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Abstract—Eye-tracking technology is an innovative tool that
holds promise for enhancing dementia screening. In this work,
we introduce a novel way of extracting salient features directly
from the raw eye-tracking data of a mixed sample of dementia
patients during a novel instruction-less cognitive test. Our
approach is based on self-supervised representation learning
where, by training initially a deep neural network to solve a
pretext task using well-defined available labels (e.g. recognising
distinct cognitive activities in healthy individuals), the network
encodes high-level semantic information which is useful for
solving other problems of interest (e.g. dementia classification).
Inspired by previous work in explainable AI, we use the
Layer-wise Relevance Propagation (LRP) technique to describe
our network’s decisions in differentiating between the distinct
cognitive activities. The extent to which eye-tracking features
of dementia patients deviate from healthy behaviour is then
explored, followed by a comparison between self-supervised
and handcrafted representations on discriminating between
participants with and without dementia. Our findings not only
reveal novel self-supervised learning features that are more
sensitive than handcrafted features in detecting performance
differences between participants with and without dementia
across a variety of tasks, but also validate that instruction-
less eye-tracking tests can detect oculomotor biomarkers of
dementia-related cognitive dysfunction. This work highlights
the contribution of self-supervised representation learning tech-
niques in biomedical applications where the small number of
patients, the non-homogenous presentations of the disease and
the complexity of the setting can be a challenge using state-of-
the-art feature extraction methods.
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I. INTRODUCTION

EMENTIA represents a major, global healthcare chal-

lenge. This umbrella term covers a number of neu-
rodegenerative syndromes featuring gradual disturbance of
various cognitive functions that are severe enough to inter-
fere with tasks of daily life. Alzheimer’s disease (AD), the
most common cause of dementia, is most commonly char-
acterised by gradual episodic memory impairment whereas

K. Mengoudi, D. Ravi, D. Alexander are with Centre for Medical Image
Computing, Department of Computer Science, University College London,
London, UK. (e-mail: kyriaki.mengoudi.16@ucl.ac.uk).

S. Crutch, K. Yong, E. Brotherhood, K. Lu, J. Schott and I. Pavisic
are with Dementia Research Centre, Queen Square Institute of Neurology,
Department of Neurodegenerative disease, University College London,
London, UK.

I. Pavisic is also with UK Dementia Research Institute at University
College London

S. Primativo is with the Department of Human Science, LUMSA Uni-
versity, Rome, Italy.

atypical forms may primarily affect vision (posterior cortical
atrophy; PCA), language (logopenic variant primary progres-
sive aphasia; IvPPA) or behaviour and executive functions.
Other diseases can lead to language-led dementias including
semantic variant (svPPA) and progressive non fluent variants
of primary progressive aphasia (nfvPPA), while subtypes led
by behavioural change include the behavioural variant of
frontotemporal dementia (bvFTD).

Given the defining characteristics of most dementia syn-
dromes are primarily cognitive in nature, assessment of a
person’s cognition is a vital component of both diagnostic
services and research investigations, and is the most common
outcome measure by which the effectiveness of potential
pharmaceutical and non-pharmaceutical therapies is judged.
Standardised paper-and-pencil cognitive assessment tools are
a key component of the screening and diagnostic process,
but have a number of limitations. Accurate assessments are
long and associated with participant fatigue and stress, but
brief tests often elicit floor and ceiling effects owing to a
lack of dynamic range [1]. Literacy and education effects
on cognitive scores due to the high linguistic demands of
instructions, lack of reproducibility due to the assessor’s
subjectivity bias and ecological validity of some cognitive
domains (e.g. social cognition) are further potential con-
founding factors [2].

Recent studies suggest that eye-tracking-based cognitive
assessment might ameliorate some of the existing problems
as it enables a brief and quantitative evaluation of cog-
nitive functions [2]-[4]. Eye-tracking technology provides
fine-grained information regarding oculomotor information
(pupil dilation and gaze) and has been used to uncover eye
movement abnormalities in different dementia syndromes
[4], [5]. Previous studies explored its usability mainly for
diagnostic purposes using it as a proxy to cognition during
basic oculomotor functions (e.g. saccadic behaviour) and
for evaluation of particular higher-order cognitive functions
(e.g. memory, attention) [6], [7]. Recently Oyama et al. [2]
used it as a communication tool during cognitive assessment
to collect answers from patients with dementia and mild
cognitive impairment that indicated their preference with
their gaze while the tasks instructions were written on
the screen. Although these tests capture critical aspects of
task performance, they are still susceptible to the need for
instructing patients on how to complete the tasks, which
is prone to mistakes caused by misunderstandings, language



difficulties or patients at the later stages of the disease. Novel
instruction-less tests might be a window to more natural,
robust and ecologically valid cognitive evaluation.

Currently, the most commonly used way of summarising
eye-tracking information is the computation of statistics over
the pupil dilation and the gaze signal. The latter is converted
to a sequential series of events predominantly consisting of
fixations (eyes held stable), saccades (rapid movements to
change the position of fixations) and blinks. Because of
the high level of variability between individuals, a single
measure such as mean fixation duration per spatial unit
(e.g. a word in a text) is not able to capture characteristics
relevant to cognitive processes and thus a set of features
are calculated on carefully selected spatial areas of interest.
Other methods for eye movement analysis include statistics
and heatmaps over raw gaze data, similarity indices of
scanpaths, as well as, the so-called n-grams features that
encode information for the direction and the amplitude of
eye movements [8]-[10]. In dementia research, the previous
features take the form of abnormalities and are expressed
in terms of latency, accuracy, stability and variability [11].
However, the identification of a complete set of handcrafted
features from cognitive tests sensitive to subtle task and
participant-specific abnormalities is non-trivial and time-
consuming. Additionally, these features are not generalisable
to more complex stimuli because they rely on specific
stimulus characteristics (e.g. regions of interest).

To overcome the limitations of handcrafted features, re-
searchers have explored different computational approaches
using unsupervised representation learning; by learning an
embedding that captures some of the semantics of the
input placing semantically similar inputs close together in
the embedding space [12]. Self-supervised representation
learning is a promising subclass of unsupervised represen-
tation learning which has produced state-of-the-art visual
representations in standard computer vision problems [13].
This method uses information already present in the data as
a supervision signal so that supervised learning techniques
can be used. The rationale behind self-supervised learning
is that by training a network to solve a pretext task, it
encodes high-level semantic representations that are useful
for solving other tasks of interest that usually have little
annotated data. For sensors data, supervised representation
learning with deep learning models has been shown to be
competent in tasks including Human Activity Recognition
(HAR) from wearable devices and detection of seizures or
arrhythmia from electroencephalogram (EEG) and electro-
cardiogram (ECQG), respectively [14]-[16]. However to our
knowledge for eye-tracking data, supervised representation
learning has only been used for detection of gaze events
(e.g. fixations, saccades) from raw eye-tracking sequences
and self-supervised representation learning has not been
exploited [17].

In this work, we introduce a novel way of detecting
abnormal behaviour and automatically extracting salient
features from a novel instruction-less eye-tracking cogni-

tive test administered to well-characterised patients with
a variety of dementia diagnoses and healthy controls. We
use the pretext task of identifying the particular cognitive
task from which a particular eye-tracking sequence came.
Labels are well-defined and known from this task and it
supports self-supervised learning to identify salient features
of eye-tracking sequences. Our results not only validate that
instruction-less eye-tracking tests can detect dementia status
but also reveal novel self-supervised learning features that
are more sensitive than handcrafted features in detecting per-
formance differences between participants with and without
dementia across a variety of tasks.

II. MATERIALS
A. Datasets

Controls A: Eye-movement data from 432 healthy adults
between 18 and 82 years were collected during a residency
at the London Science Museum as part of the C-PLACID
project. Thirty-one of these (mean age: 62.03 [SD: 7.79],
19 females [F], 12 males [M]) were over fifty years old,
had proficient skills in English and reported no neurological
conditions, visual impairment or dyslexia.

Controls B: Data from the Insight 46, a sub-study of
the National Survey of Health and Development (NSHD)
(British 1946 Birth Cohort) were also used for validation.
144 healthy individuals (67 F : 77 M) born in the same
week in 1946 underwent the eye-tracking test and standard
cognitive assessments at age 69-71 years. 121 of these
individuals were cognitively healthy and amyloid negative
based on Amyloid PET imaging.

Patients: Thirty patients with dementia (10 F : 20 M)
participated in the study with mean age 68.9 years (SD :
9.16), of which 20 were less than 65 years of age at the time
of their diagnosis. In terms of disease severity, their average
MMSE score was 22.6 (SD: 6.68) and 18 of the patients
had mild symptoms (based on correspondence with Clinical
Dementia Rating scale; MMSE>20) [18]. These participants
fulfilled standard clinical criteria for diagnosis of one of the
following dementia subtypes: AD (6 subjects), bvFTD (7),
IvPPA (5), nfvPPA (6) and svPPA (6).

B. Stimuli and Procedure

All participants (patients and Controls A & B) completed
a free-viewing eye-tracking test in which 48 images were
presented on a computer screen for 3 seconds each (for
a total of 192s) and their eye movements were recorded
using a desk-mounted video-based eye-tracker (Eyelink 1000
Plus) at 1000 Hz. Participants were not given explicit task
instructions; they were just asked to look at the screen. A
chin rest was used to maintain a constant viewing distance
of 80cm in all participants. Stimuli were selected to engage
different cognitive functions:
1) Scene exploration: i) social interaction; 10 images with
social (people present) and non-social context (people
absent) (e.g. Figure 1 a.) , ii) missing items; 10 images,
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She likes having a cup of
injury in the morning.

Fig. 1: Example stimuli from the five cognitive tasks illustrated as they were presented on the computer screen sequentially
(one image at a time) in the order administered: a. social interaction; image with people present (social), b. missing items;
a chair with a missing part, c. social scenes; combination of pictures depicting two gardens scenes with a person present
on the right, d. semantic processing; an example of a semantically incongruent sentence; ”’She likes having a cup of injury
in the morning”, e. recognition memory; the previously presented picture (from the social interaction task) on the right

(see a.) is coupled with a new picture on the left.

half complete and half incomplete (e.g. Figure 1 b.)
and 1iii) social scenes; 8 images depicting either a
garden or a kitchen scene where a person is present
on one side of the screen and absent on the other (e.g.
Figure 1 c.).

2) Semantic processing: 10 sentences, half of which
were semantically congruent (e.g. “In the jungle there
are many different animals.”) and half semantically
incongruent (e.g. “She likes having a cup of injury in
the morning.”), administered in pseudorandom order
(e.g. Figure 1 d.).

3) Recognition memory: 10 pairs of images, one of which
was seen previously in the social interaction task and
the other which is a new image of equivalent style and
complexity (e.g. Figure 1 d.).

There were four different versions of this test. V1-2
included all tasks (semantic processing, scene exploration,
recognition memory) but had different stimulus sets. V3-
4 included the same stimuli as V1-2 but excluded the
semantic processing task. Controls A (Science Museum)
participants were randomly assigned to one of the four
versions. Controls B (Insight 46), Controls A elderly and
patients were administered either version V1 or 2.

The eye-tracker was calibrated for each participant using
9 calibration points. Each trial was initiated by the experi-
menter and every trial was preceded by a centrally presented
fixation point used as a drift correct stimulus. The fixation
point also enabled a drift check, as the experiment only
proceeded if the participants was looking at the drift target.
Images were presented in a fixed random order within each
task, and tasks were administered to all participants in the
same order.

III. METHODOLOGY

To mine the information of the eye-tracking time series
of this instruction-less eye-tracking test, we implemented the
following steps (Figure 2):

I) Cognitive activity recognition: Firstly, self-supervised

representation learning was implemented in which

condensed abstract representations of the input signal
are learnt training a deep neural network on Cognitive
Activity Recognition (CAR) based on healthy individ-
ual’s data (Controls A).
II) Feature relevance visualisation: Once the distribution
of healthy behaviour was learnt, LRP was used to
explain the networks’ decisions in differentiating be-
tween cognitive activities and eventually to better
understand the mechanisms underpinning healthy be-
haviour.
Abnormality detection: Next, the extent to which eye-
tracking features of dementia patients deviate from
healthy behaviour was explored.
Dementia classification: This was followed by a com-
parison between self-supervised and handcrafted rep-
resentations on discriminating between participants
with and without dementia.
For the following analysis, the models’ performance was
evaluated in terms of F'1 score which is the harmonic mean
of precision and recall.

110)

V)

A. Data Processing

The EyeLink system recorded gaze position and pupil size
in a monocular tracking mode providing 1000 samples per
second. Gaze position reports the (x, y) coordinates of a
subject’s gaze on the display (resolution: 1920 x 1080) in
actual display coordinates (pixels) with origin (0, 0) at the
top left. Pupil size is reported as the pupil area measured in
arbitrary units typically ranging between 100 to 10000 units.
Raw samples, therefore, consist of three-time series of X, y
coordinates of gaze and pupil size having a dimension of
[sampling rate x trial duration].

Eye movement events were generated by the EyeLink
tracker including fixations, saccades and blinks using stan-
dard velocity and acceleration thresholds. Saccades iden-
tified as containing blinks were considered blinks. Trials
with total number of samples outside the screen’s resolution
or total blink duration more than 500ms were considered
erroneous and were excluded from the analysis.
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Fig. 2: Outline of the Methodology: I. Two multi-head Convolutional Neural Networks (CNN), model A and B, were trained
to identify the particular cognitive task from which a particular eye-tracking sequence came based on healthy individual’s
data (Controls A). II. Heatmaps based on Layer-wise Relevance Propagation technique applied on model A were visualised
that show areas of the input that particularly contribute to a prediction of a cognitive task. III. Controls B and Dementia data
were fed to model B for trial and subject-wise abnormality detection. IV. Model’s B features learnt through self-supervised
learning (by training initially a deep neural network to recognise distinct cognitive activities in healthy individuals) were
transferred for subject-wise dementia classification using an support vector machine majority voting scheme.

Gaze position signal was normalised to the display co-
ordinates by dividing the gaze coordinates by the screen
resolution. Missing values of gaze position were imputed
with a constant zero value to avoid interpolation bias; as
missing values might have a physical meaning indicating
fatigue or cognitive load.

Processing of pupil size data involved discarding data
before and after blinks and linear interpolation of missing
values and lowpass Butterworth filter with cut-off frequency
of 5 Hz. This cut-off frequency was found to be optimal for
noise minimisation and signal restitution in our data. The
baseline pupil size was measured as the average pupil size
for a period of 300 ms immediately preceding each stimulus
onset. This baseline value was selected because firstly it is
a duration long enough to give a robust estimate which is
longer than the average blink duration. Secondly, it is small
enough to minimise the influence of pupil dilations from a
previous trial since the inter-trial intervals in the battery are
1000 ms. Baseline corrected pupil diameters were computed
by subtracting the baseline pupil size from the raw pupil size
after stimulus onset.

1) Handcrafted Features: The following basic eye move-
ment statistics were chosen to summarise the free-viewing
tasks of the experiment:

saccade counts, total duration of saccades, median of the
length of saccades (x-coordinate of gaze), number of pro-
gressive saccades (forwards), number of regressive saccades

(backwards), fixation counts, mean/max/standard deviation,
blinks counts, total duration of blinks and total duration
of fixation duration, mean/std/min/max of peak velocity,
visual angle, pupil size, pupil size during fixations, x and
y coordinates of gaze.

Scanpath length, namely, the Euclidean distance of sac-
cadic movements with respect to x and y position of gaze,
was also selected as a measure of the overall functional
performance of participants since it has been associated with
higher fluid intelligence scores in healthy individuals [19].

Overall differences in eye-movement handcrafted features
across all tasks between healthy controls and dementia pa-
tients were evaluated using a Generalised Estimating Equa-
tion (GEE) model with independence correlation structure
and robust standard errors to adjust for repeated measures
for each subject [20]. In addition to the group category
(controls/dementia), the following variables were included
in the GEE models: age, education, gender, task and task by
group interactions.

B. Representation Learning Methodology

1) Cognitive Activity Recognition: Cognitive activity
recognition from eye movements was used in this work as
the pretext task and a deep neural network was trained in
a trial-wise manner (rather than subject-wise) given the raw
eye-tracking signals. CAR can be considered as a classifica-
tion problem, where the inputs are time series and the out-



puts are the cognitive task one is being assessed on (seman-
tic processing; scene exploration; recognition memory). In
particular, a multi-head CNN architecture was implemented
which takes as an input the three eye-tracking time series,
processes them separately by individual one-dimensional
convolutional heads and extracts features specific to each
time series [21]. This network’s architecture processes the
entire sequence at once generating a single feature map for
each sample and then all the features maps are concatenated.
In this way, the features extracted from each time series
are kept separated which improves the interpretability of the
model and captures better data of different natures and scales
that are not correlated (e.g. gaze coordinates and pupil size).
After the feature extraction stage, a global average pooling
operation was applied which calculates the average output
of each feature map and prepares the model for the final
classification layer.

Defining the number of output classes is not straight-
forward, as the instruction-less nature of the test increases
between-trial variability causing label ambiguity. Although
the stimuli were designed to trigger specific reactions, it
is not guaranteed that participants were performing in a
similar/uniform way, especially on the missing item, social
scenes and interaction tasks which fall broadly into the scene
exploration task.

The following two multi-class problems were investigated
which differ on the number of output classes in the final
classification layer:

i) Model A: Three-class problem (scene exploration,
recognition memory and semantic processing task)

i) Model B: Five-class problem (missing items, social
scenes, social interaction, recognition memory and
semantic processing task)

Figure 3 demonstrates the architectures of model A and
B. Model A consists of a single 1-D convolutional layer
(kernel size 5, stride equal to 1, no padding) with 5 features
maps for each input signal followed by a batch normalisation
layer and a ReLU activation function. Model B includes 12
blocks of the following architecture in the order presented:
1-D convolutional layer (kernel size 5, stride equal to 1,
no padding) with 30 features maps, batch normalisation
layer, ReLU activation function, dropout layer (p = 0.2)
and average pooling layer (pool size 2). In both cases, a
global average pooling layer follows the feature extraction
block and reduces the dimension to 15 and 90 features for
model A and B respectively. These features are the input of
a perceptron applied with a softmax activation function.

2) Training Details: Hyper-parameter selection and
model comparisons were implemented within the following
pipeline: data were split in train and test set under the
constraint that trials of an individual appear in only one
of the sets. 5-fold cross-validation was implemented on the
train set for each combination of parameters selected using
grid or random search. The set of parameters with the best
5-fold cross-validation score (F'1 score) was selected and
the model with weights from the best fold was evaluated on
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Fig. 3: Model A and B Neural Networks Architectures
for cognitive activity recognition with 3 (scene exploration,
recognition memory and semantic processing task) and 5
(missing items, social scenes, social interaction, recognition
memory and semantic processing task) output classes re-
spectively.

the test set.

The proposed framework was implemented and trained
in KERAS. The network parameters were optimised by
minimising the categorical cross-entropy loss function using
gradient descent with Adam optimiser having learning rate
of 0.001 and batch size of 50. Weights were randomly
orthogonally initialised with the Glorot normal initialiser.
The L1-norm weight regularisation was applied with reg-
ularisation rate of 10~°. The maximum number of epochs
was 50 and early stopping was implemented which stops
the training process if the validation loss does not increase
for 50 contiguous epochs. After training the model, only
the weights of the epoch with the higher F'1 score on the
validation set were saved and used for the evaluation of the
model.



3) Data Augmentation: Given the intrinsic within and
between person variability and the limited amount of eye
movement data, data augmentation can be used to prevent
overfitting and improve the generalisability of the models
[22]. Finding invariant properties of the data against certain
transformations is the main idea behind the selection of the
following four techniques implemented: shifting, jittering,
scaling and cropping. For each gaze position time series,
transformations were applied by randomly selecting two out
of the four techniques.

Shifting involves generating samples by shifting x and
y coordinate of gaze by a scalar (randomly sampled from
the interval [-10, 100] for the semantic processing task and
from [-100, 100] for all other tasks). In this way, we covered
unexplored input space by accounting for variability of the
movement while preserving the shape of it. Jittering is a
way of simulating additive noise attributed to varying levels
of gaze stability in individuals or noise associated with
the sensor. Three seconds of Gaussian noise was generated
with a standard deviation value sampled from a uniform
distribution U(0.05, 1). Scaling the input by multiplying
the x and y coordinates of gaze with the same scaling
factor attempts to change the magnitude of the signal and
subsequently slightly the shape of the gaze scanpath. The
scaling factor was sampled from the normal distribution with
a mean of one and standard deviation between 0.05 and
0.2 for the semantic processing task or 0.1 for the others.
Cropping the input involves removing the first (or last) x
time points (x in [5, 100]), shifting the signal x points in the
time axis and consequently interpolating with zero values to
keep the original dimension.

C. Feature Relevance Visualisation

LRP, proposed in [23], was applied to the best performing
CAR model to better understand the mechanisms underpin-
ning healthy behaviour during different cognitive activities.
LRP attempts to explain the decisions of non-linear models
such as deep neural networks. The goal of this technique is
to quantify the contribution of each component of an input
a to the prediction f(a) made by a given decision function
f. To this aim, LRP decomposes f attributing relevance
scores R; to all components i of @ such that f(a) =), R;.
The algorithm starts from an output neuron j by defining
f(a) = R; and it iterates over all the layers of the model
backwards to the input attributing relevance messages to
each neuron under the constraint that the total amount of
relevance is conserved in each layer.

The relevance value being propagated from neuron j to its
input ¢ is proportional to each input ¢ contribution to the
activation of the neuron j and is defined as:

Py
Rij = —*Rj, (D

Zj
where where z;; is the contribution of the input neuron
i to the output neuron j and z; = ), z;;. In this work a
modification of this formula is used, the so-called e-rule,

which introduces a stabiliser ¢ > 0 to the denominator of
formula 1 to avoid possible unbounded values of Rz;_,; with
small values of z;. The relevance score R; at input neuron %
is then obtained by summing all incoming relevance values
R;_,; from the output neurons to which ¢ contributes to and
is defined as:

Ri=Y Rij. @)
J

By replacing R;.; with the above formula, it is obvious
that a neuron is relevant if it contributes to neurons that are
relevant themselves.

In the CAR classification setting, for input neurons i, R; ~
0 indicates inputs with no or little influence on the model’s
decision, R; > 0 represents parts of the input that explain
a specific class while R; < 0 contradicts the prediction of
that class.

Once the relevance values were computed, they were
normalised to the interval [—1,1] by dividing with the
maximum absolute relevance value of the entire input signal.

D. Abnormality Detection

Once the normal behaviour during this cognitive assess-
ment was learnt, the extent to which the eye movement pat-
terns of dementia patients deviate from it was investigated. In
particular, a question of interest is whether dementia patients
passively look at the screen without following the implied
instructions (e.g. reading when a sentence is presented on
the screen) which is the expected activity from the controls.
To investigate that, data from unseen elder controls (controls
B) and dementia patients were fed into the pre-trained CAR
neural network and the number of misclassified samples
were estimated for each cognitive task and group. Since
misclassifications might be attributed to behaviour patterns
not seen in the training set, abnormality was defined in
relation to an unseen elderly controls’ dataset. A threshold
that discriminates normal from abnormal cases for each
cognitive task was created by calculating the average pre-
dicted probability of an elder control trial belonging to each
cognitive task classes. A trial from the dementia group
was considered abnormal if the model assigned it to a
class with probability less than the threshold value of that
specific class. Finally, a majority voting strategy was applied
to determine abnormal participants of the dementia cohort
using the median value of the abnormality scores of their
trials.

E. Dementia Classification

Since the ultimate purpose of cognitive assessment is
the detection of dementia related oculomotor biomarkers,
we evaluated whether the representations learnt using the
cognitive activity recognition task (i.e. pretext task) are
useful for dementia classification (i.e. target task). If the rep-
resentations learnt are general and not specific to the pretext
task, then the target task is expected to perform well. To this
aim, the data of the elderly healthy controls A and dementia



patients were fed to the pre-trained CAR neural network
and the outputs of the average global pooling layer were the
features to be transferred for dementia classification. The
performance of a support vector machine (SVM) classifier
with these abstract features and handcrafted features was
compared. The following procedure was applied to both
feature sets.

The features were adjusted by controlling for potential
confounding effects of gender, age and education levels
before being fed to the classifier. A multivariate multiple
linear regression model was fitted on the controls’ data with
the features as dependent variables and age, education and
gender as independent variables. Subsequently, the residuals
were calculated for the features matrix which measure
unexplained variance presumably attributed to the task or
to other individual characteristics. Using the model with the
estimated coefficients the residuals were also calculated for
the patients’ features. The inputs, therefore, of the classifier
were the residuals instead of the initially calculated features.
In addition, all the features were standardised by removing
the mean and scaling to unit variance inside the cross-
validation procedure using the mean and variance of the train
set.

For each cognitive task, we extracted abstract or hand-
crafted features for each trial and then made trial-wise
predictions of dementia status based on all set of features,
whether abstract or handcrafted. Five SVMs with a radial
basis function (RBF) and tuning parameters the kernel
coefficient (y) and the penalty parameter (C') were fitted
to the features of each task separately (missing items, social
scenes, social interaction, recognition memory and semantic
processing task) [24]. This ensemble approach was preferred
to a single global classifier, because we hypothesised that
the task information will improve the predictions. Lastly, to
obtain subject-specific from trial-wise predictions, a majority
voting scheme (median operation) was applied to the five
classifiers’ predictions; twice for each subject (Figure 2).
In more detail, for each cognitive task, the corresponding
SVM made several predictions (votes) for all trials of each
subject (e.g. for semantic processing 10 predictions for each
subject). The final prediction for each subject’s performance
on a particular task was the one that received the most votes.
Finally, the global output prediction of each subject was the
one that received more than 3 votes (out of 5).

Nested cross-validation was implemented for the eval-
uation of the classifiers: data were split into a train set,
within which parameters were selected with 5-fold cross-
validation (y in [107!,1072,1073,107%,1075] and C in
[0.001,0.01,0.1,1, 5,10, 25, 50, 100, 1000, 1500]), and a test
set, for evaluation. It was ensured in the process that the
same participants appear in the test sets for all five classifiers.
This process was repeated 100 times and since the classifier’s
performance was evaluated in terms of F'1 score, 100 F'1
scores were obtained for each experiment.

A label permutation test was implemented as a baseline
which determines the performance of the model when there
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Fig. 4: Histogram of statistics for original and augmented
data. Statistics: mean, variance and range of the time series
signal were computed for all samples for x and y coordinate
of gaze.

is no relationship between the features and the output labels.
The features of the best performing model were selected for
this procedure. Comparisons between the performance of the
model with different feature sets were made using Mann-
Whitney U test and bootstrap confidence intervals with 1000
iterations were calculated.

IV. RESULTS
A. Cognitive Activity Recognition

Table I summarises the results of the CAR model, which
classifies cognitive activity given eye-tracking data, in terms
of 5-fold cross-validation and left-out test set performance
with two combinations of output classes (3 or 5 output
neurons) and four combinations of training datasets (with or
without augmented data, controls B and combined controls
A and B). The original dataset includes 15,996 trials and the
augmented 18,793. Figure 4 shows that the distribution of the
computed statistics (mean, variance, range) for x and y coor-
dinates of gaze for original and augmented data are similar.
In cropping, the range of the samples is higher because the
minimum value is always zero, as the signal is interpolated.
The best performance in terms of F'1 score on the test set
appears to be on the simplest model with three classes (scene
exploration, memory and semantic processing) trained on the
original dataset of healthy controls. Data augmentation and
increasing the size of the training set (A and B) improves
slightly the performance of CARS but not CAR3 model.

B. Feature Relevance Visualisation

Relevance maps were computed for the best performing
model (CAR3) for both dominantly and not-dominantly
firing output neurons as the latter can reveal interesting
information about the learnt strategy of the model e.g. why
a certain class has not been picked for prediction. Figure 5



Table I: Performance scores of the multi-head CNN models
on activity recognition with different multi-class and aug-
mentation settings evaluating with 5-fold cross validation
and the left-out test set.

Model Control| Output | Augment CV F1 Test
Dataset | classes F1

CAR3 A 3 False 0.955 0.967
0.01)

CAR3_AUG| A 3 True 0.948 0.954
(0.014)

CAR3 B 3 False 0.941 0.926
(0.014)

CAR3 A+B |3 False 0.946 0.959
(0.012)

CARS A 5 False 0.841 0.821
(0.023)

CARS5_AUG| A 5 True 0.857 0.834
(0.019)

CARS B 5 False 0.854 0.859
(0.014)

CARS A+B | 5 False 0.852 0.854
(0.01)

provides some insight on the methods the network uses
to classify with high certainty eye-tracking trials belonging
to the scene exploration (neuron 1), semantic processing
(neuron 2) or memory recognition task (neuron 3). It shows
the contribution of the input to the prediction of each class,
or in other words, to the output of each neuron of the final
layer of the model. Positive values of relevance in the not-
dominantly firing neurons indicate parts of the input sharing
properties with the dominant neuron. Negative values in the
not-dominantly firing neurons indicate parts of the input that
significantly oppose the properties of the dominant neuron.

Figure 5.a constitutes an example of a semantic processing
trial of a healthy control which is correctly classified with
0.982 probability. The neural network attributes positive
relevance to peaks, high values or gradually increasing stair-
wise trends of the x coordinate of gaze. The network discrim-
inates between scene exploration and semantic processing or
recognition memory largely by these x position properties of
the signal. This is reflected in the negative relevance of the
same points in neuron 1 compared to neuron 2 and 3.

Figure 5.b displays an example of a memory recognition
task (class 3) which is correctly classified by the network
with probability 0.981. As seen in Figure 5.a previously,
positive relevance values are attributed primarily in the x
position of gaze in both neuron 2 and 3. Here to discriminate
between memory recognition and semantic processing, the
network looks at the y position of gaze and gives higher
values of relevance to fixations (flat areas) with higher values
(bigger jumps) of the y coordinate of gaze. Intuitively this
means that it learns that in the semantic relative to the
memory task the eyes stay relatively still with respect to
the vertical axis of the screen while moving horizontally to
read the sentence.

X position y position pupil size
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Fig. 5: Relevance plots of Cognitive Activity Recognition
(CAR) features discriminating between cognitive tasks in
healthy controls. Features are presented from the best per-
forming activity recognition model (CAR3). Three different
input eye-tracking samples (a, b, c) are presented, each
of a separate healthy control performing a reading (a) or
episodic memory (b, c) task. Rows: Relevance maps with
respect to the network’s (class representing) output neurons
(neuron 1: scene perception, neuron 2: reading, neuron 3:
episodic memory). Columns: X, y coordinate of gaze and
pupil size respectively. Warm hues (standing for R > 0)
identify input components supporting the model prediction
and cold hues (mapped from R < 0) pointing out evidence in
the input considered as contradictory to the learned class by
the model. (a). The model indicates that peaks, high values or
gradually increasing stair-wise trends of x coordinate of gaze
are associated with either the reading or episodic memory
task. (b). These trends accompanied by relatively stable
values of y position of gaze are attributed to the reading task,
whereas long fixations with higher values (bigger jumps)
of the y coordinate of gaze to the episodic memory task.
(c) In samples where there are no jumps with respect to
the horizontal axis of the screen, the network identifies big
jumps in y position of gaze and variations in pupil size as
features associated with the episodic memory task.

In the memory recognition task when the previously seen
feature of x position of gaze is not apparent, i.e. there are
no jumps with respect to the horizontal axis of the screen,
the network looks for big jumps at the y position of gaze
(Figure 5. c, probability = 0.99). Interestingly, since this
property is shared between scene exploration and memory
recognition task, the network classifies the trial as memory
recognition relying also on the pupil size signal.



C. Abnormality Detection

Based on the results of the handcrafted features, overall
dementia patients searched less extensively and scanned the
stimuli significantly more slowly than controls with lower
scanpath lengths (z = -276.56, SE = 97.09, z = 8.11, p =
0.00439). Mean x position of gaze was lower in dementia
patients compared to controls (z = -22.895, SE = 11.220, z
=4.16, p = 0.0413). There was also a significant interaction
between the effects of group and task (p < 0.0001); dementia
patients showed a greater relative impairment relative to
controls in the semantic processing task, looking at lower
values of the x coordinate of gaze on average when the
sentences appeared on the screen. The same patterns appear
on median coordinate of gaze (z = -26.07, SE = 10.34, z
=6.35, p = 0.012).

To investigate whether dementia patients passively look
at the screen without following the implied instructions, the
CARS5_AUG model trained on healthy behaviour was used.
The percentage of misclassified trials when the controls B
validation set vs dementia data were fed into the model were
higher for the dementia patients for all the cognitive tasks:
social scenes (Controls: 27.4% vs Dementia group: 37.3%),
semantic processing (0.4% vs 2.7%), memory recognition
(5.7% vs 8.8%), social interaction (22.4% vs 28.5%), miss-
ing items (13.6% vs 19.2%). The distribution of the predicted
probabilities of a trial belonging to a task were statistically
significantly different between controls B and dementia
patients trials apart from the social interaction task (social
interaction: z = 20067.5, p = 0.067, semantic processing: z =
24236, p < 0.0001, missing items: z = 14576.5, p= 0.0084,
social scenes: z = 13682, p < 0.0001, memory recognition:
z = 17305, p = 0.0002).

In terms of the detection of abnormal participants, even in
the absence of explicit task instructions, 13 out of 30 demen-
tia patients were considered abnormal in the social scenes
task (threshold p = 0.6851), 10 in the social interaction task
(p = 0.71) and 4 in the missing items task (p = 0.808).

D. Dementia Classification

Figure 6 and Table II summarise the results of the model
on the dementia classification task using handcrafted and

Table II: Mean of 100 iterations of nested cross-validation
metrics (TN: True Negative, FP: False Positive, FN: False
Negative, TP: True Positive) of the SVM-ensemble model
trained on the dementia classification task and tested on 6
patients and 6 controls.

Model TN (%) FP (%) FN (%) TP (%)
CAR3 37.08 12.91 16.33 33.66
CAR3_AUG | 335 16.5 15.25 34.75
CARS 335 16.5 5.16 44.8
CARS5_AUG | 30.5 19.5 6.33 43.66
Baseline 11.08 38.91 12.91 37.08
Handcrafted | 34 15.98 17.94 32.05
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Fig. 6: Performance of the SVM-ensemble model trained on
the dementia classification task in terms of F'1 score using
different handcrafted and deep learning features. The self-
supervised learning features were transferred from different
variations of the CAR neural network trained on activity
recognition. CAR3 and CAR3_AUG have three output neu-
rons (scene exploration, recognition memory and semantic
processing task) and are trained with and without data
augmentation, respectively. CARS and CAR5_AUG have
five output neurons (missing items, social scenes, social
interaction, recognition memory and semantic processing
task). For a baseline, the case where there is no relationship
between the features and the output labels is considered.
Bars represent 95% bootstrap confidence intervals.

deep learning features obtained from different variations of
the CAR models presented above. Overall, the features from
CARS present the best results capturing differences between
the two groups (95% CI: [0.7870, 0.8241]). The handcrafted
features [0.6175, 0.6723] show lower performance compared
to CARS5_AUG [0.7522, 0.7944] (¢t = 2334 , p < 0.0001),
CARS (t = 1628, p < 0.0001) but not CAR3_AUG [0.6412,
0.71097] (t = 4371, p = 0.094) and CAR3 [0.6367, 0.6979]
(t = 4287, p = 0.064), mainly as CAR3_AUG and CAR3 are
performing better, but this improvement is not statistically
significant. There was no evidence that data augmentation
improved classification performance in the CARS, (¢ =
4195.5, p = 0.013) nor in CAR3 problem (¢t = 4894.5,
p = 0.398). Both handcrafted features and CARS differ
significantly from the baseline case (t = 3479, p < 0.001, ¢
= 1628, p < 0.001).

V. CONCLUSION

A mixed sample of well-characterised dementia patients
varying in disease severity participated in a free-viewing test
which was designed to assess specific cognitive functions
selectively impaired in different subtypes of dementia. In this
study, we present evidence that firstly brief instruction-less
eye-tracking tests can detect abnormal oculomotor biomark-
ers and secondly self-supervised representation learning
techniques can extract more discriminative features from this
instruction-less eye-tracking cognitive test that are more dis-
criminative than standard handcrafted eye-tracking metrics.



To assess the overall functional performance of par-
ticipants in the cognitive test, scanpath length and some
relevant handcrafted features were computed. We found that
dementia patients search less extensively and scan the stimuli
significantly more slowly than controls. They also present
a tendency to fixate towards the left side of the screen
during sentence presentation compared to controls, which
might indicate that either are slower in reading or they are
not reading the sentences. While these primary findings are
unable to indicate the basis of such abnormal performance,
such as whether this relates to a diminished ability to
adapt eye behaviour in response to task demands [5], they
demonstrate that features extracted from even this brief
and instruction-less test may detect abnormal oculomotor
biomarkers of dementia-related cognitive dysfunction.

With the aim to evaluate whether the dementia patients
were performing the activities that were implied by the test,
we first tried to understand the cognitive behaviour of the
average healthy control. We trained a neural network on
healthy controls to predict cognitive activity from eye move-
ments and the network’s decision strategies were analysed.
Its decisions are determined by different channels of the
input (e.g. x position of gaze) associating the combination of
jumps towards high values of x position and stable y position
or jumps towards y position with the sentence reading task
(since one normally scans the screen from left to right
when reading) and the recognition memory respectively.
Interestingly, to discriminate between scene exploration and
memory recognition, the networks seem to use information
from pupil size which is consistent with previous evidence of
pupil response being modulated during memory tasks [25].

When this network was used to classify cognitive activities
of elderly controls and dementia patients, higher misclas-
sification errors were observed in dementia patients than
in controls indicating that dementia patients perform the
distinct cognitive tasks differently than healthy participants.
If slower performance in a task is associated with eye-
tracking sequences with the same features to the average
performance but shifted later in time, then we know that
trials of slower participants are not misclassified by the
network. This is because according to the equivariance to
translation property of convolutional neural networks, two
different input signals with the same feature presented in dif-
ferent locations in the input space produce the same output.
Misclassified trials of dementia patients, therefore, might
be attributed to cases where the mechanisms underpinning
cognitive activities differ substantially to controls.

The cognitive activity recognition pretext task not only
contributes to the detection of abnormal behaviour but
also provides general condensed representations of the eye-
tracking data useful for dementia classification from a variety
of cognitive tasks. This is demonstrated by the ability of our
framework to predict dementia status in this heterogeneous
group with an F'1 score between 0.7870 and 0.8241. This
result was achieved with abstract features obtained from the
most complex model (deep neural network) trained on the
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most difficult classification problem (activity recognition of
five cognitive tasks) with 90 features in total. Although this
model achieves a significantly lower performance on activity
recognition than other less complex models, it learns richer
representations of eye-tracking data that are more sensitive in
detecting performance differences between participants with
and without dementia. In addition, all sets of abstract fea-
tures outperform standard handcrafted features, highlighting
the added value of new feature extraction techniques for eye-
tracking data from cognitive tests especially under the lack
of instructions. These findings demonstrate the importance
of self-supervised representation learning to healthcare ap-
plications in the absence of a large number of patients data.

To the best of our knowledge, this is the first application
of deep learning for classifying and interpreting cognitive
activity and dementia status from raw eye-tracking measure-
ments. These methods were applied to a particularly complex
dataset that included different versions of an instruction-less
cognitive test with varying levels of stimulus complexity
(abstract scene viewing versus simple sentence stimuli).
Additionally, the test was also administered to clinically
well-characterised patients, not only those with typical pre-
sentations, but a combination of rare dementia syndromes
varying in disease severity. Our results show that self-
supervised representation learning methods hold promise for
augmenting cognitive assessment with instruction-less eye-
tracking tests to monitor patients at different stages of the
disease in a brief, low-stress manner.

Although this study opens the door to a more ecologically
valid assessment of natural cognitive behaviour in dementia,
more work needs to be done. The current method is not
able to show whether the features are sensitive to the
different dementia subtypes nor evaluate the effectiveness
of the specific parts of the tests to the targeted groups
(e.g. memory test for tAD patients). This can be potentially
addressed in the future with the recruitment of larger within-
subtype dementia cohorts. Future evaluation of patients in
the early stages of dementia, with mild cognitive impairment
or living at autosomal dominant genetic risk of a dementia,
might determine whether this battery can be used for early
detection of cognitive change/impairment. In addition, from
a methodological perspective, although the current dementia
classification task shows whether the features learnt in the
pretext task are meaningful for dementia-related abnormality
detection, it might not be the best approach for screening
patients highlighting abnormalities in different subtypes and
stages of the disease. The reason being is that it assumes a
homogenous pattern of abnormality in the dementia group,
which might not be true given the variability of eye move-
ment behaviour between subjects. Anomaly detection based
on detecting outliers given a distribution of normal behaviour
might be a more appropriate tool here for future research.

To conclude, this work highlights the contribution of
self-supervised representation learning techniques in medical
applications where the small number of patients, the non-
homogenous presentations of the disease and the complexity



of the setting can be a challenge using state-of-the-art
methods. It also demonstrates that the application of methods
for interpreting artificial intelligence systems constitutes a
window to better understand human cognitive functions. The
proposed methodology of the unsupervised representation
learning technique with the LRP interpretability framework
presented above is applicable to different cognitive tests,
instruction-less or not, under the only assumption that they
include activities associated with distinct eye-movements.
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