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Abstract

In this thesis we investigate the geometry of measures in Euclidean spaces by means
of their average densities, average tangent measures and tangent measure distributions.
These notions were recently introduced into geometric measure theory by Bedford and

Fisher, Bandt, Graf and others, as tools for the study of non-rectifiable measures.

Our main result yields a connection between tangent measure distributions of measures

on the line and Palm distributions:

Let 4 be a measure on the line with positive and finite a-densities almost every-
where. Then at almost all points all tangent measure distributions are Palm
distributions. Therefore the tangent measure distributions define a-self similar

random measures in the axiomatic sense of U.Zahle.

This result enables us to give a complete description of the one-sided average a-densities
of the measure in terms of its lower and upper circular average c-densities. It also en-
ables us to give an example of a measure with positive and finite a-densities which has
unique average tangent measures but non-unique tangent measure distributions almost

everywhere.

If 1 is a measure on n-dimensional Euclidean space with positive and finite a-densities
almost everywhere we show that at almost all points the unique tangent measure dis-

tribution, if it exists, is a Palm distribution.

We illustrate the limitations of tangent measure distributions by means of an example of a
non-zero measure that has no non-trivial tangent measure distributions almost everywhere.
Such measures can be studied by means of normalized tangent measure distributions and

we prove an existence and a shift-invariance result for these distributions.
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LIST OF SYMBOLS

List of Symbols

This is a list of some symbols and basic notation used in this thesis.

Sets

We denote by
IN  the natural numbers {1,2,3,...},

INo the nonnegative integers {0,1,2,3,...}.

If A is a set then we denote by
#A cardinality of A,

1, the indicator function of A.

Metric Spaces

We shall consider the following metric spaces:

R™ n-dimensional Euclidean space,

M(IR™) the space of (Radon-)measures on IR™ with the metric d
introduced in lemma 1.2.5,

P the space of probability distributions on M(IR™) with the metric D

introduced in lemma 1.2.8.

In a metric space (M, d) we denote by B(M) the Borel-o-algebra on M.
For A, BC M,z € M and r > 0 we denote

d(z,B) = inf{d(z,y):y€ B}, d(A,B) = inf{d(z,B) : z € A},
UAr) = {yeM:dyA)<rl, B(Ar) = {yeM:dyA) <),
Ur) = {yeM:dga)<rl, Blar) = {yeM:dys)<r)
A = B(A,0), the closure of A.

Euclidean Spaces

For ACIR™, t> 0 and u € R"™ we denote by

|u] the Euclidean norm of u,

|A| the Euclidean diameter of A.
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u+A = {u+a:a€ A}
tA = {ta: a€ A},
A = {yeR": y¢ A}, the complement of A in R",

0A

(c1 A) \ (cl A9), the boundary of A in R™.

On the real line IR we use the following notation:
[a,b],[a,b],[a,b),(a,b] are the closed, open and half-open intervals with endpoints a, b.

Ifz €eR, A, B C R we write
z<A ifz<aforallacA,

A< B ifa<bforallae Aand b€ B,
A<z ifa<zforall acA.

For all intervals 7 C IR, ¥ > 0 we denote by

I/(k) = {z€R: thereisye suchthat 0<y—-z<«k-|I]}\I,
I*(k) = {z€R: thereisyeIsuchthat 0<z -y <«-|I|}\I,
I°%) = I~ (k)UIUT*(k).

Functions

We shall look at the following sets of functions on a metric space (M, d):

Cy(M) the set of real valued continuous bounded functions on M,

C.(M) the set of real valued continuous functions with compact support on M .

If f:(M,d)— R we denote by

supp f = cl{z €M : f(z)# 0},
I fllsup = supgear|f(z)l,
: _ fz)-f(y
Lip(f) = SUp=yeM J—(;gx—’y{—u.
Measures

The following measures appear repeatedly in this thesis:

¢ the zero-measure,
L Lebesgue measure on IR",
H*|g a-Hausdorff measure restricted to £ C IR™,

O the Dirac measure with mass concentrated at z.
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@e the measure on the open interval (0, 1) defined by
e(4) = (llogel)™ [} 14() ¢,

e the measure on R defined by
$e(4) = (llogel)™ ;' 1a(®) + 1a(-) ¢,

¥ the measure on IR defined by
VI(A) = ¥e(A - z).

We write dz in place of dL!(z).

For a measure y on IR™ we denote

supp 4 the support of y, i.e. the set of all z € R™ such that
w(B(z,r)) > 0for all » > 0,

HlE the restriction of u to the p-measurable set F,

Ha t the measure defined by p,:(A) = u(x + tA) for
z€Rand t > 0.

For measures p, v on IR™ we write

v < p if v is absolutely continuous with respect to p.

Random Variables

For a random variable X we denote by
EX the expectation of X,

0%(X) the variance of X.
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Chapter 1

Fractal and Rectifiable Measures

In this chapter we introduce sets and measures in Euclidean spaces as our objects of study.
We discuss the notions of density and tangent measure and recall some of the classical
and newer results from geometric measure theory, which show how densities and tangént
measures reflect the dichotomy in the behaviour of rectifiable or regular sets and measures

on the one side, and non-rectifiable or fractal sets and measure on the other side.

In section 1.1 we give a brief introduction to the subject of this thesis. We define rectifia-
ble and fractal measures and show that a-sets can be studied in this framework by means
of Hausdorff measure. In section 1.2 we provide some measure theoretical tools and we
endow the set of measures with a suitable topological and metric structure. In section 1.3
we introduce densities and tangent measures, discuss some of their properties and recall

how they can be used to characterize rectifiable measures.

1.1 An Introduction

The aim of geometric measure theory is the study of geometric properties of sets and
measures in Euclidean spaces by measure theoretical means. A measure in the sense of

this thesis is an outer measure g on IR™ that fulfills

11



CHAPTER 1. FRACTAL AND RECTIFIABLE MEASURES

o all Borel sets are y-measurable;

e 4 is Borel-regular, i.e. every A C IR™ is contained in a Borel set B C IR™ such that
p(A) = u(B);

o 1 is locally finite, i.e. every ¢ € IR™ is contained in an open neighbourhood of finite

measure or, equivalently, every compact set has finite measure.

Such a measure is sometimes called Radon measure. We denote the set of all such measu-
res on IR™ by M(IR™). Observe that every locally finite measure on the Borel o-algebra of
IR™ can be extended in a unique way to a measure in our sense (see e.g. [Rog70, theorems

6 and 13]). This will be used implicitly throughout the thesis.

The connection between the study of sets and measures is given by the fundamental no-
tion of Hausdorff measure. For many sets £ C IR™ Hausdorff measure defines a kind of
“equidistribution” on the set and we can study F by means of the Hausdorfl measure
on E. Recall the definition of Hausdorff measure (for more details see [Rog70], [Fal85,
chapter 1] or [Mat95, chapter 4]).

Definition

Denote by | - | the Euclidean norm on R"™ and for U C IR" let

|U| = sup |z -y,
zyelU

the Euclidean diameter of the set U. Let « > 0 and F C IR". Then for ¢t > 0 put

HI(E) = inf {Z [Ui|* : the family (U;)ien covers E and |U;| <t for all i € IN }
teN

and define the a-Hausdorff measure of F as
H*(E) =supHI(E).
>0
For a given E C IR™ there is exactly one value 0 < a < n such that
a =inf{a : H*(E) < oo} = sup{a : H*(E) > 0}.

12



1.1. AN INTRODUCTION

a is called the Hausdorff dimension of the set E.
If E is H*-measurable and 0 < H*(E) < oo, then F is called an a-set.

Remarks:

1. Some authors (e.g. [Fal85]) chose a different normalization for Hausdorff measures.

2. For an a-set F the measure p = H*|Eg, the restriction of a-Hausdorff measure to F, is
in M(IR™) and therefore the investigation of a-sets is included in the investigation

of the measures p € M(IR") (see e.g. [Rog70, theorem 27]).

Starting with the work of Besicovitch in the twenties and thirties of this century (see
[Bes28], [Bes38], [Bes39]) the geometric measure theorists have found several deep results
that reveal a dichotomy between two classes of measures: Rectifiable or regular measures
on the one side and non-rectifiable or fractal measures on the other side (see for example

[Fed47], [Mar61], [Mat75] and [Pre87]).

Definition
Let d be a nonnegative integer. A measure y € M(IR") is called d-rectifiable or d-regular

if there is a countable family (K;)icn of d-submanifolds of class 1 such that
p <L Hd]U K-

A measure g € M(IR") is called purely non-rectifiable or fractal if p does not have a

d-rectifiable part for any nonnegative integer d, precisely: Whenever

Ho= [+ p2

with g1, p2 € M(IR™), such that py is d-rectifiable for some nonnegative integer d, we

have u; = 0.

Note that there are many different definitions of “fractal measures” in the literature. We

have (probably) picked the most general one. In this thesis we are mostly interested in

13



CHAPTER 1. FRACTAL SETS AND MEASURES

the geometry of fractal measures, rather than rectifiable measures. A small number of
examples of fractal sets and measures are described in various chapters of this thesis but

many more can be found, for example, in the textbooks [Fal85], [Fal90].

As a tool for the investigation of the local geometry of fractal measures C. Bandt ([Ban92])
introduced the concept of tangent measure distributions. Tangent measure distributions

can be defined as follows:

Forp € M(IR") and z € R™ we define the family of measures (yz )0, the

enlargements of p about z, by

paa(A) = u(o +14).
For an appropriately chosen 0 < o < n we define probability distributions P
on M(IR™) by

1 d
PE(M) = (|log£|)_1/ 1ne(£22) Tt for Borel sets M C M(IR™).

The tangent measure distributions of pu at z are the limit points in the weak

topology of PF as ¢ | 0.

In this thesis we study the properties of tangent measure distributions of fractal measures.
In particular we ask which features they have in common with the concept of tangent
spaces, which is only available for rectifiable measures. We also study the closely related

notions of average densities and average tangent measures.

Before we start with the investigation of tangent measure distributions we try to retrace

some developments that led to their definition.

1.2 Some Tools from Measure Theory

Covering and differentiation of measures are useful tools in some proofs of this thesis and

we provide the necessary statements now. We start with Besicovitch’s covering theorem:

14



1.2. SOME TOOLS FROM MEASURE THEORY

Lemma 1.2.1 Besicovitch’s Covering Theorem
There is a constant N € IN depending only on n with the following property: If A C R™
is bounded and B is a family of closed balls such that each point of A is the centre of some

ball of B then there are subfamilies By,...,By C B such that

AQGUB

i1=1 B€EB;

and each of these families is disjoint.

Proof The proof can be found, for example, in [Mat95, theorem 2.7]. [ |

Lemma 1.2.2 Let y € M(IR") and f: R" — [0, 0] be u-measurable such that
/ fdu < oo for every compact K C IR™.
K

Then, for u-almost every z, we have

i Sz 1 f(¥) = f()] du(y)
r10 w(B(z,r))

=0.

In particular, if v € M(IR™) and v < p with Radon-Nikodym derivative f = j—: then, for

p-almost every z, we have
v(B(z,r))

)
I By~ 1)

Proof The proof can be found, for example, in [Fed68, 2.9.9]. [ ]

Lemma 1.2.3 Let p € M(IR") and E C IR™. A point z € E is called a u-density point

of E if
u(B(z,1) N E)

m =1.
S u(B(z, )
p-almost every point of E is a p-density point.
Proof The proof can be found, for example, in [Fed68, 2.9.11]. ]

15



CHAPTER 1. FRACTAL SETS AND MEASURES

We will now look at the measures in M(IR™) as a whole and fix a suitable topological and

metric structure on M(IR™).

Definition
The vague topology on M(IR™) is the smallest topology such that, for every continuous

function f with compact support, the functional f, defined by

fi: M(R") — R
7 = u(f):=[fdp,

is continuous.

The following lemma gives equivalent conditions for the convergence of a sequence of

measures (px) € M(R™).
Lemma 1.2.4 Let pg,pu € M(IR™). Then the following conditions are equivalent:

(1) ux — p in the vague topology.

(2) liminf px(G) > u(G) for all open sets G C R™ and limsup ux(A) < u(A) for all
closed sets A C IR™.

(3) For all R > 0 we have
SUP{‘/fdﬂk— /fdu‘ : supp £ € B(O,R), £ 2 0, Lip(f) < 1} — 0.

Proof A proof of the equivalence of (1) and (2) can be found, for example, in [Kal83,
15.7.2], and a proof of the equivalence of (1) and (3) is given in [Mat95, lemma 14.13]. m

The following lemma defines a metric on M(IR™), which induces the vague topology.

Lemma 1.2.5

1. Let M C M(IR™) be closed. Then M is compact if and only if

sup u(B(0,R)) < oo for all R > 0.
ueM

16



1.2. SOME TOOLS FROM MEASURE THEORY

In particular, every sequence (pr) C€ M(IR™) with
sup pkx(B(0,R)) < oo for all R > 0
keN

contains a convergent subsequence.

2. There is a sequence (fi) C C.(IR™) of nonnegative Lipschitz functions such that the
metric d on M(IR") defined by

d(p,v) = 3 (1/2)F -min{1, [v(fi) — n(fe)l}
k=1
induces the vague topology.

3. M(IR™) with the metric d is a complete separable metric space.

Proof The proof of (1) can be found in [Mat95, theorem 1.23] and separability of M(IR"™)
is proved, for example, in [Mat95, lemma 14.14].

A sequence as in (2) can be constructed as follows: For every R € IN take the posi-
tive part of the polynomial functions with rational coefficients and multiply them by
z — max{0,1—d(z, B(0, R))}. In this way we get Lipschitz functions on IR™ with support
in B(0, R+ 1). Denote the countable family of these functions by (f;)ien-

Let ¢ > 0, R € N and f € C,(IR") with supp f C B(0,R). By Weierstrass’ theorem
the polynomials are dense in C(B(0, R + 1)) and thus there are f;, f; such that supp f;,
supp f; € B(O, B+ 1) and [If = (fi = f;)lleup < .

Now suppose vik(fm) — v(fm) for all m € IN. Then C := sup,en vk(B(0, R+ 1)) < 00 and
[vi(f) — (ve(fi) —vk(f;))] £ C -€. Therefore also v(f) — v(f). Hence if vi( fr) converges
to ¥(fm) for all m € IN then vy — v and this implies (2).

To prove the completeness take a Cauchy sequence (pk)rken € M(IR™). By definition of
the metric in (2) the sequences (pk(fm))ken are Cauchy sequences in IR for every m € IN.
In particular, sup;en pk(B(0,R)) < oo for all R > 0. By (1) we can find a measure
u € M(IR™) such that a subsequence of (ui) converges to pu. Because any Cauchy se-
quence in IR converges, we get px(fm) — p(fm) for all m € IN and hence p is the limit of

the sequence (ug) in the vague topology. [ ]

The following simple lemma will be of use, when we discuss examples in chapter 2.

17



CHAPTER 1. FRACTAL SETS AND MEASURES

Lemma 1.2.6 Let a > 0. For every C > 0 and ¢ > 0 there are numbers 1 > é > 0 and

R > 1 such that any two measures v,pu € M(IR"™) fulfill d(v, u) < € whenever

e u(B(0,2R)) < C-R~.

o There is a countable, disjoint family (U;);er of Borel sets, which covers B(0, R) such

that |U;| < 6 and v(U;) = p(U;) for allie I.

Proof By lemma 1.2.5 there are nonnegative Lipschitz functions fi,..., fi € C.(IR™) such
that d(v, p) < € is implied by |v(f;) — pu(f;)| <e/2forall 1 < j<k.

There is R > 1 such that i

| supp f; € B(0, R)
i=1
and 1 > § > 0 such that
§ <e-(2C -Lip(f;)-R*)™"' forall 1<j < k.

Then we have for all v, p fulfilling the conditions of the lemma and all 1 < j < k

B = u < T [, Sdn= [ 15

< Y (sup{fi(a) : o € U —inf{f(2) : € Us})- (V)
1€l

< D_Lip(f;)- 8- w(Ui)
i€l

< Lip(f;)-¢é- u(B(0,2R))

< €/2

and this finishes the proof of the lemma. [

By definition of the vague topology the mapping v — v(f) is continuous for all f € C.(IR™).
The following lemma is a useful generalization of this fact.

Lemma 1.2.7 Suppose the map

G: MRH)xR* — R
(v,9) = G(r,y)

18



1.2. SOME TOOLS FROM MEASURE THEORY

is continuous and the set A = {y : there is v € M(IR") such that G(v,y) # 0 } is boun-

ded. Then the map
H: MR") — R,

v —  [G(v,y)dv(y)

18 conlinuous.

Proof Fix v € M(IR") and ¢ > 0. Denote f(y) = G(v,y). Since f € C,(IR") there is
8, > 0 such that d(v, p) < é; implies

lv(f)—u(f)l<e/2  and u(clA) < v(clA) +¢.

Furthermore, using the compactness of cl A, we find §; > 0 such that d(v, u) < 62 implies

6G(9) = G < 5 )
for all y € A. Then for all u € M(IR™) such that d(v, ) < min{éy,6,} we have
|/ 6w dvtw) - [ 6y dutw)
/fdv—/fdu‘ + ‘/G(V,y)du(y)—/G(u,y) d#(y)‘

IN

e/2+ cl A)

A

€
2-(v(clA) +¢) K
< €

as required to show continuity. [ |

Finally let us introduce the space of probability distributions on M(IR™).

Definition

A probability distribution on M(IR™) is a measure P on the Borel-o-algebra of M(IR")
such that P(M(IR")) = 1. Let P be the set of all probability distributions on M(IR"™).
The weak topology on P is the smallest topology such that for every continuous bounded
function F': M(IR") — IR the functional F, defined by
Fo: P — R
P +— P(F):=[FdP,

is continuous.

19



CHAPTER 1. FRACTAL SETS AND MEASURES

Lemma 1.2.8

1. For Py, P € P the following statements are equivalent:

(a) Pk - Pr
(b) liminf Py(G) > P(G) for all open sets G C M(IR"),

(¢) limsup Px(A) < P(A) for all closed sets A C M(IR").

2. There is a family of functions (F;)ien C Co(M(IR™)) such that Py — P if and only if
Py(F;) — P(F) for alli € IN. The metric D on P, defined by

oo

D(P,Q) = (1/2)' -min{1,|P(F,) - Q(F:)|},

=1

induces the weak topology. P with the metric D is a separable metric space.

3. (Prohorov’s theorem)
Let S C P. Then S is relatively compact if and only if for every ¢ > 0 there is a
compact set K C M(IR"™) such that P(K)>1—¢ forall P€ S.

Proof By lemma 1.2.5 the space M(IR") is a separable metric space. Therefore we can
apply [Par72, theorem II.6.1] to prove (1), [Par72, theorem I1.6.2] to prove (2), and [Par72,
theorem I1.6.7] to prove (3). ]

1.3 Densities and Tangent Measures

We recall now two essential notions from geometric measure theory: Densities and tangent

measures. Heuristically speaking, the densities measure the “concentration of y about z”.

Definition
Let pe M(R") and 0 < a < n.
For z € R™ define the lower and upper a-density of p at = as

= lim sup

g MBE.Y)) g T (p, z)
t t10

o u(B(z,1))
d (u,x)—hr?lbn o .

20



1.3. DENSITIES AND TANGENT MEASURES

If
.d.a(,u'az) = Ea(ﬂaz) <o

we say that the a-density of p at = exists and call the joint value d*(y,z) the a-density
of u at z. If we have
0< d*(p,z) < d*(p,z) <

we say that p has positive and finite a-densities at x.

Remarks

Some authors (e.g. Mattila in [Mat95]) chose a different normalization for the densities.

The following proposition relates the densities of absolutely continuous measures.

Proposition 1.3.1 Let p,v € M(RR"). If p € v with Radon-Nikodym derivative f = 3—’:

then, for v-almost every x, we have
d*(n,2) = f(z) 4" (v,2) and d*(p,z) = f(z) - d*(v,2).
In particular, if u € M(IR") and E C IR"™ is a u-measurable set then, for p-almost every z,
d*(ulg,2) = 1g(2) - d° (4, 2) and d*(plp,z) = 15(2) - d*(p, @)

Proof The statement follows from

#(B(z,r)) _ w(B(z,r)) v(B(z,7))
o v(B(z,r)) ro

by taking limits and using lemma 1.2.2. |

The following deep regularity theorem of D. Preiss shows that the densities contain all the

information about the rectifiability of a measure.

Theorem 1.3.2 Let u € M(IR™). The following conditions are equivalent:

(1) The a-density of i at = ezists and is positive for p-almost all z.

21



CHAPTER 1. FRACTAL SETS AND MEASURES

(2) p is a-rectifiable.

Proof See [Pre87, theorem 5.6] or, for a sketch of the proof, [Mat95, chapter 17]. |

Theorem 1.3.2 comprises the following result of J.M. Marstrand ([Mar64]): If the a-density
of u at z exists and is positive for y-almost every z then a must be an integer (see [Mat95,
chapter 14] for a very readable proof of Marstrand’s theorem). Theorem 1.3.2is the climax
in a long sequence of results in this direction, for example [Bes28], [Bes38], [Mar61] and

[Mat75).

Whereas the existence of positive a-densities almost everywhere has turned out to be a
very restrictive condition, positivity and finiteness of the a-densities almost everywhere
is a much milder condition which holds for many fractal measures. Finiteness of upper

densities almost everywhere is even fulfilled for all a-Hausdorff measures on a-sets.

Proposition 1.3.3 Let 0 < o < 1 and u € M(IR"™). Then the following statements are

equivalent:
(1) 0 < d (p,z) < 00 for p-almost every z.
(2) There is a disjoint family (E;);eN of a-sets such that p < HalUEi'

Proof (1) = (2) Without losing generality we can assume that p is finite. For every

integer ¢ define the set
E;={z €supp p : 27 < d%(p,2) < 2'}.

The E; are disjoint and cover supp u. We look at the family consisting of those sets E;
which fulfill u(E;) > 0. If N C E; has H*(N) = 0 then, by [Mat95, theorem 6.9], we have
p(N) <20 -H*(N) =0, and thus g < HQIUE""

Also by [Mat95, theorem 6.9] we have

H*(E;) > 27t wWE)>0

22



1.3. DENSITIES AND TANGENT MEASURES

and

H(E;) <2%- 2~(i-1), p(E;) < oo

Thus the F; are a-sets, as required.
(2) = (1) Denote v = H*|g, and let f = j—“f be the Radon-Nikodym derivative. By
[Mat95, theorem 6.2] we know that d"(v,z) < 2° for v-almost every z € E;, and we can

use lemma 1.3.1 to see
d’(n,z) < f(z) - 2% < 00 p-almost everywhere.

By [Mat95, theorem 6.9] the sets N; = {z € E; : d"(u,z) = 0} have u(N;) < AH*(E;) for
all A > 0. Hence p(N;) = 0 and this proves the theorem. ]

In order to take a closer look at the local geometry of a measure u we define the notion
of a tangent measure. Tangent measures are an extension of ideas used in [Mar61] and
[Mat75]. They were introduced in the present form by D. Preiss in [Pre87] and used very
effectively in his proof of the regularity theorem. Many applications and details on tangent

measures can be found in [Mat95].

Roughly speaking, the set Tan(u, z) of tangent measures of y at a point z is defined as the
set of limits of enlargements of y about z. On the one hand this definition makes sense
for all 4 € M(IR") including fractal measures and on the other hand it turns out to be
consistent with the notion of an approximate tangent space at p-almost every point of a

rectifiable measure (see [Fed68, 3.2.16] and theorem 1.3.12 below).

Definition
For every p € M(IR"), z € R", and t > 0, the enlargement of u about z of scalet is the
measure j;; € M(IR") defined by

pzt(A) = p(z +tA) for all Borel sets A C IR™.
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Lemma 1.3.4 The map

M: M(R™ xR"x (0,00) — M(R")
([,L,J:,t) = l‘x,t

18 continuous.

Proof Fix (pu,z,t) € M(IR*) X IR™ x (0,00) and € > 0 and let f € C.,(IR") be nonnegative
with supp f C B(0, R) and Lip(f) < 1. Then

|pz,t(f) = vy,s () < |piz,t(f) = By,s (O + |1y,s (f) = v,s(F)] -

Let v be such that we have

S“P{)/gd" - /gdﬂ| : supp g C B(0,|z| + 1+ 2tR), g > 0, Lip(g) < 1} < e/(4t).

Let s be such that |1 — s/t[,|1 — t/s| < ¢/(16tR - u(B(z,2tR))) and 2t > s > t/2. Let y
be such that |z — y| < (te)/(16 - u(B(z,2tR))) and |z — y| < 1.

With these conditions fulfilled, z — (¢/2) - f((2 — y)/s) is continuous with support in
B(y,sR) C B(0,|z| + 1 + 2tR) and Lipschitz constant at most 1. Therefore

z—y z—y
e [ar)-r (F) dua) - )5 (35L) antz)

S

(2/t) - (e/4t) = ¢/2.

|tty,s(f) = vy,s ()

IA

IA

Because Lip(f) < 1 we have

liz,e(f) = 1y,s ()

€ e[ T [ [ - 0

and

/B(z,m,r; - - z; yldu(z)

/Bu,m)lz;Z - Z;Z‘dM(Z)+/B(a:.tR)‘z;z B z;y|dﬂ(2)

u(B(a:,tR))[tR- |1 - %I + % . ‘y— x]
€

4

IA

IN

IN
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and similarly

Z2—x z-Y £
- <__
/B(y,sR)l t 8 Id“(z) 4

This implies continuity of M by lemma 1.2.4. [ |

Definition

Let u € M(IR") and z € IR™. The set of all tangent measures of p at z is defined as
Tan(p,z) = {v € M(R") : v =lime, - piz 4, for some ¢, | 0 and ¢, > 0}.

Note that for all A > 0 and v € Tan(u,z) we have Av € Tan(y,z), in other words
Tan(p,z) C M(IR™) is a cone. We say that u has a unique tangent measure at z if there
is v € Tan(u, z) such that

Tan(p,z) = {Av : A > 0}.

Remarks:

1. Some authors explicitly exclude the zero-measure from Tan(u,z), which in our case

would be inconvenient.

2. If v € Tan(p,z) and A > 0 then vy ) € Tan(u,z). For v = limec, - pig ¢, this follows

from vp 5 = lim(cp « Pzt o = lim cp - iz 2t -
Proposition 1.3.5 For all z € R™ the set Tan(p,z) C M(IR™) is closed.

Proof Recall that the topology on M(IR") is generated by the metric d defined in lemma
1.2.5. If (vx) C Tan(p, z) and v — v then there are sequences (tf-‘),-eN such that 0 < tf <
(1/%) and d(p, . /(t5)*, vk) < (1/7). Picking the diagonal sequence yields

d(ﬂz,t:/(tf)a,’/) < d(p‘a;,tl‘:/(tZ)a,Vk) + d(Vka V) — 0,

and thus v € Tan(p,z). Hence Tan(y, z) is closed. (]
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T.C. O’Neil in [O’N95] has constructed an example of a measure p € M(IR") such that
Tan(p,z) = M(IR™) p-almost everywhere. This example indicates that we have to impose

additional restrictions on p in order to get compactness properties of Tan(u, ).
Definition
A measure g € M(IR") fulfills a doubling-condition at z if there is a C > 0 such that

. w(B(z,2r))
m s (B <

We will see below that this condition has useful implications on Tan(g, z).

Definition

A function A : IR™ — [0, 00) is a normalizing function if A € C;(IR™) and A(0) > 0. For
any normalizing function A define

M2 : M(R") — M(R™),
Gy i v(8)>0,

0 otherwise.

Observe that M2 is continuous on the open set {v € M(IR") : v(A) > 0} and define the

set of all A-normalized tangent measures of p at = as

Tan®(p,z) = {v € M(R") : v = Jim M®(py,,) for somet, | 0}.

For measures that fulfill a doubling-condition almost everywhere we can study Tan®(u, z)

instead of Tan(u,z) without losing information.

Proposition 1.3.6 Suppose p € M(IR") fulfills a doubling-condition at z. Then
1. The sets cl{M*(uzz) : t € (0,1)} and Tan®(p,z) C M(R™) are compact.
2. Tan®(u, ) is not empty.
3. For every non-zero v € Tan(u,z) we have 0 € supp v.
4. Tan®(p,z) = M2(Tan(y,z)\ {#}) and Tan(y,z) = {Mv : v € Tan®(p, z), A > 0}.
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1.3. DENSITIES AND TANGENT MEASURES

5. The sets Tan(u,z) and Tan®(y,z) are connected.

Proof (1) By definition of a normalizing function there are ¢ > 0 and ¢ > 0 such that
A(z) > c for all z € B(0,¢). Let D = lim sup, ;o u(B(0,2t))/p(B(0,1)).
. Let R > 0, say with R < 2%¢. Then

M(B($,2k+lt6))<Dk+l
cu(B(z,te)) — ¢

lim sup M2 (p5,¢)(B(0,2R)) < lim sup
tl0 110

Hence there is to > 0 such that M (u.)(B(0,2R)) < 2D*+!/c for all 0 < t < to. This

implies, in particular, that »(B(0, R)) < 2D**1/c. By lemma 1.3.4 we also have
tes[ltlj,)l]MA(”I’t)(B(O, R)) < .

Thus (1) follows with lemma 1.2.5.

(2) By (1) every sequence in {M*(us:) : t € (0,1)} has a convergent subsequence with

limit in M(IR™) and this implies (2).

(3) For every § > 0 and every non-zero tangent measure v = limc¢, - piz4,, say with

v(B(0,R)) > 0 and R < 2F§, we have

v(B(0,6)) > liminfe¢, - p(B(z,dt,))

p(B(z,6tn))
p(B(z,25+16t,,))

v

lim inf ¢, pu(B(z,2Rt,)) - lim inf

v(B(0,R))-(1/D)*** >0,

v

and therefore 0 € supp v. This proves (3).
(4) If v € Tan®(u,z), then v = M2(v) € M2 (Tan(p,z) \ {#}). If v = limcy, - gy, €

Tan(, z) is a non-zero measure then we have, using the continuity of M2 and (3),
MA(V) = lim MA(C"llJ‘zutn) = lim MA (ll'l'ytn) ’

and thus M2 (v) € Tan®(u, z). This proves the first equation in (4). If v € Tan(u, z) and

v is not the zero-measure then
v =v(d)- MA(v),

since #(A) > 0 by (3). Then Av € Tan®(u,z) for A = v(A)~1. If v € Tan®(u,z), then
v € Tan(p,z) and also Av € Tan(p, z) for all A > 0. This finishes the proof of (4).
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(5) Suppose TanA(,u,, z) is not connected. Then there is ¢ > 0 and there are compact sets

Dy, D, C Ta,nA(;L,a:) such that D; U Dy = Tan®(p, z) and d(Dq, D) > €. Let
Ey={te(0,1) : M®(us,) € B(D1,¢/2)} and

Ey = {t€(0,1) : M®(us;) € B(Ds,e/2)}.

There is § > 0 such that (0,6) C E; U E; and the union is disjoint. Since t MA(pz,t)
is continuous, the sets Ej, E are closed in (0,1) and this contradicts the connectedness
of (0,8). Hence Tan®(y, z) must be connected and from the second equality in (4) we see

that Tan(p, z) is also connected. ]

Proposition 1.3.7 If a measure p € M(IR™) has positive and finite a-densities at z then

p fulfills a doubling condition at z.

Proof Observe that we have

 p(B(s,2r))
lim sup —————%%
o w(B(z,m)
: pw(B(z,2r)) . re
< 2%.limsup ——————* - limsup ————
. Moo @)r e u(Blz,n)

IN

2% . d (p,z)/d*(p, z) < .

|
There is another subset of Tan(u,z) which is particularly suitable for the investigation of

measures with bounded densities.

Definition
Let p € M(IR"),0 < a <n and z € R". Then
Tang(p,z) = {r e M(R") : v = Jim E:—éh for some t, | 0 }
is the set of all a-standardized tangent measures of p at x. If p has positive and finite
a-densities at z, then the sets Tang(u,a:), B # a contain no non-zero measures and we

write Tang(u, z) instead of Tang(u, z).
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Let us collect a couple of properties of standardized tangent measures. We start with an

easy scaling invariance property. For a fixed a > 0 define the rescaling group (T»)r>0 by

Ty: M(R") — M(R")

Yo,2
v = O

and note that T’ is continuous (by lemma 1.3.4) and T)7T, = Thx.

Proposition 1.3.8 For every A > 0 and v € Tang(u, z) we have Th\v € Tang(u, z).

Proof If v = lim g 4, /t%, then by lemma 1.3.4
Tav = 1m T (Ha,ta /tn) = lim po ren [ (Atn)®

and thus T\v € Tang(p, z). ]

Proposition 1.3.9 Suppose u € M(IR") has finite upper a-density at . Then

1. The sets cl{pz/t* : t € (0,1)} and Tang(p,z) C M(IR™) are compact.

2. The set Tang(p,z) C M(IR") is connected.
If p has also positive lower a-density at = then

3. For every non-zero tangent measure v € Tan(u,z) there is a A > 0 such that Av €

Tang(p, ).
4. Tang(p,z) is not empty and every v € Tang(p, z) fulfills 0 € supp v.

5. We have
@ (u, ) = inf{v(B(0,1)) : v € Tans(u,2)}

and

d”(u,z) = sup{v(B(0,1)) : v € Tang(p,z)}.
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Proof Denote C = d (u,z).

(1) Let R > 0. Then lim sup,)q ﬁ"—(%gﬂm < C - (2R)>. Hence there is t; > 0 such that
&A%M < 3%C - R for all 0 < t < tg. In particular, this implies that v(B(0, R)) <
3*C - R*. By lemma 1.3.4 we also have sup,¢y, 1) &'-’—(%(%D < 0o. Thus (1) follows with
lemma 1.2.5.

(2) As in proposition 1.3.6(5) the compactness of Tan®(y, ) and continuity of the mapping
¢t — £5¢ imply the connectedness of Tang(u, z).

Suppose now that

¢ < d*(p,z) < d"(n,2) < C.

(3) Let v = lim g ¢, € Tan(p,z) be a non-zero measure, say with »(B(0, R/2)) > 0. Then

a

t
limsupe, -t < limsupec, - p(B(z,Rt,)) - limsup ——2——
P P cn - p(B( ) P B (e BL)

< v(B(0, R))-1/(cR%),

and

e

t
lim inf ¢, - p(B(z, Rt,)) - lim inf ——2——
KB, ftn)) u(B(z, Rtn)

liminf ¢, -t

v

\Y

v(B(0, R/2))-1/(CR%),

and thus we can pick a subsequence (ck,t ) such that lim ¢x, 2 = A > 0. Then

:ul‘,tkn

o
kn

v =limeg,pzp, = A-lim

and lim “Ltéfﬂ- € Tang(u,z). This proves (3).
(4) Since by proposition 1.3.6 the set Tan(u, ) contains non-zero measures, we also have

Tang(p,z) # 0. For every v € Tang(p, z) and every 6 > 0 we have
v(B(0,6)) 2 liminf ﬂB(—;fL)) >6%¢>0,

and thus 0 € supp v which completes the proof of (4).
(5) We have for every v = lim p, /t5 € Tang(u,z) and for every n > 1 that

v(B(0,1)) < liminf u(B(z,ntn))/ty < d" (n, ) - n*,
and with n — 1 we get
sup{v(B(0,1)) : v € Tang(p,z)} < d"(y,z).
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If, on the other hand,
Flne) = tim K@)

—eo 2

we use (1) to pick a subsequence (7x) of (tx) such that

v = lim % € Tang(p, z)
k

exists. Then

W(B(0,1)) > lim sup XEET) _ g,
Tk

and this proves the first equality in (5).

The second equality is proved in the same way. [

Tangent measures and standardized tangent measures share a very useful shift-invariance

property, which was discovered by D. Preiss (see [Pre87, 2.12]). Define the shift-operator
T: MR")xR* —  M(R")
(v,u) = TUvi=wy.

Observe that T is continuous by lemma 1.3.4.

Theorem 1.3.10
Let p € M(IR™). The following statements hold for p-almost every z:

1. Ifv € Tan(u,z) and u € supp v, then also T*v € Tan(u, ).

2. If v € Tang(u, z) and u € supp v, then also T*v € Tang(u, ).

Proof For the case of Tan(y, ) the proof can be found in [Pre87, 2.12]. This proof can
be adapted as follows to prove the statement in the case of Tang(u, z):

For p,q € IN let E,, be the set of all z € R™ for which there are v(z) € Tan3(u,z) and
u(z) € supp v(z) such that

d(T*O(e), 520) > 1/p

for every 0 < r < (1/g).
Suppose the statement is wrong. Then there are p,q € IN such that u(E, ;) > 0. We use
the separability of M(IR") (see lemma 1.2.5(3)) to find a set E C E, ; such that u(E) > 0
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and d(T“®y(z), T*®v(y)) < 1/(2p) for all z,y € E. By lemma 1.2.3 we can find an
z € E which is a p-density point of E. Let r¢ | 0 be such that v(z) = limy_,o %1‘- and

pick zx € E such that
lzk — (= + reu(z))] < inf ly — (z + rew(e))| + ri/k .
We prove that

k—o0

lim ;Iel};'ly — (z + reu(z))|/re= 0. (1.1)

Assume that (1.1) does not hold. Then there is 0 < § < |u(z)| such that infyecg |y — (z +

ru(z))| > 67y for infinitely many values of k. We have
(En B(z,2r4lu(z)))) U B(z + rxu(z), 6ri) C B(z, 2rilu(=)]),

the union on the left hand side being disjoint. Since z is a u-density point of £ we have

L~ g MEN Bz 2reu(z)))
k—oo  u(B(z,2rk|u(z)]))
s AB G + riu(z), 78))

< -t B, 2relal@)))

__v(z)(U(u(z),9))

v(z)(B(0, 2|u(=)]))

< 1.

<

This is a contradiction and thus (1.1) must hold.

Z=% = y(z) and thus, using lemma 1.3.4,

By (1.1) we now have limj_, £

T —z
lim luzlnrk — ]jm T_k'k_ NI'T" - Tu(z)y(x) .
k—oo TE k—o0 Ty

Therefore there is k such that rx < (1/q) and d(T*(*)y(z), ﬁfffrk-) < 1/(2p). Consequently,

1p < d(T*pu(ay), )
k

IA

AT (), T*Ow(2) + d(Tn(z), B2
k

(1/p).

A

This is a contradiction, and thus the statement holds. [ ]
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Corollary 1.3.11 Suppose u € M(IR™) has positive and finite a-densities u-almost every-
where. Then for pu-almost every z the following statement holds: For all v € Tans(u, ),

and all u € supp v and r > 0, we have
& (n,2) 1% < W(B(u,r)) < & (1, 2) -1

forallr > 0.

Proof For every v € Tang(u, z) we have
d*(p,z) < v(B(0,1)) < 4" (u, )

by proposition 1.3.9(5). Moreover, if z is such that the statement of theorem 1.3.10 holds

and v € Tang(u,z), we also have

Vu,r

o € Tans(p,z)

for all u € supp v and r > 0 (by theorem 1.3.10 and proposition 1.3.8). This implies the

statement of the corollary. [

The following theorem, which is a part of Preiss’ regularity theorem, shows that uniqueness
of tangent measure distribution almost everywhere is a property which holds only for

rectifiable measures.

Theorem 1.3.12 Suppose yu € M(IR™) has positive and finite a-densities p-almost every-

where. Then the following statements are equivalent:

(1) p has a unique tangent measure at p-almost all points.

(2) Tans(p,z) is a singleton for p-almost all points.

(3) p is a-rectifiable.

If this holds then for p-almost every z we have Tang(p,z) = {v} and
v=(1/2)%-d*(u,z) - H*|1,

where T is the approrimate tangent space at .
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Proof The proof can be found in [Pre87] by combining theorems 4.11 and 5.6 of this paper
in the following way:

Suppose (1) holds, i.e. for p-almost every z there is a » € M(IR") such that
Tan(g,z) = {Av : A > 0}.

Then v(0B(0,t)) = 0 for all ¢ > 0, otherwise proposition 1.3.5 would give a contradiction
to local finiteness of v. Therefore, for every ¢t > 0, the limit

i HCB2,17)) _ V(B(0,1)
rl0 p(B(z,7)) v(B(0,1)

exists and by [Pre87, theorem 4.11] this implies
v=c- HmIT

for some linear m-space T C M(IR") and ¢ > 0 and 0 < m < n. By [Pre87, theorem 5.6]
this implies (3).

If (3) holds then, by [Fed68? 3.2.19], for p-almost every z there is an approximate tangent
space T C IR™ at = and together with [Pre87, theorem 5.6] this implies Tans(p,z) = {v}

for

v=(1/2)*-d*(u,z) - H%|.

In particular (2) holds. Finally, (2)=>(1) is clear from proposition 1.3.9(3). ]

Theorem 1.3.12 shows that a measure p is fractal if and only if p, +/t* diverges as t | 0 for
p-almost every z. A similar idea has been used by K. Wicks (see [Wic91]) in his definition

of “visual fractality”.
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Chapter 2

Average Densities and Tangent

Measure Distributions

We have seen in the previous chapter how densities and tangent measures can be used to
characterize rectifiabilty of measures. These properties of densities and tangent measures
also indicate their limitations as a means to describe the local geometry of fractal measu-
res: Densities do not enable us to measure the concentration of a fractal measure about
its points since, by Preiss’ regularity theorem, densities cannot exist and be positive on a
set of positive measure. Also at almost all points there is no unique tangent measure and
hence tangent measures do not define a natural generalization of the concept of tangent
spaces. Therefore more refined tools seem to be necessary for the investigation of the local

structure of fractal measures.

One class of tools for these studies is based on the idea of varying the classical notions by
replacing ordinary limits by limits of averages:

T. Bedford and A.M. Fisher introduce in [BF92] the order-two or average density of a
fractal measure. Several authors, like N. Patzschke and U. Zihle in [PZ90], T. Bedford
and A.M. Fisher in [BF92], C. Bandt in [Ban92] and S. Graf in [Gra93], implicitly or expli-
citly suggested the investigation of random tangent measures based on the same averaging

principle. These random tangent measures or, equivalently, probability distributions on
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the set of tangent measures, are called tangent measure distributions in this thesis. Tan-
gent measure distributions at a point z in many cases provide a good picture of the local
geometry of the measure about . The average tangent measures, which are the barycen-
tres of the tangent measure distributions, provide another interesting local characteristic.
The study of the properties of tangent measure distributions of general measures is the

main issue of this thesis.

In section 2.1 we introduce the notion of average density. In section 2.2 we define the
standardized tangent measure distributions and average tangent measures and give some
of their basic properties. We illustrate the concept by means of an example. In section
2.3 we investigate the relationship between the existence of average densities and the uni-
queness of tangent measure distributions and average tangent measures, and in the course

of this investigation we study two further interesting examples.

2.1 Average Densities

By Preiss’ regularity theorem (1.3.2) the a-densities of a fractal measure cannot exist and
be positive except on a set of measure zero. Therefore one would like to find another con-
cept, which assigns to every point  a number which gives an impression of the “density”

of the fractal measure about the point and exists for a large class of fractal measures.

T. Bedford and A.M. Fisher introduce such a concept in [BF92]: The average or order-
two density. They show that for suitable Hausdorff-measures on hyperbolic Cantor-sets
and zero-sets of Brownian motion the average density exists almost everywhere (see also
[Bed91]). By now different authors have shown that for various classes of fractal measures
of self-similar type the average density exists, see for example [Fal92], [PZ92], [Spr94] and
[FX93]. In some cases the value has been calculated explicitly, see for example [PZ93].
Average densities give a local characteristic for fractal measures closely connected to the

heuristic notion of lacunarity (see [Man83, pp.315-318] and [BF92, p.96]). The average
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densities also contain information on the regularity of the measure (see [FS94] and [Spr94]).

The idea behind average densities is, roughly speaking, the following: Since the density
function f(t) = p(B(z,t))/t* oscillates as t | 0 one studies the limit of a family of suitably

weighted averages of f(t) as the centre of weight goes to 0.

There are several theoretical approaches to such “averaged limits” which are closely
connected and this is discussed in [Fis87] and in particular in [Fis90], where more de-
tails can be found. We give here a short account of n-th order averaging operators, using
the terminology of A.M. Fisher, in order to justify the averaging procedure T. Bedford

and A.M. Fisher use to define the average density.

Definition
Let Py = {¢p € LY(R) : ¥ > 0 and [+(t)dt = 1}. An averaging operator of order 0is a
map
Ay ¢ L®(R) — L™(R),
f = P f
for some 9 € P;. Let
E: L*(R) — L*(R),
f — foexp,

and
E71: L*(R) — L*(R)
f folog(t) ift>0,
0 ift <0.

Define an averaging operator of order n to be a map
Ay 2 L2(R) — L=(R),
f e EleayoE()).

An averaging method of order n defines the averaged limit of f € L*°(IR) as

Jim [AG f1(2)

This defines a hierarchy of averaging methods as the following lemma shows:
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Lemma 2.1.1 Let ¢ € Py be defined as p(z) = e 1jg )(z). For any bounded function
f: R — IR we have that lim,_[A} f](t) = a implies limt_wo[Afo](t) =a foralk>n
and ¥ € P;.

Proof The proof is an application of Wiener’s Tauberian theorem and can be found in

[Fis90, lemmas 4.3 and 4.4]. ]

Applying this procedure to the problem of defining a “density” means applying an avera-

ging method of suitable order to the function

g(t) = #(B((f;t()la/t))) . (2-1)

By lemma 2.1.1 one can concentrate on the averaging operators A" = A7. What is the
right n to define the average density? Let us have a look at the explicit formulas for the

operators A™: We have
T
A7) = (T [ F0 e,
the Cesaro-average, and
2 o [T dt
A7) = (og D)™ [ S0
the logarithmic average, and generally
T
(A™FT) = (@) [ FOKA(D a1,

where b, = exp(")(=00), a,(T) = log™ " )(T) and Kn(z) = L(as(z)).

As Fisher points out, one way to understand these formulas is the following: A! is an
average with respect to Haar-measure on (IR, +) restricted to the interval [0,T], A? is an
average with respect to Haar-measure on (IRY,-) restricted to the interval [1,T], A3 is
analogously defined for the next higher exponential conjugate of the group (IR, +), that is
the set (1,00) with the operation (a,b) ~ al°86%, and so forth.

The ordinary ternary Cantor set has obvious self-similarites at scales %—, %, 517, ..., and it

seems natural to take an average that assigns equal weight to each of these scaling steps,
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i.e. an average with respect to Haar-measure on (IR*,-). This is a heuristic argument
in favour of an averaging procedure of order two. The heuristic idea is confirmed by the
results in the papers mentioned before for the case of self-similar measures, and in [FS94]

and chapters 3 and 5 of this thesis for the case of general fractal measures.

Definition
Let u € M(IR") and 0 < & < n. For z € R™ define the lower and upper average a-density

) ! u(B(z,1)) dt

o I o -1
D?(p, z) = lim inf(|loge]) el

and
D*(u, z) = lim sup(|loge|)™? ' (B, 1)) dt .
l0 € A t
If D*(u,z) = D*(u,z) < 0o we say that the average a-density of u at z exists and call
the common value D%(u,z) the average a-density of p at z.
Moreover, if p € M(IR) we define the one-sided lower average a-densities as

DX(p,z) = llmlnf (llogel)™ / ”([x t -’L']) dt

and
o .. -1 P p([z,z +1]) dt
D3(1,2) = mini(|loge) ™ [ AZZXD X,
€ €
the left-sided and right-sided lower average a-densities. Analogously define the left-sided
and right-sided upper average a-densities D~ (u,z) and ﬁi(p,z) and, if they exist, the
left-sided and right-sided average a-densities D*(u,z) and D3 (p, ).

Lemma 2.1.2 shows that the average densities indeed result from the application of the
order-two averaging method to the function g and gives some equivalent expressions for

the average densities.

Lemma 2.1.2 For every p € M(IR") and z € R™ we have

D%(p,2) = lim [A%(9)](t)

_ _ w(B(z,1/1)) dT

= lim (log?) /——(m :
T w(B(z,e")) o

Tioo T 0 e—Ta *

39



CHAPTER 2. AVERAGE DENSITIES AND TANGENT MEASURE DISTRIBUTIONS

for the function g defined in (2.1). Analogous formulas hold for the lower and upper

average densities.

Proof By a substitution of variables, with ¢t = (1/¢) we get

(—loge)™! /sl _“(Bif’s)) ﬂiﬁ = (log )" ¢ #(lzij;;if)) dT_T ,

and by another substitution we see for 7' = log ¢

1 [Pi(B(z, 1) dr _ 1 (T y(B(z,e7T))
(logt)™ LT/ 7 T T emra O

and these two equalities imply the statement. [ ]

Lemma 2.1.3 Let f :(0,00) — IR be measurable such that
/ f(z)dz < 0o for all compact K C (0, 00).
K

Let €, | 0. Then the following implications hold: (1) = (2), (2) & (3) and, if f is
bounded, (2) = (1) .

) a ! dt
(1) lim (|logen]) / lf(t)lT =0

(2) For every e > 0 the set Ac = {t € (0,1) : |f(t)| > e} fulfills
1
Jim (logen)™ [ 14,0 % =0,

(3) There is a set Z C (0,1) such that lim ¢y f(t) = 0 and
tg¢Z

tim (Jlog o)™ [ 120 % =0
n_)ngo 0og&tn VA 7 =0Uu.

€n

Proof The proof is the same as the proof of [Fis90, lemma 4.9].

(1)=>(2) This implication follows easily from
1 ! dt o ! dt
(Iogen)™ [ 14,05 < (1/e)- (llogenl)™ [ 1701 -
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(3)=(2) If (3) holds then there is tg > 0 such that |f(¢)] < eforallt ¢ Z,0 <t < {p.
Thus A, is contained in the set B = [tp,1) U Z and

lim (|1 |)—1/11 (t)ﬂ
Am ([logenl)™ | 1a.(1) 3

H -1 1 dt . -1 1 dt
< lim (|logen)) / %+ lim (|logeal) / 12(0) 5 = 0.
n—0o0 to n—oo en
(2)=(3) Suppose that (2) holds. By definition of the sets A, we have

AICAL CA CAC....

1
[

By (2) there are integers 0 = ng < n; < ... such that, for n > ny,

a [t dt 1
(toeal)™ [ Lian O F < 157

Let
A= U (Al/(k'H) n [Enk+17€ﬂk)) .
k=0
Ift¢ Aandt<ep, thent ¢ A;jky1) and thus |f(¢)] < 1/(k + 1). Therefore we have

lim |£(8)| = 0.
tgA

For all ngyq > n > ni we have
AN [en,1) = (AN [ens D) U (AN [ens2ne)) € (A1 N [Emgs 1)) U (Arjgisn) N [Emseny)) -

Hence,

1 dt
(logeal)™ [ 1495

IA

(|log5n|)_1 /: ]'Al/k(t)? + (|log€n|)_1 /: 1A1/(k+1)(t)%
(1/k)+ (1/(k+ 1)),

IA

which yields (3).
(2)=>(1) Suppose || fllsup < C. Then, for every ¢ > 0, we have

) 1 1 dt
hﬁs;p(|log€n|) /|f(t)|'t'

1 dt
< lim (|logea)™ [ C-1a,()F +e =

Hence, lim, (| loge,|)™! el,, |£(t)| & = 0 as required. ]

For more details on average densities we refer to [BF92]. We now pass on to a more general

concept.
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2.2 Tangent Measure Distributions

In this section we extend the idea of applying an averaging method of order two from the
concept of densities to the more general concept of tangent measures.

A straightforward approach leads to the following definition:

Definition
Suppose p € M(IR"), 0 < @ < n and z € R".
For any ¢ € (0,1) we define a measure 7 € M(IR") by

z -1 Y pop(A) dt
72(4) = (ogel)? [ et &

for all Borel sets A C IR®. We call the limit points of (#¥) as ¢ | 0 the a-standardized

average tangent measures or average tangent measures of u at z. If

lim 7% = 5°
€l0

exists it is called the unique average tangent measure of i at .

We will see in lemma 2.3.2(a) that average tangent measures of measures in Euclidean
spaces of dimension n > 2 actually contain more information than average densities. But
in general they are still too crude to convey a good picture of the local geometry of the

measure.

In order to get a better picture, C. Bandt suggested in [Ban92] the application of the
order-two averaging principle in order to get a “random tangent measure” at almost every
point. This idea was applied by S. Graf in [Gra93] to standardized tangent measures.
The idea of studying random tangents for self-similar sets is also present in papers of N.

Patzschke, U. Zahle and M. Zihle (see e.g. [PZ90] or [PZ94]). |

The approach of S. Grafis as follows: Define a family (¢ )e>o of distributions on the scales
(0,1) such that, as € | 0, the centre of weight of these distributions tends to 0. As in the

definition of average densities a suitable family (¢.) is given by

1
pe(A) = (|logs|)'1/ 1A(t)? for Borel sets A C (0,1).
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2.2. TANGENT MEASURE DISTRIBUTIONS

We look at the image distributions of ¢, under the mapping

t— %ﬁ .
As £ | 0 we get limit distributions on the set Tang(y, ), which, heuristically speaking,
“remember” what happened during the procedure of blowing up and thus define a kind
of “tangent measure with memory”, the tangent measure distribution or random tangent.
Distributions, which are defined in such a way, can provide a better means of under-
standing the local structure of a fractal measure than ordinary tangent measures in two

principal ways:

(1) The tangent measure distributions give additional information on the “number of
scales” for which p;¢/t* is close to a given v € Tang(u,z) and therefore contain more

information on the process t — £ than the set Tang(u, ) alone.

(2) In many cases the set Tang(u, ) is too large to give a good picture of the local struc-
ture of 4 about z. Many elements in Tang(y,z) stem from a small number of scales and
represent merely marginal effects that appear during the process of blowing up. These

elements might not appear in the support of the tangent measure distribution.

Both effects can be seen in the examples studied in [Gra93], [AP94] and [O’N94] and in the
examples of this thesis. In order to define the notion of tangent measure distribution recall
the definition and properties of the weak topology on the set P of probability distributions
on M(IR") (see lemma 1.2.8). |

Definition
Suppose p € M(IR"), 0 < a < n and z € R™. For any ¢ > 0 we define a probability
distribution P on M(IR™) by

- 4 ! zt\ dt
Pr(A) = (logel™ [ 14 (24) §

for all Borel sets A C M(IR™). We denote the set of all weak limit points of (P¥).5¢ as

€ | 0 by P*(u,z). The elements of P*(u, z) are called the a-standardized tangent measure
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CHAPTER 2. AVERAGE DENSITIES AND TANGENT MEASURE DISTRIBUTIONS

distributions or tangent measure distributions of p at z. If the limit
lim P? = P
el0

exists in the weak topology, we call P the unique tangent measure distribution of u at z.
P is the trivial distribution if P is the Dirac distribution with mass concentrated at the

Zero measure.

Remarks:

1. If p is an a-rectifiable measure then, by theorem 1.3.12 and the proposition 2.2.1 below,
at u-almost every point z there is a unique tangent measure distribution P, of p at

z. P is the Dirac distribution with mass concentrated at
v =(1/2)%-d*(p,z) - H|1
where T is the approximate tangent space of u at z.

2. An important class of measures that have unique tangent measure distributions at
almost all points are Hausdorff measures on self-similar sets fulfilling the open set
condition (see [Ban92], [Gra93] or [AP94]). D. Krieg in [Kri95] has used methods
similar to those in [BF92] to show that Hausdorff measures on hyperbolic Cantor

sets also have unique tangent measure distributions almost everywhere.

We now formulate some general properties of the sets P*(u, z).

Proposition 2.2.1 The set P*(u,z) is a weakly closed subset of P. For every tangent
measure distribution P € P*(u,z) we have supp P C Tang(p, ).

Proof Recall that the weak topology on P is generated by the metric D defined in
lemma 1.2.8. If (P) C P%*(u,z) and P, — P then there are sequences (tf);en such
that 0 < t¥ < 1/i and D( %> Pk) < (1/7). Picking the diagonal sequence yields

D(r,P) < D(r ) + D(rF) 0.
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and thus P € P*(u,z). Hence P*(p,z) is closed.
For every 6 € (0,1) we have

P(cd {pz /t™ : t€(0,6)}) > limlsoup P? (c {pse/t* : t €(0,8)})

lim sup logé — log ¢ _
€]l0 I lOg Sl

v

and thus P is concentrated on the closed set

() A {poe/t™ : t €(0,6)} = Tan§(p, z)
>0

as stated. [ ]

The use of Haar measure on (R*,-) in the averaging procedure yields a scaling invariance
property for the tangent measure distributions. Recall the definition of the rescaling group

(T\)a>o from section 1.3.

Definition

A random measure or its distribution P € P is called a-scale invariant if, for every A > 0,

P:POT;I,

where Thv = ”—)‘"{}

Proposition 2.2.2 For every z € R™ every P € P*(u,z) is a-scale invariant.

Proof Suppose P = lim Py, for rx | 0. For every F € Cy(M(IR™)) and A > 0 we calculate

/FdP hm( log rt)~ / (N“) -d?t-

1/ dt

- _ -1 Mzt |
= Jim (~logri) F((,\t)a) 1
dt

TR/

/X 1 dt

_ -1 Hz At -1 Pz At ar

log i) /1 F(—_(,\t)a) : +kll'm( logr)™ / ((/\t) ) ;

. - Tk Hz At dt

+ Jim (~logre)™ /A ((,\t)a) t
= lim (—Iogrk)“lf (TA(”“)) dt
k—o0 Tk t

- /FdPoT;I,
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using continuity of T (see lemma 1.3.4). This proves the statement. |

More can be said about P%(u,z) in the case of measures with bounded upper densities.

Proposition 2.2.3 Suppose p € M(R") and d° (u,z) < 0. Then the following state-

ments hold:

1. For every sequence (gx) such that ex | O there is a subsequence (ri) such that PF,
converges weakly to a tangent measure distribution of p at z. In particular P*(u, z)
is non-empty. If additionally d*(u,z) > 0, then for every P € P*(u,z) we have
P({¢}) = 0 and thus the set P*(u,z) contains only non-trivial distributions.

2. P*(u,z) ts weakly compact and weakly connected.

3. P is a unique tangent measure distribution of u at x if and only if
P*(n,z) = {P}.

4. The average tangent measures are the barycentres of the tangent measure distributi-

ons, i.e. the set of all average tangent measures of u at z is given by

{/VdP(V) : Pe Pa(u,z)} .

5. We have
D%(p,z) = inf{/V(B(O, 1))dP(v) : P € 'P“(p,,:c)}
and
D(u,2) = sup {/V(B(O, 1))dP(v) : P e P"(u,z)} .
Proof

(1) Since d" (11, 2) < 0o we know from proposition 1.3.9 that

cl{w : tE(O,l)}

tx
is a compact subset of M(IR™). Since the distributions P® are supported by this set,

lemma 1.2.8(3) implies that for every sequence (gx) there is a subsequence (rx) such that
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lim P7, = P exists. If d*(u,z) > 0 then the zero-measure ¢ is not in this set and therefore
P({¢}) = 0 for all tangent measures P of u at z.

(2) Since every P € P*(u,z) is supported by the compact set Tans(u, z) and P*(u, ) is
weakly closed, P*(u, ) is weakly compact by lemma 1.2.8(3).

Suppose P*(u,z) is not connected. Then there are compact sets Dy, Dy C P*(u,z) and
€ > 0 such that D, U Dy = P*(u,z) and D(D4,D;) > €. Let

={te(0,1): P € B(D1,¢/2)} and E={t€ (0,1): PF € B(Ds,¢/2)}.

There is § > 0 such that (0,6) C E; U E2 and the union is disjoint. Since t — PF is
continuous, the sets Ey, F are closed in (0,1) and this contradicts the connectedness of
(0,6). Hence P*(u,z) must be connected.

(3) Clearly we have P*(u,z) = {P} if P is a unique tangent measure distribution. On the
other hand, if P*(u,z) = {P}, then by (1) for every sequence (&) there is a subsequence
(7x) such that lim P? = P. By the definition of weak convergence this implies lim. o PF =
P, hence P is a unique tangent measure distribution.

(4) Suppose first that P = lim PZ € P*(u,z). Let f € C.(IR™). Since cl {£%* : t € (0,1)}
is compact the continuous map v — v(f) is bounded on this set and thus there is F €

Cy(M(IR™)) such that F(v) = v(f) for all v € c1 {£%* : t € (0,1)}. Thus

hm(llogrnl) /Nzt(f) dt
tim (1ogmal)™ [P (222) %= [ F)ap)

|[vare) )

and hence [ v dP(v) is an average tangent measure.

Suppose now that 7 is an average tangent measure and

L poe(f) dt

7(f) = lim ([logra)™" | =22

for all f € C.,(R™). By (1) we can assume (by passing to a subsequence if necessary) that

P =lim P} exists and we have just seen that in this case

= / vdP(v)
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as required to finish the proof of (4).

(5) For any sequence ¢, | 0 we can assume (by passing to a subsequence if necessary)
that there is P = lim PZ . We have seen in (4) that in this case lim 77 = [vdP(v) =: D.
We have [ v(8B(0,1))dP(v) = 0, since otherwise, by lemma 2.2.2, 7(0B(0, A)) > 0 for all

A > 0, contradicting the local finiteness of 7. By lemma 1.2.4 we thus get

(B(z,1)) dt _

Jim (ogea) [ HERD L= [0, aP()

and this implies both statements. [ |

Corollary 2.2.4 Let u € M(R") and d"(u,z) < 0o. For every average tangent measure
v ofu atz and all A > 0 we have v = T\v. Also, the support of every average tangent

measure U of p at z is a cone, i.e. whenever u € supp v and A > 0 we have Au € supp v.

Proof If d (u,z) < C and 7 is an average tangent measure of x4 at z, then, by proposition
2.2.3(4), there is a tangent measure distribution P of p at z such that o = fvdP(v). By

proposition 2.2.2 we thus have

b= /VdP(V) = /dep(u) = T)5.
If w € supp 7, A > O then, for every é§ > 0, we have

v(B(Au,8)) = Tho(B(u,6/X))- A* >0,

and thus Au € supp v. u

Proposition 2.2.5 Let u, v € M(IR™). Suppose v has finite upper densities v-almost
everywhere. If u K v and f = %’5 is the Radon-Nikodym derivative then, for v-almost
every «,

Po(u,2) = {P o M;Y, : P € Po(1,2)},
where M, is defined as M, : M(R") — M(R"),v—71-v fort 2>0.
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Proof For v-almost every  we have f(z) < oo, Ea(u,z) < oo and, by lemma 1.2.2,

iy JBE0 W) — f(@)| dvy)
t10 v(B(z,t)) B

Fix such an z € R"™.
For every continuous g : R — [0, co) with supp g C B(0, R) we get

F2L(g) - Z(9) - f(a)

ta
)| 955w - 1@ dvta)|

fB(z tR)lf(y) f(z) dv(y) v(B(=, tR)) 49,
gl v(B(z,R)) te

=

IA

Thus for every § > 0 there is T > 0 with
Kzt Vgt
d (Bt 1) 222) <6

forall 0 <t < T. Let F € Cy(M(IR")) and let ¢ > 0. Then F is uniformly continuous on

the compact set
{I‘l‘l‘t f( ) V.Il tE(O 1)}

and thus we can find a T > 0, such that

’ (ﬂzt FOMf(I)(% <ef2

for all 0 < t < T. Therefore
V.
(rogry [ P2ty &~ (ltogrl)™ [ F o b2y &

1dt
<e/2+ (| Fllag - (logr) ™ [ S <
for all sufficiently small r > 0. Hence whenever P = lim P? is a tangent measure dis-

tribution of u at = we have

and therefore P o My, is a tangent measure distribution of v at z. Also whenever

P =lim P7 is a tangent measure distribution of v at = we have

dt

-1 1 Bzt n—oo
(togral)™ [ () =5 [ F oMy ap,
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and therefore P o M f—(lz) is a tangent measure distribution of u at z. |

We conclude section 2.2 with an example of a fractal measure u € M(IR?) with boun-
ded 1-densities p-almost everywhere, which has unique tangent measure distributions P
p-almost everywhere. In this example supp P is considerably smaller than Tang(u,z) and

P conveys a good picture of the local geometry of p at almost all points.

Example 2.2.6 Let (a,,) be an increasing sequence of integers. We construct a sequence

(I.)nenN of compact sets I, C IR? as follows:

Let Ip = B(0,1). In the first step inscribe a; touching, closed balls of radius 1/a; with
centres on a vertical diameter in Iy. Denote the resulting set I;.

In the next step inscribe a; touching, closed balls of radius 1/(aja;) with centres on a
horizontal diameter in each ball of I;. Denote the resulting set I5.

Having constructed I,,, we inscribe a,4; touching, closed balls of radius ([J*}! a;)~! with
centres on a horizontal diameter (if » odd) or on a vertical diameter (if n even) in each
ball of I,, and denote the resulting set I,,4.

Let

o0
I:=()1I.

n=0

0000, Pl

0000, LT

Fig.1 Construction of I, I3, I3 for a, = 2™.

Obviously I is compact. We define a codespace
o0
L= H{l,...,an}
n=1
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and equip ¥ with the “usual” metric structure

0 ifo=r,

A= (%)n if n=min{n € N : o # 70} .

We furthermore define a coding
m:] — %

in the natural way by numbering the balls of the n-th level inside a ball of (n — 1)-th
level by 1,...a, and mapping a point which is successively in balls number b, in the
construction of I,, onto the sequence (b,,). 7 is a homeomorphism and thus preserves the

Borel structure. We can define a measure ji on the Borel o-algebra of ¥ by

. n -1
ﬂ({aEE:01=b1,...,an=bn})=lHa,~] forbe X,
i=1

and get a measure g = 2- i o 7 on the Borel o-algebra of I. p can be extended naturally

to a measure on IR? and this measure, which we also denote u, provides our example.

For a given 7 > 0 such that, say

k [ﬁaJ— <r<(k+1) [ﬁa,]
i=1 i=1

with 1 < k£ < a,, we have for every z € [

-1

#(B(2,2r) , _ 2[[Ti ai ™ -k > 1/2
2r T 2(hya] - (k41) T

and
p(B,7) _ 20 al™ - @k+1) _
r T Mhe™ k7

and thus p has positive and finite 1-densities.

We calculate the tangent measure distributions of p for the sequence a,, = 2". Since we
shall use the same construction in lemma 2.3.2(a) for a sequence (a,) that is growing more

quickly, we assume in claims 1 and 2 only a, > 2.
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Recall that
ve(A) = (|logel)” / lA(t) — for Borel sets A C (0,1).
For a € IR let
=H I{(:L‘,O) rz>a} he = Hll{(z,o) 1x<a}
and
vt = Hll{(o,x):a,‘)a} y Vo = Hll{(O,x) 1z<a}
Also let

h = Hll{(z,O):xGR} , V= Hll{(O,x):zER}v

and define (¢ denoting the zero-measure)
H ={¢,h,h* hy : a € R} and V = {$,v,v*,v, : a € R}.

H and V are closed sets in M(IR?).

Claim 1 Given € > 0 there are numbers R > 1,1 > § > 0 such that for
n _ n—1 _
= [@/&)[ITa] " (/B[ L ai] ]
=1 =1
and

=((1/R)(lf_[ @)™, (4/9) (H )7)

we have, for every z € I,
{”t :t€ |J Jak} C B(H,¢) and {”“ te U T} € B(Vye),
keN

and

()o'r( U Gk) %0

keN

Therefore, for every tangent measure distribution P of p at z, we have P(HU V) = 1.

Proof For every ¢ > 0 we can find numbers § > 0 and R > 1 as in lemma 1.2.6 such that,

for every measure v € M(IR?), the following geometric condition implies d(v, H) < ¢: For
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some 0 < r < §/4 the mass of v is distributed in B(0, R) in such a way that all the mass
is inside a sequence of touching balls of radius r with centres on a horizontal line. The
distance of this line to the abscissa is less or equal 2r. One of these balls intersects the

boundary of B(0, R) and each ball has total mass 2r.

Fix z € I and observe that p, ./t is of this form if t € Jx for some even number £ € IN.

Thus

{H—z’—t 1 tE U Jzk} C B(H,¢),
t keN

and the statement for V follows in an analogous manner. We have

log R —log 6 /4

#r(Gn) < |log 7|
and thus if
n+1 1 n -1
@[Tl a] <r<@/o[]a
=1 =1
we have

%(UGk) . nllog R~ log5/4)

reN | log 7|
n(log R — logé/4)
", loga; +logé/4’

and the last term converges to 0 as n — oo or 7 | 0. Since H and V are closed, we thus

have for every tangent measure distribution of y at =
P(HUV) = ir>11; P(B(H,e)U B(V,¢))

and

P(B(H,€) U B(V,e)) 2 lim nf P7(B(H,)U B(V,)) = 1

for all € > 0. Thus P(H UV) =1 as required to finish the proof of claim 1. m]

Claim 2 For p-almost every = € R?, and every P € Pl(u,z), we have
P({¢,h* he,v*,v, : a € R})=0.
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Therefore we have supp P C {h,v} for all tangent measure distributions P.

Proof Let P be a tangent measure distribution at some point z € I and observe that
P({#}) = 0 follows from the fact that the lower density of u at z is positive. Observe
that for any @ € IR we have T\(h*) = h%/* and thus we have, by means of the scaling
invariance property of P (lemma 2.2.2), for any bounded interval I C IR such that 0 ¢ I,
that P({h* : a € I}) = 0. Using the analogous argument for h,,v*,v, we get

P({h%,v% hgyv, : a#£0})=0

It remains to prove that P({h%, ho,v% v}) = 0 for all P € P}(p,z) and p-almost all z.

For this purpose we choose a sequence €; > 0 such that 32, ¢; < co and

n-|logen| n—oo
?:1 log a; ’

For example we can choose ¢; = (1/i)2. We can use the Borel-Cantelli-lemma to see that

for p-almost every z € IR? there is a number K € IN such that, for 7(z) = (21, 22, 73, . . .),

Hc(l-e)foralli> K.

a;

We fix such an z and a small ¢ > 0 such that d(ho,V) > 2¢. Let R, §, G, and J,, as in

claim 1. Whenever t € J3,_; we have
d("” ho) > d(ho, V) - d(““ V)>e

We can therefore concentrate on the t € J,,,. For 2 < k < ay, — 1 we denote

Jon g 1= [(Q/R).k.[ﬁa,-]—l,(Q/R ) (k+1)- [Ha,] ]

i=1
Then
azn—1
J2ng. U J2n,k-
k=2

Denote B := B(0,R) N {(z,y) : = > 0}. There is a 0 < ¥ < ¢ such that v(B) < (1/3)
whenever d(v, ho) < 4. If t € Jo, k then '

@(B) > (1/t)(k'— 1)2“—[12:1 a’i]_l if k < agn — Top,
t T /) (a2n = 720) - 222 @]t i k> agn — Ton.
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Hence, if t € Jonk, k < a2n — T35, We have

k-1

"“(B)>(1/t) k-1) 2[1‘[a,] >R —+-—>1/3
and thus d(“—i‘i,ho) > 4. Finally, for 2n > K,
Jon 1= ‘120-1 Jonk [(2/R “QonEan [Ha,] 1,(2/R) “Qgn ¢ [ﬁai]—ll ,
k=azn—T2n i=1 =1

and thus ¢,(J5,) < (Jlogr|)™! -log(1/e2n). If 7 > 0 is such that, say,

2m—1 2m-2

(2/R)- [H a]” <r<(2/R)- [1‘[ a]”

we have @, (Unen Ja) < Tt ¢r(J3,) and thus

. (m=1)|logezm_s|
hm (P J n s hm P — 0 .
’(ngq ) < . Tiog(ar )] - S22 log ay

Putting these arguments together we get, for all tangent measure distributions P €

PH(p, ),
P({ho}) < limlsoup P7(B(ho,7))=0

and in the same way we find P({h%,v% vo}) = 0. This finishes the proof of claim 2. O

Claim 3 Let a, = 2". Then at y-almost every z there is a unique tangent measure

1 1
=--6 "'6117
P=3-tt3

where 6, 6, are the Dirac distributions with mass concentrated at h, v, respectively.

Proof Fix € > 0. It remains to show that

<Pr( U Jzk) ) (Pr(.U JZk—l) e

keN kEN

DO

We concentrate on the first statement and look at an r > 0 such that, say,
n+1

(4/5)[1‘[ o] <r<@s)|[a]™

=1
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For k£ < n we have
log(é/(4R)) + log ay
| log 7|

Sor(']k) >

bl

and thus

o(Udm) 2 3 log(é/(4R)) + log a

kEN k<n/2 |[log 7|

(n/2)(log6/4R) + ¥ r<ns2 log azk
- i log a; + | log(6/4)|
and, for a; = 2%, the last term converges to 1/2. Thus we have for any tangent measure

distribution P at z that P(H) > 1/2. An analogous calculation shows P(V) > 1/2 and

’

this yields the statement of claim 3 and concludes the proof of the properties of pu. a

Observe that the set Tang(u, z) is considerably bigger than supp P : Recall that Tang(u, z)
is a connected subset of M(IR?) but supp P is not. Moreover, it is worth noting that the

support of the unique average tangent measure is
{(z,y): z=00ry=0}

and hence a cone but not a linear subspace of IR2. ]

2.3 Existence of Average Densities and Uniqueness of Tan-

gent Measure Distributions

In this section we investigate the connection between the existence of average densities
and the uniqueness of average tangent measures and tangent measure distributions. Pro-

position 2.3.1 gives one half of the solution of the problem:

Proposition 2.3.1 Let 4 € M(IR™) be a measure with d*(u,z) < 0o p-almost every-
where. Then the implications (1) = (2) and (2) = (3) hold.

(1) p has a unique tangent measure distribution at u-almost every point z.
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(2) p has a unique average tangent measure at p-almost every point x.

(3) The average density of p exists at p-almost every point x.

Moreover, if (1) holds, we have for the unique tangent measure distribution P, and the

unique average tangent measure v, that
Uy = / vdPy(v)
and if (2) holds we have for the unique average tangent measure v, that

D*(u,z) = 7,(B(0,1)).

Proof This was already stated in proposition 2.2.3(3),(4) and (5). ]

The other half of the problem is probably more interesting. It turns out that the reversed

implications in proposition 2.3.1 do not hold.

Proposition 2.3.2
(a) There is a measure p with positive and finite a-densities p-almost everywhere such

that at p-almost every point

o the average a-density erists and

e the average tangent measures are not unique .

(b) There is a measure p with positive and finite a-densities p-almost everywhere such

that at p-almost every point
e there is a unique average tangent measure and

e the tangent measure distributions are not unique.

T.C. O’Neil in [0’N94] was the first to give an example of type (a). His example is based
on [Fed68, 3.3.19]. The example we construct below is simpler, but it is based on the same

idea.
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CHAPTER 2. AVERAGE DENSITIES AND TANGENT MEASURE DISTRIBUTIONS

Construction of example (a)
We take the construction of the measure u € M(IR?) with bounded 1-densities, which we
used in example 2.2.6, but this time we pick a sequence (a, ) growing quickly enough such

that a, > 2™ and
n -logay,

— 0.
logan41

The behaviour of the tangent measure distributions has changed considerably. We have:

Claim 1 At p-almost every = there are tangent measure distributions P; and P, such

that Py(H)=1and P(V) = 1.

Proof Recall the notation from example 2.2.6 and recall that 2.2.6[claim 1] is valid in our

situation. Pick

Then

‘Prg,,( U Jgk) = zn: 10g(¢5/(4R)) - lOg a2k

keN k=1 | log T?nl
and by the assumption on (ai) we have

n n
lim E log agk — lim Zk;l log ask _ 1
n—oo k-:l - log r2n n—00 Ek=1 log ak
This implies

(P'V'Zn( U J2k) — 1.

keN
We can pick a subsequence (s,) of (72,,) such that P, = lim PZ exists and get Py(H) = 1.

In an analogous manner we can find a tangent measure distribution P, with P,(V) = 1.0

Claim 2 For u-almost all points z the set of tangent measure distributions of yx at z is
given by ‘
A={A-6p+(1=X)-6, : A€0,1]}

where 6y, 6, are Dirac measures with mass concentrated at h, v, respectively.
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Proof We have already shown in 2.2.6[claim 2] that, for p-almost all z and all tangent

measure distributions P € P(u,z),
P({h,o}) =1.

Therefore the statement of claim 2 follows from the connectedness of Pl(u,z) together

with claim 1. a

Because u has positive and finite densities, claim 2 implies that at y-almost every point z

the set of average tangent measures is given by
{/VdP(V) : PeP (o)l = {A-h+(1=N)-v: Ae[0,1))

and therefore p does not have a unique average tangent measure at z. But for the average

density we have, by proposition 2.2.3(5),
D*(p,z) = AR(B(0,1)) + (1 = A)v(B(0,1)) = 2

for p-almost every z.

Observe that it is essential in the construction of this example that u is defined on IR™
with n > 2. The idea behind the construction of u is based on the fact that there exist
lines in more than one direction in the underlying Euclidean space.

The question, whether an example of the first type can exist on IR!, will be answered (in

the negative) in section 5.1. ]

The example of the second type is new. At this stage we can only give the construction
of 1 and show that the average densities of u exist and the tangent measure distributions
are not unique. We have to postpone the proof of the uniqueness of the average tangent

measures until chapter 5.

Construction of example (b)
Fix a sequence (ax) of integers with ag = 0 and a) T oo such that

a
k — 0.

ak+1
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Define the codespace

= ﬁ{o,1,2}

=1

and define a measure i on ¥ by
B({(z:i)ien : T1 = @a1,...,2n = an}) = (1/3)" fora e X.
Define sets I, I, I by
o]
zi . .
I = {z = Z— Lz € {0,2,6}}, I = {:1: - ;7— € {0,4,6}}

and

8

%
t

S

i=1

z; € {0,2,6} if azx < ¢ < aze41 and

\]

z; € {0,4,6} if azkq1 < 1 < agp42 },

and maps ¢1, ¢2) d) by

¢1,2 . 2 . 11'2 , T — Z 991 2(1:1)

1=1

and
6:%—1 | sz‘P:a(xt)
where
0 ifz=0, 0 ifz=0,
pi(z)=4 2 ifz=1, and pAz) =4 4 ifz=1,
6 ifz=2, 6 ifz=2,
and

0 ifz=0,

; 2 ifz=1and ay <t < axy1,
©3(z) = 1 . .
4 if z=1and az41 <t < agks2,

6 ifz=2.

\

Assuming the usual metric structure on ¥ all maps ¢, ¢;, ¢, are bi-Lipschitz isomorphisms.
Let p=jiog™, uy = iopy! and py = Lo ;. w, gy and 2 can be extended in a natural

way to measures on RR.
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Let a = {‘;—g%. p1 and po are well-understood self-similar measures. We claim that p is an

example of type (b).
Claim 1 p has positive and finite a-densities for all z € I.

Proof If 0 < t < 1 is given such that (1/7)F > ¢ > (1/7)**! we have, for all z € I,
u(B(z,1)) < (1/3)" = 3[(1/7)**1]* < 31,
and
w(B(z,1)) > (1/3)*1 = (1/3)[(1/7)"1* 2 (1/3) - t>.

This proves claim 1. a

As pq and po are self-similar measures fulfilling the strong separation condition they have
unique tangent measure distributions Py, P, almost everywhere and, by [Gra93] or [AP94],
we can describe Py, P; by

_ 1 K (#1,2)z,0 dt
PaB)= g5z Iy /n/v 1 o ) 7 dmal®),

where £ € M,, the o-algebra on M(IR™) generated by the mappings v — v(B) for all
Borel sets B C B(0,b), and n < (1/(7b)).

Claim 2 / v(B(0,1)) dPy(v) = / V(B(0,1)) dPy(v).

Proof Define

bih—IL , S LT
La7i 7T LT
=1 =1
As 1 is the reflection at the point (1/2) it is a bi-Lipschitz isomorphism and
-1 _
proyp™ = ps.

Observe that
Y(B(z,r)N L) = B(¥(z),r)N I,
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for all z € I; and r > 0. Thus

_ " pa(B(z,t)) dt
g7y [ [ FESS Fdua(e)

tog7y™ [ [ 2LAEED) Sy (o)
oyt [ [ TR0 Sy (o)

- / v(B(0,1)) dPy(v)

[ B, 1) aPxv)

and this proves claim 2. O

Claim 3 For p-almost all points = € I the set of tangent measure distributions of y at z
is given by
A:={AP+(1-XN)P, : Xe[0,1]}.

Before we give the proof of claim 3 we shall convince ourselves that this claim not only
shows that © has non-unique tangent measure distributions u-almost everywhere but also
implies that the average densities of u exist at p-almost all points. By claim 3 and claim

2 all tangent measure distributions P at z fulfill

[#(B0,1)dPw) = [v(B(O, 1) dP(v)

and since p has finite a-densities, we can use proposition 2.2.3(5) to see that this is the

value of the average a-density at u-almost every z. It remains to prove claim 3.

Proof of claim 3 Let X; C I; and X; C I, be the exceptional sets where we

do not have the unique tangent measure distributions for u,;, ps, respectively. Let
X = ¢(¢71(X1) U3 (X2)). Then p(X) = a(¢y" (X1) Uy (X2)) < p(X1) +p2(X2) = 0
and it is sufficient to show that P*(u,z) = Aforallz € I\ X. Fixz e I'\ X.

First step: For every € > 0 there is an n € IN such that for all
(1/7)azk+1—n <t< (1/7)azk+n
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we have
p ((Nl)%d"l(z),t,w) <.
t t
and for all
(1/7)% ™ < t < (1/7)%2k-1+n
we have

t e

d ((#2)4524"1(”)-‘ M) <e

Proof of the first step: We concentrate on the first inequality and get, for a given
€ > 0, numbers § and R as in lemma 1.2.6 and n € IN such that 2-(1/7)" < min(6,1/R).
Let

(1/7)%417" <t < (1/7)%2F7

We want to apply lemma 1.2.6 to the collection U of sets

U; =

[21 t— 1 . (1/7)a2k+1, _mtil . (1/7)02k+1)

for those integers ¢ which fulfill |¢| < (1/4)- 7%2x+1~%2k,
U is a disjoint cover of B(0, R) since 0 € U and

Uvu

Ueld

= (2/t) - (1/7)%*+1((1/2) - T®2+17%2% 1. 1) > 7* > 2R

Furthermore

2
Uil = S(1/7)%+1 < 2-(1/7)" < 6.
Since, for every U € U, we have
[tU] = 2 (1/7)ke1

and

= ((1/2) - T 1) 2 (170 < 2 (1),

Ut

Uel

every set (¢16~1(z) + tU;) either contains exactly one of the sets

e o]

¥

{y=) 7—z © Y1 =21y, Yagess = Zagey,} for some z € {0,2,6}N,
i=1
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or it is disjoint from all of them. We are in the first case if and only if (z + tU;) contains

exactly one of the sets

(o) . .
{y=> _711_: D Y1 = 21y Yagepr = Zageyr )  fOT some 2z € {ph(z;) 1 z € X},
=1

and in the second case (z + tU;) is disjoint from all these sets. Accordingly

bt ) = Wl
as required to use lemma 1.2.6. This finishes the proof of the first inequality in the first

step. The second inequality is proved in an analogous way.

Define compact intervals
Tf,k = [(1/7)a2k+1—n,(1/7)a2k+n] and Ty, = [(1/7)azk—n’ (1/7)ﬂ2k—1+n] ’

and a set
oo

B.= | (/7 (1/7)™) .

k=0

Second step : For every € > 0 we have that ¢s5(B.) 0.

Proof of the second step: Fix ¢ > 0. Assume (1/7)%+1+" < § < (1/7)%*". Then, for

all j € IN,
2n

ap+n

’

es [/t (/ms]) <
and thus
A S c(k12) -2

B,) <
s( ’)‘Jg{,akwLn‘ ar+n

0.

Third step: Let A € [0,1] and € > 0. Then there is a P(¥) € P*(y,z) such that
[POF) = (A A(F) + (1= ) Po(F)| < 6

for every bounded continuous function F : M(IR) — [0, 00) such that |F(v;) — F(v;)] <
6/2 for all vy, v, with d(vy,1;) < €.
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Proof of the third step: Apply the first step to € in order to get a number n € IN. Let
°2k+"
te = (1/7)1=x".

Passing to a subsequence of t; if necessary, we can assume that there is P(¢) = lim Pg.

For sufficiently large k we have
[te, 6 C [(1/7) 24177, (1/7)"47] = T ..
We thus have
[(1log tel)™ / (B=t) S x pu(r)|
< 6/2+|(llogtul)™? / (——(“1)"’;;’; telt) 2

“Afy— 1 ()u'l) 1z dt
_(1_,\),(“0gt;c Al) lv/ti_,\ _m?_(lf) -A- P

ta
and this term converges to §/2 + |Py(F) — (1 = A)- PA(F) — A- Pi(F)| = /2. Moreover

ogeent [ P(5e) §- 0= %) Bp)

azk — N Aor—n1y—1 1 (#2)¢2¢—1(z),t dt

- = 2k F = 22%28 o)) 2

(1= 2 2222 (f1og(1 /e /(lmm_n (A 2
= (1= 2) Po(B)| + 1 Fll - 20, ((1/7)214,1)) + /2,

and since

ask_1+n azk—1+1n _ k—o0
pu (((1/7)147, 1)) < (1= 0) 0

this term converges to §/2. Finally the second step implies that

|(1og te)™ - /:li = "F(%) ?| k2o g

Therefore
|PEF) =2 P(F) - (1- 1) Py(F)| < 6,

and thus P(®) is as required to finish the third step.

By proposition 1.3.9(1) the set

_ l{uxt (ul)ms “1(2),t (B2)gré=1(c)t te (0,1)}

to? ’ 1o
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is compact and thus every continuous bounded function F' : M(IR) — [0, 00) is uniform-
ly continuous on M. Therefore, for every é > 0, we can pick € > 0 such that for all
v1,v2 € M, d(v1,v3) < € we have |F(11) — F(rp)| < §/2. Because P*(u,z) is compact we
can pick a sequence €, | 0 such that P = lim P(®») exists. P fulfills, for all continuous

bounded functions F, |P(F) — (A PA(F)+ (1-A)- P,(F))| =0 and thus A C P*(p, z).

Fourth step: Let P = lim P; € P*(y,z) and € > 0. Then there is a A) ¢ [0,1] such
that
|P(F) = A& Py(F) = (1= X)) Py(F)| < 6

for every bounded continuous function F' : M(IR) — [0, 00) such that |F(v;) — F(v;)]| <

6/2 for all 11, v, with d(14,1;) < €.

Proof of the fourth step: Fix ¢ > 0 and pick n € IN as in the first step. First assume
that (sg) is such that there is a subsequence (i) of (sx) with tx € TF,, for a sequence
ng T 0o. Since, for all sufficiently large k € IN,

(azn, +n)-log7

Ap=:1-
k 1 —log ti

€ [0,1],

we can assume that, by passing to a subsequence once more, lim Ay =: A() € [0, 1] exists.

Using t,lc_’\“ = (1/7)%™+" we can show, as in the third step, that

|P(F) = (M) Pi(F) + (1= X9) - Py(F))| < 6

for all bounded continuous functions F as in the statement.

With analogous estimates we get the same result if (sx) is such that there is a subsequence
(tk) of (sk) with ¢, € T3 ,, for a sequence ny | oo. Also this result can be obtained if
tk € B for all k € IN since, by the second step, in this case we have P = lim Py with

tx = (1/7)*>~" for some ni T co.

Because [0, 1] is compact we can find a sequence ¢, | 0 such that A = lim,_, Aen) exists.

Then P = A- P, + (1 - X): P, as required to show P*(u,z) C A and finish the proof. =
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Chapter 3

A Problem on One-Sided Average

Densities

By a theorem of Besicovitch the lower one-sided a-densities of a measure y on the real
line vanish p-almost everywhere if 0 < @ < 1 and the circular a-densities of p are finite
and positive p-almost everywhere.

The main result of this chapter is that the one-sided average densities show exactly the
opposite behaviour: The one-sided average densities of a measure p with positive and fini-
te densities are positive u-almost everywhere. Therefore the concept of one-sided average
‘densities is able to reveal some of the local symmetry a measure with finite and positive
densities necessarily possesses.

This result will be presented in section 3.1. For the proof we shall develop methods which
will be extended considerably in chapter 5. The proof will be carried out in two steps:
In section 3.2 we show some lemmas on the geometry of measures with bounded densities
which are also of independent interest, and in section 3.3 we give the proof using these
lemmas.

Much more can be said about one-sided average densities, but only in chapter 5, when we
look at the problem from the point of view of tangent measure distributions, will we be

able to prove this (see corollary 5.1.4).
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3.1 One-Sided Average Densities do not Vanish

Let 0 < @ < 1 and u € M(IR) be a measure such that
0 < d*(p,2) <d (n,2) < 0

pu-almost everywhere. It is a natural conjecture that such a measure cannot have arbitra-
rily bad asymmetry around almost all of its points. At a first glance, lower one-sided

a-densities, which we define below, seem to be a good concept to study this phenomenon.

Definition
We define the lower right-sided and lower left-sided a-densities of 1 at z by

o _ i g ME 2 1)
di(p,z) = hrgll%)nf o

and  d*(s,2) = liminf PZ=120)
t]o A

If now df(u,z) > 0 and d*(u,z) > 0 this indicates that yu does not have complete
asymmetry around z: At every scale there is mass on both sides of z. However, by the

following theorem of Besicovitch this is not true:

Theorem 3.1.1 For u-almost every z € R we have
di(p,z)=0 and dZ(u,z)=0.
Proof This is proved in [Bes29] and [Bes68] for Hausdorff measure on a-sets.

Supposing 4 € M(IR) and 0 < d*(g,z) < co p-almost everywhere we can use proposition
1.3.3: There is a family of disjoint a-sets Ey, Fs,... such that

p<H g =

In particular, we have u|g, < v|g;. Let f = —“;5 be the Radon-Nikodym derivative. By

lemma 1.2.2 we then have

di(ﬂ’ (L‘) < lu?l})nf(l/ta) : /(1[$,z+t](y) * f(y) - 1[z,z+t](y) : f($)) dV(y)
+limin f—"([”’ 241 | f(a)
) fB(z t)|f(3/) f(2)| dv(y) V(B(:v t)) o
< liminf /(B(z,1)) o T di3)- f2)

= 0 for p-almost every z € F;.
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Therefore d§(pu,z) = 0 p-almost everywhere, and, by an analogous argument, also

d*(p,z) = 0 p-almost everywhere, as required. [

This failure of the lower one-sided densities naturally leads to the question whether the
lower one-sided average densities show the same behaviour or whether they are able to

reveal some of the local symmetry of . Let us illustrate the situation by a simple example.

Example 3.1.2
Let

(e o]

C={zel0,1]: z=2%,zie{o,2}}

1=1
be the ternary Cantor set. Furthermore let
T: C — {0,2}V

z —  (%iieNn

be the natural coding. Let a = %%g—g and g be a-Hausdorff measure on the set C. It is
easy to see that the measure p has bounded a-densities and

por i = ®P,

teN

where P({0}) =1/2 = P({2}).
The convenience of this example is that we can interpret z; as independent, P-distributed
random variables on C and use standard probability theory to get information on the
one-sided lower densities and lower average densities of .

For this purpose note that, whenever (zx41,- - ., 2k+1) = (2,...,2) and t = (1/3)¥, we have

T. T k+!
/"'([ vta+t]) < (2{/2;): = (1/2)l

By the strong law of large numbers we have for u-almost every z € C' a sequence (k;)ienN
of indices such that

(Thy+1s- - Thp41) = (2,...,2)
and therefore

ol t]) L p((z e+ (1/3)M])
T A R (1) I
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On the other hand we have, whenever z44; = 0 and (1/3)F <¢ < (1/3)*~1, that

wlz,z +1) o (1/2
V)

By the strong law of large numbers we have, for y-almost every z € C, that

Ly ]
- {zx=0} 5"
o ng k 2

A A

Therefore we get, for every ¢ € )

1 N-1 c(1/3)N-k-1
(Ilogel)"I/ ,u([:v,z + t]) ﬂ > 1 /( u([z,:c + t]) ﬂ

t — N-log3 o Jassn-k to t
> LNV,
2 W& TN -kp1=0} >
and thus
Di(p,z) _hmmf (|loge)™ / 2(ED 9;+t])_ci_ -;—
p-almost everywhere. [ |

We have seen in the example that, for Hausdorff measure on the Cantor set, at almost all
points the one-sided lower average densities do not vanish. One can conjecture that this
holds true for all measures x on the line with finite and positive a-densities, and this turns
out to be correct. In fact, the one-sided lower average densities of u at u-almost all z are
bounded from below by a constant depending only on «a and the upper and lower density

of p at z, but not on the particular geometry of u. This is the statement of theorem 3.1.3.

Theorem 3.1.3 Let p € M(IR) be a measure such that for 0 < a < 1 we have
0 < d*(p,z) < d”(p,z) < 00
p-almost everywhere. Then for u-almost every z there is a number 7 > 0 such that
D2 (n,z), DY (p,2) 2 7.

T is a function of d*(u,z), d’ (u,z) and a, and is otherwise independent of u and z.

Observe that the statement of theorem 3.1.3 holds trivially in the cases a = 0, 1.

The following corollary provides information on the one-sided upper average densities:
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Corollary 3.1.4 Let p € M(IR) be a measure such that for 0 < a < 1 we have
0< d*(u,z) < d"(p,z) < 00
p-almost everywhere. Then
DZ(p,), DY (1, 2) < D (py2) — 7

p-almost everywhere, where T is as in theorem 3.1.3.

Proof The statement follows from
D3 () + 7 < Dy ) + D2 (1, 2) < D*(1y )

u-almost everywhere, and the analogous statement for the left-sided densities. n

Theorem 3.1.3 leaves a lot of questions about one-sided average densities open.

For example:

o If the average density exists, does this imply that the left-sided and right-sided

average densities exist?

e Do the values of the left-sided and right-sided lower (or upper) average densities

always agree?

e Is the value of the one-sided lower (or upper) average density determined by the

value of the lower (or upper) average density?

All these questions will be answered in chapter 5.
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3.2 The Geometry of Measures with Bounded Densities

Let 0 < @ < 1 and p € M(IR) be a measure with support contained in a compact interval
D, with |D,| < 1. Suppose there is a compact set E C D, with u(E) > 0 such that there

are 0 < ¢ < C < o0 and g > 0 with
u(lz —ryz + 1)) < Cr® (3.1)

for all z € F and r > 0, and
p(lz —ryz+r]) > cr® (3.2)

for all z € F and 0 < 7 < g9. We shall assume g9 < (1/e).
In this section we study the geometry of the set E. This constitutes an important part of

the proof of theorem 3.1.3 and will also be of use in chapter 5.

In order to avoid confusion about the exact dependence of the constants in the following
lemmas (and also in section 3.3) we will stick to the following convention: “Constants” may
depend on the measure p (and in particular on ¢ or C') and are named C with a subscript.

“Absolute constants” may only depend on « and are named D with a subscript.
Lemma 3.2.1 E is an a-set.

Proof As a compact set, E is clearly H*-measurable.
For every €9 > € > 0 we can cover E with afamily & = {(z —¢,z+¢) : = € §} of intervals
such that § C F and every y € IR is contained in at most two sets U € U. Then

S0P < (2%/e) 3 w(U) < 22°/e) - w(E) < o0

Ueu Ueld
and thus H*(E) < oo.
Now let € > 0 and let U be an arbitrary cover of E such that |U| < e and UNE # 0 for
all U e U. Then

DU 2(1/C) Y u(U) 2 u(E)/C

Uel UelU
and thus H*(E) > 0. ]
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We can write

D.N\NE= ]I,
IeA

where A is the collection of connected components of D, \ E. A is a collection of disjoint

intervals open in D,. We can also write

p\UI1=\ Kk,

I€A KeN.
{1>e

where A is the collection of connected components of the set D, \ | rea I.
1l

N is a collection of disjoint compact intervals.

Before we give an upper bound to the length of the intervals in A, let us introduce some

useful notation. For every interval / C IR and every k > 0 let
I"(k)={z€R : thereisy€ Isuchthat 0 < y— =z SR-V|I|}\I,

and

I'(k)={z€R : thereisye Isuchthat 0<z—y<«k-|I]}\I,

and also

I°(k)y=I"(k)UTUI*(K).

Lemma 3.2.2 There is a constant C; > 1 such that, for all 0 < ¢ < gg and all K € N,

we have

|K|<C1'E.

Proof For 0 < ¢ < ¢o denote r = 7(¢) = max{|N|: N € N} and pick N € A such that
|N|=r. Let N = N~(1)U N, in other words N is the closed interval of diameter 2r with
centre at the left endpoint of N. Then, by (3.1),

w(N)< C-r*.
Look at the intervals I, I3, I, ... € A that fulfill I; C N. Obviously |I;| < ¢ and thus
et |L| < L
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Define I; = I; U I7(1) C N. E is a set of Lebesgue measure 0 by lemma 3.2.1, and
therefore the sets Iy, I, I, . .. cover almost all of N in the sense of Lebesgue measure. By
Vitali’s covering theorem (see for example [Mat95, theorem 2.1]) we can pick a disjoint
subsequence

Iy Iy Iy -

covering at least 1/10 of the length of N. Now we can use (3.2) to see

N bad c a—1
0> M0 > L3l > =3I > e i > 15 (5)
T T i=1 =1 10
and, defining C; = 2(10- C/c)/(1=%)| we have r(¢) < Ci¢, as required. =

Lemma 3.2.3 There is a constant C; > 1 such that, for all 0 < € < g9 and every K € N5,

6 > 0, we have

Y. INFLC-|KI7,
NEN,NCK

and also

> IN*<Ca.

NeN.
Proof We fix a K € N5 and 0 < € < g9. We first show that for all N € N, we have
|N|* < (CT/c)- w(N7),

where N* = N~(1/C;) U N. For this purpose look at the closed interval B of diameter
2|N|/C; centred at the left endpoint of N. We have B C N* and thus we get, using (3.2),

p(N) 2 u(B) 2 c(|N]/C1)*

Because, by lemma 3.2.2, the intervals I separating the N € N fulfill |I| > ¢ > |N|/Cy,

the collection

{N*: NeN,and N C K}

is disjoint. Also N* C K* for all N* in the collection. Therefore

> OINESER/) Y V)< (o) w(ET).

NeN.NCK NeN,NCK
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By (3.1) we have u(K*) < C|K|* and therefore we can put C; = (C1/c)* - C and get
the first inequality. The second inequality follows by picking é sufficiently large to ensure
D, e Ns. [

Lemma 3.2.4

1. There is a constant C3 > 1 such that, for all 0 < € < § < &g and all K € Ns, we

have
Y " <Cs-|K|*-|loge],

where the sum extends over all I € A such that |I| > ¢ and I C K.
2. There is a constant C4 > 1 such that for all 0 < £ < g9 we have
SO I1° < Ca - [loge] ,
where the sum eztends over all I € A such that |I| > ¢.

Proof Fix K € N and denote K = K~(1)U K. Observe that by (3.1) u(K) < C|K|°.
Similarly, for I € A with |I| > ¢, I C K, we define I = I=(1)U I and observe that [ C K
and by (3.2) u(I) > ¢|I|*. For ¢ € K denote by

L<hLh<...<I,

the collection of intervals I € A such that |I[ > ¢, I C K and z € I in their natural order.
For 3 < k < n we have
iel 2 [Tg=1] + | Tg-2| + ... + | L2

and thus (provided n > 3)
|I,| > 273,

Since |I,| < |D,| we get an upper bound for n, namely
n <34 |loge|/log2 < (3+1/log2)-|loge|,
observing € < £g9 < (1/e). For the indicator functions 1; we get
Y 1;<n<(3+1/log2) 14 - |loge], (3.3)
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CHAPTER 3. A PROBLEM ON ONE-SIDED AVERAGE DENSITIES

where the sum extends over all I € A such that |I| > e¢and I C K. Let C3 = (3+1/log2)-

C/c. Integrating inequality (3.3) with respect to u yields

S oI < S (1/e) - u(f) < ((3+ 1/log2)/c) - |loge| - u(K) < Cs - |loge] - | K|

as required.

To prove the second statement let C4 = leleA |I|* + C2C3 and observe
If>eq

STHE< Y MM+ > ) " <Cq|logel,

115 i3%0 KeNe i
using lemma 3.2.4 and the first part. [

Define measures ¥, by
4 ! dt
be(4) = (loge)™ [ (La(®)+1a(-1) T
for all Borel sets A C IR and measures ¥7 for z € R by
P7(A) = Pe(A-2)

for Borel sets A C IR. Note that the total mass of each of the measures ¥, and %7 is 2.

Lemma 3.2.5 There are absolute constants Ds, De, D7, Dg > 1 such that, for all intervals

I C IR with endpoints in E, and all e > 0, k > 0, the following estimates hold:

@) [ ey D W) S DO ll'cf!;l (108 (££5) -7),
® [, EOdE <D0l (1)

@) [, D du@) < Dr-Co

@ [ @DF du@) <D i
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Proof (a) Denote the left endpoint of I by a and let R(t) = u([a — t,a]). By (3.1) we
have R(t) < Ct*. We use integration by parts to see '

g I
J, ) < Quogel - [ iog () an)
< (logel- ["og (=) drctiz)
< (ltogely™ [tog (22) - Ree- 11+ [ S
c\I\~ K o c d
|l(lg,g|-[108( : ).K +/o tl‘t"‘] .
< (D5/2)-C-%-<10g('€:1)-n°‘>

for Ds = 2(1 + 1/a). An analogous calculation can be performed for /*(x) and thus (a)
follows.

(b) Observe that by Fubini’s theorem

Sy ED ) = [ e ¢ 1) = w20 > ).

$Z(I) > t implies
_ d(z,I)+ ||
(Iloge]) - log (W) >t
and thus d(z, 1) < |I| - (¢/(1 — €*)). Therefore the set
{z g I°(k) : p2(I) >t} C {z : &|I| < d(z, 1) < (*/(1 = €T}
is empty if & > €!/(1 — £), which is equivalent to ¢t > (Jloge|)~! -log(1 + 1/k).
Otherwise,
p{z g 1°(k) = 92 > 1)) < p({z &1 :d(z, 1)< |I]-(e'/(1 - €")})
< 20 I1% - (e'/(1 - €)™

Therefore
| e #1°0) = dla Dy < |11 t/(1 - 1))
<2c-i1°- | o 1 ey
and

+1/x dr

[ - e oge - [
0 1
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/% dr
< (ltogel)™ - [ 5 < 1/(1 - o) (llogel) ™ - (1/0)1

which finishes the proof of (b) with Dg = 2/(1 — o).
(c) follows by adding inequalities (a) and (b) for & = 1, and putting D7 = log 2 - D5 + Ds.

(d) is proved in a manner similar to (b). We have
Sy (2O dtz) = [l € () < E(D) > V) di.
YE(I) > +/t implies d(z,I) < || -(eﬁ/(l - E‘ﬁ)) and hence we have
p{z € I°(r) - 92(1) > VAY) < p{z € I7(x) : d(z, ) < 1| (V*/(1 - )

< C-1 (V1 - V),

and thus

IN

C |1 -/1(5’/(1 — )% (20) dt
logrdr

RGOS
< 20111 - (loge)™® [ B

Together with the analogous calculation for I (k) this completes the proof of inequality
(b) with

> logTdr_
D8_4/ (T—I)O‘T

Note that all intervals I € A and all intervals I € A, ¢ > 0, have endpoints in F and
thus lemma 3.2.5 applies to these intervals.

We finish this section with a useful lemma of approximation.

Lemma 3.2.6 For every fized v > 1 there are Cy,C10 > 1 depending on v such that, for
all0 < 6 <eg, k> 1 and all ¢ > 0 with ye < ¢g, and for every K € Ns, we have

(2 = vz ey < otk () + )

where the sum extends over all I € A such that |I| > ve, I C K and z € I°(k); and also

[ (20 = S z) aute) < o+ ()" + 1)

where the sum extends over all I € A such that |I| > ve and z € I°(k).
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Proof We start with the first inequality. For all z € IR we have

YIK)-Y iD= Y v+ Y wiD).
NeNy. NCK TEA | 2ve
zgI0(x),ICK
Therefore we have to give appropriate estimates for the expressions
> [erdute) and / YE(I) du(z) .
N€ENy,NCK TeA, |r|>~,¢ 1°(k))e

To estimate the first expression, we use |N| < C1y¢ to see

/w(N)d (z) < ll"ggl? w(N) < C -logCyy -

|loge|
By lemma 3.2.5(c) we know that

[ vau@) s oo T

|log e

holds. These two estimates together with lemma 3.2.3 give

. |V~
< . . .
E/%(N)du(z) < (C-logCiy+C-Dy) leogsl
_IK}*
~ |loge]

with C = C; - (C -logCyy + C - Dr).

For the second expression we use lemmas 3.2.5(b) and 3.2.4 to see

/1(,;) C(I)du(z) < De-C- Y, |1|;|;|_(%)1_a

TEA,|I|>e
ICK

IE.A |I|>'1t

IN

1 l-a
CDeCs - | K| - (;> .

This gives the first inequality with Cg = C + CDgCs.

To prove the second inequality, observe that

[ (@20 - vz duta) < €+ €0sc)- ((5) 7 + u%) :

which follows in the same manner as above, replacing K by D, and using lemma 3.2.4(2)
instead of lemma 3.2.4(1) in the final step. Denote ¢ = min(E), b = max(FE) and use

lemma 3.2.5(c) to see

L @z@®R) - 42(D,) du(a)

IA

b b
[ vzl e duta)+ [ vz(bb+ 1) dute)
2CDy
[loge|
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Thus the second inequality holds with C;0 = C + CD7C4 + 2CD7. [ ]

3.3 Proof of Theorem 3.1.3

The proof will be done according to the following plan:

First we show that it suffices to study the average densities of measures y at almost all
points z of a set E, where p and E fulfill the conditions assumed in section 3.2. We then
introduce a family of functions (¢y), the sum of which approximates, roughly speaking,
a modification of the difference of the left and right average densities. We show in the
main step that the set of points where the approximating function has large modulus has
small measure (lemma 3.3.5). Finally, we conclude that this implies that neither right-

nor left-sided average density can vanish.

We suppose that 0 < a < 1 and a measure u € M(IR) is given such that
0<d*(pz)<d (4,2) < 0

p-almost everywhere. Without losing generality, if necessary by restricting p to countably
many open sets, we can assume that p is a finite measure. Due to the symmetry of the

problem, we can concentrate our effort on the investigation of right-sided average densities.

For every pair of integers n, k let
EX = {z : (1/2)" < d*(p,2) < (1/2)"* and 2F > d%(u, ) > 2F71 ).

The sets EX are Borel sets. Moreover, by our assumption, u-almost every z is contained

in one EX. By proposition 1.3.1 we have, for u-almost every z € E, that
(1/2)"7" > d*(ulgs, =) = d*(p,2) > (1/2)" (3.4)

and

25 > & (plgx, @) = & (u,z) > 2571, (3.5)
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and by proposition 2.2.5
ﬁ:(,u,, .’B) = ﬁi(“lEh, (L')
Therefore it is sufficient to show the statement of our theorem for the restricted measures

p|gx. Let us fix such a measure and also denote it by . Let ¢ = (1/2)" and C = 2k,

Lemma 3.3.1 Let p € M(IR) be a finite measure such that
c < d*(p,z)<d (u,z)<C

for p-almost every . Then, for every 1 > § > 0, there is a family of disjoint Borel sets
(Bi)ien with |B;| < 1 and a family of compact sets (E;)ien with E; C B;, such that

n(R\JE) <, (3.6)
=1
and for every i € IN there is a number 0 < €o(¢) < (1/e) such that, for all z € E;,
p(lz —t,z +t] N B;) > ct® if 0 <t < eo(d),

and, for all z € B;,
p(lz —t,z +¢)Nn B;) <Ct* ift>0.

Proof Pick a countable dense subset @ C (0,1). The functions

p(z —t,z +1]) sup Mlz=tz+t)

s(z) = su =
(2) s>t£0 te e>t>0 A
teQ
and
. -t t ) -t t
i(z) = inf Mle =tz t1) = inf wlz—tz +1)
e>t>0 to ¢'>€:50 1

are Borel-measurable for every € > 0. Given an arbitrarily small § > 0 we can use the
boundedness of the upper densities to find a number 0 < € < 1 and a Borel set B C IR,
such that u(IR\ B) < §/2 and, forall z € B and 0 < t < ¢, we have u([z —t,z +1]) < Ct°.
Write B as the union of pairwise disjoint Borel sets By, By, Bs, ... C B, such that |B;| < e.
Then we have, for all z € B; and t > 0,

w(lz —t,z+tjn B;) < Ct*.
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By lemma 1.3.1 we have, for u-almost every z € B;,
d*(ul;, 2) = &%(p, ) > c.
Using this and the inner regularity of x we can find compact sets E; C B; and numbers
0 < €o(i) < (1/e) such that u(B;\ E;) < (6/2)-(1/2) and, forall z € E; and 0 < t < o(3),
W[z = t,z +t]N B;) > ct*.

Finally observe that p(IR \ U2, E;) < § to conclude the proof. [

We can apply lemma 3.3.1 to our measure g. By (3.6) and because we have

Ei(/‘ﬂ:) = Ei(ﬂIan)
for p-almost every ¢ € E;, it suffices to prove the inequality of theorem 3.1.3 for the

restricted measures u|pg;, and p-almost every point z € E;.

Fix such a measure p|p, and let us also denote it by u. Let E = E; and €9 = €o(%). We
now have a measure g with support contained in a compact interval of length less than
one and a compact set F such that, without loss of generality, u(E) > 0 and such that,
forall z € F,

wlz—rz+r]) <Cr® ifr >0, (3.7)

and

[z =ryz+r))>er® if0<r<e. (3.8)

Thus the results on the geometry of F, as formulated in section 3.2, hold.

Let us proceed to the second step of the proof. Recall the definition of the collection .A of
intervals and the measures Z from the previous section. For every ¢ > 0 and I € A define
a function @y describing the influence of the scales in the interval I — = on the one-sided

average densities by
1y —zl* $|°‘

¢1(z,¢€) = T;([y’”‘llz dyf(y) ifz>T ,

0 otherwise.
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Observe that the functions ¢y fulfill

B1(z,0) < CyE(T). (3.9)

Therefore we have, using lemma 3.2.5(c), that

|}
|log €]

Jo-py P2V, [ r(e€) duz) < Do CP- (3.10)

for all I € A and € > 0. We can use (3.8) to get a converse inequality, at least for many I.

Lemma 3.3.2 There is an absolute constant D1y > 0 and there is a constant 1 > X > 0,
such that, for alle > 0,k > 1 and all [ € A with eg > |I| > ¢/A and p(I) < (c¢/4) - |I|%,
we have

c3 |I|a
p1(z,e)d , / p1(z,e)d >Dn-—- .

1
Proof Let A = (c/(4C’)) /e and D;; = (1/16) - log(4/3).
Suppose I is an interval as in the hypothesis and denote its left endpoint by a. For all

z € I7(1)\ I=()) and y € I such that y — a > A|I| we get

() - p(B@AID) . Il | &
-2 > @I > @) >38C"

Denote R(t) = u([a — t,a]) and observe that our assumptions imply, for 0 < ¢t < 1,
[1|*Ct™ > R(t|1]} > [I|*(et* — (c/4)).

These inequalities yield

v
|

/I_(n) Pi(z,e)du(z) 2 o5 ./I_(IN_W YE{y eI : y—a> AI|})du(z)

c? 1 1 t+1
> . . 1 —— V dR(t|T
= 3C Tloge| /A °g<t+,\) E(11)
> o o low () - (RAID - ROAID)
= 8C (loge] B\1+ A
> & tog(a/3)- A (e (e/4) - oA
= 3¢ % | loge|
_ : (e3/c) - I
= (1/16)-log(4/3)- (c*/C) TogTT
This completes the proof for I=(k). For I*(x) the proof is analogous. ]
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We are now able to define 7 > 0 as

r= C4 Dn
T C3 8.-D;°

Note that 7 depends only on C,c and a and that C, ¢ are functions of d*(u,z) and

d*(p,z). We fix the value of k depending on ¢ as

k=k(e)= (log|loge5|)ﬁ .

For e > 0 let
G ={I €A :eo> |12 e/Aand u(l) < (c/4)- 1),

the collection of those intervals to which lemma 3.3.2 can be applied. Also let
B.={leA,|I|>¢/Aand [ £G.}.

For I € G. we have, by (3.10) and lemma 3.3.2, that

D é |71 </ pr(z,e)d (:z:)<D---Cz~—m
' Toge| = Ji-(m PR W= 5T |log el
and
c |1]* L
Dy - = . < 3 <D;-C?. .
nc |loge| — /1+(,;) ¢1(z,€)dp(z) < D7 - C |loge|
Thus the numbers i
f]"‘(n) ¢1(z,¢) dp(z)
ni(e) :=

o f1+(,¢) o1(z,€) du(z)
fulfill

8t c
= <me)< (3.11)

8—7- .
For I € B, let ni(e) = 1. For e > 0 and I € A with |I| > £/) define the function ¢; by

-n1(¢) - ¢r(z,e) if z € I't(k(¢)),
e1(z,e) = @r(z,e€) if z € I7(k(¢)),

0 otherwise.
Lemma 3.3.3 The functions ¢ have the following properties:
1. There is a constant C12 > 0 such that, for allz € R and € > 0,
lpi(z,€)| < Cra - 92 (I).
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2. @1(-,€) is supported by I~ (k(e)) U I*(k(e)).

3. For I € G, we have [ pf(z,¢)du(z) = 0.

Proof Define C13 = Cc¢/(87). Then for all z € R

|<,0]($,€)| < max{|711|, 1} ‘ I@I(zaeﬂ < C12 ‘ ¢:(I)’

by (3.11) and (3.9). This proves the first statement.
The second statement is immediate from the definition of ¢y.

To prove the third statement, let I € G.. Then, by definition of 7y,

[eraydua) = [ o P12 () = mi(e) Jos gy P120) d0(2)

J1-(s) #1(z,€) du(z)
J1+(s) P1(z,€) dp(z)

/I_(n) @r(z,€)dp(z) - ‘/;+(n) ér1(z,€)du(z)

= 0.

We now proceed to the main step of the proof and show that the sum

Z 991(:‘7’5)

IeA|I1>e/X

has small mean square (with respect to p). We start by showing that, for most z, the

summands in the sum above are small.

Lemma 3.3.4 Define the set S(¢) as the set of all x € R such that there is J € A with
|J] > e/A and

2(,'12-> log |loge|

>
|<PJ(x75)| =z ( o |10g€|

Then there is a constant Ci3 > 1 such that, for all sufficiently small ¢ > 0,
#(5(€)) < C13 - (loge])~".

Proof Denote
5= 2 -log | loge|
~ |loge®|
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and observe

WSE) S X ulfe e R\ ¢ (logel)™ tog (N5 > o)

JEA
1712e /2

The condition

_ d(z J)+|J|) 2 -log | loge|
1 . ) >
(1oge~ -1og (5725 o
implies
d(z,J) +|J]|
d(z,J)
and therefore, if ¢ is sufficiently small, d(z,J) < 2|J| - |loge|=2/®. Thus, denoting Cy3 =

> |loge[*/®

4C - C4, we have, for sufficiently small £ > 0,

u(S(e) < Y m{z € R\J : d(z,J) < 2|J]-|loge| )

JEA
1JI>e/2
o]
<2 T 7] < Cis_
= |logel? T |loge|
[J[>e/a

We can now formulate the main lemma of the proof:

Lemma 3.3.5 Denote

B.={zcE:| Y eila, )2}
IeA
112e/2
Then there is a constant C14 > 1 such that, for all sufficiently small € > 0,

Ci4
[loge]

#(Be) <

Proof We fix 0 < ¢ < ¢gg, sufficiently small in the sense of the preceding lemma, and
sufficiently small to fulfill several computational conditions, specified as they appear in

the proof. We begin the proof by estimating p(B,) by means of suitable sums of integrals

B < [ % wi@e) du@)

IEAI|>e/A

= ) X /w(w £)ps(z,€) du(z) (3.12)
I€B, or JEB,

+ ¥ 2 [e@ee,) duta). (3.13)
IeG. Jeg.
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In order to give an estimate of (3.12), we define C;5 = (4/¢) + ZIII|€>A |7|* and observe
2€0

< > 1+ Y <4/ wBNE)+ Y [I]* < Cus.
IeB. IeA IeA I€A
w(I)>(c/H)]|> [I>e0 [1>eq

Therefore we can use lemmas 3.3.3 and 3.2.5(c) to show

Z Z /lP[(J),&)(pJ(:E,E) d“(z)

IeBc or JEB,

2 [(ler@ol X lesa,0)]) du(a)

JEA
TeB. [J1>e/A

20h- ¥ [ (b2 X vE0) dute)

JEA
Ies. [J1Ze/>

ik Y [ vE()dute)

IeB.

IA

IA

IA

||
|log e
1 1

<
|loge| = /loge]

for sufficiently small € > 0, as required to estimate (3.12).

< 4CD:CE- D]
IeB,

< 4CD1CLCxs -

For an estimate of (3.13) we have to work harder. We split the sum again

Z E /‘Pl(m,e)@J(x,E)du(x)

Ieg. Jeg.

< ¥ [elaedu) (3.14)
Ieg.
+2 ¥ % [erl@ )z, dula). (3.15)

1,J€G., I<J
In order to estimate (3.14), we can use lemmas 3.2.5(d) and 3.2.4 and get
E/&u €)du(z) < CDsCly - Y ﬂ«mc'—’c DL NP
LA =8 llogel> = ~ %71 loge| = /[loge|

Ieg. Ieg.
for sufficiently small ¢ > 0, as required.

The investigation of (3.15) constitutes the main part of the proof. Observe that

er(z,e)ps(z,e) <0

unless z € I~ (k)N J~ (k) or ¢ € IT(k) N J*(k). We concentrate our effort on those pairs

(1,J) that fulfill I=(k)NJ~ (&) # 0.
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We fix an interval I = (a,b) € G, and look at the family of intervals J € G, that fulfill
I < Jand I"(k)NJ~ (k) # 0. We order them from left to right

I<Ji<<...<JN

and denote J; = (c¢;,d;) for 1 < i < N and ¢ny41 = 0o. Because I (k)N J7 (k) # 0, we

have ¢; — a < k(d; — ¢;), and thus

K
c;—a< K—H(d,- -a)< (cit1 — a).

k+1

Observing that ¢; — a > |I|, we therefore get by induction, for all 1 <i < N

K+ l)i—l

ci——a2|I|»<
K

Let £ = sup(I*(x)) and denote by k the smallest integer such that
ek =& 2 |loge['/*-|1]. (3.16)

We have

K k—2
1 (555) " < (et =€)+ (€ - a) < ogel 111+ (s+ VI,

and therefore we can put 8 = 3/(1 — a) and get, provided ¢ is small enough,

log | log ¢]

7R LU PEY og | lo B .
Tog((x + 1)/m) < o8 I1o8<D) (3.17)

k<(2/a)
We now give an upper bound for the influence of Jq, J,...,J; by means of lemma 3.3.4.

We first use p(S(€)) < Ci3-(|loge|)~! to get

k
> /S(e) 1(2,€)¢,(2,¢) du(x)

Ieg. i=1

k
ey [ o, (12,0192 4) ducz)

Ieg.

21z - /S o 2 o1zl duz)

Ieg.

43 - w(S(e)) <

IA

IA

401226.13
|loge| -

IA
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Now we use the moderate growth of k and the fact that outside the set S(¢) the |¢y,(z,¢€)]
are small, to see v

k
TS /S e1(z,€)ps(z,€) d(z)

I€g, i=175(e)°

k
> /S(E)c (l‘PI(z,E)I(;lSOJ.-(:E,s)|)) du(z)

Ieg.

> /S(c)c(lW(x’E)I'k'Ifiaf‘{|¢J;(w,6)l})dp(x)

IegG.

O O 1 ﬁ
(1) - CEIEDZ [ 57 foya, ) )

|loge] 1€g.

IN

IA

IN

_(log|loge|)!*#

< 4c}
s 4 allog¢|

u(R),

and summing these two estimates we get, for sufficiently small ¢ > 0,

k
1
e1(z,€)ps(z,€) du(z) <
Igg:,;/ ’ ’ Vloge]
as required.
In order to give an upper bound for the influence ot the intervals Ji4y,...,Jn we first

calculate that on the domain of ¢j(:,¢) the variation of the function @y,(+,€) is small,

namely there is a constant Cy7 > 0 such that, for

(I, Ji) = Sup |@ai(2,€) — ui(y,€)l
zyel~(r)ult(x)
we have
¢ 2a 1l \*
C(I, J,) S C17 . ¢5(J1) K . c £ . (318)
i-1—

In order to prove (3.18) we pick z,y € I" (k) U I't(x) with z < y. For z € J; we get

1< 278 14828 gy Bt DU

v Ty ¢

and, if ¢ is sufficiently small to ensure

(26 + 1|1 < (26 +1)

ei—& ~ |loge|t/e "7
we get
_ 14 14+ a
ll_(u_) S(HM) _153(M)_ (3.19)
z—-y i —¢& ci—&
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Because ¢; — ¢;—1 > (ci—1 — €)/k we have [y,¢;] 2 B(ci—1,(ci-1 —§)/k). If € is small

enough to ensure 1/k(e) < g9 we have

ullysed) 2 p(Bleis, SE7E)) 2 (e/6)eia - ).

Thus, for all z € J;,

(=, 2)) w([z, y)) ke C|T|*(25 + 1)°
= 5wl = wma) = ORI (3.20)

Let C17 = 12(C?/c). (3.19) and (3.20) together imply
p([=, 2]) w((y, 2])

-y~ G- )

plz,2]) |, (z—z\" o wly,2]) |, ez 2])

= ooyt | (z—y) FEET ’1 w([,2))
1l )"
< o (o)

and thus

#((z, 2]) p(ly, 2])

G-+~ G-

Crr - E(J:) - K3 (E_|11_|—£) ,

dz

(6a(e,6) = ()] < (llogel)™ [

IN

which proves (3.18).
We can now use lemma 3.3.3(3) to see that, for an arbitrarily chosen fixed y € I7(x) U

I'*(k), we have
/901($,5)¢J.-(y»€) d/,t(il?) =0,

and use this together with (3.18) to estimate

N N
Y [ewsdn < X [ei@e)n(ze) dua)

i=k+1 i=k+1

N
= 2 /<P1(z,6)(¢1a(w,6)—¢J.-(y,e)) du(z)
1=k+1
N
> 1,9+ [ lor(a, o)l duz)

1=k+1

N a
I I~
CencuDy Y- yi) e (L -) 7]

i=k+1 Ci-1— |log e

IN

IA
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(3.16) G 2
< a
< CCy7C12D7 - “ Py 1_21 PE(J:) - Toge]
< CCy7Cy2D7 - L

|loge|?

and finally, summing over all I € G, and using lemma 3.2.4(2),

K2 1

d < D <
Igg:, ,_zk;l/W(x €)pui(z,€) du(z) < CC17C12D7Cy - Toge] < JMoxd]

for sufficiently small € > 0.
In the same manner we get estimates for intervals I, J with I*t(x)n J*t(x) # 0.

This finishes the proof of our main lemma.

We now proceed to the final step in the proof of theorem 3.1.3.

The function ZI e ¢r1(z,€) is an approximation of
I|>¢/2

D(z,e) = (Iloggl)—l /51 “([x’z + t]) - n(xt'; t?‘E) -;L([:l: - t’z]) %,

where

ni(e) if z € I for some I € G,,
ﬂ(z,f) = .
1 otherwise.

Lemma 3.3.6 Define the approzimation error
E(z,e) = ,D(m,e) - Z 991(:c,5)| .
TeA||>e/A
There is a constant C16 > 0 such that for all 0 < ¢ < gg, we have

Cie

Mz € B s Bae)> T < gt

Proof We have for all z € E, using (3.11),

E(z, e)<— (vemy- Y wED).

T€A,|Il2e/A
z€1%(x)

Putting ¥ = (1/A) in the second inequality of the approximation lemma 3.2.6 yields

i . 1 \l1-a 1 Cio
/E('/)E(]R)_ > ¢s(1))du(w)50w'((@) +,1og5;)5(1oguogs|)2'

I€EA|I|>e/A
z€I%(x)
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Thus, defining C16 = 2¢CCy0/(872),

p({z € E : E(z,e) > 7})
< = [ B(s,)du(a)
T JE

< cC/(87Y)- /E (ve®)- ¥ ¥ED) du(z)

TEAII2e /A
IEIO(K)

Cis
(log|logel)?

IA

We can now finish the proof of theorem 3.1.3.
Observe that
|D(z,€)| < |E(z,€)| +

z 991(1’5)
T€eA
H1>e/2

We use lemmas 3.3.5 and 3.3.6 to see that, for sufficiently small € > 0,

u({z € E : |D(z,¢)| > 27})

p({z € E : |E(z,e)l >mH+p({z € E:| 3  ei(z,e)l>T1})
I€A||I]2¢/A

IA

Ci6 + C14
(log |logel)?

Define the sequence (éx) by 6x = exp(— exp k). Then

Ci6 + Ci4

p({z € E : |D(z,68)| > 27}) < 2

and, since > 72, kl, < 00, we have, by the Borel-Cantelli-lemma,
p({z € E : limsup |D(z,6;)| > 27}) =0.
k—o0

We have

(|log 6x|)~! /5: 'N([x,;-'- J %

((l log 8k)~! /5: wllaz +1) + n(l‘t: he) e - bz % + D(m,ék)) )

N | =

and

Upfe — t,3 +1) dt

(.2 + ) + 7z = te) -z~ 1,7]) dt | |
5 to t

=>
i 3 = > (87/c)
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Therefore, for u-almost every point z € F,
1 t]) dt
h’{ninf(llog6k|)‘l/ ’i[’”;—*]—) Z2(1/2)- (/) e—2m) > 7.
— 00 Sk

For éx+1 < € < 6 we have

_ Vu([z,z+t]) dt _ 1 _1 [z, z + 1)) dt
(ogely [t D LS 1 (11ogsyyt [ Mzt &t
& & t

(o

and thus we finally get, for u-almost every z € E,

1
. -1 [t [z, z+1]) dt
hrilﬁ)nf (|logel) /5 ——e 3

1
> 1-1nninf(|1og6k|)‘1/ e,z +1]) dt
€ k—+00 5k ta t

> (1/e)-er=r,

as required to finish the proof.
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Chapter 4

Measures with Unique Tangent

Measure Distributions

Tangent measure distributions at almost all points of a rectifiable measure are Dirac dis-
tributions with mass concentrated at a constant multiple of Hausdorff measure on a line,
plane or a higher-dimensional approximate tangent space depending on the dimension of
the measure. The governing question of this chapter is the following: What is the sha-
red feature of the unique tangent measure distributions of a measure and the tangent
spaces? What types of distributions can occur as unique tangent measure distributions?
The answer is surprisingly elegant: The shared feature is statistical self-similarity. Unique
tangent measure distributions of a-dimensional measures are (in a certain sense) a-self-
similar random measures. On the other hand every a-self-similar random measure that
fulfills an ergodicity condition appears as unique tangent measure distribution at almost
every point of a suitably constructed measure. The key to this self-similarity property is
the notion of a Palm distribution, which originates from stochastic geometry, and which

was introduced into fractal geometry by U. Zihle.

In section 4.1 we give a short introduction into U. Zahle’s approach to self-similar random
measures and introduce the notion of a Palm distribution. This section closely follows

[Zah88]. Section 4.2 contains the main result of the chapter: At almost all points of a
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4.1. SELF-SIMILAR RANDOM MEASURES AND PALM DISTRIBUTIONS

measure with positive and finite a-densities the unique tangent measure distribution, pro-
vided it exists, is a Palm distribution, and therefore it is an a-self-similar random measure
in the sense of U. Zihle. Some applications of this result are given. In section 4.3 we give

the proof of the main theorem.

4.1 Self-Similar Random Measures and Palm Distributi-

ons

The main idea behind U.Z3hle’s axiomatic approach to statistical self-similarity is, roughly
speaking, the following: a random measure could be called statistically self-similar if it
is statistically scale-invariant with respect to any centre chosen at random according to
that measure. The important point, and also the difficulty, is that the scale invariance
should hold with respect to a “typical point” of the random measure and not with respect
to every point which would be too restrictive, see [Zah88, 1.5]. To make the idea of a
“typical point” of a random measure precise we have to introduce the notion of Palm

distribution (see [Z&h88], [Mec67] or [Kal83]).

Starting from a stationary quasi-distribution, we derive by means of a “conditioning pro-
cess” a distribution, which has the origin as a “typical mass point of its realizations”. The
precise method is as follows (see e.g. [Mec67, chapter 2]):

Suppose @ is a o-finite measure on the Borel sets of M(IR"), a so-called quasi-distribution,
which is stationary, i.e. invariant with respect to all shifts. The barycentre of ¢} is a mea-

sure on the Borel sets of IR", which is not necessarily locally finite, defined by

Ao(4) = [ v(4)dQ(v).

Aq is called the intensity measure of Q.
Because () is stationary the intensity measure Ag is shift-invariant, and therefore, for

Borel sets B C IR™ with finite Lebesgue-measure 0 < £"(B) < oo, the ratio

Aq:=ﬁgT(g))€[0, ]
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CHAPTER 4. MEASURES WITH UNIQUE TANGENT MEASURE DISTRIBUTIONS

does not depend on the choice of B. Ag is called the intensity of Q.

For a stationary quasi-distribution @ with finite and positive intensity 0 < Ag < oo and
a Borel set B C IR™ with 0 < L™(B) < oo we can define a probability measure (o on
M(RR™) by
1
Mz—//l T*v)dv(z)d@Q(v),

for all Borel sets M C M(IR").
Using the stationarity of @ it is easy to see that Qo is independent of the choice of the
Borel set B. g is called the Palm distribution of Q.

The quasi-distribution @ can be reconstructed from ¢ outside the zero-measure up to a
constant multiple (see [Mec67, 2.4]). In the special case of a stationary point process @
(i.e. @ is the distribution of a stationary random measure, which is the countable sum
of Dirac-measures at random points), the Palm distribution Q¢ can be interpreted as the
conditional distribution of @ given that the origin is a mass point (see [Kal83, theorem

12.8)).

We call a probability measure P on M(IR") a Palm distribution, or say that P has the
Palm property, if there is a stationary quasi-distribution ¢ with finite and positive intensity

such that P = Q. A well known theorem of Mecke characterizes Palm distributions:

Lemma 4.1.1 A probability measure P on M(IR™) is a Palm distribution if and only if
P({#}) = 0, where ¢ is the zero-measure, and the following Palm formula holds:

/ / G(T?v, —z) dv(z) dP(v) = / / G(v,z) dv(z) dP(v) (4.1)

Jor all Borel functions G : M(R™) x R" — [0, 00).

Proof The proof can be found in [Mec67]. ]
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In order to explain why the origin is a “typical mass point” of the realizations of a Palm dis-
tribution, let us define what we mean by a statement A(v, z) about a measure v € M(IR")

at a point z € R™.

Definition
A statement A(v,z) is called a statement about v at z, if and only if the set {(v,z) €

M(R™) x R™ : A(v,z)} is a Borel set and A(v,z) and A(T*v, 0) are equivalent.

Lemma 4.1.2 If P is a Palm distribution and A(v,z) is a statement about v at z, then

the following statements are equivalent:

(1) A(v,0) for P-almost all v.

(2) A(v,z) for v-almost all z € R™ for P-almost all v € M(IR™).

Proof Denote A, = {v € M(IR") : A(v,z)} and note that A, is Borel set for all z € IR".
Assume first that A(v,0) for P-almost all ». We use the Palm formula (4.1) to get

0= //lAg(V) dv(z) dP(V)=//1A8(TIV) dv(z)dP(v).

Therefore for v-almost all z we have T?v € Ag, for P-almost all v. But T%v € Ay is
equivalent to A(T*v,0), which again is equivalent to A(v, ).
Now assume that for v-almost all z we have A(v, z) for P-almost all v. Then by the Palm

formula (4.1) we get

0= / / 14: (v) du(z) dP(v) = / / Lge _(T%v) dv(z) dP(v).

Therefore we have T*v € A_, for v-almost all z, for P-almost all . Note that, since
P({¢}) = 0, for P-almost every v € M(IR") there are z € IR" such that T%v € A_,.
This is equivalent to A(T*v,—z), which on the other hand is equivalent to A(v,0) and

this finishes the proof. ]

We can interpret lemma 4.1.2 in the sense that the origin is a typical point of the realiza-

tions of a Palm distribution P. If the Palm distribution P is the distribution of a random
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measure which is a-scale invariant, i.e. P = P o T) for all T in the rescaling group, then
P is a-scale invariant in a typical point, and therefore the random measure is statistically

self-similar in the axiomatic sense of U. Zahle.

Definition
A probability distribution P on M(IR") is the distribution of an «a-self similar random

measure if P is an a-scale invariant Palm distribution.

Let us now close this excursion into the theory of random measures and go back to the

study of unique tangent measure distributions.

4.2 Unique Tangent Measure Distributions are Palm Dis-

tributions

Let us look at a measure u € M(IR™) with positive and finite a-densities almost everywhere
which has unique tangent measure distributions. If 4 is a rectifiable measure then a is an
integer and at p-almost every z there is a linear space T C IR™ of dimension a such that
the unique tangent measure distribution of 4 at z is a Dirac distribution concentrated at
the point

(1/2)%d*(p, z) - H®|r € M(R"),

where T is the approximate tangent space to g at = (see theorem 1.3.12). If u is a fractal
measure which has a unique tangent measure distribution at almost all points it is a natu-
ral question to ask which general feature of a tangent space holds for the tangent measure
distributions or, in other words, in which sense the tangent measure distributions possess
a higher degree of regularity than the original measure. Of course we cannot expect the
tangent measure distributions to be deterministic, but we have to expect a “statistical”
property. Neither can we expect the “random tangents” to be a linear space in some
sense, in particular, of course, if a is not an integer. But one characteristic feature of

linear spaces which can be formulated for random measures of non-integer dimension is
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statistical self-similarity.

Looking at unique tangent measure distributions from this point of view, and keeping in
mind the examples we have seen so far, it is not too far-fetched to conjecture that the
unique tangent measure distributions at p-almost every point are statistically self-similar
random measures. It turns out that U. Zihle’s notion of an a-self-similar random measure

is the notion of statistical self-similarity which makes this conjecture true.

We have already seen in lemma 2.2.2 that the tangent measure distributions are a-scale

invariant. The remaining problem therefore is to prove the following theorem:

Theorem 4.2.1 Let p € M(IR™) and suppose there is a 0 < a < n such that
0 < d*(p,z) < d°(p,z) < 00

for p-almost every x. Then for u-almost every z the following statement holds: If there is

a unique tangent measure distribution P of u at x, then P is a Palm distribution.

Theorem 4.2.1 will be proved in section 4.3. Theorems 4.2.1 and 2.2.2 together immediately

imply:

Corollary 4.2.2 Let p € M(IR™) and suppose there is an 0 < a < n such that
0< d*(p,z) <d™(p,2) <

for p-almost every x. Then for u-almost every z the following statement holds: If there
is a unique tangent measure distribution P of u at z, then P is an a-self similar random

measure.

It is an interesting question whether the statements of theorem 4.2.1 and corollary 4.2.2
also hold for non-unique tangent measure distributions. For measures p on the line the
question will be answered in the affirmative in chapter 5. In higher dimensions it remains

open (see chapter 7).
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We state some consequences of theorem 4.2.1 and corollary 4.2.2.

Let p € M(IR™) and suppose there is a 0 < a < n such that, for p-almost every z
0 < d*(p,z)<d (p,z) < c0.

Let us look at Palm distributions from a different point of view, namely as distributions
with a shift-invariance property. The fact that the origin is a “typical point” for the reali-
zations of the unique tangent measure distributions can be interpreted as an analogue to
theorem 1.3.10. Theorem 1.3.10 is frequently used in the following equivalent form (see

for example the proof of Marstrand’s theorem in [Mat95]):

Let A(v,u) be a statement about v at u. Then for p-almost all z, the statement A(v,0)
holds for all v € Tan(y,z), if and only if A(v,u) holds for all ¥ € supp v and all
v € Tan(p,z).

In this form it becomes clear by means of lemma 4.1.2 how to interpret theorem 4.2.1 as
a shift-invariance property. This can also be formulated directly in terms of the support

of P. Recall the definition of the shift-operator T' from section 1.2.

Corollary 4.2.3 For p-almost every z € R™ the following property holds:
If there is a unique tangent measure distribution P of u at z, v € supp P and u € supp v,

then T*v € supp P.

Proof Suppose P is a unique tangent measure distribution which is a Palm distribution.
Look at the statement “T"“v € supp P”. We have T°v € supp P for P-almost every v and
hence (by lemma 4.1.2) that T*v € supp P for v-almost every u for P-almost every v.

If v € supp P and u € supp v we thus have sequences vy — v and uy — u such that

TUkyy € supp P. By lemma 1.3.4 this implies T*v € supp P. ]

What happens if we iterate the procedure of taking tangent measure distributions?
For the case of unique tangent measure distributions the answer is provided by proposition
4.2.4 below, because proposition 4.2.4 applies in particular to the random measures defined

by the unique tangent measure distributions of u at p-almost every point.
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Proposition 4.2.4 Let P be the distribution of an a-self similar random measure. Then
P-almost every measure v has a unique tangent measure distribution Q% at v-almost all
points z and at z = 0.
Furthermore let A be the o-algebra of all Borel sets of M(IR™) that are invariant with
respect to the action of the rescaling-group (T»)r>o0 and let
Py: M(R") — P

v — Py,
a conditional distribution of P given A. Then Q% = P4[T*v] at v-almost every z and at
z = 0, for P-almost every v.
In particular, if P is ergodic with respect to the action of the rescaling group, then for

P-almost every v, we have Q% = P at v-almost every x and at T = 0.

Proof We first look at the origin and use Birkhoft’s ergodic theorem to calculate, for

F: M(IR™") — [0, 00) continuous and bounded,

1 s .
Hm(—logr)_lf F(”La‘) A lim 1/3/ F (59_7) dr
rl0 r (4 t stoo 0 [4

= ]iml/s/ FoT,—(v)dr
0

sloo

I

/ FdPa[y]

for P-almost every v. Therefore

. 0 _

lr]fg P; = Pyv]
for P-almost every v, since by lemma 1.2.8(1) the convergence has only to be checked on
a countable set of continuous and bounded functions F'. This proves the statement for the

origin. For the other points we only have to observe that

”

A(v,z) = “ the unique tangent measure distribution of v at = equals P4[T*v]

is a statement about » at z. Then apply lemma 4.1.2.
In the ergodic case, finally, the constant kernel P is itself a conditional distribution of P
given A. Therefore the first part applied to this particular conditional distribution yields

the statement. u
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In corollary 4.2.5 we describe random measures with a particularly beautiful self-similarity

property:

Corollary 4.2.5 Let P € P be the distribution of a random measure v such that 0 <
dy(v,2) < dy(v,2) < 00 for v-almost all & almost surely.

Then the following statements are equivalent:

(1) v has a unique tangent measure distribution equal to P at almost every point
almost surely.

(2) P is a-self similar and ergodic with respect to the action of the rescaling group.

Proof Suppose (1) holds for P and let A € A. P-almost every v has unique tangent
measure distribution equal to P at v-almost every point. By corollary 4.2.2 P is a-self
similar. In particular P is a Palm distribution, and by lemma 4.1.2 we get that P-almost
every v has unique tangent measure distribution equal to P at the origin. Hence by
Birkhoff’s ergodic theorem, for P-almost all v,

/F(D)dPA[V](ﬁ) - 111102%/0 (2 ar = /F(ﬂ)dP(z?),
for F : M(IR*) — [0,00) continuous and bounded. Therefore we have P4[v] = P for

P-almost all v. Consequently
P(4) = [ PAW)(A)dPWw) = [ P(A)dPW) = P(4)?,

and thus P(A) =1 or P(A) = 0. Hence P is ergodic.
Suppose (2) holds. Use Birkhoff’s ergodic theorem as before to see
tim = [ (%) ar = /F(&) dP(7)
sfoo 8 Jo 4
for P-almost all v. Therefore P is the unique tangent measure distribution of v at 0 for
P-almost all v and we can use lemma, 4.1.2 to see that, for P-almost all v, P is the unique

tangent measure distribution of v at v-almost every z. [

Finally we note that corollary 4.2.4 provides a proof of the fact that self-similar sets (or
statistically self-similar random sets in the constructive sense of Falconer, Graf, Mauldin

and Williams) fulfilling an open-set condition have unique tangent measure distributions
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almost everywhere almost surely. The method is based on the construction of [PZ90] or
[PZ94]. First we randomize the self-similar set, turning it into an o-self-similar random
measure as described in the papers mentioned above. By proposition 4.2.4 the random
measure has unique tangent measure distribution at almost every point almost surely. We
can then use the argument used in [PZ92, section 3] to see that this property carries over
to the original measure. This method has been used in [PZ92] to show that statistically
self-similar random sets in the constructive sense have average densities almost everywhere

almost surely.

4.3 Proof of Theorem 4.2.1

Let 0 < a <1 and g € M(IR™) be such that
d(p,z) < o0
for p-almost every z. The main step in the proof of theorem 4.2.1 is the following lemma.
Lemma 4.3.1 Let
G: M(R") x R* — [0, )

be a continuous function such that there are a,b > 0 with

b

G(V, u) < E‘W : 1B(O,a)(u)

for ally € M(IR™) and u € R™.
Then for p-almost all x € R™ the following statement holds:

If a unique tangent measure distribution P of u at z exists, then the Palm formula

/ / G(T"v, —u) dv(u) dP(v) = / / G(v, u) dv(u) dP(v)

holds.

Proof Let
E:={zesupp pu : P, := 11{8 P? exists }

103



CHAPTER 4. UNIQUE TANGENT MEASURE DISTRIBUTIONS

and note that, since P is a separable metric space by lemma 1.2.8(2), E is a Borel set and

therefore u-measurable. Define functions g1, g2 and G1,G; associated with G by

g: MIR") — [0, 00)
v — JG(v,u)dv(u)
g2: M(R") — [0, 0)

v —  [G(T*v,—u)dv(u)
and
Gi: E — [0, 00)
y = [av)dPy(v)
Gy: F — [O, OO)
y [a(v)dPy(v)

Observe that
b-v(B(0,a))
9(v) < 1+ v(B(0,2a)) sb

and

b- ]-B(O,a)(u) ( ) ( (O a)) <b
1 + v(B(u,2a)) T 14 V(B(O a)) =

for all v. G is continuous and {y : there is v such that G(v,y) # 0 } C B(0,a). Hence

g2(v) <

g1 and g, are bounded and continuous by lemma 1.2.7. Furthermore G; and G, are Borel

measurable and bounded.

We recall that the measure ¢, on (0,1) was defined by
a ! dt
ve(A) = (|logel) / 14(2) T for all Borel sets A C (0,1).

For every open ball B C IR™ denote B := BN E. B is y-measurable. Let i := p|p. Using
lemma 2.2.5 in (4.2) and (4.7), Lebesgue’s dominated convergence theorem in (4.3) and

(4.6), and Fubini’s theorem in (4.4), we get
Lewaw = [6wdiw
Jim [ 0152 den(t) dity)

tim [ 91(524) din(t) di(y) (4.2)

It
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_ Tw///c P, duy,( diye(2) - i(y) den ()

= tim [ [ [olBet, =Y d“(z)du(y)d%(t)

= tim [ [ [ ket 122 B ) dgute

= 1im / / / G(uyﬁﬂ’_ d#z;,;(x) dii(y) den(?)
= tim [ [ [ ore(sty, o) @ ) ag,
- / tim [ g / (“y’ ) dipr (t) dii(y)

= [1im [ (B2 dir(t) dily)

= / Ga(y) di(y)

[ G2(w) duo).

By differentiation of measures (see lemma 1.2.2) we now get

Gi(y) = Ga(y),

for p-almost all y € E. This is the statement of the lemma.

Lemma 4.3.2 For p-almost all z € R™ the following statement holds:

If P is the unique tangent measure distribution of u at =, then the Palm formula

/ / G(T®v, —z) dv(z) dP(v) = / / G(v, ) dv(z) dP(v)

holds for all Borel measurable functions G : M(IR") x R" — [0, 00).

(4.3)

(4.4)

(4.5)
(4.6)

(4.7)

Proof The proof is merely technical. We first extend the result of lemma 4.3.1 to more

general G. Let
G: MR")x R" — [0,1]

be continuous. For every a € IN define functions G, by

Go(v,u) =min{ inf |z-u|,1}-G(v,u).
(v,u) mm{zeg\m,a)h ul,1} - G(v,u)
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The G, are continuous and bounded. Also fix f € C.(IR") with f(z) > 1 for all z €
B(0,2a). For every b € IN define the function G, by

Gap(vyu) = mm{1+ 1} Ga.(v,u).

We have
b

Ga,b(’/’ u) S 1 + V(B(O, 2a)) : lB(O,a)(u) 2

and thus the functions G, fulfill the requirements of lemma 4.3.1. Hence the Palm formula

holds p-almost everywhere for all functions G, with a,b € IN. Since
G, = lim G, and G = lim G,,
b—o00 a—00

and both limits are monotone, the Palm formula holds u-almost everywhere for G. By
monotone approximation from below we thus get the Palm formula for every indicator

function 1y for open sets U C M(IR") x R".

Because M(IR™) x IR™ is separable, we can find a countable basis O of the topology. Let
E:={zesuppp : Py := HH} P? exists }

and

A:={z € E : the Palm formula holds for P, and all functions 19, O € O}.

We have seen so far that u(A) = u(E). Now fix z € A. Let r > 0 and define S(r) to be
the collection of all Borel subsets B C M(IR") x U(0, r) such that

[ [1a0n dvw)apw) = [ [ 1677, -p) dvw) dPv).

S(s) contains M(IR™)x U(0, ) and is closed under proper differences and, by the monotone

convergence theorem, under non-decreasing limits. We have
S(r)20(r)={0€0 : 0 MMR")xU(0,7)}.

O(r) is closed under finite intersection and generates the Borel-o-algebra on M(IR™) x

U(0,r). Hence, by the monotone class theorem (as formulated for example in [Kal83,
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15.2.1]), 8(r) equals the Borel-o-algebra on M(IR™) X U(0,r). Thus the Palm-formula
holds for all Borel step-functions and, by monotone approximation from below and the

monotone convergence theorem, we can conclude that, for all z € A,

[ [ewmaryarw) = [ [ Gaov,-y)duty)dpiv), -

for all Borel functions G : M(IR") x R® — [0, 00). This finishes the proof of the lemma.
|

To finish the proof of theorem 4.2.1 we additionally require that
d*(p,z) >0
p-almost everywhere. For p-almost every z and every v € Tang(u,z) we then have
B(z,t
v(B(0,1)) > lim inf p(B(z, 1)) >0
tlo i
Therefore every tangent measure distribution P at z fulfills

P({¢}) =0,

where ¢ is the zero-measure. Therefore the two conditions in the characterization theo-
rem for Palm distributions (lemma 4.1.1) are fulfilled for the unique tangent measure

distribution of p at z (if it exists) and hence it is a Palm distribution.
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Chapter 5

Tangent Measures Distributions

of Measures on the Line

We have seen in the previous chapter that, for measures with positive and finite a-densities
almost everywhere, at almost all points the unique tangent measure distribution, if it
exists, is a Palm distribution. The drawback of this result, of course, is the requirement
of the uniqueness of the tangent measure distribution. The existence of unique tangent
measure distributions has been established for certain classes of self-similar measures (see
for example [Gra93], [AP94], [Kri95]), but results which hold for more general measures

are of greater interest in geometric measure theory.

The main result of this chapter is that, for measures y on the real line with positive and
finite a-densities p-almost everywhere, at p-almost every point every tangent measure
distribution is a Palm distribution, even if it is not unique. This result is formulated
together with some interesting consequences in section 5.1. These consequences comprise
a local symmetry principle (see theorem 5.1.3) and a complete description of the one-sided
average densities of the measure in terms of its average densities (see corollary 5.1.4). In
particular some questions left open in chapters 2 and 3 can be answered using the Palm
property. The proof of the result combines new ideas and methods from the proofs of

theorems 3.1.3 and 4.2.1 and is carried out in section 5.2.
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5.1 The Palm Property and Some of its Consequences

Let us formulate the main result of this thesis without further delay:

Theorem 5.1.1 Let yu be a measure on the real line such that, for some 0 < a < 1,
0 < d*(u,z) <d(p,2) <

p-almost everywhere. Then for p-almost every = every tangent measure distribution P €

P(p,x) is a Palm distribution.

Observe that the statement of theorem 5.1.1 holds trivially in the cases a = 0, 1.
Let us lock at some consequences of theorem 5.1.1. For this purpose fix a measure u on

the real line such that, for some 0 < a < 1,
0< d*(u,z) <d(p,z) < 00
u-almost everywhere.

Corollary 5.1.2 For p-almost every z every tangent measure distribution P € P*(u,z)

is the distribution of an a-self similar random measure.

Proof Combine theorem 5.1.1 and proposition 2.2.2. [ ]

A very remarkable geometric consequence of theorem 5.1.1 is the following theorem.

Theorem 5.1.3 For p-almost all z

1/1 Wz =t z)) = pllz, 2+ 1) dt _
€ t :

lmy (| ogel)

Proof Let z be such that d”(u,z) < co and every tangent measure distribution of x at «

is a Palm distribution. Suppose €, | 0 is given. By lemma 2:2.3(1) there is a subsequence
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CHAPTER 5. TANGENT MEASURE DISTRIBUTIONS OF MEASURES ON THE LINE

(rn) of (€n) such that there is a tangent measure distribution P = lim,_, PZ .

Define G(v,z) = 1jg3)(z). Observe that
J 6w avta) = v((0,1)

and
[ 6@, —y) dvty) = (1,0

If 7 is the barycentre of P, then #({0,1}) = #({—1,0}) = 0, and therefore we have

nlirlgo(“()grnl)-l/,iwé} = lim (llogrnl)—l . uzt( [01])—
= Jim [ [ GOy du(n) drz, )
= [ [cwydvw)are),

and
nlj_’néo(llogrnl)—l ‘/rii(_[f_t_at__’_?ﬁg = hm (|log7‘n|) / /sz:t( [ 10])_

= n_m//G(Tyu —y)dv(y) dP7 (v)
[ [e@mw, -y vty ap),

and this implies, by means of the Palm formula,

[t i g g [ b

|1°g7'n|)_l

which implies the statement. [ |

Remark (Example 3.1.2 revisited)
We have seen in example 3.1.2 that for Hausdorff measure p on the ternary Cantor set C

the map

p([z = t,2]) — p([z,z +¢])
o

t—

oscillates as ¢t — 0. Therefore the convergence of the averages in corollary 5.1.3 can have

essentially two possible reasons:
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1. Only a small number of scales ¢t € (0,1) are responsible for the oscillation. In this

case one should expect a stronger statement, namely

pllz =)= ezt ) dt 5.1)

1
. -1
tim (|1oge)) " =

to hold.

2. The oscillations to the positive and negative side cancel in the logarithmic average.

We are going to rule out the first reason by showing that (5.1) does not hold in our

example.

Suppose (5.1) holds. Then by lemma 2.1.3 the set

P {tE (0,1) : lﬂ([l'"t?‘v]);ﬂ([z,x'}'tl)l > (1/4)}

fulfills

lsiﬁ)l(ﬂogsl)_l /1 15(1t)31ltE =0. (5.2)

€

Recall the notation from example 3.1.2. By the strong law of large numbers we have, for

p-almost all z € C,
1 .
< #{i €{1,...N} : (z3i,T3it1, T3i+2) = (0,0,0)} — (1/8).
N

Look at such a point z. Whenever (z3;, z3:41, Z3i+2) = (0,0,0) and ¢ € (1/3%,1/3%-1) we

have
pw(lz,z + 1)) — p(lz - t,2]) > 2- (1/2)*+2
and thus
w(lz —t,z]) — u([z,z + t])
| = 1> 1/4).
Accordingly

§ 2 | {(1/3%,1/3%71) 1 (231, 23041, T3i+2) = (0,0,0)}.
iEN
Suppose ¢ € [(1/3)V,(1/3)N-1]. Then
— /11(t)ﬂ>l#{'e{1 N —1} : (235, 23041, T3iv2) = (0,0,0
Togel |, 15T 2 y#G € (L N =1} (a5 25641, 5i42) = (0,0,0))
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and thus
. Y. dt
lm inf (| Log ) /15(t)72(1/8),

and this contradicts (5.2) and thus (5.1). O
The following two corollaries answer questions left open in chapter 3 and 2.

Recall our investigation of one-sided average densities in chapter 3. With the help of
theorem 5.1.3 we can formulate a substantial improvement of theorem 3.1.3 answering the

questions at the end of section 3.1.

Corollary 5.1.4 At u-almost every point z we have the following equations for the one-

sided average densities
DZ (u,z) = D3 (n,2) = (1/2)- D*(p, z)

and
D° (4,2) = D (1 2) = (1/2) - D (1, 2) .
In particular, the one-sided average densities ezist if and only if the average density exists,

and in this case

DZ(p,2) = Di(u,2) = (1/2)- D*(p, ).

Proof Let z be such that d” (g, z) < oo and the statement of theorem 5.1.3 holds.
For any sequence (g,,) with €, | 0 we have (provided either the first or the last limit in

the following equation exists),

1 -
Jim (lloge, ) [ 2L

= lim (|logeal)™? Ue‘ #([z’;+ 1)) ?+ /51 [z —t,2]) — p([z,z + 1)) %]

ta@
. —1 P u([z,z + 1)) dt
nlirr;o(lloggnl) 1/ Eﬂ—tg—]—)‘—{

and this implies the statement. [ ]
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Another remarkable fact is that on the real line the average tangent measures are com-
pletely determined by the average densities. Note that by the example in lemma 2.3.2(a)

this is different in higher dimensions.

Corollary 5.1.5

(a) For p-almost every = all average tangent measures v of p at x are symmetric around

the origin.

(b) Suppose the measure p has average densities p-almost everywhere. Then p has unique

average tangent measures v* at p-almost every x. Moreover, v* is given by

7(4) = (1/2)- D(,2)- [ altl*at

for every Borel set A C IR.

Proof Let = be such that Ea(,u,:r) < oo and every tangent measure distribution at z is
a Palm distribution. If ¥ is an average tangent measure at z, then there is a tangent
measure distribution P such that # = { v dP(v). Using the Palm formula for the function

G(v,y) = 14(y) we get, for every Borel set A C IR,

P(A) = / W(A)dP(v) = / U(~A)dP(v) = B(~A),

which is the first statement.
Suppose now that the average density at = exists. For A > 0 and any half-open interval

[0, ) we have, by lemma 2.2.2,
v([0,2)) = A% #([0,1)),
and using the symmetry and 7({0}) = 0 we have
5(10,1)) = (1/2) - ((~1,1)) = (1/2) - D*(u, ),
and similarly for intervals [~ A, 0). Therefore the measure v defined by
$(4) = (1/2)- D°(,2) - [ altl"
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and the measure 7 agree on all (right-)half-open intervals and hence they are identical.
This implies the uniqueness of the average tangent measures as well as the formula stated

in the corollary. ]

Recall lemma 2.3.2 now. Corollary 5.1.5(b) closes the gap in the proof of lemma 2.3.2(b):
The measure p € M(IR), which was shown to have average densities p-almost everywhere,
automatically has unique average tangent measures. Moreover the corollary shows that

examples as in lemma 2.3.2(a) can only exist in Euclidean spaces of dimension at least 2.

In the next corollary we formulate a consequence of theorem 5.1.3 in the language of
singular integrals. For 0 < a < 1 consider the kernel
Ky: R\{0} — R

sign (z)
|zl

z

K, is a natural generalization of the kernel 1/z of the classical Hilbert transform

- 1 S
A=) = Efg/{yqz—ybs} o

= ]jm/ Kot — o) f(t) dt.
8 Stamgtng 12V

The question whether for 0 < a < 1 the limit

lim Ku(y —2z)du(y
€10 J{y:|z—y|>e} ( ) 4uly)

exists on a set of positive measure has been answered in the negative by P.Mattila and

D.Preiss in [MP95] (see also [Mat95]). Theorem 5.1.3 implies the following statement:

Corollary 5.1.6 For u-almost all z we have

lim (| loge|)™! K,(y—z)du(y)=0.
i (Jloge)™ [ Ka(y = =) da(y)

Proof We can assume without loss of generality that u is finite. Fix z such that Ea(u, z) <

oo and the statement of theorem 5.1.3 holds. Integration by parts yields

_ b a2 [pleztel) e p(e,z 4 H])
[{y: y_$>€} (?] _ m)a dll’(y) - [ £ + g to‘+1 dt] ’
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and thus, for some constant C > 0,

—1 [ p(z,z +1]) dt -1
+a-(|loge / —— 2 — < (|loge / ——d
~ioggy o (logel™ [TEEEEERSE < (oge) [ o duty)
_ o0 r,z+1
< a-(|loge))™! j ﬂt”l—])‘dt,
and analogously we get
C ,u([z —-t,z]) dt -1 1
- + a - (|loge|) / < (|loge / —d
Toge] (|logel)™ (Ilogel) tiomyoe) (T =) #(y)
- z—-tz
< a-(oge) [THEZL 4
As £ | 0 we thus have
im (lloge)™ }Ka(y—w)du(y)
{y:lz—y|>e
= a- hm |10g5|)— ﬂ([x $+t])_ll’([z_t 2}]) dt

ta

5.2 Proof of Theorem 5.1.1

The proof consists of the following steps: In the first step we show that it suffices to study
the tangent measure distributions of measures p at u-almost all points z € E, where u
and E fulfill the conditions assumed in section 3.2. In the second step we fix a suitably
chosen function G : M(IR) x R — [0,00) and show that the Palm formula holds for G
and all tangent measure distributions at p-almost all points z € E. For this purpose we
introduce a family (¢r) of functions, the sum of which approximates the difference of the
two sides of the Palm formula (lemma 5.2.2) and show that the set of points where the
approximating function has large modulus has small measure (lemma 5.2.3). In the final

step we extend the result of the second step to the full statement.

We suppose that 0 < a < 1 and p € M(IR) is given with
0 < d*(u,z) < d°(4,z) < 00
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u-almost everywhere for some 0 < a < 1. Without losing generality, if necessary by re-

stricting p to countably many open sets, we can assume that u(IR) < 1.

Given § > 0 we can find a Borel set B C IR and constants 0 < ¢ < C < oo such that

#(IR\ B) < é and, using proposition 1.3.1,
¢ < d*(plp,2) = d*(p,2) < d°(p,2) = d°(ulp,2) < C

for p-almost every z € B. We can now apply lemma 3.3.1 to the measure u|g. Because,
by proposition 2.2.5,

P(u,2) = P*(ulBnB:» T)
for y-almost every z € E;, it suffices to prove the Palm formula for the restricted measures

¢|BnB; and p-almost every point z € E;.

Fix such a measure pu|pnp; and let us also denote it by p. Let E = E; and ¢ = £o(¢). We
now have a measure g with support contained in a compact interval of length less than
one and a compact set E such that, without loss of generality, u(E) > 0 and such that,
forall z € F,

p(z—r,z+7])) <Cr® ifr>0, (5.3)

and

plz —ryz+7]) > er* if0< 7 < g (5.4)

Denote i = u|g, the restriction of y to the compact set E. Observe that by (5.3) we have,
for every B C R,
MB)<C-|B|*. (5.5)

The results on the geometry of F, as formulated in section 3.2, hold.

For every z € E and every v € Tang(u,z) we have by (5.4)
.. o MB(z,t))
> Lok N b A
v(B(0,1)) > hrgxlbnf 2 >c

Therefore every tangent measure distribution P at z fulfills P({¢}) = 0, where ¢ is the

zero-measure. By theorem 4.1.1 it remains to prove the Palm formula (4.1) for p-almost
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every ¢ € E.

We now proceed to the second step, which constitutes the main part of the proof.
At p-almost every z € E the tangent measure distributions of 4 and i coincide by propo-
sition 2.2.5. Therefore we can work with the tangent measure distributions of & instead

of . We fix a continuous function
G: M(R)x R — [0,00)
of the form
G(v,y) = 9(y)- h(v(f)), (5.6)

where

f:R—[0,00), g:R — [0,00)
are Lipschitz functions with compact support and
h :[0,00) — [0, 1]

is a Lipschitz function. We denote the Lipschitz constants of f, g, h by L(f), L(g),
L(h). By R(f), R(g) we denote the smallest integers such that supp f C B(0, R(f)) and
supp ¢ C B(0,R(g)). In the following, we allow the constants Cy7,Cys, ... to depend on
the choice of G.

Our aim is to prove the Palm-formula

[ [ewnawirw) = [ [ 6@,y duy) dPw) (5.7)
for every tangent measure distribution P of i at y-almost every z € E. For this purpose

define G1,G5 : M(IR) — [0, 0) by

G1(v)

[eww ),
G() =[G, -y)duly).

Lemma 5.2.1 Gy and G, are continuous and there is C17 > 0 such that, for all z € IR

andt >0, i
Gh (M) , Gz(ﬂi) < C]7 .

)t
to
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Proof G, is obviously continuous. Continuity of G, follows from continuity of (v,y) —
G(TYv, —y) by means of lemma 1.2.7. Let C17 = C - ||g||sup : [2R(g)]*. Then, for all z € R
and t > 0, we have by (5.5)

Gy (’%),G2(E;,—’t) < [19}lsup - ﬂz’t(B(:l’ Rg)) <C

]
Recall the definition of the measures 7 from section 3.2. Fix
k= k(€)= (log]logsl)e/ (1-a)
For every interval I C IR we define functions ¢r and ¢ by
~ ﬂx z—z p':r: T—2z
() s
arwe= [ o (f) - [ () avse)
and
¢I($’5) ifze I_(K)UI+(K)3
p1(z,€) =
0 otherwise,
for all z € IR and € > 0. Observe that for all intervals I C IR, ¢ > 0 and for all z € IR,
lei(z, )| < |@i(z,€)| < Ciz - ¥Z(1), (5.8)

using the boundedness of Gy, G2 (see lemma 5.2.1).

Recall the definition of A and N, from section 3.2 and denote
A.={leA:|l|>¢}.

For small ¢ > 0 the function }_ ;¢ 4, ¢1(2,€) is a good approximation of

z, izt dt
(oge)™ [ 612ty - Ga(Bzty 2,

as the following lemma shows.
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Lemma 5.2.2 There is a constant C1g > 0 such that, for every 0 < ¢ < g9 and every

o > 0, we have
w({ze B Jaoeed [ (@5 -6:f5) T - T ertwa)] > o))
E €

< Cis
= o-(log|loge|)?”

Proof We use lemma 5.2.1 and the approximation lemma 3.2.6 for ¥ = 1 to get

onl{eem ose™ [ (65 - 6u5h) § - 3 ertaicll > o})

< /‘(|10g5|) / Gy u“)—G(uzt) ZcpIxeldu(x)
IeA.

< o [ (E®) - Y vED) due)

E I€EA,

z€I%(x)
1 \1-a 1
< . —_— —_
< Ci7€io ((n(e)) + |10g5|)
2C17C10
(log|logel|)?
The statement follows with Cig = 2C17C10. [ ]

We now show that the set of points z € E where the function
Z (,01(1: ’ 6)
IEA¢

has large modulus is small. This is the main step in the proof.

Lemma 5.2.3 For o > 0 and € > 0 denote
B.={z€FE:| Z e1(z,e)| > o}.
IeA,

Then there is a constant C19 > 0 such that, for every o > 0 and all sufficiently smalle > 0,

Cio
o2 - (log|loge[)?”

u(Be) <
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Proof Define a sequence (pk)ren by
e = (L+ (1/k)%).

For k € IN let

o= exp (- TT7).

i=1

For 0 < £ < g¢ define p = p(¢) € IN such that
Ep-1 > E 2 Ep,
and define A = A(¢) as the largest integer such that
Ae) < (log | loge])?

We now establish some, in many cases very crude, numerical estimates, marked (a) to (g),
which hold for all sufficiently small € > 0. We can later refer to these estimates without

having to interrupt the flow of the proof for standard calculations.

We have, by definition of p,
p1---pp > |loge]

and
11\3/4
2)

. dz=4\‘/ﬁ.

lo 1...p5p1k3/4s P
glon-+p) < 1/ < [

Therefore
1 4
p2 (Z '108|10g5|) .
We have for all £ <
l

J 1 -1
Rogeul _ ([T )™ = ( TI (1 +/5")

|logei| j=k+1 j=k+1
] .
J+I\-1_ k+1
< (I1 7)) =157
Jj=k+1 J +
and thus
|log €| |logey| A+1 2(log | log e|)?
g S < < )
|logel |logep—i] P [1/4 -log |logel]
512

(log |loge|)*

120



5.2. PROOF OF THEOREM 5.1.1

Because
Ek—
gl (kP (k4 1)
g 2 pe-((h+ P BT =
the sequence (-"—’;;—1) is monotonically increasing. For all k € {},...,p},
log 6,;—;2 log €p_2 - log 6}2 _ pp 'pp—l -1 _ (1/p)3/4 + 1
[loge] = |logep—i] Pp-1 (p—1)34+1
128
< 34 o 126
< 2PN TiogTlogel
and thus
whx log (x(e) +1)-22). <1 )
k=) ek / |loge| = (log|logel)?

We have p; -+ -pr—y > [1551(1 4+ 1/4) = k, and hence

Ek—
log (:—kl) =P1" " Pk—P1" Pk-1 = P1"""Pk-1 '(1/k)3/4 > k1,

Therefore we have

=2 > exp (y/log|loge| ).

ExH1

In particular, we get
€k
—— > k(e) for all £ > A. (¢)
Ek+1

Let 6§ =C:(1 + n(s))e—:ﬁ Since

5 < 2C; - \/log[loge (12/1=e) < 1
= exp(Vlog[loge[) = (log|logel){®/*)

we get

0+1 1
) —
8 (757) 5" < g hogaly ()

We also have, for all £ > A,

(E’;%)o'.log2 (Z’;_:-n(g).}-cl) 52.(%)",1%2 ((%)3) S( 52—21)0,
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and thus

P (Ek+1\2 2 (€k-1
mai(( . ) -log (a-n(£)+C1)-(n(e)+l)

k= £
2[exp (- y/log | logel)] " - (g [ 1oge])*/1==)

1
(log|loge[)?

IA

IN

(e)

By definition of p(¢) we have

r—1 p—1
log|loge| > Y log (1+(1/k)*/%) 2 (log2)- >_(1/k)""*
k=1 k=1

> (log2)- [ (1/2)*/4dz > (log?) - (5 - 1)
and therefore
p(e) < (1022)4 -(log [ logel)* ()

Finally, we also have

WL o) <

= Tog g1 <

Now fix a 0 < € < gg which is small enough such that (a) to (g) hold.

Define
Ti={I€ A : |I| >}
and, forall k > 1,

Iy ={l€ A, : ek-1> || >ex}.

Then
P
AE = U Ik .

k=1
We estimate p(B.) by means of the mean square of )¢ 4, ¢ as follows

uB) -0t < [(T eilee)’ date)

IeA,
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= [(X X wite.0)’ da)

k=11€I

z{: > D /|901(w,6)w(z,s)|dﬁ(:c)

A
k=13=1 IeI; JeI;
P

IN

2.

+ z”: DD E/(‘Pl(z,é)w(m,E))dﬁ(z).

k=241 j=A+1 IGIJ‘ JETI

We can give an estimate for (5.10). Observe that by (5.8)

393 le1(z,e)| < 2017,

J=1I€I;

and therefore we have, using lemmas 3.2.5(c) and 3.2.4(2),

3P3 [ 2 X feite.)- et date)

k=1J€TI; =1 IEIJ'

A
2173 3 [ les(z,e)ldite)

k=1 J€T;
203,07 -C ‘i > s
17#7° ’
k=1 JETx |log e
20 |log €,
2CD-C2,C4 oge]
2CDC%,Cq - 512
(log | loge|)?

IA

IA

IA

)

using (a). This finishes the estimate of (5.10).

We now split (5.11) as follows

}E i > /(w(w,s)w(z,f)) dii(z)

k=241 =241 IEIj JeTI;

= [ 2 (T T oo date)

k=/\+1 IGIk JEIk

w2 [ T (T T ere stz o)) dita)

k=A+1  T€Tiy, JEI,

t2 [ T % (T T il oest.0) dice).

k=X+13=k+2 I€I; JeTx
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It is not hard to give an estimate for the terms (5.12) and (5.13). Observe that
§0[(¢,€)(PJ($,E) <0

unless z € I= (k)N J=(k) or z € I't(k) N J*(k). Therefore

[ 2 (X T emapn@matr ¥ T erleepee) die)

k=X+41 IEIk JEIk 1€I‘;+1 JEI‘;

<:(y ¥ 32f

k=M1 I€IUIxy, JEI,

(Y ¥ %

k=A+1 I€T;UTiy JEI,

ler(z, €)pa(z,€)| diz)
—(k)nJ—(x) ( )

+(k)NJ+ (k) I(PI(IB, E)(PJ(:E"E)I dﬂ(ﬁl)))

We can restrict our attention to the first sum, i.e. to the case of intervals I, J with
I= (k)N J~(K) # 0, since the second sum can be treated in exactly the same manner.

Splitting this sum again we can write

P

> X Y[ ler@eesa )l dila)

k=A+1 I€TUTyy, JEI Y T~ (K)NI (%)

p—1
<22 »x [ el (515)

k=A4+1I1€T,UT x4y JELLUIEy,
I<J
P
+ 3 X [ leee) die). (5.16)
k=A+11eT; /I (%)
Let us look at (5.15) and fix an interval I € Ty UZi41. Denote its left and right endpoint
by aand b. If J € Tx UZxyq with I < J and I=(k)NJ (k) # 0, then |J| < ex—1 and thus

JCba+ (k+1) k-]
For all z € I~(k) we thus get, using |I| > €41,
Y les(z,e)l £ Cir-9F(la+ ki a+ (K +1) -ex-1))

log(k +1) +1logex—1 —log k1

<
< Gr |loge]

’

where the sum extends over all J € Ty U x4y such that I < J and I~ (k)N J~ (k) # 0.

We use this equation and

3 lei(z,e)l <2017,
IcA,
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to estimate

Y Sy [ el di)

k=)+1 IEI,,UI)‘..H JELRUT gy
I<J

1 Y-
< Ci7- max og(x + 1) +loger— — loges '/2' > ler(z,€)| dia(z)

k=A+2 |loge| fea,
P Ef—2 1
< 4k, - max log ((n(e) +1)- o ) Tloge]

4C%,
(log | loge])?’
by (b), finishing the estimate of term (5.15).

Let us now look at (5.16), and estimate using lemma 3.2.5(d),

> ¥ [l ol )

k=41 I€I;
I 1
< C:ipg-C- |—gc2cv Co
17 8 Ig.;‘ |10g5|2 17 4 8 IlOgEl
1
< CiC4Ds-C-

(log |logel)?’
finishing the estimate of term (5.16) and thus of the terms (5.12) and (5.13).

We now look at term (5.14). Given J € Iy we denote by K , respectively K, the
collection of all K € A,,, such that

KNnJ™(k)#0 , respectively K NJ¥ (k) # 0.
Recall again that ¢r(z,e)ps(z,e) <0 unless z € I=(k)NJ~ (k) or z € IH(k) N JH (k).
We have picked ¢ > 0 sufficiently small to ensure

k> k(e) (5.17)

for all k > A (see (c)). Consequently, whenever k > A\, J € Ty and I € Z;, j > k + 2 and
I7(k)NJ~ (k) # 0, thereis a K € K such that I C K .
To see this we suppose the contrary. Since I is contained in some K € A,,, we then

must have I > J. Hence
er < || < K(e)| £ K(€) - k41
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This contradicts (5.17) and therefore our statement holds.
Also, by the analogous argument, if J € Zx, I € Z; and I*(x) N J* (k) # 0, there is
K e IC.',F such that I C K. Therefore we have

p—2 P

Y Y Y3 [ (e euee) dite)

k=A+1 7=k+2 JEI, IEI,‘

2 [ D L C I

k=A+1j=k+2 JEI} KeK3 ;ilié

p=2 p
+ Y Y Y Y (o) eae0)die).  (.19)

k=2+1j=k+2 JEI, ket 1€L;
J IcKk

We can concentrate our investigation on one of these expressions, say the first, since the

other one can be treated analogously. We write
K7 ={Ki,...,Kn},

where

Kn<...<Ki<J.

Denote the right endpoint of K; by (;. Also denote

Ki= (K7 (k) UK:) NI ().
For J € Iy and K € K define

ek (z,€) = Z Z‘)"I(z’g)'

J=k+2 1€I;
ICK

Since ¢ (z,€) - ps(z,e) < 0forallz € R\ K;, we have

SErYTY [ (¢r(2.6)- 0s(a,)) dit(2)

p—2 N
< T XY [ (eklmeenee) date).

k=241 J€I) i=1

We can split this term in the following way,

p—2 N
PP /K (¢k.(2,6)pu(z, ) dii(z)

k=A+1 J€T; i=1
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D> / i, (2:€)p(z, )| di()

k=A+1 JEI

+ E > Z_/ ¢k, (z,€)pa(z, E)) dii(z) .

k=2+1J€I) i=2

Let us give the estimate for (5.20) first. Observe that, by lemma 3.2.2,
|K1| < (k+1)-Cy - ex1
and therefore, recalling that (; is the right endpoint of Ky,
Ky C ¢ — (Crerr(14K)), 1) € [ = 811, )

where

6= i1+ 5(e) 222 42 22 (L K(e)) 8|’°+|1

Using lemma 3.2.5(a), we get

/. \w(m)[dﬁ(w) < G ] VZ(J) dig(z)
K J=()
|J]* b+1y
< Ci7:CDs |logsllog( 5 )-6 i

Since |¢k. (2,€)| < 2C17, we get using lemma 3.2.4(2)

(5.20)

(5.21)

p—2
Ja
Z / |¢K1(x £)eu(z, s)ld/t(x) < 20Dy 3 % I{olel
k=A+1J€ET, k=2+1J€T, | °8
1

(log|logel)?’

by (d), finishing the estimate of term (5.20).

10g(6+1) . 5°

6

It remains to investigate (5.21). This is the crucial part. In order to carry out the esti-

mate we shall formulate two claims, which constitute the core of our proof. The first

claim is a “local version” of the key argument in the proof of theorem 4.2.1, namely the

transformation of the integral carried out in equation (4.3) to (4.5). The second claim is

an adaptation of the “variation argument”(3.18), which was vital in the proof of theorem

3.1.3.
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Claim 1: There is a constant Czo > 0 such that, for all K € K7,

" _ (""'(5) + 1)a o

| #x(ee)di@)] < a0 S 1R

Proof Recall that
Gl l"’xt /G Il'zt .uz't /G I«;:;t’ t-lgdﬁ(y)»
and
- yﬁzt _ .u'zt _/ l"yt 17 l_ _

[e(rEet,—y) 2ty = [o(Bt,22Y) - S ditw).

Therefore

(,5}((1‘,8) - /Kﬂ[:c 00) ((5z z;;a) d¢:(2) B /Kﬂ(-oo z) G2((£x;x;;a) d¢:(2)
_ I‘z 72~z dyz(2)
B /Kn[x oo)/ )"’ ) Al )( - z)*
_ ﬂy,z-—z z - d‘px(’”)
/Kn(-oo,z] /G (z-2)*"z— ) A = (z—2)

We have
- ) di
[, #x(e.e)di2)
1 _
= -1 Bzp y—zy 1 _
= (|logel) /;/RO(K_” (/G( el ) = d,u(y)) dia(z)
Byt T—y\ 1 ) o dt
- G Tre Y . -—d d -
/I'(n(K+t) (/ (t" t ) 1o f(y) ﬂ(z)t
= //'xt - 1,
= (|loge|)” / /1;1 o ).t_adﬂ (z,9)
— Bzt Y — L2 ﬂ
A(zG(ta’ t ) tadﬂ' (x,y)t’
where
={@ e B e (K-t)nk, L= € B(0,R(9)))
and

K*={(a,y) € B* : ye (K +)n K, L% € B0, R(9))},

using G(v,z) = 0 for all v if z ¢ B(0, R(g)). Thus we can use the cancellation and get

[ #x(ae)dita)
. )
_ uz' y—zy 1 _ dt
(Jlogel) l/; /KI\KZG tat’ 1 )’_ad“z(x’y)T

1
(1oge)™ [ llgloup - B2\ K*) 355

IA

IN
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recalling that G is bounded by ||g||sup- We take a closer look at the set
K'\K*={(z,9)€E* 1z e(K-t)n kK, % € B(0,R(9)),y ¢ (K +t)nK}.

First observe that if ¢t > |K|(k(¢) + 1) we have (K —t) N K = § and thus K'\ K2 = 0.
Otherwise if (z,y) € K1\ K? then

yeY = B(K-t)nK,R(g)t)\((K+t)nK)
¢ (BUK-0NE, R@)\(K+1) U (B(K-)n K, R@e))\ k).

We have

B((K -t)n K, R(9))\ (K +t) C B((K —1),R(g))\ (K +1)
C B((K +1),R(g)t+2t)\ (K +1),

and by (5.5)
A(B(K +1t, R(g)t+20) \ (K +1)) < 2C(R(g) +2)* - 1°.
Also B((K —t)n K,R(g)t)\ K C B(K,R(g)t)\ K, and thus
A(B(K, R(9))\ K) < 2CR(g)" - t°.
Therefore i(Y) < 2C(R(g)* + (R(g) + 2)*) - t*, and thus

F(KT\ K?)

IA

/Y A B(y, tR(q))) dii(y)
2C2R(9)*(R(9)" + (R(g) +2)*) - £2°.

IA

Let Cao = 4/a- lgllup - (C?R(9)"(R(9)" + (R() +2)")). Then

J #x(z.e) dite)
I dt
(Itoge)™ - [ B(K* \ K) - lgllowp 714

(Ilogsl)'l . (a/2) Cao - /|K|(n+1) =1 g

|K|* - (k(e) + 1)~
| log e '

IA

IA

IA

(1/2)-Coo -
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We also have

dt
~ [ xtz,ydite) < (ogely™ [ gllup- B2(K*\ KY) g
and for z2(K?\ K') we can derive the same estimate as for g2(K!\ K?2).
This finishes the proof of claim 1. | u

Claim 2 There is a constant C2; > 0 such that the following holds: For every J € Iy and
any interval K; € K7 such that d; = d(J, K;) > 0, denote
C(Kia‘]) = SUR l‘ng(xvg) - <PJ(?J,5)I ’
zvyeKi
and denote the right endpoint of K; by ;. Then we have

|Kil(s(e) + 1)

(K, J) < Co -9 (J) - d:

Proof Let J € Z; and let K; € K. Forz € K; we have
_ -1 y-z du(y) -2 dji(w)
ea(z,0) = (logel)™ | [o(5=0) ¢ ae )

z :c)“ z—z (z—:c

We show that ¢y is a Lipschitz function in z and determine a Lipschitz constant.
For this purpose we fix 2 € J and let [ be a nonnegative Lipschitz function with Lipschitz

constant L(l), and compact support contained in B(0, R(!)). We investigate the function

¥ : Ki > R defined by
_ y—z\ di(y)
1/)1(:5)——/1(2_1:) |z —z|*”

1 is bounded, since by (5.5)

Bi(2) < llawp - BEEED 12 =2D) - c2may).

|z — |
We show that 1 is Lipschitz on the domain K;.

Let zq,z2 € K; with z; < z,. We have

[¥i(21) — Pi(22)|
di(y)
|Z - (L‘lla

dia(y)
|z — 21|

y—-n1 Y-
Z2—Ip 2Z-—2I3

< 1) [
B(z1,R(1)|z—z1])
+1()- [ =0 Yoo
BleaRO)le-zal) |2 =21 22

) e el

|z —zi]* |2 -zl
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We use the estimates

| 1 B 1 '< 1 .|z—z2_1|5 1 .|z1—z2|,
(z—21)* (2—22)* 7 (z—22)* lz—m (z — z2)™ d;
and
3/—1‘1_3/—1'2| < y—xll l2—$1 I | 2—$1|
Z— I Z— X9 zZ—I 2 — I Z— T
< y—zll |21 — 22| | |21 — 73]
> N )
z—I d; d;
to see

|9u(21) — i(22)] < |21 — 32| - (1/di) - (C2RW)™ - RLERA) + 1) + [1]sup)) -

Hence for every [/ as above there is a constant C(!) > 0, depending on [, such that v; is
bounded and Lipschitz with constant C({)/d;. Therefore there is a constant C5; > 0 such

that for every z € J the function

v(e) = [o(2) 22 - (][ re=2) 251))

is Lipschitz with Lipschitz constant Cj,/d;. To find the Lipschitz constant for ¢ (z,¢) we

use
1 _ 1 < 1 .2—1‘1—1’< 1 '|:z:1-—z2|,
Z2—T] Z-—I| " z—x7 |Z2-— 24 T 2= d;
and estimate as follows
I(PJ(zlve)_ SOJ(m%E)l
- dz
< (ogel)™ - [ W(e1) - ¥(aa)l
J |z — 24|
1
-1, ' i
+(oge) ™ [ W(aa) | = - |z
C, sup - C(2R(9))* ,
< |971—-"32|'( A yli(Jd) + 9l d'( ) '¢:'(J))-

Let C21 = C9; + ||g|lsup - C(2R(g))*. Then ¢ has Lipschitz constant

IR

and this, together with the observation |z; —z,| < |K;| < |K;|(k+1), yields the statement.
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We can split (5.21) again;

p—2 N
DS E/R.- (¢.(2,€)pa(2,€)) dis(=)

k=A+1JET; i=2

p—2 N
< XX Yelkad): [, Ieh(ee)ldie) (5.22)

k=A+1J€TI) 1=2

p—2 N

+ X T S lesGell [ 1600 - ek (@ olda@)  (5.23)
k=A+1J€T i=2 '
p—2 N

+ X X YlesGol| [ bulee)ditz)]. (5.24)

k=A+1J€T, i=2
To finish the proof we have to give estimates for (5.22) to (5.23).
Let us start by looking at (5.22). Using lemmas 3.2.5(c), 3.2.4(1) and 3.2.1 we get

/R.- Ik, (z, )l di(z) < Cir- Y, Y /Io(ﬂ)wf(l)dﬁ(x)

j=k+2 T€I;
ICK;
< 2C47D;C - Z lIIa
= = | loge|
ICK;
< 2CCy17D+C3 - | K;|*
< (2CD7C17CsCY) - €74y -

By claim 2 we have

’

(5 + 1| K]

e(Kir J) < Con - (J) - =
4
and we observe, using d; > €4 for all ¢ > 2,

(1oge~ +1og (1)

1 Ek—1
-lo ( +1) .
loge] & \exrn

Using |K;| < Cy - €k41 < Cq - d;, we get

$&(J)

IN

ﬁ’:llﬁl _ im.-ud,; |Kil
= d; = d; | K| + d;
dt

where the integral is taken with respect to the domain
{t P E€k41 S t < (K,lJl +Clék+1)}.
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This integral is bounded by

[T stos (s (52) ).

We can now put all these ingredients together and get

p—2 N
> Y Yelkad)- [, Ieh(e o)l die)

k=A+1 JET) i=2
< 2021(1 + Cl )C]7CD7C3C{1
2 (k+1)- €341 1

x 2 [oge]

k=A+1 J€I,

El— Ef—
0g (22 4 1) log (1) .k + 1)
Ek+1 Ek41

IA

(T
2C21(1 + CI)C17CD7CSC1 ' ( Z l )
k=A+1J€I; | OgEl

P Ek+1\* 1 2 (Ek—1 o,
X max ((——5k ) log (5———k+1 k(e) + Cl) (k(e) + 1))
1
(log |loge])?’
by (e), and this finishes the estimate of term (5.22).

IA

2C21(1 4 C1)C17CD7C3CTCy -

Let us give an estimate for (5.23). We use the first inequality of the approximation lemma

3.2.6 with v = 1 to see
[ 1ex(@,6) = ¢l (2,¢)l dita)

< o [ (vik) - X wE(D) dite)

I3

zeIO(n)

1\~ 1
< K| [ —— -
< Cy7Cq - | Ky ((n(e)) +|10g£|)
< 2y - — Kl

(log | logel)®
Recall 3~ ez, |0s(Cir€)| £ 2C17. For (5.23) we get, using lemma 3.2.3,
p—2 N
D EIW(Q@)I-/. 1@k, (z,€) — Pk, (z,¢)| dii(z)
k=41 JeZ; i=2 K;
> S (20 (201G i)
S 17) * \2C17Co + 5
k=A+1KeNe, (log |loge])®
4 2 . p(E)
HELTEC2)" g gl
2 2 4
(4C17CoCa) - (log 2)

IN

1
" (log | loge)?’

IA
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by (f). This finishes the estimate of (5.23).

Finally look at (5.24). Recall that by claim 1,

[ oxteie)dnto)| < oo BELEL e,

<
._C20 Il g6|

Thus we get for (5.24), using lemma 3.2.3,

Z EZIS"J((M ) - ’/ Pk, E)d,u(:v)l

k=A4+1 J€I) 1=2
p—2

K+ 1)* o
> > Gt (on S k)
k=A+1KeNe, ,, g

(k(e) +1)*
(2C40C17C3) loge]

1
(2007 g Tloge

IA

IN

-p(e)

IN

by (g), finishing the estimate of (5.24).

We have thus finished the proof of lemma 5.2.3 by showing that all the sums, in

which we have split the original expression (5.9), are bounded by a constant multiple

of 1/(log|loge|)?. =

Now we have done most of the work to finish the second step.
Lemma 5.2.4 For any function G defined as in (5.6) we have
U ({x €E: //G(V, y)dv(y)dP(v) =
//G(Tyu, —y)dv(y)dP(v) for all P € P"(u,z)}) = u(E).

Proof To begin with, fix s > 1 and let §; = exp(—s*). Let 1 > ¢ > 0. We have
<, Poyt\y dt
(ogenl)™ [ (Gr5et) - Gaciety)

z,t z,t dt
< |rogad [ (6152 - Gzt )%= 2 i)
+| ‘Pl(xaén)|-
IEA.s"
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5.2. PROOF OF THEOREM 5.1.1

Lemma 5.2.2 and lemma 5.2.3 therefore give

U ({m € E : |(Jlogén])” / G’ (:“xt Gz([:;t)) %\ > 20})

Ci9+Cis Ci9 +C1s

= 02-(log|logé,|)?  o?-(logs)?-n?’
Since 3°22,(1/n)? < oo, the Borel-Cantelli-lemma yields

(|log6n|)_1/6i (6152 - 6a(52)) 7| > 20}) =o0.

This holds for all & > 0, and thus

U ({x € E : limsup
n—oo

(o)™ [ (n(22) - alzt)) §|>0}) =0, (529)

i ({x el : hmsup o o

For every 6, < € < 8,1 we have

(oge)™ [ (152t - Gaety) &

— |10g5|) / G (/‘xt (ﬂ':ct )

| log 6, | _ izt fizst ) dt
+ el oga) [ (6152 - afet) g

Now |logé,|/|loge| < s and thus

(oge™ [ (en(et) - aullzty) &

ta

|log(én/€)

<
G 105

S C17-(8— 1).

This and (5.25) together imply, for y-almost every z € E,

- izt dt
imsup ((ogel) ™ [ (61(52) - 6a(520) | < Car- - ).

Since this holds for all s > 1, we get

dt
hm(|log5|) / #“ ) -G (’;’;t)) - = 0
for p-almost all z € E.
By (5.5) the closure of the set {£2¢ : ¢ € (0,1)} is compact. Therefore we can find
continuous functions Hy and H,, bounded on M(IR), which agree with G; and G; on the

closure of {” 2t . t € (0,1)}. Hence, for p-almost every z € E, every tangent measure
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distribution P = lim,_, o P., of u at z fulfills

| [éwnavw apw)
= [ m)apw) = i (ogenl™ [ 05 T
= nler;o(|logen|)_1/€i (Gl(%)—(h(%z—'t))"i—t+n1LIIgo(|1°g5n|)—l /1 Hz(%)%
- / Ha(v) dP(v)
- / / G(T?v, —y) dv(y) dP(v)
as required. m

To finish the proof it remains to show in the third step that the set of all z € E where the

Palm formula holds for all Borel measurable functions
G: M(R)x R — [0,00)
has full measure. For this purpose we work with Fourier transform. Define functions
hi(z) = sint(z) , ho(z) =sin"(z),
ha(z) = cost(z) , ha(z) = cos™(z),
and for 7,7 € {1,...,4} define
hij(z) = hi(z)h;(z).

Choose a sequence ( f;)ien of Lipschitz functions f; > 0 with compact support such that,

whenever f € C.(IR) and f > 0 with supp f C B(0,R), R € IN and € > 0, there is an
i € IN such that supp f; C B(0,R+ 1) and ||f — fillsup < €. See for example lemma

1.2.5(2) for the construction of such a sequence. Let
Gijki(vsz) = fi(®) - hix(v(f1)) 5
and
A ={z € E : the Palm formula holds for all G; ;x; and all P € P*(p,z)}.
We know by lemma 5.2.4 that u(A) = u(FE).
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5.2. PROOF OF THEOREM 5.1.1

Lemma 5.2.5 Let z € A and suppose that G : M(IR) x R — € has the form
G(v,z) = g(z) - exp(iv(f))

for g, f € C.(R) with g > 0. Then the Palm formula holds for G and all tangent measure

distributions P of p at .

Proof We fix a function G given, as in the statement, by functions g, f € C.(IR) and argue
by approximation. Suppose € > 0 is given. Let R > 0 be such that supp f,supp g C
B(0,R), and S > 0 be such that ||g||sup < 5. We find f;, f;, fk, with supports contained
in B(0O,R+ 1) and

£
(fi = f5) = fllswp < m 1= 8SC?*(2R + 1)’

1fi = glloup < M2 = s
k — Gllsup 2 = 4C(R+l)°‘.

For all v € Tan(y, z), the estimate (5.3) implies »(B(0, R+1)) < C-(R+1)%, and therefore

[ [ 6w avyapw) = [ [ ) - expliv(si - £)) dulw) dP) +n,

with
In| <72 C(R+1)* +m-2SC*(R+1)** < ¢/2.

Analogously
[ [ 6@, -y avw)apw) = [ [ f(=y)- explT* (s - 1)) dulw) dP) 41

with

17| < n2- C(R+1)* +m1 -2SC*(2R + 1)** < ¢/2.

By definition of the set A the Palm formula holds for the functions

(1, 9) = fi(y) -exp(iv(fi - f;))

and thus the Palm formula holds for G. ]
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Now fix a function g € C.(IR) with g > 0. Define two finite measures A1, A2 on the Borel
o-algebra of M(IR) by means of

8O0 = [ [ o) dn)dpe),
aM) = [ [o(-u)u(T*) dv()dPw)
for all Borel sets M C M(IR). We know that

As(exp(iv(f)) = Aa(exp(iv(f))

for all f € C.(IR), and this means that the Fourier transforms of A; and A; coincide. Thus
A; and A; coincide (see for example [Kal83, theorem 3.1]) and hence the Palm formula

holds for all bounded functions G of the form
G(v,y) = g(y)- F(v)

for Borel functions F' : M(IR) — [0,00) and g € C.(R).

Fix € A. For every r > 0 let S(r) be the collection of all Borel subsets B C M(IR) x
U(0,r) such that

[ [0 avw)ape) = [ [16@*,-y) dv(w) dPw)

for all tangent measure distributions P € P*(u,z). S(r) contains M(IR) x U(0,r) and is
closed under proper differences and, by the monotone convergence theorem, under non-
decreasing limits. Using monotone approximation from below and the monotone conver-

gence theorem, we see that S(r) comprises the collection
G={MxI:MC M(R) Borel, and I C U(0,7) open }.

G is stable under finite intersection and generates the Borel-o-algebra on M(IR) x U(0, 7).
Hence, by the monotone class theorem (as formulated for example in [Kal83, 15.2.1]),
S(7) equals the Borel-o-algebra on M(IR) X U(0,7). Thus the Palm-formula holds for
all Borel step-functions and, by monotone approximation from below and the monotone
convergence theorem, we can conclude that, for all z € A; the Palm formula holds for all
nonnegative Borel functions G' and all tangent measure distributions P of pu at z. This

finishes the proof of theorem 5.1.1.
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Chapter 6

Normalized Tangent Measure

Distributions

Standardized tangent measures have turned out to be an approporiate tool for the inve-
stigation of measures with positive and finite a-densities. However, if the behaviour of
u(B(z,t)) as t tends to 0 is not comparable to a law of the type t* but depends sub-
stantially on z, it does not seem appropriate to study p via distributions on the set of
standardized tangent measures. In these cases it seems more suitable to compare . ; di-
rectly to pg¢(A) for a suitably chosen normalizing function A : R™ — [0,00) and define
tangent measure distributions on the set Tan®(y,z) of normalized tangent measures, the

A-normalized tangent measure distributions or short A-tangent measure distributions.

In section 6.1 we first illustrate the limitations of standardized tangent measure distribu-
tions by means of an example of a nonzero measure x that has no non-trivial standardized
tangent measure distributions p-almost everywhere. We then define the normalized tan-
gent measure distributions and give some their basic properties. In section 6.2 we prove
an existence theorem for normalized tangent measure distributions, and in section 6.3 we

prove a shift-invariance theorem for unique normalized tangent measure distributions.
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CHAPTER 6. NORMALIZED TANGENT MEASURE DISTRIBUTIONS

6.1 Definition and Basic Properties of Normalized Tan-
gent Measure Distributions
We start this section with an example of a nonzero measure u € M(IR™), which has no

nontrivial a-standardized tangent measure distributions y-almost everywhere. The exam-

ple has been studied in a more general form in [Gra93).

Example 6.1.1 Let C be the ternary Cantor set and = — (z;);en the canonical coding

of C in the codespace [];cn{0,2}. For a given z € C and n € IN let
Li(z)={a€C :a1=2,...,a, = z,,}

and define the mappings $1,S5; : C — C by Si(z) = y with y3 = 0 and y;41 = z; and
similarly S2(z) = y with y; = 2 and y;4y = ;.

Let po,ps € (0,1) with po + pp = 1.
We shall study measures g with u(C) = 1 which are self-similar in the sense that

w(A) = po - u(ST(A)) + p2 - (S5 (A4)) (6.1)

for all A € B(C). For every pair (po,p2) there is exactly one measure p € M(IR) with
#(C) = 1 such that (6.1) holds. For po = p, we know that u is Hausdorff measure on C.

Assume pg # py. The similarity dimension of y is given by

_ Ppo-logpo + p; - log p2
ﬂ - 1 .
—log 3

Claim 1 For a # [ there are no non-zero a-standardized tangent measures.

Proof It suffices to pick a # § and show that for every R > 0 we have

B(z,t
|log W| 48 o for p-almost every z.

For this purpose observe that
Px;
(1/3)*

Xi(z) = log
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are independent identically distributed random variables on the probability space

(C,B(C),p), which take on only two values. We have
EX;=po-logpo+pz-logp: +a-logd = (a~f)-log3.

Hence EX; = 0 if and only if & = . In our case, EX; # 0 and therefore by the law of
large numbers

EX,- — to00 p-almost everywhere. (6.2)
i=1

Suppose now (1/3)"*1 < tR < (1/3)". Then, forall z € C,

#(B(z,tR)) I(ﬂ)sf[

T -(3R)~,

(1/3)“
and taking the logarithm

M<2X +a-log3+a-logR.

i=1
Analogously we get

B R n+1
WE in_a.10g3+a-logR,

i=1

log
and thus by (6.2)

B(z,tR
llog WI O o p-almost everywhere

as required to prove claim 1. a

Claim 2 Dg(u,z) = 0o and hence there are no -standardized average tangent measures

at p-almost every point.
Proof This was shown by S. Graf, see [Gra93]. o

The question whether there is a unique §-standardized tangent measure distribution is

left open in [Gra93], but, in fact, we can prove that:
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Claim 3 There are no nontrivial 3-standardized tangent measure distributions p-almost

everywhere.
Proof The proof uses the following lemma from probability theory:

Suppose X; are independent identically distributed random variables with EX; = 0, 0 <
0}(X;) < 0o and
Sn=Xi+...+ X, .
Then for all { > 0
1 N
i Z 1(s:1<¢y — 0 almost surely. (6.3)

=1

The following proof of the lemma was suggested by H. v.Weizsacker:
Let So = 0. Fix € > 0 and denote I = (—¢ — (,e 4+ (). First observe that, by the central

limit theorem, for every z € IR
E(5 X Mersien) = 3 2o PUle + S1/Vi< (e + OV =2 0. (64)
=1 =1

Consider = RN, B = ®nen, B(R). Let P; be the distribution of (S, + z)nenN, and
v=[P,dz. Let P be the distribution of X;.

v is o-finite, since v(Q) = Y v([k,k 4+ 1) x RN) where the sum extends over all integers
k, and
k+1
u([k, k +1) x RV) = / P(Q)ds=1.
k

We show that v is invariant with respect to the left shift 7" on Q2. For this purpose denote

A = Ag X Ay X --- and calculate

WT'4) = /Px(IR X Ao X Ay X -+ do

/Po(:z:+51 € Ao,z + 52 € Ay,...)dz

//Po(w+yeAo,x+y+XzeA1,---)dP(y)dw
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- //PM(AO x Ay x ---)dP(y) dz

[ [ Py abw)
= y(A).

Define f: Q — {0, 1},. by f((ws)) = 11(wo). Then f € L(v), since

/Ifl dv = //ll(z)dP,(y)d:v =2(e+()<oc.
By the ergodic theorem, applied to (,B,v),T : 2 — Q and f, we get that

L Z f(T'w) converges v-almost everywhere.

i=0
This means that, for Lebesgue-almost every z,
1 =
I Z 1(z4s;e1y converges Fo-almost surely.
i=0

Pick such an z € U(0,¢). Recalling (6.4) we get

N-1
1
hm sup i 21{|S|<4} < hm — Z Lictsiery =0

1=0 =0

for Pp-almost every sequence (.S,). This finishes the proof of the lemma.

Let us return to the proof of claim 3. As before let X;(z) = log s a /3)[, and observe that
the random variables X; on (C, B(C), 1) fulfill the requirements of the lemma. Let z € C
be such that (6.3) holds.

Let € | 0. Suppose there is a tangent measure distribution P = lim P2 € PP(u,z) . By
Prohorov’s theorem (lemma 1.2. 8(3)) the family (PZ, Jken is uniformly tlght This implies,
by lemma 1.2.5(1), that for every € > 0 there is M > 0 such that

P ({t >0 : LB MYy > 1 (6.5)

for all £k ¢ IN.
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Pick an arbitrarily small m > 0. Suppose (1/3)"t! <t < (1/3)". Then

N(Bt(:at)) N(In+l(z)) H (117:;)ﬁ (1/3)ﬁ

and
UB(e0)  wlale)) f] e g
18 - 1 (1/3)8 )

Ifm< ﬂ%ﬂtn < M we therefore have

n+1
> X; <logM + flog3
=1

and
n

ZX,- > logm — Blog3.
i=1

Hence, for a suitable { > 0,

{t>0:m< BN < M} | {[(1/3)*,(1/3Y] |ZX|<c}

320 =1
Thus if (1/3)"+! < ¢ < (1/3)" we have
B(z,t n
p{t> 0 m< HEGA < MYy < 3 (|log(1/3)"]) -log3- L5y xil<q)

j=0

- ,Z% Lis;1<¢) »

IA

and since the last term tends to 0 as » — oo by (6.3), we have for every m > 0, using
(6.5),
e, ({t >0 : ﬂ%x—’tn <m}) =1

By lemma 2.1.3 there is a set Z C (0, 1) such that ¢,,(Z) — 0 and

. w(B(zt)) _
lim B = 0. (6.6)
tgZ

P is concentrated on the set
{v=1lim 2 . 1, ¢ 7,1, 10}

and therefore, by (6.6), on the set {vr € M(IR") : v(B(0,1)) = 0}. Since P is scaling

invariant, by proposition 2.2.2, this implies P({¢}) = 1, where ¢ is the zero-measure.

144



6.1. DEFINITION AND BASIC PROPERTIES

Hence P is the trivial distribution. O

Finally, note that u fulfills a doubling condition at every z € C since, for (1/3)"*! <t <
(1/3)™, we have

1
ol

p(B(z,2t)) < #(In-1(z))
w(B(z,t)) = p(Ins1(2))

This proves the doubling-condition at =z € C.

< (PonyPon) ' <

Claims 1 to 3 show that standardized tangent measure distributions in the present form

are unsuitable for the investigation of this class of self-similar measures. |

In order to study measures as in the previous example, C. Bandt has suggested to look
at distributions on the set of normalized tangent measure distributions. As in section 1.3
we consider normalizing functions A : R™ — [0, 00), which are continuous with bounded
support and positive values on a neighbourhood of the origin. The definitions of normalized
average tangent measures and tangent measure distributions are now completely analogous

to those of standardized average tangent measures and tangent measure distributions.

Definition

Let A be a normalizing function and recall
M4 : M(R") — M(R™),

L if v(A 0
Y L 7a) lV( )> y

0 otherwise.

Let u € M(IR™). Define distributions P2 by
4 1 dt
PA=(M) i= (llogel)™ [ 1aa (M2 (1e) T

for Borel sets M C M(IR"™). Denote the set of all weak limit points of (P2%).5¢ as
€ | 0 by P2(u, ). The elements of P2 (y, z) are called the A-normalized tangent measure

distributions or A-tangent measure distributions of p at z. If the limit

P =1lim PeA’z
£]0
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exists in the weak topology we say that P is the unique A-tangent measure distribution

of p at z. Define 72 € M(IR™) by

~Ax — -1 1 Na:,t(A) it_
72(4) = (|logel) " | e

for Borel sets A C IR™. The A-normalized average tangent measures or A-average tangent
measures of pu at = are the limit points with respect to the vague topology of the measures

782 as e | 0. If the limit

exists, we say that 7 is the unique A-average tangent measure of p at x.

Let us state some properties of normalized tangent measure distributions:

Proposition 6.1.2 For every = € IR™ the set P?(u,z) is a weakly closed subset of P
and every A-tangent measure distribution P of pu at = fulfills supp P C Tan®(u,z). In
particular, if x € supp p every v € supp P fulfills v(A) =1 and hence P is nontrivial.

Proof The proof of the first two statements is completely analogous to the proof in the
case of standardized tangent measure distributions (see lemma 2.2.1). If z € supp u
then pz:(A) > 0 for all ¢ > 0 and thus, for every tangent measure v = lim M2 (u,,,) €
Tan® (g, z), we have v(A) = lim M2 (uz 4, )(A) = 1. ]

In the following proposition we discuss the connection between different normalized tan-

gent measure distributions and standardized tangent measure distributions.

Proposition 6.1.3

1. Suppose p fulfills a doubling condition at z and A, A, are two normalizing functi-

ons. Then P — P o(M%2)7! is a bijection of P21 (u, ) onto P22(u,z).

2. Suppose p has positive and finite a-densities at z. Then P — P o (M?)™! is a

surjection of P*(u,z) onto P2(u,z). In particular, if P is a unique a-standardized
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tangent measure distribution of p at z, then P o (M?)~! is a unique A-tangent

measure distribution of u at .

Proof (1) Suppose y fulfills a doubling condition at x and P = lim;_, Pre'” € PA1(u, z).
Let F € Cy(M(IR™)). F o M2 is bounded and continuous on the open set {v € M(IR") :
v(Az) > 0} and, by proposition 1.3.6(3),

A {MP (uz;) : t€(0,1)} C {vr € M(R™) : v(A;z) > 0}.
Hence we also have
o ! A dt A Agy—1
(Jlog7;]) / FoM 2(px,t)—t--—>/FoM 2dP:/FdPo(M 2)-1,
7

Therefore P o (M22)~1 is a A,-tangent measure distribution.

For every Aj-tangent measure distribution P we have P = P o (M42)~1 o (M41)~1,
Hence P — P o M%2 is one-to—one. Reversing the roles of A; and A, in the above
arguments we see that for every P € PA2(u,z) we have P o (M41)~! € PA1(y,z) and
P =Po(MA ) 1o(MA2)~!, Thus P+~ P o M?2 is also onto.

(2) Suppose now that p has positive and finite densities at z and P = lim FT € P (u, ).
Let F € Cy(M(IR™)). Then F o M2 is continuous and bounded on the open set {v :
v(A) > 0} and thus

dt

1
. -1 A [ Hz,t
j]ifgo(llogrjl) /rj FoM ( to ) t

| n dt
Jim (Jlog ;)™ / F(MA(2)) 7
T

/FdPo (MA)1,

Thus P o (M2)™! € P2(u,z).

Suppose now P ='lim;, PE?”” € P2(p,z). By proposition 2.2.3(1) there is a subse-
quence (7;) of (g;) such that P = lim;_co Pr. € P%(p,z) exists. Then P = Po(MA)1
and the mapping P — P o (M4)~! is onto. ]

Let us now address the question of existence of A-tangent measure distributions and A-

average tangent measures. If p fulfills a doubling condition the situation is easy:

Proposition 6.1.4 If p € M(IR™) fulfills a doubling condition at z then
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1. For every sequence (£;)jen with €; | O there is a subsequence (r;)jeN such that

(Pé*w)jeN converges weakly to a A-tangent measure distribution of u at z.
2. PA(u,z) is weakly closed and weakly connected.
3. P is a unique A-tangent measure distribution of u at z if and only if P?(u,z) = {P}.

4. The A-average tangent measures of p at z are the barycentres of the A-tangent
measure distributions of u at z, i.e. the set of all A-average tangent measures of u
at z is given by

{/VdP(V) : Pe PA([L,(L')}.

Proof (1) Because p fulfills a doubling condition at z we have, by lemma 1.3.6(1), that
cl{ﬁ("xy : t € (0,1)} is compact. The measures (P2+%),5q are concentrated on this
set, and therefore (1) and the weak compactness of P2(u,z) are consequences of lemma
1.2.8(3).

(2) As in proposition 2.2.3(2) the weak connectedness follows from the fact that P2 (u,z) C
P is compact and € — P2 is continuous.

(3) If P is a unique A-tangent measure distribution then obviously P2(u,z) = {P}. If
PA(u,z) = {P}, then by (1) for every ex | 0 there is a subsequence (%) of (ex) such that
limg o P2 = P. Thus P = lim.jo PA~.

(4) For every f € C.(IR™) the continuous evaluation map v — v(f) is bounded on the
compact set cl{ﬁ‘A—) 1t € (0, 1)} Therefore, for every tangent measure distribution

P =1limj_ Pg” , we have

tim (Ttoges)™ [ 020N % = [ i) ap)

and thus the barycentre of P is a A-average tangent measure.

On the other hand, given a A-average tangent measure 7 = lim;_, 172*” we can use (1)
to find a subsequence (r;) of (¢;) such that there is a A-tangent measure distribution
P =lim;_ P,.‘J\."” . Then the barycentre of P equals v. |
But even if x4 does not fulfill a doubling condition an existence theorem for normalized

tangent measure distributions and average tangent measures holds. This theorem will be
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stated and proved in section 6.2. Let us now give an analogue to proposition 2.2.5.

Proposition 6.1.5 Let u, v € M(IR"™). Suppose v fulfills a doubling-condition v-almost

everywhere. If p < v then, for p-almost every z,
PA(p,z) = PA(v,2).

Proof Let f = 3_5 be the Radon-Nikodym derivative. For p-almost every z we have
0 < f(z) < 0o, limsup,_, %(%((‘:—?%2 < oo and, by lemma 1.2.2,

lim fa(x,t) |/ (y) — f(z)] dv(y) _
t10 v(B(z,t)) h

Fix such an z € R™. For every g : R™ — [0, o0) from C.(IR"), say with supp ¢ C B(0, R),

we get

| Mzt Vgt l

I/(B(Z t))(g)—f(z) I/(B(Z t))( )

< (1mBE) |[ o5 0w - f@)dv()
JBer) | f(y) — f(z)| dv ( ) v(B(z,tR))
= »(B(z,tR)) Nllswe - 2By -

The first factor in this expression tends to 0 and the last factor remains bounded by the

doubling condition. Thus for every § > 0 there is T > 0 with

oty 1) smtay) <0

for all 0 < t < T. It is easy to see that the set

= Mzt Vgt .
pi=d { e @) ey O]

is a compact subset of the open set {v : ¥(A) > 0}. Let F € Co(M(IR")) and ¢ > 0.
F o M2 is uniformly continuous on this subset and thus we can find for every ¢ > 0 some

T > 0, such that
|F o M (sthtsy) = F o MA((2) - srgiay)| = [FOMA (e)) = FOMA ()| < /2
for all 0 < t < T'. Therefore, for all sufficiently small r > 0,

[(rogr [ PO e § - (rogr)™ [ P20 &
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1 [t
< /24 |l - (lLogrl) ™ [ 5 <

Hence P is a A-tangent measure distribution of v at z if and only if P is a tangent measure

distribution of u at z. |

We now formulate an analogue to the scale-invariance property 2.2.2 for normalized tan-
gent measure distributions of measures. Define a family of operators (5)) on M(IR™)
by

Sx(v) = MB(1)).

Sy is continuous on the set {v : ¥y r(A) > 0}.

Proposition 6.1.6 Suppose u € M(IR™) fulfills a doubling condition at z and let A > 0.
Then P = P o S;! for every P € P2(u,z).

Proof Suppose P = lim;_, Pé"". S is continuous on the open set {v : v A(A) > 0} and
we have seen in lemma 2.2.3(2) that the doubling condition implies that this set contains

the compact set cl {u;:/t* : t € (0,1)}. For every F € C,(M(IR™)) we thus get

1 t
/FdP = lim(llogejl)'I/ FoMA(u,,,t)gt—
J—0o0 €5

, o1 VA dt
lim (|toge; )™ [ F o MA(uzpe) T
J—o00 /,\ t

€5

. e dt
Jim (l1oge; )™ [ Fo Sy(8 () 5
€j

/FdPoS;l.

This proves the statement. ]

Before we finish section 6.1 we recall the example which came at the beginning of this sec-
tion (example 6.1.1). S. Graf has shown in [Gra93] that self-similar measures fulfilling the
open-set-condition (as in example 6.1.1) have unique normalized average tangent measure
and unique normalized tangent measure distribution almost everywhere. He also gives an

explicit formula for the normalized tangent measure distributions of such a measure.
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6.2 An Existence Theorem for Normalized Tangent Mea-

sure Distributions

In the previous section we studied an example of a measure p that did not have a standar-
dized average tangent measure or a nontrivial standardized tangent measure distribution
at p-almost all points. In this section we shall see that this cannot occur for normalized
average tangent measures or tangent measure distributions, even if the doubling condition
does not hold. The existence theorem below is analogous to the existence theorem for

tangent measures, which is proved in [Pre87, Theorem 2.5].

Theorem 6.2.1 Suppose p € M(IR") and (¢;);en fulfills€; | 0.
Then, for p-almost every z € R™, there is a subsequence (§;)jen of (€;)jeN such that
(P5? ")jeN converges to a A-tangent measure distribution of u at x and (Dﬁ'x)jeN conver-

ges to a A-average tangent measure of u at z.
The proof of theorem 6.2.1 requires two lemmas:

Lemma 6.2.2 For p € M(R"), B=B(0,s)CR"and R>1>r >0, thereisaC >0

such that
#(B(z, Rt)) ,

-1
w(B(a,rr)) e > e s e C

Wiz e B : /

for alle € (0,1) and ¢ > 0.
Proof To begin with fix 0 < ¢ < 1 and let
D={(z,y)e BXxR" : |z - y| < rt/2}.

Note that, for all z € B(y,rt/2) N supp p, we get

W(B(z, B1)) _ u(Bly, (R + 1)1))
W(B(z,r0) = W(B(y,1]2))

Using this and Fubini’s theorem we get

£ (BO,r2)- [, "((f,((”j, Rf)))) du(z)

u(B(z, Rt)) n
/ W(Blz.rt)) HOL ()
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w(B(z, Rt)) Rt)) "
B /R" /B(yrtlz)nB u(B(z,rt)) du(z) dL™(y)

[ (B, (R+ 1)) dL(y)
B(B,rt/2)

- / L"(B(B,rt/2) N B(z, (R + 1)t)) du(z)
u(B(B, (R + 2)t)) - L(B(0, (R + 1)t)).

IN

IN

Thus

p(B(z, Rt)) o
o A(Blarr) (@) S HBO,s+ R+2)- 2B+ 1)/1T" = C

and finally

! u(B(z, Rt))
A md%(ﬂ > c})

-1 1 P(B(xv Rt)) -1
c / md%(t)dﬂ(w)ﬁc -C

as required. [ ]

p({z € B:

Lemma 6.2.3 For p-almost every x € IR™ there is a subsequence (7;);eN of (€j)jeN, such
that for all R € IN there is Cr > 0, such that for all j € IN
1
p(B(z, Rt))
————=dp,,(t) < Chg.
a(B) r;(t) < Cr
Proof Fix a ball B = B(0,s) C IR" and § > 0. Let v, > 0 be such that B(0,7) C {z :
A(z) > n}. For R € IN let Cr = (2RC)/(6n) where C is chosen according to lemma 6.2.2.

From this lemma we know that, for all € € (0,1),

! (B(z, Rt))

u({z € B : D) dpe > Cr}) < /2.
Let
Ac={z€B: ol%d¢s>CRforsomeReN}
and

Then p(Ae) < 6 and u(A)<é6. Ifz € B \ A there is a subsequence (r;) of (¢;) such that
z ¢ Ar; and this means that, for all R € IN and j € IN,
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! u(B(z, Rt))
J ey et O

as required. |

Proof of 6.2.1 From lemma 6.2.3 we see that, for y-almost all z € R™ and all j € IN,

! Uzt
(/o pzt(A) d””’f(t)) (B(0,R)) < Ck.

Let us look at average tangent measures first. By lemma 1.2.5(1) there is a subsequence

(6;)jen of (r;);en such that [} ﬁi‘m dis,(t) converges to a measure v € M(IR"), which
by definition is a A-average tangent measure.

Now let us now look at tangent measure distributions. In order to show that (Pé ")jen has
a convergent subsequence it suffices to show, by Prohorov’s theorem (see lemma 1.2.8(3)),
that for every § > 0 there is a compact set £ C M(IR™) such that Pé'x(E) > 1-6 for all
j € IN. For this purpose let § > 0 be given. We define cg = Cr/(62~F) and

,u‘z,t(B(O’ R))
ﬂz,t(A)

and observe that by lemma 1.2.5(1) the set

T={te(0,1): <cgforall Re N },

E=d{-t2_teT}

ﬂz,t(A)
is compact. Since
#=(B(0, R)) -1, [ #=t(B(O, R))
({te(0,l): ————=>c¢ < (c . — " dyps (t
os,((te 01): P =Rl > cp)) < (o) [ Eet S dg 1
< CR/CR=6-2—R,
we conclude
. . «,t(B(0, R
PRo(ES) < o5, (T°) < Y o5,({t € (0,1) : Hes(BO, R)) cr}) < 6
J REN ,U,x,t(A)

as required for the use of Prohorov’s theorem. ]

A final remark should be made: Similarly to the situation with tangent measures (see
[O’N95]) this existence result does not necessarily say that normalized tangent measure
distributions always provide useful information on the geometry of the measure, although,

by proposition 6.1.2, they are nontrivial almost everywhere.

153



CHAPTER 6. NORMALIZED TANGENT MEASURE DISTRIBUTIONS

6.3 A Shift-Invariance Theorem for Unique Normalized

Tangent Measure Distributions

Fix a measure g € M(IR") and a normalizing function A. In this section we prove a
shift-invarance statement for unique tangent measure distributions, which is analogous to
corollary 4.2.3 for standardized tangent measure distributions and to theorem 1.3.10 for
tangent measures. We define a shift-operator § as follows:

Fix 6§ > 0 such that U(0,6) C {z : A(z) > 0} and let
As = {(u,v) € R" x M(R") : U(u,6)Nsupp v # 0}.

Then S is defined by
S: Ay — M(R™)

Vu,1

(w,v) — S =ty

We formulate a shift-invariance theorem for the supports of unique A-tangent measure

distributions.

Theorem 6.3.1 For u-almost every x € R"™ the following property holds:
If P is the unique A-tangent measure distribution of u at =, v € supp P and u € supp v,
then S*v € supp P.

The analogous statement for unique standardized tangent measure distributions has been

derived from the Palm formula (see 4.2.3). The proof of theorem 6.3.1 requires two lemmas:

Lemma 6.3.2 The set As is open in R™ x M(IR™) and the shift-operator S is continuous

on Ag.

Proof The map
S: R*"xM(R") — M(R")
(z,v) - V1.
is continuous by lemma 1.3.4. Hence the set A5 = {(z,v) € R" X M(R") : v;1(U(0,6)) >
0} is open. Also S is continuous since § = M2 o §' and M2 is continuous on the set

S'(As). n

154



6.3. A SHIFT-INVARIANCE THEOREM

Lemma 6.3.3
(a) If f:(0,1) — [0,C] is a Borel mapping and
1
liminf/ f(t)de-(t) > AC,
10 Jo

then for A > 7 > 0 we have

A—1T

1-7°

timinf ¢, ({t € (0,1) : f(t) > 7-C}) 2
(b) Let E C IR™ be a Borel set with 0 < pu(E) < oo, and A C E x(0,1) be a Borel set with
limli)nf or({t €(0,1): (z,t) € A}) > A

for p-almost every x € E. Then for all A > 7 > 0 we have

>

-7
1-—

hrillionf @r ({t €(0,1): p({z € E:(z,t) e A}) > T p(E)}) >

-

Proof
(a) Suppose for a sequence (s,) with s, | 0 we had a constant 7 such that

/\-T_].-—/\

Corlft s S T-CH2m>1- 2L = =2

for all n € IN. Then

[ 1) dount) <nir-C) 4 (1= mC < A€,

which is a contradiction to the hypothesis.

(b) By Fubini’s theorem we have

/E%({t 1 (2,1) € A}) du(z) = p® ¢r(A) = /01 w({z € E: (z,1) € A}) dpr(2).

Applying Fatou’s lemma to the left-hand side yields

ﬁ%ionf 01 p({z € E: (z,t) € A})dp,(t) > /;H?jgf er({t: (z,t) € A})dp(z)
M- u(E).

v

Now (a) can be applied with f(t) = u({z € E : (z,t) € A}) to give the result. ]
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Proof of 6.3.1 Observe that, since P is a separable metric space by lemma 1.2.8(2), the
set

Eo:={z € supp u : liﬁ)l P? =: P, exists }
T

is a Borel set and

P: Ey — PM(R™))
z - P,
is a Borel mapping. The first step in the proof is to achieve a suitable Borel decomposition

of the set B C Ej of all “bad points”, i.e. the points where our statement fails.

We can pick dense sequences (u;)ien in IR™ and, by lemma 1.2.5(3), (¥;)ien in M(IR")
and observe that & = {U(u;,1/p):p,i € N,1/p< é} and V = {U(v;,1/p) : p,i € N} are
countable bases of the topologies of R™ and M(IR"), respectively.

Suppose z € Fy is a “bad point”. Then there is v € supp P, and u € supp v such that
S*v ¢ supp P;. By lemma 6.3.2 we can even find a rational number ¢ > 0 and sets U € U,

V € V such that
e (u,v)€ AsforaluecU,vevV,
o d(supp P;,S*)>cforallueU,veV,

e supp P, NV #Pandsupp vNU #PforallveV.

Pick v € supp P, NV and u € supp v N U. By lemma 6.3.2 we can find U’ € U with
u €U’ CU and V' € V with v € V' C V such that, whenever p € V' and y € U’,

d(S"v,5Y0) <¢€/2.

Say U’ = U(u;,1/(p+ 1)) with (1/p) < é and denote A := |u;| + 1/p.
Using lemma 1.2.4 we can find aset V" € V with v € V” C V' such that, for all g1, 0, € V",

(a) ex(U(u;,1/(p+1))) 2 v(U(uj, 1/(p+ 1)) - (1/v2),
(b) 21(U(0,1)) < 02(B(0,21))-2,
(¢) o1(B(uj,1/p)) 2 2(U(w;,1/(p +1))) - (1/2).
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Now say V" = U(wk,1/q). Observe that |u; — u| < 1/(p+ 1) and d(vk,v) < 1/q. By
(a) and because u € supp v we have (u;, k) € Ay/(p4+1)- Because v € supp Py there is a

rational > 0 such that P,(U(w,1/q)) > 7.

Let us assume that the set B of “bad points” has yu(B) > 0. We have seen so far that B
is contained in the union of countably many Borel sets E;, each of which is characterized
by a family (e, n,p, q,u,v) of parameters such that £,7 > 0 are rational numbers, p,d €N
with 1/p< 6 ,u € {u;: i € N} and v € {v; : ¢ € IN} such that

1. (U, V) € Al/(p-l—l)?

2. for all y € R", o € M(R") with |y — u| < 1/p and d(g,v) < 1/q we have
d(5*v, %) < ¢/2,

3. for all g1,02 € M(IR™) with d(g;,v) < 1/¢q we have p,(B(u,1/p)) > (1/2) -

02(U(u,1/(p+1))) and 01(U(0, A)) < 2 02(B(0,2)) for A = |u| + (1/p),
and E; is the Borel set of all z fulfilling

4. P(U(v,1/9)) > n,

5. d(supp P, S*v) > €.

By our assumption one of the sets F; must have u(E;) > 0, and without losing generality
we can assume that p(E;) < oo. We denote this set F and its characterizing parameters

(5, n,0,9,4, V)- Define
_ U(u,1/(p+1)))
8- v(B(0,2)))

Since U(u,1/(p+ 1)) C B(0,2)) and, by (1), »(U(u,1/(p+1))) > 0, « is well-defined and

we have 0 < k < 1/8.
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The second step in the proof is to show that, for p-almost all z € E, we have

lim inf ¢, ({t € (0,1) : p(B(z + tu,t/p) 0 B) > & - p(B(z, \t)) and

AT <)) 2 (6.7)

For the proof we observe that, by lemma 1.2.3, there is a u-density point = of E. If t is
such that d(uz—“:(‘zj,u) < 1/q we get, using (3),

pot(B(u,1/0)) 2 ped(d) - (1/2)-w(U(w,1/(p+1)))
= psa(A)- 4x - u(B(0,2)))
> 2% pau(B(0, ),

and using (4)

]jlzll%)nf ‘Pr({t € (0, 1) H d(E%ﬂ/) < l/q}) > PJ:(U(’/v l/q)) > 0.

If (6.7) did not hold, we could find a sequence t, | 0 such that

W(B(z + tat, t./p) N E) < & - p(B(z, M,)) and d(#““’&),u) <1/q.
Z,tn
Then

o < Hetn(B(u,1/p)) _ p(B(2 + tat,ta/p))

potn(B(0,2)) —  p(B(z,Atn))
W(B(z + tnu, ta/p) N E)  p(B(z + tru,ta/p) \ E)
p(B(z, Atn)) H(B(z, Aty))
< u(B(z,At,)\ E)
H(B(z, Atn))

and, since the last summand tends to 0 as n tends to oo, this is a contradiction.
Thus (6.7) is proved.

Now apply lemma 6.3.3(b) to get, for all n > 7 > 0,

lir?lionf or ({t :p({z € E: p(B(z + tu,t/p)N E) > k- u(B(z, At)) and

Ay v) < 1/a) 2 7-w(E)}) 2 T (6:8)

1-71
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For every z € F let
T(z)={te(0,1): d(uT“t’('Kj,supp Pp)<e/2}.

Since

]jr?lionf er(T(z)) > Pr({v € M(R") : d(v,supp P;) < ¢e/2})=1,

we can apply lemma 6.3.3(b) again and get, forall 0 < 7 < 1,

lim v ({te @) :u({ye E:teT(W)}) > r-w(E)}) = 1. (6.9)

Using (6.8) and (6.9) we can now finish the proof as follows:

Let N € IN be the constant appearing in Besicovitch’s covering theorem, see lemma 1.2.1,
and denote ¢ = (1/4)kn/N > 0. Using (6.8) and (6.9), we can pick a t € (0,1), such that
there are Borel sets Ay, Ay C E such that u(A;) > (7/2)-u(E) and p(Az) > (1-c)-u(E),
and such that

6. u(B(z + tu,t/p)N E) > & - u(B(z, At)) and d(h—“t’(‘A—,u) < 1/qfor all z € A,,
7. t € T(z) for all z € A,.
Cover A; with the family
B :={B(z,\t):z € A}

of closed balls of fixed radius.

By Besicovitch’s covering theorem we can find a disjoint subfamily
B' = {B(z;,At): i€ I} C B

such that

p(J Blzi, M)0 Ar) > - (Ar).
iel

Since B’ is disjoint I is at most countable. Let

B:= U B(z; + tu,t/p)N E.
i€l
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This union is disjoint since, by the definition of A, B(z; + tu,t/p) N E C B(z;, At). Using

(6) in the second step we get

#(B) = Y u(B(zi+tut/p)NE)
i€l

Z Kk - p( B(z;, /\t) NE)
i€l

k- (| B(zi, M) N Ar)
1€l

> ,U(Al)

v

v

> 2N - #(E)>c- u(E).

Therefore we can find y € A3 N B, which implies, by definition of B, that there is z € A,

such that |y — (z + tu)| < t/p and thus

y;—u|<1/p

Moreover, by (6) we have

d(%,u) <1/q.

Using also (2) these facts imply that

d(s*v, #y":’(’ A)) = d(5*, 5~ W*ﬂz":(‘A)) < -;-

Since y € A2 we have, by (7),

Ny,

d(supp Py, (A))

and hence, using (5),

€ < d(supp Py, S"v)

ﬂ’y,t ﬂ'y,t u
< d(supp P,, +d , Sy
( ¢ :“y,t(A)) (“y,t(A) )
< : + A
2 2 ’
a contradiction, which proves the statement. [
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Chapter 7

Summary and Outlook

In the preceding chapters of this thesis we have investigated sets and measures in Eucli-
dean spaces by means of their average densities, average tangent measures and tangent
measure distributions. In this chapter we give a short summary of the thesis, indicating

the main results and pointing out some questions which remain open.

In the introductory chapter we introduce the objects of study: Sets and measures in
Euclidean spaces. A survey of some important definitions and known results in geometric
measure theory is given. These results show how the notions of densities and tangent
measures reflect the fundamental difference between the behaviour of rectifiable measures
on the one hand and non-rectifiable or fractal measures on the other hand. They also
motivate the introduction of average densities and tangent measure distributions as tools

for the study of non-rectifiable measures.

In the second chapter we give definitions and some basic results on average densites, stan-
dardized average tangent measures and standardized tangent measure distributions. We
study several examples. The most important new contribution is the construction of an
example of a measure with positive and finite densities which has unique average tangent
measures but non-unique tangent measure distributions almost everywhere (see proposi-

tion 2.3.2(b)).
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In the third chapter we approach the description of one-sided average densities of measures
on the line by showing that they exhibit a completely different behaviour than one-sided
ordinary densities: We prove that for a measure with bounded a-densities almost every-
where the one-sided lower average a-densities can only vanish on a set of measure zero
(see theorem 3.1.3). In the course of the proof we provide lemmas on the geometry of the
measure which are interesting in their own right and which will also be of use in the proof

of the main result.

In the fourth chapter we study measures with unique tangent measure distributions. We
prove that, for a measure with positive and finite a-densities almost everywhere, at almost
every point the unique tangent measure distribution, if it exists, is a Palm distribution (see
theorem 4.2.1). This result yields an interesting connection to the theory of self-similar
random measures: The unique tangent measure distributions define a-self similar random

measures in the axiomatic sense of U. Zdhle. We give some applications of the result.

In the fifth chapter we prove the main result of this thesis: We investigate tangent measu-
re distributions of measures on the line without imposing any uniqueness conditions. We
prove that, for a measure on the line with positive and finite a-densities almost every-
where, at almost all points all tangent measure distributions are Palm distributions and
therefore define a-self similar random measures (see theorem 5.1.1). This result has a
couple of interesting consequences, like a local symmetry principle (see theorem 5.1.3), or
a complete description of the one-sided average densities of a measure in terms of its lower

and upper average densities (see corollary 5.1.4).

In the sixth chapter we introduce the normalized tangent measure distributions. We give
an example of a measure which has a unique normalized tangent measure distribution
but no non-trivial standardized tangent measure distributions at almost every point (see
example 6.1.1). We prove an existence theorem for normalized tangent measure distri-
butions (see theorem 6.2.1) and a shift-invariance theorem for unique normalized tangent

measure distributions (see theorem 6.3.1).
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Here are some natural questions one could approach in future research:

o Can the condition of positive lower density be weakened in theorem 3.1.3 and theorem

5.1.1 2
Recall from section 4.3 that the proof of the Palm formula (4.1) does not require the

lower densities to be positive almost everywhere. However, in the proof of theorem

3.1.3 and theorem 5.1.1 this condition is needed (it is required for lemma 3.2.4).

o Can the statement of theorem 5.1.1 be generalized to measures in higher dimensions?

This is subject of current research.

o Is there an analogue of the Palm property for normalized tangent measure distri-

butions?

Observe that theorem 6.3.1is an analogue of corollary 4.2.3, which was an immediate

consequence of the Palm property.

o To what extent can order-two notions like average densities and tangent measure

distributions be used to solve problems from geometric measure theory (e.g. regularity

problems)?
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