) for the three cases 

examined above as well as the performance of the relevant linear filter in each case.

It is clear from this table that the end effects play an important part in the performance 

of the Butterworth filter. However, even taking the end effects into account, we can see 

that our nonlinear noise reduction procedure performs better than the linear filtering in 

each case.
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Signal 
(initial Noise level)

Measurement Error

With End Effects End Effects 
Removed

Raw Chaotic Signal (10%) 5.48x10^ 5.36x10"

Chaotic Signal (10%) after 
application of noise reduction

3.25 x l(F 3.06x10^

Chaotic Signal (10%) after filtering 
with a 15th order Butterworth filter

1.14X10" 4.44X10^

Raw Chaotic Signal (50%) 1.37x10" 1.34X10"

Chaotic Signal (50%) after 
application of noise reduction

7.23x10" 6.67x10^

Chaotic Signal (50%) after filtering 
with a 15th order Butterworth filter

3.17x10" 2.71x10"

Raw Limit Cycle (10%) 1.42x10" 1.40x10"

Limit Cycle (10%) after application 
of noise reduction

6.44x10^ 6.13x102

Limit Cycle (10%) after application 
of 15th order Butterworth filter

7.14X10" 1.11X10"

6.2 Signal Separation

In the last section we investigated how well our noise reduction algorithm performed on 

data taken from the Lorenz equations. However an alternative application for the 

algorithm is to remove an unwanted dynamical signal that swamps some desired ,but 

unpredictable signal. This reverses the roles of the dynamics and the ‘noise’ since the 

noise is now the desired signal and we wish to throw away the dynamics.

Before we consider the performance of the algorithm for this application we must 

reinterpret the assumptions that need to be made when considering the applicability of this 

method in light of the role reversal of the signals. Obviously, as we have just stated, the 

unwanted signal is assumed to come from a low dimensional dynamical system. This idea 

was originally investigated by Taylor [1992] who was trying to extract a speech signal
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that was swamped by air-conditioning noise. Similarly the desired signal must be 

unpredictable and possess certain statistical properties, such as stationarity. However the 

most counter-intuitive assumption is that the desired signal should be small in relationship 

to the dynamical signal. This is unusual since it would seem to be more natural if the 

algorithm performed better when the desired signal was larger.

Finally it is necessary to re-evaluate the performance criterion by which the algorithm is 

judged. Here we calculate the signal-to-noise ratio of the stochastic signal before and 

after noise reduction. The signal-to-noise of the predicted signal will simply be a function 

of the signal-to-noise of the noisy data and the signal-to-noise of the estimate for the 

deterministic signal. Thus we can re-evaluate the three tests done above in terms of how 

well the noise could be estimated. The table below lists the signal-to-noise ratio for the 

estimates in each case. In each case the signal-to-noise was increased to around 4.0 and 

it is interesting that this seems not to be particularly sensitive on the initial noise level.

Data Set Original SNR Final SNR

Chaotic Attractor 
with 10% noise

0.131 4.10

Chaotic Attractor 
with 50% noise

0.658 4.35

Periodic Attractor 
with 10% noise

0.105 4.70

6.3 Improved Deterministic Modelling: Experimental Laser Data

One problem that can be encountered from modelling the dynamics of a time series is that 

the model may not possess the same asymptotic properties o f the data. Although we can 

never really expect to capture the original attractor’s properties exactly (especially if it 

is non-hyperbolic) we would like to at least obtain an attractor that looked similar to the 

data set (i.e. such that the probability distributions are in some sense similar). For 

example we would not want to chose a model for a chaotic data set to have a limit cycle
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as its asymptotic attractor.

At the end of chapter 4 we discussed the possibility o f using noise reduction to improve 

the model of the dynamics. The basic argument is as follows. Statistically, if  we have 

modelled the dynamics with a one step error term, it is necessary to retain this stochastic 

component of the system when investigating the system further. Indeed this term is 

essential when fitting linear state space models to data since, in this case, without the 

noise component the dynamics would be uninteresting. To throw away the noise term 

requires an argument that the dynamics are unaffected by the noise. Although we have 

this in Bowen’s shadowing lemma for hyperbolic systems even here the levels of 

allowable noise may be unrealistically small. Hence we argue that reducing the size of 

the stochastic term improves the chances that the stochastic term may be neglected. We 

have already seen in chapter 4 that such noise reduction is made easier by including the 

flexibility of the function approximation into the noise reduction process. Thus we have 

an algorithm by which we can obtain a function approximation that reduces the required 

stochastic component.

We can test this argument by comparing the deterministic attractors of the approximated 

dynamics, before and after noise reduction, with the original data to see which system 

models the data’s asymptotic behaviour best. Although we could calculate various 

invariants of the data, here we will merely discuss the overall qualitative shape of the 

attractor.

We applied this idea to some experimental data taken from a laser. The data was 

originally collected by N.B. Abraham and C.O. Weiss from a far-infrared laser running 

in a chaotic state. The time series recorded was some measurement of intensity of the 

laser. For further details on the data and the experimental set up see Hübner et al [1989a, 

1989b and 1989c]. The initial 1000 data points were later used to test prediction models 

in the Santa Fe Institute time series prediction and analysis competition and we obtained 

the complete 10000 point data set from the Santa Fe ftp  site.

Here we took the first 5000 points from this time series as our data set. The time history 

is shown in the top picture in figure 6.2.1. However the observable measured was
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Figure 6.2.1: This plot shows the time history of a power 
measurement from a laser (top) and the logorithm of the 
same data (bottom).
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intensity which, Smith [1993] noted was in some sense degenerate since it is the square 

of some measurement and may therefore project two different parts of the attractor on 

top of each other. Here we assume that the dynamics are symmetric about the origin so 

that this does not matter. Even so this still leaves the data constrained to be greater than 

or equal to zero. A standard function approximation on this data would not take this into 

account since a small error resulting in a prediction less than zero is treated in the same 

way as one that produces a positive predicted value. Thus we are really confronted with 

a constrained optimisation problem. A crude way to rectify this problem is merely to use 

the logarithm of the data: i.e. to map R. This is the time series that we used and 

it is shown in the bottom picture in figure 6.2.1.

To approximate the dynamics we then embedded the logged data (rescaled to [-0.5,0.5]) 

in a 3 dimensional state space using singular systems analysis with a delay window length 

of 10. Then we estimated the mapping function with 100 Gaussian radial basis functions 

with a rescaling parameter set at 1.0, choosing the centres from the data set as usual. The 

weights were initially estimated using an ordinary least squared estimation, as described 

in section 2.5.2.

We then applied the Levenberg-Marquardt algorithm proposed in section 4.2.2 with the 

Levenberg-Marquardt parameter set at 1.0. This was iterated 10 times and the dynamic 

error was reduced from 3.10 down to 8.08 x  10 .̂ The resulting estimates for the weights 

in the model for the mapping function provide us with a second model for the dynamics, 

such that a nearby time series is modelled with less error than the ordinary least squared 

estimate models the original time series.

The original embedded data is shown in the top picture of figure 6.2.2 plotting the 2nd 

singular direction against the 3rd (these were chosen since they provided a better view 

of the oscillations than using the 1st and the 2nd singular directions). The repeated 

spiralling out from the centre as the oscillations grow is clearly visible although the 

re-injection mechanism cannot be discerned from this projection.

We can compare this embedded data to a 5000 point trajectory produced by iterating the 

approximation model embedded in the same way. This is shown in the bottom picture in
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figure 6.2.2. We would hope that this data set would duplicate the repeated growth and 

subsequent sudden fall in the amplitude of the oscillations. However the plot in 

figure 6.2.2 shows that the amplitudes of the oscillations remain high. Although there is 

still some variation in amplitude and the attractor of the approximated system appears to 

be chaotic it is clear that the mechanism by which the trajectory was injected into the 

middle o f the attractor has been lost.

In comparison, if  we take a 5000 point trajectory iterated from the model resulting from 

the noise reduction process we obtain a far better deterministic model for the original 

data. The middle plot in figure 6.2.2 shows this trajectory plotted in the same way as the 

other two. The re-injection process has obviously been modelled far more successfully 

since this system does appear to duplicate the repeated spiralling out from the centre. 

Finally we can see the difference between the two iterated systems in figure 6.2.3 where 

the top picture shows the time history from the initial estimate for the dynamics and the 

bottom picture shows the time history from the adjusted system after noise reduction. In 

the top picture the slow growth in the amplitude of the followed by rapid decline is 

present but the amplitude does not vary nearly as much as the original data. In contrast, 

both of these features are excellently captured in the bottom picture.

We are not claiming here that an ordinary least squared estimate could not have achieved 

such a good a model. Indeed, Sauer [1993] has produced a model that successfully 

models the behaviour of the data, based only on the first 1000 data points. However we 

are arguing that for a given function form the asymptotic behaviour of the model is likely 

to be improved after noise reduction. This of course assumes that the function 

approximation is in some way incorporated into the noise reduction process.
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7. Conclusions

Over the last decade a variety of new techniques for the treatment of chaotic time series 

has been developed. Initially these concentrated on the characterisation of chaotic time 

series using invariants such as fractal dimensions or Lyapunov exponents. However, 

attention has recently focused on the possibility of predicting the future short term 

behaviour of such time series using the type of methods discussed in chapter 2. It soon 

became obvious that these methods could be used to develop a set of novel signal 

processing tools based on nonlinear state space theory. This in turn resulted in the 

development of a proliferation of noise reduction algorithms to clean chaotic time series 

that had been corrupted by low amplitude noise. Although this is by no means the only 

application of nonlinear dynamics to signal processing and many other directions are 

being pursued by a number of researchers it seems to have been the direction that has 

gained most attention. Thus this is the problem we have concentrated on here.

Initially we described the noise reduction methods that are based loosely on the 

shadowing lemma. This type of algorithm falls into two basic groups: those that achieve 

the shadowing explicitly and those that achieve it implicitly. In section 3.2.3 we 

explained why the extra work required to maximise the shadowing property explicitly is 

not worth while. This is because the shadowing orbit is * almost unique’ and the only 

optimisation that occurs in explicit shadowing methods effects the ends of the time series. 

Furthermore these end effects reduce at an exponential rate as they propagate down along 

the data and very quickly become insignificant.

The shadowing problem can then interpreted as a rank deficient zero-finding problem. 

In this context Hammel’s implicit noise reduction algorithm applies a set of reasonable 

constraints to the problem to make it full rank and in section 3.2 we discussed how these 

constraints could be calculated in practice. However this does not address the possibility 

of there being homoclinic tangencies present in the dynamics. In section 3.2.3 we showed 

that these are extremely important to the performance o f a noise reduction algorithm since 

they make the root-finding problem ill-conditioned (even with the extra constraints 

added). One way to circumvent this problem is to break the time series up into smaller 

lengths of data such that the root-finding problem is well conditioned for each length
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individually. However this is not ideal and we were keen to develop a more systematic 

method of dealing with the presence of tangencies.

The approach we have taken here has been to produce a new set of noise reduction 

algorithms based on minimising the dynamic error. This is a natural choice since it is one 

of the criteria used to judge the performance of a noise reduction algorithm and it is the 

only criterion that is readily available without a priori knowledge of the true solution. 

This can also be shown to be the minimisation equivalent of the root-finding problem 

solved by Hammel. However the one difference is that this approach now allows us to 

introduce the idea of weak shadowing: i.e. being able to move towards the solution 

without directly guessing where it is. This enabled us to compare in a precise way many 

of the different types of noise reduction algorithm that have recently been proposed.

One very simple noise reduction method to come out of this idea is the solution by 

gradient descent which we introduced in section 3.4.2. This requires minimal 

computational effort and can be made to be as stable as necessary, while guaranteeing to 

reduce noise. It also turns out that this method relates strongly to various ad hoc 

approaches that have been proposed, based on projecting the embedded data towards 

some approximation of the deterministic manifold. Some of these can then be 

reformulated to show that they are equivalent to minimising some error function by a 

gradient descent method. Furthermore these methods are a good way to tackle the 

presence of tangencies and we show that solving the minimisation problem using a 

gradient descent algorithm effectively ‘avoids’ the tangencies by simply not stepping in 

the relevant directions.

However the one drawback with the gradient descent algorithm is its speed. The gradient 

descent algorithm can be shown to converge onto the minimum at a linear rate, whereas 

a Newton based algorithm (for example Hammel’s method suitably transformed into the 

minimisation context) will converge at a quadratic rate. Thus neither Newton based 

methods nor gradient descent methods are ideal since Newton methods become unstable 

with tangencies and gradient descent methods are slow. To produce an acceptable 

compromise we applied the Levenberg-Marquardt algorithm to the minimisation problem. 

This provides a systematic method by which it is possible to interpolate between Newton
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and gradient descent based methods and as we have shown we can use the Levenberg- 

Marquardt parameter to inflict an upper bound on the condition of the problem. The 

incentive for using the Levenberg-Marquardt algorithm is thus to find an algorithm with 

approximately quadratic convergence that remains stable. In chapter 5 we numerically 

demonstrated that we were able to achieve this in practice.

In chapter 4 we went on to extend these ideas to include the problem of modelling the 

dynamics within the noise reduction algorithm. This makes sense since both procedures 

aim to minimise the dynamic error (which is identical to the approximation error in the 

function approximation), but with respect to different parameters. Looked at in these 

terms is seems inefficient to repeatedly apply an iteration of the noise reduction algorithm 

followed by refitting the dynamics. It makes more sense to solve them together, making 

use of the fact that the problems are linked. We explored this idea and found that it was 

possible to produce an extended Levenberg-Marquardt algorithm that solved the two 

problems simultaneously. When this approach was compared to the two step approach we 

found it to be both more stable as well as producing a filtered orbit closer to the original 

data.

Having developed a workable algorithm, we made a number of numerical investigations 

to demonstrate the performance of our noise reduction algorithm. In chapter 6 we 

demonstrated that our method was easily adaptable to more general embedding spaces and 

quite high levels of noise. We then compared our method to a traditional linear filter and 

in each case our method proved to be superior. These results were also interpreted in 

terms of removing the dynamics from the noise and again the algorithm was shown to 

perform well. Thus we can view the algorithm as separating the input signal into two 

parts. It is then up to the user to decide which signal to keep and which to throw away.

Finally, as well as discussing the obvious role reversal possible for the dynamics and 

noise, we introduce a novel use of these noise reduction methods to achieve an improved 

deterministic model as a by-product of the filtering process. The main argument being 

that traditional methods for modelling the dynamics optimise the one-step prediction 

whereas the model that results from our noise reduction scheme is designed to produce 

good shadowing properties. In the last section of chapter 6 we demonstrate this idea on
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some experimental laser data. Here the initial model for the dynamics did not produce 

an attractor that was similar to the embedded data whereas the model for the dynamics 

resulting from the noise reduction appeared to accurately capture the characteristics of 

the original data set.
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