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A b s tra c t

This thesis deals with three different areas within the subject of discrete 
geometry.

Firstly I prove an upper bound and give an example that yields a lower 
bound, to show that the maximum number /(d , n) of rich cells in an ar­
rangement of n hyperplanes in is f (d ,n )  =  A cell of the
arrangement is called rich if it is bounded non-trivially by every hyper­
plane. I define convex position for hyperplanes in and show that the 
Caratheodory number for lines in the plane is five. I consider extending 
these ideas, but show that a Helly number without redundancy does not 
exist for general convex sets, though for halfspaces d -f- 2 is such a number.

In the second chapter I consider the 180° art gallery problem. I show 
that the number, /igo(n), of guards required to survey a simple polygon 
with n sides is /iso(^) ^  [(4n -f l ) / 9 j , if their angle of vision is restricted to 
at most 180°. This result has since been extended and the bound currently 
stands at [2n/5j. I prove that on the class of monotone polygons the 
bounds are identical with those obtained when guards may survey a full 
rotation: /iso(^) =  m in{[n/3 j, [r/2 j -|- 1}, for a monotone polygon with n 
vertices, r of which are reflex. I also show that fe{n) < [n /2 j for 9 < 180°; 
that < n — 2 ; and that fe{n) > n — 2  for 6  < 60°.

In the final chapter I describe an algorithm that answers the 3-dimensional 
diameter problem in a worst-case time of 0(n^/^logn). Previously only a 
sketch of this algorithm existed, in a paper by Chazelle, here I describe the 
algorithm in detail. For a long time this was the best known algorithm, 
however during the preparation of this thesis I have heard of the discov­
ery of a new algorithm for the diameter that runs in an optimal time of 
0 (n log n).
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C hapter 1 

A rrangem ents Of H yper planes

1.1 In tro d u ctio n
In this chapter I investigate the comi)lex structures that can exist within 
an arrangement of hyperplanes. I concentrate on regions that have a piece 
of every hyperplane in their boundary. The problems solved here arose 
from the (so far unsuccesful except when d = 2) search for a ‘ Caratheodory’’ 
number k such that a set of hyperplanes in are in convex position pro­
vided every k are in convex position. Such a result could form the start of 
an attem pt to generalise the idea of convexity to take A;-flats in as the 
basic objects, rather than points (see [15] for a similar attem pt).

A family T  of hyperplanes in is said to be in convex 'position if there 
exists a (compact) convex body just touching every member of T . Recall 
that a consequence of Caratheodory’s theorem [8] is that a set of points 
in is in convex position (forming the vertex set of their convex hull) 
provided all (d -f- 2)-tuples of the points have this property. In section 1.4 
an analogous result is obtained for a set of lines in the plane. It will be 
shown that a set of lines in the plane are in convex position provided every 
five of the lines are in convex position. Also in section 1.5 I show that such 
a concept cannot be used to obtain a Helly Theorem with no redundancies 
for general convex sets, though this is possible, of course, for halfspaces.

Given an arrangement of n hyperplanes in we call a cell of the ar­
rangement rich if its boundary contains a piece of each of the hyperplanes, 
in other words if it has n facets, one supported by each hyperplane. The 
hyperplanes are in convex position if and only if there is some rich ceU in



Figure 1.1: Projecting a hyperplane onto a great circle.

their arrangement. In section 1.2 it will be shown that there are at most 
(n +  8 Y~^/{d — 2)! such rich cells, and in section 1.3 an example is con­
structed which gives a lower bound of the same order. The results given in 
this chapter will also appear- in [3].

1 .1 .1  M a p  f.id

To aid analysis of possible arrangements of lines in the plane, we introduce 
a geometric transform fid which maps halfspaces in to points on 5"̂ . 
First, working in place a copy of centre c onto so that they
touch at one point. A hyperplane I of is projected onto a great circle by 
cutting with the hyperplane H  that contains / and c. See figure 1.1. We 
define fid to be the map which identifies the halfspace l'  ̂ C with the 
point p where the outernormal to at c meets the sphere, in figure 1.2 
overleaf the halfspace corresponding to p is shaded. The other halfspace l~ 
is mapped similarly to p, the point antipodal to p.

Notice that (if we consider the points as points in when a set of
hyperplanes is projected from onto great circles of there is a one-to- 
one correspondence between the jDoints x  in 3%̂ and the points [x,c] fl 5'  ̂
of the open lower hemis%Dhere. The arrangement in is the same as the 
arrangement in the open lower hemisphere.

L em m a 1 . some k hyperplanes through 0 bound a cone with k facets
if and only if  the k outer normals are in convex position in other words the 
dual cone C o n e ju i,. . .  ,n^.} has k extreme rays.



Figure 1.2: /j,(l ) =  p, = p

Proof: Consider a cone C  formed by k hyperplanes . . .  ^Hk in 
where the cone is defined by the halfspaces that have outer normals n i , . . . ,  Uk.

C  =  f liJ ” =  n{o: :<n{, x><  0}

If we assume that Hi forms a facet of C then we can find a point U{ in 
the interior of this facet thus <7i,-,n,->= 0 , and <rij,Ui>< 0 j  ^  i for 
each i G { 1 , . Then consider the normals n i , . . . ,  njt out from 0 ; the 
hyperplane H- =  {x :<Ui,x>= 0} supports n,-, so the normals lie in convex 
position.

The other implication follows similarly. If we assume that the normals 
lie in convex position then it is possible to find a hyperplane H- with normal 
Ui that supports n,-. Thus <w,-,7i ,> =  0 and <Ui^rij>< 0 for j  ^  i. But 
then U{ lies in the interior of the facet of C due to H{. □

Corollary 1. Points on are in (spherically) convex position
forming P' i f  and only if  in the corresponding halfspaces (with outer
normals cpf^) intersect in a cone C apex c with k facets. This cone intersects 
the sphere in a spherical polyhedron P* dual to P' which is hounded by k 
great circles.

Proof: This follows directly since if the k outernormals are in convex po­
sition it follows that the normals lie in one halfspace. So if these normals 
intersect the sphere at the points p i,...,p &  then these points lie in spher­
ically convex position. □

 ̂Where c is the centre of the sphere.



If Hd is used to transform a set of liyperplanes i.e. pairs of halfspaces, 
to points on the sphere then because each region of the arrangement is a 
polyhedron it will identify with a collection of points P* (in convex position) 
on the sphere. Conversely every set of k spherically convex points of 
have an associated dual P* (notation is that of corollary 1) bu t not all such 
sets of points will yield a polyhedron P  in In fact only the part of P* 
th a t lies in the open lower hemisphere j^rojects onto a region in

Given a set of hyperplanes we can use Hd to find the equivalent normals 
P i  and P i  on the sphere but we wish to restrict our attention to A;-gons 
P'  tha t give actual regions in the space which are bounded by all k 
hyperplanes. We will call such a polygon P ' of normals admissible.

To illustrate this consider the case when d = 2. Notice tha t P ' is 
admissible provided the dual polygon P* has no facet lying entirely in the 
closed upper hemisphere; as d =  2 P* can have at most one vertex in this 
hemisphere.
(i) P  is bounded if and only if P* lies entirely in the lower hemisphere.

Figure 1.3: P  is bounded.

(ii) P  is unbounded if and only if P* has one vertex in the closed upper 
hemisphere, the cell P* meets the equator which represents infinity, this is 
illustrated in figure 1.4 overleaf.
(iii) If a facet of P* is in the upper hemisphere the corresponding line does 
not meet the region P  in Observe that the region diagonally opposite 
to P* will also occur in the spherical arrangement. In the lower hemisphere 
the ‘offending’ facet/ great circle bounds this cell of the arrangement which 
has a different admissible polygon.

10



Figure 1.4: P  is unbounded.

Keeping the same notation as that in lemma 1 we consider the case 
where a normal n does not define a facet. In the following sph will denote 
the spherical hull, which is the spherically convex polygon formed by the 
intersection of all hemispheres containing some set of points which lie on 
the sphere. The facets of this object are arcs of great circles.

Lem m a 2. n 6 (in t)sph{n i,. . .  if  and only if  <n ,y><  0(< 0) for all
y £ C — {0}.

Proof: Observe that y G C — {0 } if and only if the hyperplane Hy through 
0 normal to y supports the n ,’s; as in both cases <y,Ti{>< 0 for all rii.

Picking any y G C — {0} and assuming tha t n G (in t)sph{n i,.. 
because Hy supports sp h {u i,. . .  it must be that <y,n><  0 (<  0 ).

Similarly if < p ^ n > <  0 (<  0) for all p E C — {0 },then taking any 
hyperplane Hy with normal y which is a sui^porting hyperplane for the 
n ,’s, we have that y G C — {0}. Thus < n , y > <  0 (<  0) for all such 
supporting hyperplanes which implies that n G ( in t)sp h (n i,. . .  ,n&}. □

1.1.2 Admissibility
In order to classify admissibility we are interested in where the equator 
plane (through c parallel to or its associated great circle lies in relation 
to P* the dual spherical polyhedron. Consider the point k on the sphere

^Notice that we could equally well say n 6 (int)Cone{ni, . . .  ,rik} — C.

11



where the normal to the equator plane at c meets the sphere, chosen so 
that ck is the outer normal to the halfspace containing 3%̂̂ .

Let hyperplanes H i , . . . ,  Hn lie in Then H i , . . . ,  Hn bound a 
polyhedron P  with n facets only if the equivalent points P i , . . . ,P n  are 
in convex position on the sphere with an admissible spherical hull P',  that 
is one whose dual P* has no facet lying entirely in the closed upper hemi­
sphere. P'  is defined to be admissahle if one of the following three cases 
occur.

(i) When P* does not meet the equator and lies entirely in the lower 
hemisphere P  is bounded. The lemma above tells us that this case occurs 
if and only iï k G int sph{p i,. . .  ,p,i}.

(ii) When P* meets the equator, yet does not enter the open upper 
hemisphere P  is unbounded, this occurs if and only if A; G bd sph{p i,. . .  ,p„} 
by lemma 2 also.

(iii) The only other admissible case occurs when P* does meet the upper 
hemisphere, yet none of its facets lie entirely in the upper hemisphere in 
this case H i , . . . ,  H^ and the equator plane form a cone with (n -f 1) facets. 
Here again P  is unbounded. This occurs if and only if & is a vertex of the 
(n +  l)-gon sph{pi, . . .  ,pn ,k ) ,  by lemma 1 .

In any other case P'  is not admissible.

1.2 A n  U p p er  B ou n d  O n T h e  N u m b er  O f 
R ich  C ells

1.2.1 A Recurrence Relation
Let H  =  { H i ,H 2 , . . .  ,H,i] be n hyperplanes in and consider the ar­
rangement A{H)  of these hyperplanes. Define /x (d , n) to be the number 
of rich cells in A{H),  we want to determine f { d ,n )  the maximum number 
of rich cells over all such ai rangements.

C la im  3. f{d, n) < f{d ,  n — 1) -f f ( d  — 1, n — 1), for d , n > 2 .

P ro o f: Firstly consider the contribution of Hn. A rich cell of A (H )  can 
only occur when Hn cuts a rich cell of A { H  — Hn). Hn can cut such a cell 
into at most two rich cells of A{H).

12



If some hyperplaiie Hk is parallel to then no region on Hn can act 
as a facet of two rich cells as lies uniquely in say, and cannot bound 
a facet in H ~ . Hence:

/^ (d , n) < /(d , n — 1) < f { d ,n  — 1) +  / ( d  — 1, n — 1).

Otherwise, say Hn divides a rich cell C of A {H  — Hn) into two rich cells 
Ca and Cb of A(H).  Then some region R  of Hn is a shared facet of Ca 
and Cjg, R  lies in the (d — l)-flat Hn, and R  must have (n — 1) facets, as 
follows:

If the flats Hi fl i =  1 , . . . ,  (n — 1) are distinct then, if R  has less 
than (n — 1) facets then some Hk fl (1 < k < n) does not support R. 
Hn does not cut the facet of cell C  due to H^. This facet must lie uniquely 
in one halfspace H ^  say, l)ut then H^ can support a facet of only one of 
the cells Ca or Cg.

If two of the flats coincide in then the corresponding facets of C 
must be separated by (as divides C and C is convex). Again the 
facet due to some Hk lies uniquely in H ^  and the above argument holds.

Thus R  has (n — 1) facets and so is a rich cell in the arrangement of the 
(d — 2)-flats Hk n  Hn, ,n  — 1, lying in There can be at most
/ ( d  — l ,n  — 1) such regions R  in Hn-

All other rich cells in A { H  — Hn) can yield at most one rich cell in A(H ) .

fA{d, n) < /(d , n — 1) +  / ( d  — 1, n — 1)

□

1.2.2 Boundary Conditions
The results when d =  1 are obvious: / ( 1, 1) =  2, / ( 1, 2) =  1, and / ( I ,  &) =  0
whenever k > 3. Also it is clear that /(d , 1) =  2 for all d. We could use
this as the starting position for the recurrence, but a better bound can be 
obtained if a few more cases are investigated.

C laim  4. Whenever 1 < k < d, /(d , k) = 2 .̂

P ro o f: The proof is by induction. We have observed that / ( 1, 1) =  2 and 
/(d , 1) =  2 for all d so the result holds for d =  1, and when k = 1. Assuming

13



that the result holds in up to (d — 1) dimensions for all /: <  d — 1, and in d 
dimensions for some k < d planes, the recurrence relation yields:

/ ( d , /: +  !) < f { d , k ) f { d  -  l , k )
= 2  ̂+  2^
=

So f { d ,k )  < 2^, and this bound is realised by an arrangement oî k < d 
mutually orthogonal hyperplanes in which has 2* rich cells. □

C la im  5. When d > 2 

/(d , d +  1) =

P ro o f: Consider the arrangement A  of ( d 1) hyperplanes in
(i) If the hyperplanes lie in general position, tha t is no two planes are 
parallel and no (d + 1) hyperplanes have a point in common then the planes 
will bound a simplex in

As in figure 1.1, place a copy of the sphere on top of 3%"̂ (so that they 
meet at a single point), and project the (d +  1) hyperplanes on to great 
circles of in the obvious way. The arrangement of the hyperplanes in 
corresponds to the subdivision which lies on the lower (open) hemisphere 
of Let the boundary of this hemisphere be called the equator. The 
surface of is divided into 2 ^^^ spherical simplices each determined by 
a sequence of (d +  1) plus and minus signs (signifying positive or negative 
hemispheres/halfspaces) [17, p.304]. We can assume that no vertex of the 
subdivision lies on the equator (as this implies tha t two planes are paral­
lel). Picking any one of the 2'̂ '̂  ̂ simplices consider its identifying sequence 

ad+i G {+, — associate with each cr,- the vertex Vi of the simplex

^Each point x  G maps to [x, c] D S^, where x is written as a point in and c
is the centre of in

14



so that V{ does not lie on the ith  great circle. If v,- is in the lower hemi­
sphere let V{ =  Vi and â,- =  cr,-. If u,- is in the upper hemisphere take ü,- to 
be the point which is antipodal to v,- and take cr,- =  —a,-. Then â i , . . . ,  âd+i 
describe one of the spherical simplices all of whose vertices ü i , . . . ,  lie 
in the open lower hemisphere. Hence in we can find a unique^ simplex 
which is bounded by the (d -}- 1) hyperplanes.

The number of rich cells in such an arrangement is as follows:- The 
simplex itself is a rich cell. The space outside the simplex is divided into 
unbounded cells that ‘hang from’ each of the faces. Each (d — A:)-face 1 < 
k < d of the simplex is formed by the intersection of k of the hyperplanes 
and is itself a. (d — k) simplex in other words a further (d — A: -f- 1) of the 
hyperplanes support its boundary. Hence the region outwards from each

such face is bounded by all (d-f 1) hyperplanes and there are ^ d ^ ~ k \ l  j

such faces [24, p .53]. The region off each vertex (when A; =  d) is supported 
by only d hyperplanes and so is not rich. Thus

(ii) If any two of the hyperplanes in A  are parallel then each of the 
parallel planes cannot divide a cell rich in the remaining (d — 1) planes 
into two cells rich in d jDlanes. So in this case there can be no more than 
/(d , d — 1) rich cells and /(d , d — 1) =  < 2 '̂^̂  — d — 2  whenever d >  2 .
(iii) Lastly consider the case when the hyperplanes of A  have a point in 
common.

In if three lines have a %)oint in common then there are no rich cells.
In if any three of the planes have a line in common then their 

arrangement is equivalent to three lines with a point in common in two 
dimensions, and has no rich cells. Otherwise three of the planes have ex­
actly one point in common, this arrangement has (at most) 2  ̂ rich cells by 
claim 4, the addition of the fourth plane cannot divide any of these rich 
cells into two new rich cells as this can occur at most zero times (this is 
the number of rich cells when three lines in the plane have a point in com­
mon), and /x (3 ,4 ) < 2  ̂ < 2  ̂— 3 — 2. The case for follows similarly as 
/x (4 ,5) <  / ( 4 ,4) 4- /x (3 ,4) <  2̂  -I- 23 < 2̂  -  4 -  2.

^Any change in the identifying sequence will flip at least one vertex into the upper 
hemisphere.

15



The general case is not actually required here as only the result / ( 3 , 4) 
is used; however for completeness a sketch of the general case follows. Let 
d >  5 and let A  be an arrangement of (d +  1) hyperplanes in tha t have 
a point in common. There are two cases.
(a) If the point of intersection is unique, then some set A'  of d of the 
hyperplanes meets in a unique point. Consider the addition of the (d +  l)s t 
plane to this arrangement. Observe that the (d +  l)s t plane must miss at 
least two of the rich cells of A'\ if this were not true it would imply tha t the 
hyperplane was fully dimensional. This means that these two cells cannot 
yield rich cells in the final arrangement: at most (2  ̂ — 2) of the rich cells 
of A '  can yield rich cells of A.  Inductively assume the claim holds for the 
arrangement in the (d +  l)st hyper plane, then

fA{d,d+\ )  < ( 2 ' ' - 2 )  +  2(' ' -’ ) + ' - ( < i - l ) - 2  

=  2^+' - d - Z

SO the result holds.
(b) Otherwise the (d +  1) hyjDerplanes have a k flat in common for some k 
with 1 < k < d — 2. All of the cells of this arrangement are cones out from 
the A;-fiat; all other faces of A  have dimension strictly larger than k. Pick a
(d — k)  fiat perpendicular to the k flat, this meets all faces of A  and it meets
the k flat in a unique point; the d +  1 hyperplanes meet it in (d — k — 1) 
dimensional ‘hyperplanes’. Observe that any rich cell in A  must be rich in 
this (d — k) flat. If we count the number of rich cells here then we have a 
bound on the number of rich cells in A.

In a (d — k) flat we have d +  1 ‘hyperplanes’ through a unique point. 
Inductively assume that the arrangement of any (d — -f 1) of these has 
at most — d — 2 k rich cells. Adding each of the remaining k
‘hyperplanes’ can at most double the number of rich cells.

f A { d , d + l )  <  2‘-(2‘'- ‘« - ( r f  +  2 - i ) )
=  2‘'+ * - < i - 2 - ( 2 ' ' - l ) ( d  +  2 - i t )  +  /fe

<  ̂ 2''+’ -  d -  2 -  4 • (2'= -  1) +  it
=  2“'+ ' -  d -  2 -  (2* -  fc) -  (3 • 2‘ -  4)
< 2^+' -  d -  2

16



Throughout this case it is im portant to note that when we drop a dimension 
there may be less than d distinct ‘hyperplanes’, however in each case the 
bound is safe. The result holds. □

C o ro lla ry  2. /(3 ,4 )  =  11 and / ( 4 ,5) =  26.

R e su lts  fo r 2 d im ensions

It has already been shown that / ( 2 , 1) =  2 and /(2 , 2) =  4 by claim 4, and 
that /(2 ,3 )  =  4 by claim 5. Case analysis gives /(2 ,4 )  =  2 .

L em m a 6 . /(2 ,5 )  =  1.

P ro o f: Using the recurrence relation /(2 ,5 )  < /(2 ,4 )  +  / ( 1 ,4) =  2, and 
certainly / ( 2 , 5) > 1, so we assume two rich cells and obtain a contradiction.

Consider lines Zg in and let the arrangement of these lines have 
two rich cells. At least one of the lines say, supports a bounded facet 
on each of the rich cells. Note that here no two rich cells can share a 
common facet as this occurs at most / ( 1, 4) =  0 times, using the argument 
in claim 3,
( 1 ) If the rich cells have facets which share a common point on /i then let 
the facets be bounded by I2 , I3  and I4 as shown.

«

The cells must lie on opposite sides H'^ and H  of li or else they would 
share a common facet along Z3.

The fifth line I5 cannot be parallel to or it would not be possible to 
have rich cells in both and H ~ , so Î5 must cross outside the line 
segment [a, b] on l\ determined by the two facets.

(i) Let I2 and I4 meet at c in H'^ say. Then one of the rich cells i.e. tha t in 
must be bounded (it lies inside A{a, 6, c}), call this cell Ci.

1 < k < d — 2 implies that d 2 — k > 4.

17



(i) Let Î2 and I4 meet at c in say, Then one of the rich cells i.e. that in 
must be bounded (it lies inside A { a ,6, c}), call this cell Ci. Because

I,

Is forms a facet of Ci it must enter the triangle, yet it avoids [a, 6]; this 
means that Is crosses both I2 and Î4 in Now Is cannot again enter
the cone apex c through [a, 6], as this would contradict the intersection of 
convex sets being convex. Therefore Is meets the cone only in H'^ say. The 
cone contains both C\ and C2, yet Is cannot form a facet in H~,  which is 
a contradiction.
(ii) Similarly when I4 is parallel to I2 ’. Line Is cannot also be parallel to Z2, 
so Is cuts both I2 and but cannot cross [a, 6], Is must intersect both of 
these lines in one halfspace say. The cell in H~  cannot be rich.

(2 ) If the facets of the two rich cells are separated along /j simple case 
analysis*^ shows that no pair of lines can be parallel. Let the lines meet li 
as shown, with n /2 =  a, b n /3 =  6, / i f l /4 =  c, liHls =  d, and let /2H/a = p 
and l4 C[ls = q.

H
a a

H
I 2 ^3 ^ 5

Then cell C\ Ç where K\  is the cone with apex p through [a, b].
In order to form a facet of C\ I4  and Is must each intersect K\  in a 

closed line segment or a half-line. If g ^  in t7̂% then it can’t be th a t both I4  

and Is are facets of Ci. So ç G intX i, and symmetrically p G in t7̂ 2 where

’Note that both rich cells must lie between any pair of parallel lines.
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K 2 is the cone apex q through [c, c?]. This situation cannot e x is t/  □

C o ro lla ry  3. f {2 ,k )  =  1 whenever A: > 5.

1.2.3 A n U pper Bound  
T h e o re m  7. For n > d > 3

f {d ,n )  <
(n +  8)d- 2

P ro o f: The result holds for d =  3 by using the recurrence relation on the 
results for / ( 3 ,4) and d = 2. It can be shown (using an inductive argument) 
that the result holds for /(d , d) i.e. that for d >  3

Inductively assume then that the result holds true in (d —1) dimensions, 
and that in d dimensions the result holds for up to (n ~  1) hyperplanes then

/(d,7z) < /(d , 71 — 1) + / ( d  — 1, n — 1)
(77 +  T)‘̂ -2 _ (72 +  7)^ -̂^

< +  

<
( d - 2 ) !  ( d - 3 ) l

((72 +  7) +  1)‘̂ -"
(d -  2)1

(72 +  8 )^-^
( d - 2)!.

□
Obtaining a strict value for / ( 3 ,5), and thus an improvement for d =  3, 

might enable the constant (8 ) in the above expression to be brought down 
to a best possible value of 3. This is the best possible such result that 
would be consistent with /(d , d), d > 4, and with /(4 ,5 ) .

^The half-line I3 fl A'l lies between intA'i and the points c and d. Neither I4 nor I5 
passes through p (the apex of A'l) as such a line cannot be a facet of Ci,  therefore they 
both pass through h D  K\ ,  so /s D K2 is a closed line segment (which does not contain p). 
This implies that C2 is bounded in which case I2 and /a must form adjacent facets of C2, 
so p E K2, which is a contradiction.
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1.3 A  Lower B ou n d
The following example was discovered by Janos Pach and Imre Bar any, 
and gives a lower bound on /(d , n). The method involves constructing 
an arrangement in space one dimension higher than that required and in­
tersecting this with a hyperplane to obtain an arrangement in First 
consider an arrangement of n -f- 1 hyperplanes through the origin in 
Let Hi =  {x :<ai ,x>=  0,a,- E These planes dissect the space into
cones C = {x E x><  0 , z =  1, . . . ,  n -f-1}, where =  ± 1  is a sign
sequence. Such a cone is rich if it has n -f- 1 facets. By lemma 1 The cone 
determined by £ i , . . .  ,£71+1 is rich if and only if C o n e js ia i,. . .  
has n -f 1 extreme rays.

L em m a 8 . / ( d , n )  > ( | +  | ^ q | 4-----+ (  ^ ], where n > d+2.

P ro o f: Let n > d -f- 2 and take zz -f 1 points on the moment curve 
M{t)  = (^, . . . ,  in Let the points M{ti)  have parameters
0 < 1̂ < • • • < ^̂71+1. Consider the arrangement A  of the hyperplanes 
Hi = {x :<x, M{ti )>=  0}. A hyperplane H  will be found that intersects 
this arrangement to give an arrangement in d dimensions with the required 
number of rich cells.

The arrangement A  consists of regions each of which is defined by a 
choice H ^  or H ^  of halfspace for each z. This corresponds to a choice of 
outward normal of M{ti)  or —M{ti) respectively. The regions so formed 
are all cones apex the origin in . For certain choices of normal

{ A f  —M  : z E j  E B ̂ AVJ B  =  { 1 , . . . ,  zz -f- =  0 }

the half rays through the points M{ti)  and —M{tj)  are in convex position.
Consider II a general hyperplane through the origin in If the

normal to II is (a.o,. . . ,  ad), then II meets the moment curve at points where 
t{ao +  -f • • • +  üdt^) =  0 in other words at  ̂ =  0 and at the roots of the 
polynomial P(t)  =  Ylo The points M(ti)  lie in II"'',II" or II according 
to whether P{ti) is positive, negative or zero. Any such polynomial P{t)  
has at most d roots and %)artitions the real line into at most {d-\-1) regions 
where Sign(P(t)) is alternately positive and negative.

Consider a partition of the real line into at most (d — 1) open intervals 
as follows. Let /%,... Id-i denote intervals ( — 00 , a j ) ,  (o;i, « 2)7 • • • 7 (ocd-2  ̂00)
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respectively, where t{ ^  aj  for any 2, and ti G /i- If G I-m Eind m is 
odd then we pick normal M(ti)  and let i G A. We pick —M (tj )  and j  G B  
otherwise. The normal M{t\ )  is picked.

For each if E Im-, 77% =  l , . . . , d  — 2 then let x  lie between tk 
and mm{armtk+i},  if tk G Id-i then if /î =  n +  1 let x >  <n+i> else let 
T G {tk,tk^i). Then the polynomial

d
Pk( t )  = { —l Y { t  — ai) "  ' { t  — ad- 2) { t  — tk) ( t  — x)  =  ^

0

of degree d has the property that Pk(tk) = 0 and Pk(ti) > 0 , k ^  i G A, 
and Pk(tj) < 0 if A: 7̂  j  G B.  Thus we have normal rik =  (og, . . . ,  a j )  with

<7ik,M{ti)> > 0
<in k, — M  {t j ) ^  > 0

<C?%̂., =  0.

The half rays from the origin through and i G A  j  G B^ are
in convex position. (So lemma 1 implies that the arrangement in has 
a region bounded by all 7% +  1 hyperplanes, and identified by this choice of 
outer normals.)

First we consider how many possible choices of normals, defined by all 
such polynomials, there are. Then the arrangement in will be con­
structed. Effectively we have to pick roots of a polynomial of degree (d — 2) 
so that they lie in the intervals (^i, 2̂)5 • • •, {tn, ^n+i) • It is optimal to  pick 
at most one root per interval, any other roots are deemed to lie in (^n+i, oo)- 
There are n intervals and up to d — 2 roots are picked. The number of ways 
of doing this is:

Take a sphere radius one through the origin, the points where each of 
the chosen sequences of normals cut the sphere lie in spherically convex 
position. Now using the argument from section 1.1.2, consider Hi  to  be the 
equator plane. If we intersect the remaining hyperplanes , -ffn+i with
H  = {x :<M{t\)^x>=  —1, X  G all the sequences we have picked are
admissible, and in H  they yield unbounded cells each with 7% facets, hence 
there are at least the required number of rich cells. □
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This example provides a lower bound for /(d , n), which is of the same 
order as the upper bound found in the jDrevious section. Hence:

( d - 2 ) ! .

All the rich cells picked in this example are unbounded. It may seem 
that such a large number of bounded nch cells cannot exist. However this 
is untrue. In fact there exist arrangements with as many as

bounded rich cells, the construction is as follows.
Using a similar argument construct an arrangement of n hyperplanes 

through the origin in Let the normals to these hyperplanes be points
on the moment curve with parameters t\ < ••• < We need to find 
a hyperplane H  that will cut this arrangement to give a large number of 
bounded cells. First notice that if we fix the first d +  1 outer-normals 
to be . . . ,  then the set C of cones that will be considered
lie in , . . . ,  In other words < >< 0 for all T E C and
2 =  1 , . . . ,  d 4- 1. So if we let ii = +  • • • +  M ((j+ i))/(d  +  1), then
<n, x><  0 for all a; 6 C — {0}.® Thus by lemma 2 n lies in the interior of 
the cone of each choice of normals.

We have to pick at most d — 2 roots of a polynomial. We pick the roots 
to lie among the intervals • • • (Li-i, L)- The number of ways of
doing this is:

n — d

This means that if we take H  = {x £ :<n,x>=  —1} then combin­
ing the arguments used in section 1.1.2 and the previous example each of 
the cones picked will yield a bounded rich cell in H.

®The inner products can’t all be zero at one point (other than the origin) as this would 
imply a polynomial of degree d having d -t- 1 roots.
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1.4 A  C arath eod ory  N u m b er  For L ines In  
T h e P la n e

First recall that:
C o ro lla ry  3. For n > 5, if n lines in the plane are in convex position then 
they bound a unique polyhedron (with n facets).

1.4.1 N otation
The notation introduced here will be used throughout the following argu­
ment.

Given n lines , . . . ,  /,i in the plane P, is defined to be a polyhedron 
bounded by { I j  : j  ^  i} provided of course that this exists, with P / being 
the equivalent choice of normals e.g. pi, • .. . . .  ^Pn on the sphere.
Notice that the points are in convex position on the sphere and that P/ must 
be admissible. Also note that these objects will be unique for n > 6 .

For brevity the term n-poly will be used to denote a polyhedron with 
n facets which could have or n — 1 vertices depending whether the poly­
hedron is bounded or not. The term ?%-gon will denote a convex polygon 
with n vertices.

1.4.2 A ssum ptions
Throughout the following argument we assume that the lines are in general 
position in the plane so no three lines have a point in common and no two 
lines are parallel. Though general position is assumed the result is in fact 
valid for a general set of n distinct lines in the plane as follows:

If three lines %)ass through a point they do not bound any triangle thus 
some five of the lines do not lie in convex position. (Any cell bounded by 
five lines must be contained in a cell bounded by any three of these lines.) 
Similarly when more than two lines are parallel in any given direction.

If some pair(s) of lines are parallel we can use a perturbation argument 
to move the lines into general position. The lines can be perturbed so that 
they meet far away from any other intersection point. Let every five lines 
in the original arrangement bound a 5-poly. The existence of 5-polys not 
involving both the parallel lines is unaffected by the perturbation. Note
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that any polyhedron with a pair of parallel lines in its boundary must lie 
between them. In the relevant quadrant formed by the two perturbed lines 
no edges are destroyed or created (therefore no new 5-polys are created 
elsewhere as a 5-poly is unique). So in the perturbed arrangement every 
five lines bound a 5-poly. Theorem 10 below says that there is an n-gon 
in the perturbed arrangement, and it must lie in the cone between the two 
lines, so because we haven’t added any edges to regions in this cone there 
is an n-gon in the original arrangement.

It follows from these assumptions that no three of the normals on the 
sphere lie on the same great circle. If this was the case then the three great 
circles normal to them all meet at some point p and the point p antipodal 
to this. If one of the three points is k the other two great circles meet on the 
equator and the two equivalent lines are parallel. If none of the points is k 
the three lines will all meet at a point in the plane. So, in two dimensions 
we can ignore the second admissibility condition defined on page 12. Thus 
P'  is admissible if either k is in the interior of the spherical n-gon formed 
by { p i,. . .  ,p,i} or if k is a vertex of the {n -f l)-gon sph{pi,..

1.4.3 T he R esult For Two D im ensions
Certainly there is a Caratheodory number for lines in the plane and it is 
at most six. This can be shown inductively by exploiting the fact that for 
n > 7 every n — 2 lines bound a unique 5-gon. The argument follows easily 
either from the geometry of the arrangement in the plane, or by considering 
normals on the sphere, as in the proof of theorem 10 on page 30.

Six is the best possible result for the equivalent projective problem; 
on the sphere every five great circles in general position bound some 
spherical 5-gon, but this is not true for six great circles [21]. However in 
the affine problem it is trivial that every four lines in general position in 
the plane bound a 4-poly (e.g. take one of the great circles in 5^ to be the 
equator), yet this is not true for five lines.

A set of lines in the plane lie in projectively convex position if there is 
a permissable projective transformation from the lines onto a set of lines 
in convex position. Figure 1.5 illustrates the above observation. The six 
lines are not in projectively convex position. The five solid lines are in 
projectively convex position (the shaded region is mapped to a 5-poly by 
any projective transformation taking the dotted line to infinity) but not in

24



Figure 1.5: An arrangement of six lines that illustrates properties of convex 
and projectively convex position.

convex position.
The best possible result for the Caratheodory number for lines in the 

plane is therefore five. This will be proved below.

T h e o re m  9. I f  an arrangement of six lines /%,.. .,^6 in general 'position 
in 3%̂ has every five of the lines in convex position then the six lines are in 
convex position.

P ro o f:
Remark 1 : Either the six lines bound a 6-poly, or there is a 5-poly in 

the arrangement.
Proof of remark 1 : Consider one of the 5-polys Pq say, if Iq misses Pq 

then Pq is a 5-poly in the arrangement of the six lines.
Consider the ways that Iq can cut P q  (any region thus formed lies in the 

arrangement).

If P q  is bounded then P q  has five vertices and Iq must cut P q  in a bounded 
line segment adding two new vertices. If Iq splits the vertices of P q  in the 
ratio 4:1 it creates a hexagon (and a triangle). If the ratio is 3:2 a pentagon 
is created (and a quadrilateral).

If on the other hand P q  is unbounded then it has four vertices.
(i) If Iq cuts P q  in a line segment adding two vertices, it splits P q  into one 
bounded and one unbounded polyhedron. If Iq divides the vertices of P q  in 
the ratio 3:1 it creates a region with five vertices this could be a bounded
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pentagon or an unbounded 6-poly. If it divides the vertices in the ratio 2:2 
it creates a bounded quadrilateral and an unbounded 5-poly each having 
four vertices.
(ii) If le cuts Pe in an unbounded line segment adding one new vertex two 
new unbounded polyhedra are formed. If the ratio of vertices on either side 
of le is 3:1 one side will have four vertices and thus will be a 5-poly. The 
ratio 2:2 is a special case, let the imboimded edges of Pe be /i and /2, if 
a point moving along le from the unbounded direction of Pe meets h say 
before I2 , then bearing in mind that four lines in general position have a 
unique arrangement subject to rotation we can find five lines not in convex 
position as illustrated below.

□

As an alternative it is also possible to malce a slightly stronger remark. 
Remark 2: Either the six lines bound a 6-poly or there is a bounded 

5-poly in the arrangement.
Proof of remark 2: Consider Pe- If Pe is bounded we are done: As in 

remark 1 either Pe lies in the arrangement or le cuts Pe to create a bounded 
pentagon or hexagon.
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So assume that P q  is unbounded. We use map [I2 to project the arrange­
ment of lines onto the sphere. Because P q  is unbounded we can assume 
{A;,Pi,. . .  ,ps} lie in convex position on the sphere. Note that this means 
{ p i,. ..,p s}  are in convex position also. Choose Pq so tha t it lies in some 
same hemisphere as these points. Then:
(i) If Pi, . . . ,Pq  are in convex position either we have an admissible 6 - 
gon or adapting Carathéodory’s Theorem for the sphere® we conclude that 
Pq 6  sph{k ,p i ,p 2 j say. Thus Pq G int sph{k ,p i ,p 2 ,P3 ,P4 j  so by lemma 2 
the line Iq misses the quadrilateral determined by P i,P 2,P3» and p 4 (which 
is unbounded), this means that P5 must lie in a different quadrilateral 
bounded by lines / i , . . . ,  4̂ to that containing Pe-

Consider the arrangement of four lines in general position. This ar­
rangement is unique subject to rotation, and it has exactly two rich cells 
one of which is bounded and one is not. So as P q  lies in the unbounded 
quadrilateral P5 must lie inside the bounded quadrilateral and must itself 
be bounded, and the previous argument holds.
(ii) If P i , . . .  ,Pe a,re not in convex position then either pe Ç sph{p,-,pj,pjt} 
or Pi Ç sph{p6,Pj,PA-} These cases are analogous: in each case we can find 
some P/ which lies in a different 4-jDoly to Pe, so as P q  lies in the unbounded 
quadrilateral P/ must lie in the bounded quadrilateral and so is bounded, 
and so on. □

To prove the assertion we need only show that if there is a pentagon 
in the arrangement of the six lines then some five lines are not in convex 
position. Let this pentagon be P q  then P q  lies in the half-space Ç  say. 
Using the notation p,j =  /,• D Ij we pick pij to be the closest vertex to Iq 

lying in Ç .

Then the triangle {pi j^Pie^Pje} lies in the arrangement, and P q must lie in

^Observe by projection that the same Caratheodory’s theorem that applies to points 
in applies to points on some hemisphere of S^.
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the quadrant K  bounded by lines /,• and Ij which lies away from le (else 
some line would have to cut \pij,Pie] or [pij^Pje] contradicting the choice of

Consider the order of the edges of Pe. The proof is split into cases
depending on the number of edges that lie between the edge due to /,• and
that due to /j, where the edges counted are those which lie on that side of
Pe which is closer to /g.

C ase (a ): If there are at least two such edges supported by la and h 
then both quadrilaterals due to l{,lj,la and lb lie in K  and so le misses 
them. Hence these are five lines not in convex position.

C ase (b ): If there aie no such edges, 
bi) Then if one of the other lines la say, meets K  in a bounded line segment. 
Due to the choice of i and la meets /g outside Now pick a
different line lb which is adjacent to either /,■ or Ij in Pg. Say without loss of 
generality that k  is adjacent to /,• in Pg then lb crosses A{p,j,pai,Pai}, but 
lb can’t meet [pij^Pja] as this would prevent la forming an edge of Pg so Pab 
is in K ,  see figure 1.6.

Figure 1.6: Theorem 9 case bi) five lines not in convex position.

The line lb cuts only one of the quadrilaterals Q formed by la, Ij and
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Iq entering it through /,• at pn,. In Q Z* is adjacent to and /j, yet If, cannot 
leave Q at la as pab G K ,  or at Ij as it cannot cut [pij^pje] thus these five 
lines cannot be in convex position as lb does not cut Q to form a 5-poly 
and misses the other quadrilateral—so no 5-poly can be formed there, 
bii) If none of the other three lines meet K  in a bounded line segment, then 
two of them must cross Iq on the same side of [pie^Pje]' These five lines are 
not in convex position as illustrated in figure 1.7.

4

Figure 1.7: Theorem 9 case bii) five lines not in convex position.in convex

C ase (c): If there is one edge formed by line Ic between /,• and Ij, the 
other lines being la and lb then:
ci) If either of the lines /„ and /(,, la say, meets K  in a line segment then the 
argument used in case l)i) holds.

If neither /„ nor lb meet K  in a line segment then if both  la and lb meet Iq 

on the same side of [picPje] and we have case bii). In fact in this particular 
case the 5-poly is unbounded so this can be excluded using remark 2. Now, 
assuming that pai and pbj are vertices of P q  there are two cases remaining. 
Using symmetry Ic crosses Iq either in cii) [pej^Peb] or in ciii) [petjOo] 
cii) Observe from figure 1.8 on page 35 that in tliis case lb misses both 
quadrilaterals due to Ic^UJj, and Iq.

ciii) Observe from figure 1.9 on page 35 tha t here la misses the quadrilateral 
due to lb, Icy ĵ, and Iq

For simplicity both of these cases have been drawn with la and lb parallel. 
Note that remark 2 can be used to assume that Pab G K  however this fact 
has no actual bearing on the argument.
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In every case some five lines are not in convex position. Thus if every 
five lines are in convex position there must be a 6-poly in the arrangement.

□

T h e o re m  1 0 . Some n lines in general position in 3%̂ are in convex position 
i f  and only if  every five of the lines are.

P ro o f: The implication => is obvious. The result is trivial when n =  5 and 
the result for n =  6 was proved in theorem 9, so assume here that n >7 .

Take n  lines / i , . . . ,  that lie in general position in the plane with 
every five lines in convex position. Inductively assume that every (n — 1) 
of the lines are in convex position.

Using f.i2 map each of the lines /,• onto points pi (and pi) on the sphere 
chosen so that P i , . . . ,P n - i  are the vertices of the admissible spherical 
(n — l)-gon P/j corresponding to the (n — l)-poly P„ in the plane (note that 
this choice of normals is unique by corollary 3 since n — 1  > 5 ) .  Choose pn 
so that i t ’s the vertex of some admissible Pj, j  ^  n.

Remark 3: Thus p^ (as opposed to p„) will be a vertex of all admissible 
PI, i ^  n.

Proof of remark 8 : Let i, j  ^  n. In the plane P,- and Pj share (n — 2) 
lines including In so P,- and P j  each lie in an (n — 2)-poly bounded by all of 
these lines. Such an {n — 2)-poly is unique by corollary 3 as (n — 2) >  5, 
and lies in the half-space due to /„ which corresponds to picking point pn 
on the sphere. □

Either the points p i , . .. ,pn are the vertices of an n-gon P'  on the 
sphere or they are not.

(i) In the former case: If A: G intP^( then the n-gon is admissible 
and we are done. Otherwise the fact that P^ is admissible gives us that 
{ k , p i , . .. ,Pn-i} are in convex jDosition, and we are assuming that { p i,.. • ,Pn} 
are in convex position. Now if { k , p i , . . .  ,pn] are in convex position P'  is 
admissible and we are done. If not then . . .  ,Pn} are not the vertices
of an (n +  l)-gon. Thus by Caratheodory’s theorem either k lies inside 
the spherical hull of some three of the p i’s in which case k Ç in t(P ') and 
P'  is admissible. Or some p,- can be expressed as a combination of k and 
two other oints: say that p„ lies inside the spherical hull of k, pi and
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Pn-i- Consider PI where i ^  l ,n  — l ,n .  By remark 3 P / must have pj 
as a vertex for all j  ^  z, yet then PI is not admissible as pn cannot be a 
vertex of sph{ /;,p i,. . .  , p i - i ,p i ^ i , . . .  ,p„}. Thus P/ does not correspond to 
an (n — l)-poly in the plane, a contradiction.

(ii) In the la tter case: in other words when sp h fp i,. . .  ,p„} is not an 
n-gon, the fact that { p i,. • • ,Pn-i} a,re in convex position on the sphere 
implies that either p„ lies in the spherical hull of some three other points, 
or that Pi, i ^  n  lies in the spherical hull of p„ and some two other points. 
These cases are analogous if the roles of i and n are swapped. Thus without 
loss of generality p„ G sph{pi,p2,p3}. Let i ^  { l,2 ,3 ,n }  and consider P/, 
this polygon must have pj as a vertex for all j  ^  i (by remark 3), yet p„ is 
not a vertex. □

C o ro lla ry  4. The Caratheodory number for lines in the plane is six.

1.4.4 H igher D im ensions
It is not clear whether such a Caratheodory number exists for higher di­
mensions. There may exist arrangements of n hyperplanes where the ar­
rangement of every n — 1  contains a rich cell yet the arrangement does 
not.

The result for d = 2 relies heavily on the fact that there is a unique cell 
bounded by n lines when n > 5. The exanijDle given in section 1.3 shows 
that this is not true in higher dimensions. If it could be shown for some k{d) 
that in every suitable arrangement of n > k hyperplanes two intersecting 
cells can be found each rich in a different zz — 1 of the hyperplanes, then 
the result follows for A: — 1.

As I observed earlier there is a strong connection with the equivalent 
projective problem, this is a question of McMullen:

W hat is the largest number y(d) such that any set of n points 
lying in general position in can be mapjDed by a permisable 
projective transformation onto the vertices of a convex poly tope.

In fact the existence of such a projective transformation for n points in 
general position in is equivalent to the existence of an unbounded rich 
cell in an arrangement of rz — 1 hyperplanes in every d of which meet in 
a point and no d -f 1 of which have a point in common. This equivalence
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can be shown by using map /zj to obtain n — 1 points on 5'  ̂ and letting the 
n th  point correspond to the normal to the equator plane.

This question of McMullen was addressed by Larman [21] and later by 
LasVergnas [22], and bounds on i/(d) were obtained. In [21] it was shown 
that there is always such a transformation for 2d +  1 points. Thus every 
2d hyperplanes in general position possess a (unbounded) rich cell. The 
fact that such an arrangement has a rich cell that is bounded is easy to see 
geometrically, as follows.

L em m a 1 1 . Every 2d hyperplanes in general position in have a (bounded) 
rich cell.

P ro o f: Take some d of the hyiDerplanes, they meet in a unique point p, 
the other d meet at a unique point q. The arrangement of the hyperplanes 
meeting at q has 2^ cones all of which are rich. Point p must lie in the 
interior of one of these cones Cp say. Similarly q lies in int(C'g) where Cq is 
a cone rich in the d planes meeting at p. Then Cp fl Cç is a rich cell of the 
arrangement. □

Larman showed that y(3) =  7 thus there is some arrangement of eight

planes in that has no rich cells.
If there is a Caratheodory number it must be at least i/(d) or y(d) +  1, 

however as noted above such a number may not exist. Conversely it is 
possible to attem pt to improve the upper bound for i/(d) from its current 
value u{d) < (d +  l)(d  +  2) / 2 , for d > 2 [22] to z/(d) < /(d )  by finding an 
arrangement of /(d )  hyperplanes in general position that has no unbounded 
rich cell.

1.5 H e lly ’s T h eorem
It is interesting to consider other possible uses of the idea that is central to 
the previous work—that of contributing non-trivially to the boundary of a 
convex set. Helly’s theorem [8] says that the intersection of n convex sets 
in is non-empty, provided every (d -(- 1) of the sets have this property, 
i.e. the intersection of every (d -f 1) of the sets is non-empty; the number 
(d-|-1) is known as the Helly number. There is a potential to use the above 
idea here, in order to create a different Helly-tyiDe theorem where convex
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sets contribute non-trivially to their intersection, actually forming part of 
its boundary. In this section I show tha t such a Helly-type number exists 
for halfspaces but that unfortunately it is not possible to obtain such a 
number for convex sets in general.

L em m a 1 2 . The Helly-type number for  an intersection of some n half­
spaces ^ ^  in where each halfspace contributes (i.e. is not 
redundant) to the intersection, is d -\-2 .

P ro o f: One implication is trivial, so let every d -|-2 of the halfspaces bound 
a (d -j- 2)-poly. Applying /.id a set of 7i fixed points p i , . . .  ,p„ on are 
obtained, every d -f 2 of which are in (spherically) convex position, so by 
Caratheodory’s theorem Pi^.. . ,Pn  are in (sph.) convex position. Observe 
that p i , . . .  is an admissable polygon: if k is in the interior of any d-f 2 of 
the points, we are done; otherwise k is in convex position with every d -{- 2 
of the points, thus every d -f 2 of {Â;,pi,. . . ,  ,p„} are in convex position, 
and again the polygon of normals is admissable. Finally note that d -\- 1  

is certainly not enough as it is trivial that if the arrangement is in general 
position every d -)- 1 normals will be in convex position. □

Such a Helly-type number does not exist for general convex sets because 
it does not exist for polyhedrons.
E x am p le :
Assume the Helly-type number to be n > 1 . Consider the intersection of 
any n distinct polyhedra P j , . . . ,  in where each P,- contributes to the 
boundary of the intersection. The intersection is itself a polyhedron P . Let 
d =  min„d(%;, P ) where d{v,P)  is the distance between P  and a vertex v that 
is not on P . Define a polyhedron P'  outside P  whose facets are a distance 
0 < d' <  d from the facets of P . Observe that upon removing any P,-, P'  will 
form a facet of the intersection of P'  and P i , . . . ,  P,_i ,P t+ i,. . . ,  Pn, as at 
least one facet has been removed. So every n of the polyhedra bound their 
intersection yet this is not true of P i , . . . ,  P„ ,P \  This is a contradiction.

1.6 S um m ary

In this chapter I obtained several results on the theme of objects that 
form the boundary of a convex set. Firstly I showed that in an arrange-
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ment of hyperplanes the maximum number of rich cells, /(c?, n), is 
Then I defined convex position for hyperplanes in 3%̂ and showed that the 
Caratheodory number for lines in the plane is five. The answer to this ques­
tion in general dimensions is much more complicated, and such a number 
may not even exist. Finally I showed that a Helly number that does not 
involve any redundancy cannot be found for general convex sets, though 
c? -|- 2 is the equivalent number for halfspaces.
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Figure 1.8: Theorem 9 case cii) five lines not in convex position.

Figure 1.9: Theorem 9 case ciii) five lines not in convex position.
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Chapter 2 

T he 180°Art Gallery Problem

2.1 In tro d u ctio n
The original Art Gallery problem posed by Victor Klee in 1973 was:

W hat is the minimum number / (n )  of guards needed to monitor 
any art gallery room of n sides if the guards are to be stationed 
at fixed points.

Here I will develop bounds on the number of guards that are required if 
their range of vision is restricted to 180°. Klee’s question was answered 
by Chvatal who showed that f {n )  =  [7z/3j [5]. The result is consequently 
known as ‘Chvatal’s Art Gallery Theorem’. Fisk gave an elegant proof of 
this theorem [13]. Fisk’s proof is as follows.

It is known that the interior of a polygon on n vertices can be triangu­
lated into n — 2 triangles [25, p. 12]. Consider the dual graph: the graph 
each of whose nodes corresponds to a triangle and where two nodes are 
joined by an edge if the corresponding triangles share a diagonal of the 
polygon. The dual graph has {ii — 2) nodes each of degree at most three, 
and is a tree (it can have no cycles as a cycle would imply that the polygon 
had a vertex in its interior). Removing a leaf of this tree is equivalent to 
removing a triangle -  a vertex and its two incident edges -  from the edge of 
the polygon, this can always be done. Now consider the triangulation of the 
polygon. This is a j^lanar grajih on n vertices and is 3-colourable (we can 
remove one vertex and its two incident edges and inductively three colour 
the reduced graph, the removed vertex can be coloured as it is adjacent to
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only two other vertices). Any point in the polygon lies in some triangle, 
and each triangle must have all three of the colours on its vertices. Let 
the least used colour be ‘red’. The whole polygon can be seen if a guard 
is stationed at each ‘red’ vertex as every triangle can be seen from its own 
red vertex. A simple counting argmnent shows that ‘red’ can be used no 
more than [n/3j times.

The bound [n/3j is sometimes necessary. This is illustrated by an 
example of Chvatal [5]:
A comb with k prongs has 3k 
edges, and requires k guards.

Many variants of the original problem have been considered. For exam­
ple allowing the guards to patrol an edge or a line segment of the polygon. 
Many of these results are collected in [25].

At the 1992 Computational Geometry meeting in Barbados J. Urrutia 
asked the following variant of the problem.

W hat is the minimum number /i8o(^^) of guards needed to mon­
itor any art gallery room of n sides if the guards are to be sta­
tioned at fixed points, and their range of vision is restricted to 
180°?

Clearly the original art gallery problem will provide a lower bound of 
/iso(^) ^  [n /3 j, as at least as many 180°guards are required as 360°guards. 
The previous example shows the necessity of this lower bound; a comb with 
k prongs requires k 180°guards. The 360° problem also yields the trivial 
upper bound /i8o(^^) ^  [2?7./3j. In section 2.4 below an optimal bound is 
obtained for monotone polygons. A monotone polygon with r reflex vertices 
requires /iso(7%) =  [n /3 j, and f \ 8 o{n) < [r/2 j 4-1 180°guards, results which 
interestingly match exactly the bounds attained when the range of vision 
is not restricted [1]. I will also show that in general /i8o(7%) < [(4n-f l) /9 j;  
this result has since been extended and the extensions are described in 
section 2.3.1. Additionally in section 2.5.1 I obtain several results about 
the number of guards that are required for other restrictions on the angle 
of visibility.
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2.1.1 Definitions:
A polygon P  is defined to be a simple polygon, that is a closed finite con­
nected region of the plane, bounded by the vertices u i , . . . ,  and the edges 
b ij V2], [u2, ^3], • • •, b n -i, î̂ n], wliere no non-consecutive edges share
a point. The boundary is a Jordan curve and divides the plane into two 
distinct regions, the interior int and the exterior of P.

A vertex of P  shall be called reflex if it has an internal angle greater 
than 180°, and convex otherwise.

A point X E P  sees y E P , or y is visible from x  if the line segment 
[z, y] Ç P.  The line of sight is not blocked by grazing the boundary.

A star polygon is a polygon P  where there exists some point x E P  such 
that every point of P  is visible from x, the set of all such points x is called 
the kernel.

A convex fan  centre is a star %)olygon whose kernel includes a convex 
vertex u, [26, p .171] we extend this definition to also include star polygons 
P  whose kernel includes a point v E (u, w) where u and w are adjacent 
vertices of P  i.e. [u, tu] C dP.  We can reformulate the problem as:

W hat is the smallest integer f i 8 o{fi) such that any simple closed 
n-gon in the plane can be covered by /i8o(^) convex fans?

2.1.2 Observation:
Fisk’s proof illustrates that for the general (360°) Art Gallery Problem it 
is appropriate to restrict the location of guards to vertices. This cannot be 
done here. Consider a ‘saw’ with k teeth, here A: =  5:

This polygon has n =  2 k 1  ver­
tices and requires k =  [n/2j 180° 
vertex-guards, but only \ k / 2 ] =
[(n — l)/4 ]  180° guards placed op­
posite every other refiex vertex.

In Section 2.2 I obtain bounds on /i8o(^) for small values of n: n =  5,8. 
I also give the number of guards required for particular types of polygon. 
In Sections 2.3 and 2.4 these results are used to prove the main theorems.
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2.2 P relim in ary  R esu lts
L em m a 13. A convex fan, a convex n-gon, an n-gon with only one reflex 
vertex and a 5 -gon each require exactly one 180° guard.

P roof: Clearly a polygon requires at least one guard.
(i) The lemma is trivially true for a convex fan by its definition, and for a 
convex n-gon.
(ii) Let P  be an n-gon with a single reflex vertex. Extend a ray from this 
vertex bisecting the internal angle, until it first meets d P  at p. The ray 
divides P  into two convex %)olygons each of which can be seen from p. The 
internal angle at p is at most 180°, so P  requires one 180° guard which can 
be placed at p.
(iii) Now consider a 5-gon Q. Triangulate Q and 3-colour the resulting 
graph on five vertices. One of the colours is used once only a t a vertex v 
which lies on all three triangles. V  
Label the vertices as shown:

W 4

'^ 2  W 3
If V  is convex we have a convex fan which requires one guard. Otherwise 

V is refiex, if no other vertex W{ is reflex then by (ii) above one guard will 
suffice, and we are done.

Note that a 5-gon can have at most two reflex vertices^. As Wi and W4  

are necessarily convex, wlog let 1V2 be the second refiex vertex. Consider 
the cone generated by [v,W2 ] with apex W\.

W 3
Let the cone meet [ 1 0 3 , 1 0 4 ] in a line segment [a, 6] as illustrated. If a guard

^Any polygon P  must have at least three convex vertices as follows: If P  has n vertices 
it can be cut into (n — 2) triangles, each triangle contributes tt to the internal angle so 
the total internal angle of P is (n — 2)?r. Each of the reflex vertices has by definition 
an internal angle strictly greater than t t , s o  to avoid contradiction there can be at most 
(n — 3) reflex angles.
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is placed at G [a,b] then Wi, Wg and v are visible from g. The inter­
nal diagonals [g,v], [<7, 1̂ 1], [<7, 1̂ 2] form a triangulation of Q, g lies on the 
boundary of every triangle and the angle at g is 180°, hence Q is a convex 
fan centre g. Q requires one guard. □

C o ro lla ry  5. A requires one 180°guard.

C o ro lla ry  6 . f i 8 o{n) < [n/2j

P ro o f: This is true n =  3,4. Let n > 5, recall tha t the dual graph of the 
triangulation is a tree with maximal vertex degree tliree. We can always 
remove 2 or 3 vertices from the edge of this tree: simply start at any node 
and using a Depth First Search find w the furthest vertex, if the parent v of 
w has degree two then we can remove v and w from the tree, this equates 
to removing a 4-gon from the edge of the polygon; if the parent of w has 
degree three then we can remove three vertices from the tree, which equates 
to removing a 5-gon from the edge of the polygon. The result follows by 
induction. The removed 4- or 5-gon requires one guard. An (n — 2)- or 
(n — 3)-gon remains. □

L em m a 14. An 8 -gon P  requires at most two guards.

P ro o f: Triangulate P  and consider the dual graph of the triangulation. 
Recall that this is the graph whose nodes represent the triangles, and where 
two nodes are joined by an arc if the corresponding triangles are adjacent 
(share a diagonal of P). As explained in the introduction this graph will 
be a tree on six nodes with maximal degree 3. There are only four distinct 
such trees.
a) b)

c )  I r  d )

In cases a), b) and c) it is possible to remove an arc so as to leave two 
connected trees each with three nodes. This corresponds to dividing P  into 
two 5-gons by cutting along an internal diagonal. By lemma 13 each 5-gon 
can be covered by one 180° guard so P  requires at most two guards in total.
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Only in case d) is this not possible. Here there are three possibilities for 
the arrangement of the triangles.
(i): 111

Case (i)

5

Figure 2.1: Lemma 12 case (i).

Label the vertices as shown. Vertices 1, 3 and 7 are necessarily convex. 
If either of 2 or 8 are convex the 8-gon requires at most two guards: If 2 
is convex {2 ,3,4,5,8 ,1} is a convex fan centre 2 and requires one 180°guard, 
there remains the 4-gon {5,6 ,7,8} which can be covered by one guard. The 
case for 8 is symmetrical. So we assume that both 2 and 8 are reflex vertices.

If 1 can ‘see’ 5 i.e. if (1,5)C P  then [1,5] cuts P  into two 5-gons 
{1,2,3,4,5} and {5,6 ,7,8,1} each of which requires one 180°guard, and we 
are done. Otherwise either angle 125 or angle 185 is reflex and blocks the 
line of sight. Due to symmetry we can assume that 125 is reflex. Extend 
edge 12 until it first meets dP  at p.
The ray must pass through (5,8), so 
p G (5, 6] or p G (6 , 7). (The ray can­
not hit d P  at [7,8] as 8 is reflex.)

If p G (5,6] the ray divides P  into two 5-gons each requiring one guard,
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and we are done. So assume p  E (6, 7).

a) If 6 is convex then Q = { 1 ,2 ,5 ,6 ,7 ,8 } is a convex fan centre p. 
(p, 8) C P  as p G A {6 , 7 ,8}.
(p, 1) C P  by construction.
Consider R  = {2,p, 6 ,5}. If 5 is convex then 
P  is a convex quadrilateral, so (p, 5) C P  Ç 
P . Otherwise 5 is reflex: then (2 ,6) (Z! P  so 
(p, 5) C P  - it  must be the diagonal in the 7_____ /
triangulation of P. So (p,5) C P . V
Internal diagonals [p,8], [p,l] and [p,5] divide Q into four triangles each 
of which have p on their boundary, the angle at p is 180°. Q and the 
remaining quadrilateral {2,3,4,5} each need one guard. P  requires at most 
two guards.

b) If 6 is reflex: As the vertex 2 can ‘see’ 5 and p, we can consider 
the triangulation of quadrilateral {2,5,6,p}. As 6 is reflex the triangulation 
cannot contain [5,p], hence [2,6] C P , and divides P  into two 5-gons, thus 
P  requires at most two guards. Case (i) is proved.

Case(ii)

7

6

Figure 2.2: Lemma 12 case (ii).

As for case (i) if the angle at 2 is convex or if (5 ,l ) c  P  at most two 
guards are required. So assume that 2 is reflex, there are two possibilities 
either angle 125 or angle 185 is reflex.
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a) Angle 185 is reflex:
Extend 18 until it first hits d P  at g.
The ray passes through [2,5); g 0
[2,3] as the angle at 2 is reflex, so 
g e  (3,4) or [4,5].

If gf E [4,5] then [1, <7] cuts P  into two 5-gons and we are done.
If ^ E (3,4) then provided [ ,̂ 5] C P , {1,2,3,4,5,8} will be a convex fan 

centre g: y
[ÿ,2) C P  a.s<7 6  A {2,3,4} ^ g,
[̂7,1] C P by construction.

This convex fan needs one guard, the remainder of P , {5,6,7,8 }, can be 
covered by one further guard.

On the other hand if [#,5] ^  P  then this implies that [4,8] C P  as a 
triangulation of {#,4,5,8} must exist. Then [4,8] cuts P  into two 5-gons, 
hence in this case at most two guards are required.

b) Angle 125 is reflex, and 185 is convex. 
Consider the 6-gon Q =  {1,2, 3 ,4 ,5 ,8 ).

Q
8

If (4 ,8) C Q Ç P  then [4,8] divides P  into two 5-gons, and P  requires at 
most two guards. If not then either bi) angle 458 is reflex, or bii) angle 428 
is reflex.

bi) Extend 45 until it first hits dQ at p. The ray passes through (2,8) 
and so p E [1,8]. Thus [4,p] cuts P  into two 5-gons and we are done. (Note 
that p ^  [1,2] as then 125 would be the angle at a vertex of the triangle 
{p, 2,5} which contradicts 125 being reflex.)
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bii) Extend 32 until it first hits dQ at q. Then Q is a convex fan centre 
q: To prove this we observe that either q E [5,8] o r g E  [8 ,1], {q 0  [4,5] as 
then 125 +  32^ > 360°, a contradiction).
If 5 E [5,8] (g, 1) C Q as {1,2, g, 8} is a convex

3  quadrilateral,
(g,3) C Q by construction.
(g,4) C <5 as in (g ,3 ,4 ,5} the angles 
at 3, g, and 5 are convex (recall it is 
assumed here that 458 is convex). 
Hence [g, 1], [g, 3], and [g, 4] divide Q 
into four triangles.

(g, 3) C Q by construction,
(g,5) C Q as {2,5,8,g} is a convex 
quadrilateral,
(g,4) C Q as in {g,2,4,5} the angles 
at g, 2 and 5 are convex,
[g, 3], [g,4], and [g,5] divide Q into 
four triangles.

Q requires one 180°guard at g, one further 180°guard can cover {5,6 ,7,8}. 
Case (ii) is proved.

8

If g E [8 ,1]

Case (iii)

7

6

Figure 2.3: Lemma 12 case (iii).

If 5 is convex then (5,6 ,7,8 ,2,3,4} is a convex fan centre 5; at most two
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guards will be required for P. Assume then tha t 5 is reflex. As in previous 
cases if (5,1) C P  at most two guards are required, so (using symmetry) 
we can without loss of generality restrict attention to the case when angle 
125 is reflex. Extend 12, the ray passes through (5,8) and first meets dP  
at p G [5,6], [6,7], or [7,8].
a) If p G [5,6] then [l,p] divides P  into two 5-gons and we are done.
b) If p G [6 ,7] consider Q = {2,3,4, 5 ,6 , p}

We have assumed that 5 is reflex. The 
angles of Q at 2 and p must be convex, 
as must those at 4 and 6 .

If 3 is convex Q is a 6-gon with one reflex vertex, and by Lemma 13 
requires one guard.

If 3 is reflex consider the cone C generated by [3,5] with apex 4. 
bi) If p G C then (p,3), (p,4), and (p,5)C Q. 2

Q is a convex fan centre p.

bii) If p 0 C then wlog p lies above 43. Let 43 meet (p,6 ) at g. Q is a 
convex fan centre g.
(<7, 2) C Q as {^,3,2,p} is convex 4
(9 , 4 ) C Q and (p, 5) C Q as gf G C.

Thus Q requires one guard. The quadrilateral {l,p,7,8} remains and this 
can be covered by one further guai'd.
c) The final case to consider is if p G [7,8] (thus 8 is a convex angle).

Consider {1,2,5,7,8} if 2 can ‘see’ 7 then we can retriangulate replacing
[8,5] with [2,7] to get an instance of case (ii), otherwise angle 257 is reflex 
(it can’t be 287 as 287 is convex).

{8 ,1,2 ,5,7} is a convex fan centre 8 
and requires one guard.
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It is possible to place a guard at 5, so that the guard can ‘see’ {5,6,7} 
and {5,2,3,4} witliin 180°. These two areas together form a (degenerate) 
convex fan centre 5. 5

□

C o ro lla ry  7, A polygon with 6  or 7 vertices can be seen by at most two 
180° guards.

2.3 T h e R esu lt  For G eneral P o ly g o n s
We can now establish an upper bound for /igo(n).

T h e o re m  15.
/i8o(n) <

A polygon P  with n > 3 vertices requires at most [(4n +  1)/9J 180°guards.

Proof; The result is valid 3 < n <  8, so let n > 9 here. Triangulate P  
and construct the dual graph of the triangulation. This graph is a tree T  
on (n — 2) nodes with maximal degree three. For trees T  with |T| > 3 
the following shows that it is always possil^le to prune a clump of either 
3 nodes, 5 nodes, 6 nodes, (6 +  1) nodes, or (4 +  5) nodes from the tree 
leaving behind a connected tree on fewer nodes:

Root T  at any node and perform a depth first search to locate the node 
w which is furthest from the root. Let the parent of w be If deg(v) =  3 
then we may remove an ‘A clump’ of three nodes.

Otherwise deg(u) =  2. Let u be the parent of v, then if deg(u) =  2 or 1 we 
can remove a clum p’ of three nodes.
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Otherwise deg(w) =  3. There are two possible shapes for the clump of 
nodes beneath u. Either we have a ‘C clump’ in which case we can remove

A ‘C clump’ An ‘X  clump’

5 nodes, or we have an ‘X  clump’. Consider those trees with an X  clump, 
the possibilities are limited by w being the furthest node. In all but four 
cases we can cut an A, B,  or C clump from the tree, the four cases are 
illustrated below.

Remove 5 nodes Remove 6 nodes Remove (6 +  1) nodes

Remove (5 +  4) nodes

This operation of pruning r nodes from T  is that of cutting P  along one 
of the internal diagonals of the triangulation to remove an (r +  2 )-gon, an 
(n — r)-gon remains.

Let the operation be applied repeatedly until there are at most two 
nodes remaining. Say 3 nodes have been pruned a  times; 5 nodes, ^  times; 
6 nodes, 7  times; (6 +  1) nodes, 8  times; and (4 +  5) nodes, 77 times. Then 
we have divided P  into a  5-gons each requiring one guard (by lemma 13), 
(3 7-gons and 7  8-gons each requiring two guards, 8  8-gons and triangles 
requiring a total of three guards, and rj 6-gons and 7-gons each pair requiring 
a total of fom guards. At most a quadrilateral remains, this would require 
one guard.
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|T| =  n — 2 so 3cv +  5^ +  67 +  7^ +  9?7 <  n — 2

number of guards =  a  +  2(^ +  7 ) +  3^ +  4?; +  1
71 — 2 +  /? +  2 .S 4* 3t]

<■ V -
An +  1 
~~9

hence f {n )  < ^   ̂j

+ 1

□
Thus [n/3j < f i 8 o(n) < [(4n +  1)/9J.

2.3.1 E xtensions Of This R esult
The result described in this section has been subsequently extended, firstly 
by G. Csizmadia [6], and more recently by Csizmadia and G. Toth [7].

Let a U-configurât ion be the configuration of four triangles shown in 
figure 2.4. Csizmadia proved that one guard can monitor a U-configuration

WsWi

W 4

W.

Figure 2.4: A U-configuration

except for perhaps a triangle that has [1 0 -2 , 1 0 3 ] as one of its sides. He uses 
this result to prove that / i 8o(H) =  3 by case analysis. He then obtains 
a bound of / i 8o(^) ^  |_(5n +  l)/12 j by inductively removing connected 
portions of the dual tree.
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More recently Csizmadia and G. Toth claim to have proved an upper 
bound of [ |( n  — 2)] =  [2n/5 j. I have seen an (incomplete) sketch of the 
proof [7]. The first step is to classify all jDolygons of six vertices (for example 
figure 2.5 on page 54) where it is not possible for one guard to cover all 
but one triangle that is adjacent to the rest of the tree. Using this, and 
investigating the different tree endings (of up to fifteen nodes) that might 
cause problems. They claim that for any polygon P  a  part of P  can be 
removed so that either a) the removed part can be seen by one guard and 
the rest of the polygon has three less sides, or b) the removed part requires 
two guards and the rest of P  has five less sides. This yields the bound 
[2n/5j.

2.4 T h e R esu lt For M o n o to n e  P o ly g o n s

A chain of vertices p i , . . .  ,pA.. is called monotone with respect to a line L  if 
the projections of p i , . . . ,  pt onto L  retain the ordering of the chain.

A polygon P  is called monotone if its vertices can be partitioned into 
two chains monotone with respect to the same line L. Such a polygon P  is 
also called convex in one direction as any line perpendicular to L  intersects 
P  in a line segment.

T h e o re m  16, [n /3j 180°guards are sometimes necessary and always suf­
ficient to cover a monotone "polygon P  on n vertices, i.e. /igo(u) =  [u/3j 
for a monotone polygon.

Proof:
N ecessity

Sufficiency

A polygon consisting of k ‘triangles’ 
joined as shown has 3A; edges and re­
quires k guards.

By Lemmas 13 and 14 [n/3j guards are sufficient when n < S. Let 
n > 9 we inductively cut P  into a 5- or 6-gon requiring one guard, and an 
(n — 3)-gon. Thus P  requires 1 -f [(n — 3)/3j =  [n/3j guards.

Let P  be monotone with re.spect to the a;-axis, P  is formed by a ‘top’ 
and a ‘bottom ’ chain of vertices. Order the vertices of P  l , . . . , n  in the
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positive x-direction The order is unim portant when more than one vertex 
has the same x-coordinate, and the method used is still valid in this case. 
W ithout loss of generality 5 is a ‘bottom ’ vertex.

(i) If 5 can ‘see’ the last top vertex v where 1 < u <  4 then cut P  
at [5,u]. This divides P  into the polygon {1,2,3,4,5} which requires one 
guard, and P'  which has (n — 3) vertices, and requires ([n /3 j — 1) guards 
by induction.

(ii) If not then a reflex vertex i, v < i < 5 must block the line of sight 
from 5 to u, (hence i must be a bottom  vertex or monotonicity would be 
violated).

There are four possibilities:

a) ‘top’ chain {1,2,3, . . .  ,n} ‘bottom ’ chain {1,4,5, . . .  ,n} i = 4,
b) ‘top’ chain {1,3, ...,?%} ‘bottom ’ chain {1,2,4,5, . . .  ,n} i =  4,
c) ‘top’ chain {1,2, ‘bottom ’ chain {1,3,4,5, . . .  ,n} z =  3 or 4,
d) ‘top’ chain {1, ...,?%} ‘bottom ’ chain {1,2,3,4,5, . . .  ,n} z =  2 or 3 or 4.

Note that a vertical line meets P  in a line segment, and a vertical line which 
passes through a reflex vertex resolves it into two convex vertices.

C ases (a ), (b ) a n d  (c) w h en  z =  4.
Extend the edge 54, Let it hit the top side of P  at 0, 0 lies between v 

and the next top vertex,^
y  Q Cutting P  at [0,5] divides P  into the

5-gon {0,1,2,3,4} and the (n — 3)-gon 
{0,5,6 ,7, . . . »  }.

5
Inductively at most {n/3j guards are required.
(c) W h e n  z =  3:
Here 4 must be a convex vertex (else 3 lies to the left of 54 which would 
imply z =  4 the case dealt with above). Vertex 1 is also convex. Let 0 be

^Vertex v lies to the left of 54 eis 4 prevents 5 seeing u ;  54 is in the negative x-direction 
and so hits the top edge to the left of 4, i.e. to the left of the next top vertex.
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4 5

the point where the vertical line through 5 meets the top side of P . Cut P  
along [5,0]. The angles created at 5 and 0 are convex, or else monotonicity 
would be contradicted.

If 2 is convex then {0,2,1,3,4,5} is a 6-gon with one reflex vertex (i.e. 
the vertex at 3), which requires one guard by Lemma 13. The (n — 3)-gon 
{0,5,6, . . .  ,n) remains and we can induct.

If 2 is reflex then consider the cone C generated by [2,3] w ith apex 1: 
0,4 and 5 lie outside the cone because 2 and 3 are reflex, and if 5 € C then 
5 can ‘see’ 2 as then (5,2) Ç C  i.e. 5 can see v which would be case (i) 
above.

Q So C meets (0,5) in a line segment
[a, b]. Let g G [a, b].
Then [g, 1], [</, 2], [g, 3] C C  Ç Q; also 
b , 4] C Q :  consider the convex
quadrilateral cut off by a vertical line 
through 4.

Hence {0,2,1,3,4,5} is a convex fan centered at g and requires one guard, 
and {0,5,6, . . .  ,n) is an (?i — 3)-gon. The result follows by induction.

( d )  Let the vertical lines through 3,4 and 5 meet d P  again at p,q and 
r respectively. Then p^q and 7* lie on the first top edge [l,x ] for some 
X G {6 , . . . , n } .  Cut P  at [5 ,7’] into an (n — 3)-gon and the 6-gon Q  =  
{r, 1 ,2 ,3 ,4 ,5 ). Consider placing a guard at p:
[p, 3] C (? (monotonicity),
[p, 2] C Q: a triangulation of p q ^
{l,2,3,p} exists; Hence either [p, 2] or ^
[1,3] C Q .  If [1,3]C Q  then 2 is con­
vex, so {l,2,3,p} is convex which im­
plies tha t [p, 2] C <3 ,
[p, 4] C Q as {p, <7,4 ,3} is convex.

If [p, 5] C Q  then Q is a convex fan centre p and requires one guard. 
Otherwise if [p, 5] çz! Q  then consider {p,4 ,5 ,r} . The angle p45 must be
reflex, if we extend edge 54 it cuts (p, r) at a point g. In this case [</, 5] cuts 
P  into a 5-gon and an (n — 3)-gon and we can induct. □

T heorem  17. The number of 180° guards required for  a monotone polygon 
P  with r reflex vertices is at most [r/2 j -f 1.
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This result is better than Theorem 16 whenever r < 2 [n /3 j — 2.

Proof: Let P  be monotone with respect to the x-axis. We draw a vertical 
line through each of the reflex vertices—this resolves each reflex vertex into 
two convex angles.

Assume for the moment that no two reflex vertices have the same x- 
coordinate. The lines cut P  into ( r-f  1) convex pieces, which can be seen by 
( [ r / 2j +  1) 180° guards—place a guard opposite every other reflex vertex 
(in a horizontal sort). Each guard will be placed on an edge or at a convex 
vertex, and so will have a field of view less than 180°.

A maximum of two reflex vertices may share the same x-coordinate. 
Each time that two reflex vertices ?'i and 7*2 share the same x-coordinate 
the above method would place a guard opposite one of them to cover the 
convex region K  of P  to the left or right of [ n , ?'2] and the now degenerate 
convex region of P  between the vertical lines through 7’i and T2. Placing a 
guard anywhere on OK will cover the required area within 180°. □
N ecessity

The comb of page 37 and the necessity example on page 49 are both 
monotone and each has r = 2 (n — 3)/3 reflex vertices and needs [r/2 j +  1 
which is [n/3j 180°guards.

2.5 C onclusion .
In this chapter I attained the non-trivial bound f i 8 o{n) <  [(472 +  1)/9J for 
the 180° art gallery problem, a result which has since been extended. I also 
showed that for monotone polygons restricting the field of view from 360° 
to 180° does not affect the bounds obtained [1]. I strongly suspect that 
the true bound for this problem is f i 8o{ii) =  [n /3 j in general. The current 
technique involves cutting off ever larger portions of the dual tree and 
limiting the numbers of guar ds that are required. This has lead to successive 
improvements but is unlikely to achieve a bound of [n /3 j. The example on 
54 illustrates the difficulty—to achieve [n /3 j using this method we must 
always be able to remove a portion seen by k guards so tha t at most ( n —3k) 
connected triangles (not necessarily of the original triangulation) remain; 
this is an example where this is not possible for k = 1 . The problem with 
this technique seems to be its dependence on the triangulation, yet it should 
be noted that there do exist polygons which have a unique triangulation.
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2.5.1 Other R elated  R esults
It is feasible to consider what happens when other restrictions are placed 
on the angle of visibility. Let fe{fi) designate the number of guards that 
are required to monitor an art gallery of n sides if each guard is allowed to 
survey a maximum angle of 9°.

C la im  18. I f  9 < 189° then fe{n)  > [n /2 j.

P ro o f: The proof is by example. A ‘zig-zag’ with 2k vertices requires at 
least k 0-guards if the angle a  of the zig-zag is strictly greater than 9.

□

C laim  19. feo(ri) < (n — 2)

P ro o f: Each triangle of the triangulation has an angle that is at most 60°. 
□

C laim  2 0 . I f  9 < 60° then (n — 2) > fe{n).

P ro o f: If n is even, a zig-zag on n vertices with angle 180° >  a  >  30
requires (n — 2) 0-guards. To see this note that each ‘V ’ shaped region 
requires at least four guards, and each end triangle requires one guard.

If n is odd, then consider the same shape, but with one end flattened 
so that it forms a parallelogram. This parallelogram requires at least two
guards, as all of its angles are at least 60°. □
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Figure 2.5: A polygon on six vertices. If this is joined to the tree via [1,6] 
(or [3,4]) it is not possible for a guard to see all but a single triangle that 
remains attached to the rest of the tree.
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C hapter 3 

T he D iam eter Problem

3.1 In trod u ction
In this chapter I give details of a (deterministic) algorithm that solves 
the diameter problem. This problem is one of the classical problems of 
computational geometry. The problem can be formulated as follows:

Given a set A  of n points in find y E A  such that d{x,y) = 
max{d(u,u) : u ,v  E A]  in other words what are the farthest 
pair of points from a set of n points.

This question can be trivially answered in O(n^) time, by simply calculating 
the distances between all possible pairs of points and comparing the results.

The diameter question can be asked in any dimension. A lower bound 
for the problem is n (n lo g n ) [26], which is obtained by transforming the 
problem to set disjointedness. As a guide to the relative complexity several 
results describe how many diametral pairs (pairs of points that realise the 
diameter) there can be among n points in In [11] it is shown that there 
are at most n diametral pairs in In there can also be at most 0 (n )  
such pairs (in fact 2n — 2), this result is known as Vaszonyi’s conjecture 
and is demonstrated in [18,16]. However in d > 4 there can be as many 
as 0{n^)  diametral pairs [12,24]. The example that shows this is due to 
H. Lenz. For the construction in take two mutually orthogonal circles 
radius l / \ / ^  around the origin, and distribute n / 2  points within a small 
arc of each; the diameter of the set is one and n^/4 pairs reahse this.
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The diameter problem has been solved in for instance by noting that 
the diameter must be realised by an antipodal pair of vertices of the convex 
hull, if the convex hull is constructed in O (nlogn) time, then rotating a 
pair of parallel planes around its boundary to identify all antipodal pairs 
takes 0 (n )  time and yields the diameter, [26].  ̂ Notice that, in with 
d >  4, Lenz’s example can be slightly pertuibed so that O(n^) pairs nearly 
realise the diameter, thus is the most interesting case left open. It is 
hopeful that if pairs of points are chosen wisely, the number of pairs that 
need to be considered is relatively small.

The algorithm detailed below is compiled from the work of A.C. Yao 
[29], B. Chazelle [4], and D. Kirkpatrick [19]. Previously only a sketch 
of the algorithm existed, and it has never, to the best of my knowledge, 
been presented in a unified form. This algorithm has a running time of 

logn). The best preceeding algorithm was due to A.C. Yao [29], 
he gives an algorithm that returns the diameter of n points in in a time 
of 0 ((n log

3.2 G eneral O utline A n d  Y ao’s A lg o r ith m
An algorithm described by Yao in [29] will be the top level algorithm; this 
applies a divide and conquer strategy using Chazelle’s answer to another 
problem ‘the post office problem’ [4] which produces the farthest point, in 
some set B , from a query point x. The post office problem is usually stated 
for nearest point queries.

The post office problem for farthest point queries is to: prepro­
cess a set B  of points so that given a test point x the furthest 
y G B  from x can be quickly obtained.

If a large number of queries are to be made on a set B  then the preprocessing 
time may be expensive, because if this yields a fast query time the net result 
may be quicker.

The post office problem was first formulated in two dimensions by Knuth 
[20]. In three dimensions there have been several results. Dobkin and Lip- 
ton [9] used a technique generalised from two dimensions th a t answered

^This type of technique will not work in because in this ca.se there can be as many 
as O(n^) antipodal pairs.
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a query in O(logn) time, given an extremely high preprocessing time of 
O(n^^logn). Yao [29] improved the 3%̂ result, obtaining a query time of 
0 ((logn)‘̂ ) with a substantially better preprocessing time of O (n^logn). 
This was the result that led to the 0 ( (n  log n)^ ®) diameter algorithm. 
Subsequently Chazelle produced an algorithm that had a query time of 
0((logn)^) and a preprocessing time of O(n^). This is the algorithm that 
will be described below.

3.2.1 Y ao’s A lgorithm  For T he D iam eter Problem
(1) Divide A  into r =  \n/q] sets , . . . ,  each with at most q points.
(2) Preprocess each J5, for farthest point queries.
(3) For each x Ç: A  and 1 < z < r find the point y^i £ Bi which is the 
furthest point from x in Bi.
(4) For each x £ A  compare the yxi^s 1 < z < r to find the point in A  
furthest from x.
(5) Find the longest such edge {x^z^}.

This algorithm clearly returns the diameter of the set. If P{n)  and 
Q{n) are the preprocessing and query times respectively for the post office 
problem on n points in 3%̂ then the total running time is:

rP(q)  +  nvQ(q) +  nO{7' — 1) +  0 (n  — 1)

where the additional terms are the times for the various comparisons. 
Chazelle’s algorithm gives P(n) = 0{n^)  and Q{n) =  O((logn)^). In sec­
tion 3.5 I show that taking these time bounds, if we pick q — n^/^logn the 
algorithm requires a total running time of log n).

3.2.2 O utline Of C hazelle’s A lgorithm
Chazelle writes his algorithm to answer a nearest point query, but all the ar­
guments adapt straightforwardly for farthest point queries. The algorithm 
hinges on a geometric observation about Voronoi diagrams.

The farthest point Voronoi diagram V{B)  (hereafter abbreviated to 
Voronoi diagram) of a set B = {p i,. . .  ,p„} in is a division of the space 
into regions called cells. A cell is that part of space which is farther from 
a particular pi than from any other points of B.  The Voronoi cell of point
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P i  is the set {p E : d(p,pi) > d(p, s ) ,s  6  B  — {p*}}. The union of all 
such cells, each associated with one of the n points, and the faces between 
the cells make up the Voronoi diagram V{B)  of B.  Note that all faces and 
regions of V(J?) are convex.

We could equivalently define V{B)  to be the cell complex whose faces 
are equivalence classes of points under the relation C(p) = {s Ç: B  : d(p, s) 
is maximised} and where p and q are equivalent points if C{p) =  C{q) see 
[10, p.294].

The action of finding the farthest point p* in B  from a query point q is 
equivalent to that of locating q in V{B): q will lie in the Voronoi cell of p,-. 
Chazelle shows that if the points of B  are ordered P i , . . .  ,Pn with respect 
to the X  direction; and the cells of V(B) are divided into two groups: those 
associated with P i , . . .  ,P{n/2 )'i and those with P(n/2)+i? • • • ,Pni then the faces 
which lie between these two groups of cells are unique with respect to x. 
In other words a line parallel to the z-axis will touch exactly one of these 
faces.

Effectively these faces form a ‘curtain’ (not necessarily flat) of 2, 1, and 
0 dimensional faces, which lie between the two groups of cells. On one side 
of this curtain lie points which are furthest from one of p i , . . .  ,P(n/2) and on 
the other points furthest from one of P(n/2)+i,  • • • ,Pn- Because the curtain 
is unique in the æ-direction we can project it onto the yz  plane to get a 
convex planar subdivision S^.

We wish to locate the test point in a cell (or face) of the Voronoi diagram 
V{B). If the test point is g =  (æ ,p,z) then we project this into 5 , to get 
q' =  (p ,z). If we locate q' in 5, using a planar point location algorithm, we 
obtain the planar region(s) which it lies in. This corresponds to a facet(s), 
a two dimensional face, of V(.B) which is part of the curtain. The facet 
lies between a cell due to a p,, 1 < z < n / 2 , and a pj, ( n /2) +  1 < i  < n; 
and lies on the perpendicular bisector of pi and pj. The line Lq through 
q parallel with the æ-axis passes through the curtain at this facet(s). The 
point q lies on the line either in the curtain or on one side of it.

If d(g,pt) =d(g ,pj) then q actually lies on this facet in the curtain. We 
have found the face of V(B)  where q lies: we know p* and pj are both 
farthest from q.

If d(g,pi) > d{q,pj) then q lies on the same side of the curtain as the

^This is planar because the faces are unique in the x-direction, the subdivision is convex 
because the faces of the curtain are convex as they are faces of the Voronoi diagram.
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cell due to pi (as it is on this side of the perpendicular bisector), and q 
will be found to lie among the cells due to p i , . . .  ,jP(m/2), in other words its 
furthest point is one of p i , . . .  ,P(n/2)- Similarly if d(ç,p,) < d(q,pj).

c u r ta in

Figure 3.1: q lies among the cells due to p i , . . .  ,P(n/2)-

The number of points of B  that need to be considered has been (at 
least) halved. Effectively we have constructed a binary search among 
Pi , . . . , p„.  The algorithm involves a preprocessing at each possible com­
bination P r , . . .  ,Pt  of points that may be reached during the binary search. 
For each of these the Voronoi diagram must be built and S  constructed 
and preprocessed for planar point location. After each step we have halved 
the number of possible candidates for the farthest point. An optimal al­
gorithm, [19], is used to search 5, this has linear preprocessing, and log­
arithmic query time. In section 3.4.3 I will show that this results in time 
bounds P{n) = O(n^) and Q{n) = O((logn)^).

The algorithm is described from the bottom  up. Firstly, in section 3.3 
an algorithm of Kirkpatrick for the planar search will be described. Then 
in section 3.4 Chazelle’s algorithm for the post office problem is described 
in detail. The information which is obtained in the course of Chazelle’s 
algorithm needs to be converted to that required to perform Kirkpatrick’s 
algorithm; section 3.4.2 will explain how to deal with this. Finally the time 
taken to perform the whole algorithm will be discussed in section 3.5.

3.3 P lanar Search
David Kirkpatrick - Optimal Search In Planar Subdivisions

Chazelle suggests preprocessing and searching the plane using Kirk­
patrick’s algorithm [19]. This is a practical algorithm, that is optimal in 
terms of search time and space.
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Kirkpatrick’s algorithm is designed for searching triangular subdivi­
sions. He describes how it can be extended to search a general planar 
subdivision, this will be discussed in section 3.3.3. The algorithm is de­
scribed as it is presented in [19].

A triangular subdivision T is a finite convex planar subdivision (i.e. 
each line segment defining the subdivision is finite) all of whose regions, the 
external region included, are bounded by exactly three line segments. The 
external region is the unique unbounded region. Note that the subdivision 
can also be viewed as a planar graph, so graph theoretic ideas can also be 
used.

The algorithm exploits the fact that membership of a triangular region 
can be tested in constant time. If the three vertices are u — (uy,%a), 
V = ( v y , V z )  and w = tu^), then we can easily find an interior point: for
example {^{uy + Vy-\- Wy)  ̂ -\-Vz-\- u>z)). We check whether the test point 
p lies on the same side of each of the three edges as this interior point; only 
if this is true does p lie inside the triangle. This operation takes constant 
time.

If a convex planar subdivision has |K| vertices then Kirkpatrick’s algo- 
ritlim  allows us to locate a query point q' in 0(log |V ’|) time, with 0 ( |V |)  
preprocessing and storage.

3.3.1 Basic O utline Of The A lgorithm
Clearly we can’t test membership of every triangle of the subdivision, as this 
would result in a linear query time. Instead, a search structure of triangles 
is constructed this is called the subdivision hierarchy over T. This is a 
sequence of triangular subdivisions each with sucessively fewer regions. We 
obtain these by repeatedly removing independent sets of vertices (from the 
previous subdivision) and retriangulating the regions thus left empty. This 
is done in a way which ensures that for each triangle in the new subdivision 
there are only so many ‘parent’ triangles in the previous subdivision, in 
other words each new triangle only overlaps a certain number of triangles 
on the layer beneath.

To search the region inside the bounding triangle start at the top sub­
division (that with fewest triangles) and by testing membership of each of 
the triangles determine which contains the test point. Repeat this for the 
parents of that triangle in the layer beneath, and so on until finally the
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original subdivision T  is reached and the answer is returned.
The hierarchy takes 0 ( |y |)  time to construct and has height log(|V”|), 

where |F | is the number of vertices of T. At each stage we limit the number 
of triangles for which we have to test p ’s membership, to a maximum of a 
constant number.

The input that the algorithm requires is an edge ordered representation 
of T, this consists of the following:
1) The coordinates of the vertices u of T and an anticlockwise list of all 
directed edges of T  source v.
2) A list {{v, w ) , (w, v)} for each line segment v—w.
3) On edge {v^w) a pointer to the name^ of the region immediately ‘to the 
right of’ (u, w), and a pointer between {v,w)  and (w,v).

3.3.2 Theory Behind K irkpatrick’s A lgorithm
Note that the size of a finite planar subdivision can be measured in terms of 
either the number of vertices, or the number of edges, as these are linearly 
related by Euler’s formula [2, p. 17], This states that /2  —/ i  + /o  =  2, where 
fk is the number of faces of dimension k. Each edge is in two regions, and 
we have a triangular subdivision which has (the maximal number of edges) 
exactly three edges per region = | / i .  Then if the number of vertices fo 
is n, and n > 3 we have that / i  =  3n — 6 and /2 =  2n — 4. We choose to 
measure |T| using \V\ the number of vertices of T.

T h e o re m  21. (Kirkpatrick) There is an 0(\og\T\)  time 0 ( |T |)  preprocess­
ing and storage algorithm which will enable us to locate a point inside the 
triangular subdivision T.

We search through a subdivision hierarchy on T  which we can create in 
the required time. This is a sequence T i, . . . ,  Tk(|v|) of triangular subdivi­
sions such that each region R  of T,q.i is linked to all regions R'  of Ti for 
which inti? fl i?' ^  0. The regions R  are called the parents of R  in Ti. The 
first subdivision is T, and h{\V\) is the height of the hierarchy.

The space required to store the hierarchy will be the sum of the spaces 
required for each of the individual subdivisions, which is |7i|); plus
the space required for the links between the layers.

^Each region will be named by a pair (piPj) of points to reflect which facet of the 
curtain the region corresponds to.
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The point location algorithm simply involves passing from Th{\v\) to T, 
and locating the test point q' at each level. Then looking at the parents
of that region and locating q' in the level below. It is clear that this will
locate q' in T.

A lg o rith m : H ie ra rch ica l S ubd iv ision  S earch

candidatesh,(\v\)-= regions of T/i(|y|)
i2:=^ region in candidatesk(^\y\) containing q'

w hile  z >  0 do candidatesi := parents of (i?)
R:= region from candidatesi containing q'
i:= z — 1 

r e p o r t  (region R)

The time taken to perform this algorithm is determined by the number 
of regions of which we have to test ç '’s membership: {candidates i \ ) .

In the following section it is shown that it is possible to construct hier­
archies where h(\V\) and {candidatesi\ are limited. In other words we will 
limit the number of parents a region can have at each level, and also the 
number of levels.

C o n s tru c tin g  T h e  S ubd iv isio n  H ie ra rch y

Firstly we show how to construct such a subdivision hierarchy of height 
two. In other words from T  we construct in 0 ( |T |)  time another triangular 
subdivision T'  which is of smaller size (has less vertices) than T, and where 
we limit to d the number of parents regions of T'  can have.

L em m a 22. (Kirkpatrick) There exist constants c , d > 0  such that for  any 
triangular subdivision T  with |T| > 3 (i.e. non trivial) we can construct T'  
in 0 ( |T |)  time where T' is a triangular subdivision and
(i) \r\ <  (1 -  i |T |)
(ii) each region of T' has at most d parents in T.

P ro o f: (Kirkpatrick). We do this by first removing a vertex of T. Let v 
be any internal vertex of T, then there are deg(u) regions of T  incident with

'^By testing q' G R' 'iR' G candidatesk(|y|).
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V. We call the union of these regions the neighbourhood  of v and denote this 
by nbd(u). This is a star shaped polygonal region and has deg(u) bounding 
edges: each region in nbd(u) is triangular and two of its edges are incident 
with u, the third edge of each triangle bounds nbd(v).

We remove v and its deg(u) incident edges from T and retriangulate 
nbd(u), this involves introducing (deg(v) — 3) new edges [25, p. 12]. The 
result is a triangular subdivision on |T| — 1 vertices. In nbd(v) we cover 
deg(u) regions of T  with new triangles of T', so these new triangles overlap 
at most deg(u) regions of T, All the other regions remain fixed. No m atter 
how we retriangulate, each region of T ' intersects at most deg(u) regions of 
T.

Removing one vertex gives minimal simplification, but we can remove 
v i , . .. ,Vt a set of independent vertices in T to get our new triangular sub­
division T'. Vertices are considered independent if they are non-adjacent 
in other words if nbd(z;,) and nbd(uj) intersect in at most some boundary 
edges. After removing the vertices, all the vacated neighbourhoods can be 
retriangulated to form T ' . Then T ' is a triangular subdivision with |T| — t 
vertices; each new region intersects at most max{deg(u,) : 1 <  z <  }̂ 
regions of T.

We can remove the edges and retriangulate in 0 ( |T |)  time: Less than \E\ 
edges are removed and |£ |̂ oc jV| =  |T|. We replace these with less edges, 
^d eg (u ,)  — 3 ,̂ than are removed. When we remove a vertex we leave a 
starshaped region, which it is known can be retriangulated in 0(|deg(i;)|) 
time where v is the vertex removed (see algorithms outlined in [27,14]). So 
the total time used to remove edges and retriangulate is 0 ( |T |)  time.

To complete the proof of the lemma we need only identify % i,...,U f in 
0{\T\)  time, with deg(i;,) < d, I < i < t; and t > \T\/c for some constants 
c and d. Lemma 23 below shows that we can find such a c and d but no 
attem pt is made to optimise, as optimising may affect the time bounds 
adversely.

L em m a 23. (Kirkpatrick) There exists c, d > 0 such that every planar 
graph with |V| =  n vertices has at least n /c  independent vertices of degree 
at most d and we can find at least n /c  of them in 0 (n) time.

P ro o f; (Kirkpatrick). We know that a triangulation on n vertices has 
the maximum number of edges possible for a planar graph, so a planar

63



graph has at most 3n — 6 edges. Each edge has two vertices so the average 
vertex degree is:

2 l ( 3 ü Z . ^ = 6 _ l g < 6 .
n n

Less than half of the vertices can have degree exceeding eleven.^
So consider the vertices of degree at most eleven. These form a set 

V  with |V'| > |n .  We can identify these vertices in linear, 0 (n ) , time 
by counting up to twelve edges out of every vertex and stopping. We can 
then eliminate these vertices straightforwardly to get an independent set 
by picking one element and eliminating its neighbours and so on. Each 
vertex in V  is adjacent to at most eleven vertices of W, so the resulting 
independent set has at least |W |/12 > n/24 vertices, as \V'\ > n /2 .

So we have found d =  11 and c =  24 in 0 (n )  time. □
Thus to construct the subdivision hierarchy of lemma 22 takes 0 ( |T |)  

time: the vertices are identified in 0 ( |T |)  time, and the edges are removed 
and the neighbourhoods retriangulated in 0(X^deg(t;)) <  0{\E\)  =  0 ( |T |)  
time (each edge can be removed at most once). □

We have found a subdivision hierarchy of height two. We iterate this 
procedure to obtain the required hierarchy.

L em m a 24. (Kirkpatrick) 3c,d{> 0) such that from any triangular subdi­
vision T  on n vertices, we can create an associated subdivision hierarchy 
T i , . . . ,  T/i(|v|) in 0{\T\) time, with:
(i) |Ta(|v|)| =  3,®

|T(+,| <  (1 -  i) |T i|,
(in) Each region in Tj+i has at most d parents in T{.

P ro o f: (Kirkpatrick). Whenever |Tj| > 3, with c =  24, d = 11 we can 
find |T ,|/c independent vertices in 0 (|T ,|) time with the required property. 
Removing these and retriangulating takes 0 (|T ,|) time. So the to tal time 
is of the order of

M|V|) /i(|v|)
Z  mi < E ( i - ( i / c ) r ' i T i i
t=l i=l

^Less than half of the vertices can have degree twice the average or above as a vertex 
can’t have zero degree.

®We can always reduce it if it’s greater than three.
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=  | T | ( 1  +  (1  -  ( l / c ) )  +  • . .  +  (1  -  ( l / c ) ) ^ ( M ) - ^ )
1 _  (1 _  l)H\v\)

= \T\ 

=  \T\ 1/c 
< c\T\ 
= 0(\T\)

as h{\V\) > 0 . □
We can now prove theorem 21. To obtain the subdivision hierarchy 

the preprocessing time is 0 ( |T |)  (lemma 24). The total space required to 
store the subdivisions and the links between the layers of the hierarchy is 
0 ( ^  \Ti\ +  |T,|) =  0 ( |T |)  (by the calculation above).

We need only show that the time required to perform a query is O(log |T |). 
First observe that |T| =  |Ti| • • • |T/i(|v|)| =  3 form at most a decreasing ge­
ometric progression with ITj+J < -IT ,-1. Thus the subdivision hierarchy 
has height 0 (log |T |):

|T| < 3 • (c/(c -
log |T | < { h i \ V \ ) - l ) C ^
MIV'I) =  0 (lo g |T |)

Note that the top region has one triangle. The time taken to
perform the query is made up of testing membership of a triangle, a constant 
time question, in the following number of regions:

h(\v\) A(|y|)
1 +  ^  [parents^I < 1 +  ^  d 

1=1 1 = 2

=  1 -b O(iog | r | ) . d

The algorithm query time is O(log |T |), which proves theorem 21. □

^Where C =  (log(3) +  loge — log(c — 1)) is a constant.

65



On completion of the algorithm we arrive at a triangle {ui, 1̂2,^ 3}, &nd
the region that q' lies in must be named. If (^3)  ̂> (^2)^; then we
look at the region to the right (with respect to y) of [^1,^ 2] and we have
located the region that contains q'.

Figure 3.2: Naming the region that contains q'.

3.3.3 Searching The Convex Planar Subdivision
The planar search that has been described so far can only be used to search a 
triangular subdivision, such a subdivision is bounded and very specialised. 
During the course of Chazelle’s algorithm we must locate a point in a 
general unbounded convex planar subdivision. This section describes how 
Kirkpatrick’s triangular' subdivision search is adapted to search this type 
of subdivision.

Assume an edge ordered representation (see section 3.3.1) of S  is given, 
where 5  is a general unbounded convex planar subdivision. First we show 
how to create a triangular subdivision T  from S  by intersecting S  with a 
large triangle. Kirkpatrick’s algorithm can then be used to search the sub­
division inside the large triangle. After that the method used for searching 
the external region is described.

C re a tin g  T  from  S

C la im  25 (Kirkpatrick) The triangulation T  of an unbounded convex pla­
nar subdivision S  can be obtairied in OdSj) time; \T\ = 0(1*91).®

The triangulation T of 5  will be formed by intersecting S  with a large 
triangle, and then triangulating the resulting subdivision to obtain T. Re­
call that |T| is the number of vertices of T. So in forming T  we will gain 
the three vertices of the large triangle, and additional vertices where the

is a refinement of 5  so if we can locate a point in T  we have located it in S.
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unbounded edges intersect this triangle. Triangulating the region inside the 
large triangle does not change the number of vertices (it just increases the 
number of edges). So the number of vertices of T  is at most |V| +  \E\ +  3, 
(assuming all edges are unbounded), where |.B| is the number of edges of 
S. As we have already observed Euler’s relation implies that \E\ = 0 ( |y |) ,  
so |T| =  0 ( |y |) ,  in other words |T| =  0 ( |5 |) .

Assume an edge ordered representation of S.  We must now show how 
an edge ordered representation of T  can be obtained in the required time. 
As T  is constructed new vertices and edges are formed, and the required 
information about each of these must be stored.

First we intersect the subdivision S  with a triangle big enough to con­
tain all of the vertices (all the intersections of the line segments) of the 
subdivision. It is easy to achieve this in the required time. For example 
one way of doing this is to find the maximum of d(0,u) over all vertices 
V of 5 , this will take 0 ( |V |)  time; let this maximum be r ', then all the 
vertices are contained in the closed ball 5 (0 , r) for r  >  r'. We can find 
an equilateral triangle outside this ball: see figure 3.3. We need to find 
h = r/(sin7r/6) =  2?’, and c =  r/(tan7 r/6 ) =  \/3 r; so Vi = (—r, \/3 r), 
V2 =  (—r, —\/3 r), V3  =  (2?', 0). This orientation of the triangle was cho-

Vi

V2

y

Figure 3.3: Finding the large triangle.

sen because in this case we need only name the regions ‘to the right of’ 
boundary edges along

Next, the unbounded edges must be intersected with the border of the 
large triangle Ajvi,-i;2, ^̂3}* All the required information about the new 
vertices must be obtained: that is their coordinates and the cyclic order of 
edges about them. We must also list the new line segments and name the 
regions to the right of the edges on [ui,r’2]-

We assume that the information we have about the unbounded edges 
is the equation (and direction) of the half-line that forms each unbounded
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edge, the coordinates of the vertex that the edge radiates from, and a link 
to the names of the two regions lying on either side of the unbounded edge 
(v,oo). It is not possible to just intersect all of the lines with the triangle 
and then order them as this would require an 0 ( |y  | log |y |)  sort, and we 
need to achieve 0 ( |y  |) time. One technique that achieves this time bound 
is described below.

The coordinates of the new vertices can be obtained in the following 
way: First pick an unbounded edge and intersect it with the large triangle 
{ui,U2,U3}. To do this we intersect the edge (a half-hne) with each of the 
lines bounding the large triangle and check whether the answer is in the 
relevant segment of that line. Look at the next edge anticlockwise and the 
next edge anticlockwise from the other end of that, until another unbounded 
edge is encountered; then intersect this edge with the large triangle, and 
repeat. Eventually we return to the initial edge. This method retains the 
cyclic ordering of the unbounded edges.

At each of the new vertices we need to record the anticlockwise order of 
the edges into that vertex. This can be incorporated into the above method. 
If edge (u, oo) is the latest unbounded edge, and v' is its intersection with the 
boundary of the large triangle, then: create the edge {v,v')  (in other words 
(v,v')  and (v' ,v)  with a pointer linking them). Let prev denote the last 
new vertex found and next denote the next new vertex that will be found. 
Create (v', prev). The order of edges around v' is {v\ prev)., (v', next), (u', v). 
We need to malce special cases of the first unbounded edge that is picked; 
and whenever prev or next lies on a different edge of the large triangle from 
v': here set prev or next respectively to the relevant vertex u,-, i = 1,2,3. 
At this time we can also create the cyclic order of edges around u,-. Finally, 
if a newly created edge {v',w') (where w' =  prev) lies along {vi,U2} then 
the region to its right must be named. Simply create a pointer to the name 
common to the edges (u, oo) and (w, oo). This operation takes a constant 
time at each unbounded edge that is encountered, and involves a search 
along all edges that bound infinite regions, this can be at most 0{\E\)  
edges.

The previous operation clearly intersects S  with a large triangle and 
obtains all the information about the new arrangement, the time taken is 
0(|T /|) +  0 (|£ ;|)  =  0{ |S '|)tim e,

The final step necessary to obtain the triangulation of S  is to triangu­
late the area inside the large triangle. Assume that the unbounded edges
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are distinguishable and excluded, and that we have an unordered list L IS T  
of all bounded edges (u, ru), each edge occurs in the list in both orienta­
tions. Also assume pointers to the associated regions to the ‘right’ R{v,w)y 
where R(v ,w)  =  0 if ( f , ^3]. Recall that the edge ordered 
representation contains an anticlockwise ordered list of edges source v, for 
each vertex. For ease of descrijDtion I choose to represent the cyclic order 
of edges at v by two functions. Let a,cwy(w) denote the next edge anti­
clockwise from (v,w)  at v, with cwy(w) defined similarly. Each of these 
functions can be stored in an array and I assume that these values can be 
updated and checked in constant time.

w hile L I S T ^  0 do:
Pick edge (v^w) from LIST

I f  R{v,w) ^  0 a n d  {v)^ > {w)^ do: 
end:= cwy,{v) 
prev:= v 
next=  B,cwy{w)
R  := R(v, w)

w hile next ^  end do: 
create (w, next)
R{w, next) := R

insert (w^next) into cyclic order at w, before (w,prev)  by: 
(cwyj(prev):=next a.cwyj(next):=prev)

insert (next,w) into cyclic order at next after (next,prev) by 
{X  :=SiCw,,^^t(pTev)
C^nexti^) := W SiCWnexiiw) := X
CWnexti'f^) :=prev B.CWnext{prev): = w)

prev:=next
next:=X
end

cwiy(pre'y):=end a,cwyj{end):=prev
end

remove (v,w)  from LIST  
end
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When we pick an edge from the list whose ‘rightwards’ adjoining region 
is triangular (this may have occured during the algorithm); or whose ori­
entation is {v)z < (w);,; or if the edge lies on [uijVa] or [^2,^3]; we delete 
it from LIST  in a constant time. There are 2\E\ deletions from L IST  in 
total. When we pick a suitable edge from LIST  the region to its right is 
triangulated. The time to do this is linear in the number of edges of the 
region, and each edge is in two regions, so the total amount of time spent on 
triangulation steps is 0(\E\).  (We only make 0 ( |V |)  new edges at most as 
this is the size of a triangular subdivision.) Every region occurs in at least 
one label in the list, as each region is bounded, and so will be triangulated.

Thus a convex subdivision S  can be triangulated to form T in 0 ( |V |)  
time, where |F |(=  |5 |) is the number of vertices of 5 , so claim 25 stands.

Binary search o f the external region

The planar subdivision encountered during the diameter algorithm is un­
bounded. At the initial stage of Kirkpatrick’s algorithm we check whether 
the test point lies inside the largest triangle. If it does then Kirkpatrick’s 
algorithm can be used to locate the point. This section deals with the case 
when the test point lies outside the large triangle. We need to be able to 
locate a point in this unbounded region in O(log 15|) time.

When we intersect the unbounded edges with the big triangle we can at 
the same time obtain an acw ordered circulai' hst: u \  w \ . .., Ui,. . . ,  U2, . . .  
. . . ,  V3 , . .. ,u' of all the vertices on the circumference of the triangle, each 
linked to the equation of the unbounded edge through that vertex. We 
have assumed that each unbounded edge has a pointer to the names PiPj, 
PkPi of the two adjacent regions. Note that the lines do not intersect in 
the external region (by construction of the large triangle), so this ordering 
subdivides the space. The query talœs the form of a binary search through 
this list.

When deciding that the point lies outside the large triangle we discover 
whether it lies on the ‘correct’ side of each of the bounding lines. The test 
point must lie on the correct side of at least one of the lines, for illustration 
let this side be { fi,i;2}- Any edges radiating out from this side(s) of the 
triangle will be redundant in this search. All the vertices on this side (in 
the list between Vi and V2 ) can be removed and the cyclic list can be split 
here to give a list of vert ices/edges that is suitable for a binary search. We
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can perform a binary search among these edges testing which side of an 
edge q' is on, until we locate q' in between two of them, they will have one

Figure 3.4: p must lie in the shaded region.

region label in common, and q' will be located.^ Thus q' can be located in 
O(log I S'!) time whether it lies inside or outside the triangular subdivision.

Given a convex planai' subdivision S  with |5 | =  |y | the number of 
vertices of S  it is pos.sible, using Kirkpatrick’s algorithm to locate a query 
point q' in S  in time 0 (lo g |5 |) , with preprocessing and storage times of 
0 (|5 |).

3.4  T h e P o st Office P rob lem
B. Chazelle: How To Search In History

As I stated in the introduction, this paper [4] answers the ‘farthest point 
post office query’; in other words in it will return the point from among 

which is farthest from any given query point g in a query 
time O((logn)^). The algorithm requires a preprocessing of {p i,-..,P n }  
that takes time of O(n^), and storage O(n^). The algorithm will use the 
algorithm described in section 3.3 as a subroutine and can itself be used in

În the case that q' is found to lie at the start/end of the list it is equally easy to find 
the name of the region containing q'\ simply find the next edge clockwise/anticlockwise 
from the first/last edge on the list and compare labels to name the region that contains
g'.
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A A
p, n p.-, %

Figure 3.5: 7^

the divide and conquer algorithm of Yao [29] (described in section 3.2.1) 
to give an algorithm that solves the diameter problem. The running times 
of Chazelle’s algorithm will be calculated in section 3.4.3, and of the whole 
algorithm in section 3.5.

Recall from section 3.2 that answering the post office problem for a 
given query point q is equivalent to locating q in the farthest point Voronoi 
diagram. That section gave an overview of how the algorithm works, ba­
sically Chazelle’s algorithm is a binary search through the farthest point 
Voronoi diagram of { p i,. . .  ,p ,J .

First assume that the points are ordered in the direction of one of the 
axes for example let P i , . . .  ,p,i be such that {pi)x < {Pj)x^^ whenever i < 
j .  The search structure will be 7^, a complete binary tree with objects 
p i , . . .  ,p,i (in left to right order) as its leaves, see figure 3.5 above.

At each internal node u of Tn a second search structure is built, this 
will be the unbounded convex planar subdivision which is the projection 
of the ‘curtain’ J{u). This subdivision will be searched using Kirkpatrick’s 
algorithm. The Query Algorithm starts from the root of the tree and 
works its way down to the final answer/leaf, by performing a binary search 
through Tn that involves asking an O(log n) query (locating a point in J{u))  
at each internal node visited, and from the result of this deciding which way 
to branch in the tree. The algorithm is based around a useful geometric 
property of Voronoi diagrams.

Let I{u) — {pi : Pi is a leaf of the subtree rooted at u}, where u is

Strict inequality can be assumed here because there are a finite number of points so 
it is always possible to slightly perturb the z-axis to make the inequality strict.
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an internal node of 7^, and let ul and ur be the left and right sons of u 
respectively.

Let J{u)  be defined to be the set of faces in the Voronoi diagram of 
I(u)  whose ‘construction points’ lie in I{ul) and /(u h ), in other words, if 
the notation f s { h j )  denotes the faces of V(5) that are supported by the 
bisector of pi and then

- P i  e  i { u L ) , P j  e  i { u r ) }

So J{u)  consists of all of the faces of the ‘curtain’ (described in section 3.2) 
that lies between the space that is farther from one of I{ul) than  any other 
point in /(u ), and the space that is farther from one of I { ur).

Consider the Voronoi diagram of the points I{u)  =  and
J(u ), those faces which are supported by bisectors between a point from 
{pr,. . .  ,Ps } and a point from {ps+i,. . . , P( } where s = {t — r ) / 2 , see figure 
3.6 on page 73. J(u)  has a special property:

U,

Figure 3.6: The nodes that lie beneath u in Tn.

L em m a 26. ( Chazelle) Any line L parallel to the x-axis intersects one and 
only one face of J{u).

Though this may seem unlikely observe that J{u)  consists of only a 
few of the faces of V{I{u)). Geometrically what has happened is that the

Obviously the perpendicular bisector of p, and pj divides the space into regions farther 
from Pi than from pj and vice versa.
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Voronoi diagram V{I{u)) has been partitioned into two distinct groups of 
cells, distinguished by greater and lesser a:-values of the associated p ,’s, 
and J{u)  is the faces that form the boundary between the two spaces. This 
lemma says that this boundary is unique with respect to a given (y,z).  
Note that since all of the faces of J{u) are either facets or intersections of 
facets, we need only consider facets here.

P ro o f: (Chazelle). First given a line L  parallel to the x-axis that does 
intersect some f i { u ) ( h j )  where pi  6  / ( u l ) ,  Pj  G I { u r ),  we show this facet 
is unique. Let this be the first such facet that point p hits as p travels along 
L  in ascending x-order from —oo. Notice that i < j ,  thus the vector pîpj 
has a positive x-coordinate: (pj)x > {Pi)xi and this vector is normal to the 
facet fi[u){hj)  by definition, as this facet is the perpendicular bisector of 
Pi and Pj.

As the point p travels along L  it is initially furthest from points from 
{p^,. . .  As it crosses the facet //(u)(*,i) the farthest point from p
changes from pj to pi. We now show that after this it can’t have any pk, 
k G as a farthest point.

L
f a r t h e s t —p j f a r t h e s t ^ p .

Figure 3,7: Line L  parallel to the x-axis.

Let Pi = G /(w l), and let pk =  (x 2 , y 2 ,Z2 ) be any point
in I { u r ) .  The ordering of the points implies that {pk)x > {Pi)x so let
X2 = Xi + c for some c > 0,^  ̂ Now let p' =  (x, y, z) be a point on L  after
the moving point has crossed //(u)(^,i) and where p' is further from p% than 
from any other jDoint (see figure 3,7). Then in particular p' is farther from 
P i  than from p^. If we use to denote (y — yi)^ -|- (z — z%)̂ , and r |  for
(y -  y2)̂  +  (z -  Z2 f  then:

intersection of facets.
^^Recall that it was assumed that the points had distinct x-coordinates.
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1 ) p' farther from pi than p^

{ x - X i y - \ - r l  > ( x - X 2 y - \ - r l  

[x — X2 c)^ +  ^  (^ ~  ^ 2)  ̂+  2̂
j'l — r\ > (a: — X2 Y  ~  ((^ ~  ^ 2 ) +

=  — — 2 c ( æ — X 2)

If we now take another point p on p — {x y, z) which has pk as 
its farthest point, then:
2) p farther from pk than p,-

[x k — X2 ^̂  4" y'g > (̂ x k — X\Ÿ  4"
=  {x -]r k — X2 cY + r\

{x + k — X2 Y  — ({x k — X — 2 ) c)^ > rl — rl
— — 2 c(̂ x k — 2:2) ^  f'l — 2̂

3) Combining these gives:

— — 2c(a: k — 2:2) ^  — 2 c( x̂ — 2:2)
2 ck < 0

So as c > 0 this implies & < 0 .  So after crossing //(u)(*,i)? P can’t have any 
Pk G I{ufi) as a farthest point. Hence it can’t (distinctly) cross another 
facet //(u )(^ ,0  G J(u).  L intersects at most one face of J(u).  This proves 
the assertion.

Now it must be shown that every line L  parallel to 2:-axis intersects one 
face of the curtain. Let L be any line parallel to the x axis (in other words 
y and z are fixed). Let a travelling point p start from x = —0 0 . Initially the 
farthest point from p is in /(u ^ ) (in fact it is p j .  Taking any two points p,-, 
Pj with (pt)x =  2:% {pj)x = such that x" — 2:' > 0. Let r ', r"  denote the 
perpendicular distances of p,-, pj from L  (it could be that r' »  r"). The 
following shows that it is always possible to find an x large enough that if 
(p)x =  —X then p is farther from pj than p,

   ^ 3
V

r'

As x ” — x' is bounded and positive, and (r'^ — r"^) +  (2:'̂  — x"^) =  D is
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bounded, it is possible to find an x with 2 x{x" — x') > D  then:

x^ x'^ 2 xx'  +  +  2 xx"  +  x"^ +  r"^
{x +  x 'Y  +  v'^ < (x +  x"Y  +  r"^ 

d(p,pi) < d(p,pj)

Similarly we can find an x large enough such that d(p,pi) > d(p,pj) if 
{p)x =  X.  So initially the farthest of our points from p  is in I ( u r ) and p  will 
eventually end up having a farthest point in I{ui) .  Hence L  must cross a 
face of J(u).

So any line L parallel to the x-axis (with fixed y and z) passes through 
exactly one face of J{u). This means that J{u)  can be directly projected 
onto the yz  plane forming a planar graph, so that the projections of no two 
faces will intersect strictly (the boundarys may overlap). Hence J{u) can 
be preprocessed for efficient planar searching (we can search the projection 
onto the yz  plane).

3.4.1 C hazelle’s A lgorithm
Preprocess:
Sort points along x-axis p i , . . . ,  p,i 
At each internal vertex u in 7^;

Create V (/(u)).
Find J{u)  from this graph (by a Depth First Search).
Project J{u) onto y2:-plane and preprocess it for a planar point 
location (use Kirkpatrick’s algorithm).
Store this as DS{J{u))  (the data structure stored at vertex u) .

Query:
Let the query point be q = (x ,y , z ) ,  locate this by:

Perform a binary search through 7^.
Start at the root and at each vertex u encountered perform a 
planar point location of q' =  (y ,z )  in DS{J{u)).  This returns a 
facet //(u )(î,i), i.e. a pair piPj.
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Test msix{d{q,pi),d{q,pj)}
If i branch left, if j  branch right, and continue.
If d(q^pi) = d(q^pj) then return ‘farthest is pi and If leaf 
P i  is reached then return ‘farthest is p ,’.

‘as q lies on in this case

The test m ax{d(ç,p,), d(ç,pj)} tells us on which side of the division of 
the Voronoi diagram q lies. It simply tells us which half of L  the point q 
lies on where L  is cut into two half-lines by the perpendicular bisector of pi 
and Pj at //(«)(*,i)- One half-line is farther from p,, if p lies on this half-line 
then one of the points in I{u i)  is the farthest point from q. We search then 
among that half of the points and their Voronoi diagram.

3.4.2 Preprocessing For C hazelle’s A lgorithm
The preprocessing involved in this algorithm is made up of several steps. 
Firstly the points must be sorted in the T-direction. Then at each in­
ternal node u, of the binary tree on these n vertices, the farthest point 
Voronoi diagram must be constructed. Finally this diagram must
be searched to obtain the planar subdivision that is the projection of J(u)  
into the ^z-plane. The information obtained about this subdivision must 
be that necessary to search the subdivision using Kirkpatrick’s algorithm.

B uilding the Voronoi diagram

We need to build the farthest point Voronoi diagram of I{u)  at each of the 
internal vertices u of The next section describes how, if \I{u)\ =  m, the 
Voronoi diagram V (/(u)) can be constructed in O(m^) time and storage.

The following argument is taken from Edelsbrunner [10, ch. 13] which 
deals with nearest point Voronoi diagrams; the arguments can be straight­
forwardly adapted for farthest point Voronoi diagrams. To obtain the facial 
graph of the Voronoi diagram and the coordinates of its vertices, we first 
project the Voronoi diagram into space one dimension higher and show 
that it is equivalent to a polyhedron in this space. This polyhedron can 
be obtained by dualising the facets of the Voronoi diagram and finding the 
convex hull of the resulting points. The information obtained can then be

77



converted into the required information about the original Voronoi diagram.
First we relate the Voronoi diagram V{B)  of a set B  of m points in 

to a polyhedron in Here we project V(H) from into we call
the fourth axis vertical for convenience.

Consider the paraboloid U : +  K ,  where K  is a. translation
constant evaluated later. We define a transformation e which maps each 
point s E to a hyperplane in the tangent hyperplane to U at the 
point U(s) =  (si, ^2, 53, (sj +  62 +  -S3 +  K ))  which is the vertical projection 
of s onto U.

e : s = (-81, 62, 53) e{s) : w = 2siX +  2s-2y +  2632 — si + si) K

If 6 E B (Ç 3%̂) and p = (p i,P2,P3) is any point in then let €(s,p)
be the projection of the point p vertically onto £(a).

L em m a 27. (Edelsbrunner) cP(p,s) = d(U{p),e{s,p))

P ro o f:

s) =  (Pi — 61)  ̂+  (p-2 — 62)  ̂+  (P3 — -53)  ̂
à{U{p),e(s,p)) = d ((p i,p2,P3, ( P i + P 2 -bP3 -b ^ ) )  , (Pi,P2,P3, ( 26iPi +  . . .

• • • 4- 2^3p3 — (sj +  62 4- 63) +  -ff)))

= y j{p'l + P2 + P3 + ~ (2aiPi 4" • • • 4- 2S3P3 — (sj + 62 4" 63) 4-
=  d^(p,5)

□
So there is a strong relationship between the distance between p and s 

in and the distance between the vertical projections of p onto U and 
onto £(s) in

We want to maximise d(p, s) to find the furthest s G B  from p. In other 
words in 3%'̂  we want to maximise d(U{p),e{s,p))  over 5 E H. This means 
that the furthest s E 5  from p corresponds to the first hyperplane e(s) 
you meet as you increase Xd+i from —00 , with X{ = pi for i =  1 , . . .  ,d  (the 
farthest one from the paraboloid). So we are interested in the space which 
lies below all of the hyperplanes.

It is possible to choose K  large enough so that the origin lies below all 
of the hyperplanes, for this to be true all e{s) values should be greater than 
zero when x = y = z = 0. This holds if K  > m axjaj 4- 6g 4- 63 : a E B}
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is chosen, K  can be found easily in 0 (m ) time. W ith this value for K ,  
6(s)''" is the halfspace lying towards the origin, and P  = riggjB(6(a)'^), is the 
polyhedron lying below all of the hyperplanes.

L em m a 28. (Edelsbrunner) There is a strong connection between V{B)  
and P.

(i) I fV{p)  is the projection of p E 3%̂ vertically onto the boundary of P  
then V(p)  Ç £(s) <=> d(p, s) is a maximum over all s E B.

(ii) For each k face f  in V(B) there is a k-face f '  in b d P  and vice versa 
such that f  is the vertical projection of f '  into

P ro o f: This follows from lemma 27, it is especially clear if you take the 
definition of Voronoi diagram as equivalence classes of points. □

The facial graph of a polytope or polyhedron is a graph with a node for 
each of its faces. The graph is layered by dimension of faces. A fc-face /  and 
a (A: +  l)-face g are joined by an edge if /  Ç c\g. This representation also 
includes the coordinates of its vertices and the supporting hyperplane of 
each of the facets. Hence if we build up the facial graph of the polyhedron 
P  we have in effect created the facial graph of V{B)  as the faces project 
directly into 3%̂. We also have bounds on the number of A;-faces of V{B)  
following from the upper bound conjecture for P  in [23].

Algorithms for convex hulls are much more familiar than those for inter­
sections of halfspaces so the facial graph of the polyhedron is constructed by 
dualising the problem. By construction we have 06 P.  The dual or polar set 
[17,23,10] of a convex set P  about 06 in tP  is P* =  {y :<x,y>< l,Wx 6 P}.  
This is an inclusion reversing map: if Q C R  then R* C Q*; which maps 
facets to vertices and k faces to (d — k — 1) faces. The dual of each face 
F  of P  is a face F* of P*, where F* =  {y :< x ,y > =  l,V x 6 P}. The 
latter relationship can be used to find all the possible vertices of P* as they 
must each be related in this way to one of the hyperplanes. A total of 
m  hyperplanes were projected onto the pai'aboloid, so if we perform this 
operation on each of these hyperplanes the dual faces will be m  points in 
9%̂. Finding the facial graph of the convex hull of these m points and an 
additional point at the origin, gives us full information about P . The point 
0 is the dual of a f a c e t w h i c h  cuts off all the unbounded faces at infinity:

this instance the polyhedron that is being considered is unbounded. Most of the
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due to its construction (the projection onto a paraboloid) the polyhedron 
here is open.^^ The reason why it is necessary to have an additional vertex 
of P* at the origin is as follows. Consider those points y of P* which have 
inner product one when combined with points x  of P.  As |x| increases, 
\y\ for the associated point in the dual decreases. We get a resulting cone 
into 0 .̂ ® So for the dual we wish to find the convex hull of m +  1 points, 
the origin being the extra point. Because the duality operation is inclusion 
reversing we can invert the facial graph and the facet equations obtained 
for the convex hull, and then delete the faces at infinity; the result is the 
poly tope P  and hence the V{B)  we require.

Initially we had points s £ s = (s^, Sg, S3). These points were mapped 
using e{s) to hyperplanes in 3̂ *̂

w =  2s]z -j- 2s2y 2S3Z — (sj -j- S2 4- Sg) 4- K

so
/  2si \

2s 2 
2s3

V -1  /

( X \
y
z

\  w /

— Sj 4" -52 4* «S3 4" AT

If IT =  H {u ,a )  = {x : < x ,u > =  o}, then the dual of this facet is 
H* = V = {y :<z, y > =  1, Va: E H}  =  u / a  and v* = H  so

e{sy = Vs =
Si 4" s2 4- -S3 — K

7 ( 2 s i , 2 s 2, 2 s 3, —1)

Standard algorithms [28,10] construct the facial graph of the convex hull 
of n points in 3%̂̂% d > 3 in j with storage. The
upper bound conjecture [23] implies that this time and storage is optimal 
in even dimensions. Constructing the facial graph of the convex hull of our

literature deals with bounded polyhedrons and polytopes. In this case we do not have a 
strict dual (which is a one-to-one inclusion reversing map between faces of P  and P*) of 
P  as extra faces will be obtained, on P these are all faces that lie on a facet that cuts off 
the unbounded polyhedron at infinity, and they correspond to the faces adjacent to the 
vertex at the origin in the polytope P*.

^^The vertical line through 0 meets all m planes as none of them are vertical, so the 
half-line beneath the last intersection point is contained in P: P  is unbounded.

^®The origin does not lie in the interior of the dual because if this were the case this 
would imply that P was bounded.
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m -f 1 points in %'*, requires 0{m?)  time and storage. As d =  3, \B\ = m  
we have constructed V{B)  in O(m^) time and O(m^) storage.

From this data we can immediately obtain the facial graph of P  by 
deleting all of the faces into 0 and literally inverting the rest of the graph so 
that A;-faces become (d—A; —l)-faces; if we dualise the supporting hyperplane 
of each facet we get the coordinates of the corresponding vertex of P  (we 
already know the equations of the hyperplanes of P ). So we can construct 
P  and hence by projecting vertically into 3%̂ we have V(P).

Note that though we were finding the graph of an unbounded polyhe­
dron, by dualising we obtained the convex hull of a finite point set in other 
words the dual problem is bounded: Take any ball P (0 , r) Ç in tP  then 
B*{0,r)  =  P (0 , and P* Ç P (0 , as duality is inclusion reversing.

O b ta in in g  J{u)

For the purposes of Chazelle’s algorithm only data about J(u)  is required, 
not the actual Voronoi diagram. The following section describes a technique 
for acquiring this data in OÇrn^) time from the data obtained by the dual 
convex hull operation.

Assume the following information.
1) We have the facial graph of the Voronoi diagram, which includes addi­
tional faces at infinity, dual to faces containing 0 in the convex hull.
2) The 0-dimensional faces are labelled with their coordinates.
3) The 3-dimensional faces are labelled with the associated point p,- that 
they are farthest from.

The first part of this information can be obtained by inverting the facial 
graph of the dual convex hull. The second is obtained by dualising each 
of those facets not containing 0, to get a point in then simply deleting 
the fourth coordinate to obtain the projection into The cells of the 
Voronoi diagram can be labelled with pi indicating which point g(p*)* was 
the equivalent vertex in the dual. The cell dual to 0 can be labelled oo. 
This information can be obtained from the facial graph of the convex hull 
in the required time.

From this information we need to distinguish J(u),  and extract the 
information about its projection into the ^z-plane that will enable us to 
perform Kirkpatrick’s algorithm. As the vertices of J{u) project directly 
into the y^r-plane by simply removing their æ-coordinate, and the line seg-
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Figure 3.8: The facial graph of V(B).

ments will be represented by vertex pairs, hereafter the subdivision in the 
y^r-plane will simply be referred to as J{u).

Recall that to implement Kirkpatrick’s algorithm we require the follow­
ing information about J{u).
1) The coordinates of vertices v (of J{u)) and an anticlockwise list of all 
directed edges (of J{u)) source v.
2) A list {(u, w), (w, u)} for each line segment v— w (i.e. each edge of J{u)).
3) On edge (v,w)  a pointer to the name of the region immediately ‘to the 
right of’ (u, w), and a pointer from (v,w)  to (w,v).

Figure 3.8 shows the facial graph of that has been obtained.
Firstly we need to select the relevant vertices and edges (and facets) of 
V (/(u)). The initial technique we can use to obtain this information is a 
Depth First Search. The simplest description of this, ignoring unbounded 
edges is to move along the row of 2-dimensional faces and look at the
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superfaces^^ of each node here, asking ‘am I in a p,- and a pj cell with 
i G j  E /(u /î)? ’. If the answer to this question is yes then we can
search all edges on this 2-dimensional object (and their vertices). We find 
a vertex pair (u, w) for each bounded edge, create the edge, and create a 
pointer to the region name PiPj. If the edge has already been searched then 
we just need to add a second pointer this time to pipj (the edge has already 
been created).

This operation obtains the coordinates of all vertices on J(u ); the vertex 
pairs (v ,w)  that form the edges of J(u); pointers from each edge to the 
facets (piPj) of J(u)  that contain it.

If \I{u) \ =  m then |V (/(u))| =  the upper bound conjecture im­
plies that the number of incidences between A;/(A;-|- l)-faces of a polyhedron 
in 3%̂ is O(m^); if these incidences aie summed over k the total number of 
incidences is O(m^), so this is the number of edges in the facial graph of 

The DFS to obtain J{u) is 0{nn?). We need to search at least 
this much of the graph as \J{u)\ = 0(m^).^®

The above description of the algorithm does not describe how the un­
bounded edges of the subdivision are dealt with, as these are not repre­
sented by a pair of vertices. A more detailed version of the algorithm, 
incorporating dealing with unbounded edges, is described below.

L o ca tin g  U n b o u n d ed  E dges.

Recall from page 68 that in order to implement the planar search algorithm 
we need to know which edges of J{u)  are unbounded, which vertex they 
leave from and in which direction, as well as the names of the adjacent 
regions. (We used this information to intersect them with a large triangle, 
and to search the area outside this triangle.) Recall also that we projected 
the (unbounded) Voronoi diagram into 4-dimensions and obtained a polyhe­
dron with unbounded facets, ridges and edges. We dualised this and found 
a convex hull: a hounded polytope. W hat information has this yielded about 
the unbounded edges?

It is as if our polyhedron is cut off by an additional facet at infinity.

^^The faces it is joined to in the row above.
^^The maximum number of plane faces of J{u)  is 0 { m / 2  ■ m /2), and as J{u)  is planar 

it also has 0{m?)  edges and O(m^) vertices, so the number of vertices |V| by which the 
size of the subdivision J{u) is measured is O(m^).
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together with the ridges, edges, and vertices created where this facet inter­
sects the unbounded faces. In the dual this facet transforms to a vertex 
Vq at the origin, all the faces which contain this vertex are dual to faces 
at infinity in the polyhedron. We do not need to consider these faces at 
infinity as they do not lie on a fi{u){hj) hyperplane i G { 1 , . . . ,  (m /2)}, 
j  e  {(m /2) -f 1, . . .  ,m) .

Each unbounded edge of J{u) has one vertex on the facet at infinity and 
one vertex in J(u).  If we can locate the relevant unbounded edges during 
the DFS, we can find out their directions by intersecting the facets that 
contain them, and by testing points either side of the vertex we can decide 
which is the correct half-line. This additional work takes 0{m^)  time for 
all unbounded edges (cf below).

During the search, as we did for bounded edges, we can obtain the 
names of the two regions piPj and Pi>Pj>, of J{u)  which border an unbounded 
edge. Each edge has precisely two such pairs because all edges lie between 
exactly two different plane faces piPj of J(u)  (a planar structure). The two 
regions are distinct and so at least three of the indices are different. For 
each unbounded edge in turn we intersect (in %^) the two corresponding 
perpendicular bisectors, to obtain the equation of a line / along which the 
edge must lie, in constant time. We next decide which half-line out of v 
is the correct one. We move a distance ei along I from v and test for 
k = 1 , . . . ,  m whether d(pA,.,v -h e/) < d(p,-,u -f e/), where pi is one of the 
points that is farthest from v. If this is true then the point v + ei lies in the 
Voronoi diagram (on I) and this is the half-line (direction along I) that is 
required. If not the unbounded edge is the other half-line. The DFS also 
yields v the single (finite) vertex on the unbounded edge.

If |/(u )| =  m this operation takes 0{m )  time for each unbounded edge, 
there are 0{m )  unbounded edges^®. The total time for this is O(m^).

we intersect the four dimensional polyhedron with a 3-plane which cuts all the 
unbounded faces, the result is a 3-dimensional polytope with vertices where the 3-plane 
cuts the unbounded edges, and facets where the unbounded facets of P  cut the 3-plane 
there are at most m of these: P  has at most m facets. Euler’s relation for a 3-polytope 
says that / 2  — / i  -h /o  =  2, where fk is the number of faces of dimension k. There are 
at least three edges at each vertex, so if we count the edges by counting the vertices, 
we see that fi  >  3 /2  • /o because each edge has been counted twice: once at each of its 
vertices. This implies that / 2  -  3 /2 /o  +  /o >  2, so if / 2  =  m then /o <  2m — 4, and 
/ i  =  / s  +  /o — 2 < 3m — 6. Hence this 3-polytope has at most (2m — 4) vertices.
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A m ended  D FS of facial graph of Voronoi diagram

(1) Project each of the vertices into the yz-plane by removing the first 
coordinate of each.

(2) DFS of faces at infinity:
Mark facet at infinity oo.
Using DFS mark all faces incident with this facet and faces on layers below 
with oo.

(3) Find the faces of J{u):
As explained in section 3.4.2 move along the faces /  in the two dimensional 
row and if /  is not marked infinity check the superfaces of /  and ask ‘am I 
in a Pi and a pj cell z G {1 , . . . ,  (m /2)}, j  E {(m /2) +  1 , . . . ,  m ] \
For each facet where the answer to this question is yes search by DFS all 
edges of this face except those marked oo and:

(i) When we encounter an edge that has not yet been searched:
a) If both vertices aie finite: create the edge as vertex pairs (u, w){w^ v) 

with a pointer linking the pairs and a pointer from each to PiPj. Mark the 
edge as searched.

b) If one vertex is marked oo: create the edge (u, oo) with a pointer to 
PiPj’, intersect the two perpendicular bisector planes linked to the edge to 
get the line of intersection; test which half-line from v is the correct one. 
Mark the edge as searched.

(ii) When an edge is encountered that has already been searched: create a 
pointer to piPj.

In both cases (i) and (ii):
(iii) Check those vertices on the edge that are not marked oo. If the label 
of a vertex is empty then: if the edge is finite label v and w with w and 
V respectively; if not label the finite node v with (u, oo).^° If the label of 
a vertex is not empty then it has already been searched during this piPj 
search. In this case link the new edge to the other piPj edge at that vertex 
using the label.

is necessary to be careful to distinguish between this edge and other unbounded 
edges from v.

85



At the end of each step set all the vertex labels to zero, and repeat for 
another 2-face.

(4) At each vertex v find the anticlockwise order of the edges around that 
vertex (see the section below).

(5) Create a pointer from each bounded edge to the name of the region that 
lies to its right (see the section below).

The DFS of steps (2) and (3) takes 0(|J5 |) time, where \E\ is the number 
of edges of the facial graph of V (/(u)). We search each edge only once except 
in step 3iii) if the vertex is on an edge already searched, in this case the 
edges to the vertex nodes are traversed twice. All the other operations 
involved in steps (1), (2) and (3) take constant time. If |/(u ) | =  m  then 
\E\ =  0(m ^)  and peiforming the first three steps take a time of O(m^). 
The time requirement for steps (4) and (5) is considered below.

A nticlockw ise order of edges around a vertex

Now we’ve been able to obtain all the vertices of J{u)  and all the edges: 
bounded edges represented by a vertex pair; unbounded edges by a half-line, 
and one vertex. Each edge has a pointer to two 2-dimensional regions.

At each vertex v, an anticlockwise list of all directed edges source v is 
required. We know that no two regions on our convex planar graph have 
the same name (as this would contradict convexity). The name of a region 
which is adjacent to a vertex occurs in two consecutive edges in our cyclic 
ordering (the edges that the region lies between at the vertex). We have 
linked these.

We can take the vertices of J(u)  in turn. At each vertex, pick any edge 
out of the vertex, choose one of the labels on it and find the other edge 
from V with that label. Compare the tangents/slopes of these edges to 
check which order is anticlockwise, then taking them in that order, look at 
the other label on the second edge, and find the other edge from v with that 
label. Repeat this process until the first edge at that vertex is reached. We 
take each edge twice, once at each vertex. If |F7| is now used to denote the 
number of edges of J(u ), then this operation takes 0 ( |E |) ,  which is O(m^), 
time.
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N am ing The R egion To The R ight O f Each Edge

Now all we need is to label each bounded edge (v, w) with the name of the 
region immediately to its ‘right’: PiPj. Where we take ‘right’ to mean in the 
positive ^-direction (we may assume no edges are parallel to the y-axis).

for arc (v,w): if (v)z > {'w)z then find (v,u) the next arc anticlockwise 
from at v. (v,w)  and (v,u)  each have two region names, the region
common to both is the required region.

y
We do this for each edge taking a total of 0 ( |E |)  =  0{m?)  time.

In summary, at each vertex u of the binary tree with |T(tt)| =  m  we 
have taken O(m^) time to acquire all the information needed to perform 
Kirkpatrick’s algorithm to search J{u) which is a subdivision with |y  | =  
O(m^) vertices.

3.4.3 T im e Bounds For C hazelle’s A lgorithm  
P reprocessing

1) Sorting points along æ-axis takes a time of . .. O(nlogn)
2) At each vertex u

If the subtree from u has rn leaves, |/(u ) | =  m  and this is the number of 
points we will be considering when we preprocess at u. Using the method 
described in section 3.4.2 we form the facial graph of V{I{u))  the Voronoi 
diagram of the leaves under u. This was shown to take tim e ... O(m^)
We then obtain J{u) from this using the algorithm described in section 
3.4.2, this was shown to take t ime. .. O(m^)

Then we preprocess the projected J{u) data for K irkpatrick’s algorithm, 
this is linear in the number of vertices of the planar subdivision. We have 
\J(u)\ = 0{rrî^) vertices. This takes tim e... O(m^)

So the total preprocessing at each vertex u with |/(w)| =  m is O(m^). 
As we have assumed that we are searching a binary tree we can assume that 
n = 2  ̂ for some A:, then within the tree: 2’’ vertices u have |/(n ) | =  (n /2 ’’)
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leaves beneath them, where r  =  0 , 1 , . . . ,  log n. If T{m)  is the time required 
for preprocessing when you have m leaves (this is 0(m ^)),the total time is 
of order

log n log n
2’T ( n /2 ’') =  • 2(1 -  (1/2»)).

0 0

Thus the total preprocessing is O(n^).

Q uery T im e

Each planar point location is performed in a subdivision of size \S\ =  
\J(u)\ = O(m^) which is at most O(n^). Using Kirkpatrick’s algorithm each 
query takes time of order O(log \S\) =  O(log(n^)) =  O(logn) at each of the 
log n vertices that are considered as we move down the binary tree. Thus 
the total query time for each farthest point post office query is O((logn)^).

Storage

Similarly the storage requirment is 0{m?)  for V{I{u)) and O(m^) for Kirk­
patrick’s algorithm so the total storage, when this is all summed, is O(n^).

3.5 T im e B ou n d s For T h e D ia m eter  P ro b ­
lem

The algorithm answers the post-office problem within a time of P{n) = 
O(n^) for preprocessing, and Q{n) = O((logn)^) for each query; it requires 
O(n^) storage. All that remains is to prove the claim of section 3.2 that 
with these time bounds the algorithm solves the diameter problem in a total 
of log n) time. Recall that Yao’s algorithm requires a total time of
rP{q) -f nrQ(q)  -j- 0(n(7- — 1)) -f 0 {n  — 1); where r  is the number of subsets 
that the original set was divided into, and q is the maximum number of 
elements in each subset: 7* =  \n/q].  The order of the time is considered 
below:

r q " ^ n r  {log q Y - \ - n { r = -q'^-\-n — (\ogqY-\-{n{—- l ) ) - \ - { n  — l)



If we pick q = log n, then the first term of this becomes U2 log n, the 
second term becomes

n t  1 n t  1
; logn))^ =    ( - l o g n  +  log log n)^
log n  log n 2

n2 1
=  ^ ^ ^ ( - ( lo g n )^  +  log n log log n +  (log log n)^)

As log M > log log n the second term is also of order 0{n^  log n). The third 
and fourth terms have lower orders. So the overall running time of this 
algorithm is 0 (n 2 logn).

3.6 Sum m ary
In this chapter I gave a detailed description of an algorithm that requires 
a worst-case time of log n) to answer the 3-dimensional diameter
problem. Previously only a sketch of this algorithm existed, so this is 
the first time that the constituent parts have been presented together in 
a unified form. For a long time this has been the best known algorithm, 
however during the preparation of this thesis I have heard reports that this 
longstanding problem has finally been completely answered by the discovery 
of an algorithm with an optimal time bound of O(nlogn).
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