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A bstract

In this thesis we investigate the geometry of measures in Euclidean spaces by means 

of their average densities, average tangent measures and tangent measure distributions. 

These notions were recently introduced into geometric measure theory by Bedford and 

Fisher, Bandt, Graf and others, as tools for the study of non-rectifiable measures.

Our main result yields a connection between tangent measure distributions of measures 

on the line and Palm distributions:

Let be a measure on the line with positive and finite «-densities almost every­

where. Then at almost all points aU tangent measure distributions are Palm 

distributions. Therefore the tangent measure distributions define «-self similar 

random measures in the axiomatic sense of U.Zahle.

This result enables us to give a complete description of the one-sided average «-densities 

of the measure in terms of its lower and upper circular average «-densities. It also en­

ables us to give an example of a measure with positive and finite «-densities which has 

unique average tangent measures but non-unique tangent measure distributions almost 

everywhere.

If ^  is a measure on n-dimensional Euclidean space with positive and finite «-densities 

almost everywhere we show that at almost aU points the unique tangent measure dis­

tribution, if it exists, is a Palm distribution.

We illustrate the limitations of tangent measure distributions by means of an example of a 

non-zero measure that has no non-trivial tangent measure distributions almost everywhere. 

Such measures can be studied by means of normalized tangent measure distributions and 

we prove an existence and a shift-invariance result for these distributions.
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LIST OF SYMBOLS

List o f Sym bols

This is a list of some symbols and basic notation used in this thesis.

S e ts

We denote by 

IN the natural numbers { 1 ,2 ,3 ,..

INo the nonnegative integers {0, 1, 2,3 ,. .

If A is a set then we denote by 
cardinality of A,

the indicator function of A.

M e tric  S paces

We shaU consider the following metric spaces:
IR^ 7%-dimensional Euclidean space,

At(IR” ) the space of (Radon-)measures on IR" with the metric d

introduced in lemma 1.2.5,

V  the space of probability distributions on At(IR^) with the metric D

introduced in lemma 1.2.8.

In a metric space (M,d)  we denote by B{M)  the Borel-cr-algebra on M.

For A , B  Ç M , x £ M  and r  > 0 we denote 

d{x , B)  = inf{d(a:,y) : y £ B},  d{A,B)  = ’m i{d {x ,B )  : x £ A },

U{A,r)  = {y £ M  : d{y,A)  < r}, B{A, r )  = {y £ M  : d{y, A) < r],

U(x , r )  = {y £ M  : d{y,x)  < r},  B(x , r )  = {y £ M  : d{y,x)  < r},

cl A =  5 (A , 0), the closure of A.

E u c lid ean  Spaces

For A Ç IR”̂ , t > 0 and u £ IR" we denote by 

|u| the Euclidean norm of u,

|A| the Euclidean diameter of A.



LIST OF SYMBOLS

u - ^ A  =  {w + o : a € A } ,

tA  =  {ta : a G A],

A^ =  {3/ G IR” : y ^  A},  the complement of A  in IR” ,

dA  =  (cl A) \  (cl A^), the boundary of A  in IR^.

On the real line IR we use the following notation:

[a, 6], [a, 6], [a ,6), (0, 6] are the closed, open and half-open intervals with endpoints a, 6.

If a; G IR, A, 5  Ç IR we write

X < A  if X < a for aU a G A,

A < B  if a < 6 for all a G A and 6 G B,

A < X if a < X for all u G A.

For all intervals /  Ç ]R, /c > 0 we denote by 

I~{k)  =  {x G IR : there is y e I  such that 0 < y — x < k, • |/ |}  \  / ,

/+(ac) = {x G IR : there is y £ I  such that 0 < x -  y < k • |/ |}  \  / ,

/ 0(k)  =  / - ( k ) U / U / + ( k ) .

F un ctio n s

We shall look at the following sets of functions on a metric space (M, d):

Cb{M) the set of real valued continuous bounded functions on M ,

Cc{M) the set of real valued continuous functions with compact support on M  .

If /  : (M, d) ^  IR we denote by 

supp /  = cl{x G M  : /(x )  ^  0},

I sup  — l/(^ )h

L ip(/) = SUp.,y6M 

M easu res

The following measures appear repeatedly in this thesis: 

4> the zero-measure,

Lebesgue measure on IR^,

TĈ Ie  o-Hausdorff measure restricted to F  Ç IR"̂ ,

63- the Dirac measure with mass concentrated at x.



LIST OF SYMBOLS

V?e the measure on the open interval (0, 1) defined by

<p,(A) = { \ l o g e \ r ^ f } U { t ) f ,

'ips the measure on IR defined by

V’.(A ) =  (I lo g £ |) - ' U{t )  +  1a(-< ) f , 

the measure on IR defined by 

ip^{A) =  -  x).

We write dx in place of dC^(x).

For a measure on IR” we denote 

supp fi the support of //, i.e. the set of all z E IR” such that

l i {B{x,r))  > 0 for aU r  > 0,

fj,\E the restriction of ^  to the //-measurable set E,

the measure defined by = fi{x + tA)  for

z G IR and i > 0.

For measures //, on IR” we write 

// <C /A if 1/ is absolutely continuous with respect to fi.

R a n d o m  V ariab les

For a random variable X  we denote by 
E X  the expectation of X ,

<7^(X) the variance of X .
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C hapter 1

Fractal and R ectifiable M easures

In this chapter we introduce sets and measures in Euclidean spaces as our objects of study. 

We discuss the notions of density and tangent measure and recall some of the classical 

and newer results from geometric measure theory, which show how densities and tangent 

measures reflect the dichotomy in the behaviour of rectifiable or regular sets and measures 

on the one side, and non-rectifiable or fractal sets and measure on the other side.

In section 1.1 we give a brief introduction to the subject of this thesis. We define rectifia­

ble and fractal measures and show that a-sets can be studied in this framework by means 

of HausdorlF measure. In section 1.2 we provide some measure theoretical tools and we 

endow the set of measures with a suitable topological and metric structure. In section 1.3 

we introduce densities and tangent measures, discuss some of their properties and recall 

how they can be used to characterize rectifiable measures.

1.1 A n Introduction

The aim of geometric measure theory is the study of geometric properties of sets and 

measures in Euclidean spaces by measure theoretical means. A measure in the sense of 

this thesis is an outer measure // on IR’̂  that fulfills

11



CHAPTER 1. FRACTAL AND RECTIFIABLE MEASURES

• all Borel sets are //-measurable;

• // is Borel-regular, i.e. every A  Ç IR” is contained in a Borel set B Ç IR” such tha t 

fi(A) = /i(B);

• // is locally finite, i.e. every x G IR"̂  is contained in an open neighbourhood of finite 

measure or, equivalently, every compact set has finite measure.

Such a measure is sometimes called Radon measure. We denote the set of aU such measu­

res on IR” by A^(1R” ). Observe that every locally finite measure on the Borel <%-algebra of 

IR” can be extended in a unique way to a measure in our sense (see e.g. [Rog70, theorems 

6 and 13]). This will be used implicitly throughout the thesis.

The connection between the study of sets and measures is given by the fundamental no­

tion of Hausdorff measure. For many sets E  Ç IR” Hausdorff measure defines a kind of 

^^equidistribution” on the set and we can study E  by means of the Hausdorff measure 

on E.  Recall the definition of Hausdorff measure (for more details see [RogTO], [Fal85, 

chapter 1] or [Mat95, chapter 4j).

D efin ition

Denote by | • | the Euclidean norm on IR” and for U Ç IR” let

|f7| =  sup \ x - y \ ,
x,y£U

the Euclidean diameter of the set U. Let a  > 0 and E  Ç IR” . Then for t > 0 put

'Hf{E)  =  inf i  ^  \Ui\°‘ : the family {Ui)i^n covers E  and |t/,| < f for all / G IN >
U e N  J

and define the a-Hausdorff measure of E  as

n ° ‘{E) = sup H f { E ) .
t>o

For a given E  Ç IR” there is exactly one value 0 < a  < n such that

o =  inf {a : H°‘{E) < oo} = sup{o: : H°‘{E) > 0} .

12



1.1. AN INTRODUCTION

a  is called the Hausdorff dimension of the set E,

If E  is “-measurable and 0 < H°‘{E) < oo, then E  is called an a-set.

R em ark s:

1. Some authors (e.g. [Fal85]) chose a different normalization for Hausdorff measures.

2 . For an a-set E  the measure /i =  the restriction of a-Hausdorff measure to E , is

in AI(IR"') and therefore the investigation of a-sets is included in the investigation 

of the measures /i € Ai (Iff") (see e.g. [ffogTO, theorem 27]).

Starting with the work of Besicovitch in the twenties and thirties of this century (see 

[Bes28], [Bes38], [Bes39]) the geometric measure theorists have found several deep results 

that reveal a dichotomy between two classes of measures: ffectihable or regular measures 

on the one side and non-rectifiable or fractal measures on the other side (see for example 

[Fed47], [Mar61], [Mat75] and [Pre87]).

D efin ition

Let d be a nonnegative integer. A measure ji G Af (Iff") is called d-rectifiahle or d-regular 

if there is a countable family (A,)içM of d-submanifolds of class 1 such that

A measure ^  G Ai (Iff") is called purely non-rectifiable or fractal if p, does not have a 

d-rectifiable part for any nonnegative integer d, precisely: Whenever

p = Pi-\- P2

with p i, P2 € Ai(Iff"), such that pi is d-rectifiable for some nonnegative integer d, we 

have Pi = 0.

Note that there are many different definitions of “fractal measures” in the literature. We 

have (probably) picked the most general one. In this thesis we are mostly interested in

13



CHAPTER 1. FRACTAL SETS AND MEASURES

the geometry of fractal measures, rather than rectifiable measures. A small number of 

examples of fractal sets and measures are described in various chapters of this thesis but 

many more can be found, for example, in the textbooks [Fal85], [Fal90].

As a tool for the investigation of the local geometry of fractal measures C. Bandt ([Ban92]) 

introduced the concept of tangent measure distributions. Tangent measure distributions 

can be defined as follows:

For // € Ad(]R"') and x € we define the family of measures {^x,t)t>o^ the 

enlargements o f about z, by

/^ar,t(-d) = T tÆ) .

For an appropriately chosen 0 < a  < n we define probability distributions P f  

on Ai(IR"^) by

P f { M )  =  (|log£:|)“  ̂ f  y  Borel sets M  Ç Ai(lR'^).
Je  ̂ t  ̂ t

The tangent measure distributions of at x are the hmit points in the weak 

topology of P f  as £ J, 0.

In this thesis we study the properties of tangent measure distributions of fractal measures. 

In particular we ask which features they have in common with the concept of tangent 

spaces, which is only available for rectifiable measures. We also study the closely related 

notions of average densities and average tangent measures.

Before we start with the investigation of tangent measure distributions we try to retrace 

some developments that led to their definition.

1.2 Som e Tools from M easure Theory

Covering and differentiation of measures are useful tools in some proofs of this thesis and 

we provide the necessary statements now. We start with Besicovitch’s covering theorem:

14



1.2. SOME TOOLS FROM MEASURE THEORY

L em m a 1.2.1 Besicovitch’s Covering Theorem

There is a constant iV G IN depending only on n with the following property: I f  A  Ç ]R” 

is bounded and B is a family of closed balls such that each point o f A  is the centre o f some 

ball o f B then there are subfamilies 5 i , .. .,B]\j Ç B such that

A C [ J [ j  B
t=l B^Bi

and each o f these families is disjoint.

P ro o f The proof can be found, for example, in [Mat95, theorem 2.7], ■

L em m a 1.2.2 Let p  € A1(1R”) and f  : [0, oo] be p-measurable such that

I f  dp < oo for every compact K  Ç IR”̂ ,
J K

Then, for p-almost every x, we have

/B(*.r) l / ( ï )  -  /(* )l M y )  „hm — —     = 0 .
rio p{B{x, r))

In particular, if u Ç: Af(IR’̂ ) and i/ <C p with Radon-Nikodym derivative f  = then, for 

p-almost every x, we have

P roof The proof can be found, for example, in [Fed68, 2.9.9]. ■

L em m a 1.2.3 Let p  G Ad(IR” ) and E  Ç IR". A point x Ç: E is called a p-density point 

o fE  if
u j B { x , t ) n E )

<ÎS ^^(B(x,t))

p-almost every point of E  is a p-density point.

P ro o f  The proof can be found, for example, in [Fed68, 2.9.11]. ■

15



CHAPTER 1. FRACTAL SETS AND MEASURES

We will now look at the measures in as a whole and fix a suitable topological and

metric structure on A1(IR" )̂.

D efin ition

The vague topology on Af(lR"^) is the smallest topology such that, for every continuous 

function /  with compact support, the functional /*, defined by

/* :  Af(IR^) — . IR

fi /i(/) :=//d/x,
is continuous.

The following lemma gives equivalent conditions for the convergence of a sequence of 

measures (pk) Ç Af(IR"').

L em m a 1.2.4 Let /x^,/x G Af(IR” ). Then the following conditions are equivalent:

( 1) pk — M (he vague topology.

(2) l i m i n f > //(G) for all open sets G Ç IR" and limsup < //(A) for all

closed sets A  Ç IR",

(3) For all R  > 0 we have

sup | | y  f d p k - J f d p  : supp /  Ç B{0,R) ,  /  > 0, L ip(/) < l |  — > 0.

P ro o f A proof of the equivalence of (1) and (2) can be found, for example, in [Kal83, 

15.7.2], and a proof of the equivalence of ( 1) and (3) is given in [Mat95, lemma 14.13]. ■

The following lemma defines a metric on Ai(lR^), which induces the vague topology. 

L em m a 1.2.5

1 . Let M  Ç Af (IR” ) be closed. Then M  is compact if  and only if

sup p{B{0,R))  < oo for all R > 0. 
ueM

16



1.2. SOME TOOLS FROM MEASURE THEORY

In particular, every sequence {pk) Ç A^(IR” ) with

sup R)) < 00 for all R > 0

contains a convergent subsequence.

2. There is a sequence (/jt) Ç Cc(IR”') of nonnegative Lipschitz functions such that the 

metric d on A^(]R”) defined by
oo

4 / ,̂ =  ^ ( 1/ 2)^ • m in { l,\v{fk) -  p{fk)\}
k=l

induces the vague topology.

3. with the metric d is a complete separable metric space.

P ro o f The proof of (1) can be found in [Mat95, theorem 1.23] and separability of A1(IR”) 

is proved, for example, in [Mat95, lemma 14.14].

A sequence as in (2) can be constructed as follows: For every Æ G IN take the posi­

tive part of the polynomial functions with rational coefficients and multiply them by 

X m ax{0,1 — d{x, 5 (0 , 5))} . In this way we get Lipschitz functions on IR” with support 

in B{Q,R-\- 1), Denote the countable family of these functions by (/i)ieN- 

Let 6 > 0, 5  G IN and /  G Cc(IR” ) with supp /  Ç B{0,R) .  By Weierstrass’ theorem 

the polynomials are dense in C (5 (0 ,5 +  1)) and thus there are fi,  f j  such th a t supp fi, 

supp f j  Ç 5 (0 , R + l )  and | | /  -  (/,• -  /j)||sup <

Now suppose Ukifm) K f m )  for all m G IN. Then C  := sup^^jsj Uk{B{0, R  + l))  < oo and 

Wk{f) -  (i^kifi) -  i^k{fj))\ < C  '£. Therefore also Vk(f) v{f ) .  Hence if UkUm) converges 

to u{fm)  for all m G IN then Uk u and this implies (2).

To prove the completeness take a Cauchy sequence {pk)kei< Ç A4(1R” ). By definition of 

the metric in (2) the sequences {pk(fm))ken ure Cauchy sequences in IR for every m G IN. 

In particular, sup^^eN MA:(5(0, 5 ))  < oo for all 5  > 0. By (1) we can find a measure 

p  G Af(IR"') such that a subsequence of {pk) converges to p.  Because any Cauchy se­

quence in IR converges, we get pk{fm) ^  f^ifm) ioi all m  £ and hence p  is the limit of 

the sequence {pk) in the vague topology. ■

The following simple lemma wiU be of use, when we discuss examples in chapter 2.

17



CHAPTER 1. FRACTAL SETS AND MEASURES

L em m a 1.2.6 Let a  > 0. For every C > 0 and £ > 0 there are numbers 1 > 6 > 0 and 

R >  I such that any two measures A1(IR” ) fulfill d{i/,fj,) < e whenever

e /i(5 (0 ,2 E )) < C ‘ R^.

• There is a countable, disjoint family {Ui)i£i of Borel sets, which covers B(0, R) such 

that \Ui\ < S and v{Ui) =  /x(?7,) for all i e I.

P ro o f By lemma 1.2.5 there are nonnegative Lipschitz functions / i , . . . ,  A  € Cc(lR” ) such 

tha t d{u,/i) < £ is implied by \u{fj) -  fJ>{fj)\ < s j 2 for aR 1 < j  < k.

There is R  > 1 such that
k

U  s u p p  f j  Q  ^ ( 0 ,  R )
i = i

and 1 > <5 > 0 such that

S < £ - ( 2 C-  Up i f j )  ■ for all 1 < j  < k.

Then we have for aU i/, // fulfilling the conditions of the lemma and aR I < j  < k

< Z ^(sup{ /j (x) : X 6 Ui}
iei

< Z ^L ip(A )
i£l

< Lip(A).fÇ. li{B{0 , 2 R))

< £/2

and this finishes the proof of the lemma. ■

By definition of the vague topology the mapping u i-» i/(/)  is continuous for aU /  G Cc(lR” ). 

The following lemma is a useful generalization of this fact.

L em m a 1.2.7 Suppose the map

G :  M (IR” ) x I R ” IR

{u,y) ^  G{u,y)

18



1.2. SOME TOOLS FROM MEASURE THEORY

is continuous and the set A = {y : there is u 6 such that G{iy,y) ^  0 } is boun­

ded. Then the map
H :  M(IR^) — . IR,

u ^  J  G{u,y)du{y)

is continuous.

P ro o f Fix u e vW(]R" )̂ and g > 0. Denote f ( y )  = G{i^,y). Since /  G Cc(IR^) there is

> 0 such that d{i/,p) < Si implies

|i/(/)  - /x(/)| < e/2  and p{c\ A) < i/(c\ A ) .

Furthermore, using the compactness of cl A, we find 62 > 0 such tha t d{i/,p) < 62 implies

for all 2/ G A. Then for all /i G Ad(lR” ) such that d{y,p)  < min{^i, 62} we have 

| y  G{u, y) dv(y) -  J  G(p, y) dp{y)

< f  du -  J  f  dp^-l-y  G{u, y) dp{y) -  J  G(fi, y) dp{y)

< £

as required to show continuity. ■

Finally let us introduce the space of probability distributions on Ai(lR^).

D efin ition

A probability distribution on Af(lR’̂ ) is a measure P  on the Borel-cr-algebra of Ai(lR"') 

such that P(Ad(lR”)) = 1. Let V  be the set of all probability distributions on Af(lR^). 

The weak topology on V  is the smallest topology such tha t for every continuous bounded 

function F  : At (IR”') — >■ IR the functional F*, defined by

F*: P  — > IR

P ^  P { F ) : = j F d P ,

is continuous.

19



CHAPTER 1. FRACTAL SETS AND MEASURES

L em m a 1.2.8

1 . For Pfc, P  Ç V  the following statements are equivalent:

(a) Pk P,

(b ) lim inf Pk{G) > P{G) for all open sets G Ç

(c) lim sup Pk{A) ^  P(-4) for all closed sets A Ç

2 . There is a fam ily o f functions (i^)ieN G such that Pk — >■ P  i f  and only if

Pk(Fi) — P{Fi) for all i G IN. The metric D on V , defined by

oo

D { P ,  Q) = ^ ( 1 / 2 ) '  ■ mm{l, -  Q(F;)|} ,
t=l

induces the weak topology. V  with the metric D is a separable metric space.

3. (Prohorov’s theorem)

Let S  Ç V . Then S is relatively compact if and only if  for every £ > 0 there is a

compact set K  Ç A^(IR”̂ ) such that P(K)  > I — e for all P  £ S.

P ro o f By lemma 1.2.5 the space A^(1R” ) is a separable metric space. Therefore we can 

apply [Par72, theorem II.6.1] to prove (1), [Par72, theorem II.6.2] to prove (2), and [Par72, 

theorem II.6.7] to prove (3). ■

1.3 D en sities and Tangent M easures

We recall now two essential notions from geometric measure theory: Densities and tangent 

measures. Heuristically speaking, the densities measure the “concentration of p, about x” .

D efin ition

Let p  G A^(]R” ) and 0 < a  < n.

For X G IR” define the lower  and upper a-densi ty  of p  at x as

d°‘{ p , x )  =  lim inf x) = limsup _
-   ̂ no r   ̂ no r

20



1.3. DENSITIES AND TANGENT MEASURES

If

= d°‘{fi,x) < 00

we say that the a-density_ of fi at x exists and call the joint value d°‘{fi ,x)  the a-density 

of fi at X.  If we have

0 < d°‘{fi,x) < d“ (/i, x) < 00 

we say that // has positive and finite a-densities at x.

R em arks

Some authors (e.g. M attila in [Mat95]) chose a different normalization for the densities.

The following proposition relates the densities of absolutely continuous measures.

P roposition  1.3.1 Let f/ E A1(IR”). I f  p <^v with Radon-Nikodym derivative f  = ^  
then, for u-almost every x, we have

^ {p, x) = f ( x )  ■ d^ (f/, x) and df‘{p, x) =  f {x )  • d°‘{u, x).

In particular, i f p £  Ad(IR” ) and E  Ç IR” is a p-measurable set then, for p-almost every x,

d°‘{p\E, x) =  1e {x ) • x) and d“ (//|£;, x) = 1e (x ) • x).

P ro o f The statement follows from

p{B(x, r ) )  ^  p{B{x, r) )   ̂ u{B{x, r))  
r°‘ v{B(x , r ) )  r°‘

by taking limits and using lemma 1.2.2. ■

The following deep regularity theorem of D. Preiss shows that the densities contain aU the 

information about the rectifiability of a measure.

T heorem  1.3.2 Let p  E Af(IR”). The following conditions are equivalent:

(1) The a-density of p at x exists and is positive for p-almost all x.
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(2 ) fj. is a-rectifiable.

P ro o f See [Pre87, theorem 5.6] or, for a sketch of the proof, [Mat95, chapter 17]. ■

Theorem 1.3.2 comprises the following result of J.M. M arstrand ([Mar64]): If the a-density 

of ̂  at z exists and is positive for //-almost every x then a must be an integer (see [Mat95, 

chapter 14] for a very readable proof of M arstrand’s theorem). Theorem 1.3.2 is the climax 

in a long sequence of results in this direction, for example [Bes28], [Bes38], [Mar61] and 

[Mat 75].

Whereas the existence of positive a-densities almost everywhere has turned out to be a 

very restrictive condition, positivity and finiteness of the a-densities almost everywhere 

is a much milder condition which holds for many fractal measures. Finiteness of upper 

densities almost everywhere is even fulfilled for aU a-Hausdorff measures on a-sets.

P roposition  1.3.3 Let 0 < a  < 1 and // E A4(IR” ). Then the following statements are 

equivalent:

( 1) 0 < Z^(//, z ) < 00 for fi-almost every x.

( 2) There is a disjoint family o f a-sets such that fi <

P ro o f (1) (2) W ithout losing generality we can assume that // is finite. For every

integer i define the set

Ei =  {x E supp // : 2*"  ̂ < d“ (//, x) < 2 }̂ .

The Ei are disjoint and cover supp //. We look at the family consisting of those sets Ei 

which fulfill ii{Ei) > 0 .  If TV Ç Ei has =  0 then, by [Mat95, theorem 6.9], we have

//(TV) < 2* • W ‘{N)  = 0, and thus // <

Also by [Mat95, theorem 6.9] we have

7f“ ( E i ) > 2 - ‘ .//(F ;,)> 0
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and

H “ ( £ i )  <  2“ • • n{Ei) < 0 0 .

Thus the Ei are a-sets, as required.

( 2) => ( 1) Denote u = and let /  = ^  be the Radon-Nikodym derivative. By

[Mat95, theorem 6.2] we know that d°‘{u,x) < 2“ for (/-almost every x 6 E{, and we can 

use lemma 1.3.1 to see

d°‘{fi,x) < f {x )  • 2“ < oo ^(-almost everywhere.

By [Mat95, theorem 6.9] the sets Ni  = {z G Ei : d°‘{fi^x) = 0} have fi{Ni) < XH°‘{Ei) for 

aU A > 0. Hence //(iV,) = 0 and this proves the theorem. ■

In order to take a closer look at the local geometry of a measure fi we define the notion 

of a tangent measure. Tangent measures are an extension of ideas used in [Mar61] and 

[Mat75]. They were introduced in the present form by D. Preiss in [Pre87] and used very 

effectively in his proof of the regularity theorem. Many applications and details on tangent 

measures can be found in [Mat95].

Roughly speaking, the set Tan(/x, ar) of tangent measures of // at a point x is defined as the 

set of limits of enlargements of fx about x. On the one hand this definition makes sense 

for aU // G A^(IR”') including fractal measures and on the other hand it turns out to be 

consistent with the notion of an approximate tangent space at //-almost every point of a 

rectifiable measure (see [Fed68, 3.2.16] and theorem 1.3.12 below).

D efinition

For every // G A1(1R” ), x G IR” , and t > 0 , the enlargement o f fi about x o f scale t is the 

measure G Af(IR” ) defined by

= fi{x -f tA)  for all Borel sets A Ç IR"'.
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L em m a 1.3.4 The map

is continuous.

P ro o f Fix (/i, X, t) G x IR” x (0, oo) and e > 0 and let /  G Cc(lR” ) be nonnegative

with supp /  Ç 5 (0 , R) and L ip (/) < 1. Then

I f J ' xAf )  ~  ^ y , s i f ) \  <  l / ^ x , t ( / )  -  f^y , s { f ) \  +  \ t ^y , s { f )  ~  ^ y , s { f ) \  •

Let ly be such tha t we have

sup g diy — J  g dp : supp g Ç 5 (0 , |x| +  1 +  2(5), fif > 0, Lip(^) < l |  < g /(4 ( ) .

Let s be such tha t |1 — s /( |,  |1 -  t/s\  < g /(16(5  • p(B{x,2tR)) )  and 2t > s > t/2.  Let y 

be such tha t \x — y\ < ((£)/( 16 • //(5 (x , 2 (5))) and \x — y\ < 1.

W ith these conditions fulfilled, z ((/2) • / ( ( z  — y)/s)  is continuous with support in 

B{y , sR)  Ç 5 (0 , |x| +  1 +  2(5) and Lipschitz constant at most 1. Therefore

IMî/,s(/)  -  ^ y , s { f ) \  <  ( 2 / ( ) J  (</2) • /  ( ^ - ^ )  dii(z) -  j  ( t /2 ) ■ f  ( ^ y ^ )  di^(z)

< (2 /t)  • (£/4t) =  £/2.

Because L ip(/) < 1 we have

and

| /^x ,<(/)  t ^ y , s { f ) \

^  f  z - x  z - y
~  J e

L
z — X Z - y

dp{z) +  ^
B{y,sR)

z -  X Z - y
dp{z)

dp{z)
B{x, tR)  I t s

\ Z — X Z — X
< IJb {x,tR)  ' t 

p{B(x , t R) )  [(5 1 -  -

s

dp{z)+ [
JB{x, tR)

+ -  ' \ y -  X
S I

z — X z — y
dp{z)
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and similarly

JB{y,sR) t S 4

This implies continuity of M  by lemma 1.2.4. ■

D efinition

Let /i E Ai(]R.^) and x E IR” . The set of all tangent measures o f at x is defined as

Tan(/z, x) = {u Ç: A4(1R”') : v = limc„ • for some fn i  0 and Cn > 0} .

Note tha t for aU A > 0 and i/ E Tan(^, x) we have \u  E Tan(//,a;), in other words 

Tan(/i, x) Ç A1(IR” ) is a cone. We say that /i has a unique tangent measure at x if there 

is E Tan()U, a;) such that

Tan(yu, x) = { \v  : A > 0} .

Rem arks:

1. Some authors explicitly exclude the zero-measure from Tan(/i,a:), which in our case

would be inconvenient.

2. If 1/ E Tan(/z,z) and A > 0 then i/q,a G Tan(/x,x). For u =  limCn ' y>x,tn this follows

from  1̂ 0,A — lim (c^ • )o,A — lim  • f i x , x t n "

P roposition  1.3.5 For all x E IR’̂  the set Tan(/i,x) Ç A4(1R^) is closed.

P ro o f Recall that the topology on At(lR” ) is generated by the metric d defined in lemma 

1.2.5. If (y&) Ç Tan(/i,z) and Uk i' then there are sequences (tf)ieiNj such th a t 0 < <

(1 /i) and d(fi^^^k/{t'[)°‘,Uk) < (1 /i). Picking the diagonal sequence yields

d iFx , t l l i hT^^ )  < d i l J ' x^ / ihT^^k)  -\- d{uk,u)  —  ̂ 0 , 

and thus u E Tan(/i,x). Hence T an(^,x) is closed.
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T.C. O’Neil in [0 ’N95] has constructed an example of a measure /z G Af(lR” ) such tha t 

Tan(/i, x) = A1(IR’̂ ) //-almost everywhere. This example indicates that we have to impose 

additional restrictions on // in order to get compactness properties of Tan(//, z).

D efin ition

A measure // G Ad(lR” ) fulfills a doubling-condition at x if there is a C > 0 such that

We will see below that this condition has useful implications on Tan(//,x).

D efin ition

A function A : IR" — [0, oo) is a normalizing function  if A G Cc(IR’̂ ) and A(0) > 0. For 

any normalizing function A define

A/^ : X (IR ” ) ,

Péy i f K A ) > 0 ,

0 otherwise.

Observe tha t is continuous on the open set {u G Ad(lR”̂ ) : f/(A) > 0} and define the 

set of aU ^-norm alized tangent measures of ̂  at x as

Tan^(/i, z) =  {// G At(lR"’) : u =  for some fn i  0 } .

For measures tha t fulfill a doubling-condition almost everywhere we can study Tan^(//,a:) 

instead of Tan(//, z) without losing information.

P ro p o s itio n  1.3.6 Suppose p  G Af(lR” ) fulfills a doubling-condition at x. Then

1. The sets cl {M^[px, t )  : Z € ( 0 , 1)} and Tan^(//, x) Ç are compact

2. Tan^(/i, x) is not empty.

3. For every non-zero u G Tan(//,x) we have 0 G supp u.

4 . Tan^(//, x)  =  M ^(T an(//, x) \  {^}) and Tan(//, x) = {Xi/ : 1/ G Tan^(//, x), A > 0}.
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5. The sets Tan(/i,x) and T an^(^ ,x ) are connected.

P ro o f (1) By definition of a normalizing function there are c > 0 and e > 0 such that 

A{x)  > c for all X € B{0,e).  Let D = lim sup^g 2())//^(B(0, ^)).

Let R >  0, say with R < 2^e. Then

A... now  ^limsupAf (px,t)(^(0.2Æ)) < limsup ^  ,
fio <10 ciiyjjyx^te ) ) c

Hence there is fo > 0 such that M^(//a;,<)(H(0,2Æ)) < for all 0 < f < to. This

implies, in particular, that i ' (B(0,R))  < 2D^+^/c. By lemma 1.3.4 we also have

sup M^(/Xx,<)(H(0, R)) < oo.
<G[<o,l]

Thus (1) follows with lemma 1.2.5.

(2) By (1) every sequence in : t G (0,1)} has a convergent subsequence with

limit in A4(IR’̂ ) and this implies (2).

(3) For every  ̂ > 0 and every non-zero tangent measure </ =  lim • /iar,<„, say with 

</(B(0, R)) > 0 and R < 2^6, we have

</(H(0, 6)) > liminf c„ •
f l {B(xJ t n) )

> i / (B (0 , iJ ) ) - ( l /D ) ‘+ ' > 0 ,  

and therefore 0 G supp </. This proves (3).

(4) If </ G T an^(/i,x ), then u = G M ^(T an(//,x ) \  {</>}). If u = lim G

Tan(/i, x)  is a non-zero measure then we have, using the continuity of and (3),

M^ {u )  = lim M^{cnfix,tn) = Urn ,

and thus M ^ { v )  G Tan'^(/i,x). This proves the first equation in (4). If G Tan(/x, x) and 

V is not the zero-measure then

u = </(A) • M ^ { v ) ,

since </(A) > 0 by (3). Then \ u  G Tan^(/i, a;) for A = i/(A)“ ^. If </ G Tan^(/i, z), then 

u G Tan(/x,x) and also \ u  G Tan(/i,x) for all A > 0. This finishes the proof of (4).
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(5) Suppose T an^ (/i,x ) is not connected. Then there is £ > 0 and there are compact sets 

D i,D 2 Ç Ta.n^(ii,x)  such tha t D iU  D2 = Tan^(/2, z) and d(D \^D 2) > s. Let

E i = {t Ç: (0,1) : G B {D i,e /2 )}  and

E2 = { t e  (0,1) : e B(D 2, s /2 )} .

There is 6 > 0 such tha t (0, (̂ ) Ç E iU  E 2 and the union is disjoint. Since t 1-^ M^(iJ,x,t) 

is continuous, the sets E i ,E 2 are closed in (0,1) and this contradicts the connectedness 

of (0,^). Hence Tan^(//,ar) must be connected and from the second equality in (4) we see 

th a t Tan(/u,a:) is also connected. ■

P ro p o s itio n  1.3.7 I f  a measure e A1(IR’̂ ) has positive and finite a-densities at x then 

pL fulfills a doubling condition at x.

P ro o f  Observe tha t we have

< 2 » . U m s u p ^ ^ . H r „ s u p
n o "  (2r)« , i o " X ^ ( z , r ) )

< 2" • ^ ( / i ,  x)/çP(/x, x) < 00 .

There is another subset of Tan(/i,x) which is particularly suitable for the investigation of 

measures with bounded densities.

D efin ition

Let p e  A i(lR^), 0 < a  < n and x e  IR” . Then

T ang(//,z) = {u e  A4(IR” ) : u =  Jin^  for some tn i  0 }

is the set of all a-standardized tangent measures of p at x. If p  has positive and finite 

o-densities at x, then the sets Tan^(/i, z), ji ^  a  contain no non-zero measures and we 

write Tan5(/x, a;) instead of Tan^(//,z).
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Let us collect a couple of properties of standardized tangent measures. We start with an 

easy scaling invariance property. For a fixed a  > 0 define the rescaling group (Ta)a>o by

Ta : Af(IR^) —  ̂ A^(]R”)

" -  ¥

and note that T \ is continuous (by lemma 1.3.4) and T \T k =  Ta«.

P ro p o s itio n  1.3.8 For every A > 0 and v 6 Tang(;^, z) we have T \u  G Tan^(//, z).

P ro o f  l i  u = lim Px,tn/^n^ then by lemma 1.3.4

Txty =  ]im T x { p x , t n / ^ n )  =  lim /i;,,A t„/(A fn)“ 

and thus Taẑ  G Tan5(/i, ar). ■

P ro p o s itio n  1.3.9 Suppose p  G At(IR” ) has finite upper a-density at x . Then

1. The sets cl{px,tlt°‘ : f G (0,1)} and Taug(//, z) Ç At(IR.^) are compact.

2. The set Taug(/a, z) Ç A1(1R”') is connected.

I f  p  has also positive lower a-density at x then

3. For every non-zero tangent measure u G Tan(/z, x) there is a X > 0 such that Xu G 

Tang(;z,z).

4- T3Jis{p,x) is not empty and every u G Tau5(/i, x) fulfills 0 G supp u.

5. We have

^ { p , x )  = inf{z/(B(0,1)) : u G Tang(/a, x)}

and

(/i, x) =  sup{z/(B(0,1)) : u e  Tang (/a, x)}.
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P ro o f  Denote C  =  ( T z ) .

(1) Let > 0. Then lim sup^o < C  • (2R)°‘. Hence there is > 0 such that

/xx,t(B(o,2H)) ^  for all 0 < i < to. In particular, this implies that R)) <

3“C • By lemma 1.3.4 we also have sup^gp^,!] < oo. Thus (1) follows with

lemma 1.2.5.

(2) As in proposition 1.3.6(5) the compactness of Tan“ (/x, x) and continuity of the mapping 

1 1-)" imply the connectedness of T ang(^,z).

Suppose now tha t

c < # ( / i ,  x) < x) < C  .

(3) Let 1/ =  lim fjbx,tn G Tan(//,x) be a non-zero measure, say with i/(H(0, A /2)) > 0. Then

lim su p c „ - /“ < Umsupcn •//(H(x, A /n))-hm sup ———
flyijyX^ Iltn))

<  „(B(0,A))  l / (cÆ«),

and

l i m i n f c n * i “ >  l im in f  c„ • / i (A (x ,  A^n)) • h m in f
fi{B {x,R tn ))

> f / (A (0 ,A /2 ) ) l / (CA") ,

and thus we can pick a subsequence (ck^thn) that limcjt„t^^ = A > 0. Then

u = ] im  Ck^fix,tk„ =  A • lim 

and lim € Tang(/z,z). This proves (3).
kn

(4) Since by proposition 1.3.6 the set Tan(/i, x) contains non-zero measures, we also have 

Tan^(/^, x) ^  0. For every v 6 Tan§()Lt, x) and every 6 > 0 we have

v{B (0,6)) > Urn inf > S“ - c > 0 , ̂ V w y  -  y.a -  ’

and thus 0 € supp u which completes the proof of (4).

(5) We have for every z/ = Mm G Tang(^, x) and for every 77 > 1 that

z/(A(0,1)) < lim inf /i(A(x, 77!^))/!^ < d"(/i, x) • 77" ,

and with 77 1 we get

sup{z/(A(0,1)) : u e Tang(/i, x)} < x ) .

30



1.3. DENSITIES AND TANGENT MEASURES

If, on the other hand,

k—t̂ oo

we use (1) to pick a subsequence (rjt) of (tk) such that

t/ = lim e  Tang(/2, x)
’’'k

exists. Then

u{B(Q, 1)) > lim sup x)
''‘k

and this proves the first equality in (5).

The second equality is proved in the same way.

Tangent measures and standardized tangent measures share a very useful shift-invariance 

property, which was discovered by D. Preiss (see [Pre87, 2.12]). Define the shift-operator

T :  Af(lR” )x IR "  Ad(]R^)

(z/, u) H-»- T^i/ := i .

Observe that T  is continuous by lemma 1.3.4.

T heorem  1.3.10

Let fi G A1(IR”̂ ). The following statements hold for p-almost every x:

1. I f  u Ç: Tan(/z,x) and u 6 supp u, then also T^u  € Tan(/i,x).

2. I f  u Ç: Tang(/i,z) and u G supp v, then also G Tang(//, z).

P ro o f  For the case of Tan(//,x) the proof can be found in [Pre87, 2.12]. This proof can 

be adapted as follows to prove the statement in the case of Tang(/z, z):

For p, Ç G IN let Ep̂ q be the set of aU x G for which there are i/{x) G Tan§(p, x) and 

u(x)  G supp i/(x) such that

4 T " W „ ( z ) , ^ ) > l / p

for every 0 < r  < (1/g).

Suppose the statement is wrong. Then there are p, g G IN such tha t p{Ep^q) > 0. We use 

the separability of A4(IR"^) (see lemma 1.2.5(3)) to find a set E  Ç Ep̂ q such tha t p (E ) > 0
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and < l/(2p ) for all G E. By lemma 1.2.3 we can find an

X E E  which is a /i-density point of E. Let |  0 be such that u{x) = limt_+oo and 

pick Xk Çl E  such that

\xk -  (â  +  r tu (z )) | < inf \y -  {x + rku{x))\ +  rk/k  .
y£E

We prove th a t

lim inf |y -  (x +  r/tu(x))|/rA: = 0 . (1.1)
k^oo yeE

Assume tha t (1.1) does not hold. Then there is 0 < 6 < |w(x)| such that inf^g^ |y — (x +

rku{x))\ > 6rk for infinitely many values of k. We have

(^E n .B(x, 2r;t W a;)|)) U B { x  +  rku{x) ,  6rk)  Ç J9(x, 2r k \ u{ x ) \ ) ,

the union on the left hand side being disjoint. Since x is a //-density point of E  we have

j ^  /a (E n  B (x,2rt|u(x)D )
k-^oo i i { B{ x , 2 r k \ u { x ) \ ) )

k^oo f i { B{ x , 2r k \ u { x ) \ ) )
<  _  i y { x ) {U( u{ x) , 6 ) )

u{ x) {B{ Q, 2 \ u{ x) \ ) )

< 1 .

This is a contradiction and thus (1.1) must hold.

By (1.1) we now have lim^_oo = ^(a;) and thus, using lemma 1.3.4,

lim = lim T ' ^ ^  = T “W(/(*) •
k—̂oo k—yoo

Therefore there is k such tha t < ( l /q)  and d(T^("^)f/(x), < l/(2p ). Consequently,

l / p  <

< d(T“t*‘ )p (n ),T "W » -(i)) +  d(T“W«/(i),

< (1/P)-

This is a contradiction, and thus the statement holds. ■
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C o ro lla ry  1.3.11 Suppose p G At(IR” ) has positive and finite a-densities p-almost every­

where. Then for p-almost every x the following statement holds: For all v G Tan5(yu, x), 

and all u G supp u and r > 0, we have

d“ (/z, x) • < i/{B{u, r)) < x) • r"

for all r > 0.

P ro o f  For every i/ G Tang(/i, x) we have

x) < u{B {0,1)) < T (//, x)

by proposition 1.3.9(5). Moreover, if x is such that the statement of theorem 1.3.10 holds 

and 1/ G Tang(/z, x), we also have

for all u G supp u and r  > 0 (by theorem 1.3.10 and proposition 1.3.8). This implies the 

statement of the corollary. ■

The following theorem, which is a part of Preiss’ regularity theorem, shows that uniqueness 

of tangent measure distribution almost everywhere is a property which holds only for 

rectifiable measures.

T h e o re m  1.3.12 Suppose p  G Ai(lR"^) has positive and finite a-densities p-almost every­

where. Then the following statements are equivalent:

(1) p has a unique tangent measure at p-almost all points.

(2) Tang(/^, x) is a singleton for p-almost all points.

(3) p is a-rectifiable.

I f  this holds then for p-almost every x we have Taug(/i, x) =  {i/} and

i/ =  ( l /2 ) " .d « ( / , ,x ) 7 f ' ' |T ,  

where T  is the approximate tangent space at x.
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P ro o f  The proof can be found in [Pre87] by combining theorems 4.11 and 5.6 of this paper 

in the following way:

Suppose (1) holds, i.e. for /i-almost every x there is a E A4(IR”) such that

Tan(/i, a:) =  {Ai/ : A >  0} .

Then = 0 for aU f > 0, otherwise proposition 1.3.5 would give a contradiction

to local finiteness of u. Therefore, for every f > 0, the limit

n {B {x ,tr)) _  i>{B{0,t)) 
rio p (B (* ,r))  (/(B(0,1)

exists and by [Pre87, theorem 4.11] this imphes

u = C' 'hC^\T

for some linear m-space T  Ç A4(IR”') and c > 0 and 0 < m < n. By [Pre87, theorem 5.6] 

this implies (3).

If (3) holds then, by [Fed68, 3.2.19], for /x-almost every x there is an approximate tangent 

space T  Ç IR" at x and together with [Pre87, theorem 5.6] this implies Tan^(/z, z) =  {i/} 

for

f/ =  ( l / 2 r d " ( / 2 ,z ) .7 f " |T .

In particular (2) holds. Finally, (2)=>(1) is clear from proposition 1.3.9(3). ■

Theorem 1.3.12 shows that a measure fi is fractal if and only if diverges as f |  0 for

/i-almost every x. A similar idea has been used by K. Wicks (see [Wic91]) in his definition 

of “visual fractality” .
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C hapter 2

Average Densities and Tangent 

M easure Distributions

We have seen in the previous chapter how densities and tangent measures can be used to 

characterize rectifiabilty of measures. These properties of densities and tangent measures 

also indicate their limitations as a means to describe the local geometry of fractal measu­

res: Densities do not enable us to measure the concentration of a fractal measure about 

its points since, by Preiss’ regularity theorem, densities cannot exist and be positive on a 

set of positive measure. Also at almost all points there is no unique tangent measure and 

hence tangent measures do not define a natural generalization of the concept of tangent 

spaces. Therefore more refined tools seem to be necessary for the investigation of the local 

structure of fractal measures.

One class of tools for these studies is based on the idea of varying the classical notions by 

replacing ordinary limits by limits of averages:

T. Bedford and A.M. Fisher introduce in [BF92] the order-two or average density of a 

fractal measure. Several authors, like N. Patzschke and U. Zahle in [PZ90], T. Bedford 

and A.M. Fisher in [BF92], C. Bandt in [Ban92] and S. Graf in [Gra93], implicitly or expli­

citly suggested the investigation of random tangent measures based on the same averaging 

principle. These random tangent measures or, equivalently, probability distributions on
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the set of tangent measures, are called tangent measure distributions in this thesis. Tan­

gent measure distributions at a point x in many cases provide a good picture of the local 

geometry of the measure about x. The average tangent measures, which are the barycen­

tres of the tangent measure distributions, provide another interesting local characteristic. 

The study of the properties of tangent measure distributions of general measures is the 

main issue of this thesis.

In section 2.1 we introduce the notion of average density. In section 2.2 we define the 

standardized tangent measure distributions and average tangent measures and give some 

of their basic properties. We illustrate the concept by means of an example. In section 

2.3 we investigate the relationship between the existence of average densities and the uni­

queness of tangent measure distributions and average tangent measures, and in the course 

of this investigation we study two further interesting examples.

2.1 A verage D ensities

By Preiss’ regularity theorem (1.3.2) the a-densities of a fractal measure cannot exist and 

be positive except on a set of measure zero. Therefore one would like to find another con­

cept, which assigns to every point x a number which gives an impression of the “density” 

of the fractal measure about the point and exists for a large class of fractal measures.

T. Bedford and A.M. Fisher introduce such a concept in [BF92]: The average or order- 

two density. They show that for suitable Hausdorff-measures on hyperbolic Cant or-sets 

and zero-sets of Brownian motion the average density exists almost everywhere (see also 

[Bed91]). By now different authors have shown that for various classes of fractal measures 

of self-similar type the average density exists, see for example [Fal92], [PZ92], [Spr94] and 

[FX93]. In some cases the value has been calculated explicitly, see for example [PZ93]. 

Average densities give a local characteristic for fractal measures closely connected to the 

heuristic notion of lacunarity (see [Man83, pp.315-318] and [BF92, p .96]). The average
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2.1. AVERAGE DENSITIES

densities also contain information on the regularity of the measure (see [FS94] and [Spr94]),

The idea behind average densities is, roughly speaking, the following: Since the density 

function f ( t )  =  oscillates as f |  0 one studies the limit of a family of suitably

weighted averages of f{ i)  as the centre of weight goes to 0.

There are several theoretical approaches to such “averaged limits” which are closely 

connected and this is discussed in [Fis87] and in particular in [Fis90], where more de­

tails can be found. We give here a short account of n-th order averaging operators, using 

the terminology of A.M. Fisher, in order to justify the averaging procedure T. Bedford 

and A.M. Fisher use to define the average density.

D efinition

Let P j =  {1/7 G L^(JR) : ^  > 0 and /  dt = 1}. An averaging operator o f order is a 

map

for some ip Ç:V\. Let

L -(IR ), 

Ip* f

/  o ex p ,

and
E - 1 L°°(]R)

/  o log(f) if f > 0 ,

0 if f < 0.

Define an averaging operator of order n to be a map

a ;  : L°°(IR) —^ T°°(]R),

/  -  £:-* 0 0 £ ( / ) .

An averaging method of order n defines the averaged limit of /  6 L°°(IR) as

This defines a hierarchy of averaging methods as the following lemma shows:
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CHAPTER 2. AVERAGE DENSITIES AND TANGENT MEASURE DISTRIBUTIONS

L em m a 2 .1.1 Let ^  £ V\ he defined as <p{x) = e“^l[o,oo)(2̂ )* any bounded function  

f  :Wi Wi we have that linif^oo[^5 /] (0  = ® implies ]imt-^oo[A'^f]{t) = a for all k > n 

and -ijj e V i .

P ro o f  The proof is an application of Wiener’s Tauberian theorem and can be found in 

[Fis90, lemmas 4.3 and 4.4]. ■

Applying this procedure to the problem of defining a “density” means applying an avera­

ging method of suitable order to the function

By lemma 2.1.1 one can concentrate on the averaging operators = A ^. W hat is the 

right n to define the average density? Let us have a look at the explicit formulas for the 

operators A”': We have

[A V l(r)  =  ( i /T )  r  f { t ) d t ,
Jo

the Cesàro-aver age, and

/ T flf
m  j ,

the logarithmic average, and generally

[A”f]{T) = ( a „ ( r ) ) - ‘ r  f{ t )K , , { t)d t ,
J bn

where bn = expW (-oo), an{T) = log(""^)(T) and Kn(x) = -^{anix)).

As Fisher points out, one way to understand these formulas is the following: A  ̂ is an 

average with respect to Haar-measure on (IR,+) restricted to the interval [0,T], A^ is an 

average with respect to Haar-measure on (IR'*',-) restricted to the interval [1, T], A^ is 

analogously defined for the next higher exponential conjugate of the group (IR, -f-), tha t is 

the set (1, oo) with the operation (a, 6) (->■ and so forth.

The ordinary ternary Cantor set has obvious self-similarites at scales 5 , and it

seems natural to take an average that assigns equal weight to each of these scaling steps,
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2.1. AVERAGE DENSITIES

i.e. an average with respect to Haar-measure on (IR'*',-). This is a heuristic argument 

in favour of an averaging procedure of order two. The heuristic idea is confirmed by the 

results in the papers mentioned before for the case of self-similar measures, and in [FS94] 

and chapters 3 and 5 of this thesis for the case of general fractal measures.

D efin ition

Let /i G Af(IR” ) and 0 < a  < n. For x G IR” define the lower and upper average a-density 

as

= lim inf(|log£|)  ̂ /
clO Je t°‘ t ’ 

and

= limsup(|log£|)~^ /  — Y  .
elO J £  ̂ t

If D^{p^x)  = D°‘{p ,x)  < 00 we say that the average a-density of at z exists and call 

the common value D°‘{p ,x)  the average a-density of p  at x.

Moreover, if /i G At(IR) we define the one-sided lower average a-densities as

= lim in f( |lo g 6 |)-^ ^  p{[x

and
1 /"I p([x,x + f]) dt

= lim inf(|logg|) ^

the left-sided and right-sided lower average a-densities. Analogously define the left-sided 

and right-sided upper average a-densities D°^{p,x) and D°^{p,x) and, if they exist, the 

left-sided and right-sided average a-densities D^{p , x )  and D^{p, x ) .

Lemma 2.1.2 shows that the average densities indeed result from the application of the 

order-two averaging method to the function g and gives some equivalent expressions for 

the average densities.

L em m a 2.1.2 For every p  G Af(IR” ) and x G IR” we have 

D^{p,x)  = lim [A^(5f)](f)
<|oo

p { B { x , \ l r ) )  dr
= ( l / r ) »  T

=
1 fT p{B{x , e  H)
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_______ CHAPTER 2. AVERAGE DENSITIES AND TANGENT MEASURE DISTRIBUTIONS_______

for the function g defined in (2.1). Analogous formulas hold for the lower and upper 

average densities.

P ro o f  By a substitution of variables, with t = ( l / s )  we get

J ‘ Æ Ü 1  i .  ( k g , , - .  j ‘ ± .
and by another substitution we see for T  = log t

and these two equalities imply the statement. ■

L em m a 2.1.3 Let f  : (0, oo) — >■ IR be measurable such that

/  f { x ) d x  < oo for all compact K  Ç (0, oo).
J  K

Let £n J, 0. Then the following implications hold: (1) => (2), (2) O  (3) and, i f  f  is

bounded, (2) ^  (1) .

(1) (llogg,,!)-^ /  1/(01 y  = 0

(2) For every € > 0 the set = {t Çi (0,1) : \f{t)\ > e} fulfills

lim (Ilog6^1)-^ /  1 ^ ,( 0 — = 0.
n-*.oo I

(3) There is a set Z  Ç (0,1) such that lim uo f{t )  = 0 and
tez

(ji
=  0 .

P ro o f  The proof is the same as the proof of [Fis90, lemma 4.9].

(1)=^(2) This implication follows easily from

( | l o g £ n | ) ~ ^  /  <  ( l / £ ) * ( | l o g £ n | ) " ^  /  | / ( 0 I
dt
T
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2.1. AVERAGE DENSITIES

(3)=î>(2) If (3) holds then there is to > 0 such that < £ for all / ^  Z, 0 < < < io-

Thus Ag is contained in the set B  = [to, 1) U Z and

1 ^ (1  lo g £ „ |)- ' /  U M jn-coo t

< lim (|log£„|)~^ /  y  +  lim (|log£n|)"^ /  I z M  y  = 0.n-*oo t n->oo t

(2)=>(3) Suppose that (2) holds. By definition of the sets we have

A i  Ç Ai_ Ç A i  Ç A i  Ç . . . .
2 3 4

By (2) there are integers 0 = no < ni < .. such that, for n > n^,

'Sn
Let

(|log£n|) ^

/

k=0

If t ^  A  and t < Sn  ̂ then t 0 ^i/(A:+i) and thus |/ ( t ) | < f / { k  +  1). Therefore we have

lim |/( t ) | = 0 .uo '  ̂ ''t^A

dt
~T

For aU njt+i > n > Uk we have

ri [^n, 1) — LI , 1)) U (A  n  \£ni r̂ifc )) Ç: ^-^1/fc Ll , l)^ U D -

Hence,

(|log£n|)-l /  l A ( O y  < (llog^nl)"^/ (t) y  + ( | log £„ | )"̂  /
. Jsn  ̂ "/En *' "/Cn

< (1/A;) + (l/(fc + 1)),

which yields (3).

(2)=^(1) Suppose ll/llsup < C. Then, for every £ > 0, we have
f 1 (]f

lim sup(|log£„|)” W  |/( t ) | —
n—►OO Jen ^

/*1
<  l i m ( | l o g £ n | ) ~ W  C - U , ( t )  — +  £ =  £ .

Jen t
Hence, lim„^oo(| log£n|)"^ / /  |/(<)l t  =  0 as required.

For more details on average densities we refer to [BF92]. We now pass on to a more general 

concept.
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2.2 Tangent M easure D istributions

In this section we extend the idea of applying an averaging method of order two from the 

concept of densities to the more general concept of tangent measures.

A straightforward approach leads to the following definition:

D efin itio n

Suppose // € Af(IR” ), 0 < a  < n and x 6 IR"̂ .

For any e G (0,1) we define a measure G At(IR"') by

for aU Borel sets A Ç IR^. We call the limit points of as £ J, 0 the a-standardized

average tangent measures or average tangent measures of /i at x. If

limPj =
£iO

exists it is called the unique average tangent measure of g, at x.

We wiU see in lemma 2.3.2(a) that average tangent measures of measures in Euclidean 

spaces of dimension n > 2 actually contain more information than average densities. But 

in general they are still too crude to convey a good picture of the local geometry of the 

measure.

In order to get a better picture, C. Bandt suggested in [Ban92] the application of the 

order-two averaging principle in order to get a “random tangent measure” at almost every 

point. This idea was applied by S. Graf in [Gra93] to standardized tangent measures. 

The idea of studying random tangents for self-similar sets is also present in papers of N. 

Patzschke, U. Zahle and M. Zahle (see e.g. [PZ90] or [PZ94]).

The approach of S. Graf is as follows: Define a family (</?£)£>o of distributions on the scales 

(0 ,1) such tha t, as £ J, 0, the centre of weight of these distributions tends to 0. As in the 

definition of average densities a suitable family {(fs) is given by

y e (A )  =  (I log£|)“  ̂ I  l^ ( i )  ^  for Borel sets A  Ç (0,1).
Je I
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2.2. TANGENT MEASURE DISTRIBUTIONS

We look at the image distributions of under the mapping

As £ I 0 we get limit distributions on the set Tang(^u,z), which, heuristically speaking, 

“remember” what happened during the procedure of blowing up and thus define a kind 

of “tangent measure with memory” , the tangent measure distribution or random tangent. 

Distributions, which are defined in such a way, can provide a better means of under­

standing the local structure of a fractal measure than ordinary tangent measures in two 

principal ways:

(1) The tangent measure distributions give additional information on the “number of 

scales” for which Is close to a given i/ G Tang(//, z) and therefore contain more

information on the process t than the set T anK /i,^) alone,

(2) In many cases the set Tan^(/i, z) is too large to give a good picture of the local struc­

ture of fjL about X .  Many elements in Tang(//, z) stem from a small number of scales and 

represent merely marginal effects that appear during the process of blowing up. These 

elements might not appear in the support of the tangent measure distribution.

Both effects can be seen in the examples studied in [Gra93], [AP94] and [0 ’N94] and in the 

examples of this thesis. In order to define the notion of tangent measure distribution recall 

the definition and properties of the weak topology on the set V  of probability distributions 

on Ad(IR” ) (see lemma 1.2.8).

D efin ition

Suppose /i G Af(IR” ), 0 < a  < n and x G For any £ > 0 we define a probability 

distribution on A4(IR”̂ ) by

P^(A ) = ( \ \ o g e \ r  [ U  [ ^ )  J

for aU Borel sets A  Ç Af(lR” ). We denote the set of aU weak limit points of (P^)e>o as 

£ J, 0 by V°‘{fi,x).  The elements of V°‘{ijl, x ) are called the a-standardized tangent measure
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_______ CHAPTER 2. AVERAGE DENSITIES AND TANGENT MEASURE DISTRIBUTIONS_______

distributions or tangent measure distributions of /z at x. If the limit

l im f^  = P
£lO

exists in the weak topology, we call P  the unique tangent measure distribution of ^  at z. 

P  is the trivial distribution if P  is the Dirac distribution with mass concentrated at the 

zero measure.

R em ark s :

1. If /i is an a-rectifiable measure then, by theorem 1.3.12 and the proposition 2.2.1 below,

at /2-almost every point x there is a unique tangent measure distribution P^ of /i at 

X. Px IS the Dirac distribution with mass concentrated at

i/ = ( l /2 r

where T is the approximate tangent space of at z.

2. An im portant class of measures that have unique tangent measure distributions at

almost aU points are Hausdorff measures on self-similar sets fulfilling the open set 

condition (see [Ban92], [Gra93] or [AP94]), D. Krieg in [Kri95] has used methods 

similar to those in [BF92] to show that Hausdorff measures on hyperbolic Cantor 

sets also have unique tangent measure distributions almost everywhere.

We now formulate some general properties of the sets P “ (/z, x).

P ro p o s itio n  2.2.1 The set P"(/z, x) is a weakly closed subset o f V .  For every tangent 

measure distribution P  € P"(/x ,x) we have supp P  Ç Tan^(/i, x).

P ro o f  Recall tha t the weak topology on V  is generated by the metric D defined in 

lemma 1.2.8. If (Pk) Ç V°‘{fJL,x) and Pk ^  P  then there are sequences (ff)teN such 

that 0 < t i  < l / i  and D{P^^,Pk) < ( l / i ) .  Picking the diagonal sequence yields

d [p m̂, p ) < D [ p ^ , , P k ) + D { P k , P )  ^ 0 ,
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2.2. TANGENT MEASURE DISTRIBUTIONS

and thus P  G Hence V°‘{fJ,,x) is closed.

For every 6 G (0,1) we have

F  (cl : t G (0,<!i)}) > lim sup Fg" (cl : t G (0,<5)})
£lO

log 6 -  log 6 
> hm sup —   j—  = 1,
-  .10 |log£|

and thus P  is concentrated on the closed set

n  cl{//x,tA“ : t G (0,6)} =  Tan|(/x ,x) 
s>o

as stated.

The use of Haar measure on (IR'*', •) in the averaging procedure yields a scaling invariance 

property for the tangent measure distributions. Recall the definition of the rescaling group 

(Ta) a>o from section 1.3.

D efin ition

A random measure or its distribution P E V  is called a-scale invariant if, for every A > 0,

P = P o T ^ \

where T \u  —

P ro p o s itio n  2.2.2 For every x G IR” every P £ V°‘{fi,x) is a-scale invariant.

P ro o f  Suppose P  = lim for rjt i  0. For every F  G C6(At(IR” )) and A > 0 we calculate 

J f d P  =  b ; m ( - l o g r , ) - ' £ f ( ' ^ ) ^

= log r , ) - '  f  ( g )  Y  +  lo g r . ) - '  f  ( g l )  y

+  h m J - l o g r , ) - > £ ^ f ( ^ ) f

- I
F d P o T ^ ' ,
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CHAPTER 2. AVERAGE DENSITIES AND TANGENT MEASURE DISTRIBUTIONS 

using continuity of T \ (see lemma 1.3.4). This proves the statement. ■

More can be said about x)  in the case of measures with bounded upper densities.

P ro p o s itio n  2 .2 .3  Suppose fi G A4(1R” ) and d°‘{p ,x) < oo. Then the following state­

ments hold:

1. For every sequence [sk) such that £a: i  0 there is a subsequence (rjt) such that 

converges weakly to a tangent measure distribution of p  at x. In particular V°‘{p,x)  

is non-empty. I f  additionally d°‘(p ,x )  > 0, then for every P  G V°‘{p.,x) we have 

P ({0}) = 0 and thus the set V°‘{p,x)  contains only non-trivial distributions.

2. V°‘{p,x)  is weakly compact and weakly connected.

3. P  is a unique tangent measure distribution of p at x if  and only if

%) = { ? } .

4- The average tangent measures are the barycentres of the tangent measure distributi­

ons, i.e. the set o f all average tangent measures of p at x is given by

y u d P { v )  : .

D “ (/i,x ) = i n f | y  i/(B (0 ,l))dP (i/) : P  £ V “{i i , x) \

0 “ (^i,x) = s u p |y i / (B (0 , l ) )d P ( i / )  : P £ V “( i i , x ) \  .

5. We have

and

P ro o f

(1) Since ^ ( p , x )  < oo we know from proposition 1.3.9 that

is a compact subset of A4(IR”). Since the distributions P f  are supported by this set, 

lemma 1.2.8(3) implies that for every sequence (sk) there is a subsequence (r^) such tha t
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2.2. TANGENT MEASURE DISTRIBUTIONS

lim = P  exists. If x) > 0 then the zero-measure (j) is not in this set and therefore 

P[{(f)}) =  0 for aU tangent measures f  of at z.

(2) Since every P  G x) is supported by the compact set Tang(//, x) and P “ (//,x ) is 

weakly closed, V°‘{fi,x) is weakly compact by lemma 1.2.8(3).

Suppose x) is not connected. Then there are compact sets D \ , D 2 Ç and

£ > 0 such tha t D i U  D 2 = x) and D{Di,  D2) > e. Let

E l = {< G (0,1) : P f  G 5 (E i,£ /2 )}  and E 2 = {t e  (0,1) : P f  G P(P>2,£/2)}.

There is 6 > 0 such that (0,6) Ç Ei U E 2 &nd the union is disjoint. Since t P f  is 

continuous, the sets E i ,p 2 are closed in (0,1) and this contradicts the connectedness of 

(0,<5). Hence P “(/x,x) must be connected.

(3) Clearly we have P"(/x,x) = {P} if P  is a unique tangent measure distribution. On the 

other hand, if P “ (//,x) = {P}, then by (1) for every sequence (ek) there is a subsequence 

(rk) such that lim = P. By the definition of weak convergence this implies lim^jo P<f = 

P , hence P  is a unique tangent measure distribution.

(4) Suppose first that P  = lim G P “(M'. 2:). Let /  G Cc(lR” ). Since cl f G (0,1)}

is compact the continuous map 1/ i/{f) is bounded on this set and thus there is P  G

C6(A4(]R"')) such that F{i/) = u{f)  for all f/ G cl ( G (0,1)}. Thus

= J  = J  P M d P W )

= y , p d P { u ) j ( f )

and hence j  u dP{u)  is an average tangent measure.

Suppose now that ü is an average tangent measure and

for all /  G Cc(IR" )̂. By (1) we can assume (by passing to a subsequence if necessary) that 

P  =  lim P^^ exists and we have just seen that in this case

^ = J  i^dP{u)
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as required to finish the proof of (4).

(5) For any sequence £„ J, 0 we can assume (by passing to a subsequence if necessary) 

tha t there is P  = lim P ^ .  We have seen in (4) that in this case lim ^ dP{y)  =: i>.

We have /  z /(^P (0 ,1)) dP{y)  =  0, since otherwise, by lemma 2.2.2, z/(^P(0, A)) > 0 for all 

A > 0, contradicting the local finiteness of û. By lemma 1.2.4 we thus get

log£„|)-^ 2  /i(P(x,_f^  J  = J  ̂ (^ (0 ,1 )) dP(u)

and this implies both statements. ■

C o ro lla ry  2.2.4 Let ft 6 Af(lR” ) and d°‘{^ ,x )  < oo. For every average tangent measure 

i? o f ^  at X and all X > 0 we have D =  T\ï>. Also, the support of every average tangent 

measure ü o f p  at x is a cone, i.e. whenever u G supp P and X > 0 we have Xu G supp P.

P ro o f  If (p, x) < C and P is an average tangent measure of p  at x, then, by proposition 

2.2.3(4), there is a tangent measure distribution P  of // at x such that P = f  vdP{v) .  By 

proposition 2.2.2 we thus have

P = J i / d P{ i ' )  = J  Txi/dP(i/) = T\P .

If u G supp P, X > 0 then, for every ^ > 0, we have

P{B{Xu, 6)) = TxPiB(u,  6/A)) • A“ > 0 ,

and thus Au G supp P. ■

P ro p o s itio n  2.2.5 Let p, i/ £ A1(IR” ). Suppose u has finite upper densities u-almost 

everywhere. I f  p u and f  = ^  is the Radon-Nikodym derivative then, for v-almost 

every x,

= { P  0  : P  e V ° ( u , x ) }  ,

where Mr is defined as Mr : At(lR”') — >■ A^(1R"'), u ^  t • u for  r  > 0.
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2.2. TANGENT MEASURE DISTRIBUTIONS

P ro o f  For i/-almost every x we have f {x)  < oo, (f^^v^x) < oo and, by lemma 1.2.2,

%— — = "■

Fix such an X G H ” .

For every continuous g : IR” — [0, oo) with supp g Ç B(0, R)  we get

=  f ( x ) ) dv (y )

S B ( x , t R ) \ f ( y )  -  u { B { x , t R ) )  no< sup i/(B(x, tR))  

Thus for every 6 > 0 there is T  > 0 with

0 .

for aU 0 <  ̂ < T. Let F  G (IR” )) and let 6 > 0. Then F  is uniformly continuous on 

the compact set

c l { ^ , / ( a ; ) ' ^  : t G (0 ,1 ) | ,  

and thus we can find a T  > 0, such that

< £/2

for all 0 < < < r .  Therefore

( |l o g r |) - * ^  F ( ^ ^ ) y - ( | l o g r | ) - ' ^  F o M n ^ ) C ^ ) j

<  e / 2 +  | | f  llsup • (|log>'l)” ’ ^  y  <  E

for aU sufficiently smaU r  > 0. Hence whenever P  =  lim is a tangent measure dis­

tribution of /i at X we have

and therefore P  o is a tangent measure distribution of i/ at x. Also whenever

P  =  Um is a tangent measure distribution of i/ at x we have

(I l o g r „ |) - '£  f  ^  y  f  o rfP ,
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and therefore P  o is a tangent measure distribution of /z at x. ■

We conclude section 2.2 with an example of a fractal measure /z G Ad(lR^) with boun­

ded 1-densities /z-almost everywhere, which has unique tangent measure distributions F  

/z-almost everywhere. In this example supp P  is considerably smaller than Tang(/z, z) and 

P  conveys a good picture of the local geometry of /z at almost aU points.

E x am p le  2.2.6 Let (a„) be an increasing sequence of integers. We construct a sequence 

(-fn)neN of compact sets In Ç IR  ̂ as foUows:

Let Iq =  B (0 ,1). In the first step inscribe ai touching, closed balls of radius 1 /a i with 

centres on a vertical diameter in I q . Denote the resulting set

In the next step inscribe og touching, closed baUs of radius l/(u iU 2) with centres on a 

horizontal diameter in each baU of /%. Denote the resulting set I2 .

Having constructed /„ , we inscribe touching, closed balls of radius with

centres on a horizontal diameter (if n odd) or on a vertical diameter (if n even) in each 

ball of In and denote the resulting set In+i.

Let
00

 ̂ n -
n=0

0 0 0 0  I I I I

0 0 0 0  I I I I

F ig .l  Construction of I \,  I 2, I3 for  a„ = 2"̂ .

Obviously I  is compact. We define a codespace

00

S = J J { l , . . . , a „ }
n=l
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2.2. TANGENT MEASURE DISTRIBUTIONS

and equip E with the “usual” metric structure

d { ( 7 ,  r )  =  <

0 if (T = r ,

if n = min{7i G IN : (Tn ^  T^} .

We furthermore define a coding

7T : I  — E

in the natural way by numbering the balls of the n-th level inside a baU of (n — l)-th  

level by 1,...(%% and mapping a point which is successively in balls number bn in the 

construction of In onto the sequence (6^). tt is a homeomorphism and thus preserves the 

Borel structure. We can define a measure p, on the Borel <7-algebra of E by

- 1

I I “'
-t = l

for 6 G E,

and get a measure = 2 • fi o w on the Borel <7-algebra of I . // can be extended naturally 

to a measure on IR  ̂ and this measure, which we also denote /x, provides our example.

For a given r  > 0 such that, say

k I f " '
-t = l

- 1

< r < ( /:+  1) l i “ i
.i=l

- 1

with 1 < A: < a„, we have for every x £ I

2 [ n t i
2r

>

and

2 • ( * + ! )  

p (5 (x ,r ) )  ^  2 [ n ? = ia i l - '- ( 2fc +  l)<
r  '  [n?=i • k

and thus /x has positive and finite 1-densities.

> 1/2

< 6 ,

We calculate the tangent measure distributions of /x for the sequence a„ =  2”̂ . Since we 

shall use the same construction in lemma 2.3.2(a) for a sequence (a„) tha t is growing more 

quickly, we assume in claims 1 and 2 only an >2^.

51



_______ CHAPTER 2. AVERAGE DENSITIES AND TANGENT MEASURE DISTRIBUTIONS

Recall that

rl d f
(fs{A) = (I log£:|)“  ̂ • / lyi(i) — for Borel sets A Ç (0,1).

J e  t

For a 6 IR let

^  |{(x,0) :a;>a} 5 fl^ — T ï  |{(x,0) : x<a} ?

and

^ ^  |{(0,x) : x>a} » ^  |{(0,x) : x<a} •

Also let

h = 'H |{(x,0) : x6R) ’ V — a, |{(0,x):x6R} ’ 

and define denoting the zero-measure)

H  = {0, h, ha : a e IR} and V  = {0, v, Va : a e  IR} .

II  and V  are closed sets in Ad(IR^).

C la im  1 Given 6 > 0 there are numbers R > 1 ,  ! > 6 > 0  such that for

. / » = [ ( 4 /« ) [ n  “< ] " '- ( ! /« ) [  n « i
t=l i= l

and
71 71

G „ = ( ( i / K ) ( n « i ) ’  ' ( 4 /« ) (n«0"  )1=1 1=1
we have, for every x € / ,

t Ç 1^ J 2)t| Q B{H,e)  and  ̂ G J2k - i ^  Q B{V,e) ,
keK keK

and
riO

'^k )

Therefore, for every tangent measure distribution P  of // at x, we have P{H (J V)  = 1.

P ro o f  For every 6 > 0 we can find numbers 6 > 0 and P  > 1 as in lemma 1.2.6 such th a t, 

for every measure u G Ad(IR^), the following geometric condition implies d{iy,H) < e: For
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some 0 < r < 6/4 the mass of u is distributed in F(0, R)  in such a way tha t all the mass 

is inside a sequence of touching balls of radius r with centres on a horizontal line. The 

distance of this line to the abscissa is less or equal 2r. One of these balls intersects the 

boundary of 5 (0 , R)  and each ball has total mass 2r.

Fix X Ç: I  and observe that jix .th  is of this form if f G «/jfc for some even number A; G IN. 

Thus

t G U  •^2a} Q
ken

and the statement for V  follows in an analogous manner. We have

log 5  -  log <5/4

and thus if

we have

llog r

n+1 . m
(4/<5) [Y [a i \  < r <  (4/6) [ f j  o,]

t=i t=i

U g J  < " ( b g j ! -  b g « /4 )

n(log R -  log 6/4)<
EILi log «% + log 6/4 ’

and the last term converges to 0 as n ^  oo or r  J, 0. Since H  and V  are closed, we thus 

have for every tangent measure distribution of /i at a;

and

P{H UV)  = inf 5 ( 5 ( 5 ,  e) U 5 (F , g))

5 ( 5 ( 5 ,  e) U 5 (y , s)) > lim inf f ^ ( 5 ( 5 ,  e) U 5 (F , s)) = 1

for all g > 0. Thus 5 ( 5  U F ) = 1 as required to finish the proof of claim 1. □

C la im  2 For //-almost every x G IR^, and every 5  G 5^(//, z), we have

5({</>,/i“,h a ,u “, Va : a G IR}) = 0.
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Therefore we have supp P  Ç {h, v] for all tangent measure distributions F.

P ro o f Let P  be a tangent measure distribution at some point x £ I  and observe that 

P({(^}) =  0 follows from the fact that the lower density of /i at x is positive. Observe 

tha t for any a G IR we have and thus we have, by means of the scaling

invariance property of P  (lemma 2.2.2), for any bounded interval /  Ç IR such that 0 ^  

tha t P ({/i“ : a £ /} )  =  0. Using the analogous argument for ha,v°',Va we get

P ({h“,t;“,/ia,î^a : a 7̂  0}) = 0 .

It remains to prove that P({h^, hg, uo}) = 0 for all P  G x) and //-almost all x.

For this purpose we choose a sequence £, > 0 such that and

n • I log £ji I n—*oo Q 
E ?= iloga, '

For example we can choose £, = (1//)^. We can use the Borel-CanteUi-lemma to see that 

for //-almost every x £ IR  ̂ there is a number K  £JN such tha t, for 7t( x ) = (xi, X2 , xg ,. . . ) ,

— < (1 -  £:,•) for all i > K.
Cli

We fix such an x and a small 6 > 0 such that d{ho,V) > 2e. Let R,  6 , Gn and as in 

claim 1. Whenever t  £ J2n- i  we have

4 ^ ,  fto) > d{ho, V ) - d ( f ^ , V ) > e .

We can therefore concentrate on the t £ J 2n- For 2 < k < 0 2 n — 1 we denote

2n 2n
^2n,it:= [ (2 /P ) -A :.[n a * ]  , (2 /P ) • (A;-f 1) • [ H  .

1=1 1=1

Then
“2n —1

*̂2n Ç J2n,k • 
k=2

Denote B  :=  P (0 , P ) n  {(x,y) : x > 0}. There is a 0 < 7  < e such that v{B) < (1/3) 

whenever d{u^ho) < 7 . If f G J 2n,k then

^ ( P )  > <
(1/f) (Aj — 1) ' 2[n?=i Oi]  ̂ if A; < a2n —

( 1 / f )  • (o2n -  X 2 n )  ' 2 [ n % i  Oi]"^ i f  A: >  02n ~  %2m.
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2.2. TANGENT MEASURE DISTRIBUTIONS

Hence, i f f  G J2n,k’> k < (i2n ~ we have

^ ^ { B )  > (1 /i) • (A; -  1) • 2 [ ] ^  a,] > R ’ - > 1/3

and thus > 7 . Finally, for 2n > K,

“2n - l  2n j  p 2n j

:= U J2n , kÇ[ i 2 / R ) -a 2 n e 2 n ' [ j [a i \  ,(2/Æ )- tt2n • [ n a » ]
k=a2n-X2n *=1 * = 1

and thus y r ( J L )  ^  (| logrj)"^ • log(l/£:2n). If r  > 0 is such tha t, say,

2m—1 j 2m—2 j
(2 / R)  • [ n H < <• < (2/«) • 1 n “

t=i t=i

we have < r̂(UnelM 4 n )  < E n = / y r (4 n )  thuS

Um Vr (^U  ^2n) < |log(2/Æ ) |-E te f " lo g O i "  “ ■

Putting these arguments together we get, for all tangent measure distributions P  G

P{{ho}) < lim su p f^ (H (h o ,7 )) =  0 ,
rlO

and in the same way we find f  ({h°, ug}) = 0. This finishes the proof of claim 2. □

C la im  3 Let = 2”̂ . Then at //-almost every x there is a unique tangent measure 

where 6^, Sy are the Dirac distributions with mass concentrated at h, v, respectively.

P ro o f  Fix £ > 0. It remains to show that

v^r( U  J2k) , y r (  I J  J2k-l) ^  g
À:eN keî^

We concentrate on the first statement and look at an r  > 0 such tha t, say,

. 4̂-1
(4/^) [ l i a i ]  < r  < (4/6)

i=l 1=1

55



_______ CHAPTER 2. AVERAGE DENSITIES AND TANGENT MEASURE DISTRIBUTIONS

For k < n we have
. / r X ^  log(i/(4fi)) +  logat 

 ’

and thus

( u * . )  2  E<Pr ^
 ̂k e H  k < n / 2

^  (n/2)(log 6/4R) +  E t <»/2 log
E S i 'lo g a i  + |logW 4)|

and, for =  2*, the last term converges to 1/2. Thus we have for any tangent measure 

distribution P  a,t x that P (H ) > 1/2. An analogous calculation shows P (V )  > 1/2 and 

this yields the statem ent of claim 3 and concludes the proof of the properties of /i. □

Observe tha t the set Tau5(/z, x) is considerably bigger than supp P  ; Recall that Tau5(/i, x) 

is a connected subset of At(IR^) but supp P  is not. Moreover, it is worth noting tha t the 

support of the unique average tangent measure is

{(x, y) : x = 0 oTy = 0 }

and hence a cone but not a Hnear subspace of IR^. ■

2.3 E xistence o f Average D ensities and U niqueness o f Tan­

gent M easure D istributions

In this section we investigate the connection between the existence of average densities 

and the uniqueness of average tangent measures and tangent measure distributions. Pro­

position 2.3.1 gives one half of the solution of the problem:

P roposition  2.3.1 Let fi € AI(IR"') be a measure with d°‘{ii,x) < oo fi-almost every­

where. Then the implications (1) => (2) and (2) (3) hold.

( 1) p has a unique tangent measure distribution at p-almost every point x.
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2.3. EXISTENCE AND UNIQUENESS

(2) has a unique average tangent measure at fi-almost every point x.

(3) The average density of p exists at p-almost every point x.

Moreover, if  {I) holds, we have for the unique tangent measure distribution Px and the 

unique average tangent measure Px that

Ux — ^  dPxÇi '̂j

and if  (2) holds we have for the unique average tangent measure Px that

D°‘{p,x) = Px{B{0,l)).

P roof This was already stated in proposition 2.2.3(3),(4) and (5). ■

The other half of the problem is probably more interesting. It turns out tha t the reversed 

implications in proposition 2.3.1 do not hold.

P roposition  2.3.2

(a) There is a measure p with positive and finite a-densities p-almost everywhere such 

that at p-almost every point

• the average a-density exists and

• the average tangent measures are not unique .

(b) There is a measure p with positive and finite a-densities p-almost everywhere such 

that at p-almost every point

• there is a unique average tangent measure and

• the tangent measure distributions are not unique.

T.C. O’Neil in [0 ’N94] was the first to give an example of type (a). His example is based 

on [Fed68, 3.3.19]. The example we construct below is simpler, but it is based on the same 

idea.

57



_______ CHAPTER 2. AVERAGE DENSITIES AND TANGENT MEASURE DISTRIBUTIONS_______

C onstruction  o f exam ple (a)

We take the construction of the measure ji 6 with bounded 1-densities, which we

used in example 2.2.6, but this time we pick a sequence (&%) growing quickly enough such 

tha t ttn > 2"" and
n ’ log an   ̂ Q
log ttn+l

The behaviour of the tangent measure distributions has changed considerably. We have;

C laim  1 At /i-almost every x there are tangent measure distributions Pi and P2 such 

tha t Pi(-ff) =  1 and = 1.

P ro o f Recall the notation from example 2.2.6 and recall that 2.2.6[claim 1] is valid in our 

situation. Pick

t=l

Then
r. n  I r \  ^  lo g (6 /(4 P ))- lo g  02A:

" ' " 6  n = i s j

and by the assumption on (a&) we have

lim Um =
^  -  log ^2n E £ i  log ak

This implies

r̂2n ( LJ 1 •
A:GN

We can pick a subsequence ( s n )  of (7'2n) such that Pi = lim Pf^ exists and get P\{H)  =  1. 

In an analogous manner we can find a tangent measure distribution P2 with P2(V)  =  l.D

C la im  2 For //-almost aU points x the set of tangent measure distributions of // at z is 

given by

A = {A • /̂i -f- (1 — A) • : A G [0,1]}

where 6^, Sy are Dirac measures with mass concentrated at h, v, respectively.
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P ro o f We have already shown in 2.2.6[claim 2] that, for /z-almost all x and all tangent 

measure distributions P  € P^(/z, z),

F ( { h , u } ) = l .

Therefore the statement of claim 2 follows from the connectedness of P^(/z, z) together 

with claim 1. □

Because /z has positive and finite densities, claim 2 implies that at /z-almost every point x 

the set of average tangent measures is given by

I  y  1/ dP(i') : P e  P^(/z, x) j  = {A • /i -I- (1 -  A) • u : A € [0,1]}

and therefore /z does not have a unique average tangent measure at x. But for the average 

density we have, by proposition 2.2.3(5),

T>“(/z, x) = A/i(B(0, 1)) +  (1 -  A)u(B(0, 1)) =  2

for /z-almost every x.

Observe that it is essential in the construction of this example that /z is defined on IR” 

with n > 2. The idea behind the construction of /z is based on the fact that there exist 

lines in more than one direction in the underlying Euclidean space.

The question, whether an example of the first type can exist on IR^, will be answered (in 

the negative) in section 5.1. ■

The example of the second type is new. At this stage we can only give the construction 

of /z and show that the average densities of /z exist and the tangent measure distributions 

are not unique. We have to postpone the proof of the uniqueness of the average tangent 

measures until chapter 5.

C onstruction o f  exam ple (b)

Fix a sequence (o^) of integers with ao = 0 and a/. |  oo such that

- ^ ^ 0 .
O'k+l

59
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Define the codespace

and define a measure /i on S by

E = n { 0 , l , 2 }
i= l

t ' ' ' ) — ( f /3) for Û G s .

Define sets / i ,  I 2 , /  by

00 00

h  = { x  = : X ie  {0 ,2 ,6}}, h  = {x  = : Xi E {0,4,6}}
t=i 1=1

and

f  -22. T
Xi e {0, 2, 6} if ü2k < i < ci2k+i and 

Xi e {0,4,6} if ü2k+i < i < ci2k+2

and maps </>i, </>2, <?!> by

4 l . 2 - . ' S ^ h , 2  ,
1 =  1

and

where
1 = 1

0 if X = 0 ,

2 if z = 1 , and (f2(x) = <

6 if z = 2 ,

0 if z = 0 ,

4 if z =  1 ,

6 if z = 2 ,

and

V?3(z) =

0 if z = 0 ,

2 if z = 1 and ü2k < i < o,2k+i,

4 if z = 1 and 02^+1 < i < «26+2,

6 if z =  2 .

Assuming the usual metric structure on E all maps 0 i, 02 are bi-Lipschitz isomorphisms. 

Let n = p,o 0 “ ^, fii = /Zo 0J"  ̂ and //2 =  /Z o 0^ /i, fii and fi2 can be extended in a natural

way to measures on IR.
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Let Q = fi2 well-understood self-similar measures. We claim tha t fi is an

example of type (b).

C la im  1 /X has positive and finite a-densities for all x G / .

P ro o f  If 0 < f < 1 is given such that (1/7)^ > ( > (1/7)^"*"  ̂ we have, for aU x G / ,

<  (l/3)‘ = 3[(l/7)‘+']“ <3  r ,

and

>  (l/3)‘+' = (l/3)[(l/7)‘]“ > (1/3) • r  .

This proves claim 1. □

As /xi and /xg are self-similar measures fulfilling the strong separation condition they have 

unique tangent measure distributions P i, P2 almost everywhere and, by [Gra93] or [AP94], 

we can describe P i, P2 by

= 1 ^ 7  C  T  ’

where E  G M b,  the a-algebra on Af(lR’̂ ) generated by the mappings 1/  x/(P) for all

Borel sets B  Ç P(0 ,6), and rj < (1/(76)).

C la im  2 J  1)) dPi(i/) = J  i/(B (0 ,1)) dP̂ Çi )̂.

P ro o f  Define

1=1 1=1

As 'ij) is the reflection at the point (1/2) it is a bi-Lipschitz isomorphism and

Ml o -0”  ̂ = M2 .

Observe that

V^(P(z, r ) n l i )  = P (^ (x ) , r) n I2 
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for all X 6 / i  and r  > 0. Thus

J  u{B(0 , l ) ) d P 2{v) = (log 7 ) - ' ^  j d f i 2{x)

= (log7 ) -  /  r
J II Jt]/! i t

dt

and this proves claim 2. □

Claim  3 For //-almost all points x G /  the set of tangent measure distributions of // at x 

is given by

A :=  {APj +  (1 — A)P2 • A G [0,1]} .

Before we give the proof of claim 3 we shall convince ourselves that this claim not only 

shows that // has non-unique tangent measure distributions //-almost everywhere but also 

implies that the average densities of // exist at //-almost all points. By claim 3 and claim 

2 all tangent measure distributions P  at x fulfill

J  u(B{0 , l))dP{,^) = J  ^{B{0 , l) )dP i{u )

and since // has finite a-densities, we can use proposition 2.2.3(5) to see tha t this is the 

value of the average a-density at //-almost every x. It remains to prove claim 3.

P ro o f o f  claim  3 Let X i  Ç /j  and X 2 Ç I 2 be the exceptional sets where we 

do not have the unique tangent measure distributions for //i, //2, respectively. Let 

X  = <A(<^r'(Xi)U«ij'(X2)). Then ^ X )  =  /i(<A r'(X i)U ./.j'(X 2)) < m ( ^ i )  +  m (% 2) = 0 

and it is sufficient to show that 'P“ (//, x) =  A for aU x G /  \  X . Fix x G /  \  X .

First step: For every £ > 0 there is an n G IN such that for all

( l / 7 ) « 2 f c + i - n  <  /  <  ( ^ i p y 2 k + n  
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we have

and for all

we have

(l/7)a2fe-n < ( < (iy7)a2fc-l+n

P ro o f o f  th e  first step: We concentrate on the first inequality and get, for a given

£ > 0, numbers 6 and R  as in lemma 1,2.6 and n 6 IN such that 2 • (1 /7)” < min(6, l /R ) .  

Let

( l / 7 ) a 2 A : + i - n  <  (  <  ^ l l j y 2 k + n  _

We want to apply lemma 1.2.6 to the collection U of sets

2 2 - 1  2 2 + 1
Ui = [ - Y -  ■ (1/7)““ +', • (1 /7)““ + ')

for those integers i which fulfill |2'| < (1/4) • 7“2fc+i “2*̂  

7/ is a disjoint cover of B(0, R) since 0 G f/o and

U
ueu

Furthermore

= (2/t)  • ( l /7 ) “2*+i((l/2). +  1) > 7” > 2i?

171(1 =  j ( l / 7 ) ““ +' < 2 - ( l / 7 ) ’* < « .

Since, for every U G ZY, we have

\tU\ = 2 - ( l / 7 ) “2fe+i

and

U
ueu

= ((1/2) • 7“2''+i-“2* + 1) . 2 • ( l /7 ) “2'=+i < 2 • ( l /7 ) “2'=, 

every set (0i<^“ ^(x) +  tUi) either contains exactly one of the sets

2̂/ =  : y i -  f^r some z G {0,2,6}*^,
t=i
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or it is disjoint from all of them. We are in the first case if and only if (x + tUi) contains 

exactly one of the sets

^  y.
= m = ^1, . Va2k+1 = ^a2k+i} for some z E ; x E E},

i=l

and in the second case (x +  tUi) is disjoint from all these sets. Accordingly

as required to use lemma 1.2.6. This finishes the proof of the first inequality in the first 

step. The second inequality is proved in an analogous way.

Define compact intervals

T lk  = [ ( l/7 )“2^+'"”, ( l /7 ) “2'=+̂ ] and T l^  = [ ( l/7 )“2'=- ,̂ ( l /7 ) “2*=-i+̂  

and a set
00

B , =  \ j  ( ( i / 7 r + \ ( i / 7 r - ) .
k=0

Second step  : For every £ > 0 we have that (ps{Be) 0.

P ro o f o f  th e  second step: Fix £ > 0. Assume (1 /7)“''+!+’̂  < 6 < ( l /7 ) “*'"'"” . Then, for 

aU j  E IN,
2n

ak +  n  

and thus

T h ird  s te p : Let A E [0,1] and £ > 0. Then there is a E such tha t

|p W ( f ) -  (A • Pi{F) +  (1 -  A) • f 2 ( f ) |  < S

for every bounded continuous function F  : A1(IR) — [0,oo) such tha t \F{i/i) — F{u2)\ < 

6 / 2  for all 1̂1, 1̂2 with ^(^'1, 1̂2) <
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P ro o f  o f th e  th ird  s tep : Apply the first step to e in order to get a number n G IN. Let

tk = ( 1 / 7 ) - ^  .

Passing to a subsequence of tk if necessary, we can assume that there is = lim . 

For sufficiently large k we have

£  [ ( 1 /7 ) ° " + '- " , ( 1 /7 ) ° " + " ]  =

We thus have

< 612 + 1(|logul)-^ £  Ê

-  (1 -  A) • ( | l o g « i - " | ) - ' f ( - — -P -")’*)  f  -  A • f i ( F ) | ,  

and this term converges to 6/2 +  |P i(F ) -  (1 -  A) • P\{F) -  A • P i(F ) | = 6 / 2 . Moreover 

(I l o g t t l ) - '  7  -  (1 -  A) • f 2( f ) |

-  (1 -  A) • P 2 (F )| +  ||f | | .u p  ■ y ,, ( ( ( l / 7 ) ““ - '+ " ,  l ) )  +  6 / 2 ,

and since

( ( ( l /7 )““ - '+ “ , 1)) < " (1 - A ) ' ^ 0
 ̂ '  0>2k +  n

this term converges to 6/2. Finally the second step implies that

Therefore

-  A . Pi(F)  -  (1 -  A) • P2{F)\ < 6 , 

and thus P^^^ is as required to finish the third step.

By proposition 1.3.9(1) the set

M  := cl { ^ ,  . ( g ( o , l ) }
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is compact and thus every continuous bounded function F  : A1(1R) [0, oo) is uniform­

ly continuous on M . Therefore, for every 6 > 0, we can pick s > 0 such that for all 

G M , d{i'i^U2) < 6 we have \F{ui) -  F{u2)\ < S /2 . Because is compact we

can pick a sequence £n i  0 such that P  =  lim exists. P  fulfills, for aU continuous 

bounded functions F, \P{F) -  (A • Pi{F) + (1 -  A) - P2{F))\ = 0 and thus A Ç

Fourth step: Let P  =  lim € V°‘{/jl,x) and £ > 0. Then there is a Â*̂ ) G [0,1] such

that

\P{F) -  A(') • Pi{F) -  (1 -  A<')) ■ P2{F)\ < S

for every bounded continuous function F  : At(lR) [0, oo) such that \F{ui) — P(^'2)| < 

6/2 for aU f/i, 1/3 with d(z/i,z/2) < £•

P ro o f o f th e  fourth step: Fix £ > 0 and pick n G IN as in the first step. First assume 

that {sk) is such that there is a subsequence {tk) of {sk) with tk G Pf.n* for a sequence 

njt I 00. Since, for all sufficiently large A; G IN,

A . = : l - (°">  +  ” ) ; l o g % [0, l ] ,
-  log tk

we can assume tha t, by passing to a subsequence once more, lim Xk =: Â '̂ ) G [0,1] exists. 

Using t]r^'‘ = we can show, as in the third step, that

| f ( f )  -  (AW • Pi{F) +  (1 -  AW). ))| < 6

for all bounded continuous functions F  as in the statement.

W ith analogous estimates we get the same result if (sk) is such that there is a subsequence 

(tk) of (sk) with tk G for a sequence Uk Î 00. Also this result can be obtained if

tk G Be for all A; G IN since, by the second step, in this case we have P  = lim with 

tk =  (1 /7 )“”*“ ” for some Uk Î 00.

Because [0,1] is compact we can find a sequence £n i  0 such that A = lim,i_^oo A(^") exists. 

Then P  =  A • Pi -b (1 — A) • P2 as required to show P"(/z, z) Ç A and finish the proof. ■
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C hapter 3

A  Problem on One-Sided Average  

Densi t ies

By a theorem of Besicovitch the lower one-sided a-densities of a measure fj, on the real 

line vanish almost everywhere if 0 < a  < 1 and the circular a-densities of ji are finite 

and positive /z-almost everywhere.

The main result of this chapter is that the one-sided average densities show exactly the 

opposite behaviour: The one-sided average densities of a measure /z with positive and fini­

te densities are positive /z-almost everywhere. Therefore the concept of one-sided average 

densities is able to reveal some of the local symmetry a measure with finite and positive 

densities necessarily possesses.

This result will be presented in section 3.1. For the proof we shall develop methods which 

win be extended considerably in chapter 5. The proof will be carried out in two steps: 

In section 3.2 we show some lemmas on the geometry of measures with bounded densities 

which are also of independent interest, and in section 3.3 we give the proof using these 

lemmas.

Much more can be said about one-sided average densities, but only in chapter 5, when we 

look at the problem from the point of view of tangent measure distributions, will we be 

able to prove this (see corollary 5.1.4).

67



_______________ CHAPTER 3. A PROBLEM ON ONE-SIDED AVERAGE DENSITIES_______________

3.1 O ne-Sided Average D ensities do not Vanish

Let 0 < a  < 1 and /i Ç At (IR) be a measure such that

0 < d“ (/x,x) < oo

/^-almost everywhere. It is a natural conjecture that such a measure cannot have arb itra­

rily bad asymmetry around almost aU of its points. At a first glance, lower one-sided

a-densities, which we define below, seem to be a good concept to study this phenomenon.

D efinition

We define the lower right-sided and lower left-sided a-densities of at z by

= lim inf and = Uminf . ̂ tio t°‘ ~  ̂  ̂ no

If now d^[fj,,x) > 0 and d“ (/i,x ) > 0 this indicates that does not have complete 

asymmetry around x: At every scale there is mass on both sides of x. However, by the 

following theorem of Besicovitch this is not true:

T heorem  3.1.1 For fi-almost every z 6 IR we have

dj(/x ,x) =  0 and d"(/i,a;) =  0.

P ro o f This is proved in [Bes29] and [Bes68] for Hausdorff measure on a-sets.

Supposing fi 6 Af(IR) and 0 < d°'(/x,x) < oo //-almost everywhere we can use proposition 

1.3.3: There is a family of disjoint a-sets Ei, E2, . . .  such that

<€. Ti \\jEi ^ ’

In particular, we have //jg. <C . Let /  =  be the Radon-Nikodym derivative. By

lemma 1.2.2 we then have

x) < li in in f( l/f“ ) • J (l[a;,x+f](y) • f ( y )  -  l[x,x+t](y) ' f { ^ ) )  du{y)

=  0 for //-almost every x Ç: E{.
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Therefore x) = 0 almost everywhere, and, by an analogous argument, also

d "(//,x ) =  0 //-almost everywhere, as required. ■

This failure of the lower one-sided densities naturally leads to the question whether the 

lower one-sided average densities show the same behaviour or whether they are able to 

reveal some of the local symmetry of //. Let us illustrate the situation by a simple example.

E xam ple 3.1.2

Let
^  X-

C = {x € [0,1] : a; = ^  ^ , Xj G {0,2}}
t=i

be the ternary Cantor set. Furthermore let

7t : C ^  {0,2}^

X I-)-

be the natural coding. Let a  = and // be a-Hausdorff measure on the set C . It is 

easy to see that the measure // has bounded o-densities and

fl 0 7T“  ̂ = ( ^ P ,
I'eN

where P({0}) = 1/2 = P({2}).

The convenience of this example is that we can interpret x* as independent, P-distributed 

random variables on C  and use standard probability theory to get information on the 

one-sided lower densities and lower average densities of //.

For this purpose note that, whenever (x^+ i,. . . ,  Xk+i) = ( 2 , . . . ,  2) and t  = (1/3)^, we have

By the strong law of large numbers we have for //-almost every x G C a sequence (Ar/)/çM 

of indices such that

— (2 , . . . ,  2 )

and therefore
lim inf < lim M b . ^ +  (1/3)*']) ^  „

fio -  1 ^ 0 0  (1/2)^'
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On the other hand we have, whenever Xk+i = 0 and (1/3)^ < < < (1/3)^"^, that

M([x,x +  f]) (1/ 2)*̂ +* _
- ( 1 / 2 ) * - ! " '

By the strong law of large numbers we have, for /z-almost every x G C, that

1 A  1

Therefore we get, for every 5^  ^],

n w . n - i  > 1 x i/3)— /,([z ,x  + ( ] ) ,
^ ' W .  r  / -  iv -log  3 ^^7(1/3)^-^ t -

> 1  v i  1
-  j y  2 ^  4  ■ •^{a=iv-fc+i=0} )

/:=!

and thus

^+ (/i,ar) =  llm in f(|log£ |) ^-1 + t]) I
r  < “  8

/z-almost everywhere. ■

We have seen in the example that, for Hausdorff measure on the Cantor set, at almost aU 

points the one-sided lower average densities do not vanish. One can conjecture that this 

holds true for all measures /z on the line with finite and positive a-densities, and this turns 

out to be correct. In fact, the one-sided lower average densities of /z at /z-almost aU x are 

bounded from below by a constant depending only on a  and the upper and lower density 

of /z at X, but not on the particular geometry of /z. This is the statement of theorem 3.1.3.

T h e o re m  3 .1 .3  Let /z G Af (IR) be a measure such that for 0 < a < 1 we have

0 < d"(/z,x) < d“ (/z,x) < 00 

fi-almost everywhere. Then for /i-almost every x there is a number r  > 0 such that

£ î ( / i ,x ) ,Ç Î ( M ,x ) > r .  

r  is a function of d°‘(fi,x),  d^(/z,x) and a, and is otherwise independent of p and x.

Observe tha t the statem ent of theorem 3.1.3 holds trivially in the cases a  = 0 ,1.

The following corollary provides information on the one-sided upper average densities:
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C o ro lla ry  3 .1 .4  Let /x € Ai(IR) be a measure such that for 0 < a  < 1 we have

0 < d°‘{fjL,x) < d°‘{ii,x) < oo

fi-almost everywhere. Then

D ' l ( f i , x ) , ' Ü l ( f i , x )  <  D “ (/i,x )  -  T

fi-almost everywhere, where r  is as in theorem 3.1.3.

P ro o f  The statement follows from

D l { f i , x )  +  r  < D \ ( f i , x )  DZ{f i ,x)  < D°‘{fi ,x)

/X-almost everywhere, and the analogous statement for the left-sided densities. ■

Theorem 3.1.3 leaves a lot of questions about one-sided average densities open.

For example:

• If the average density exists, does this imply that the left-sided and right-sided 

average densities exist?

• Do the values of the left-sided and right-sided lower (or upper) average densities 

always agree?

• Is the value of the one-sided lower (or upper) average density determined by the 

value of the lower (or upper) average density?

AU these questions wiU be answered in chapter 5.
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3.2 T he G eom etry o f M easures w ith  Bounded D en sities

Let 0 < a  < 1 and /i G Ad(IR) be a measure with support contained in a compact interval 

with \Dfj\ < 1. Suppose there is a compact set E Ç with n(E ) > 0 such tha t there 

are 0 < c < C < oo and > 0 with

fi([x -  r, z +  r]) < Cr°‘ (3.1)

for all z G ^  and r  > 0, and

/i([z -  r, z -f r]) > cr" (3.2)

for all z G -E and 0 < r  < ^o- We shall assume £q < (1/e).

In this section we study the geometry of the set E. This constitutes an im portant part of 

the proof of theorem 3.1.3 and wiU also be of use in chapter 5.

In order to avoid confusion about the exact dependence of the constants in the foUowing 

lemmas (and also in section 3.3) we wiU stick to the foUowing convention: “Constants” may 

depend on the measure /x (and in particular on c or C) and are named C with a subscript.

“Absolute constants” may only depend on a  and are named V  with a subscript.

L em m a 3.2.1 E  is an a-set.

P ro o f  As a compact set, E  is clearly "-measurable.

For every £0 > £ > 0 we can cover E  with a family ZY = {(z — £, z -|- £) : z G 5} of intervals 

such tha t S  Ç E  and every y G IR is contained in at most two sets U £ U .  Then

Y , \ U r <  (2“ /c ) - ^ K U ) <  2(2«/c) • m(£) < 00
ueu UÇU

and thus H°‘{E)  < 00.

Now let £ > 0 and let U be an arbitrary cover of E  such that |Î7| < £ and Ï7 fl F  ^  0 for 

aU G ZY. Then

E  ^  ( i /C )  E
U&A UÇU

and thus H°‘{E)  > 0.
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We can write

D , \ E =  U  I ,  
l £ A

where A  is the collection of connected components of \ E .  A  is d, collection of disjoint 

intervals open in D^. We can also write

DA u U

where Me is the collection of connected components of the set \  (J I.
|/|>«

Me is a collection of disjoint compact intervals.

Before we give an upper bound to the length of the intervals in Me-, let us introduce some 

useful notation. For every interval /  Ç ]R and every k > 0 let

I~{k)  = {x G IR : there is y G /  such that 0 < y — x < k  ■ |/ |}  \  I ,

and

7+(k) = {x G IR : there is y £ I  such that 0 < x -  y < K - 1/|} \  I ,

and also

/ 0( k )  =  / - ( « )  U / U / + ( k ) .

L em m a 3.2.2 There is a constant C\ > \ such that, for all 0 < £ < Sq and all K  G Me, 

we have

\K \< C i ‘£ .

P ro o f  For 0 < £ < £o denote r = r{e) = max{|iV| : N  £ Me} and pick N  £ Me such that 

\N\ = r. Let N  =  N ~ ( l )  U N ,  in other words N  is the closed interval of diameter 2r with 

centre at the left endpoint of N .  Then, by (3.1),

Look at the intervals . . . £  A  that fulfill Ç N . Obviously \Ii\ < £ and thus

• i/ii <
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Define /j =  7* U Ç N . E  is a, set of Lebesgue measure 0 by lemma 3.2.1, and

therefore the sets Â , f], . . .  cover almost aU of N  in the sense of Lebesgue measure. By

Vitali’s covering theorem (see for example [Mat95, theorem 2.1]) we can pick a disjoint 

subsequence

-ffcl ) Ik2 5 ;

covering at least 1/10 of the length of N .  Now we can use (3.2) to see

C > ^ >  ^  ^  To 0 “’ *

and, defining C\ = 2(10 • we have r{e) < CiS, as required. ■

L em m a 3 .2 .3  There is a constantC2 > 1 such that, for all 0 < e < £q and every K  G Ms, 

6 > 0 , we have

N e A f c N C K

and also

E  i ^ r < c 2.
NeAfc

P ro o f  We fix a üf 6 A/5 and 0 < £ < £o- We first show that for all Æ G Ac we have

iArr < ( c r / c ) . / i ( m ,

where N* =  N ~ { l/C i)  U N . For this purpose look at the closed interval B  of diameter 

2\N\/Ci centred at the left endpoint of N .  We have B  Ç N* and thus we get, using (3.2),

x m > x ^ ) > c ( i A / | / c i ) " .

Because, by lemma 3.2.2, the intervals I  separating the N  £ Me fulfill | / |  > e > |Æ |/Ci, 

the collection

{N* : N  e Me and N  Ç K }  

is disjoint. Also N* Ç K* for aU N* in the collection. Therefore

E  \ W < { C ? / c ) -  E  l i ( N - ) < ( C , l c T - ^ ( K - ) .
N£ATc,N C K  NeATcNCK
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By (3.1) we have < C |A '|“ and therefore we can put C2 = (C i/c)“ • C and get

the first inequality. The second inequality follows by picking S sufficiently large to ensure 

e JVf. ■

Lem m a 3.2.4

L There is a constant C3 > 1 such that, for all 0 < s < S < Sq and all K  € A/5, we 

have

^ | / r < C 3 - |ü r |“ - |io g £ |,  

where the sum extends over all I  £ A  such that | / |  > £ and I  Ç K .

2. There is a constant C4 > 1 such that for all 0 < e < Sq we have

^ | / r < C 4 - | l o g £ | ,

where the sum extends over all I  E A  such that | / |  > e.

P ro o f  Fix K  Ç A/5 and denote K  = U K .  Observe that by (3.1) n (K )  < C |% |^.

Similarly, {or I  E A  with |/ |  > £, /  Ç K ,  we define /  = f “ ( l)  U I  and observe that Î  Ç K  

and by (3.2) /x(/) > c |/ |" . For x E K  denote by

I\ < I2 < • • • <  In

the collection of intervals I  E A  such that |/ |  > £, /  Ç A" and x E Î  in their natural order. 

For 3 < k < n v/e have

> |-̂ A:-l| +  \ h - 2 \  +  . . . +  I/2I

and thus (provided n > 3)

NVI>E2"-3.

Since |/n,| < |£)^| we get an upper bound for n, namely

n < 3 +  |lo g £ |/lo g 2  < (3 +  l/ lo g 2 )  • |lo g £ |, 

observing e < £q < (1/e). For the indicator functions I j  we get

Y ^ l l < n <  (3 +  l/ lo g 2 )  1# I lo g £ |, (3.3)
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where the sum extends over all /  G such that |/ | > e and I  Ç K.  Let C3 =  (3 +  l / lo g 2 )  

Cjc. Integrating inequality (3.3) with respect to /i yields

E  | / r  < E ( l / c )  • p (/)  < ((3 +  l / l o g 2 )/c) • I log£| • < C3 • I log£| • |A T

as required.

To prove the second statement let C4 = X) | / | “ +  C2C3 and observe
UI>'o

E î r < E ifi° + E E If I" <C4'I bgfi,
i'4 "  1/1%  4 "

using lemma 3.2.4 and the first part.

Define measures by

ipe{A) = ( |lo g £ |)~ ^y  (1^(<) + l> i(-0 )  y  

for all Borel sets A Ç IR, and measures for x € IR by

rp^(A) = ipe{A -  x)

for Borel sets A Ç IR. Note that the total mass of each of the measures ip̂  and is 2.

L em m a 3.2 .5  There are absolute constants Vs^Vq^Vj^Vs > 1 such that, for all intervals 

/  Ç IR with endpoints in E, and all £ > 0, k > 0, the following estimates hold:

<•> I , c  i%

<‘>i...
| / |“

(c)

(d ) f  ( r A I ) f d t i ( x ) < V ^ - C |log£ |2 '
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P ro o f  (a) Denote the left endpoint of /  by a and let R(t) = /j,([a — f, a]). By (3.1) we 

have R{t) < Ct°‘. We use integration by parts to see

/  < ( l l o g ^ l ) " ^ '/  lo g (^ ~ ^ J -) dR{t)
J o  ̂ t  '

< ( |lo g £ |) " ^ -^  log dÆ (f|/|)

< (I lo g .l) - '  • [log ( ^ )  • R { k . |/ |)  +  £  ,

L o g ,
<  C|/|“

for V 5 = 2(1 + 1 /a ). An analogous calculation can be performed for /■*■(«) and thus (a) 

follows.

(b) Observe that by Fubini’s theorem

/ f  K { x  ^  I^{k) : > t } ) d t .

> t implies

( i io g . i ) - ^ . io g ( ‘̂ < y j + i ^ i ) > t ,

and thus d{x ,I)  < \I\ • — e*)). Therefore the set

{x ^  /»(«) ; V :( /)  > «} e  {x: : « |/ | < d {x ,I )  < {e ' / ( l  -  f ') ) | / |}

is empty if k > £*/{l -  £*), which is equivalent to  ̂ > ( |lo g £ |)“  ̂ log(l +  l /« ) .  

Otherwise,

M({x i  /»(«) ; V>f ( /)  > 0 )  < d(x, I) < | / |  • (£7(1 -  £'))})

< 2 c - | / r - ( ^ V ( i - ^ ' ) r -

Therefore

/  0  A 4  : d { x , I ) < \ I \ - e ^ / { l - e ^ ) } )
Jo

,l2sll±lM
< 2 C - | / | “ - /  (£7(1 -£ < ))“

Jo
and IosO + I/k)

dt

(r  -  1)<
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< (I log£|)"^ • ^  ^  < 1/(1 -  a) • (I logel)"^ • (1/ k)^~°'

which finishes the proof of (b) with X>e = 2/(1 — a).

(c) follows by adding inequalities (a) and (b) for k =  1, and putting V j  = log 2 ' V 5 + T>e.

(d ) is proved in a manner similar to (b). We have

/  G / “ (k) : V^g(/) > V t} ) d t ,
J I - { k) j o

'ips(I) > y/i implies d{x ,I )  < |/ |  • (6 ^ /(1  — g ^ ) )  and hence we have

n ( ( x € r ( K . )  : ^ | ) l ( I ) > ^ / i } )  <  p({i € /■ (« ):  rf(®,/)<|/ |-(£'^/(l-£'^))})

< C - | / | “ - ( £ '^ / ( l - £ ' ^ ) r ,

and thus

f  m I ) f d ^ ^ i x )  <  C - \ i r - f \ e * / i l - e ‘ ) r i 2 t ) d t
J I - { k) J o

Together with the analogous calculation for /'*'(«:) this completes the proof of inequality

(b) with '’-*rFSFF<-
Note tha t all intervals I  £ A  and all intervals /  G A4, £ > 0, have endpoints in E  and 

thus lemma 3.2.5 applies to these intervals.

We finish this section with a useful lemma of approximation.

L em m a 3 .2 .6  For every fixed 7 > 1 there are Cq,Cio > 1 depending on 7 such that, for  

all 0 < S < £q, K > 1 and all £ > 0 with 75 < £o, and for every K  G A4, we have

4  < c .  • i / r r  • ( ( ; ) " '  +  ,

where the sum extends over all I  E A  such that | / |  > 75, I  Ç K  and x G T°(/(); and also

4 - E «/)) M ^ )  < Cm • ((!)'-“ + î ï ^ ) ,
where the sum extends over all I  E A  such that | / |  > j£  and x E f°(K).
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P ro o f  We start with the first inequality. For all x € IR we have

r , ( K ) E  V-ÎW+ E .
N£Afye,NCK

x^I^{k),ICK

Therefore we have to give appropriate estimates for the expressions 

Z) and Z) / o  ^
NeAr-yt,NCK'^ l e A , \ I \ > y e ' ' ( I

I C K

To estimate the first expression, we use |# |  < Ci'ye to see

iogCi7 ^  i ^ r
/  iog(:i7

J N  l0££I n   ̂ |log£| |log£|

By lemma 3.2.5(c) we know that

|JV|“/ r À N ) d t ^ ( z ) < V - , - C
JN<̂Inc |log£|

holds. These two estimates together with lemma 3.2.3 give

|iV|“Y , f r A N ) d l i ( x )  < (C-logCi7 + C-P7)-E
< C-

|log£|

|A1“
llog^l

with C = C2 ' {C ' logCi7 +  C ' V 7).

For the second expression we use lemmas 3.2.5(b) and 3.2.4 to see

S.. S O
J Ç K  I C K

< C P 6C 3-|ff |“ - ( i )

1 — O f

1 — O f

This gives the first inequality with C9 = C + C V qCz- 

To prove the second inequality, observe that

1 \  1 —Of

|log£|

which follows in the same manner as above, replacing K  by and using lemma 3.2.4(2) 

instead of lemma 3.2.4(1) in the final step. Denote a = m m {E), b =  m ax(E) and use 

lemma 3.2.5(c) to see

dfi(x) < l,a])dn{x) + J  + 1]) dfi{x)

2C V 7
|lo g £ |’

79



CH APTERS. A PROBLEM ON ONE-SIDED AVERAGE DENSITIES

Thus the second inequality holds with Cio =  C + CVjC^ + 2C V 7.

3.3 P roof o f T heorem  3.1.3

The proof will be done according to the following plan:

First we show that it suffices to study the average densities of measures /i at almost aU 

points X of a set E , where and E  fulfill the conditions assumed in section 3.2. We then 

introduce a family of functions the sum of which approximates, roughly speaking, 

a modification of the difference of the left and right average densities. We show in the 

main step tha t the set of points where the approximating function has large modulus has 

small measure (lemma 3.3.5). Finally, we conclude that this implies that neither right- 

nor left-sided average density can vanish.

We suppose tha t 0 < a  < 1 and a measure fi £ A1(IR) is given such that

0 < < Z^(/i,x) < 00

//-almost everywhere. W ithout losing generality, if necessary by restricting // to count ably 

many open sets, we can assume that // is a finite measure. Due to the symmetry of the

problem, we can concentrate our effort on the investigation of right-sided average densities.

For every pair of integers n, k let

£*  = {x : (1/2)" < d“(n ,x )  < (1 /2 )" - ' and 2* > T { i i , x )  > 2‘ - '  }.

The sets are Borel sets. Moreover, by our assumption, p-almost every x is contained 

in one E^. By proposition 1.3.1 we have, for p-almost every x  € E^^ tha t

(1 /2 )" - ' > d“ (p |E j,x ) =  d“ (p ,x ) > (1/2)" (3.4)

and

2* > 3“(p |e j , x ) = 3“(p , x ) > 2'=-', (3.5)
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and by proposition 2.2.5

= D l(fi\Ek,x).

Therefore it is sufficient to show the statement of our theorem for the restricted measures 

Let us fix such a measure and also denote it by /i. Let c = (1/2)"^ and C — 2^.

L em m a 3.3.1 Let G Af(lR) be a finite measure such that

c < d°‘{fi,x) < d“ (/i,x ) < C

for ^-almost every x. Then, for every 1 >  ̂ > 0, there is a family of disjoint Borel sets 

with \B{\ < 1 and a family of compact sets with Ei Ç Bi, such that

//(iR \  y  Ei^ < 6 , (3.6)
t = l

and for every z G IN there is a number 0 < £o(0 < (1/e) such that, for all x G Ei, 

fi{[x - t , x  + t ] r \B i )> c t° ‘ i f O < t <  eo{i),

and, for all x G B{,

p{[x — t, X 1] n Bi) < Ct°‘ i f t  > 0.

P ro o f  Pick a countable dense subset Q Ç (0,1). The functions

a (z )=  sup + 3„p l ^ { [ x - t , x  + t\)
e>t>Q t°‘ t > t > Q  t°‘teQ

and
i(* )=  inf M ( [ x - t , x  +  <] )^  inf K l ^ - t , x  + t])

e>t>0 t°‘ e>t>0 t°‘
teg

are Borel-measurable for every 6 > 0. Given an arbitrarily small  ̂ > 0 we can use the 

boundedness of the upper densities to find a number 0 < £ < 1 and a Borel set B Ç IR, 

such tha t /i(IR \B ) < 6/2 and, for all x G B and 0 <  ̂ < £, we have fi{[x — t, x + 1]) < Ct°‘. 

Write B as the union of pairwise disjoint Borel sets B i , B2, B3, . . .  Ç B, such tha t |B*| < e. 

Then we have, for aü z G B* and < > 0,

p{ [ x -  t , x  +  t ] n  Bi )  <  C t °".
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By lemma 1.3.1 we have, for //-almost every ar € B,,

= d°‘{ii,x) > c.

Using this and the inner regularity of // we can find compact sets E{ Ç and numbers 

0 < £o(i) < ( 1/e ) such that f i{B i\E i)  < (6/ 2) - ( l / 2)̂  and, for all x 6 E{ and 0 < < < 60(2),

fi{[x -  t, z + <] n B*) > ct°‘ .

Finally observe that // ̂ IR \  Ei^ < 6 to conclude the proof. ■

We can apply lemma 3.3.1 to our measure fi. By (3.6) and because we have

D l( f i ,x )  = D% (//|g,,z)

for //-almost every x G Ei, it suffices to prove the inequality of theorem 3.1.3 for the

restricted measures //|g. and //-almost every point x G E{.

Fix such a measure //|g, and let us also denote it by //. Let E  = Ei and £q =  £o(0* We

now have a measure // with support contained in a compact interval of length less than 

one and a compact set E  such that, without loss of generality, //(E ) > 0 and such tha t, 

for all z G E ,

fj,{[x -  r ,x  + r]) < Cr°‘ if r  > 0, (3.7)

and

fi{[x -  r, z -(- r]) > cr“ if 0 < r  < 60. (3.8)

Thus the results on the geometry of E, as formulated in section 3.2, hold.

Let us proceed to the second step of the proof. Recall the definition of the collection A  of 

intervals and the measures from the previous section. For every £ > 0 and I  E A  define 

a function (fj describing the influence of the scales in the interval /  — x on the one-sided 

average densities by

<Pl(x,£) =  <

0 otherwise.
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Observe that the functions (pj fulfill

m x , e ) \ < C - r A I ) -  (3.9)

Therefore we have, using lemma 3.2.5(c), that

f  <pi{x,e)dfi(x), f  <ipi{x,e) dfi{x) < P 7 • • r j -  ■■ (3.10)

for all 7 G -4 and 6 > 0. We can use (3.8) to get a converse inequality, at least for many 7.

L em m a 3.3.2 There is an absolute constant V \ \  > 0 and there is a constant 1 > A > 0,

such that, for all e > 0, k > 1 and all I  £ A  with £q > |7| > e/X and //(7) < (c/4) • |7|",

we have
f  r c^ 171“
/ f f j(x,  e) dfi{x) , / (fi{x, e) dfi{x) > 2>n • — • ■ , .

7/+(K) o  |log£:(

P ro o f  Let A = ^c/(4C)j  ̂ and V u  = (1/16) • log(4/3).

Suppose 7 is an interval as in the hypothesis and denote its left endpoint by a. For aU

X G 7“ (1) \  7” (A) and y G 7 such that y — a >  A|7| we get

{ y - x Y ~  (2 |/ |)“ -  (2 |/ |) “ -  8C ■

Denote R{t) =  /i([o — t,a\) and observe that our assumptions imply, for 0 < i < 1,

| 7 r c r  > A ( f | 7 | ) > | 7 r ( c r - ( c / 4 ) ) .

These inequalities yield

I  (pi{x,£)dfi{x) > j  i ^ l ( { y e I \ y - a > X \ I \ ] ) d p . { x )
J i - { k ) o C  7 / - ( 1 ) \ / - ( A )

-  & ' (îTÂ) '

| / |“
llogcl

This completes the proof for 7“ (k). For 7+(/c) the proof is analogous.
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We are now able to define r  > 0 as

Vnr
8-2>7

Note that r  depends only on C, c and a  and that C, c are functions of and

We fix the value of k depending on e as

2
K =  K(e) =  (lo g |lo g £ |)l-“ .

For £ > 0 let

Qe = { I e A  : S o > \ I \>  e / x  and fi{I) < (c/4) • \ i n  , 

the collection of those intervals to which lemma 3.3.2 can be applied. Also let

= { / G -4, |/ | > e/X and I  ^  •

For 7 G we have, by (3.10) and lemma 3.3.2, that

and

7̂ 11 ' — •

C  |log£| y/-(K) |log£|

i ; r  ^  i / r< /  (pi{x,e)dfi{x) < T >7 ' C ‘
C  |log£| y/+(«) ’ I logs]

Thus the numbers

fulfiU

For I  Ç: Bs let rn{e) =  1. For £ > 0 and I  Çi A  with |/ |  > e/X  define the function </?/ by

<Pl{x,£) =  <

- t;/(£) • <^/(x,£) if a: G /+(«(£)) ,

(fl{x,€) if a; G /" (« (£ )) ,

0 otherwise.

L em m a 3 .3 .3  The functions (pj have the following properties:

1. There is a constant C\2 > 0 such that, for  a// x G IR and £ > 0,
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2, (pi{',e) is supported by I  («(£)) U

3. For I  Ç: Çe we have f  (pi{x,e) dp{x) = 0.

P ro o f  Define Cu = Cc/{8r). Then for all x € IR

\(pi{x,€)\ < m ax{ |7 //|, 1} • \<pi{x,e)\ < Cu  •

by (3.11) and (3.9). This proves the first statement.

The second statement is immediate from the definition of (pj.

To prove the third statement, let I  Ç: Ge- Then, by definition of 77/,

(pi{x,e)dp{x) = /  (p i{x ,e )dp{x)- j] i(e )-  (pi{x,e) dfx{x)
J . / / - (K ) J I +{ k)

=  0

We now proceed to the main step of the proof and show that the sum

M a:, 6:)
/Ev4,|/|>E/A

has small mean square (with respect to p). We start by showing tha t, for most x, the 

summands in the sum above are small.

L em m a 3 .3 .4  Define the set S{e)  as the set of a// x G IR such that there is J  Ç: A  with 

|J | > e / x  and

Then there is a constant C13 > 1 such that, for all sufficiently small e > 0,

p( S{ e) )  <  Ci3 ( | I o g 6 | ) - \

P ro o f  Denote
 ̂ ^  2 log I log6|

1 l o g e "  I 
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and observe

K S { e ) ) <  € IR \ /  : (|log£|)~̂  - log ^

The condition

implies

and therefore, if e is sufficiently small, d{x ,J)  < 2\J\ • |log£ |“ ^/“ . Thus, denoting C\z 

4(7 • C4, we have, for sufficiently small £ > 0,

ii{S(e)) < ^  , i ( { x € l R \ J  : d ( x ,J ) < 2 |J |- | l o g £ |- 2 /“ })
JeA

\ J \ >c / X

^  2 C .2 “ . E ^ogeP  l lo g ^ r
\ J \ >c / X

We can now formulate the main lemma of the proof: 

L em m a 3.3 .5  Denote

B^ = { x e E :  I ^  y /(z ,£ ) | > r}.
I &A

Pl>*/A

Then there is a constant C14 > 1 such that, for all sufficiently small £ > 0,

P ro o f We fix 0 < £ < £05 sufficiently small in the sense of the preceding lemma, and 

sufficiently small to fulfill several computational conditions, specified as they appear in 

the proof. We begin the proof by estimating by means of suitable sums of integrals

f f i B ^ ) - T ^  -  / (  1 2  ( f i { x , £ ) y  df i ( x)
i eA, \ i \>e /x

= X ) /  ^l{x,£)<fj{x,£)dfi{x)  (3.12)
leBe  or Je Be

+  ^  /  <Pi{x,£)<Pj{x,£)dfi{x). (3.13)
I^Ge J ^Gc 
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In order to give an estimate of (3.12), we define C15 = (4/c) + ^  le^ | / | “ and observe
RI>*o

E  IT+ E  i/r<(4/c) E  i^r<cis.
leBe

M(;)>(c/4) | /r |;|>«0  Ul>eo

Therefore we can use lemmas 3.3.3 and 3.2.5(c) to show

E E /  V/(^> £)¥’./(*.
l e B,  or JeB,

<  2 E  f  (\<Pi ( ^>b )\ J 2  \ V j { ^ , ^ ) { ) d l i { x )

< 2C?2-E/  (V-ÎW- E  €(J))dli(x)

|log£|

< 4C P 7C1V 15 • n  r <|log£| y |  log£| 

for sufficiently small 6 > 0, as required to estimate (3.12).

For an estimate of (3.13) we have to work harder. We split the sum again

/  ^ l{ x ,e ) ^ j ( x ,£ )d ^ { x )
leGc JeGe

-  Z ]  /  (3.14)
leGc'^

+  2 ^  ^  J  (pi{x,£)(pj{x,e)dfi{x). (3.15)
i,JeGc,i<J

In order to estimate (3.14), we can use lemmas 3.2.5(d) and 3.2.4 and get

_ m “ 1 .  1

IÇ.Ge '' l£Gc

for sufficiently small £ > 0, as required.

The investigation of (3.15) constitutes the main part of the proof. Observe that

(pi{x,£)(pj{x,£) < 0

unless X G I~{k) C\ J~(k) or x G I^{k) C\ J' (̂k,). We concentrate our effort on those pairs 

( / ,  J )  tha t fulfill /~ (k ) n J~{k) ^  0.
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We fix an interval I  = (a, 6) G Qe and look at the family of intervals J  £ Ge tha t fulfill 

I  < J  and ^  0. We order them from left to right

I  <i J\ J2 J  N

and denote Ji =  {ci,di) for 1 <  i <  iV and c;v+i =  00. Because / “ (« )  H J~{k) ^  0, we 

have C{ — a < K,(di — Ci), and thus

Observing tha t Ci — a > | / | ,  we therefore get by induction, for aU 1 < i < iV

Let ^ = sup(/"''(/c)) and denote by k the smallest integer such that

llo g ^ r/»  | / | .  (3.16)

We have

1̂ 1 ^ ~ ^ ^  (cfc-i -  0  +  (^ -  a) < I log£|^/“ |/ |  + (k + 1 ) | / | ,

and therefore we can put j3 = 3/(1 — a) and get, provided e is small enough.

We now give an upper bound for the influence of J i ,  J 2, • • • » by means of lemma 3.3.4. 

We first use /n(S(£)) < C13 • (| logsj)"^ to get

Z! /  <fl(x,e)(fijXx,€)dfi(x) 
l£Ge t=i

r / t
-  ^12 Z! /

IÇ.Ç, , = i

< 2Ci2 * /  ^  \(fl(x,£)\dfl{x)
jç,ç^

< 4 C ? , . p ( 5 ( . ) ) < ^ .
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Now we use the moderate growth of k and the fact that outside the set S{e) the \ipj.(x,£)\ 

are small, to see

S  / ^iix,£)<^jXx,e)dfi{x)
TTI, ^  JSU Yl£Gt *=1

k
Ti Jsiey

/£ « ,* ( ') ' i=i

-  ■ /  E  dfiix)
l£Gc

and summing these two estimates we get, for sufficiently small £ > 0,

<^l{x,£)(fi jXx,£)dn{x) < ------
l£Gci=l vUog^l

as required.

In order to give an upper bound for the influence ot the intervals Jk+i, . . . ,  we first 

calculate that on the domain of (pi{-,£) the variation of the function y j.(-, g) is small, 

namely there is a constant C17 > 0 such that, for

we have

c (/, Ji) < Cu ■ 4 ( J i )  ■ K̂ “ ■ ( ^ - ^ ) °  • (3.18)

In order to prove (3.18) we pick x, y G /" (/()  U with x < y. For z G Ji we get

z - y  z - y  C i - ^

and, if £ is sufficiently small to ensure

(2k +  1 )|/| (2 /c + l)
C i - ^  ~ |lo g £ |l/“

we get
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Because c,- -  c,_i > (ci_i - ^ ) / k we have D (c i-i If  ̂ is small

enough to ensure 1 /k{s ) < Sq we have

M [ y , C i ] )  >  / x ( B ( c i _ i ,  — — - ) )  >  ( c / k " ) ( c , _ i  -  0 “  •

Thus, for all z E J*,

-  X b ,  ^]) -  X [y, c,]) -  c(c,_i -  •

Let Ci7 =  12(C*^/c). (3.19) and (3.20) together imply 

f i { [ x , z ] )  M [y ,^ ] )

(3.20)

{z -  x)i+" {z -  2/)^+“ 
fi{[x,z])< 1 -

.2 a

Z — X

Z - y .  
|/|

+
^^{[y^z]) 

(z -  2/)i+“

and thus

dz

which proves (3.18).

We can now use lemma 3.3.3(3) to see that, for an arbitrarily chosen fixed y G /"(fc) U 

/■*■(«;), we have

J  ^l(x ,s)(p jXy,£)dfi{x) = 0,

and use this together with (3.18) to estimate

N . .

^  ^  ipi{x,£)<fj.{x,£)dfi{x)
i=k+l  t=Jk+l

N ,

m  /  M a:,4 (y jX :K ,6 ) -  (^Xa;)
t=fc+i

^  /•
<  ^  c { I , J i ) -  /  | ( ^ / ( a ; ,e ) |d / i (x )

i=ik+i
CV I r ia
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I r\<x
< CC17C12V 7 ' — — • ,

1 log£|'^

and finally, summing over aU /  € and using lemma 3.2.4(2),

N . ^2a IE (x,.)dMx) < CC1Æ2PA •
for sufficiently small £ > 0.

In the same manner we get estimates for intervals / ,  J  with /'*'(«) H J'^{k) ^  0. 

This finishes the proof of our main lemma.

We now proceed to the final step in the proof of theorem 3.1.3,

The function ^  iç.a y /(z ,£ )  is an approximation of

o(x,£) = (|iog£|r> f  -  h .̂ ) -Xk -  t , x ]) dt
J e

where

t ’

ri{x,e) =  <
rjj{£) if X G /  for some I  £ Ge, 

1 otherwise.

L em m a 3.3.6 Define the approximation error

E{x,e) = |z)(x,£) -
i e A , \ i \ > e /x

There is a constant Cie > 0 such that for all 0 < e < £q, we have 

P ro o f  We have for all x 6 E,  using (3.11),

l G A , \ I \ > c / X

Putting 7 = (1/A) in the second inequality of the approximation lemma 3.2.6 yields

L - E . «!'')"I"» *r â ) ^i e A , \ i \ > e / x  \  I ^ I  /  ( l o g  I l o g ^ l ) ^
x€/°(k)
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Thus, defining Cie = 2cCCio/(8r^),

fi{{x 6 E  : E{x ,£) > r}) 

< ^  J^E {x ,£ )d fi{x )

<

'E

Cl6 
(log I log s | y

/ e ^ , | / | > « / A  
ce/°(K)

We can now finish the proof of theorem 3.1.3. 

Observe tha t

\D{x ,£)\ < \E{x,s)\ +
leA

|/|>*/A
We use lemmas 3.3.5 and 3.3.6 to see that, for sufficiently small £ > 0,

/ i { { x  e E  : \ D { x , £) \  > 2r})

<  f i ( { x  e  E  : \ E ( x , £ ) \ >  f i { { x  e  E : \ ^  i p i { x , e ) \ >  t } )

/€^,|7|>£/A
^  ^16 +  C\A

(log I logs 1)2 '

Define the sequence {8k) by 6k =  ex p (- exp A:). Then

M({x 6  E  : |D ( X ,4 ) I  >  2 r} )  < +

and, since X)S=i ^  < oo, we have, by the Borel-Cantelli-lemma,

/x({x G E  : lim sup \ D { x ,  <5̂ }| > 2r}) =  0 .
k^oo

We have

=  ^ ( 1  log f . i ) - '  £  -  *’ f + D(x, ( . ) ) ,

and

/ I  i i { [x ,  x - \ - t ] ) - \ - r i { x - t , £ ) -  /i([x  -  t ,  x ]) ^ i { [ x - t , x  +  t ] )  d t

k -------------------------r --------------------------7  ^  • k --------- r --------- 7
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Therefore, for /i-almost every point z E E ,

Iiminf(|log^Ar|)~^ /  ^  > (1/2) • ((8 r/c ) • c -  2 r) > e • r,
K—fOO I

For ^A:+i < s < Sk we have

(I l o g . D -  • f  ^  >  i . (I , o g ^ * D -  ^ ,

and thus we finally get, for /i-almost every x Ç. E, 

lim in f(llo g .l)-* .
eiO ^  A  r  f

e A:-foo t t
> (1/e) • er = T ,

as required to finish the proof.
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C hapter 4

M easures w ith  Unique Tangent 

M easure D istributions

Tangent measure distributions at almost all points of a rectifiable measure are Dirac dis­

tributions with mass concentrated at a constant multiple of Hausdorff measure on a line, 

plane or a higher-dimensional approximate tangent space depending on the dimension of 

the measure. The governing question of this chapter is the following: W hat is the sha­

red feature of the unique tangent measure distributions of a measure and the tangent 

spaces? W hat types of distributions can occur as unique tangent measure distributions? 

The answer is surprisingly elegant: The shared feature is statistical self-similarity. Unique 

tangent measure distributions of o-dimensional measures are (in a certain sense) a-self­

similar random measures. On the other hand every o-self-similar random measure tha t 

fulfills an ergodicity condition appears as unique tangent measure distribution at almost 

every point of a suitably constructed measure. The key to this self-similarity property is 

the notion of a Palm distribution, which originates from stochastic geometry, and which 

was introduced into fractal geometry by U. Zahle.

In section 4.1 we give a short introduction into U. Zahle’s approach to self-similar random 

measures and introduce the notion of a Palm distribution. This section closely follows 

[Zah88]. Section 4.2 contains the main result of the chapter: At almost aU points of a
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measure with positive and finite a-densities the unique tangent measure distribution, pro­

vided it exists, is a Palm distribution, and therefore it is an a-self-similar random measure 

in the sense of U. Zahle. Some applications of this result are given. In section 4.3 we give 

the proof of the main theorem.

4.1 Self-Similar Random  M easures and Palm  D istributi­

ons

The main idea behind U.Zahle’s axiomatic approach to statistical self-similarity is, roughly 

speaking, the following: a random measure could be called statistically self-similar if it 

is statistically scale-invariant with respect to any centre chosen at random according to 

tha t measure. The important point, and also the difficulty, is tha t the scale invariance 

should hold with respect to a “typical point” of the random measure and not with respect 

to every point which would be too restrictive, see [Zah88, 1.5]. To make the idea of a 

“typical point” of a random measure precise we have to introduce the notion of Palm 

distribution (see [Zah88], [Mec67] or [Kal83]).

Starting from a stationary quasi-distribution, we derive by means of a “conditioning pro­

cess” a distribution, which has the origin as a “typical mass point of its realizations” . The 

precise method is as follows (see e.g. [Mec67, chapter 2]):

Suppose Q is a <r-finite measure on the Borel sets of A^(IR”̂ ), a so-called quasi-distribution, 

which is stationary, i.e. invariant with respect to all shifts. The barycentre of Q is a mea­

sure on the Borel sets of IR” , which is not necessarily locally finite, defined by

A q is called the intensity measure of Q.

Because Q is stationary the intensity measure A q  is shift-invariant, and therefore, for 

Borel sets B Ç IR” with finite Lebesgue-measure 0 < £ ” (5 )  < oo, the ratio
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does not depend on thé choice of B. Xq is called the intensity oi Q.

For a stationary quasi-distribution Q with finite and positive intensity 0 < Aq < oo and

a Borel set B  Ç with 0 < C^{B) < oo we can define a probability measure Qq on 

M (IR” ) by

Qo{M) =  J  ̂  dQ{u),

for all Borel sets M  Ç Ad(lR” ).

Using the stationarity of Q it is easy to see that Qo is independent of the choice of the

Borel set B. Qq is called the Palm distribution of Q.

The quasi-distribution Q can be reconstructed from Qo outside the zero-measure up to a 

constant multiple (see [Mec67, 2.4]). In the special case of a stationary point process Q 

(i.e. Q is the distribution of a stationary random measure, which is the countable sum 

of Dirac-measures at random points), the Palm distribution Qo can be interpreted as the 

conditional distribution of Q given that the origin is a mass point (see [Kal83, theorem 

12.8]).

We call a probability measure P  on A4(IR”̂ ) a Palm distribution^ or say that P has the 

Palm property, if there is a stationary quasi-distribution Q with finite and positive intensity 

such tha t P — Q q. A well known theorem of Mecke characterizes Palm distributions:

L em m a 4.1.1 A probability measure P  on Af (IR^) is a Palm distribution if  and only if  

P[{(f)}) = 0, where (f> is the zero-measure, and the following Palm formula holds:

J  J  G (T ^ v , - x )d v { x )d P (v )  = j  j  G (v,x )dv{x)dP (u )  (4.1)

for all Borel functions G : Af(IR” ) x IR”̂ — >• [0, oo).

P ro o f  The proof can be found in [Mec67]. ■
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In order to explain why the origin is a “typical mass point” of the realizations of a Palm dis­

tribution, let us define what we mean by a statement A{y^ x) about a measure u G Af(IR” ) 

at a point x G IR"̂ .

D efin ition

A statement A{v^x)  is called a statement about u at z, if and only if the set {(i/,z) G 

Ad(lR"') X IR"̂  : z)} is a Borel set and A{i>,x) and A{T^i^,0) are equivalent.

L em m a 4.1.2 I f  P  is a Palm distribution and A{i>,x) is a statement about u at x, then 

the following statements are equivalent:

(1) .4(i/, 0) for P-almost all u.

(2) z) for u-almost all x G IR" for P-almost all u G Af(lR").

P ro o f  Denote Ax = {u £ At (IR") : A{u, z)} and note tha t Ax is Borel set for aU z G IR". 

Assume first that 0) for f-alm ost aU u. We use the Palm formula (4.1) to get

0 = y J  1ac{u) di/{x) dP(u) = J  y l^ c (r^ i/)d i/(z )d P (i/) .

Therefore for (/-almost aU z we have G Aq, for P-almost aU u. But G A q is 

equivalent to A{T^u,0),  which again is equivalent to A((/, z).

Now assume that for (/-almost aU z we have A((/, z) for P-almost all (/. Then by the Palm 

formula (4.1) we get

0 = y y lytç((/)d(/(z)dP((/) = y J  lA<i^{T^i')du(x)dP{u).

Therefore we have G A -x  for (/-almost aU z, for P-almost all (/. Note that, since

P({0}) = 0, for P-almost every (/ G A4(1R") there are z G IR" such tha t T^u  G A-x-

This is equivalent to A(T^(/, —z), which on the other hand is equivalent to A{u,0)  and 

this finishes the proof. ■

We can interpret lemma 4.1.2 in the sense that the origin is a typical point of the realiza­

tions of a Palm distribution P . If the Palm distribution P  is the distribution of a random
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measure which is a-scale invariant, i.e. P = P o T \  for all T\ in the rescaling group, then 

P  is a-scale invariant in a typical point, and therefore the random measure is statistically 

self-similar in the axiomatic sense of U. Zahle.

D efinition

A probability distribution P  on is the distribution of an a-self similar random

measure if P  is an a-scale invariant Palm distribution.

Let us now close this excursion into the theory of random measures and go back to the 

study of unique tangent measure distributions.

4.2 U nique Tangent M easure D istributions are Palm  D is­

tributions

Let us look at a measure n  G Af (IR" )̂ with positive and finite a-densities almost everywhere 

which has unique tangent measure distributions. If is a rectifiable measure then a  is an 

integer and at /i-almost every x there is a hnear space T  Ç ]R” of dimension a  such that 

the unique tangent measure distribution of at z is a Dirac distribution concentrated at 

the point

( l /2 ) V ( ;z ,z ) .7 f " |T E  A i(]R"),

where T  is the approximate tangent space to at z (see theorem 1.3.12). If /i is a fractal 

measure which has a unique tangent measure distribution at almost aU points it is a natu­

ral question to ask which general feature of a tangent space holds for the tangent measure 

distributions or, in other words, in which sense the tangent measure distributions possess 

a higher degree of regularity than the original measure. Of course we cannot expect the 

tangent measure distributions to be deterministic, but we have to expect a “statistical” 

property. Neither can we expect the “random tangents” to be a linear space in some 

sense, in particular, of course, if a  is not an integer. But one characteristic feature of 

linear spaces which can be formulated for random measures of non-integer dimension is
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statistical self-similarity.

Looking at unique tangent measure distributions from this point of view, and keeping in 

mind the examples we have seen so far, it is not too far-fetched to conjecture that the 

unique tangent measure distributions at /^-almost every point are statistically self-similar 

random measures. It turns out that U. Zahle’s notion of an a-self-similar random measure 

is the notion of statistical self-similarity which makes this conjecture true.

We have already seen in lemma 2.2.2 that the tangent measure distributions are o-scale 

invariant. The remaining problem therefore is to prove the following theorem:

T h e o re m  4.2.1 Let ^  G A1(IR” ) and suppose there is a 0 < a < n such that

0 < d"(/i,x) < d°‘{p,x) < oo

for p-almost every x. Then for p-almost every x the following statement holds: I f  there is 

a unique tangent measure distribution P of p at x, then P is a Palm distribution.

Theorem 4.2.1 wiU be proved in section 4.3. Theorems 4.2.1 and 2.2.2 together immediately 

imply:

C o ro lla ry  4.2.2 Let p G and suppose there is an 0 < a < n such that

0 < d°‘{p,x) < d°‘{p,x) < 00

for p-almost every x. Then for p-almost every x the following statement holds: I f  there 

is a unique tangent measure distribution P of p at x, then P  is an a-self similar random 

measure.

It is an interesting question whether the statements of theorem 4.2.1 and corollary 4.2.2 

also hold for non-unique tangent measure distributions. For measures p  on the line the 

question will be answered in the affirmative in chapter 5. In higher dimensions it remains 

open (see chapter 7).
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We state some consequences of theorem 4.2.1 and corollary 4.2.2.

Let fjb € A1(IR” ) and suppose there is a 0 < a  < n such that, for //-almost every x

0 < # ( / / ,  x) < Z*(//, x) < 00 .

Let us look at Palm distributions from a different point of view, namely as distributions 

with a shift-invariance property. The fact that the origin is a “typical point” for the reali­

zations of the unique tangent measure distributions can be interpreted as an analogue to 

theorem 1.3.10. Theorem 1.3.10 is frequently used in the following equivalent form (see 

for example the proof of M arstrand’s theorem in [Mat95]):

Let A{u^u) be a statement about u at u. Then for //-almost aU x, the statement A{u,0)  

holds for all 1/ € Tan(//,x), if and only if A{v^u) holds for all u 6 supp w and all 

V G Tan(//,x).

In this form it becomes clear by means of lemma 4,1.2 how to interpret theorem 4.2.1 as 

a shift-invariance property. This can also be formulated directly in terms of the support 

of P. Recall the definition of the shift-operator T  from section 1.2.

C o ro lla ry  4 .2 .3  For ^-almost every x G IR”" the following property holds:

I f  there is a unique tangent measure distribution P  of p at x, u Ç: supp P and u G supp u, 

then T^i/ G supp P.

P ro o f  Suppose P  is a unique tangent measure distribution which is a Palm distribution. 

Look at the statem ent “T^// G supp P ” . We have T^u  G supp P  for P-almost every u and 

hence (by lemma 4.1.2) that T'^u G supp P  for //-almost every u for P-almost every u.

If // G supp P  and u  G supp u we thus have sequences //*;—>// and Uk u such tha t 

G supp P . By lemma 1.3.4 this implies T^u  G supp P. ■

W hat happens if we iterate the procedure of taking tangent measure distributions?

For the case of unique tangent measure distributions the answer is provided by proposition 

4.2.4 below, because proposition 4.2.4 applies in particular to the random measures defined 

by the unique tangent measure distributions of // at //-almost every point.
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P ro p o s itio n  4 .2 .4  Let P be the distribution of an a-self similar random measure. Then 

P-almost every measure u has a unique tangent measure distribution Q'f at v-almost all 

points X and at x = 0.

Furthermore let A  be the a-algebra of all Borel sets of At(]R” ) that are invariant with 

respect to the action of the rescaling-group (T\)a>o oncf let

Pa -. M(1R") V

V ,

a conditional distribution of P  given A. Then at u-almost every x and at

X = 0, for P-almost every u.

In particular, if  P  is ergodic with respect to the action of the rescaling group, then for 

P-almost every v, we have = P at u-almost every x and at x =

P ro o f  We first look at the origin and use BirkhofF’s ergodic theorem to calculate, for 

F  : Ad(lR” ) — >> [0, oo) continuous and bounded,

= lim 1 /s  f  F  o Tg-r (i/) dr 
«Too Jo

= J  FdPAW]

for P-almost every u. Therefore

rjO

for P-almost every u, since by lemma 1.2.8(1) the convergence has only to be checked on 

a countable set of continuous and bounded functions P. This proves the statement for the 

origin. For the other points we only have to observe that

A {u,x)  = “ the unique tangent measure distribution of y at z equals Pa [T^ î ] ”

is a statement about u at x. Then apply lemma 4.1.2.

In the ergodic case, finally, the constant kernel P  is itself a conditional distribution of P  

given A.  Therefore the first part applied to this particular conditional distribution yields 

the statement. ■
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In corollary 4.2.5 we describe random measures with a particularly beautiful self-similarity 

property:

C o ro lla ry  4 .2 .5  Let P Ç: V  be the distribution of a random measure u such that 0 <

^ { u , x )  < da{i',x) < 00 for u-almost all x almost surely.

Then the following statements are equivalent:
(1) u has a unique tangent measure distribution equal to P at almost every point

almost surely.

(2) P  is a-self similar and ergodic with respect to the action of the rescaling group.

P ro o f  Suppose (1) holds for P  and let A E A. f-alm ost every u has unique tangent

measure distribution equal to P  at i/-almost every point. By corollary 4.2.2 P  is a-self

similar. In particular P  is a Palm distribution, and by lemma 4.1.2 we get tha t P-almost

every u has unique tangent measure distribution equal to P  at the origin. Hence by

Birkhoff’s ergodic theorem, for P-almost all f/,

/  f  (P) rfF^M (P) =  lim ;  r  f C ^ )  d T =  f  f  (P) d P (P ),
J sfoo s Jo j

for F  : A4(IR” ) —> [0, oo) continuous and bounded. Therefore we have Pa W\ — P  for 

P-almost aU u. Consequently

P { A )=  f  PAW]{A)dP{^)= f  P{A)dP{,,) = P i A ) \
J A J A

and thus P{A)  = 1 or P{A)  = 0. Hence P  is ergodic.

Suppose (2) holds. Use Birkhoff’s ergodic theorem as before to see

for P-almost all u. Therefore P  is the unique tangent measure distribution of i/ at 0 for 

P-almost aU u and we can use lemma 4.1.2 to see that, for P-almost aU f/, P  is the unique 

tangent measure distribution of u at f/-almost every x. ■

Finally we note that corollary 4.2.4 provides a proof of the fact that self-similar sets (or 

statistically self-similar random sets in the constructive sense of Falconer, Graf, Mauldin 

and Williams) fulfilling an open-set condition have unique tangent measure distributions
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almost everywhere almost surely. The method is based on the construction of [PZ90] or 

[PZ94]. First we randomize the self-similar set, turning it into an a-self-similar random 

measure as described in the papers mentioned above. By proposition 4.2.4 the random 

measure has unique tangent measure distribution at almost every point almost surely. We 

can then use the argument used in [PZ92, section 3] to see that this property carries over 

to the original measure. This method has been used in [PZ92] to show that statistically 

self-similar random sets in the constructive sense have average densities almost everywhere 

almost surely.

4.3 P roof o f Theorem  4.2.1

Let 0 < a  < 1 and fi G be such that

d“ (/z, z) < oo

for /2-almost every x. The main step in the proof of theorem 4.2.1 is the following lemma. 

L em m a 4.3.1 Let

G :M ( I R ^ ) x lR ^ —^[0 ,oo) 

be a continuous function such that there are a, 6 > 0 with

for all u G A4(1R’̂ ) and u G IR” .

Then for ^-almost all x G IR” the following statement holds:

I f  a unique tangent measure distribution P of fi at x exists, then the Palm formula

J  J  G {T^u,—u)du{u)dP{u) = J  J  G{v,u) du{u)dP{v)

holds.

P ro o f  Let

E  := {z G supp fi : Px := lim P f  exists }
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and note tha t, since P  is a separable metric space by lemma 1.2.8(2), Æ is a  Borel set and 

therefore ^-measurable. Define functions gi,Q2 and Gi,Gg associated with G by

and

Observe that

and

fifi: A f(R ") [0,oo)

u i-> j  G{u^u)di>(u) ; 

9 2 -. M (IR") [0,oo)

u ^  f  G(T^u, —u) di/(u) ;

Gi : E  — >• [0, oo)

y  ^  I  f f i M  d P y i i y )  ;

G2 : E  — >■ [0,00)

V ^  1 92(1̂ ) dPy(i^) .

 ̂ • lfi(0,g)(^) J ( \ ^  6 • u{B{0,a))
 ̂/  1 + . ( b} uM )   ̂ 1 + u i B ( C ) )  -  ’’

for aU u. G is continuous and {y : there is such that G{u,y) 7̂  0 } Ç B (0 ,a). Hence 

9 i and 92 are bounded and continuous by lemma 1.2.7. Furthermore G\ and G2 are Borel 

measurable and bounded.

We recall tha t the measure <pe on (0,1) was defined by

n  d f

ye(v4) =  ( |lo g £ |)“  ̂ / 1a(0  ~r for &Ü Borel sets A Ç (0,1).
Je *

For every open ball B  Ç IR"̂  denote B B C\E. B is //-measurable. Let // := //|g . Using 

lemma 2.2.5 in (4.2) and (4.7), Lebesgue’s dominated convergence theorem in (4.3) and 

(4.6), and Fubini’s theorem in (4.4), we get

J ^ G i { y )  d t i { y )  =  j G i { y ) d p , { y )

=  9 \ { ^ )  d < P r { t )  d f i { y )

= 9 i { ^ )  d < P r { t )  d f l { y )  (4.2)
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-  /  /  J  ■ dfi{y) d(pr{t) (4.3)

r l S / /  /  (4.4)

= H m / y  y G (& g 5 l,_ ^ )^ ^ (f /Z (y )(fY ^ X 4

= H m j y  y G ( T = : ( ^ ) , - z ) ^ ^ ^ ( f / l ( y ) ( ^ y r ( t ^  (4.5)

= / 9 2 ( ^ )  d<fr(t) dp,{y) (4.6)

= /  rio / dfi{y) (4.7)

= J  G2{y)dfi{y)
= I G2{y)dfi{y).

J  B

By differentiation of measures (see lemma 1.2.2) we now get

G\(y) = G2{y) ,

for /z-almost all y G This is the statement of the lemma. ■

L em m a 4.3.2 For ^-almost all x G IR  ̂ the following statement holds:

I f  P  is the unique tangent measure distribution of ^  at x, then the Palm formula

J  J  G {T ^ u ,-x )  du{x) dP{i/) = J  J  G{i',x)di'{x)dP{u)

holds for all Borel measurable functions G : Af(IR” ) x IR”̂ — [0, oo).

P ro o f  The proof is merely technical. We first extend the result of lemma 4.3.1 to more 

general G. Let

G :A ^(IR ” ) x IR ” —^[0,1] 

be continuous. For every a G IN define functions G a by

Ga(i/, u) = min{ inf \x -  u \ , l ]  • G {u ,u ) .
x^B{0,a)
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The Ga are continuous and bounded. Also fix /  G Cc(lR” ) with f { x )  > 1 for all x G 

5 ( 0 ,2a). For every 6 G IN define the function Ga,h by

We have

- l  +  u{B(0,2a)) ■ ’
and thus the functions Ga,b fulfill the requirements of lemma 4.3.1. Hence the Palm formula 

holds //-almost everywhere for all functions Ga,b with a, 6 G IN. Since

Ga = lim Ga,b and G = lim Ga ,
6 —♦•OO a —►GO

and both limits are monotone, the Palm formula holds //-almost everywhere for G. By 

monotone approximation from below we thus get the Palm formula for every indicator 

function l u  for open sets U Ç A4(IR” ) x IR” .

Because A^(IR” ) x IR” is separable, we can find a countable basis O of the topology. Let

E := {x £ supp : Px := lim exists }
rlO

and

A := {x £ E  : the Palm formula holds for Px and all functions lo ,  0  G O} .

We have seen so far that //(A) =  //(£'). Now fix x G A. Let r  > 0 and define *S(r) to be 

the collection of all Borel subsets B  Ç A4(IR” ) x f7(0,r) such that

J  J  ^B{i^,y)di^{y)dPx{i^) = J  J  lB{T^^,-y)d i> (y)dPx{i').

S{s)  contains A1(IR” ) X U(0, r) and is closed under proper differences and, by the monotone 

convergence theorem, under non-decreasing limits. We have

S{r) D 0{r)  = { 0  £ 0  : 0 Ç  M (IR^) x C/(0, r ) } .

0{r)  is closed under finite intersection and generates the Borel-a-algebra on A4(IR”) x 

C/(0,r). Hence, by the monotone class theorem (as formulated for example in [Kal83,
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15.2.1]), S{r)  equals the Borel-tr-algebra on X U{0,r). Thus the Palm-formula

holds for all Borel step-functions and, by monotone approximation from below and the 

monotone convergence theorem, we can conclude that, for all x G A,

J  j  G (u,y)dv{y)dP,{v) = j  j  G (T y v ,- y )d u { y )d P ,{ u ) , 
for all Borel functions G : Ad(lR”̂ ) x IR" — >• [0, oo). This finishes the proof of the lemma.

To finish the proof of theorem 4.2.1 we additionally require that

d “ ( / i , x )  >  0

yLi-almost everywhere. For almost every x and every v G Tang(//, x) we then have

c (B (0 ,1)) > Uminf > o .

Therefore every tangent measure distribution P  at x fulfills

P { W )  = o ,

where (j) is the zero-measure. Therefore the two conditions in the characterization theo­

rem for Palm distributions (lemma 4.1.1) are fulfilled for the unique tangent measure 

distribution of // at x (if it exists) and hence it is a Palm distribution.
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C hapter 5

Tangent M easures D istributions  

o f M easures on the Line

We have seen in the previous chapter that, for measures with positive and finite a-densities 

almost everywhere, at almost all points the unique tangent measure distribution, if it 

exists, is a Palm distribution. The drawback of this result, of course, is the requirement 

of the uniqueness of the tangent measure distribution. The existence of unique tangent 

measure distributions has been established for certain classes of self-similar measures (see 

for example [Gra93], [AP94], [Kri95]), but results which hold for more general measures 

are of greater interest in geometric measure theory.

The main result of this chapter is that, for measures // on the real line with positive and 

finite a-densities //-almost everywhere, at //-almost every point every tangent measure 

distribution is a Palm distribution, even if it is not unique. This result is formulated 

together with some interesting consequences in section 5.1. These consequences comprise 

a local symmetry principle (see theorem 5.1.3) and a complete description of the one-sided 

average densities of the measure in terms of its average densities (see corollary 5.1.4). In 

particular some questions left open in chapters 2 and 3 can be answered using the Palm 

property. The proof of the result combines new ideas and methods from the proofs of 

theorems 3.1.3 and 4.2.1 and is carried out in section 5.2.
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5.1 The Palm  Property and Some of its C onsequences

Let us formulate the main result of this thesis without further delay:

T heorem  5.1.1 Let n  be a measure on the real line such that, for some 0 < a  < 1,

0 < d°‘{fi,x) < d°‘{/i,x) < 00

li-almost everywhere. Then for fi-almost every x every tangent measure distribution P  G 

V°‘{fi,x) is a Palm distribution.

Observe tha t the statement of theorem 5.1.1 holds trivially in the cases a  = 0,1.

Let us look at some consequences of theorem 5.1.1. For this purpose fix a measure // on

the real line such that, for some 0 < a  < 1,

0 < df‘{ f i , x )  <  d°‘{ f i , x )  < 00

/z-almost everywhere.

C orollary 5.1.2 For fi-almost every x every tangent measure distribution P  G V°‘{fi,x) 

is the distribution of an a-self similar random measure.

P ro o f Combine theorem 5.1.1 and proposition 2.2.2. ■

A very remarkable geometric consequence of theorem 5.1.1 is the following theorem.

T heorem  5.1.3 For fi-almost all x 

lim ( |lo g f |)“  ̂ /
EjO Je

P ro o f Let x be such that d°‘{fi,x) < oo and every tangent measure distribution of at x 

is a Palm distribution. Suppose J, 0 is given. By lemma 2.2.3(1) there is a subsequence
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(r„) of [sn) such that there is a tangent measure distribution P  = lim„_voo 

Define G{u,x) = l[o,i](z). Observe that

and

J  - y )  du{y) = z/([-l, 0]).

If Û is the barycentre of P , then P({0 ,1}) = i>({—1,0}) =  0, and therefore we have

= /  y G(i/,y) d f/(y )d ;^ (f/)

= J  J  G (u ,y )du{y)dP {u ) ,

and

Mm ( | l o g r „ | ) - » £  —  J  =  U m ( | l o g r » | ) - '^ ^ ^ ( l , _ i , o ] ) y

= ^lim y y G ( T V , - y ) d K ! / ) r f n »

= J  j G { T y ^ , - y ) d ^ { y ) d P { ^ ) ,
and this implies, by means of the Palm formula,

j ]  £ .  . t o

which implies the statement. ■

R e m a rk  (E x am p le  3.1.2 rev is ited )

We have seen in example 3.1.2 that for Hausdorff measure /x on the ternary Cantor set C  

the map
 ̂^  f ^ { [ x - t ,x ] ) - f j , ( [ x ,x  + t])

oscillates as < —> 0. Therefore the convergence of the averages in corollary 5.1.3 can have 

essentially two possible reasons:
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1, Only a small number of scales t G (0,1) are responsible for the oscillation. In this 

case one should expect a stronger statement, namely

hm (|log£ |)  ̂ I  
£iO Je

- 1
t

(5.1)

to hold.

2. The oscillations to the positive and negative side cancel in the logarithmic average.

We are going to rule out the first reason by showing that (5.1) does not hold in our 

example.

Suppose (5.1) holds. Then by lemma 2.1.3 the set

^{[x -  f,x]) -  fl([x,x + t])
S  := {t (0,1) : > (1/4)}

fulfills

üm (|log6|)  ̂ /  l s ( O y  = 0
slO J e  t

(5.2)

Recall the notation from example 3.1.2. By the strong law of large numbers we have, for 

/i-almost all z G C,

JL_
N # { *  G { l , . . . i V }  : ( x 3 i ,X 3 i^ i ,X 3 i^ 2)  =  ( 0 , 0 , 0 ) }  —  ̂ ( 1 / 8 ) .

Look at such a point x. Whenever ( x s i , X 3,.|.2) = (0 ,0 ,0) and t G ( l /3 ^ \  1/3^®“ )̂ we 

have

/i([x, x + t ] ) -  fi{[x -  f, x]) > 2 • (1/2)^'+^

and thus

Accordingly

/i([x -  t,x]) -  fi{[x,x + t])
> (1/ 4) .

^2 U {(1/3̂  1/3̂*-') : (x3i,X3i+i,X3i+2) = (0,0,0)}.
ieN

Suppose € G [(1 /3)^ , (1 /3 )^ “ ]̂. Then

J  l g ( f ) y  > E { 1 , . . . A  -  1} : (x3»,X3i+i,X3,.1.2 ) =  ( 0 , 0 , 0 ) }
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and thus

lim inf (|log£|)"^ /  I g W y  > (1 /8 ),
EjO Js I

and this contradicts (5.2) and thus (5.1). □

The following two corollaries answer questions left open in chapter 3 and 2.

Recall our investigation of one-sided average densities in chapter 3. W ith the help of 

theorem 5.1.3 we can formulate a substantial improvement of theorem 3.1.3 answering the 

questions at the end of section 3.1.

Corollary 5 .1 .4  At  ^-almost every point x we have the following equations for the one­

sided average densities

x) = x) =  (1/2) • x)

and

D " (//,x) = D%(//,z) = (1/2) • D°‘{p ,x ) .

In particular, the one-sided average densities exist if  and only if the average density exists, 

and in this case

x) = D%ip, x) = (1 /2 ). x ) .

P ro o f Let x be such that d°‘(p ,x )  < oo and the statement of theorem 5.1.3 holds.

For any sequence (g^) with i  0 we have (provided either the first or the last limit in 

the following equation exists),

1 p{[x -  f,z ]) dt
( I l o g /

r  t
-1 r ^ +  l]) dt _ / I  p{[x -  t, z]) -  p{[x, X +  f]) dt

£n  '' •' J e ^  t

1 p{[x,x  4 -1]) dt
^  T

= jim  ( l l o g ^ . l ) - ' /  

and this implies the statement.
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Another remarkable fact is that on the real line the average tangent measures are com­

pletely determined by the average densities. Note that by the example in lemma 2.3.2(a) 

this is different in higher dimensions.

Corollary 5.1.5

(a) For fi-almost every x all average tangent measures ü of fi at x are symmetric around

the origin.

(b) Suppose the measure fi has average densities fi-almost everywhere. Then fi has unique

average tangent measures at fi-almost every x. Moreover, P^ is given by

J A

for every Borel set A  Ç IR.

P ro o f Let x be such that d°‘{p,x)  < oo and every tangent measure distribution at x is 

a Palm distribution. If P is an average tangent measure at x, then there is a tangent 

measure distribution P such that P = f  i^dP(i/). Using the Palm formula for the function 

G{v^y) =  l/i(2/) we get, for every Borel set A Ç IR,

P{A) = J  u(A) dP{u) = J  f/(-A ) dP{u) = P { - A ) ,

which is the first statement.

Suppose now that the average density at x exists. For A > 0 and any half-open interval 

[0, A) we have, by lemma 2.2.2,

i7([0,A)) =  A ".i/([0 ,1 )),

and using the symmetry and P({0}) =  0 we have

P([0,1)) =  (1/2) • P{{-\ ,  1)) =  (1/2) • D^ifi,  x ) ,

and similarly for intervals [—A,0). Therefore the measure defined by

V»(A) = ( l /2 ) -D “(/i,x)- /  a \ t \^ ~ U t
J  A
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and the measure 9 agree on aU (right-)half-open intervals and hence they are identical. 

This implies the uniqueness of the average tangent measures as well as the formula stated 

in the corollary, ■

Recall lemma 2.3.2 now. Corollary 5.1.5(b) closes the gap in the proof of lemma 2.3.2(b): 

The measure fi € Af(IR), which was shown to have average densities /i-almost everywhere, 

automatically has unique average tangent measures. Moreover the corollary shows that 

examples as in lemma 2.3.2(a) can only exist in Euclidean spaces of dimension at least 2.

In the next corollary we formulate a consequence of theorem 5.1.3 in the language of 

singular integrals. For 0 < a  < 1 consider the kernel

K ^ :  IR \{0}  —^ IR
^  sign(x)

|x|«

Ka  is a natural generalization of the kernel 1/x of the classical Hilbert transform

/(O dt
X

H f i x )  =  lim /  ^

=  lim /  Ki( t  — x ) f ( t )  d t .
^10 J { y : \ x - y \ > e }

The question whether for 0 < a  < 1 the limit

lim /  K o ,{y -x )d n {y )
«10 J { y : \ x - y \ > e }

exists on a set of positive measure has been answered in the negative by P.M attila and 

D.Preiss in [MP95] (see also [Mat95]). Theorem 5.1.3 implies the following statement:

Corollary 5 .1 .6  For ^-almost all x we have

lim(|log£:|)"^ /  K a { y - x ) d f i { y )  = 0 .
«10 d { y : \ x - y \ > e )

P ro o f We can assume without loss of generality that /x is finite. Fix x such tha t d°‘{fj,, x)  < 

oo and the statem ent of theorem 5.1.3 holds. Integration by parts yields

fi{[x,X-\- £]) ,  ̂ fi([x,X-\-t])
ta+1
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and thus, for some constant C > 0,

C  1 ^i{\x,x-\-t]) dt
log£

<

and analogously we get

As e I 0 we thus have

l^m (|log6|)-^ /  A«(^/-  x) d/z(y)
1̂0 */{î/:|x-î/|>£}

= a  • lim (I l og61 /
^̂10 °  A

-1 X k ,  X +  i]) -  /i([x  -  t, ar]) ^  ^
r  t

5.2 P roof of Theorem  5.1.1

The proof consists of the following steps: In the first step we show that it suffices to study 

the tangent measure distributions of measures /z at /z-almost all points x G A, where fi 

and E  fulfill the conditions assumed in section 3.2. In the second step we fix a suitably 

chosen function G : Ad (HI) x IR —>• [0, oo) and show that the Palm formula holds for G 

and aU tangent measure distributions at /z-almost aU points x £ E.  For this purpose we 

introduce a family {(pi) of functions, the sum of which approximates the difference of the 

two sides of the Palm formula (lemma 5.2.2) and show tha t the set of points where the 

approximating function has large modulus has small measure (lemma 5.2.3). In the final 

step we extend the result of the second step to the fuU statement.

We suppose that 0 < a  < 1 and /z € Ad(IR) is given with

0 < d"(/x,x) < d“ (^, x) < oo 
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//-almost everywhere for some 0 < a  < 1. W ithout losing generality, if necessary by re­

stricting // to count ably many open sets, we can assume that //(IR) < 1.

Given 6 > 0 we can find a Borel set B Ç IR and constants 0 < c < C < oo such that 

//(IR \ B )  < S and, using proposition 1.3.1,

c < d ''( // |g ,z )  = d"(//,x ) < T { f i , x )  = < C

for //-almost every x £ B.  We can now apply lemma 3.3.1 to the measure //|g . Because, 

by proposition 2.2.5,

? " ( // ,  z) =  P«(//|gnB „z)

for //-almost every x G E{, it suffices to prove the Palm formula for the restricted measures 

//|gnB, and //-almost every point x G Ei.

Fix such a measure //|j3nB, and let us also denote it by //. Let E  = Ei and Sq = £o(0- We 

now have a measure // with support contained in a compact interval of length less than 

one and a compact set E  such that, without loss of generality, //(E ) > 0 and such that, 

for aU X G E ,

//([x — r, X 4 -r]) < if r > 0, (5.3)

and

//([x -  r, X -f r]) > cr" if 0 < r  < £o- (5.4)

Denote // =  // |g , the restriction of // to the compact set E . Observe tha t by (5.3) we have, 

for every E  Ç IR,

/ / ( E ) < C | E r .  (5.5)

The results on the geometry of E , as formulated in section 3.2, hold.

For every x G E  and every i/ G Tang(//,x) we have by (5.4)

z/(E(0,1)) > lim inf - > c .
 ̂  ̂ “  tio

Therefore every tangent measure distribution P  at x fulfills F({^}) =  0, where (f> is the 

zero-measure. By theorem 4.1.1 it remains to prove the Palm formula (4.1) for //-almost
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every x E E.

We now proceed to the second step, which constitutes the main part of the proof.

At //-almost every x £ E  the tangent measure distributions of // and // coincide by propo­

sition 2.2.5. Therefore we can work with the tangent measure distributions of p, instead 

of //. We fix a continuous function

G ' Af(IR) X IR — > [0, oo)

of the form

= g{y) ■ h ( u ( f ) ) , (5.6)

where

/  : IR —  ̂ [0, oo), ^ : IR — >-[0, oo) 

are Lipschitz functions with compact support and

h [0, oo) — > [0,1]

is a Lipschitz function. We denote the Lipschitz constants of / ,  h by L (/) , L{g), 

L{h). By i2 (/), R{g) we denote the smallest integers such that supp /  Ç B{0 ,R { f ) )  and 

supp g Ç B{0,R{g)).  In the following, we allow the constants Cu^Cis , . . .  to depend on 

the choice of G.

Our aim is to prove the Palm-formula

J  j  G(u,y)dv(y)dP(u)  = j  j  G (T ^ v ,~ y )d u (y )d P (v )  (5,7)

for every tangent measure distribution P  of // at //-almost every x Ç: E.  For this purpose 

define G i , G 2 : Ad(IR) — >• [0, oo) by

G i(t') =  J  G{v,y)dv{y) ,

G2{v ) = j  G ( T y i ^ , - y ) d u { y ) .

L em m a 5.2.1 G\ and G2 are continuous and there is Cn > 0 such that, for  a// x 6 IR 

and t > 0 ,
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P ro o f  G\  is obviously continuous. Continuity of G2 follows from continuity of (i/, y) 1—> 

G(T^u, —y) by means of lemma 1.2.7. Let C17 = C  • ||5f||sup* [2f2(y)]“ - Then, for all z G R  

and f > 0, we have by (5.5)

<  l l e l l s u p -  <  c , , .

Recall the definition of the measures from section 3.2. Fix

K = K(s) = (log|log£|)®/^^"“^.

For every interval /  Ç IR we define functions (pi and (pi by

and
. . <i5/(x,£) if X G / “ (k) U /+ ( k),

p i { x , e ) = <
0 otherwise,

for aU z G IR and £ > 0. Observe that for aU intervals /  Ç IR, £ > 0 and for aU z G IR,

\^ i{x,s)\  < \<pi{x,£)\ < Ci7 ' , (5.8)

using the boundedness of G i, G2 (see lemma 5.2.1).

RecaU the definition of A  and AC from section 3.2 and denote

A ,  = { I  e A  : \ I \ > s } .

For smaU £ > 0 the function Xl/e-4e y /(^ ,^ )  is a good approximation of

as the foUowing lemma shows.
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L em m a 5.2.2 There is a constant C\s > 0 such that, for every 0 < e < eo and every 

a > 0 , we have

e E  : ( |lo g £ |) " ^ ^  “  ^ 2 ( ^ ) )  y  -  > ^ } )

^18
(T ' (log I log £ 1)2 ■

P ro o f  We use lemma 5.2.1 and the approximation lemma 3.2.6 for 7 =  1 to get

-//({x  € ^  : |(|log£|)~^y* -  G 2 i ^ Ÿ j  Y  ~  1 3

leA,
ce/0(K)

2C17C10<
(log I log £ 1)2 '

The statement follows with Cis = 2C17C10.

We now show that the set of points z E E  where the function

l£Ac

has large modulus is small. This is the main step in the proof.

L em m a 5.2.3 For a > 0 and £ > 0 denote

Be = {x e E  \ \ ipi{x,e)\ > a} .
leAt

Then there is a constant C19 > 0 such that, for every a > 0 and all sufficiently small e > 0,

Cl9
K B e )  < ■ (log I log £ 1)2 '
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P ro o f  Define a sequence {pk)kel^ by

M =  +

For A; E IN let
A;

6k =  exp ( -  j  .
1 =  1

For 0 < £ < £o define p = p{e) E IN such that

and define X = X{e) as the largest integer such that

A(£) < (log I logs I ) \

We now establish some, in many cases very crude, numerical estimates, marked (a) to (p), 

which hold for all sufficiently small £ > 0. We can later refer to these estimates without 

having to interrupt the flow of the proof for standard calculations.

We have, by definition of p,

P i ' " P p  > |loge|

and

log(pi---pp) < ^(1/A ;)^/^  < /  ( ^Ÿ^ '^dx  = 4 ^ .
k=i X

Therefore

P > ( j  • lo g |lo g £ |) \

We have for all A; < /

r a  = < n / . ) = ( n ,

;  +  l \ - i  A; +  l(n ,T )
and thus

| l o g £ A |  ^  | l o g £ A |  ^  A + 1 ^  2 ( l o g | l o g £ | )

|log£| |log£p-l| P [ l/4 -lo g |lo g £ |] '‘
512

=  T . (a)
(log I log£|)
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Because
log _ { \ l k f l ^  _  (&+ 1)3/4 ^ 
log^fÎT pt ' (1/(A; +  l))3/4 fc3/4 +  l

the sequence is monotonically increasing. For all A; G {A,.. .,p} ,

^  l o g £ p - 2 - l o g £ p  ^  Pp . p p _ i - 1  ^  . y . 3 / 4  , 1

|log£| -  |log£p-l| Pp-1  ( p -  1)3/4+ 1

< 2(l /pf/"<,3/4 . 128
(log I log 61)3 ’ 

and thus
£k-2 \  1

lo® ( ( " ( ')  + !)■ i f )

We have pi • • -pk-i > n f= ^ (l +  1 /0  = &nd hence

log ( - ^ )  = P i " ’P k - P i ’ ' 'Pk-i = P i "  'Pk-i  • (1/^)^^"^ > 

Therefore we have

> exp (y^log|log£| ).£\
£\+i

In particular, we get

£k+l

Let 6 = C\(\  +  Since

> k{s ) for all A; > A. (c)

2Ci • yiog|log6|^^^^^ 1
exp(>/log|log£|) (log|log£|)(3/“)

we get

We also have, for aU A: > A,

i ^ r  ■ • 4 4 + c d , 2 . ( % i r .  ,0,^
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and thus

mæc -log^ • K(e)+ Ci) • (k(£) +  1)
k=x \ €k  ̂ ^Sk+i /

< 2 [exp ( -  y io g |lo g g |)  '  • (log |log£ |f/^^"“)

-  (log I log 61)2 "

By definition of p(s) we have

and therefore

log |log£ | > ^ l o g ( l  +  (l/fc}^/^) > ( lo g 2 )-^ (l/A ;)^ /^
k=l k=l

> ( lo g 2 ) -^  ( l / x f ' ' ‘‘dx > ( lo g 2 ) - ( < /p - 1)

Finally, we also have

{ k ( e )  +  1 ) “  ,  ,  ^  1
|log£| P ^ -  (log I log 61)2 ’ ^

Now fix a 0 < 6 < 6o which is small enough such that (a) to (g) hold. 

Define

I l  =  { I  Ç: Ae  : | / |  >  £ i}

and, for aU > 1 ,

Ik = {I  ̂Ae : Sk-i > \I\ > Sk} .

Then
p

Ae = [J Ik-
k=l

We estimate by means of the mean square of ^  follows

< /  ( X ] <Pi{x,e)y dfl{x)
leAc
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= /  ( I Z  E  (5.9)
k=i leik

< 2 - ^ ^ ^  ^  f \ (pi{x,e)(pj{x,£)\dfi{x)  (5.10)
t=l i=l l£lj JElk

+ Z !  Z  Z  Z  /  {^l{3:,£)(pj{x,efjdp,{x).  (5.11)
k=X-\-l j=A+l l£lj JÇJk 

We can give an estimate for (5.10). Observe that by (5.8)

p

Z  Z  |M a:,g ) < 2Ci 7,
j=i leij

and therefore we have, using lemmas 3.2.5(c) and 3.2.4(2),

A

Z  Z  / z  Z  \ ^ l ( x ,£ ) - ^ j { x , s ) \d i i { x )
k = \ J Ç J k  j = l  l £ J j

A r
<  2 ^ 1 7 J | y j ( a ; , g ) | d / l ( z )

k = l  j £ l k  

A

< 2 C h V 7 - c - ' £ ' £
k=ijeik

< 2CX>7CiV 42 I l o g  I

<

|Iog£| 
2CD7C17C4 ' 512

(log 1 log £ 1)2 

using (a). This finishes the estimate of (5.10).

We now split (5.11) as follows

p p

Z  Z  Z  Z  /
=A+1 j = A + l  I ç i l j  J ^ I k

= /  z  ( Z  Z }y^;(a;,^)y j(a;,£ ))d /l(z) (5.12)
k = X + l  l £ l k

+ ^ / Z  ( Z  Z  M ^:,^ )y j(a ;,6 )) d^(z) (5.13)
/c=A+l /6 l fc + i  J E l k

+ 2 y  Z  ( Z  %Z y /(z ,£ )y )j(z ,£ ))d /i(a ;). (5.14)
A:=A+lj=fc+2 I Ç j j J Ç . T k
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It is not hard to give an estimate for the terms (5.12) and (5,13). Observe that

<pi{x,e)ipj{x,£) < 0

unless X G /" (/c ) PI J “ (k) or x G /"*"(/() fl J ^ { k). Therefore

J  ( I] I] y/(x,6)yj(x,6) + 2. ^  ^  y/(x,g)yj(x,6))d/l(x)
A:—A +l IÇ.1k IÇ.^k+1 «/

< 2 " ( E E zi /  \M^,£)<Pj(x,£)\dfi(x)]
k = X + l  /eXfcUJ/t+i JGlfc 

V

+  2- (  è  Z !  Z !  L ,  , \9l{x<^)‘P j { x ,e ) \d p { x )y
k = X + i  /GTfcUJfc+i JGlfc

We can restrict our attention to the first sum, i.e. to the case of intervals / ,  J  with 

/ “ («) n cf"(/c) ^  0, since the second sum can be treated in exactly the same manner. 

Splitting this sum again we can write

pZ Z Z , _ \<pi{x,£)(fj{x,s)\dfl{x)
k=x+iieikUik+iJeik ^

p - i  f
< 2- ^  Z Z /  |yj/(x,£)v?j(x,£)|d/l(x) (5.15)

it=A+i /elfcUJfc+i .?eXfcU7fc+i 'fi («)n^ («)
K J

+ Z Z /  Iv^/(a:,£)|^d/i(x). (5.16)
t = A + l  /EZt ^

Let us look at (5.15) and fix an interval I  E l k  U %t+i. Denote its left and right endpoint

by a and 6. If 7  G I k ^ ^ k + i  with I  < J  and /~ (k ) fl J~ { k) 0, then |J | < £k-i  and thus

J  Ç [6, a +  (« +  1) * £k-i] •

For all X G F~(/c) we thus get, using |/ |  > £k+i,

Z — ^17 • '0e([ct +  ^A:+l5 O + (k +  1) • £fc-l])
^  ^ log(/C +  l)  +  log£fc_i-log£jt+i
-  -------------------i W ----------------- ’

where the sum extends over all J  G U Xk-\-i such that I  < J  and / “ («) fl J~ { k ) ^  0. 

We use this equation and

Z <2Ci7,
l€Ae
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to estimate
p - i

I Z  I Z  I Z  , _ \<pi{x,e)(fj{x,£)\dii{x)
_  \ I -1 r/--r. I iT /cT. I IT. . . (/tin.7 IK)&=A+1 /GTfcUTfc+i ^ezkuik+i («)

T<J

^  4C?|17
(log I loge 1)2 ’ 

by (6), finishing the estimate of term (5.15).

Let us now look at (5.16), and estimate using lemma 3.2.5(d),

I Z  I Z  / _  I N % , E ) l ^ d / l ( % )
&=A+1 l € l k  ^

< ^ 1 ^ 4 Î^ « -^ '( lo g |lo g 5 |)2 , 

finishing the estimate of term (5.16) and thus of the terms (5.12) and (5.13).

We now look at term (5.14). Given J  G îit we denote by /Cj , respectively /Cj, the 

collection of aU üf G such that

üf n J “ (k) /  0 , respectively K  n J+(%) ^  0.

Recall again that (fi{x,e)ipj{x,£) < 0 unless x G /"(% ) n J~ { k) or x G /+(%) n /+(%). 

We have picked £ > 0 sufficiently small to ensure

—  > K(c) (5.17)
£k+l

for aU /? >  A (see (c)). Consequently, whenever k >  \ ,  J  £  I k  and I  £  I j ,  j  >  k +  2 and 

I~{k)  n J~(k )  /  0, there is a /if G ICj such that I  Ç K  .

To see this we suppose the contrary. Since I  is contained in some K  G we then

must have I  > J.  Hence

Sk < |J | < 4 ^ ) | / |  < K(g) • C&+1.
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This contradicts (5.17) and therefore our statement holds.

Also, by the analogous argument, if J  G Tfci I  € and /+(%) H ^  0, there is

K  G /Cj such tha t I  Ç K.  Therefore we have

H
fc=A+l j=k+2 JÇ.Jk IÇJj

< E  E  E  E  E  /  {^ i{x ,e ) - i f j {x ,e Ÿ jd i i {x )  (5.18)
A r = A + l j = & + 2  JÇJk KefC~

I Ç K

+  Z )  Z  Z  Z  Z  /  (M a :,^ )  y j(a ;,6 ))d /i(z ) . (5.19)
& = A + 1  j= A :+ 2  J e l k  K £ f C \

I Ç K

We can concentrate our investigation on one of these expressions, say the first, since the 

other one can be treated analogously. We write

/C} = { K i , .  ,

where

K n  < . . .  < K\ < j  .

Denote the right endpoint of A, by Also denote

k i  =  ( ü r - ( K ) u i f i )  n  j - ( k ) .

For J  £ I k  and K  G /Cj define

p
V?/c(a:,£)= ^  ^ v ^ / ( x ,£ ) .

j=k+2 fElj 
I Ç K

Since (p'f^.{x,e) • (pj{x^e) < 0 for aU x G IR \  we have

Z Z Z Z Z / {<^l{x,s)-(pj{x,eŸ)dfi{x)
k=\+l j=k+2JeIk KelC~ /ÇK

< Z Z Z ^ (yk(%'C)M%,c))d/2(%).
fc=A+l JGTfc 1=1 

We can split this term in the following way, 

p - 2  N

Z Z Z ^ (yk(%'fW%,E))d/i(%)
b=A+l J e l k  i = lfc=A+l JçTic *=]
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p-2 .
< (5.20)

t=A+i Jeik
p - 2  N

E E l
c=A +l JeTfc t= i

Let us give the estimate for (5.20) first. Observe that, by lemma 3.2.2,

+ S  Z ! /-  (5.21)
Jk=A+l J e T t  1=2

l-^ll < (^ +  1) ' Cl • E&+1 

and therefore, recalling that Ci is the right endpoint of K\,

K i  Ç [Cl -  (C iS k+ i i l  +  « ) ) , Cl] G [Cl -  C l] ,

where

s = C, (1  + 4 4 )—  > Ci(i + 4 4 ) ■
CA+1 K l

Using lemma 3.2.5(a), we get

^  |yj(2:,^)|((/2(z) <  Ci7 ^

Since < 2Ci7, we get using lemma 3.2.4(2)

H  Y ,  |v’/f ,(* > 4 v j(* ,£ )U 4 ® ) < 2CVsCh- Y ,  n ^ * ° g ( ^ 4 ^ )
ir=A+iJell I ® '

by (d), finishing the estimate of term (5.20).

It remains to investigate (5.21). This is the crucial part. In order to carry out the esti­

mate we shall formulate two claims, which constitute the core of our proof. The first 

claim is a “local version” of the key argument in the proof of theorem 4.2.1, namely the 

transformation of the integral carried out in equation (4.3) to (4.5). The second claim is 

an adaptation of the “variation argument”(3.18), which was vital in the proof of theorem 

3.1.3.
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C la im  1: There is a constant C20 > 0 such that, for all K  € ICj , 

^J^^Kix ,€ )d fi {x)

P ro o f  Recall that

=  I =  . I r f A ( y ) ,

and

Therefore

We have

f .  < f K { x , e ) d f i ( x )

"  ^ n (K + ,) ( / ^ ( ^ ’V̂ ) •

= (I log£|)-> . 1  y)

where

and

ür2 = { ( x , y ) e £ '  : y e ( A ' +  « ) n ^ , ^ € 5 ( 0 , f i ( y ) ) } ,  

using G(f/, z) =  0 for all f/ if z 0 5 ( 0 ,5 (^)). Thus we can use the cancellation and get

J .  <PK{x,e)dfi(x)
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recalling that G is bounded by ||^||sup- We take a closer look at the set

A" \  =  {(%, y ) e  ■. x e { K - t ) n K ,  e  B(0, R{g)) , y ^ { K  + t ) n K } .

First observe that if t > |(k(£) + 1) we have (K — t) 0 K  = 0 and thus \  =  0.

Otherwise if (x, y) £ \  then

y e Y  := B{ { K - t ) n K , R i g ) t ) \ { { K  + t ) n K)

Ç (b ( (K - t ) n Ê ,  R(g)t) \  (K  + 1)) u [b {(k  - t ) n k ,  R{g)t) \  k ) .

We have

B ( ( K - t ) ^ k , R ( g ) t ) \ { K - y t )  Ç B ( ( K - t ) , R ( g ) t ) \ { K  + t)

Ç B((K + t),R(g)t + 2 t ) \ ( K  + t),

and by (5.5) 

j i {B{K  +  «,R(g)t + 2 t ) \ ( K  + t ) ) <  2C(R(g)  +  2)“ • 

Also B ( ( K  -  i) n  À , R(g)i) \  k  Ç B ( k ,  R(g)t) \  k ,  and thus 

p . { B ( k , R ( g ) t ) \ k ) < 2 C R ( g f - e .

Therefore fi{Y) < 2C{R{g)°‘ + (R(g) + 2)") • and thus

< J^ji{B{y,tR{g)))dp(y)

< 2 C ^ R { g n R ( g r  + {R{g) + 2 r ) - t ‘‘“ .

Let C20 =  4 /c  ■ ||g||,^p ■ { c ^ R ( g r { R { g r  +  {R{g) + 2}“ }). Then

j  VK(x,e)dp{x)

  dt/•|A MK+ll
< ( l io g c D - '. j f

< (|log6 |) • { a / 2 )-C2 0 ' J  t°‘  ̂ dt

< " ' I -
|loge|
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We also have

dtf  f'
-  J ^ ^ K { x ,e ) d f i { x ) < { \ \o g e \ ) - ^  „^,isup r  v -  \ -  ; ’

and for \  K^)  we can derive the same estimate as for p>^{K^ \  K^).

This finishes the proof of claim 1.

C laim  2 There is a constant C21 > 0 such that the following holds: For every J  Ç.Xk and 

any interval K{ G K j  such that d,- =  d( J, Ki) > 0, denote

c{Ki, J)  = sup e) -  y j(y , £ ) |,
x,yeKi

and denote the right endpoint of K{ by Q. Then we have

c(Ki, J)  < C21 • V i'(J) ■ .

P ro o f  Let J  G and let K{ G ICj. For x G Ki we have

. A . ^ 1 )

We show tha t ( fj  is a Lipschitz function in x and determine a Lipschitz constant.

For this purpose we fix z G J  and let / be a nonnegative Lipschitz function with Lipschitz 

constant L(/), and compact support contained in B{0,R{1)). We investigate the function 

IR defined by

= J z -  x )  \z — x |"  *

Tpl is bounded, since by (5.5)

V-K*) < ll'llsup• x |)) ^  . C{2 R { l ) r .
\z -  x\

We show tha t is Lipschitz on the domain Ki. 

Let x i , X 2 G Ki  with xi  < %2- We have

y - x i  y -  X2

Z — Xi Z — X2

B{x2,R{1)\z-X2\) 
1

y - x i  y - X 2

dp>{y)
\z -  Xi|“ 

dp,{y)
z -  X\ z -  X2 

1
\z -  X\ \z -

\z -  Xi\ 

dp,(y) .
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We use the estimates

1 1
( z - X i ) "  (z -  X2)°‘ {z -  X2)°‘

< Z -  X2
-  1

Z -  Xi
< 1 |xi -  X2 \

{ Z - X 2Y  di

and

y - x i  y - X 2

z — Xi z — X2
<

<

y - x i
Z -  Xi
y - x i

z -  Xi
-  1

X2 -  Xi
Z -  X2

Z — X\

Z -  X2 
k l  -  Z2I |z i -  Z2I

"T
di di

to see

|V>/(xi) -  A ( Z 2 )| <  k i  -  Z2 I . ( I M )  • {c(2R(l)r ■ (2L{l){R{l) +  1 ) +  ||/||sup)) .

Hence for every I as above there is a constant C{1) > 0, depending on /, such that jpi is 

bounded and Lipschitz with constant C{l)/di. Therefore there is a constant C'21 > 0 such 

that for every z E J  the function

= /  s ( S )  • ^  ^ ] )

is Lipschitz with Lipschitz constant To find the Lipschitz constant for (f j {x,£)  we

use
1 1

Z — Xi Z — X2

and estimate as follows

< i .  . 1
Z — X\ z -  X2

< 1 |xi -  Z2I
Z -  0  di

-  <fj{x2,s)\

<  ( | l 0 g £ | ) “  ̂ • ^ | V ' ' ( X 1 ) - ' 0 ' ( X 2 ) |

+  ( | l 0 g £ | ) ~ ^  - ^ f ( z 2 ) '

< \X1 - X 2 \'  +

dz
z -  Xi\ 

1 1
dz

Z -  Xi z -  X2

di " ■ di

Let C21 =  C21 +  ||sf||sup • C{2R(g))°‘. Then (fj has Lipschitz constant

f  • # ( / ) ,

and this, together with the observation \x\ — X2 \ < \Ki\ < |üfi|(K;4-1), yields the statement.
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We can split (5.21) again;

Z )  Z  Z  ^  d f i { x )
Ar=A+l JETk i=2 '

< Z  Z  (5.22)
ik=A+l Jelk i=2

p —2 N  .

+  Z  . \^K,{x,e)-(fi ' j^.{x,e)\dfi{x)  (5.23)
Jt=A+l Jelk i=2 

p - 2  N  *

+  Z  Z  Z ly" ./((''^ )l' - ^ K i { x , e ) d f i { x )  . (5.24)
k = X + l  J e l k  i = 2:A +  1 JeTk *=

To finish the proof we have to give estimates for (5.22) to (5.23).

Let us start by looking at (5.22). Using lemmas 3.2.5(c), 3.2.4(1) and 3.2.1 we get

L  \<PKii^^^)\dfi{^) < CiT Z Z / Ve{I)dfL{x)
j = k + 2  / e x ,  *^/°(«)

ICKi

< 2C17V7C. z
m>:
ICKi

By claim 2 we have

< 2CC17D7C3 '

< (2CD7C,7C3C,“ )-£?+1.

c(Ki, J)  < C21 ■
U{

and we observe, using di > £k+i for all i > 2,

i ’H j )  < (|log£|)~^ - log 

Using \K i \<  C l ’ £k+i < Cl ’ di, we get

l- t̂j _  + di \Ki\
è ï  di +

< ( 1 + C , ) .  y y ,

where the integral is taken with respect to the domain

{ t  : £ k + l  <  ( k |« / |  + C i £ A : + i ) } .  
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/  7 + ‘̂ 0

This integral is bounded by

d t
<  l o g  ( K ' (

We can now put all these ingredients together and get

I]  Z)  L
k = X + l  J Ç J k  t=2

< 2C2i { ^C \)C \7CV’iC:iCi

A:=A+1 JÇJk

< 2C2Hl+C.)C.rCPrC3Cf.( 2 :
it=A+lJGlfc

 ̂f k  ( ( ^ ) “ ■ • ("(f) +1))
< 2C,,(1 + Ci)CnCDrC3CfC4 • . 

by (e), and this finishes the estimate of term (5.22),

Let us give an estimate for (5.23). We use the first inequality of the approximation lemma 

3.2.6 with 7 = 1 to see

JKi

< C u - f { r A K i ) -  E
\n>c

xe/°(«)

\K\°‘ 
< 2C17C9 '(log I log 61)6 '

Recall X2jejfc lv^j(Cn^)l ^  2C17. For (5.23) we get, using lemma 3.2.3,

k=x+i Jelk t= 2
p - 2

2 \ P(^)

< (4C17C9C2) ■ ( — )
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CHAPTER 5. TANGENT MEASURE DISTRIBUTIONS OF MEASURES ON THE LINE

by ( /) .  This finishes the estimate of (5.23). 

Finally look at (5.24). Recall that by claim 1,

1̂  <pKi{x,£)dfi{x)

Thus we get for (5.24), using lemma 3.2.3, 

p—2 N

H  " I /-  <PKi{x,€)dfl{x)
k = X + l  J £ l k  i = 2

p—2

by (^), finishing the estimate of (5,24).

We have thus finished the proof of lemma 5.2.3 by showing that all the sums, in

which we have split the original expression (5.9), are bounded by a constant multiple

of l/(log |log£ |)2 . ■

Now we have done most of the work to finish the second step.

L em m a 5 .2 .4  For any function G defined as in (5.6) we have

l i ( ( x Ç E  : j  j  G{v,y)dv(y)dP{v)  =

J  J  G(T^v,  - y )  dv(y) dP(v)  for all P  £ P “(p, x ) | )  =

P ro o f  To begin with, fix 5 > 1 and let Sk = exp(—5^). Let 1 > £t > 0. We have

( | l o g 6 „ | r ' £ ( G , ( ^ ) - G 2 ( ^ ) ) f |

+ 1 1 2  
leAsr,
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Lemma 5.2.2 and lemma 5.2.3 therefore give

f i i l x  e E  : (I l o g 6 „ | ) - '  £  ( g , ( ^ )  -  % ( ÿ ) )  f  I >  2 . } )

Ci9 +  Ci8 CiQ +  C\8
0-2 • (log I log 6*1)2 cr2 . (log 5)2 • V?

Since ^ ^ ^ ( l / n ) ^  < oo, the Borel-Cantelli-lemma yields

j i ( \ x  Ç: E  : limsup > 2<t M = 0 .

This holds for all cr > 0, and thus

l i [ \ x  ^  E  : lim sup > 0 >  = 0 .  (5.25)

For every S„-i we have

= ( | l o g . | ) - * £ " ( G r ( ^ ) - G , ( ^ ) ) f

+
log 6*1
|log£

Now I log6*1/1 logs] < 5 and thus

( l l o g . l ) - '  r  ( G r ( ^ )  -  G . ( ^ } )  f < ^17
log(6*/g)

loge
< Ci7 ' {s -  1).

This and (5.25) together imply, for //-almost every x £ E,

lim sup 
do

< Ci7 • (5 — 1) .( | l o g £ | ) - ' £  ( G r ( ^ ) - G , ( ^ ) ) f  

Since this holds for all 5 > 1, we get

U m (|lo g £ |)-> ^  ( G i ( ^ ) - G 2 ( ^ ) ) y  =  0 

for //-almost all z G E.

By (5.5) the closure of the set : t G (0,1)} is compact. Therefore we can find

continuous functions Hi and Lfg, bounded on Ad(IR), which agree with G\  and G2 on the 

closure of : t G (0,1)}. Hence, for //-almost every z G E , every tangent measure
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distribution P  =  lim„_,oo Pen of ^  at a; fulfills

J  J  G{u,y)du{y)dP(i /)

= J  d F ( u )  ] ^ { \ l o g e n \ ) ~ ^  ^ i ( ^ )  Y

=  ( I  l o g ^ n l ) - *  £  ( G i ( ^ )  -  G 2 ( ^ ) )  y  +  j ™  ( I  l o g £ „ | ) - '  £  J
=  j  H 2 ( u ) d P ( v )

= j  J  G { T y v , - y ) d v ( y ) d P ( v )  

as required. ■

To finish the proof it remains to show in the third step that the set of all z G where the 

Palm formula holds for all Bor el measurable functions

G .Ad(lR) X IR — > [0, oo)

has full measure. For this purpose we work with Fourier transform. Define functions

h\{x)  = sin"^(z) , li2{x) = s in~ (x ),

/i3(x) = cos'*'(z) , h/^(x) = co s" (z ) ,

and for i , j  G { 1 ,. . . ,4 }  define

hij{x) = hi(x)hj(x) .

Choose a sequence (/t)i^M of Lipschitz functions fi  > 0 with compact support such that, 

whenever /  G Cc(lR) and /  > 0 with supp /  Ç 5 (0 ,5 ) ,  5  G IN and £ > 0, there is an 

i G IN such tha t supp /,• Ç 5 ( 0 ,5  +  1) and | | /  -  /t||sup < 6:. See for example lemma 

1.2.5(2) for the construction of such a sequence. Let

Gij,k,i(^,x) = fi{x)  • hjkii^ifi) ) ,

and

A  = {x Ç: E  : the Palm formula holds for aU G{j^k,l and all 5  G P “ (/i,x)} .

We know by lemma 5.2.4 that fi{A) =  /i(5 ).
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L em m a 5.2.5 Let x £ A and suppose that G : A^(IR) x IR — has the form

G{u,x) = g(x) - exp{iu(f))

for g, f  £ Cc(IR) with g > 0. Then the Palm formula holds for G and all tangent measure 

distributions F  of p at x.

P ro o f  We fix a function G given, as in the statement, by functions g , f £  Cc(IR) and argue 

by approximation. Suppose £ > 0 is given. Let .R > 0 be such tha t supp / ,  supp g Ç 

R(0, R), and 5 > 0 be such that ||5f||sup < S.  We find f i ^ f j , f k ,  with supports contained 

in R(0, R + 1) and

IK/i -  f j )  -  /lisup < m ~  8 5 C 2 (2 fi+ l)2 “ ’

I IA  -  ffllspp <  V 2  ■■= •

For all i/ G Tan(/z, x), the estimate (5.3) implies i/(R(0, R + 1)) < C * (R + 1)", and therefore

J  J  G{u,y)di/{y)dP{u) = J  J  fk{y) - exp{w{fi -  f j ) )  di^{y) dP{i^) + g ,

with

\ n \ < ’l2- C(R  +  1)“ +  m • ‘i S C \ R  + ! )"“ < £ /2 .

Analogously

J  J  G {T^u , -y )du{y )dP(u)  = J  J  f k { - y )  ' expiiT^uif i  -  f j ) )  du{y) dP(i^) + r]',

with

W'l < r n - C { R + i r  + ni- 2 S C \2 R  + 1)2* < £ / 2 .

By definition of the set A  the Palm formula holds for the functions

y )  ^  f k i v )  ■ e x p { w { f i  -  f j ) )  

and thus the Palm formula holds for G. ■
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Now fix a function g € Cc(IR) with 5f > 0. Define two finite measures Ai, A2 on the Bor el 

(7-algebra of A^(IR) by means of

Ai(M ) =  J  j  g { y ) ^ M ( < ' ) d v ( y ) d P ( u ) ,  

Az(M) = J  j  g { - y ) \ M { r > i ' ) d v ( y ) d P ( u )

for all Borel sets M  Ç Af(IR). We know that

Ai(exp(iV(/)) = A2(exp(iV(/))

for all /  G Cc(IR), and this means that the Fourier transforms of Ai and A2 coincide. Thus 

Ai and A2 coincide (see for example [Kal83, theorem 3.1]) and hence the Palm formula 

holds for all bounded functions G of the form

G{i>,y) = g{y) • F{u)

for Borel functions F  : Ai(lR) —> [0,00) and g G Cc(IR).

Fix X G A. For every r > 0 let S{r)  be the collection of all Borel subsets B  Ç Ad(IR) x 

U(0, r) such tha t

J  j  l B { i ^ , y ) d v { y ) d P { v )  =  J  y l B ( r ^ i / , - y ) d i / ( y ) d P ( i / )

for aU tangent measure distributions P  G <5(r} contains A1(IR) x (7(0, r) and is

closed under proper differences and, by the monotone convergence theorem, under non­

decreasing limits. Using monotone approximation from below and the monotone conver­

gence theorem, we see that <S(r) comprises the collection

Ç = { M X I  : M  Ç A1(IR) Borel, and I  Ç t/(0 ,r )  open } .

Ç is stable under finite intersection and generates the Borel-cr-algebra on Af (IR) X U(0, r). 

Hence, by the monotone class theorem (as formulated for example in [Kal83, 15.2.1]), 

<S(r) equals the Borel-cr-algebra on Ai(lR) X (7(0, r). Thus the Palm-formula holds for 

all Borel step-functions and, by monotone approximation from below and the monotone 

convergence theorem, we can conclude that, for all a; G A\  the Palm formula holds for aU 

nonnegative Borel functions G and aU tangent measure distributions F  of /i at x.  This 

finishes the proof of theorem 5.1.1.
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C hapter 6

N orm alized Tangent M easure  

D istributions

Standardized tangent measures have turned out to be an approporiate tool for the inve­

stigation of measures with positive and finite a-densities. However, if the behaviour of 

f i{B{x, t))  as t tends to 0 is not comparable to a law of the type t°‘ but depends sub­

stantially on X, it does not seem appropriate to study via distributions on the set of 

standardized tangent measures. In these cases it seems more suitable to compare di­

rectly to for a suitably chosen normalizing function A : IR.̂  — >■ [0, oo) and define

tangent measure distributions on the set Tan^(/i, x) of normalized tangent measures, the 

A-normalized tangent measure distributions or short A-tangent measure distributions.

In section 6.1 we first illustrate the limitations of standardized tangent measure distribu­

tions by means of an example of a nonzero measure tha t has no non-trivial standardized 

tangent measure distributions /i-almost everywhere. We then define the normalized tan ­

gent measure distributions and give some their basic properties. In section 6.2 we prove 

an existence theorem for normalized tangent measure distributions, and in section 6,3 we 

prove a shift-invariance theorem for unique normalized tangent measure distributions.

139



______________CHAPTER 6. NORMALIZED TANGENT MEASURE DISTRIBUTIONS______________

6.1 D efin ition  and Basic Properties of N orm alized Tan­

gent M easure D istributions

We start this section with an example of a nonzero measure / i  G Af(IR” ), which has no 

nontrivial a-standardized tangent measure distributions //-almost everywhere. The exam­

ple has been studied in a more general form in [Gra93].

E xam ple 6.1.1 Let C  be the ternary Cantor set and x the canonical coding

of C  in the codespace IlteNiO, 2}. For a given z G C and n G IN let

C C  . — Zj ,  . . . ,  dfi —

and define the mappings S \ ,S 2 : C  —  ̂ C  by S i(x) = y with yi = 0 and yi+i =  z,- and 

similarly S 2{x) =  y with yi = 2 and yi^i = z,.

Let po,p2 G (0,1) with Po + P2 = 1.

We shall study measures p  with p{C) = 1 which are self-similar m  the sense that

p{A) = po • p{S{^{A ))  -H p2 • p (S2^{A)) (6.1)

for aU A G 5 (C ). For every pair (po,P2) there is exactly one measure p  G Af(IR) with 

p{C) =  1 such tha t (6.1) holds. For po = p2 we know that p  is HausdorfF measure on C. 

Assume po /  P2- The similarity dimension of p  is given by

.  _  Po • logpo +  P 2 ' logP2 
^  - lo g  3

Claim  1 For oc ^  f3 there are no non-zero a-standardized tangent measures.

P ro o f It suffices to pick a ^  (3 and show that for every Æ > 0 we have

p {B {x ,tR ))  

For this purpose observe that

log —— 00 for //-almost every z.
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are independent identically distributed random variables on the probability space 

which take on only two values. We have

E X i = Po • logpo + P2 • logP2 + » • log 3 = (a  -  /3) • log 3 .

Hence EX{ =  0 if and only if a  = /3. In our case, E X i /  0 and therefore by the law of 

large numbers
n

— >• ±00 //-almost everywhere. (6.2)
1=1

Suppose now (1/3)"'''"^ < fA < (1/3)” . Then, for aU x G C,

p { B { x , t R ) )  ^  p ( I n { x ) )  ^  Pxi ( q p \ o i

and taking the logarithm

log ^  Xi +  a  • log 3 +  a  • log

Analogously we get

log —— ^  Xi -  Q ' log 3 ±  a  • log Æ ,
1=1

and thus by (6.2)

p{B {x ,tR ))

as required to prove claim 1. □

log ——^ o o  //-almost everywhere

C la im  2 D^(//, x) = oo and hence there are no 13-standardized average tangent measures 

at p-almost every point.

P ro o f This was shown by S. Graf, see [Gra93]. □

The question whether there is a unique /^-standardized tangent measure distribution is 

left open in [Gra93], but, in fact, we can prove that:
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Claim  3 There are no nontrivial (3-standardized tangent measure distributions ^-almost 

everywhere.

P ro o f The proof uses the following lemma from probability theory:

Suppose X i are independent identically distributed random variables with EX{  =  0, 0 < 

< 00 and

S n  =  X \  +  . . . +  Xn .

Then for all ( >  0
1

5Z1{|5'<I<C}—  ̂ 0 almost surely. (6.3)

The following proof of the lemma was suggested by H. v.Weizsacker:

Let So =  0. Fix £ > 0 and denote I  = (—£ — (,£  + (). First observe tha t, by the central 

limit theorem, for every a: G IR

l{x+s,e/}) =  +  5 il/V i < (£ + 0 / V l } )  0 . (6.4)
4=1 i = l

Consider fZ =  IR^°, B = (8>nGNo Let be the distribution of (5„ +  a;)nGMo and

u = f  Px dx. Let P  be the distribution of X \.

V is (T-hnite, since u (ü )  =  ^  A: +  1) x IR^) where the sum extends over all integers 

fc, and

v { l k , k + l ) x m . ^ ) ^  P ^ { Q ) d x  = l .
J k

We show tha t i/ is invariant with respect to the left shift T  on fi. For this purpose denote 

A  = A q X A i X "  - and calculate

u{T~^A)  =  J  P x{M x Aq X Ai  X " -)dx

— J  Pq{x +  6*1 G j4g, X A S 2 ^  -Ai,. . . )  dx 

=  J  J  Pq{x A y e Ao,x A y A X 2 e A i , . . .)dP {y)dx
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=  /  /  P x + v { A q X A l  X • • •) dP{y) dx

= J  J  Px{A)dxdP{y)

=

Define /  : 9, — >■ {0,1}, by /((o;„)) =  l/(wo). Then f  G since

J  \f\di^ = J  J  li{ x )  rfPx(2/) dx = 2{ e  +  C) <  0 0  .

By the ergodic theorem, applied to (0 , B, f/), T  : 9  9  and / ,  we get that

2 N —l

— ^  /(T*w) converges f/ almost everywhere.
t = 0

This means that, for Lebesgue-almost every x,

2 N —l

— ^  1{x+5,g/} converges Pq-almost surely.
^ .= 0

Pick such an X G U{0,s). Recalling (6.4) we get

 ̂ N  1 A f-1

for Pq-almost every sequence (5n). This finishes the proof of the lemma.

Let us return to the proof of claim 3. As before let A ,(x) = log and observe that 

the random variables X{ on fulfill the requirements of the lemma. Let x G C

be such tha t (6.3) holds.

Let Sk i  0. Suppose there is a tangent measure distribution P  =  l im f ^  G P ^(//, x) . By

Prohorov’s theorem (lemma 1.2.8(3)) the family {Pe^)keK is uniformly tight. This implies,

by lemma 1.2.5(1), that for every 6 > 0 there is M  > 0 such that

> 0 : < M }) > 1 -  £ (6.5)

for aU fc G IN.
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Pick an arbitrarily small m  > 0. Suppose (1 /3)’̂ '̂  ̂ < < < (1/3)^. Then

-  t P  - (i/sy
and

y,{B{x,i)) ^ /i(/„(a;)) ^ ^
tp < ^p < U ( i/3 ) /? -« ^  •

If 77% < < M  we therefore have

and

Hence, for a suitable (̂  > 0,

n + l

X i < log M  + /? log 3
t=i

Y  > log m -  log 3
t =  l

{t > 0 : m < a iS p m  < M } C \ J  {[(1/3)^+',(1/3)^] : | < (} .
j>0 i=l

Thus if (1/3)"’'̂  ̂ < £ < (1 /3)” we have

: m  < < M})  < ^ ( | l o g ( l / 3 ) ” |)-^ - lo g 3 '
j=o

^  “  è 1{|S;I«} .
i= 0

and since the last term tends to 0 as 7% — oo by (6.3), we have for every 7n > 0, using 

(6.5),

> 0 : < m}) 1 .

By lemma 2.1.3 there is a set Z Ç (0,1) such that (ps^iZ) — 0 and

lim a iS p ill  = 0. (6.6)

P  is concentrated on the set

\u  =  lim : tn ^  Z ,tn  l o ] ,
I n —*̂ oo i„  J

and therefore, by (6.6), on the set {%/ 6 A1(IR” ) : f/(B (0,1)) =  0}. Since P  is scaling 

invariant, by proposition 2.2.2, this implies P{{(j)}) = 1, where 0 is the zero-measure.

144



6.1. DEFINITION AND BASIC PROPERTIES

Hence P  is the trivial distribution. □

Finally, note that fulfills a doubling condition at every z G C since, for (1/3)"^"^^ < ( <

(1/3)"', we have

2t)) ^  ^
n{B{x,t))  -  liil„+i{x)) -  -  pIpI ■

This proves the doubling-condition at x G C.

Claims 1 to 3 show that standardized tangent measure distributions in the present form

are unsuitable for the investigation of this class of self-similar measures. ■

In order to study measures as in the previous example, C. Bandt has suggested to look 

at distributions on the set of normalized tangent measure distributions. As in section 1.3 

we consider normalizing functions A : IR” — [0, oo), which are continuous with bounded 

support and positive values on a neighbourhood of the origin. The definitions of normalized 

average tangent measures and tangent measure distributions are now completely analogous 

to those of standardized average tangent measures and tangent measure distributions.

D efinition

Let A be a normalizing function and recall

Af^ : M (]R") VW(R"),

i f K A ) > 0 ,

0 otherwise.

Let /i G Ai(]R” ). Define distributions by

;= ( | l o g £ | ) - ' / '  y

for Borel sets M  Ç Ai(lR” ). Denote the set of aU weak limit points of (P/^’̂ )£>o as 

£ ]. 0 by The elements of are called the A-normalized tangent measure

distributions or A-tangent measure distributions of at x. If the limit

P  = lim P/^’̂
5lO '
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exists in the weak topology we say that P  is the unique ^-tangent measure distribution 

of ̂  at X.  Define G Ai(lR^) by

for Borel sets A  Ç IR”̂ , The A-normalized average tangent measures or A-average tangent 

measures of /z at z are the limit points with respect to the vague topology of the measures 

as £ I 0. If the limit

P = lim 
=10

exists, we say tha t ü is the unique A-average tangent measure of at x.

Let us state some properties of normalized tangent measure distributions:

P roposition  6.1.2 For every x G IR” the set V^ ( f i , x )  is a weakly closed subset o f V  

and every A-tangent measure distribution P of ^  at x fulfills supp P  Ç Tan^(/z, z). In 

particular, i f  x £ supp p every u G supp P fulfills f/(A) = 1 and hence P  is nontrivial.

P ro o f The proof of the first two statements is completely analogous to the proof in the 

case of standardized tangent measure distributions (see lemma 2.2.1). If z G supp p

then px^t{A) > 0 for aU f > 0 and thus, for every tangent measure z/ = ]im M ^(px^tn) G

T an^(^, x), we have i/(A) =  lim M^(/ia,,f„)(A) = 1. ■

In the following proposition we discuss the connection between different normalized tan ­

gent measure distributions and standardized tangent measure distributions.

P roposition  6 .1 .3

1. Suppose p fulfills a doubling condition at x and A i, A 2 are two normalizing functi­

ons. Then P  i-> P  0 (g q bijection of V^^{p , x )  onto V^^{p , x ) .

2. Suppose p  has positive and finite a-densities at x. Then P P  o is a

surjection ofV° ' {p, x)  onto V ^ { p , x ) .  In particular, if  P  is a unique a-standardized
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tangent measure distribution of /i at x, then P  o (M ^)  ̂ is a unique A-tangent 

measure distribution of ^  at x.

P ro o f (1) Suppose // fulfills a doubling condition at x and P  = limj_oo x).

Let F  6 C6(vW(]R." )̂). F o  is bounded and continuous on the open set {u € Af(IR") : 

[/(Ag) > 0} and, by proposition 1.3.6(3),

: « 6 ( 0 , 1 ) } Ç { i/ € X ( I R " )  : //(A^) > 0} .

Hence we also have

(I lo g r j l) - ' F  0 y  — . y F  0 dP = J  F d P o  .

Therefore P o is a Ag-tangent measure distribution.

For every A%-tangent measure distribution P  we have P = P  o o

Hence P  i-> P  o is one-to-one. Reversing the rôles of A i and Ag in the above 

arguments we see that for every P  G V^^{iJ,,x) we have P  o G and

P — P o o Thus P  !->• P  o is algo onto.

(2) Suppose now that // has positive and finite densities at x and P  = lim Pf. G P°'(//, æ). 

Let F  G C(,(Af(]R"^)). Then F  o is continuous and bounded on the open set {u : 

i/(A) > 0} and thus

,hm (llog rjl)-^  /  F{M^{f j . ^ , t ) )Y  = .üm ( | logr^j)"^ /  P o M ^ ( ^ ) y
J-^OO Vrj t  J-^oo  ̂ /  t

= j F d P o { M ^ ) - ' .

Thus F  0

Suppose now P  = limj_„oo P<^’̂  G P ^ (/i,x ) . By proposition 2.2.3(1) there is a subse­

quence (rj)  of (sj) such that P  = limj_»oo Pfj G V°‘{fi,x) exists. Then P  =  P  o 

and the mapping P ^  P o is onto. ■

Let us now address the question of existence of A-tangent measure distributions and A 

average tangent measures. If fi fulfills a doubfing condition the situation is easy:

P roposition  6 .1 .4  I f  fi ^  At(IR” ) fulfills a doubling condition at x then
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1. For every sequence {sj)jç^n with €j J, 0 there is a subsequence (rj)jgM such that

converges weakly to a A-tangent measure distribution o f at x.

2. x) is weakly closed and weakly connected.

3. P  is a unique A-tangent measure distribution o f at x if  and only i fV^{ f i ,  x)  = {P}.

4- The A-average tangent measures o f at x are the barycentres o f the A-tangent 

measure distributions o f ^  at x, i.e. the set o f all A-average tangent measures o f ^  

at X is given by

{ j u d P ( u )  ;

P ro o f  (1) Because /i fulfills a doubling condition at x we have, by lemma 1.3.6(1), that 

cl { /xiitlA) •  ̂ ^ (0,1)} is compact. The measures are concentrated on this

set, and therefore (1) and the weak compactness of P ^ (/i, x) are consequences of lemma 

1.2.8(3).

(2) As in proposition 2.2.3(2) the weak connectedness follows from the fact that P ^ ( /i, x)  Ç 

V  is compact and e t-»- Pf^'^ is continuous.

(3) If P  is a unique A-tangent measure distribution then obviously P ^ ( / / ,x )  = {P}. If 

V^{fJ,,x) = {P}, then by (1) for every 1 0 there is a subsequence (r^) of (g^) such that 

bmt-^oo -  P . Thus P  =  bmcjo

(4) For every /  6 Cc(lR"^) the continuous evaluation map u t-> u( f )  is bounded on the

compact set cl |   ̂ ^ (0,1) j .  Therefore, for every tangent measure distribution

P  =  bmj_^oo P ^ '^ , we have

lim (lloggjl)-^  /  M ^ ( / i^ ,f ) ( / )y  = f u { f ) d P { u )
J-*̂ oo Jej t J

and thus the barycentre of P  is a A-average tangent measure.

On the other hand, given a A-average tangent measure ü = limj_+co we can use (1) 

to find a subsequence (rj)  of {sj) such that there is a A-tangent measure distribution

P  = limj_,oo P^j'^ • Then the bary centre of P  equals 9. ■

But even if /z does not fulfill a doubling condition an existence theorem for normalized 

tangent measure distributions and average tangent measures holds. This theorem will be
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stated and proved in section 6.2. Let us now give an analogue to proposition 2.2.5.

P ro p o s itio n  6.1.5 Let fi, u Ç. At(lR”). Suppose v fulfills a doubling-condition v-almost

everywhere. I f  p then, for p-almost every x,

V ^ { p , x )  = V ^ { u , x ) .

P ro o f  Let /  = ^  be the Radon-Nikodym derivative. For //-almost every x we have

0 < f ( x )  < 00, lim supr^o < oo and, by lemma 1.2.2,

\f(y) -  /Ml ^
%    = “•

Fix such an z G IR"'. For every g : IR” — > [0, oo) from Cc(IR"), say with supp g Ç ^ (0 , R),

we get

:(s) -  /(* ) ;(s)|v(B{x, t ) )  v(B(x , t ) )

< ( l/ i /(B (x ,i) ) )  g ( ^ - ^ ) - ( f ( y ) - f ( x ) ) d v ( y )

h(x.iR) \f j y)  -  /(̂ )l ,, I, v{B{x, t R) )
u(B{x, tR))  •lIPIUup- •

The first factor in this expression tends to 0 and the last factor remains bounded by the 

doubling condition. Thus for every 6 > 0 there is T > 0 with

-, /(* )^ii(B{x,t)) v(B{x , t ) )

for all 0 < f < T.  It is easy to see that the set

is a compact subset of the open set {u : f/(A) > 0}. Let F  G C(,(vW(IR” )) and £ > 0. 

F  o is uniformly continuous on this subset and thus we can find for every £ > 0 some 

T > 0, such that

f  ° -  F  o M \ f { x ) . <  c/2

for aU 0 < f < r .  Therefore, for aU sufficiently small r  > 0,

( | l o g r | ) - ^ ^  F ( M " ^ ( / i ^ , t } ) y - ( | l o g r | ) - ^ ^  F ( M ^ { n ^ ^ t ) ) j
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< 5/2 + ||F||sup-(|logr|)-^y^ y  < g.

Hence P  is a A-tangent measure distribution of 1/ at x if and only if P is  a tangent measure 

distribution of /z at x. ■

We now formulate an analogue to the scale-in variance property 2.2.2 for normalized tan­

gent measure distributions of measures. Define a family of operators (5 a) on Ad(lR” )

by

S \  is continuous on the set {u : ï/o,a(A) > 0}.

P ro p o s itio n  6 .1 .6  Suppose p  G Af(IR"^) fulfills a doubling condition at x and let A > 0. 

Then P  = P  o for every P  G x).

P ro o f  Suppose P  = limj_^oo P ^ '^ • S \ is continuous on the open set {1/  : i/o,a(A) > 0} and 

we have seen in lemma 2.2.3(2) tha t the doubling condition implies that this set contains 

the compact set cl : ( G ( 0 , 1)}. For every F  G Ct(Al(IR” )) we thus get

f  F d P  =  ,U m (|log£^|)-'J  J - ^ O O  Jsj t
f l / A  ,  fJt

= Um ( |lo g £ j|)“ W  F o M  {px,\t) —
J—00 Jej/X t

hm (|log£ j|)  ̂ I  F  0
j —*•00 j^. t

I F d P o S ] ; ' .

This proves the statement. ■

Before we finish section 6.1 we recall the example which came at the beginning of this sec­

tion (example 6.1.1). S. Graf has shown in [Gra93] that self-similar measures fulfilling the 

open-set-condition (as in example 6.1.1) have unique normalized average tangent measure 

and unique normalized tangent measure distribution almost everywhere. He also gives an 

explicit formula for the normalized tangent measure distributions of such a measure.
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6.2 A n E xistence Theorem  for Norm alized Tangent M ea­

sure D istributions

In the previous section we studied an example of a measure /i that did not have a standar­

dized average tangent measure or a nontrivial standardized tangent measure distribution 

at /Lt-almost aU points. In this section we shaU see that this cannot occur for normalized 

average tangent measures or tangent measure distributions, even if the doubling condition 

does not hold. The existence theorem below is analogous to the existence theorem for 

tangent measures, which is proved in [Pre87, Theorem 2.5].

T h e o re m  6.2.1 Suppose p  G A1(1R" )̂ and (£j)j^ii fulfills £j J, 0.

Then, for p-almost every x G IR” , there is a subsequence that

converges to a A-tangent measure distribution o f p at x and conver­

ges to a A-average tangent measure of p  at x.

The proof of theorem 6.2.1 requires two lemmas:

L em m a 6.2.2 For p  G A1(IR” ), B  = B(0,s)  Ç IR"̂  and R  > 1 > r > 0, there is a C > 0 

such that

Jo SS 3   ̂ ^
for all £ G (0,1) and c > 0,

P ro o f  To begin with fix 0 < f < 1 and let

D = { (x ,2/) e B  X IR"̂  : \x -  y\ < rt /2}.

Note tha t, for aU z G B(y , r t /2)  H supp p,  we get

p{B{x,Rt ) )  ^  p { B { y , { R+ l ) t ) )  
p(B{x, r t ) )  -  p{B{y, r t /2))

Using this and Fubini’s theorem we get

p{B{x,Rt ) )
Ib  p{B{x, rt ) )
m

Jd p{B{x, rt ) )
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< /  ^^{B{y , (R+l ) t )dC’'{y)
J b {B, rl /2)

= j  C’' { B ( B , r t / 2 ) n B { x , { R +  l ) t ) )dn(x)

< f t (B(B,  (R  + 2)<)) ■ £"(B (0, {R + 1)<)).

Thus

Jb iltlf!))  ̂ +  2)) • [2(« + I)/'-]’* =: C,

and finally

as required.

L em m a 6 .2 .3  For ^-alm ost every x 6 IR” ihere is a subsequence {rj)j^i^ of{ej)j^i<i, such 

that for all R  Ç: JN there is Cr  > 0, such that for all j  G IN

P ro o f  Fix a ball B = B {0 ,5) Ç IR,” and 6 > 0. Let r, 7; > 0 be such that B{0, r) Ç {z :

A (z) > T)}. For Æ G IN let Cr  = {2^C)I{6t]) where C is chosen according to lemma 6.2.2.

From this lemma we know that, for aU £ G (0,1),

M { x  € B  : f  d y , ,  >  C r } )  <  ^ /2 « .

Let

Ae = {x £ B : f  CR for some Æ G IN }
-/O

and
00 00

 ̂- u n '
j=i k=j

Then //(Ac) < 6 and fi{A) < S. If x £ B \ A  there is a subsequence {rj) of (sj) such tha t 

X ^  Ar- and this means tha t, for aU Æ G IN and j  G IN,
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as required.

P ro o f  o f  6.2.1 From lemma 6.2.3 we see that, for /i-almost all z G IR” and aU j  € IN,

Let us look at average tangent measures first. By lemma 1.2.5(1) there is a subsequence 

of (rj)jeivj such that d<fSj{t) converges to a measure u G Af(lR"), which

by definition is a A-average tangent measure.

Now let us now look at tangent measure distributions. In order to show that 

a convergent subsequence it suffices to show, by Prohorov’s theorem (see lemma 1.2,8(3)), 

that for every 6 > 0 there is a compact set E  Ç Ai(IR^) such tha t > 1 — 6 for all

j  G IN. For this purpose let 6 > 0 be given. We define cr = Cr /{82~^)  and

T  = {« € (0,1) : < Ciî for all Æ € IN } ,

and observe that by lemma 1.2.5(1) the set

g  =  c i(  : f e r }

is compact. Since

< C r / cr =  6 ' 2

we conclude

P t ‘ (E ‘) <  <  £  % / { <  e  ( 0 , 1 )  :  >  C f i } )  <  s
-  -  - H'xA ^ )i?6N

as required for the use of Prohorov’s theorem. ■

A final remark should be made: Similarly to the situation with tangent measures (see 

[0 ’N95]) this existence result does not necessarily say that normalized tangent measure 

distributions always provide useful information on the geometry of the measure, although, 

by proposition 6.1.2, they are nontrivial almost everywhere.

153



______________ CHAPTER 6. NORMALIZED TANGENT MEASURE DISTRIBUTIONS______________

6.3 A  Shift—Invariance Theorem  for Unique N orm alized  

Tangent M easure D istributions

Fix a measure G and a normalizing function A, In this section we prove a

shift-invarance statement for unique tangent measure distributions, which is analogous to 

corollary 4.2.3 for standardized tangent measure distributions and to theorem 1.3.10 for 

tangent measures. We define a shift-operator S  as follows:

Fix 6 > 0 such tha t U{0,6) Ç {z : A (z) > 0} and let

As = {{u,u)  G IR” X AI(IR”) : U{u,S)  n supp u 0}.

Then S  is defined by

S \  As — > M (IR” )

We formulate a shift-invariance theorem for the supports of unique A-tangent measure 

distributions.

T h e o re m  6.3.1 For p-almost every x G IR" the following property holds:

I f  P  is the unique A-tangent measure distribution of p at x, u £ supp P and u G supp u, 

then S'^u G supp P.

The analogous statem ent for unique standardized tangent measure distributions has been 

derived from the Palm formula (see 4.2.3). The proof of theorem 6.3.1 requires two lemmas:

L em m a 6.3.2 The set As is open in IR” x Af (IR^) and the shift-operator S  is continuous 

on As.

P ro o f  The map

S ' : IR^ X A4(IR^) —  ̂ A4(1R^)

{x,v)  1-̂  1/ ,̂1.

is continuous by lemma 1.3.4. Hence the set As  =  G lR’̂ xA f(lR” ) : 6)) >

0} is open. Also 5* is continuous since S = o S'  and is continuous on the set 

S'{As).  m

154



6.3. A SHIFT-INVARIANCE THEOREM

Lem m a 6.3.3

(a) / /  /  : (0,1) — > [0, C] is a Borel mapping and

lim inf f  f { t )d(pr{ t )>XC,  
rlo Jo

then for X > r  > 0 we have

lim inf (pr{{t 6 (0,1) : f{t )  > r  • C}) > j  
riO 1 — r

(b) Let E  Ç IR" be a Borel set with 0 < n{E) < oo, and A Ç E  x (0,1) be a Borel set with

lim inf (pr{{t G (0,1) : (x, t )  e  A}) > A
rlO

for p-almost every x E . Then for all X > t > 0 we have

lim inf v?r ( { <  G (0,1) : p{{x e  E  :{x, t )  e  A}) >  r  • / z ( E ) j )  >  ^  \

P ro o f

(a) Suppose for a sequence (5^) with |  0 we had a constant r) such that

: /(O  < T - c ] ) > ' n > i  -  Y— -  = ^— -

1 — r  1 — r

for aU n G IN. Then

/  f { t ) d ( f s M  < 'ni'T-C) + {1 -  T])C < XC,
Jo

which is a contradiction to the hypothesis.

(b) By Fubini’s theorem we have

/  ( p r { { t  : (x, t) 6 A}) dp{x)  = /X 0 < Pr { A . )  =  f  p{{x e  E : (x , t )  e  A}) d ( p r { t ) -  
J e  Jo

Applying Fatou’s lemma to the left-hand side yields

l i m i n f /  p{{x e E  : (x, t )  e A})  d(pr{t) > f  ]im m f (pr{{t : (x^t) e A})  dp(x)rIO Jo J e

Now (a) can be applied with f{t )  = p{{x  G E  : (x ,t)  G A}) to give the result, ■
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P ro o f  o f  6 .3.1 Observe that, since P  is a separable metric space by lemma 1,2.8(2), the 

set

Eq {x 6 supp fi : lim =: Px exists }
r |0

is a Borel set and
P :  Eo V{M{W^))

X I  ̂ P x

is a Borel mapping. The first step in the proof is to achieve a suitable Borel decomposition 

of the set B Ç E q of  aU “bad points” , i.e. the points where our statement fails.

We can pick dense sequences (ui),gM in IR”̂ and, by lemma 1.2.5(3), (^'i)igN in Ai(lR”̂ ) 

and observe tha t U =  {U{ui^ l /p)  : p, i G IN, 1/p < and V = {U{ui^ 1/p) : p, z G IN} are 

countable bases of the topologies of IR” and Af(IR” ), respectively.

Suppose X G -Eq is a “bad point” . Then there is i/ G supp Px and u G supp u such that 

S'^u 0 supp Px- By lemma 6.3.2 we can even find a rational number £ > 0 and sets (7 G ZY, 

y  G V such tha t

• (u, v) e As foT diR u e u , u e y ,

• d(supp Px^ S'^v) > £ for all u G (7, f/ G y ,

•  supp Px n  y  /  0 and supp u  r \ U  ^  0 for aU z/ G y .

Pick V G supp Px n y  and u G supp z/ H P . By lemma 6.3.2 we can find P ' G ZY with 

u Ç: U' Ç U and y '  G V with u Ç. V ' Ç V  such that, whenever g £ V '  and y G P \

d (5V , S ^ g ) < e l 2 .

Say P ' =  U{uj,  l / ( p +  1)) with ( l /p )  < 6 and denote A := \uj\ +  1/p.

Using lemma 1.2.4 we can find a set V"  G V with u £ V "  Ç V  such that, for all pi, P2 G y " ,

(a)  p i ( P ( u j , l / ( p +  1))) > z /( P (w j , l / (p +  1)) - (1/V5) ,

(b )  p i (P (0 ,A ) ) < p 2 ( P (0 ,2 A ) )  2,

(c)  pl(P(Uj,  l /p ) )  > P2 (P(Wj, l / ( p +  1))) • (1/2).
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Now say V"  =  U{vkAl^)-  Observe that \uj — w| < l / (p  +  1) and f/) < Ifq.  By

(a) and because u € supp v we have {uj,i/k) G >^i/(p+i)- Because u G supp Px there is a 

rational rj > 0 such that Px{U{uk, 1/g)) > 7/.

Let us assume that the set B  of “bad points” has fi{B) > 0, We have seen so far tha t B  

is contained in the union of count ably many Borel sets E{, each of which is characterized 

by a family (e, 7/,p, q, u, u) of parameters such that 6,7/ > 0 are rational numbers, p, ç G IN

with l /p  <  ̂ , w G {w,- : 7 G IN} and u G {I'i ' * € IN} such that

1. (u ,  I/) G -^i/(p-|-i)5

2. for all p G IR”̂ , Q G A^(1R” ) with \y — u\ < l /p  and d{g,i^) < l /p  we have 

d (5 '"i/,6 '^p)< 6/2 ,

3. for aU Qi,Q2 € At(lR") with î ) < l /p  we have pi(B(w, l/p ) )  > (1/2) •

g2(U{u,  l / ( p +  1))) and pi(17(0, A)) < 2 • p2(5(0,2A)) for A = |u| +  ( l/p ) ,

and Ei is the Borel set of aU x fulfiUing

4 .  Px{U{u, l /q))  > rj,

5. d(supp Px^S'^y) > e.

By our assumption one of the sets E{ must have fi{Ei) > 0, and without losing generality 

we can assume that fi{Ei) < oo. We denote this set E  and its characterizing parameters 

Define
l / (p+l)))

8-i/(B(0,2A )) ■

Since U{u,  l / ( p +  1)) Ç B(0,2A) and, by (1), y{U{u,  l / ( p +  1))) > 0, K is well-defined and 

we have 0 < K < 1/8.
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The second step in the proof is to show that, for //-almost all z G E , we have 

lim inf G (0,1) : fi{B{x -(- tu, t /p)  C\ E ) >  k - Xt)) and
rlO V t

For the proof we observe tha t, by lemma 1.2.3, there is a //-density point x of E.  If t is 

such that , u) < 1/q we get, using (3),

l/p ))  > Px,f(A) • (1/2) • u{U(u,  l / (p  -h 1)))

= //x,/(A) • 4k • //(^(0,2A))

> 2/C-//:,,t(5(0,A)),

and using (4)

lim inf G (0,1) : 4 — < V?}) > PxiU{i^, l/q)) > f).

If (6.7) did not hold, we could find a sequence <n i  0 such that

f i {B{x+ tnU, tn/p)n E)  < K ’ p{B{x,Xtn))  and 4 —^ -^ 4 ^ ,^ )  < 1/9-

Then

Px,tn{B{u, l /p) )  p{B{x  -f tnU, tn/p))
2k  <

Px,/„(5(0,A)) p(B{x,Xtn))
p(B{x  4- tnU, tnjp)  n E ) ^  p{B(x  4- tr,U, tnjp) \  E)

fl{B{x,Xtn)) fl (B{x,Xtn))
f i {B{ x , X t n ) \ E)

p{B{x,Xtn))

and, since the last summand tends to 0 as n tends to oo, this is a contradiction.

Thus (6.7) is proved.

Now apply lemma 6.3.3(b) to get, for aU 7/ > r  > 0,

hm inf (pr(\ t  : p{{x  6 E  : p(B{x  4- tu, t /p)  D E)  > k - p{B(x,  At)) and
rjO '

4 ^ '  < !/«}) ^  ^ ^  (6 8)
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6.3. A SHIFT-INVARIANCE THEOREM

For every x Ç. E  let

T{x)  = { t e  (0,1) : d (^ ^ ^ ^ ,su p p  Fr) < 6/2}.

Since

lim inf v?r(r(x)) > G vW(lR") : d(i/,supp P^) < 6/2}) = 1,
rio

we can apply lemma 6.3.3(b) again and get, for all 0 < r  < 1,

Urn e (0,1) : fi{{y e E  : t e  T{y)})  > r  • M ^ )} )  =  1* (6.9)

Using (6.8) and (6.9) we can now finish the proof as follows:

Let iV 6 IN be the constant appearing in Besicovitch’s covering theorem, see lemma 1.2.1, 

and denote c = {1/4)ktj/ N  > 0. Using (6.8) and (6.9), we can pick a ( G (0,1), such that 

there are Borel sets Ai, A] Ç E  such that > {r]/2)- fi{E) and //(/Ig) > (1 — c)-/z(P),

and such that

6. fi{B{x +  tu, t /p)  n E ) >  K'  ^ (P (x , Xt)) and d{ for all x G Ai,

7. t £ T{x)  for all X G Ag.

Cover Ai  with the family

B := {P(x, Xt) : X e Ai ]

of closed balls of fixed radius.

By Besicovitch’s covering theorem we can find a disjoint subfamily

B' = { B { x i , X t ) : i e I } C B

such tha t

m(U  X ^ i ) '
i£l

Since B'  is disjoint /  is at most countable. Let

P  := ( J  B{xi  + tu^ t /p)  n E.
iei
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This union is disjoint since, by the definition of A, B{xi  + tu, t /p) D E C  B(xi ,  Xt). Using

(6) in the second step we get

/^(^) = ^  + tu, t jp)  n E)
iei

> E
iei

>

K>
ÎV

iei
K

2N

Therefore we can find y G A2 D 5 ,  which implies, by definition of B,  tha t there is x £ A\ 

such that \y — {x -\-tu)\ < t/p  and thus

y - x
— u < l / p -

Moreover, by (6) we have

Using also (2) these facts imply that

Since y G A2 we have, by (7),

and hence, using (5),

£ < d(supp Py,S^l/)

< d(supp By, ) +  d{ . , S^^u)

£  , £

< 2 +  2 ~ " ’

a contradiction, which proves the statement.
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C hapter 7

Sum m ary and Outlook

In the preceding chapters of this thesis we have investigated sets and measures in Eucli­

dean spaces by means of their average densities, average tangent measures and tangent 

measure distributions. In this chapter we give a short summary of the thesis, indicating 

the main results and pointing out some questions which remain open.

In the introductory chapter we introduce the objects of study: Sets and measures in 

Euclidean spaces. A survey of some important definitions and known results in geometric 

measure theory is given. These results show how the notions of densities and tangent 

measures reflect the fundamental difference between the behaviour of rectifiable measures 

on the one hand and non-rectifiable or fractal measures on the other hand. They also 

motivate the introduction of average densities and tangent measure distributions as tools 

for the study of non-rectifiable measures.

In the second chapter we give definitions and some basic results on average densites, stan­

dardized average tangent measures and standardized tangent measure distributions. We 

study several examples. The most important new contribution is the construction of an 

example of a measure with positive and finite densities which has unique average tangent 

measures but non-unique tangent measure distributions almost everywhere (see proposi­

tion 2.3.2(b)).
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CHAPTER 7. SUMMARY AND OUTLOOK

In the third chapter we approach the description of one-sided average densities of measures 

on the hne by showing that they exhibit a completely different behaviour than one-sided 

ordinary densities: We prove that for a measure with bounded a-densities almost every­

where the one-sided lower average a-densities can only vanish on a set of measure zero 

(see theorem 3.1.3). In the course of the proof we provide lemmas on the geometry of the 

measure which are interesting in their own right and which wiU also be of use in the proof 

of the main result.

In the fourth chapter we study measures with unique tangent measure distributions. We 

prove tha t, for a measure with positive and finite a-densities almost everywhere, at almost 

every point the unique tangent measure distribution, if it exists, is a Palm distribution (see 

theorem 4.2.1). This result yields an interesting connection to the theory of self-similar 

random measures: The unique tangent measure distributions define a-self similar random 

measures in the axiomatic sense of U. Zahle. We give some applications of the result.

In the fifth chapter we prove the main result of this thesis: We investigate tangent measu­

re distributions of measures on the line without imposing any uniqueness conditions. We 

prove that, for a measure on the line with positive and finite a-densities almost every­

where, at almost all points aU tangent measure distributions are Palm distributions and 

therefore define a-self similar random measures (see theorem 5.1.1). This result has a 

couple of interesting consequences, like a local symmetry principle (see theorem 5.1.3), or 

a complete description of the one-sided average densities of a measure in terms of its lower 

and upper average densities (see corollary 5.1.4).

In the sixth chapter we introduce the normalized tangent measure distributions. We give 

an example of a measure which has a unique normalized tangent measure distribution 

but no non-trivial standardized tangent measure distributions at almost every point (see 

example 6.1.1). We prove an existence theorem for normalized tangent measure distri­

butions (see theorem 6.2.1) and a shift-invariance theorem for unique normalized tangent 

measure distributions (see theorem 6.3.1).
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Here are some natural questions one could approach in future research:

• Can the condition of positive lower density be weakened in theorem 3.1.3 and theorem 

5.1.1 ?

Recall from section 4.3 that the proof of the Palm formula (4.1) does not require the 

lower densities to be positive almost everywhere. However, in the proof of theorem 

3,1.3 and theorem 5.1.1 this condition is needed (it is required for lemma 3.2.4).

• Can the statement of theorem 5.1.1 he generalized to measures in higher dimensions? 

This is subject of current research.

• Is there an analogue o f the Palm property for normalized tangent measure distri­

butions ?

Observe that theorem 6.3.1 is an analogue of corollary 4.2.3, which was an immediate 

consequence of the Palm property.

• To what extent can order-two notions like average densities and tangent measure 

distributions be used to solve problems from geometric measure theory (e.g. regularity 

problems)?
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