
CENTRAL SLICES OF THE REGULAR 
SIMPLEX

PhD Thesis 1996 

b y

Simon Peter Webb 

University College London.

Supervised by Dr K.M.Ball.



ProQuest Number: 10018677

All rights reserved

INFORMATION TO ALL USERS  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript 
and there are missing pages, th ese  will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10018677

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



A b s tra c t

In this thesis we investigate different methods of proving best upper bounds for the 

volumes of central sections of the regular n-dimensional simplex.

In Chapter 1 we show, using probabilistic methods, th a t the 1-codimensional 

central sections with maximal volume are exactly those sections th a t contain n  — 1 

of the vertices of the simplex. The proof uses results about logarithmically concave 

functions on R. We note th a t there are both similarities and differences between 

this proof and th a t for the case of the n-dimensional cube, and we also give an 

intriguing reinterpretation of the result involving interpolation.

In Chapter 2  we examine the possibility of extending the 1-codimensional result 

of Chapter 1 to sections of any dimension. We show th a t the problem will reduce 

to a question about the position of the centroid of central slices of regular simplices 

in one dimension lower.

In Chapter 3 we show th a t the maximal 2 -dimensional central slices of the 

regular simplex are those th a t contain 2 of the vertices. We prove this by obtaining 

best upper bounds on the volumes of maximal ellipsoids in central slices of the 

simplex. The proof involves making estimates on the determ inants of matrices of 

the form Zi <S> Zi where is a sequence of vectors in R^.

Chapter 4 is a discussion of how our new results compare with those of P.Filliman, 

who gave conditions th a t m ust be satisfied by critical central sections (with respect 

to volume) of the regular simplex.
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Introduction

In this work we examine the problem of finding maximal central slices of the regular 

71-simplex. A part from the intrinsic geometric appeal of the problem, the question 

is interesting because results about volumes of sections provide estimates for den­

sities of sums of i.i.d. random  variables. Moreover, the methods used here involve 

estim ating determ inants of matrices of the form for a sequence of vectors

('^*)?=i this is a problem which arises in other areas of mathematics.

In 1979 Hensley [9] showed tha t if =  [—| ,  | ] ” is the central unit cube in Jî” 

and H  is an (n — l)-dim ensional subspace of then Vol[H f ]Qn)  lies between 1

and 5. At about the same tim e, Vaaler [12] showed th a t the lower bound of 1 for 

the volume holds for sections of any dimension. Hensley conjectured tha t the best 

upper bound for the volume of central sections of the cube is y/2j and this result 

was proved by Ball [1] in 1986. In [2] Ball generalised this result, showing th a t if 

H  is & A:-CO dimensional subspace ,1 <  A; <  n  — 1, of then,

V ol(H C \Q ,,) < { V ^ ' ‘

This upper bound is the best possible for every k and is attained for some H  if 

n  >  2k.



For the ball,

jB” =  | x  =  (cci,. . . ,  ccn) G ^  \xiY < l |

Meyer and Pajor [10] showed th a t for 1 <  p <  9  <  0 0 , if i f  is a A;-dimensional 

subspace o f i f ” , l < A ; < n  — 1 ,then

Vol{B^) -  Vol{B^)

Taking q = 2 gives us th a t the A;-dimensional central sections of B^ have volume 

at most tha t of B^  when 1 <  p <  2 . Taking p = 2 gives us tha t the A;-dimensional 

central sections of B ^  have volume at least tha t of B^  when q > 2. The case 

p = 2 ,9  =  0 0  is exactly Vaaler’s result.

It is an immediate consequence of the Brunn-Minkowski inequality, namely, for 

measurable sets A , B c R ^ ,

Vol A + > —Vol{A)'>* + —Vol{B)^

tha t if X  is a convex, centrally symmetric body in if” and P  is a A:-dimensional 

section of X , then the volume of P  is at most the volume of the A:-dimensional 

section of X  parallel to P  and containing the origin. This is because if Ü  is a 

A;-dimensional subspace and a  a point in P ” then

( i f  + a ) r |X  = A 

{ H - a ) f ] X  =  - A

and by the convexity of X,



so.

> i v o i ( ^ ) ï  +  iv b Z (-A ) ï

=  Vbi((H +  a ) f | J f ) r

This means th a t the search for an upper bound on the volume of sections of a 

centrally sym m etric body may be restricted to central sections.

However this is not the case for nonsymmetric bodies, the most im portant of 

which is the simplex. It is easy to see tha t the longest line segment in a plane 

triangle is one of the sides. Brands and Lam an [5] and Eggleston [7] showed in 1963 

th a t the plane section of a tetrahedron ( not necessarily a regular tetrahedron ) with 

largest area is one of the faces. Walkup [13] showed th a t the natural generalisation 

of these results to  higher dimensions does not hold, by proving th a t there is a 5- 

dimensional simplex with a 4-dimensional cross section of greater volume than  any 

of the 4-dimensional faces of the simplex.

In [3] Ball,in response to questions from M .Klamkin and C.Greene, showed tha t 

if 5  is a regular n-dimensional simplex of internal radius 1, then for each 1 <  A; <  n, 

the As-dimensional ellipsoids of maximal volume contained in S  are Euclidean balls

of radius which lie in the A:-dimensional faces of S.

The volume ratio of an n-dimensional convex body C  is defined,

where e is the ellipsoid of maximal volume contained in C. Ball proved in [4],



th a t the simplex has largest volume ratio, so the result in [3] implies th a t the k- 

dimensional sections of a regular n-simplex with largest volume are its A;-dimensional 

faces.

Since results of this type, about volumes of sections, provide estimates for den­

sities of sums of i.i.d. random variables, possibly a more interesting problem is tha t 

of finding central sections of the regular simplex with maximal volume since this 

will involve random  variables with mean zero.

In C hapter 1 we prove, using probabilistic methods tha t the 1-codimensional 

central sections of largest volume are those which are perpendicular to an edge 

of the simplex. We note tha t there are similarities to the proof for the cube in 

[1], but th a t the difficulties occur in different places and require a discussion of 

logarithmically concave functions. A second proof of the result is given, using only 

the abstract theory of logarithmically concave functions.

In C hapter 2 we discuss the problem of extending the 1-codimensional proof to 

other dimensions of section by using induction on the codimension of the slice .We 

reduce the problem to a question concerning the position of the centroid of central 

slices , of regular (n — 1 )-dimensional simplices.

In Chapter 3 we examine maximal ellipsoids in central slices of the regular sim­

plex and, using the volume ratio result in [4] derive a solution to  the maximal slice 

problem for 2-dimensional slices. The proof involves estim ating the determ inants 

of A: X  A; matrices of the form 0  Zi where is a sequence of vectors in

satisfying certain conditions, by firstly making estimates on the length of Zi A Zj



for each pair of vectors and then summing over all pairs i ^  j  .

In C hapter 4 we compare our results to  those of Filliman [8 ] , who gave condi­

tions th a t m ust be satisfied by critical sections.

Experience of these types of geometric inequalities tells us th a t the only easy 

cases are those of 1-dimensional slices. This is certainly true for central slices of 

the regular simplex. The following proof demonstrates the simplicity of the 1- 

dimensional case and introduces a useful characterisation of the regular simplex in 

term s of its boundary functionals.

Let S  be the regular simplex in BT’ :

5  =  {cc G JÎ” : < æ , U j > < l  i =  1, . . .  , n 1}

where is a sequence of unit vectors satisfying

n+l

^  Ui =  0
t=l

and

"Y ^  V Hi ® Ui — Iĵ
n

where In denotes the identity on EP'.

Let a; be a point on the boundary of S  and r £ R  such th a t —rx  G S . Then the line 

segment [—rx , x] passes through the centroid of 5 , and we show th a t the length of 

this line is at most n  -f 1 .

We have 1 <  ||x || <  n  and for every 1 <  i <  n  -f 1 ,

- -  < <  ><  1 r



so,
n+l / 2 \

( 1 -  <  x , U i  > ) f <  >  + - j >  0
i= l  ^

Expanding this gives,

n  + 1  / 1 N n+l n+l

1 ----- ) ^  <  x,Ui > -  ^  <  >^>  0
i t ï  . t ï

th a t is.

or.

ê ï

71 -j" 1 I, i|2  ̂ 71 -h 1

71

and so.

rllxlP <  71

Therefore the length of the line segment [—rx ,x ] is

( l + r ) | | x | |  <  j j ^  +  lkll 

and by the convexity of the function t j  -\-t on [l,n ] we have,

(1 +  r ) ||x || <71 +  1

So any line through the centroid of the regular simplex S  has length at most n  +  l, 

and this upper bound is attained if and only if the line passes through a vertex.

The above characterisation of the n-simplex, in term s of a sequence of unit 

vectors in is particularly useful in Chapter 3.

10



Chapter 1

In this chapter we will show tha t the (n-1)-dim ensional slices of a regular n-simplex 

passing through the centroid of largest volume are exactly the slices th a t contain 

71 — 1 of the vertices. We will describe two proofs of this statem ent, discuss the 

m erits of each, and note th a t the result has an intriguing reinterpretation involving 

interpolation.

Since the  n-simplex is not easily represented in we will consider the natural 

embedding in . For t >  0 the set

n+l

St — ^ X — (®1 > • • • j ®n+l) G R  • 33» ^  0  Z — 1 , . . . , n  "h 1 , ^   ̂33» — t }
t=l

is the regular n-dimensional simplex formed by taking the convex hull of 

where are the standard basis vectors in .

Let a  =  ( a i , . . . ,  a„+i) be a unit vector in and H  the subspace of

perpendicular to a. If a» =  0 then H f\S t  is an (n — l)-dimensional slice of 

St passing through the centroid. Our aim here will be to  estim ate Voln-i{H  f] S i) 

using probabilistic methods.

11



Define functions /  : i? —> [0 , oo) and F  : —> [0 , oo) by

if a; >  0 

otherwise
n+l

•p’( x ) = n  /(® i)
i= i

Let H  and a  be as above with Uj =  0.

For a fixed t >  0 , F  is constant on St and

Voir,.^{H Ç \St) =  r - V o L _ i ( ^ r i 'S 'i )

so a change of coordinates gives

/  F d V o l„  =  /  \ { f{ x j)d V o lH
Jh  Jh ^Ji

fOO------- -----

= r  e - * ' ^  (3 \/ ;r+ T )”- '  V o l„ .i{H n  ^ i)  ds

= (n-l)!(n + l)-“Voi„_,(fff|'5i)

tha t is

V o L . , iH f] S ^ )  =  ^  F  dVolH

where VoIh  denotes Lebesgue measure on H.

We wish to  estim ate the integral Jjj F  dVoln which may be interpreted as the value 

at zero of the density of a certain random variable as follows. Consider a sequence 

of i.i.d. random  variables {X j}^ jtl each with density / .  For any real sequence 

w ith Oj = 1 the density of the random variable can be

w ritten

G it) = f  F{x)dVolH
JH+ta.

12



so

G(0) = J  F  dVolH

So our aim is to  estim ate G(0). In these terms, our theorem  becomes, (7(0) <  

with equality if and only if n  — 1 of the aj are zero. The proof of the theorem  

will divide into two parts , the first for \aj\ < ^  for each I < j  < n  1 and the 

second for the case \aj\ > ^  for some 1 < j  <  n  +  1. This is analogous to the 

proof for the  cube in [1]. We use the same approach for the first part and apply an 

easier estim ate than  was required in [1 ], but for the second part , the easy part for 

the cube, we need a different method. We now introduce some prelim inary results 

concerning logarithmically concave functions.

1 . P re l im in a ry  R e su lts

D e fin itio n  1 . 1  A function f  : —> R  is called logarithmically concave i f  fo r  any

x ,y  G jR” and 0  <  A <  1 , /(A x  +  (1 -  A)y) >  /(x )V (y )^ "^ -

It is well known th a t if /  : —> [0, oo) is log concave, then so is each of its

marginals, e.g. the function g : RJ^~  ̂ —> [0 , oo) defined by

g {x \^..., ajji—i) — J /((Ti,..., Xjfjdxji

For a proof of this see, for example, [11]. Since products of log concave functions 

are log concave, it follows th a t log concavity is preserved under convolution.

Results of the following type have been proved independently by m any authors. 

They seem to  go back to Schur and Ostrowski or even further. A new twist is 

provided here by the fact th a t G is not assumed to be decreasing.

13



L e m m a  1 . 2  Let G : R  [0, oo) be a logarithmically concave function and k > {). 

Then

(3(0)* r  G(x)x* dx < V{h +  1 ) N f  G{x) d x j
\ k + l

P r o o f

W ithout loss of generality we may assume tha t (j(0 ) =  1 ajid th a t G (x) dx = 1. 

So write G (x) = where ^  : R  R  is convex and ÿ(0) =  0. We need to  prove

th a t /o°° G {x)x^ dx < T{k +  1).

Note th a t by the convexity of ii u ,v  £ R  with 0 <  u  <  v then (j){u) <

Let X G [0, oo). If æ <  ^{x) then

r o { v ) d v  < f
J x  J x

~ Te “ du

= f
<  e"® =  / e"" dv

li  x >  (j)[x) then

r G { u ) d u  > / % - “
Jo Jo

J .

-  i f l(p(x) Jo 

> du

because ^ Jq e~“ du is a decreasing function of x.

Since /q°° G{v ) dv =  /q°° e“" dv we have for any x G [0, oo),

poo rooJ  G(v) du <  y  e“" dv =

14



hence
/•oo fo o  roo

J  G (v )d v <  j  dx =  r(ifc)

th a t is
roo

/  G i v y  dv < r(ifc +  1) □
Jo

L e m m a  1.3 Let f  be a positive logarithmically concave function on R . Then 

f{x)e~ ^ dx^ f{ x ){ l  +  x) dx^ < f{ x )  dx^

P r o o f

Define =  e* e~^f{u) du. Then G is the convolution of two log concave

functions and so is log concave. We have

/  G{t)t dt = [  f{u ){u  — 1 4 - e “)
«/ 0 0

f  G{t) dt = I  / ( n ) ( l  -  e"“ )
J o  J o

 ̂ du 

du

Applying Lemma 1 .2  with k = 1 and rearranging gives the desired result. □

15



2 . T h e  M ain  T h e o re m

T h e o re m  1.4 Let S  be a regular n-dimensional simplex with edges o f length \/2 . 

Then the volume o f any 1-codimensional slice o f S  passing through the centroid is at 

most . This upper hound is attained when and only when the slice contains

n — 1 vertices o f S .

P r o o f

We need to show, w ith F  and H  as above, tha t Jh  ^  dVoln <  ^  for any 

vector a  =  ( a i , . . . ,  a„+i) w ith Y fjH  =  1 and Y ijH  =  0 

The proof splits into two cases :

C a se  1 |cij | ^  j  = 1 , . . . ,  T 1

Denoting by the characteristic function of a random  variable Y ,
n+l

n+l 1

=  Uïj=l 1 d" T'CLjt

The standard Fourier inversion formula gives
n+l

dt

Hence
n+l

dt
it

We may now assume th a t all the aj are non-zero or the formula would reduce to 

the (n — l)-dim ensional case, so

16



< -  r ï ï27T 7 - 0 0 1 +  ia d
dt

Applying Holder’s inequality using the fact =  1

1 +  icLit

■7’
dt

- è n ( /_ (r ^ )  ' *)
Now using the fact tha t for a  >  0 and 0 < 7 < 1 , ( 1  +  a .y  < 1 +  « 7  we obtain the 

inequality
2/3

< 1
l  +  a/3/ .  , 21 +  J a

f o r a > 0 , 0 < / 3 < | ,  with equality only if /? =  |  , so tha t

= J=1
1

with equality if and only if n  — 1 of the aj are zero.

C a s e  2  For some 1 <  7 <  n  +  1 , |aj| >

W ithout loss of generality assume As we noticed earlier, ^  dVoln

is the density of the random variable ^ 3 ^ 3  so can be w ritten as {h * g){t) 

the convolution of h, the density of the random variable oiATi, and g, the density

17



of We need to estim ate { h  * gr)(0 ).

/ oo
h { x ) g { — x )  d x

-O O

r°° 1 -1
=  /  — e *S(-®)

J o  a i
/•oo

=  e  ^ g { - a i y )  d y  
J o

We shall estim ate this using Lemma 1.3 so we need to know y g ( — a , i y )  d y  and 

g { — c b i y )  d y .  Since g  is positive, using E  to denote expectation,

/•oo yO y

/  yg{-(^iy) dy = -  -29{y) dy
J o  J —oo

> - - 2  / y a i v )  d y
c lj  J  — OO

- 1 e
\i=2 y

1 n+l

= Z
j=2 

1 n+l

■  - 4 5 "

ai
r o o  % yO

/  ^ ( - û i 2/ )  d y  =  —  g { y )  d y
J o  d \  J —ootti

< i
tti

As a convolution of log concave functions, g  is also log concave and so applying 

Lemma 1.3

i2

L  '  -  Jo°° g { - a i l ) d y +  y l { - a , y )  d y

/  9 { -a iy )  d y f
/o°° 9 {-° 'iy ) dy 

18



< iàl
-  _L +  A.ai ai

1
2üi

°

3. R e m a rk s

Using contour integration we can evaluate the integral

ZTT J-oo ^  1 +  td jt

explicitly as

 ̂ fc=l 1̂ *1 j ^ k

This expression is more or less impossible to estim ate as it stands, but in view of 

Theorem 1.4 we have

C o ro lla ry  1.5 Let be a sequence o f distinct non-zero real numbers with

E "= i S ' =  1 Oj =  0. Then

fi+i 1 f,

fc=l 1̂ *1 °'3

with equality on the right hand side exactly when n  = l .  □

If we write hj = aj^  for each 1 <  i  <  n  +  1 and define

19



then H{hk) =  |6t | for all 1 <  Â; <  n  +  1 and so H  is the polynomial of degree n 

interpolating f [ x )  =  |æ| at So Corollary 1.5 can be reform ulated in

the following way,

C o ro lla ry  1 . 6  Let he a sequence o f distinct non-zero real numbers with

Y fj i i  = 0  and H{x)  the polynomial o f degree n  interpolating f [ x )  = |x| at

) • • • ) ■ L^hen

“ ^  \  °

We will now give a second proof of Theorem 1.4 using only the abstract theory of

log concave functions. This, although simpler than the first proof uses a variant of

Lemma 1.2 , and so is not an approach one could use in the problem of the largest

A:-dimensional slice for general k.

L e m m a  1.7 Let /  : —> [0, oo) he a logarithmically concave function and suppose

that dx = O.Then

3
f W  f  d x < ^ ( f  f { x )  dx^

J —OO Z \ J —oo /

P r o o f

Define functions Hi  and H 2 as follows,

1 r°° dt

20



whenever f { x )  > 0 .

We claim th a t Hi  is a decreasing function and H 2 is an increasing one, so

roo roo roo roo
/(O) j  X  J  f { t )  dt  dx < J  x f { x )  J  f { t )  dt  dx

th a t is

/(O) J  x^f{x)  dx < 2  J  x f { x )  dx J  f { x )  dx (1 .1 )

and similarly,

/(O) /  dx < 2  f  —xf { x )  dx f  f { x )  dx (1.2)
\J — 00 J — 00 1/ — 00

Assume w ithout loss of generality that

roo 1 roo
/  f { x )  d x < -  f ( x )  dx.

J o  J —00

Since we have xf { x )  dx =  —xf { x )  dæ, adding (1.1) and (1.2) gives

roo roo roo
/(O) / x^f {x)  dx < 2  x f { x )  dx j  f { x )  dx (1.3)

*/—00 •/0 J—OO

Applying Lemma 1.2 with A: =  1 , we have

/(O)^ f [ x ) x  dx <  f { x )  dx^

and so from (1.3) we get

/(O)  ̂J  x^f{x)  dx <  2 f { x )  dx^ J  f { x )  dx

< 2 /  f { x ) d x ^  f  f { x ) d x
\ Z  J  — OO J  J  — OO

21



which is the conclusion of the lemma.

We now show Hi is a decreasing function. W riting f { x )  =  where ÿ is a

convex function, we have th a t for any x < y  and 5 >  0 ,

<̂ (5 + 2/) -  + a;) > <!>{y) -  ^ { x )

hence

g —<̂ (a+x)+̂ (x) ^ g—̂(*+y)+î (l/)

y °°  g-#(.+i)+#(x) jg  >  /■“  g-*(.+v)+*(y)

e««) r  e-*(‘) a  >  e*(y) f°° g-*M
Jx J y

th a t is Hi(x )  >  Hi{y).  Similarly we may show H 2 is increasing which completes 

the proof. □

Since the function G{t) = Sn+tBi^i^) dVolfj is a log concave density and

n+l n+l/OO 7 * T X  7 »-rX

G{t)t dt = E ( ] ^  a j Xj )  =  ^  ttj =  0
■°° j=i i=i

/ oo n+l n+l

G{t)t^ dt = v a ria n ce (y ^  ^ j ^ j )  =  ^  =  1
3=1  J = 1

we may now apply Lemma 1.7 to (j to obtain

G(0 ) '  <  I

SO ,

proving Theorem 1.4.

22



Chapter 2

In this chapter we will discuss the problem of generalising the 1-codimensional 

result of Chapter 1 to the case of A;-dimensional slices for any 1 <  A; <  n  — 1 .

We conjecture tha t the correct generalisation of the 1-codimensional result is,

C o n je c tu re  2 . 1  Let S  be a regular n-dimensional simplex with edges o f length y/2. 

Then the volume o f any k-dimensional slice o f Sj passing through the centroid, is 

at m ost y jn-t+i h  ' upper bound is attained i f  and only i f  the slice contains k

vertices o f S . □

We will show tha t this result would follow from the conjecture below, which 

concerns the position of the centroid of central slices of a regular (n  — l)-simplex.

C o n je c tu re  2 . 2  Let S  be a regular [n -l)-d im ensiona l simplex and T  a k-dimensional 

slice o f S  containing the centre o f mass. Then the distance from  the centroid o f T  

to the centroid o f S  is maximised when T  contains k vertices o f S . □

The CO dimension of the slices is reduced by 1 between Conjecture 2.1 and Con­

jecture 2 .2  . This means tha t we have another proof of the 1-codimensional case 

because when A; =  n  — 1 Conjecture 2 .2  is trivial.

23



We attem pt to prove Conjecture 2.1 by combining the methods of Chapter 1 

w ith induction on the codimension of the slice. The result is trivial for n  — k — ^

( and in Chapter 1 we proved tha t the result holds when n  — k = 1 ).

Suppose then tha t 1 <  A; <  n  — 1 and tha t jFf is a (A; +  l)-dimensional subspace 

of th a t contains the point ( 1 , . . . ,  1). If we take

n + l

S t  — ^  X  — (iClj . . . ; R  . X {  ^ 0  Z = l j . . . j 7Tr”l“ l  J ^   ̂ ~  ^ }
i = l

for each t >  0, then H C \St is a. A;-dimensional central slice of the regular n-simplex 

St. As in Chapter 1 we will estim ate Volk{H fl'S'i).

Define functions /  : R  [0, oo) and F  : —> [0 , oo) by

f { ^ )  =  {
e ® if æ >  0 
0 otherwise

n+l

•^W= n / ( <  x,e,->)
J=1

For a fixed t >  0 , jP is constant on St and

Vok{H f| St) =  t'‘Voh{H n ̂ i)

SO a change of coordinates gives

/  F d V o ln  =  /  Y[ f { x j )  dVoln 
Jh  Jnj-Ji

= r  (s%ÆTÎ)‘ Vok(Hf]Si )  ds

=  ifc!(n +  l ) - îV o 4 ( ^ n 'S 'i )
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th a t is

V ok{H  f |  5 i) =  F  dVolit

Our problem is to show tha t for any (A; +  l)-dimensional subspace H  in , 

containing ( 1 , . 1 ),

/  ^  dVoln < , =
JH vn - ̂  + 1

We divide the proof into two parts. The first part generalises the use of Holders 

inequality in Theorem 1.4. The second part uses the fact th a t F  is a log concave 

function, and it is this part tha t we reduce to Conjecture 2.2 .

We begin by stating a result of Brascamp and Lieb [6 ] concerning the estim ation 

of convolutions.

T h e o re m  2.3 (B ra sca m p  an d  L ieb) Let U i, . . .  ,Um he a sequence of unit vec­

tors in ET’ , m >  n, and c i , . . .  ,Cm o, sequence of positive real numbers satisfying

m

^  CiUi <^Ui = In 
t=l

where In denotes the identity on . Then for integrahle functions 

[0 ,oo),

There is equality i f  the f i  are identical Gaussian densities or i f  the Ui fo r  an or­

thonormal basis o f B T . □

Let P  denote the orthogonal projection of RT'^^ onto H  and define

Cj =  \\P^j\\^
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for each i ,  1 <  i  <  n  +  1 .

Then
n+l n+1

CjUj (g) Uj =  ] ^  Pei <S> Pei =  In
t=i t=i

where I h  denotes the identity on the subspace H.

By the equality of the traces of these operators we have,

n+l

= k + 1
1=1

If X G i f  then for each 1 <  j  <  n  +  1,

<  x , 0 j  > = <  X j P g j  >

so tha t,

* n+l .  n+l

/  n  / ( <  Gj > ) dVbln =  /  n  / ( <  > ) dVbln
j=l ''H

. n+l

=  /  n  / ( <  >)
i=i

Applying the Bras camp-Lieb inequality,

J ^ F  dVoln < \ l ( ^ J ^ f { y / c j x y i  dx^

n ^ y  /  i»oo —» \  Cj

= n(%

=
3=1
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Since Si spans a hyperplane H* which is perpendicular to the vector and

H  contains the line { ( a , . . . ,  a )  : a  E i2}, the projection of any point of Si  onto H  

lies in H*. Therefore, for each 1 < j  <  n  +  1,

We note in passing tha t this fact is enough to  show tha t the central slices of Si 

are strictly smaller than the A;-dimensional faces since

n+l

J ^ F d v o h  < n

< Ï Ï  ( c r )
3 = 1  ^  /

and, using the AM /GM  inequality.

f  F d V o Î H
JH

< \
1 n+l

'k + 1 
n +  l

V%~+T 
k\

which is the volume of a A;-dimensional face of Si. 

However, our conjecture is the stronger inequality,

1

T hat is.

L F  dVoljj ^
'H y/n  — A; +  1

We break the proof into two parts, the first for when for every 1 <  j  <  n  +  1 we 

have <  Cj <  1 , and the second for when Cj < — y for some j .
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The break at Cj = corresponds to the break in the proof in C hapter 1 at

aj = because when k = n  — 1 we have Cj = 1 — a |  for each 1 < j  <  n  +  1 .

C a s e  1. <  C j  < 1  for each j  =  1 , . . . ,  n  +  1.

We have,

so by the convexity of the function f ( t )  = on [0 , 1 ] we see tha t the product

n+ln ̂
i = i

is maximised when k of the Cj are equal to 1 and the remaining n — k -\- l  are equal 

S=FiT- That is,
n+l 1n f  <j=i n - k i - 1  

so th a t

Vn-fc + l

Equality occurs in this case only if k of the Cj are equal to 1. That is, P e j  = ej  for 

k of the standard basis vectors, meaning the slice contains k vertices of 5 i.

C a s e  2 .  <  C j  < f o r  s o m e  I < j  < n  +  1.

W ithout loss of generality we may assume th a t

1 /  1 
<  Cl <

71 1 71 — Â;-f-l

This corresponds to the difficult case in Chapter 1. We will show th a t this

case will reduce to Conjecture 2.2 .
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Define functions G : —> [0, oo) and ^ : i2 —> [0, oo) by,

n+l

G ( x ) = n  f i <  X'Gj > )
3=2

g{t) =  /  (j(x ) dA
d£rn{x:<x,ei>=i>■p){x:<x,ei>=i}

where A denotes the Lebesgue measure on the set H  f){x :<  x, ei > =  <} .

By changing variables we may write the following integrals over H  as integrals 

over [0 , oo).

f  F d V o la  = - ^ r e - ‘g { t)d t
JH y/Ci Jo

f  G dVoln — —%= [  p(f) dt
Jh  y c i  Jo

f  G{x) < X, 01 > dVoÏH = / tg{t) dt
JH y/^l Jo

Since # i s a  positive log concave function on R  we may apply Lemma 1.3 from

C hapter 1 and obtain,

(/o°° 9{t) d t ffOO
LJo dt <

/o°° +  1 ) dt

T hat is,

L  ^  -  S „ G ( J { < x , e i > + l ) d V o l H
Let P i denote the orthogonal projection of onto the subspace perpendicular

to 0 1 .

As G does not involve the first co-ordinate of points in , the integral of G 

over H  is a. simple multiple of the integral of G over P iP ,

f  G dVoln = J   /  G dVolp,H
Jh  v l  — Cl JPiH
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However, Pi H  is a. {k 1)-dimensional subspace of containing the point

( 1 , . . . ,  1 ), so we may interpret this last integral in term s of the volume of a k- 

dimensional central section of an {n — l)-dimensional simplex. That is we may 

interpret the integral in terms of an (n — Â; — l)-codimensional central section and 

so apply our inductive assumption. Therefore,

/  G dVolp^H <  - 7 ^ ^
JPiH v n —fPiH v n

and,

/  G dVolH <
JH y l  — C\ y  n  — k

To complete the proof it would be sufficient to show th a t

/  G(x)  <  X, 6 i >  dVoln > —^  /  G dVoln 
Jh  n  — k Jh

because then we would have, from (2 .1 ),

f  F d V o l .  < UHGdVolM Ÿ
JH Jh  G{x ){< X, ei >  +1) dVoln

{ fg G d V o lH f<

71 — k -\-

so, by the inductive assumption.

Sh  g  dVoln 

G dVol„
1 Jh

f  FdVoln < "  ̂ - r ^Jh  71 — K -j- 1 y  1 — Cl y  71 —
_  y/7 1  — k 1

71 — k 1 \ / l  — Cl
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and since Ci <  ,

dVolH <

as required.

Therefore the problem has been reduced to showing

/  G{x) <  X ,  e i  > dVoln > — —̂r f  ̂dVoln 
Jh n  — k J h

whenever ci <

W riting P e i  =  ( ^ i , .. • ,%»+i) we have,

Ul =  Cl
n+l

' ^ V i  = 1 
i=l  
n+l

»=i

and

J  G{x) < X, 01 >  dVoln = G(x) <  x, P e i >  dVoln
n+l .

=  < X ,0 j >  dVb/n
-•—-I *'

n+l

E
i=i

Therefore,

n+l

E
3 = 2

SO tha t.

- n+l .

( 1  — ui) I  G{x) <  x , 6 i >  dVoln = ^ ' ^ j  G (x) <  x , e j  >  dVoln
JH , -^ 9  «/-ff

/* 1 r
/  G (x) <  X ,  01 >  dVb?H =   --------------------------------------->  dVoln

Jh  1 — Cl ,-^5 Jh3 = 2
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/ I \  2 r
= I; 1 / G { y ) < y , e j >  dVolp^H

\ l  — C\J ._2 JPiH

(2.2)

W hen k = n  — 1 the problem is now trivial, since P \H  = and so, for each 

2 < i  < n  +  l .

Ip H ^ y» Gj >  dVolp.H =  1

= Cz(y) dVolp^H

Hence

I Ti+l
E
3 = 2

f G ( x ) < x , e i >  dVoln =  ( 7 - ^ )  !  G(y) <  y , > dVolp.n
JH \  i  Cj /  j=:2 PiH

= J  G {x)dVol„

W hen A; < n  — 1 the problem is not so straightforward, but may be reduced to 

Conjecture 2 . 2  .

We wish to show that

/  (j(x ) <  X, 01 > dV oln  > — —̂r  f  G dV o ln  
JH n  — k Jh

Writing

^ j  = G (y) <  y , ej > dVolp.n
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t = 2

for each 2 <  j  <  n  +  1, we may write (2.2) as,

t  /  1 \  2
G{x) <  X, ei >  dVoln =  _  —J

where,

n+l
Vi = 1 -  Cl

i=2 
n+l

Y,Vi =  C i ( l - C i )  
i=2

Also, using the same change of coordinates as earlier.

n+l . ..-rx

' ^ A i  = /  <?(y) < y , ei > dVolp^H
i=2 i=2

f n+ l /n + l \

=  /  n / ( < y ) 6 i > )  ( X ^ < y , e i > )  dVolp^H
i=2 \i= 2  J

=  I  e - ‘‘̂ ( s V ^ ) V o k { H f ] S , ^ ) d s  

=  r  (svÆ )‘+ ' V o k { H n  5 i)

=  ( i  +  1) r  Volk{H n  5 i)  ds
=  (k + 1) ^ G { y )  dVolp^u

A = /  (j(y) dVolp^H
J Pi H

W riting

we have.

We now minimise

n+l

^  Ai =  (A; +  1)A

t = 2

n+l

i=2

(2.3)
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subject to the conditions,

n+l

' ^ V i  = 1 -  Cl
i=2

n+l

=  C i ( l - C i )
t=2

using Lagrange multipliers.

After differentiating with respect to each u,-, 2  <  z <  n  +  1 , we have th a t the Ai 

and Vi must satisfy,

Ai A 2Xvi — 0 (2.4)

for each 2 <  z <  n  +  1, where A, /z € i2.

Summing (2.4) over 2 <  z <  n  +  1 and rearranging, we have

/z — —— Ai +  2 A( 1  — ci)^

so (2.4) can be rewritten.

1 / I  \
A i - - ^ A ,  =  2 A ( - ( l - c i ) - z ; . )  

n  ^  \ n  J

for each 2  <  z <  n  +  1 .

Squaring each side of (2.5) and summing over 2  <  z <  n  +  1 ,

n+l / n+l \  2

n  ^  A? -  [ ^  Ai J =  ((n +  l)c i — 1 ) ( 1  — ci) 4A'
i= 2  \ t = 2  /

so tha t.

A =  ±
((n +  l)c i - 1 ) ( 1  -  Cl)

(2.5)
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Therefore from (2.5),

1 n+l 

A t  ^  Aj =  ±
^  t = 2

for each 2  <  i <  n  +  1 .

M ultiplying (2.6) by Uj and summing over 2  <  z <  n  +  1,

i=2 n
\

n+l

E ^ ±
t = 2

so the minimum occurs when

i=2 n

n+l

t = 2

Using

and,

we have

n+l

Ai = { k A  1 )A
t = 2

1 — Cl 71 — Â;

f  G {x )  <  X ,  e i  >  d V b / n  >  — - = L = —  
*/if n V l — Cl

/
(A: +  1)A —

V

n+l /n+l

" E  A- -  ( E  ^
j=2 \i= 2

k

If we could show that
n+l / 1 \

n  — k

(2.7)

(2 .8)

/
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then from (2.7) we would have the required result, since,

f  G{x) <  X ,  01  >  dVoÎH >  7--------------------------- A
Jh  (n — « ) v l  — Cl

=  /  G (x) dVolH
n  — k Jh

Inequality (2.8) may be w ritten as the following conjecture :

C o n je c tu re  2.4 Let K  be a [k 1)-dimensional subspace of containing the

point ( 1 , . . . ,  1), and let f  : R  R  and G : R^ R  be defined by

/(%) = { e ® i f  X  > 0  
0  otherwise

G ( x ) = n / ( <  >)
i=i

Then

g ( / ^ ( ? ( y ) < y . e , >  d V o l . f  □

This may be reinterpreted as a conjecture about the centroid of central slices of a 

regular (n — l)-dimensional simplex since, for each 1 <  % <  n  ,

1
J ^ G { y ) < y , e c >  d V o l K  =  ^  J f

1 r°°
e- ‘ t ÿ i V o h { K f \ S t ) d t

where yi denotes the ith  coordinate of y , the centroid of i f  f) 'S'l • Therefore, 

G{y)  <  y , 0 i >  dVolK =  ÿi{k A l )  G{y) dVolR
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for each 1 <  i <  n  , and the conjecture is,

-  (& -k 1 ): (*  i T ^ )

Equality is achieved if and only if K  contains k vertices of 5'i, so the conjecture is 

exactly Conjecture 2.2.

Again, when A: =  n  — 1 the result is trivial because is an (n — 1 )-

dimensional central slice of an (n — l)-dimensional simplex and so the centroid of 

the slice is

H I  ;)
g i v i n g .
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Chapter 3

In this chapter we will examine maximal ellipsoids in central slices of the regular 

n-simplex. We will derive a complete solution to the maximal slice problem in the 

cases k = 1 and k = 2. We noted in the introduction th a t the k = 1 case is very 

easy but we include a slightly different proof here as the m ethod provides an insight 

into the main result which states

P ro p o s it io n  3.1 Over all 2-dimensional ellipsoids lying in the central sections of 

a regular n-simplex, n  >  4̂  the ones with largest volume are the maximal ellipses 

of the triangular sections of the simplex containing two of the vertices. □

Although this does not cover the simplex in 3 dimensions, by combining Proposition 

3.1 with the volume ratio result in [4], and Theorem 1.4 we have,

C o ro lla ry  3.1 The 2-dimensional slices o f a regular n-simplex through its centroid 

with largest volume are those slices containing two of the vertices. □

We prove Proposition 3.1 by reducing it to a question about determ inants of 2 x 2 

matrices of the form Zi (g) Z{ where is a sequence of vectors in satis­

fying certain conditions. To estim ate these determ inants we firstly make estimates
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on the length of Zi A Zj for pairs of vectors i ^  j ,  and then sum the expressions over 

all pairs 1 < i < j  < n  +  l. Determinants of this type occur in various areas of 

m athem atics, so we hope th a t the techniques used here may be applicable to other 

problems.

1. The Setup

Our aim in this section is to reduce the problem of calculating volumes of k- 

dimensional ellipsoids in to tha t of calculating the determ inant of & k x  k 

m atrix. It will be shown tha t the precise problem is to determine the least E{n, k) 

such tha t

Det  ( g  Zi ® Zi) < E(n, k f

for every sequence in which satisfies

n+l

=  0
1 = 1

and

<  Zj,X > + | | z j | |  <  1 i  =  l , . . . , n + l

for some x Ç: R^.

Let S  be the regular simplex in RT" :

S  = {x  E RP" : < X jU i> < !  i =  1 , . . .  , n  4-1}

where is a sequence of unit vectors satisfying

n+l

=  0
t=i
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and
'n

Y ^  ] Ui ^  Ui — Iji
n

n  +  l - ï

where /„  denotes the identity on R^.

Let

e = G < X — y,Vj >^< 1, < X jV j> = 0 ,  A; +  l < j < n |

be a A;-dimensional ellipsoid, where is an orthonorm al basis of RP, y G

and (aj)*_i is a sequence of positive real numbers.

We assume th a t e lies in a slice of S  containing the origin. This is exactly 

the statem ent th a t y E span(vj)j^i. The problem is to find a best upper bound, 

E{n, k), for the product n j= i otj.

For each z, l < z < n + l  the point

E j = l O i j  < U i , V j > V j  
Xi = y + — ---------------------- -T

( Z L 4

lies in e. Since e C S  this means tha t for each z,

< Ui,y > +  <  1

Define the map T  : R^ —> R^ hy

k
T Z  =  Y^CLj <  Z, Vj  >  Vj  

j=i

Then for every z, 1 <  z <  n  +  1,

<  Ui,y > + ||T iii|| <  1
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Let P  denote the orthogonal projection of onto span{vj)j_^  and write W{ =  Pui.  

For each i,

Tui = Twi

and

< Ui,y > = <  Wi,y >

so the restriction of T  to span{vj)j^i is an isomorphism and our problem is to 

estim ate Det{T).

Rewriting everything in term s of the Wi and using T  to  denote the restriction 

'^\span{vj)i we have a sequence of vectors in satisfying

n+l

u;,- =  0
1=1

n
and

—7 T  = hn  +  1

a vector y  Ç: R^ and a linear map T  such tha t for each +

< W i , y >  + | | r u ; i | |  <  1

and we wish to estim ate Det{T).

The problem may be reformulated slightly by writing z* =  Twi  for each i and 

X =  T~^y . Then

and by the self-adjointness of T,

< Wi,y  > = <  W i,T x  > = <  Twi,  X > = <  Zi,x  >
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for each i. The problem is then reduced to  finding an upper bound Æ7(n, k) such 

th a t

D et  z, ® £ (n , k f

for every sequence in which satisfies the following two conditions,

(i4) < Zi^x>-\ - \ \z i \ \<\  l < i < n + l
n+l

{R)  ^  =  0
i=l

for some x E R^.

2 . C a lc u la tin g  E {n ,k )

We now give values for the best upper bound E{n, k) when k = 1 and k = 2.

As mentioned earlier, the A; =  1 case is much simpler since it only involves the 

calculation of the length of a straight line in S  passing through the centroid, and 

could be done more directly. However, the technique used here is similar to th a t 

required in the more difficult result for k = 2.

P ro p o s it io n  3.2 Under the conditions given above, for  n  > 1, E { n , l )  =

This hound is attained when the 1-dimensional slice of S  passes through a vertex.

P r o o f  W hen A; =  1 the conditions above are.

( A )  Ozi \zi\ < 1 1 <  z <  n  +  1
n+l

(R )  £  =  0
»=i

42



for a sequence in jR, ^ G i 2, and we show

i=i 4n

W ithout loss of generality we may take 0 >  0 and split the proof into two cases, 

fi <  ^  and 0  >  ^ .

Case 1. fi <  ^

By condition (A) ,

n+l n+l

-  N '
t=i t=i

n+l n+l

=  (n +  1 ) — 2 0  Zi +  0  ̂ ^
i=l :=1
n+l

=  (n +  1 ) +  0  ̂ ^  Zi
i=l

by condition (B). 

Therefore,

( n + l f<
4n

Case 2. d >  ^

By condition (A), for each i, l < i < n + l

" " ' - r + f i

and so by condition (B ) we also have for each i,

n
Zi >

1 -f- 0 
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Therefore,
1 . .  n

+  T T g )  -  ®

and so, after expanding this expression and using condition {B),

h ' -

<
“  4n

In the extreme case 6 = with n  of the Z{ equal to and remaining Z{ equal 

to — , tha t is , all but one of the Ui project to  the same point of span{vi), so 

the line must lie perpendicular to a facet of S. □

The approach to the 2-dimensional case is similar. The proof again splits into 

two cases at ^ In the case 6 > we use the fact th a t the determ inantn + l  — n + l

may be w ritten as a sum over pairs of vectors. Again we use inequalities obtained 

by summing products of positive expressions, but the diiference is th a t we now sum 

over pairs l < i < j < n - { - l  instead of summing over 1 < i < n  l . ln  the case 

6 < when n  >  5 we can use an easy trace estim ate for the determ inant. This 

estim ate is not sufficient when n  < 5 but can be combined w ith an argum ent similar 

to the first case to complete the proof for n  =  4.

Using the above notation , Proposition 3.1 may be w ritten.

P ro p o s it io n  3.1 For n  >  4, jE(n,2 ) =  \ / ï ( ^ \ )  • upper bound is at­

tained only when e is the maximal ellipse o f a triangular slice o f S  containing two 

of the vertices. □

44



Before giving the full proof of Proposition 3.1 we will examine a special case to 

show how the proof works.

W hen k = 2 the conditions may be written,

(A) Oxi +  < 1  l < i < n  +  l
n+l n+l

{B)  ^  a;,- =  ^  3/- =  0
i=l t=l

for a sequence of vectors in 0 E i2, and we show

The special case we consider is tha t of 6 = l.ln  this case the condition (A) is,

+  y/^i + Vi < 1  l < i < n + l

so

y? <  1 — 2xi 1 <  z <  n  +  1

Summing this inequality over 1 <  z <  n  +  1 and using condition (B )  gives

n+l

£  2/.- <  n  +  1
t=l

Hence

D =
n+l n+l /n+l \  ^

E ® .- E î '. -  -  (E ^ ^ iî 'i )
t=l »=1 \t=l /
n+l n+l

< E^^^Eï?
»=i t=i

n+l

< (n + 1) E  (*)
i=l

45



That is, we may estim ate D  from above when z? is ‘small’, and we now need 

to find an upper bound for D  when œj is ‘large’.

By condition (A) , for each z, l < z < n  +  l ,  we have X{ <  |  so for any pair

1 <  i <  i  <  ^  +  1 ,

0 <  (ÿ i  +  V i f  ( J  -  Q  -  I , )

After summing over all pairs l < i < j < n - \ - l  then applying condition {B)  this 

gives,

o V - ^  2 2 n - 3 ^  2
- 2  2 2  <  — 7 —  I ]  “  Z ,  “ i ï i  Z

l < i < j < n + l  ^  i = l  i = l  ^  i = l

We then apply this inequality to D,

n+l n+l n+l ___

^  =  Z ^ i Z î ' . -  “ ^ Z ^ æ i X j î / i ÿ j
t=l t=l t=l i < j

_  1 n+l M _  9 71+1 n+l n+l n+l

<  Z y ?  -  V Z +  Z Z 2/ N 2 E - U
 ̂ t=i ^  t=i t=i t=i »=i

Also,
1 1 n+l n+l

SO adding these final two inequalities we have

We next show th a t the bracketed term  in (1) is positive so th a t we may use condition

(A) to  remove the y^s from the estim ate completely .

For each 1 < j  <  n  +  1, Xj <  | ,  so by condition (B ),

~ 9  ^  ^  9
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Since the quadratic

71 — 1 71 — 3 71̂  — 2tI — 1
■z

is positive on the interval [—è, f] we have, for each 1 < j  <  n  +  1 ,2 » 2 -

2

+  g , l  > 0  (2 )

By the Cauchy-Schwarz inequality,

Adding (2 ) and (3),

tha t is, for each j .

n  1 n  3 ^ . _ ^ ! L ± i g ^ 2 _ 2 ^ 2 > o
4 2 '  71

as required.

Applying condition (A) to (1 ) gives

^ 5  <  4 Î :  X? +  fn  -  5 +
 ̂ i=i V  ̂ /  t=i 4

so we need to estim ate from above.

Again, since for each i, x* <  | ,  condition (B ) gives

71— 1
a?t +  > 2 
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for every pair and so

[ ^  +  x, +  x i )  g - x , )  g - ^ i ) > 0

After expanding this expression and summing over all pairs 1 < i < j  < n + l ,  we 

have

^  ~  -  1) E  z '  -  E  X? >  0
 ̂ t=l »=1

which when applied to (4) gives

n  +  l  (n +  l ) ^ ( n - l )  (n +  l) (n  — 1 ) ^  «
— ^  ^ ---------4--------------------- ^--------h  ^

D  <  ” (" +  ^ ] ( ^ - - ^ ) - ( n - l ) E x ?  (**)
^  i=l

From earlier we have

n+l
D <  (n +  l ) ^ z ?  (*)

t=i

so combining (*) and (**) ,

^  ( n + l ) ^ ( n - l )
8 ,

(n +  l)=<
108(n - 1 )

with equality if and only if n  =  5. □
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In this section we will prove Proposition 3.1 for n  >  5, leaving n  =  4 for the final 

section of the chapter. The technical part of the proof of Proposition 3.1 is taken 

care of by the following theorem which generalises the special case of 0  =  1 above,

T h e o re m  3.3 Let n  > Z, 6 > and let ^6 sequences in R

satisfying

Oxi +  y/ x \  +  < 1  l < i < n  +  l

and
n+l n+l

1 = 1  1= 1

then,

T h e  P r o o f  o f P ro p o s itio n  3.1

We have two sequences in R  and 6 E R  satisfying

(A) 6xi +  +  y f  < 1  l < z < n  +  l
n+l n+l

(B ) ' ^ X i  = Y l y i  = 0 
1=1 1=1

and show tha t

D =  D e t (  +
V y - 1 0 8 ( n - l )

As in the proof of the k = 1 case we may take 0 >  0 and the proof breaks at
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Case 1. 0 <  g <  ^— — n+1

By condition (A), for each l < z < n  +  l

2/? <  — 1)%? — 26xi +  1

so summing over i =  1, . . .  , n  + 1 and using condition {B) gives

n+1 n+1

É  Vi ^  - i ) É  +  (”  + 1 )
i= l  t=l

Therefore,

n+1 n+1 / n+1 \

D = è  2/,- -  ( Z) XiVi ]
i=l i=l \ i= l  )
n+1 n+1

2<
t=l t=l

/n+1 \ 2 n+1

<  -  1) ( è  z? ) +  (n +  1) è
\ i= l  /  i= l

McLximizing the right hand side of this final inequality with respect to

have
(n + ly

and since 0 <  g <  , n >  5,

4(l-g2)

n+1

(n + 1/
D < 108(n -1)

C a s e  2.  6 >  ^— n+1

By Theorem 3.3
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and this function attains its maximum at ^ so tha tn+1

B <  <" +  « “
108(71 -  1) 

as required.

Equality occurs in Proposition 3.1 if and only if ^ and the sequence

{(xj, consists of ti— 1 vectors of the form ( g^tlV)? 2  vectors

and This occurs when all but two of the UiS project to the same point

when projected onto the sub space spanned by e. That is, the subspace spanned by 

e is perpendicular to an (n — 2 )-dimensional face of S. □

3. T h e  P r o o f  o f T h e o re m  3.3

Let {y i)ÿ i  be sequences in R  and 6 >  satisfying

(A) 6xi +  yjx1 +  y1 < 1  1 <  2 <  71 +  1
n+1 n+1

{B)  Y ^xi =  ' ^ y i  =  0
1=1 1=1

We show that

By condition (A), for every i , l < i < 7 i  +  l ,

“•■ -IT ?

so for any pair i, j ,  with l < i < j < 7 i - l - l ,
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After expanding this expression and summing it over all pairs, 1 < i < j  < n  +  l ,  

then using condition (B )  where necessary we have

T7 — 1 r? — ^-2 ^ , gy E y.' - E - TTg E
l<i<j<n+l U +  t'j i=i t=l i- -V O

We then apply this inequality to D,

n+1 n+1 n+1

D  = E ® . 'E y . - “ E® .-!'i
t=i t=i t=i »<j

y ,  1 « + 1  y ,    q  T l + 1  M + 1  n + 1  T l + 1

Also,
1 1  n+1  n+1

SO adding these final two inequalities we have

S ((fw - 0 "  - +4^ 5  4
Since for every 1 < j  <  n  +  1 ,

X j  ^
1 +  0

and Xt =  0  we have, for every j

 L _ < Y x  <  ...
i +  e - ^  ' - 1  + 8

The quadratic
n  — 1 n  — 3 n^ — 2n — 1 ,
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is positive on the interval [—7̂ ,  Æ ]  so we have, for each 1 <  j  <  n  +  1,i+e»i+flJ

2

"  '  ! r  > 0  (3-2){l  +  o y  1 + 6

By the Cauchy-Schwarz inequality,

(3.3)

Adding (3.2) and (3.3),

th a t is, for each

{1 -\-6y  1 +  ^ n

This inequality means th a t we may apply condition (A) in the form

Vi ^  (^^ — l)%i — 20a;,- -f 1

for each i, to inequality (3.1) to obtain,

n  +  1 _  ,  . , / n  +  l ' ' ”±'

"  ^  - ' S ' !
n+1

+  (40 — (n — 3)(0 — 1)) ^
i=l

/3 (n  -  3)0 -  (n-h 1) ( n - f l ) ^ \ ^  o
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The proof splits into three cases. The first, easy case is for ^

where a simple estim ate for D  as the product of the main diagonal entries of the 

m atrix  is sufficient. The second and th ird  cases are for with

either 0 >  1 or < 9 < 1 and these cases require the more complicated estim ate 

for D  given by (3.4).

C A S E l .

By condition (A), for each i, 1 < i < n  1

Vi ^  — 29xi +  1

so summing over z =  1 , . . . ,  n  +  1 and using condition (B )  gives

n+1 n+1

É  Vi ^  - 1 )  S  +  (>̂  + 1 )
1=1 1=1

Therefore,

n+1 n+1 /n+1 \

i=l i=l \i= l /
n+1 n+1

i=l i=l
/n+1 \  ^ n+1

< -  1) ( X I ) +  (’̂  +  1) è
\i= l /  i=l

Since 6 >  this last expression is an increasing function of on the

interval [0 , and therefore

D < (02 _  1) f  + 1 ) '
2 (1 + 0 )2  ;  2 (1 +  0)2 
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C ase 2. E & ' x? > ^ = 0 ^ ,  ^  < 1

By condition (v4) for every i, l < z < n  +  l ,  we have cc* <  so, by condition

(B ),  for every pair l < i < j < n  + l,

(n — 1 )

M ultiplying both sides of this inequality by ( 1  — û^) and adding 20 gives

( t i  +  \ ' ) 6  — { t i  — 1 )  <  ( 1  — 6 ^ ^ { x i  4" ® j )  4" 2 0 .

As 0 >  the left hand side of this inequality is non-negative, so for any pair 

l < i < j < n + l

0 <  ((1  -  e^){xi + X i )  + 2 $ y ~  ( ( n  +  1)9  -  ( n  -  1 ) ) '

and therefore 

1
0 < ( ( 1  -  6 ^ ) { x i  4 -  X j )  4-  20)  -  ( ( n  4 - 1 ) 0  -  ( n  -  l ) ) ^ j  ^  ^  -  cc.j —  -  x j

1 - 0 2

Expanding this expression and summing over all pairs l < i < i < n 4 - l ,  using 

condition (B )  where necessary yields the following inequality

fn+l \  2 n+1 \ n+1
3

0 <  ( i - g ' )  - 2 E ® . -  + ( ( " - 3 ) { « - i ) - 4 e ) E “ i
\ \ i = i  /  t = i  /  i = i

+  2 ( 1 + ^  (("" +  1) -  +  13)#) ^  Xi

n{n  4- l)(n  -  l)( (n  4- 3)0 -  (n -  1)) . .
2 { T T W   ̂  ̂ ^
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Adding (3.4) and (3.5),

2

n  n .t=i
( t i  +  1)(T I^ — 7T d* 2) — ( t i  +  1)(T1^ 4" 3 tI  — 2)0 2

2 n (l +  fl) ^
( t i  +  1)^(T% — l ) ( ( T l  +  2)0 — ( t i  — 2))

2(1 +  0)3

Since ti >  3 and <  0 < 1 the coefficients of and x j) are both

negative, so using
V* 2 (n  +  l)(ra -  1 )
& ' -  2(1 + e y

we have in the last inequality.

C ase  3. E?=V x \  > ( " + % ') , 9 > 1

As in case 2 , for each pair l < z < 7 < T i d - l

1 + 0  “  '  -  1 +  0

th a t is

2(1 + 0) -   ̂ 2(1 + 0) “  2(1 +  0) 

Squaring this inequality.
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From this and the fact th a t for each i, X{ < it follows th a t for every pair 

I < i  < j  < n  + l

(n  +  l y
0 <

and

0 < X i  +  X j  +
(n -  3)
2(1 +^)

4(1 +  e y

(n  +  l y

+ 2a  + % )

-4(1 +  e y
Expanding and summing over all pairs 1 < i < j  < n-{-l each of these expressions, 

using condition (B )  where necessary gives

/n+1 \  n+1 n(n, +  l) (n  — 1) (n — 5 )(n — 1) ^  g
E - n  - 2 E - ?  <

\t=l /  t=l (1 +  ey + (1 +  ey t=l

(3.6)

and

(n -  l)(5 n “ -  38n +  5 ^  ̂
4(1 +  6):

3

t=l

2 ( n - 3 ) : ^ :  3
(3.7)

Adding together times (3.6) and times (3.7), then multiplying the

result by (0  ̂ — 1 ),

(0 : _ l ) ( ! î ± i ( 2 ^ 2 y _ 2 2 x A  <  2 (n -  3)(n^ -  2 n -  1 ) ( 6  -  1 ) " j i  ^ 3

t=l t=l n ( n - l ) t=l

(2nf -  15m: + 24m + 17)(6 - 1 ) ! ^  3  

^ 2m(l +  6) ^
(m + l)(3m: -  6m -  5)(6 -  1) , ,

+  2 Ô T 6 ÿ   (3 8)
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Adding (3.4) and (3.8) and multiplying by

(n +  l)(n^ — 3n +  6)9 — (n — 3)(n^ — 3n — 2) 3

^  -  (n  +  l ) ( n - l )  S ' '
(71 -f" 1 )(2 ti^  — 9 ti 4" 1 9 )0  — (77. — 3 ) (2 t i  4- l)(T i — 5 )  2

2(n +  1)(1 +  6)
71(77. 4 - 1)(377. — 7)0 — 77,(37% 4- l) (n  — 3)

2(14- 0)3  ̂ ^

The coefficient of æ? is positive so we estim ate from above as follows.

For every pair 1 < 2 < _ ; < 7 % 4 - I w e  have

“ ̂ (iTi + (rrë - "•■) (îTÂ "

Expanding and summing this over all pairs 1 < i < j  <724-1 gives

(3.10)

From (3.9) and (3.10) we have

D  <  "^"2! / +  ̂ -  2(1 +  g) S
and since

Equality occurs in Theorem 3.3 if and only if the sequence {(aJj,?/,)}^'*'^ consists 

of 72 — 1 vectors of the form ( ï i^ ,0 )  and 2 vectors 2^ i ^ j  |

58



4. The Proof of Proposition 3.1 when n=4

Let (»t)f=i, (yOLi sequences in R  and 6 E R  satisfying

(A)  6xi  +  < 1  1 <  % <  5

(B)  = = ^
t = i  t = i

We show th a t

D  =  D e t (  Z L .  W  ( « + ! ) '  - 3 1 2 5V E l i V Ï  y - 1 0 8 ( n - l )  324

W hen n  >  5 the proof of Proposition 3.1 was split into two cases depending on the

value of 6. For n  =  4 we break the proof into three cases and

I  <  0 <  I  , the last case being the part tha t needs a new proof.

C a s e  1. 0 <  0 <  |

The proof is identical to the n  >  5 case. Using both conditions (A) and {B),

— 1) — 2^ gj +  5
t = i  t = i  t = i

5

SO t h a t

»=1

t=l t=l \:=1 /

t=l t=l

<  -  1) ( X )  iCi I + 5 X ) a ; -
\t=i /  t=i

-  4 (1 - 0 2 )
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<  ^
3̂ 125 

^  324

C a s e  2 . 0 >  |

The proof is identical to the n  >  5 case. By Theorem 3.3 , when n  =  4 we have

_  75(5g -  1) ^  3125 
“  4(1 +  O f -  324

with equality if and only if when ^ =  |  and {(aii, 2/t)}i consists of 3 vectors of the 

form ( | , 0 )  and 2 vectors ( - | , ^ )  and

C a s e  3. |  <  ^ <  |

By condition (A), for every i, 1 <  i <  5 ,

1
Xi <

l - h d

so for any pair i, with 1 <  i <  J <  5,

0 < ( y i  + -  X.) -  X,)

After expanding this expression and summing it over all pairs, 1 <  i <  i  <  5, then 

using condition (B)  where necessary we have

Q  5  5  1 5O %— o %—̂ o o 1
Z  <  /. g-,2 E y . '  -  E -  T % g E

: i< j< 5  t = i  »= i J- -1 -1' i - i

We then apply this inequality to  D,

- 2
l < i < J < 5
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t=l t=l t=l i<j

-  (1 +  «)" s  “  ï + ë  §  ^ É  “*'̂ ‘'

=  ( ï f ë ÿ S ^ ' ' - ï T ë S " ' ^ ' - S " ^ S " '  

+ 4 j i y i { i : ^ ] - < )
\»=i i=i

Using condition (A) in the form, for each 1 <  i <  5,

Vi < (fl" -  l)x? -  201; +  1

gives

^  -  ( r w § ^ * ' “ ï + ë p “ ‘^‘' ” è ” ‘\ é ^ ‘'

+ 2 -  1) æ?'j -  (̂  ̂ -  1) ^  + 20 ^  æf + 4 (3.11)
\  \:=1 /  i=l t=l t=l /

Since for each i, cc,- <  r ^ ,  condition [B)  gives

1 +  0 “  ' -  1 +  0 

for each pair 1 <  i <  i  <  5, th a t is

50 — 3 ^ ( 1  — 0^)(xj +  Xj'j +  20

Squaring the right hand side of this inequality and dividing by 1 — 0  ̂ gives us

402
0 <  (1 -  0^){xi +  X j Y  +  40(xi +  X j )  +  ^
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for every pair 1 < i < j  < 5. 

Therefore

0 < 2
402

( 1 - 0  )(æi +  Xj) +  40(œ,- +  Xj) +  —
02 Ll +  0

— Xi
.14-0

— X,

Expanding this inequality and summing over all pairs 1 <  i <  jf <  5 yields 

2(02 -  1) + 4 0 ^ 2 ; ?  <  (^^ -  1)
\  \t=l /  t=l /  i=l \i=l /

t=l

1 3 0 ^ -1 8 9  +  3 ® 2

+ ------ :—

+

1 - 0 2
4002

t=l

(1 -  9)(i +  g y
(3.12)

Also, using the fact tha t for each 1 <  i <  5,

1
1 + 0

and

Vi ^  (0̂  — l)aẑ  — 20a;j +  1

we have

( î T ? " 4 - Ï T 9 ( î T ô “ “•)1 + 0

Rearranging this inequality gives
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Adding inequalities (3.11) , (3.12) , (3.13) and using

(1 +  0 ) ' S  ' -  ( 1 + 0 )  S  ’ (1 +  0 ) '

we have

D < ( o ' - 1) ( t - i f  -  + i ^ E ^ . -  +  ^

5 5
.2

a=l /  t=l t=l " " 1=1

Combining this with

D < E ^ l E v i
1=1 i=l

we have

(1 — ^)(1 +  0)^

15 +  2502
2(1 -  0)(1 +  0)3

This final function has its maximum when X)f=i 

Now when J <  0 <  I  ,
4 - 5 0  15

( 1 - 0 2 ) 2  -  2(1 +  0)2 

SO t h a t  i f  E L i  ^  2{i+ey t h e n  

-12502 +  1500 +  75
D <

8(1 -  0)(1 +  0)3 
3125

^  324
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Finally, if S L i  <  2( v ^  have

D <
5 5

2

t=l t=l ^

<  (3-14)
\i=l /  t=l

which has its m aximum at

i=i 2(1 -  9 )̂ -  2(1 +  e y
because 0 >  1. Therefore, since |  <  Ô < | ,  (3.14) gives

„  ,  3756 -  75 3125
“  (1 +  0)3 ^  324
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Chapter 4

In [8] Filliman claims tha t if P* is a A;-dimensional critical central section (with 

respect to  volume) of a regular n-simplex S  then the following conditions hold,

(a) The centroid of P* coincides with the centroid of S.

(b) Each facet of P* is normal to the line from its centroid to the centroid of S.

and th a t these conditions are sufficient to prove th a t the minimal 2-dimensional 

sections of S are equilateral triangles.

However, it appears tha t the conditions (a) and (b) are not quite correct. There 

are critical sections where neither condition holds.

Figure 4.1 shows a plot of the volume of 1-codimensional central sections of a 

regular 3-simplex, 5 , as a function of the point where the normal to the slice passing 

through the centroid of S  intersects one of the facets of S. The maxim um  values 

of the function, corresponding to sections tha t contain 2 vertices of S  , can clearly 

be seen , as can the minimal values, corresponding to  sections parallel to  a facet of

S. Also there are local minima corresponding to square sections.
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The function is not differentiable at the maxim um  points, but it is differentiable 

at the local and global minima, where both of Fillim an's results hold. However the 

function has saddle points where (a) and (b) do not hold.

If we take S  to  be the 3-simplex with edge length y/2 defined in Chapter 1 , 

then the saddle points correspond to  sections normal to  vectors such as,

1 1 1  1/ 1 1 1  1 \

where
J V ^ - 5

4

We may show this as follows.

As in Chapter 1 let a  be a unit vector and H  be the 3-dimensional subspace of 

perpendicular to a.

To find the critical points of Vol2 {H  Q S)  we recall the formula of Chapter 1 and 

find the critical points of

2 , v . « f f n s ) - £ n r 4 i - i <

under the conditions.

^  ttj =  0 Z )  1
j=i j=i

To ensure tha t the volume is differentiable we assume th a t all the aj are non-zero. 

Set
fOO ^  2 ^   ̂ ^

/ ( a i ,  tt2 , as, 0 4 ) =  / J J  — — —-dt  +  A Uj -f Oy
3 = 1  ^  “I j = i  jz=i
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At the critical points,

Ë L
dak

tha t is

j=
for each 1 <  A; <  4.

roo — \  1
/  1 , .—7 n  1 +  2fiak =  0

V -o o  1 4 -  lakt ^  1 +  lajt

If all the aj are non-zero then the conditions may be multiplied by ajt to  give

/-o=  2  °

or ; writing M  =  2ttVo12{H f | *5'),

+/-o c  rà^t n °
for each 1 <  A; <  4.

Now if,

=  o t L ^ s e

then the Fourier Transform of

4

=  /  <  X ,  e t  >  %% / ( <  X ,  6 j  > )  d V o Î H
JH+sa.

IS

1 -f- iakt ^  1 +  iajt

SO tha t

f  f t ( f )  dt = 27rrt(0)
%/ — OO
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[• 4
=  2tt <  X, e* >  J J  / ( <  X, 6j > ) dVoln

j=i

and as we saw in Chapter 2, this may be w ritten as

I  rk{t) dt = 3ck 27t /  J J  / ( <  X, ej > ) dVoln
J — OO «/

where Ck is the A;-th coordinate of the centroid oi H  Ç\ S.

Therefore,

/OO

fjt(t) dt =  ScjfeM
-OO

and the critical conditions are,

—M  -f- 3cjk Af -f- \cLk 4" 2^0^ =  0 (4.1)

for each 1 <  A; <  4.

As (ci, C2 ,C3 ,C4 ) lies in H  f] S  ,

é < = i = i
i=i

and
4

j=i
so summing (4.1) over A; =  1 , . . .  ,4 gives

2fi =  M

and multiplying (4.1) by ak then summing gives

A = —M  Z] <̂k
k=l
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The critical conditions are therefore,

3 \  u = i

for each 1 <  i  <  4.

If a  is the unit vector in the direction æ,  ̂ — œ), where 0 <  æ <  | ,

then from (4.2) the critical conditions are

Cl =  C2 +  2x^ “  2 ® +  ^

C3 =

C4

3 ( 1 --  3  4 - 2x^^

2 x ^ - K
9

64

3 ( 1 — a; - f

2x ^ - K
3

32

3 ( 1 — X  2 x ^ )

and the slice has vertices

(leg,
/  2 - 4 æ  „ 1 \
(  ’ 3 - 4 a : ’ ’ 3 - 4 x j

It is easily checked tha t the critical conditions above, giving (ci, C2 , C3 , C4 ) ,  the cen­

troid of the slice , are satisfied if and only if either æ =  |  or œ satisfies

3
— 6a; -f 16%̂  — 16x^ -f 16x^ =  0 

16

tha t is.
1 , J V ^ - 5  
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but Cl =  C2 =  C3 =  C4 =  I  if and only if cc =  | .  So we have a critical point tha t 

does not satisfy Fillim an's conditions.

It is not hard to see th a t if Filliman's result (a) were correct then we could 

solve the problem of the minimal 1 -codimensional central section of the regular 

n-simplex, since the n-dimensional version of the critical conditions derived above

.  =  ( I . Î ) )

for each 1 < j  <  n  4 - 1 , (by induction we can assume th a t all the aj are non-zero).

Applying (a) we see tha t all the Cj are equal so tha t all the aj must satisfy the 

same quadratic equation. Therefore, for some 1 <  Â; <  n. A; of the aj are equal to

In -j- 1 — k
V k{n +  1)

and the rem ainder are equal to

k
Y (n -j- l)(n  — A; -f 1 )

so tha t

(n -  1 )! 1
^dt

_  (n — 1 )! y/n  -f- 1 k^ (n — A; -f 1 )”
(n — A;)!(A; — 1)! ( n - f  1)” \ /n  — A; 4 - 1

We now show th a t this last function is minimised when A; =  1 or A; =  n. Let

(n — 1 )! y/n  4 - 1  k^ {n — k + i)^-*+i
h{k) =

(n — A;)!(A; — 1 )! (n 4-1)” y/k y/n  — A; 4-1  
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h is symmetric on the interval [l,n] so we assume th a t 1 < k < and show

K k )
h { k - ^ l ) -

Since k < n  — k and

h{k) (  k  +

it is sufficient to prove tha t  ̂ is an increasing function of k.

Let
/  u \*+2

(ïTT j

then is increasing if h'{k) >  0.

k ^
h'{k) = log +

k \  j  k{k -|- 1)

( r n )  + K : + r r r )

and by the convexity of the function t —> y on [0, oo],

*̂+1 1 . 1 / 1  1
r > < - \ { ï * T T d

so

h \ k )  > 0

as required, and

h{k) > h{l) = h{n) =
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Therefore

( n - l ) !

the lower bound being attained when the slice is parallel to a facet of the simplex.
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