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Abstract. We describe a diffeomorphic registration algorithm that al-
lows groups of images to be accurately aligned to a common space, which
we intend to incorporate into the SPM software. The idea is to perform
inference in a probabilistic graphical model that accounts for variability
in both shape and appearance. The resulting framework is general and
entirely unsupervised. The model is evaluated at inter-subject registra-
tion of 3D human brain scans. Here, the main modeling assumption is
that individual anatomies can be generated by deforming a latent ‘av-
erage’ brain. The method is agnostic to imaging modality and can be
applied with no prior processing. We evaluate the algorithm using freely
available, manually labelled datasets. In this validation we achieve state-
of-the-art results, within reasonable runtimes, against previous state-of-
the-art widely used, inter-subject registration algorithms. On the unpro-
cessed dataset, the increase in overlap score is over 17%. These results
demonstrate the benefits of using informative computational anatomy
frameworks for nonlinear registration.

1 Introduction

This paper presents a flexible framework for registration of a population of im-
ages into a common space, a procedure known as spatial normalisation [1], or
congealing [2]. Depending on the quality of the common space, accurate pairwise
alignments can be produced by composing deformations that map two subjects
to this space. The method is defined by a joint probability distribution that de-
scribes how the observed data can be generated. This generative model accounts
for both shape and appearance variability; its conditional dependences produc-
ing a more robust procedure. Shape is encoded by a tissue template, that is
deformed towards each image by a subject-specific composition of a rigid and a
diffeomorphic transform. Performing registration on the tissue level, rather than
intensity, has been shown to be a more robust method of registering medical
images [3]. Appearance is encoded by subject-specific Gaussian mixture models,
with prior hyper-parameters shared across the population. A key assumption of
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Fig. 1: (a) Multiple populations of brain scans have their individual averages; the
assumption in this paper is that there exists a latent global average. (b) A groupwise
method can either learn the optimal population-specific average (i), or use an already
learned average (ii), the closer the learned average is to the global, the better the
method should generalise to unseen test data. In both cases, all population scans are
deformed towards the average. Pairwise deformations are then obtained by composing
deformations via this average (iii). The proposed approach belongs here, and can be
used for both (i) and (ii). (c) A pairwise method directly deforms one image towards
another, usually by optimising some similarity metric or by applying a learned function.
The common space then consists of just the two images to be registered.

the model is that there exists a latent average representation (e.g., brain), this
is illustrated in Fig. 1a.

Images of human organs differ in their morphology, the goal of spatial normal-
isation is to deform individual organs so that anatomical locations correspond
between different subjects (a selective removal of the inter-individual anatomical
variance). The deformations that are computed from this inter-subject registra-
tion therefore capture meaningful individual shape information. Although not
constrained to a specific organ, our method will here be applied to spatially
normalise brain magnetic resonance images (MRIs). Spatial normalisation is a
critical first step in many neuroimaging analyses, e.g., the comparison of tissue
composition [4] or functional MRI activation [5] across individuals; shape map-
ping [6]; the extraction of predictive features for machine learning tasks [7]; or
the identification of lesions [8]. The success of these tasks is therefore fundamen-
tally coupled with the quality of the inter-individual alignment. Neuroimaging
meta-analysis [9] is another research area that relies on spatial normalisation.
Currently, statistical maps are coarsely registered into the MNI space. Better
normalisation towards a more generic, multi-modal, high-resolution space could
greatly improve the power and spatial specificity of such meta-analyses.

In general, registration tasks can be classified as either pairwise or groupwise
(Fig. 1b-c). Pairwise methods optimise a mapping between two images, and only
their two spaces exist. Groupwise methods aim to align several images into an
optimal common space. Spatial normalisation aims to register a group of im-
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ages into a pre-existing common space, defined by some average. Most nonlinear
registration methods optimise an energy that comprises two terms: one that mea-
sures the similarity between a deformed and a fixed image and one that enforces
the smoothness of the deformation. Two main families emerge, whether they
penalise the displacement fields (inspired by solid physics) or their infinitesimal
rate of change (inspired by fluid physics), allowing for large diffeomorphic defor-
mations [10,11]. Concerning the optimisation scheme, a common strategy is to
work with energies that allow for a probabilistic interpretation [12,13,14,15,16].
The optimisation can in this case be cast as an inference problem, which is the
approach taken in this paper. More recently, it has been proposed to use deep
neural networks to learn the normalisation function [17,18,19,20]. At training
time, however, these approaches still use a two-term loss function that enforces
data consistency while penalising non-smoothness of the deformations. These
models have demonstrated remarkable speed-ups in runtime for volumetric im-
age registration, with similar accuracies to the more classical methods.

Note that all of the above methods either require some sort of prior image
processing or are restricted to a specific MR contrast. The method presented
in this paper is instead agnostic to the imaging modality and can be applied
directly to the raw data. This is because it models many features of the imag-
ing process (bias field, gridding, etc.), in order not to require any processing
such as skull-stripping, intensity normalisation, affine alignment or reslicing to
a common grid. These properties are important for a general tool that should
work ‘out-of-the-box’, given that imaging protocols are far from standardised –
restricting a method to a particular intensity profile considerably restricts its
practical use. In addition, our method allows for a user to chose the resolution
of the common space. We validate our approach on a pairwise registration task,
comparing it against state-of-the-art methods, on publicly available data. We
achieve favourable results outperforming all other methods, within reasonable
runtimes.

2 Methods

Generative Model. In this work, computing the nonlinearly aligned images
is actually a by-product of doing inference on a joint probability distribution.
This generative model consists of multiple random variables, modelling various
properties of the observed data. It is defined by the following distribution:

p(F ,A,S) = p(F | A,S) p(A,S), (1)

where F = {Fn}Nn=1, Fn ∈ RIn×C are the N observed images (e.g., MRI scans),
each with In voxels and C channels (e.g., MR contrasts). The two sets A and
S contain the appearance and shape variables, respectively. The distribution
in (1) is unwrapped in detail in Fig. 2, showing its graphical model and con-
stituent parts. The inversion of the model in (1) is performed using a variational
expectation-maximisation (VEM) algorithm. In this algorithm, each parameter
(or its probability distribution, in the case of the mixture parameters) is updated
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Appearance (A)

Intensity: fni ∼
∏
kNC

(
B−1
ni µk, (BniΛkBni)

−1)znik

INU coefficients: βnc ∼ NM (0,Λβ)
Intensity mean: µk ∼ NC

(
m0k, (β0kΛk)−1

)
Intensity precision: Λk ∼ WC (W0k, ν0k)

INU function: Bni = diag(bni), bni = exp (Υiβn)
Intensity parameters: m0k, β0k,W0k, ν0k

Hyper-parameters: Λβ (bending energy)

Shape (S)
Tissue: zni ∼ CatK+1 (πni)

Log-template: tk ∼ NI (0,Λt)
Velocity: vn ∼ NI (0,Λv) ,

∑
n vn = 0

Tissue prior: πn = softmax (t ◦ψn)
Forward deformation: ψn = φ(vn) ◦MtR(qn)M−1

n

Rigid parameters: qn,
∑
n qn = 0

Hyper-parameters: Λv, Λt (combination of energies)

Number of
subjects: N , channels: C

subject voxels: In, bias bases: M
template voxels: I template classes: K

Fig. 2: The joint probability distribution over N images. Random variables are in cir-
cles, observed are shaded, plates indicate replication, hyper-parameters have dots, dia-
monds indicate deterministic functions. The distributions in this figure are the Normal
(N ), Wishart (W) and Categorical (Cat). Note that K + 1 mutually exclusive classes
are modelled, but as the final class can be determined by the initial K, we do not repre-
sent it (improving runtime, memory usage and stability). The hyper-parameters (Λβ ,
Λv, Λt) encode a combination of absolute, membrane and bending energies. Λv further
penalises linear-elasticity. The sum of the shape parameters (vn, qn) are constrained
to zero, to ensure that the template remains in the average position [21].

whilst holding all others fixed, in an alternating manner [22]. The individual up-
date equations are obtained from the evidence lower bound (ELBO):

L =
∑
A,S

q(A,S) ln

[
p(F ,A,S)

q(A,S)

]
, (2)

where the variational distribution is assumed to factorise as q(A,S) = q(A)q(S).
The appearance updates have been published in previous work: the inference
of the intensity parameters in [23]; the mode estimates of the intensity non-
uniformity (INU) parameters in [12].

The contribution of this paper is to unify the shape and appearance parts
as (1), providing a flexible and unsupervised image registration framework. In
particular, this framework relies on: parameterising the shape model using a
combined rigid and diffeomorphic registration in the space of the template, in-
troduction of a multi-scale optimisation method, and a novel way of computing a
Hessian of the categorical data term. These will next be explained in more detail.

Spatial Transformation Model. For maximum generalisability, the model
should handle image data defined on arbitrary lattices with arbitrary orienta-
tions (i.e., any well formatted NIfTI file). The forward deformation ψn, warping
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the template to subject space, is the composition of a diffeomorphic transform
φn, defined over the template field of view, and a rigid transform Rn, defined in
world space. The template (Mt) and subject (Mn) orientation matrices describe
the mapping from voxel to world space. Therefore, ψn = φn ◦Mt ◦Rn ◦M−1n .
The diffeomorphism is encoded by the initial velocity of the template ‘particles’
[24], and recovered by geodesic shooting [25]: φn = shoot (vn). Rn is encoded by
its projection qn on the tangent space of rigid transformation matrices, and re-
covered by matrix exponentiation [26]. Rn could have included scales and shears,
but keeping it rigid allows us to capture these deformations in the velocities.

Multi-Scale Optimisation. Registration is a non-convex problem and is there-
fore highly sensitive to local minima. Multi-scale optimisation techniques can be
used to circumvent this problem [10,2,20]. The proposed approach implements
such a multi-scale method to help with several difficulties: local minima (espe-
cially in the rigid parameter space), slow VEM convergence, and slow runtime.
The way we parameterise the spatial transformation model is what enables our
multi-scale approach. If we drop all terms that do not depend on the template,
velocities or rigid parameters, the ELBO in (2) reduces to:

L c
=
∑
n

{
ln Cat (z̃n | softmax (t ◦ψn)) + ln p(vn)

}
+ ln p(t) , (3)

where z̃n denotes the latent class posterior probabilities (responsibilities). The
two prior terms originate from the realm of PDEs, where they take the form of
integrals of continuous functions. When discretised, these integrals can be inter-
preted as negative logs of multivariate Normal distributions (up to a constant):

λ

2

∫
Ω

〈f(x), (Λf)(x)〉dx discretise−−−−−−→ λ

2

(
fTΛf

)
∆x. (4)

Here, fTΛf computes the sum-of-squares of the (discrete) image gradients and
∆x is the volume of one discrete element. Usually, ∆x would simply be merged
into the regularisation factor λ. In a multi-scale setting, it must be correctly set
at each scale. In practice, the template and velocities are first defined over a very
coarse grid, and the VEM scheme is applied with a suitable scaling. At conver-
gence, they are trilinearly interpolated to a finer grid, and the scaling parameter
is changed accordingly for a new iteration of VEM.

Böhning Bound. We use a Newton-Raphson algorithm to find mode estimates
of the variables t, vn and qn, with high convergence rates. This requires the
gradient and Hessian of the categorical data term. If the gradient and Hessian
with respect to tn = t ◦ψn are known, then those with respect to the variables
of interest t, vn and qn can be obtained by application of the chain rule (with
Fisher’s scoring [24]). However, the true Hessian is not well-behaved and the
Newton-Raphson iterates may overshoot. Therefore, some precautions must be
taken such as ensuring monotonicity using a backtracking line search [27]. Here,
we make use of Böhning’s approximation [28] to bound the ELBO and improve
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the stability of the update steps, without the need for line search. This approx-
imation was introduced in the context of multinomial logistic regression, which
relies on a similar objective function. Because this approximation allows the true
objective function to be bounded, it ensures the sequence of Newton-Raphson
steps to be monotically improving. However, this bound is not quite tight, leading
to slower convergence rates. In this work, we therefore use a weighted average
of Böhning’s approximation and the true Hessian that leads to both fast and
stable convergence; e.g., the template Hessian becomes:

∂2L
∂tnik∂tnil

≈ w πnik
(
δlk − πnil

)︸ ︷︷ ︸
True Hessian

+ (1− w)
1

2

(
δlk −

1

K

)
︸ ︷︷ ︸
Böhning bound

, w ∈ [0, 1]. (5)

3 Validation

Experiments. Brain scans where regions-of-interests have been manually la-
belled by human experts can be used to assess the accuracy of a registration
method. By warping the label images from one subject onto another, overlap
scores can be computed, without the need to resample the groundtruth anno-
tations. The labels parcelate the brain into small regions, identifying the same
anatomical structures between subjects. As the labels are independent from the
signal used to compute the deformations, they are well suited to be used for val-
idation. Such a validation was done in a seminal paper [29], where 14 methods
were compared at nonlinearly registering pairs of MR brain scans. Two datasets
used in [29] were3:

– LPBA40: T1-weighted (T1w) MRIs of 40 subjects with cortical and sub-
cortical labels, of which 56 were used in the validation in [29]. The two top-
performing methods, from N = 1, 560 pairwise registrations, were ART’s
3dwarper [30] and ANTs’ SyN [11]. The MRIs have been processed by skull-
stripping, non-uniformity correction, and rigid reslicing to a common space.

– IBSR18: T1w MRIs of 18 subjects with cortical labels, where 96 of the
labelled regions were used in the validation in [29]. The two top-performing
methods, from N = 306 pairwise registrations, were SPM’s Dartel [13] and
ANTs’ SyN [11]. The MRIs have non-isotropic voxels and are unprocessed;
IBSR18 are therefore more challenging to register than LPBA40.

We now compare our method, denoted MultiBrain (MB), with the top-
performing methods in [29], on IBSR18 and LPBA40. The same overlap metric
is used: the volume over which the deformed source labels match the target
labels, divided by the total volume of the target labels (i.e., the true positive
rate (TPR)). Two additional registration methods are included: one state-of-the-
art group-wise model, SPM’s Shoot [31]; and one state-of-the-art deep learning
model, the CVPR version of VoxelMorph4 (VXM) [17]. Pairwise registrations

3 nitrc.org/projects/ibsr, resource.loni.usc.edu/resources
4 github.com/voxelmorph/voxelmorph

nitrc.org/projects/ibsr
resource.loni.usc.edu/resources
github.com/voxelmorph/voxelmorph
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Fig. 3: Learned shape and appearance priors from fitting MB-GW to LPBA40 (left)
and IBSR18 (middle); and MB-L to a training dataset (right). Colours correspond
to clusters found, unsupervised, by fitting the model. Appearance densities show the
expectations of the Gaussians drawn from the Gauss-Wishart priors (using 3 σ).

between all subjects (in both directions) are computed using MB, SPM’s Shoot
and VXM. For MB, we (i) learned the optimal average from each dataset (MB-
GW), and (ii) learned the optimal average from a held-out training set (MB-L);
as described in Fig. 1b. These two tasks are similar to either finding the op-
timal template for a specific neuroimaging group study (MB-GW) or using a
predefined common space for the same task (MB-L). Shoot’s registration pro-
cess resembles MB-GW, whilst VXM resembles MB-L. MB-L was trained on
N = 277 held-out T1w MRIs from five different datasets: three publicly avail-
able5: IXI (N1 = 200), MICCAI2012 (N2 = 35) and MRBrainS18 (N3 = 7); and
two hospital curated (N4 = 19, N5 = 16). Training took two days on a modern
workstation.

The shape and appearance models that were learned when fitting MB are
shown in Fig. 3. K = 11 classes were used, 1 mm isotropic template voxels and
the priors were initialised as uninformative. The initial template and velocity
dimensions were set to 8 mm cube. Energy hyper-parameters were chosen as
λβ = 1e5, λv = {2e-4, 0, 0.4, 0.1, 0.4} (absolute, membrane, bending, linear elas-
ticity) and λt = {1e-2, 0.5, 0} (absolute, membrane, bending). The weighting was
set to w = 0.8. The algorithm was run for a predefined number of iterations.

Results. The label overlap scores on IBSR18 are shown in Fig. 4. The figure
shows, close to, unanimous better overlap for MB, compared to the other algo-
rithms. Result plots for LPBA40 are given in the supplementary materials, as
well as samples of the best and worst registrations for MB and VXM. On both
IBSR18 and LPBA40, MB performs favourably. For IBSR18, the mean and me-
dian overlaps were 0.62 and 0.63 respectively for MB-GW, and both 0.59 for
MB-L. Mean and median overlaps were both 0.59 for SPM’s Shoot and both
0.56 for VXM. The greatest median overlap reported in [29] was about 0.55,
whereas the overlap from affine registration was 0.40 [32]. For LPBA40, the
mean and median overlaps were both 0.76 for MB-GW and both 0.75 for MB-L.
Mean and median overlaps for SPM’s Shoot approach were both 0.75, and both
0.74 for VXM. The highest median overlap reported in [29] was 0.73, and that
from affine registration was 0.60 [32]. Using the affine registrations as baseline,
the results showed 6% to 17% greater accuracy improvements when compared
to those achieved for the second most accurate nonlinear registration algorithm

5 brain-development.org, mrbrains18.isi.uu.nl, my.vanderbilt.edu/masi

brain-development.org
mrbrains18.isi.uu.nl
my.vanderbilt.edu/masi


8

evaluated6. Computing one forward deformation took about 15 minutes for MB-
L and 30 for MB-GW (on a modern workstation, running on the CPU).

Discussion. MB-GW does better than MB-L, this was expected as the average
obtained by groupwise fitting directly on the population of interest should be
more optimal than one learned from a held-out dataset, on a limited number
of subjects (e.g., the averages for the individual populations in Fig. 1 are more
optimal than the global). Still, MB-L learned on only 277 subject does as well as,
or better than, Shoot (a state-of-the-art groupwise approach). This is an exciting
result that allows for groupwise accuracy spatial normalisation on small number
of subjects, and to a standard common space (instead of a population-specific).
With a larger and more diverse training population, accuracies are expected to
improve further. One may claim that a group-wise registration scheme has unfair
advantage over pairwise methods. However, as a common aim often is to spatially
normalise - with the objective of making comparisons among a population of
scans, it would be reasonable to aim for as much accuracy as possible for this task.
The purely data-driven VXM approach does better than the methods evaluated
in [29]. VXM was trained on close to 4,000 diverse T1w MRIs. A larger training
dataset could boost its performance. The processing that was applied to the
VXM input data was done using SPM [33], whilst its training data was processed
using FreeSurfer. Having used the same software could have improved its results;
however, being reliant on a specific processing pipeline is inherently a weakness of
any method. Furthermore, the VXM model uses a cross-correlation loss function
that should be resilient to intensity variations in the T1w scans. Finally, the
contrasts and fields of view in the T1w scans were slightly different from each
other in the training and testing data, due to variability in field strength and
scanner settings. This could have impacted the accuracy of MB-L and VXM.

4 Conclusion

This paper introduced an unsupervised learning algorithm for nonlinear im-
age registration, which can be applied to unprocessed medical imaging data.
A validation on two publicly available datasets showed state-of-the art results
on registering MRI brain scans. The unsupervised, non-organ specific nature of
the algorithm makes it applicable to not only brain data, but also other types
of medical images. This could allow for transferring methods widely used in
neuroimaging to other types of organs, e.g., the liver [34]. The runtime of the
algorithm is not on par with a GPU implementation of a deep learning model,
but still allows for processing of a 3D brain scan in an acceptable time. The
runtime should furthermore improve, drastically, by an implementation on the
GPU. The proposed model could also be used for image segmentation [12] and
translation [36], or modified to use labelled data, in a semi-supervised manner
[23]. Finally, the multi-modal ability of the model would be an interesting avenue
of further research.

6 (TPRMB − TPRShoot)/(TPRMB − TPRAffine)× 100%
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Fig. 4: Results from the validation on the IBSR18 dataset. The nonlinear registration
methods include MB-GW/L, SPM’s Shoot, VXM and the two top algorithms evaluated
in [29]. Shown are the average label overlaps and total overlaps (the boxplot). The
results in the boxplot may be compared directly with the methods of Fig. 5 in [29].
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Supplementary Materials

Fig. 5: Results from the validation on the LPBA40 dataset. The nonlinear registration
methods include MB-GW/L, SPM’s Shoot, VXM and the two top algorithms evaluated
in [29]. Shown are the average label overlaps and total overlaps (the boxplot). The
results in the boxplot may be compared directly with the methods of Fig. 5 in [29].
On each box, the central mark is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data-points not considered
outliers. Any outliers are plotted individually.
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Fig. 6: Registrations with best and worst total overlap scores, for MB-L and VXM,
on the IBSR18 (top) and LPBA40 (bottom) datasets. Shown are: target and source
MRIs+labels; and source labels warped to target labels, for both methods (overlaps in
parenthesis).
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