
  

*Code available at https://github.com/CodeShareBot/Micro-Attention-for-Micro-Expression 

 

Micro-Attention for Micro-Expression Recognition 

Chongyang Wang1†, Min Peng2†*, Tao Bi1, Tong Chen34 

1UCL interaction centre, University College London, London, United Kingdom 
2Intelligent Security Center, Chongqing Institute of Green and Intelligent Technology, CAS, 
Chongqing, China 
3College of Electronic and Information Engineering, Southwest University, Chongqing, China 
4Institute of Psychology, CAS, Beijing, China 
†Equal contribution 

* Correspondence:  
Min Peng 
pengmin@cigit.ac.cn 

Keywords: micro expression recognition, deep learning, attention mechanism, transfer 
learning. 

Abstract 

Micro-expression, for its high objectivity in emotion detection, has emerged to be a promising 
modality in affective computing. Recently, deep learning methods have been successfully introduced 
into the micro-expression recognition area. Whilst the higher recognition accuracy achieved, 
substantial challenges in micro-expression recognition remain. The existence of micro expression in 
small-local areas on face and limited size of available databases still constrain the recognition 
accuracy on such emotional facial behavior. In this work, to tackle such challenges, we propose a 
novel attention mechanism called micro-attention cooperating with residual network. Micro-attention 
enables the network to learn to focus on facial areas of interest covering different action units. 
Moreover, coping with small datasets, the micro-attention is designed without adding noticeable 
parameters while a simple yet efficient transfer learning approach is together utilized to alleviate the 
overfitting risk. With extensive experimental evaluations on three benchmarks (CASMEII, SAMM 
and SMIC) and post-hoc feature visualizations, we demonstrate the effectiveness of the proposed 
micro-attention and push the boundary of automatic recognition of micro-expression. 

1 Introduction 

Micro-expression is a rapid and subtle facial movement, which can reveal underlying genuine 
emotions. Typically, people express their emotions consciously by macro-expressions that last from 
1/2 to 4 seconds [1] and are easily perceived by humans. Meanwhile, many researches have been 
focused on enabling computer to learn human emotion by recognizing macro-expressions (for 
surveys, see [2] [3]). However, psychological studies [4] [5] suggest that macro-expression could be 
misleading on human emotion recognition. Unlike macro-expression, micro-expression is mostly 
expressed unconsciously where the genuine emotion can be revealed. For such objectivity, the 
recognition of micro-expression powered many applications in diverse areas like affect monitoring 
[4], criminal detection [6], and homeland security [7]. 
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Previous research on automatic recognition of micro-expression is benefited from successful feature-
engineering works on macro-expression. First, Zhao et al. [8] applied Local Binary Pattern on Three 
Orthogonal Planes (LBP-TOP) to extract facial features from image sequences containing micro-
expression and used Support Vector Machine (SVM) to classify the features. Later, Wang et al. [9] 
further designed LBP-Six-Intersection-Points (LBP-SIP) for the feature extraction. After that, Li et 
al. [10] compared LBP-TOP, Histogram of Oriented Gradients (HOG) and Histogram of Image 
Gradient Orientation (HIGO) for the feature extraction of micro-expression videos. On the other 
hand, a study using tensor engineering has been seen in [46]. Except for these evolved from analyses 
on facial macro-expression, other features proposed in video analysis have also inspired the micro-
expression research. Recently, Optical Flow [11] has been used to develop the feature designing for 
micro-expression. Liu et al. [12] proposed a method called Main Directional Mean Optical-flow 
(MDMO) to capture the subtle facial movement for micro-expression recognition. Later, Xu et al. 
[13], based on Optical Flow, designed a fine-grained sequence alignment method and an optical flow 
direction optimization strategy for the recognition of micro-expression. Aside from the recognition 
solely based on micro-expression data, a study by Zhu et al [47] proposed to transfer the knowledge 
of larger affective speech data to the recognition of micro-expression. Generally, methods based on 
feature engineering that require dependent data pre-processing are more suitable for off-line analysis, 
while for faster and even real-time analysis of micro-expression, better end-to-end methods are 
needed.  

   On the other hand, as micro-expression is demonstrated through the dynamic facial movement, 
most existing works have focused on the recognition from videos. However, a large percentage of 
frames within a video clip could be redundant for the recognition because the micro-expression is 
transient and only exists in a few frames. A recent research [14] proposed a comprehensive pipeline 
for automatic apex spotting as well as proved the merit of using apex frame within a video clip for 
micro-expression recognition, while the accuracy achieved was higher than traditional methods that 
used full video clips as input. 

   In this paper, we follow the idea of deep learning in designing end-to-end network for micro-
expression recognition. To lessen over-fitting, we perform transfer learning to aid the training on 
micro-expression databases, which has proved to be efficient in applying deep neural network on 
small databases in a recent work [17]. Furthermore, the recognition is performed on apex frames 
within each video sequence, which aimed to get rid of redundant information as well as directly take 
the advantage of larger macro-expression datasets that mostly comprising images. In different with 
the study [17], a novel attention mechanism called micro-attention is designed to help in focusing on 
the region of interest, considering that the micro-expression is expressed by a fleeting movement of 
local areas on face. To the best of our knowledge, this paper is the first to apply attention mechanism 
on the recognition of micro-expression. Technically, we modified the way of integrating residual 
network with attention mechanism in contrast to a previous work [29], with an aim of reducing the 
number of parameters. Namely, we compute the attention map using the self-outputs from each 
residual block at different scales. Through experiments, we showed that our architecture is able to 
achieve better recognition accuracy with smaller parameter size. Extra feature visualizations are also 
imaging the effectiveness of micro-attention on capturing the facial areas of interest. The main 
contributions are summarized as below: 

- A novel micro-attention design for micro-expression recognition is proposed without introducing 
notable extra parameters. Cooperating with residual network, such attention design also takes the 
advantage of multi-scale spatial features and enables the network to focus on the area where micro-
expression exactly happens thus improve the recognition accuracy. Our method is expected to be 
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useful for other computer vision tasks, especially when the region-of-interest only exists within local 
areas and the size of database is small. 

- Extensive evaluations on three benchmark databases demonstrate the effectiveness of the proposed 
attention unit comparing with other state-of-the-art methods. Particularly, through post-hoc feature 
visualizations, the power of micro-attention in learning spatial attentions that accord with respective 
facial action units (AUs) is illustrated. Meanwhile, the potential for other facial expression tasks 
reveals. 

2 Related Research Works 

The deep learning approach, as a group of machine learning especially neural network methods, has 
produced many successful case studies in image processing, video analysis and speech recognition. 
Without hand-crafted feature engineering, an end-to-end neural network model is able to classify and 
predict by learning from large sets of high dimensional (and low-level representation of) data [15]. 
Convolutional neural network (CNN), as one of the most widely applied deep learning approaches, is 
currently the leading method in many image-related areas, like large-scale object recognition [18] 
and face recognition [19]. First introduced in study [20], the CNN has been modified a lot within the 
past years in a layers-increasing and block-designing manner, popular successors of which are 
AlexNet [21], VGG-Net [22] and GoogLeNet [23]. Despite the differences in network architecture, 
deep learning models are benefited from the ability of learning high dimensional representation from 
large datasets.  

   Recently, we have seen several studies that applied deep learning for the micro-expression 
recognition. At first, researchers [43][44] used CNNs to extract features from micro-expression 
videos and further applied the classifier like SVM to acquire the classification results. Comparing 
with traditional hand-crafted features, these deep features showed better performance on 
characterizing micro-expressions. Then, Peng et al. [16] designed the first end-to-end middle-size 
neural network called Dual Temporal Scale Convolutional Neural Network (DTSCNN) for micro-
expression recognition. The DTSCNN has two temporal channels designed for data that share 
different temporal nature, e.g. cameras used for data collection has different framerates. To partially 
avoid over-fitting, each channel only has 4 convolutional layers and 4 pooling layers. The recognition 
rate achieved is around 10% higher than some previous state-of-the-art methods (e.g. MDMO, FDM). 
More recently, Huai-Qian et al. [32] proposed to train a network with convolutional layers and 
recurrent layers for micro-expression recognition. Instead of using data augmentation for the dataset, 
they extracted optical flow features to enrich the input at each timestep or with a given temporal 
length. However, the results achieved are only around chance level which could be due to the 
practice of using deep network on small datasets. Additionally, for the nature of micro-expression 
that the duration is less than 1/2 second, it may be inappropriate to train the network on the full video 
clips. A more recent study [17] proposed to use a pre-trained residual network for micro-expression 
recognition with apex frames within each video sequences at the Facial Micro-Expression Grand 
Challenge (MEGC 2018) [41] in the 13th IEEE Conference on Automatic Face and Gesture 
Recognition and won first place in all tasks. This work also proved the advantage of using apex 
frames instead of full video sequences for micro-expression recognition with deep learning method. 
So far, none of works have considered that micro-expression is only expressed within small-local 
facial areas. Additionally, the size of available micro-expression datasets is much smaller than that of 
traditional database fed into CNN, which could cause serious over-fitting problem. 

   In computer vision domain, the attention mechanism [25] is proposed to find the region of interest  
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(ROI) within an image for respective tasks and highlight the representation of the location. While for 
micro-expression recognition, such mechanism may help the network to focus on the ROI on the face 
and reduce the negative influence from irrelevant facial areas and background. A successful 
application of attention mechanism for micro-gesture recognition is seen in [29], which designed an 
attention block and added it to the end of the last convolutional layer within each residual block. The 
spatial attention of micro-gesture was learned and lead to an improvement in recognition accuracy. 
However, the attention block proposed in that study create notable extra parameters for training, 
which further increased the training time and complexity.  

   In this work, we designed a simplified yet efficient attention mechanism to learn the spatial focus 
of micro-expression within each image. Specially, the proposed trainable micro-attention unit is 
designed without increasing notable parameters for training and would be discussed in detail in next 
section. On the other hand, the transfer learning (for a survey, see studies in [30][31]) has proved to 
be very useful for using the knowledge in source domain to help the learning in target domain, 
especially when the size of target dataset is too small to train a network. When the source and target 
domain share a similar data structure, a simple yet efficient implementation of transfer learning is to 
initialize the network on larger-relevant databases and then fine tune it with the target database. We 
would follow this idea to take the advantage of larger macro-expression databases to improve the 
learning on micro-expression databases in this paper. 

3 Methodology 

In this section, we discuss the proposed methods for micro-expression recognition. First, a residual 
network is used as a basic architecture. Second, within each residual block, a novel micro-attention 
unit is integrated to enable the network to focus on the facial areas exhibiting micro-expression. 
Finally, to train the network, a transfer learning approach is utilized to lessen the over-fitting risk.   

3.1 Residual Network 

The residual network [24] previously achieved a state-of-the-art performance on image-base 
recognition tasks without increasing network complexity. The residual network usually uses a stack 
of residual blocks to build the network, while a classic residual block is shown in Figure 1. Within a 
residual block, a shortcut connection would be added to perform identity mapping (achieved by 
element-wise summarization), which helps to reduce the degradation problem. The shortcut 
connection also accelerates the training process and nearly introduces no extra parameter and 
computation. In this paper, we designed our network with a stack of 10 residual blocks, within each a 
micro-attention unit is added to learn the spatial attention map. Specially, we call such block as 
concise and trainable residual attention block. Through training, such network is able to focus on 
micro-expression on the face. 

 

Figure 1. A classic residual block with a shortcut connection that designed for the input and output of the block 
sharing different dimensions. 
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3.2 Micro-Attention Unit 

Three aspects have been considered in designing the residual attention block: 1) the attention unit 
should be trainable, 2) the attention unit should be compact without increasing notable parameters, 3) 
the residual scheme should be combined in learning the attention feature. 

   The proposed residual attention block is shown in Figure 2. Specifically, the proposed trainable 
micro-attention unit is shown in the dashed-line area, where the average spatial feature map 𝑴(𝑿) is 
computed. Unlike the state-of-the-art attention units that would bring noticeable computation load 
[26] [29], we compute the attention map using the multi-scale features that self-learned within the 
residual architecture, which is more straightforward and parameter-saving. Specifically, given an 
input 𝑿	 ∈ ℝ(×*×+  (𝐶,𝐻,𝑊  are the number of channels, height and width respectively) to this 
block, the three convolutional layers, namely the Conv	1 × 1, first Conv	3 × 3 and second Conv	3 ×
3 can produce three feature matrices, namely {𝓛89, 𝓛8:, 𝓛8;}, under three convolutional scales of 
1 × 1, 3 × 3 and 5 × 5 respectively. Based on these features of multiple channels, in the micro-
attention unit, a channel-wise concatenation is used to compute 𝓛8> ∈ ℝ(89?8:?8;)×*×+ . Then, an 
embedding implemented with 1 × 1 convolution together with channel-wise averaging are performed 
to produce the average feature map as  

                                                        𝑴(𝑿) = A
8>
∑ 𝓛8>𝑾∗
8>
EFGHI,FHA                                                     (1) 

where 𝑾∗ is a weight matrix of the 1 × 1 convolution layer to be learned, 𝑐K = 𝑐A + 𝑐M + 𝑐N is the 
number of channels of 𝓛8> . Here need to mention that the size of the attentional feature map 
computed at each residual block is equal with its residual output. After an element-wise 
multiplication with the current residual output 𝑻(𝑿) = 𝓛89 + 𝓛8; , the output 𝑶(𝑿)  of the whole 
residual attention block is computed as  

                                                           𝑶(𝑿) = 𝑻(𝑿) ∙ R 1
𝑴(𝑿)S                                                            (2) 

   Comparing with the output 𝑻(𝑿) from the original residual block, the proposed residual attention 
block only brings in the 𝑻(𝑿) ∗ 𝑴(𝑿) section which denotes the attention computation. The attention 
map 𝑴(𝑿) would approximately approach zero when the attentional areas are not obviously learned 
for original output 𝑻(𝑿). 

 

Figure 2. The residual attention block, where the proposed micro-attention unit is shown in dotted-line area. 
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3.3 Transfer Learning 

To lessen over-fitting when training deep learning network on micro-expression datasets, the transfer 
learning approach is considered. Similar with the ideas of transferring the information from macro-
expressions to help the recognition on micro-expression [48][49], we implement our transfer learning 
strategy according to a recent work that also used deep learning in this topic [17]. The proposed steps 
are shown in Figure 3. First, the original residual network (without micro-attention units) is 
initialized with the ImageNet database [38]. Then, for the differences between object recognition 
(ImageNet) and facial expression recognition, such network is further pre-trained on several popular 
macro-expression databases. The selected macro-expression databases are Cohn-kanade dataset 
(CK+) [33], Oulu-CASIA NIR&VIS facial expression [34], Jaffe [35], and MUGFE [36]. Details 
about these databases are provided in next section. Finally, the residual network together with micro-
attention units is fine-tuned with micro-expression databases, namely the CASMEII [27], SAMM [28] 
and SMIC [45]. 

 

Figure 3. The applied transfer learning process. 

4 Experiment and Discussion 

In this section, we evaluate the proposed method with several popular macro-expression databases 
(for transfer learning) and three benchmark micro-expression databases. The database description and 
pre-processing details are first provided. Then, the implementation details are presented. Finally, the 
analysis on experimental results in comparison with several related works is reported. 

4.1 Data Preparation 

Three micro-expression databases are used in this work, namely the CASMEII [27], SAMM [28] and 
SMIC [45]. A summary of these three databases is given in Table 1. To avoid the category bias 
between databases, we apply two strategies to regroup the data in each dataset respectively: i) when 
CASME II and SAMM are used together for cross-database validations, video clips in each database 
are regrouped into 5 emotion types based on the intensity distribution of AUs [38] according to the 
study [39]. The 5 emotions are happiness, surprise, anger, disgust and sadness, while data originally 
labelled as fear and others are not used; ii) when the three databases are used separately, data in 
CASMEII and SAMM are also regrouped into the 5 categories as stated while the category of data in 
SMIC stay unchanged. 

   The CASMEII and SAMM databases provided the labelling for the onset, apex and offset frames of 
each video clip. For SMIC, that the apex frame is not marked, we use the frame at the middle of each 
video clip as the estimated apex frame. Given an apex frame, AAM [40] is used to automatically 
locate and segment the facial area, and the processed images would be further normalized into 224 × 
224 pixels. 

   To help the training on the three micro-expression databases, a transfer learning approach is 
employed. During the pre-training step, 4 popular macro-expression databases are used, namely the  
CK+ [33], Oulu-CASIA NIR&VIS facial expression [34], Jaffe [35], and MUGFE [36]. 
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Table 1 | Summary of the three micro-expression databases (numbers in bracket represent the number of samples in each category) 

 Feature CASMEII SAMM SMIC 

Number of Samples 255 159 164 

Participants 35 32 16 

Ethnicities Chinese Chinese and 12 more Chinese 

Facial Resolution 280 × 340 400 × 400 640 × 480 

Categories 

Happiness (25), 

 Surprise (15),  

Anger (99) 

Disgust (26), 

Sadness (20), 

Fear (1) Others (69) 

Happiness (24),  

Surprise (13), 

Anger (20) 

Disgust (8), 

Sadness (3), 

Fear (7) Others (84) 

Positive (51), 

Negative (70), 

Surprise (43) 

   CK+ [33] contains 593 video clips collected from 123 subjects, among which 327 clips were 
labelled with AUs on the last frame of each. 7 emotion types are included: anger, contempt, disgust, 
fear, happiness, sadness and surprise. Each clip starts from a normal facial expression frame and ends 
at the apex frame. For our experiment, the last three frames from each corresponding video clip 
(belonging to the 5 emotion types we used) are selected while 852 images are employed. 

   Oulu-CASIA NIR&VIS facial expression database [34] contains the video from 80 subjects. Six 
typical expressions are collected, i.e. happiness, sadness, surprise, anger, fear and disgust. Two 
imaging systems, NIR (Near Infrared) and VIS (Visible Light) systems, were equipped for the data 
capturing. Furthermore, under each image system, three different illumination conditions were 
applied, i.e. normal indoor illumination, weak illumination (with a computer display on) and dark 
illumination (no visible lights). For our experiment, the last three frames of each video captured by 
VIS system under normal indoor illumination are extracted which provide 1200 images. 

   Jaffe [35] contains 219 images of 7 emotions displayed by 10 Japanese females. Each subject acted 
7 types of expression, namely sadness, happiness, anger, disgust, surprise, fear and neutral. For our 
experiment, we selected images correspond to 5 emotion types to classify in micro-expression tasks, 
and finally extracted 151 images. 

   The MUGFE [36] includes 1032 video clips from 86 subjects. The database has two parts, one with 
six acted expressions and another with stimuli induced expressions. Each clip has 50 to 160 frames 
starting and ending at neutral expression with apex frames corresponding to respective emotion types 
within. Around the apex frames, we select 6 to 10 frames and finally have 8228 images for our 
experiment. 

   In total, 10431 images from four macro-expression databases are selected to pretrain the model. For 
each image, the facial area is segmented with AAM [40] and normalized to 224 × 224  pixels. 
During the pretraining, 1/10 of the images is used for validation while the rest for training. 
Additionally, three data augmentation methods are used with a selecting probability of 0.5, namely 
the color shift with maximum value of 20, rotation with maximum degree of 10 and smoothing with 
maximum window size of 6. 
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4.2 Model Implementation and Validation Methods 

For the proposed micro-attention method, after initialization with ImageNet [38], at the stage of 
pretraining, we used batch gradient descent with a momentum of 0.9, the batch size is set to 50 and 
learning rate is initialized with 0.01 which would decrease 10 times smaller after every 20 epochs. 
The proposed model is implemented with Caffe [42]. In pre-training, the average recognition rate on 
5 macro-expression types of the residual network (without attention units) is 99.33%. The same 
network with micro-attention would be applied during fine-tuning and testing.  

   At the stage of fine-tuning and testing, three validation methods are used: Holdout-database 
Evaluation (HDE) and Composite-database Evaluation (CDE) that were used in the MEGC 2018 [41], 
and traditional leave-one-subject-out validation (LOSO).  

   HDE and CDE are cross-database validations, where the CASME II and SAMM are used together. 
In HDE, one database is used for training and another for testing, while CDE is a Leave-One-
Subject-Out validation (LOSO) with the two databases pooled together. For the first fold in HDE 
where CASME II is used as training set and SAMM is used as testing set, images in each micro-
expression type is resampled according to the one having largest size w.r.t. the imbalanced dataset 
problem. Color shift (maximum value of 20), rotation (maximum degree of 8) are applied to augment 
the data with selecting probability of 0.5. For our method and other deep learning based approaches, 
the batch size is set to 10 and initial learning rate is set to 1e4 (momentum=0.9, weight decay=3e2) 
which is decreased 10 times smaller after every 10 epochs. For the second fold in HDE where 
SAMM is used as training set and CASME II is used as testing set, the resampling method, data 
augmentation and hyperparameter settings are the same. Metrics utilized here are Weighted Average 
Recall (WAR) and Unweighted Average Recall (UAR). The computation of WAR and UAR is 
shown below 

                                                           𝑊𝐴𝑅 = ∑ XYZ[
Z\9
∑ ]Z[
Z\9

	 , 𝑈𝐴𝑅 = A
(
∑ XYZ

]Z
(
8HA                                         (3) 

where 𝐶 is the number of categories, 𝑇𝑃8 is the number of true-positive samples and 𝑁8 is the total 
number of samples under category 𝑐. 

   In CDE, 20 training-testing processes are prepared for SAMM and 26 for CASME II. For images in 
different expression types in the training set, the resampling method is also used to balance the 
classes. Data augmentation is also considered by cropping the four corners of the original image with 
size of 240 × 240 into a ‘new’ one with size of 224 × 224 and resizing it to the previous size. For 
our method and other deep learning based approaches, the batch size is set to 8 and initial learning 
rate is set to 1e3 (momentum=0.9, weight decay=5e6) which is decreased 10 times smaller after 
every 10 epochs. Metrics utilized here are average accuracy and F1-score. 

   The traditional LOSO is also included as to maintain the completeness of this work. Here, the three 
databases are used to test the model separately. The resampling method and the data augmentation 
methods mentioned above are together used for every training set. For our method and other deep 
learning based approaches, the batch size is set to 10 and initial learning rate is set to 1e3 
(momentum=0.9, weight decay=5e4) which is decreased 10 times smaller after every 10 epochs. 
Metric used here are the average accuracy and F1 score. 

   Since the dataset settings in HDE and CDE are the same with what used in MEGC 2018, we 
directly used the baseline results achieved with LBP-TOP, HOOF and HOG3D [39], the results from 
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study [32] as well as the state-of-the-art one [17] that won the challenge. For the detailed parameter 
settings, please refer to the original papers. To further demonstrate the advantage of parameter-saving 
in micro-attention, we compare it with another attention-based method [29] that designed for micro-
gesture recognition with a more complex attention mechanism. The same transfer learning procedure 
is applied for all the deep learning based methods [32] [17] [29]. In traditional LOSO on the three 
databases, in order to perform a fair comparison, we only compare our method with the two deep 
learning based approaches [17] [29] because the other methods [39][32] are either not originally 
tested with the three databases separately or not using the traditional LOSO. 

4.3 Experimental Results and Discussions 

The experimental results plus the comparison of parameter sizes are provided in this subsection 
according to different validation methods. Discussions on these results are also given along with.  

A. Holdout-database Evaluation (HDE) 

Taking CASME II as the training set and SAMM as the test set, the residual network with proposed 
micro-attention achieved WAR of 0.559 and UAR of 0.427. With SAMM as the test set and CASME 
II as the training set, the residual network with proposed micro-attention achieved WAR of 0.584 and 
0.341. The average WAR and UAR achieved by baseline methods [39], previous studies [17] [29] 
[32] and our method in two evaluation folds are summarized in Table 2. The dataset listed in each 
column is used as test set while another is used for training. 

Table 2 | Average WAR and UAR achieved by different methods in HDE. 

Methods 
WAR UAR 

SAMM CASMEII SAMM CASMEII  

LBP-TOP [39] 0.338 0.232 0.327 0.316 
HOOF [39] 0.441 0.265 0.349 0.346 

3D-HOG [39] 0.353 0.373 0.269 0.187 

ELRCN [32] 0.485 0.384 0.382 0.322 

Residual Network [17] 0.544 0.578 0.440 0.337 

Residual Network with complex attention [29] 0.529 0.573 0.393 0.319 

Residual Network with Micro-Attention 

 

0.559 0.584 0.427 0.341 

   We can see from Table 2 that the proposed method yielded better WAR (0.559 and 0.584) in inter-
database validations and better UAR (0.341) when tested on CASMEII. Specially, the proposed 
attention units rendered the residual network better results comparing with the previous study [17] 
that did not use attention mechanism. However, the UAR (0.427) achieved with our method on 
SAMM is slightly lower than [17] (0.440), while the WAR achieved is better. Although the 
resampling method was conducted, given the computation of UAR which is considering the 
distribution of categories, such results are probably due to the imbalanced training set (CASMEII) 
that categories with larger size would be easier to catch the attention of the model. Another HDE 
experiment with Residual Network [17] on the two datasets excluding the transfer learning phase was 
conducted, but we found that the model failed to converge so the results are not reported. Such 
situation is normally seen when directly applying deep networks on small datasets.  
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   On the other hand, the parameter size and training time per iteration of the three residual based 
methods are reported in Table 3. Given that micro-attention is designed to utilize the existing self-
learned feature maps which avoid creating extra computational layers so reduced the size of 
parameters, the proposed method still achieves better results than previous attention-based method 
[29]. As the attention mechanism introduced in [29] is bringing in notable parameters while the 
training data is comparatively small, probably due to overfitting, the WAR and UAR achieved by 
which are even lower than normal residual network without attention [17]. 

Table 3 | Parameter size and training time per iteration of three residual network methods. 

 Methods Parameter size 
(million) 

Time per iteration 
(second) 

Residual Network [17] 4.9 0.95 

Residual Network with complex attention [29] 11.2 1.5 

Residual Network with Micro-Attention 5.9 1.1 

B. Composite Database Evaluation (CDE) 

For the CDE on SAMM and CASME II databases, the average accuracy and F1-score of each 
method are summarized in Table 4. The parameter size of each network-based method remains 
unchanged. 

Table 4 | Average recognition accuracies and F1-scores of different methods on SAMM and CASME II in CDE. 

 Methods Accuracy  F1-score 

LBP-TOP 0.524  0.400 

HOOF 0.527  0.404 

3D-HOG 0.436  0.271 

ELRCN [32] 0.570  0.411 

Merghani et al [39] 0.718  0.579 

Residual Network [17] 0.747  0.640 

Residual Network with complex attention [29] 0.625  0.489 

Residual Network with Micro-Attention 0.763  0.668 

   As shown, the proposed model has better generalization ability to unseen subjects. We owe this to 
the design of micro-attention units because the subject identity, which can be deemed as noise to the 
micro-expression recognition, is out of the attention. Finally, the confusion matrix for the 
classification result in CDE of our proposed method can be seen in Table 5. Aside from better results 
the model achieved in general, the classification on happiness and anger is much better than other 
categories. This may due to the different biomechanical natures of the two emotions which both have 
strong facial movement intensities. As is also shown in the confusion matrix, the classification of 
disgust and sadness is under chance level and most of the two emotions are classified as anger. This 
could be that disgust and sadness share many similarities with anger w.r.t. the types of AU 
characterizing them. On the other hand, another significant reason lays in the unbalanced distribution 
of samples, the number of samples labelled with Disgust or Sadness is much smaller than other types. 
Consequently, we can see that a better future of micro-expression relies on the development of 
modeling as well as bigger micro-expression database with better category distribution. 
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Table 5 | Confusion matrix of the result yielded by proposed method in CDE. 

 Happiness Surprise Anger Disgust Sadness 

Happiness 81.63 12.24 6.12 0.00 0.00 

Surprise 17.86 53.57 10.71 7.14 10.71 

Anger 2.52 0.00 94.12 1.68 1.68 

Disgust 17.65 0.00 35.29 47.06 0.00 

Sadness 4.35 8.70 43.47 0.00 43.48 

C. Traditional Leave One Subject Out Validation (LOSO) 

   For the LOSO on SAMM, CASME II and SMIC databases separately, results are reported in Table 
6. Generally, results achieved in traditional LOSO is better than what reported in HDE but is lower 
than results in CDE. For the former situation, it is reasonable because HDE is a strict validation 
method on testing the generalization ability of a model across different datasets. For the later one, the 
accuracies achieved in CDE are higher, which is probably because that the respective training set is 
bigger as the two datasets (SAMM and CASME II) are combined. Still, our method yields the best 
performances on the three databases. 

Table 6 | Average recognition accuracy and F1-score of different methods on SAMM, CASME II and SMIC in traditional LOSO. 

Methods 
SAMM CASME II SMIC 

Accuracy F1-score Accuracy F1-score Accuracy F1-score 

Residual Network [17] 0.456 0.383 0.622 0.464 0.415 0.406 
Residual Network with complex attention [29] 0.471 0.306 0.627 0.473 0.494 0.448 

Residual Network with Micro-Attention 0.485 0.402 0.659 0.539 0.494 0.496 

 

4.4 Impact analysis through feature visualization 

Results in HDE, CDE and LOSO have demonstrated the better recognition ability of our approach 
comparing with state-of-the-art ones [17] [29] [32] [39]. In this subsection, we make efforts to 
interpret the modeling behavior of our method through feature visualization, which is usually 
employed to explain the decision of a model given its focus paid to the input data. 

From the residual network [17] without attention units, we first extract the feature map from the last 
residual block with forward propagation, using inputs labelled with disgust, sadness and anger 
respectively. Similarly, such feature maps are also extracted from the last micro-attention unit of our 
network and from the last attention unit of the network proposed in [39]. The feature visualizations 
are given in Figure 4.  

At lower-level, the edge information (representing the face) is mainly learned while the information 
contributing to the classification is learned at higher-level. We can see from the figure that the 
differences of focused areas (marked with higher attention intensity) of the three networks lead to  
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Figure 4. Feature map visualizations of network without attention, with more complex attention proposed in [29] and with micro-
attention on the recognition of: (a) disgust; (b) sadness; (c) anger. 

different classification results, where our method with micro-attention units produced the correct 
classification labels and the other two failed for the recognition of one or all emotion types. To better 
illustrate the impact of the proposed micro-attention units, the distributions of facial AUs [38] related 
to the input emotions of disgust, sadness and anger are demonstrated in Figure 5. Detailed AU 
combinations for those emotions are summarized in Table 7. 

 

Figure 5. Distributions of AUs related to disgust, sadness and anger. 

Table 7 | Emotion types and the corresponding AU combinations. 

 Emotion type Action unit combinations 

Disgust AU9 (nose wrinkler), AU15 (lip corner depressor), AU16 (lower lip depressor) 

Sadness AU1 (Inner brow raiser), AU4 (brow lower), AU15 (lip corner depressor) 

Anger AU4 (brow lower), AU5 (upper lid raiser), AU7 (lid tightener), AU23 (lip tightener) 

   For the recognition of disgust, with the attention unit proposed in [39] and micro-attention units, 
the two models started to pay attention to the nasal and lip areas that are correlated with the genuine 
expression. Without attention mechanism, the original residual network [17] produced the wrong 
decision with the focus on less relevant areas (canthus) under the same training process. Such same 
situation also happened for the recognition of sadness. More obvious pattern is found in the 
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recognition of anger, where the distribution of attention-paid areas of our method better covered the 
relevant AUs and yielded the correct result. Although the previous method [39] also produced the 
right classification, it is more likely to be an inference at chance-level because the focused area 
(platysma) are much less relevant with anger. For the slightly overlapped AU distributions around 
nasal and mouth areas of anger and disgust, the residual network without attention mechanism [17] 
misclassified anger as disgust because of its focused areas which mostly covered the AUs 
representing the latter one. 

Generally speaking, the effective role of attention mechanism in macro- and micro-expression 
recognition is demonstrated through the experiments. However, it is also learned from the 
comparison results that, for the design of specific attention unit, one thing should be noticed is the 
impact of extra parameters. Especially for the recognition task on small dataset, such factor would 
particularly hinder the performance of using attention mechanism. 

5 Conclusion 

In this work, we proposed a novel attention mechanism called micro-attention to help the network to 
focus on facial areas of interest for the recognition of micro-expression. The mechanism is 
implemented as micro-attention units to be used with the block-wise design of residual network, so as 
to take the advantage of self-learned multi-scale spatial features within each residual block. To 
alleviate the overfitting risk of training deep network on small dataset, such attention unit is further 
designed to reduce the use of extra computational layers so as to avoid increasing notable parameters, 
while a transfer learning strategy is also employed using ImageNet and four macro-expression 
databases. Specifically, during the transfer learning process, the network is first initialized on 
ImageNet and then pre-trained on four popular macro-expression databases. After fine-tuned on three 
benchmark databases (CASMEII, SAMM and SMIC), the proposed method achieved better 
recognition accuracy than several state-of-the-art methods. Specially, comparing with two residual 
based methods, the visualized high-level feature map demonstrates the effectiveness of the proposed 
attention units on capturing the facial areas which better correlated to the underlying emotion. 

6 Conflict of Interest 

The authors share no conflicts toward this work. 

7 Author Contributions 

Chongyang Wang and Min Peng designed the theory and experiments. Tao Bi and Tong Chen 
provided suggestions during experiments. All authors contributed to the writing. 

8 Funding 

Chongyang Wang is supported by UCL Overseas Research Scholarship (ORS) and UCL Graduate 
Research Scholarship (GRS). 

9 Acknowledgement 

Thanks to Professor Nadia Berthouze at University College London who provided abundant 
suggestions during writing and submitting this paper. 

10 Reference 



 
14 

[1] Ekman, Paul. 2007. Emotions revealed: Recognizing faces and feelings to improve communication and emotional life. 

Macmillan. 

[2] Corneanu, Ciprian Adrian, Marc Oliu Simón, Jeffrey F. Cohn, and Sergio Escalera Guerrero. (2016). Survey on rgb, 

3d, thermal, and multimodal approaches for facial expression recognition: History, trends, and affect-related applications. 

IEEE transactions on pattern analysis and machine intelligence. 38(8), 1548-1568. 

[3] Sariyanidi, E., Gunes, H., & Cavallaro, A. (2015). Automatic analysis of facial affect: A survey of registration, 

representation, and recognition. IEEE transactions on pattern analysis and machine intelligence, 37(6), 1113-1133. DOI: 

10.1109/TPAMI.2014.2366127. 

[4] Porter, Stephen, and Leanne Ten Brinke. (2008). Reading between the lies: Identifying concealed and falsified 

emotions in universal facial expressions. Psychological science. 19(5), 508-514. 

[5] Ekman, Paul. (2009). “Lie catching and microexpressions,” in The Philosophy of Deception, ed C. W. Martin (Oxford: 

Oxford University Press), 118–133. Doi: 10.1093/acprof:oso/9780195327939.003.0008. 

[6] Russell, T. A., Chu, E., and Phillips, M. L. (2006). A pilot study to investigate the effectiveness of emotion 

recognition remediation in schizophrenia using the micro-expression training tool. Br. J. Clin. Psychol. 45, 579–583. Doi: 

10.1348/014466505X90866. 

[7] Weinberger, S. (2010). Airport security: intent to deceive? Nature 412–415. Doi: 10.1038/465412a. 

[8] G. Zhao, M. Pietikainen. (2007). “Dynamic Texture Recognition Using Local Binary Patterns with an Application to 

Facial Expressions,” IEEE Transactions on Pattern Analysis & Machine Intelligence, 29(6):915. Doi: 

10.1109/TPAMI.2007.1110. 

[9] Y. Wang, J. See, C.W. Phan, et al. (2014). “LBP with Six Intersection Points: Reducing Redundant Information in 

LBP-TOP for Microexpression Recognition,” Computer Vision--Asian Conference on Computer Vision. Springer 

International Publishing, 21–23. Doi: 10.1007/978-3-319-16865-4_34. 

[10] X. Li, X. Hong, A. Moilanen, et al. (2017). “Towards Reading Hidden Emotions: A Comparative Study of 

Spontaneous Micro-expression Spotting and Recognition Methods,” IEEE Transactions on Affective Computing. Doi: 

10.1109/TAFFC.2017.2667642. 

[11] D. Sun, S. Roth, and M. J. Black. (2014). “A quantitative analysis of current practices in optical flow estimation and 

the principles behind them,” Int. J. Comput. Vis., vol. 106, no. 2, pp. 115–137. 10.1007/s11263-013-0644-x. 

[12] Liu, Y. J., Zhang, J. K., Yan, W. J., Wang, S. J., Zhao, G., & Fu, X. (2016). A main directional mean optical flow 

feature for spontaneous micro-expression recognition. IEEE Transactions on Affective Computing, 7(4), 299-310. Doi: 

10.1109/TAFFC.2015.2485205. 

[13] F. Xu, J. Zhang, J. Wang. (2017). “Micro-expression Identification and Categorization using a Facial Dynamics 

Map,” IEEE Transactions on Affective Computing, 8(2): 254-267. Doi: 10.1109/TAFFC.2016.2518162. 

[14] Liong, S. T., See, J., Wong, K., & Phan, R. C. W. (2018). Less is more: Micro-expression recognition from video 

using apex frame. Signal Processing: Image Communication, 62, 82-92. Doi: 10.1016/j.image.2017.11.006.  

[15] Miotto, Riccardo, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T. Dudley. (2017). "Deep learning for 

healthcare: review, opportunities and challenges." Briefings in bioinformatics. 

[16] Peng, M., Wang, C., Chen, T., Liu, G., & Fu, X. (2017). Dual temporal scale convolutional neural network for 

micro-expression recognition. Frontiers in psychology, 8, 1745. Doi: 10.3389/fpsyg.2017.01745. 



 
15 

[17] Peng, M., Wu, Z., Zhang, Z., & Chen, T. (2018). From Macro to Micro Expression Recognition: Deep Learning on 

Small Datasets Using Transfer Learning. In Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE 

International Conference on (pp. 657-661). IEEE. Doi: 10.1109/FG.2018.00103. 

[18] Guo, Yanming, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S. Lew. (2016). "Deep learning for 

visual understanding: A review." Neurocomputing, 187, 27-48. 

[19] Schroff, Florian, Dmitry Kalenichenko, and James Philbin. (2015). "Facenet: A unified embedding for face 

recognition and clustering." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 815-

823.  

[20] LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. (1998). "Gradient-based learning applied to 

document recognition." Proceedings of the IEEE, 86(11), 2278-2324. 

[21] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. (2012). "Imagenet classification with deep convolutional 

neural networks." In Advances in neural information processing systems, pp. 1097-1105. 

[22] Simonyan, Karen, and Andrew Zisserman. (2014). "Very deep convolutional networks for large-scale image 

recognition." arXiv preprint arXiv:1409.1556. 

[23] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, 

Vincent Vanhoucke, and Andrew Rabinovich. (2015). "Going deeper with convolutions." In Proceedings of the IEEE 

conference on computer vision and pattern recognition, pp. 1-9.  

[24] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. (2016). "Deep residual learning for image recognition." 

In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 

[25] Itti, Laurent, and Christof Koch. (2001). "Computational modelling of visual attention." Nature reviews neuroscience 

2(3), 194. 

[26] Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., … & Tang, X. (2017). Residual attention network for 

image classification. arXiv preprint arXiv:1704.06904. 

[27] Yan, W. J., Li, X., Wang, S. J., Zhao, G., Liu, Y. J., Chen, Y. H., & Fu, X. (2014). CASME II: An improved 

spontaneous micro-expression database and the baseline evaluation. PloS one, 9(1), Doi: 10.1371/journal.pone.0086041.  

[28] Davison, A. K., Lansley, C., Costen, N., Tan, K., & Yap, M. H. (2018). Samm: A spontaneous micro-facial 

movement dataset. IEEE Transactions on Affective Computing, 9(1), 116-129. Doi: 10.1109/TAFFC.2016.2573832. 

[29] Peng, M., Wang, C., & Chen, T. (2018). Attention Based Residual Network for Micro-Gesture Recognition. In 

Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE International Conference on (pp. 790-794). Doi: 

10.1109/FG.2018.00127. 

[30] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data 

engineering 22, no. 10 (2010): 1345-1359. 

[31] Shao, Ling, Fan Zhu, and Xuelong Li. "Transfer learning for visual categorization: A survey." IEEE transactions on 

neural networks and learning systems 26, no. 5 (2015): 1019-1034. 

[32] Khor, Huai-Qian, et al. "Enriched Long-term Recurrent Convolutional Network for Facial Micro-Expression 

Recognition." Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE International Conference on. IEEE, 

2018. Doi: 10.1109/FG.2018.00105. 



 
16 

[33] Lucey, Patrick, Jeffrey F. Cohn, Takeo Kanade, Jason Saragih, Zara Ambadar, and Iain Matthews. "The extended 

cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression." In Computer Vision 

and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on, pp. 94-101. IEEE, (2010). 

[34] Zhao, Guoying, Xiaohua Huang, Matti Taini, Stan Z. Li, and Matti PietikäInen. "Facial expression recognition from 

near-infrared videos." Image and Vision Computing 29, no. 9 (2011): 607-619. 

[35] Lyons, Michael, Shigeru Akamatsu, Miyuki Kamachi, and Jiro Gyoba. "Coding facial expressions with gabor 

wavelets." In Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE International Conference on, pp. 

200-205. IEEE, (1998). 

[36] Aifanti, Niki, Christos Papachristou, and Anastasios Delopoulos. "The MUG facial expression database." In Image 

analysis for multimedia interactive services (WIAMIS), 2010 11th international workshop on, pp. 1-4. IEEE, (2010). 

[37] Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. "Imagenet: A large-scale hierarchical image 

database." In Computer Vision and Pattern Recognition, (2009). CVPR 2009. IEEE Conference on, pp. 248-255. Ieee, 

2009. 

[38] Ekman, Paul, and Wallace V. Friesen. Facial action coding system: Investigator's guide. Consulting Psychologists 

Press, 1978. 

[39] Davison, A. K., Merghani, W., & Yap, M. H. (2017). Objective classes for micro-facial expression recognition. 

arXiv preprint arXiv:1708.07549. 

[40] Cootes, Timothy F., Gareth J. Edwards, and Christopher J. Taylor. "Active appearance models." IEEE Transactions 

on Pattern Analysis & Machine Intelligence 6 (2001): 681-685. 

[41] Merghani, Walied, Adrian Davison, and Moi Yap. "Facial Micro-expressions Grand Challenge 2018: Evaluating 

spatio-temporal features for classification of objective classes." Automatic Face & Gesture Recognition (FG 2018), 2018 

13th IEEE International Conference on. IEEE, (2018). 

[42] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell, T. (2014). Caffe: Convolutional 

architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia (pp. 

675-678). ACM. 10.1145/2647868.2654889. 

[43] Devangini Patel, Xiaopeng Hong, and Guoying Zhao. (2016). Selective deep features for micro-expression 

recognition. In Proc. ICPR. 

[44] Veena Mayya, Radhika M Pai, and MM Manohara Pai. 2016. Combining temporal interpolation and DCNN for 

faster recognition of micro-expressions in video sequences. In Advances in Computing, Communications and 

Informatics (ICACCI), 2016 International Conference on. IEEE, 699-703. 

[45] X. Li, T. Pfister, X. Huang, G. Zhao, M. Pietikainen, A spontaneous micro-expression database: Inducement, 

collection and baseline, in: Automatic Face and Gesture Recognition, 2013, pp. 1–6. 

[46] Ben, Xianye, Peng Zhang, Rui Yan, Mingqiang Yang, and Guodong Ge. Gait recognition and micro-expression 

recognition based on maximum margin projection with tensor representation. Neural Computing and Applications, 27(8), 

(2016): 2629-2646. 

[47] Zhu, Xuena, Xianye Ben, Shigang Liu, Rui Yan, and Weixiao Meng. Coupled source domain targetized with 

updating tag vectors for micro-expression recognition. Multimedia Tools and Applications, 77(3), (2018): 3105-3124. 

[48] Jia, Xitong, Xianye Ben, Hui Yuan, Kidiyo Kpalma, and Weixiao Meng. Macro-to-micro transformation model for 

micro-expression recognition. Journal of Computational Science, 25 (2018): 289-297. 



 
17 

[49] Ben, Xianye, Xitong Jia, Rui Yan, Xin Zhang, and Weixiao Meng. Learning effective binary descriptors for micro-

expression recognition transferred by macro-information. Pattern Recognition Letters, 107 (2018): 50-58. 


