
Visualised Inspection System for Monitoring Environmental Anomalies 

During Daily Operation and Maintenance 
 

Xiang XIE 

Institute for Manufacturing, University of Cambridge 

Cambridge CB3 0FS, UK 

xx809@cam.ac.uk 

 

Qiuchen LU (Corresponding Author) 

Institute for Manufacturing, University of Cambridge 

Cambridge CB3 0FS, UK 

Bartlett School of Construction and Project Management, University College London 

London WC1H 0QB, UK 

qiuchen.lu@ucl.ac.uk 

 

David RODENAS-HERRAIZ 

Centre for Smart Infrastructure and Construction, University of Cambridge 

Cambridge CB3 0FA, UK 

dr424@cam.ac.uk 

 

Ajith Kumar PARLIKAD 

Institute for Manufacturing, University of Cambridge 

Cambridge CB3 0FS, UK 

aknp2@cam.ac.uk 

 

Jennifer Mary SCHOOLING 

Centre for Smart Infrastructure and Construction, University of Cambridge 

Cambridge CB3 0FA, UK 

jms33@cam.ac.uk 

 
 

Abstract 

Purpose: 

Visual inspection and human judgement form the cornerstone of daily operations and 

maintenance (O&M) services activities carried out by facility managers nowadays. Recent 

advances in technologies such as building information modelling (BIM), distributed sensor 

networks, augmented reality (AR) technologies and digital twins present an immense 

opportunity to radically improve the way daily O&M is conducted. This paper describes the 

development of an AR-supported automated environmental anomaly detection and fault 

isolation method to assist facility managers in addressing problems that affect building 

occupants’ thermal comfort. 

Design/methodology/approach: 

mailto:xx809@cam.ac.uk
mailto:qiuchen.lu@ucl.ac.uk
mailto:dr424@cam.ac.uk
mailto:aknp2@cam.ac.uk
mailto:jms33@cam.ac.uk


The developed system focuses on the detection of environmental anomalies related to thermal 

comfort of occupants within a building. The performance of three anomaly detection 

algorithms in terms of their ability to detect indoor temperature anomalies is compared. 

Based on the fault tree analysis (FTA), a decision-making tree is developed to assist facility 

management (FM) professionals in identifying corresponding failed assets according to the 

detected anomalous symptoms. The AR system facilitates easy maintenance by highlighting 

the failed assets hidden behind walls/ceilings on site to the maintenance personnel. The 

system can thus provide enhanced support to facility managers in their daily O&M activities 

such as inspection, recording, communication and verification.  

Findings: 

Taking the indoor temperature inspection as an example, the case study demonstrates that the 

O&M management process can be improved using the proposed AR enhanced inspection 

system. Comparative analysis of different anomaly detection algorithms reveal that the binary 

segmentation-based change point detection is effective and efficient in identifying 

temperature anomalies. The decision-making tree supported by FTA helps formalise the 

linkage between temperature issues and the corresponding failed assets. Finally, the AR-

based model enhanced the maintenance process by visualising and highlighting the hidden 

failed assets to the maintenance personnel on site. 

Originality/value 

The originality lies in bringing together the advances in augmented reality, digital twins and 

data-driven decision-making to support the daily O&M management activities. In particular, 

the paper presents a novel binary segmentation-based change point detection for identifying 

temperature anomalous symptoms, a decision-making tree for matching the symptoms to the 

failed assets, and an AR system for visualizing those assets with related information.  

Keywords: Digital Twin, Anomaly Detection, Augmented Reality, Operations and 

Maintenance 

 

1. Introduction 

It is undeniable that the tech-savviness is spreading to the building industry, which 

accelerates the adoption of digital strategy and data science in this area. Getting away from 

the old-fashioned “brick and mortar” way of working, digitalisation is reinventing the way we 

plan, deliver, operate, maintain and manage our infrastructure. A significant amount of data, 

generated throughout the digitalisation, carries great value.  Artificial intelligence and 

machine learning (AI/ML) are just the keys to unlock this value.  In this context, this paper 

examines how digital transformation in the buildings sector can generate value to both the 

building owners as well as users through effective operation and maintenance (O&M) 

management.  

Building Information Models (BIM) can be used as a data repository and an information 

source for supporting daily O&M activities in buildings (Lu et al. 2018). In fact, BIM has 

been shown to reduce the time taken to update databases in the O&M phase by 98% (Ding et 



al. 2009). BIM does not however provide a complete solution for whole-life asset 

management since the key focus of BIM is to serve as a digital representation of buildings 

and the assets within them. From the perspective of information richness and 

analytical/decision-making capability, the concept of Digital Twins (DT) is broader than 

BIM. In addition to the capabilities offered by BIM,  DT is a comprehensive solution that can 

monitor the as-is status (e.g., condition) of its ‘physical twin’ by integrating multi-source data 

and data analytics, control and simulation functions (Eastman et al. 2011; Li et al. 2017). 

Effective decision-making to manage complex building systems requires integration and 

analysis of data from multiple sources. There is still a need to establish a unified data 

management platform so that heterogeneous data can be integrated safely and securely, and 

the approaches and technologies used must ensure effectiveness and efficiency when 

implemented in O&M phase. Research related to the use of digital twins in building O&M 

management is still at a very early stage, but increasingly gaining popularity (Lu et al. 2020a; 

Pishdad-Bozorgi et al. 2018; Shou et al, 2020).  

In the O&M phases, monitoring building environmental condition (e.g., temperature, 

humidity and CO2 concentration) has been a topic of great interest in the past few decades. 

Satisfactory indoor environment contributes not only to occupant well-being and 

productivity, but also reduces operational carbon associated with the provision of thermal 

comfort (Vellei et al. 2017). In this context, it is estimated that one in five buildings will 

become smart buildings by 2020, containing over 50 billion Internet of Things (IoT) devices 

(Memoori 2014). The accurate and timely information provided by such technologies is 

capable of aiding facility managers in the process of detecting environmental anomalies and 

making corresponding decisions on operation and maintenance.  

The long-term value of DTs and their integration with environmental anomaly detection 

techniques can be enhanced with the implementation of augmented reality (AR) or other 

interactive technologies (Gao and Pishdad-Bozorgi 2019; Wang et al. 2020). Indeed, the 

development of a visualised inspection system enhanced with AR opens enormous  potential 

for the improvement in O&M fieldwork from the perspective of easily accessible information 

support. Here, the AR-enhanced visual inspection system allows the cognitive connection to 

various types of O&M information, such as building geometries and monitored indoor 

environmental conditions. 

Taking temperature as an example of indoor environmental indicator, this paper seeks to 

address the challenge facility managers face in automatically detecting and interpreting 

temperature anomalies of building spaces. In particular, this paper explores how DTs and 

environmental anomaly detection techniques can improve the efficiency of inspection 

management when integrated with augmented reality (AR) solutions. 

 

2. Literature Review 

2.1 Building inspection system development 

There is a growing consensus nowadays about the need to maximize the value of assets, and 

effective inspection of the as-is conditions is a key driver to achieve this (NIC, 2017). A great 



effort has been put into enhancing building inspection knowledge and inspection system 

development to assist facility management (FM) professionals in their decision-making 

processes (see Table 1). Previous research has focused on facilitating O&M inspection via the 

FM information systems (e.g. Computerized Maintenance Management Systems, 

Computerized Aided Facility Management Systems) and sensor systems (Ferraz et al. 2016). 

However, the maintenance records within most of these systems only provide brief 

descriptions about repair activities (such as time, cost, and location), and are prone to missing 

or wrong records (Chang and Tsai, 2013). FM professionals are responsible for inspection 

scheduling and maintenance planning, such as when dealing with structural health problems 

or air-handling unit failures (Yu et al. 2014), to optimize the building performance. The 

absence of a logical framework to classify a building’s pathological situations may result in 

misleading the decisions of FM professionals and site workers. Therefore, a well-defined 

inspection and diagnosis system could improve both short-term and long-term performance 

of the existing buildings. 

BIM, cloud storage and cloud computing technologies are being adopted by industry to 

form project-based collaborative platforms for improving the O&M management quality and 

customer experience (Zhan et al. 2019). A decision support system (DSS) that analyses the 

data collected from sensors, merges them with engineering knowledge about the system, and 

turns this into a visual maintenance/ inspection task execution system is indeed a need of the 

hour (Agnisarman et al. 2019. Importantly, such a system should be capable of supporting 

maintenance and inspection site workers with useful information regarding assets that are 

often hidden from sight (e.g., inside the walls/ceiling structures).  

 

Table 1. A brief summary of inspection system development 

Author/year Key technologies/algorithm Key contribution 

Guo and 

Wang (2013) 

Fault diagnosis expert system 

incorporating association rule and 

data analysis 

Implementing fault diagnosis in 

the Electrical Multiple Unit 

Memarzadeh 

and Pozzi 

(2016) 

Partially Observable Markov 

Decision Process (POMDP) 

considering Value of Information 

(VoI) 

Integrating inspection 

scheduling and maintenance 

planning for infrastructure 

systems 

de Angelis et 

al. (2016) 

Monte Carlo strategy using efficient 

general numerical technique 

Providing a solution which 

trades off between the costs 

associated with multiple 

inspection and repair activities 

Au-Yong et 

al. (2017) 

Descriptive analysis, correlation 

analysis and regression with data 

collected from questionnaire and 

interviewing  

Investigating the association 

between system breakdown rate 

and frequency of inspection 

Hamledari et 

al. (2017) 

Developed algorithm updating 

BIMs (Industry foundation classes 

IFC schema) based on user criteria 

Automating site-to-BIM data 

transfer and supporting reality-

capture techniques 



and analyzing data 

Schneider et 

al. (2018) 

Heuristics method to define 

inspection and repair strategies 

Identifying optimal inspection 

and repair strategies for offshore 

jacket structures 

Bortolini and 

Forcada 

(2018) 

Asset analysis, operation analysis, 

and risk analysis using online 

survey 

Evaluating the technical 

performance of existing 

buildings 

Zhan et al. 

(2019) 

Image classification algorithms 

supported by BIM knowledge 

repository 

Improving and automating the 

inspection-repair processes 

 

2.2 Inspection for indoor environmental anomalies 

Currently, a large portion of modern building management systems (BMSs) or building 

automation systems (BASs) are pre-programed to trigger alarm notifications for apparent 

anomalies from an energy perspective (e.g. HVAC energy consumption) and an indoor 

environmental perspective (e.g. room temperature and humidity). Due to the fact that 

environmental data collected by many standard building management systems are often 

inaccessible and available for analysis, wireless sensors are proven to be a popular alternative 

for efficiently collecting such data (Wu and Clements-Croome 2007), especially considering 

the emergence of advanced sensing techniques such as Micro Electro Mechanical Systems 

(MEMS) (Hautefeuille et al. 2008). In new buildings, WSN can be implemented easily with 

low-cost low-power wireless sensor nodes, and existing buildings with WSNs can be 

upgraded simply by adding extra sensor nodes. BMS or WSN can provide rich raw data about 

the monitored environment, and the critical next step is to analyse such data to identify 

anomalous behaviour. Instead of manually inspecting the anomalies through control-charts or 

trend analysis, energy or environmental performance anomaly detection is usually achieved 

in BMSs using simple rule-based methods. The rules adopted are generally acquired from 

experienced facility managers based on the design parameters of building systems. For 

instance, if the room temperature goes outside a predefined range, an alarm would be 

triggered by BMS for the attention of facility managers. Alternatively, rules can also be 

learned through a data mining-based decision support system (Pena et al. 2016), which also 

requires extensive expert engagement. However, in practice, facility managers usually 

operate with very constrained resources and are typically overburdened by excessive number 

of alarms caused by these rules.  

In response to this situation, a number of automated supervised or unsupervised data 

analytics techniques supported by machine learning are emerging to aid facility managers in 

identifying valid anomalies without explicitly modelling the thermal properties and behaviour 

of buildings (Horrigan et al. 2018).  Numerous supervised machine learning techniques, such 

as linear regression (Korolija et al. 2013), support vector machine (Li et al. 2009) or neural 

network (Mustafaraj et al. 2011), are available to predict building performance trained on a 

set of selected historical building data. Supervised analytics are powerful in modelling 

complicated relationships within operational data. However, these methods need to be trained 



and tested on extensive quantities of historical data under exhaustive operational scenarios, 

which is often not available.  

Unsupervised techniques, on the other hand, are more promising in discovering 

potentially useful yet previously unknown intrinsic correlations and patterns in data given 

limited prior knowledge (Fan et al. 2018). Unsupervised anomaly detection techniques can be 

classified into three classes: nearest neighbour based, clustering based, and statistical 

methods.  

Wijayasekara et al. (2014) utilized a modified nearest neighbour clustering algorithm and 

a fuzzy logic rule extraction technique to establish a model of normal building energy 

behaviour and identify anomalies that do not conform to the model. Capozzoli et al. (2015) 

compared the performance of K-Means, Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN), artificial neural networks and other algorithms on detecting 

anomalous energy consumption patterns. The results indicated that DBSCAN is capable for 

identifying anomalies in multivariate data, which is further verified by Jalori and Reddy 

(2015).  

Statistical methods, on the other hand, are found to be the widely accepted tool used for 

detecting anomalies. Statistical process control (SPC) techniques, one of the most widely 

used statistical methods across many industrial applications, have also been used to identify 

building performance problems (Sun et al. 2013). Essentially, SPC techniques, such as 

Shewhart, cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) 

control charts, are unsupervised approaches that can recognize statistically meaningful 

performance problems according to the data consistency rather than knowledge learned from 

anomaly labelling. Barbeito et al. (2017) demonstrated the application of a residual based 

Shewhart chart to the energy dataset in a web platform, where the occurrences and causes 

anomalies in HVAC systems were detected. Wang and Chen (2016) presented the design of a 

residual-based EWMA control chart used for detecting anomalies of air handling units, in 

tandem with an expert rule system. These studies showed that CUSUM and EWMA based 

monitoring are generally more sensitive in detecting small or gradual shifts in the process. 

Another statistical analytical technique to reveal unintended shifts in building performance is 

change point detection. This aims to statistically discover time points at which the behaviour 

of time series building performance changes in an unsupervised manner.  Pereira and Ramos 

(2018) proposed a new method using change point analysis of in-situ time series of 

environmental parameters to detect occupants’ activities of daily living (ADLs) in residential 

buildings. Li et al. (2019) recognized the energy consumption patterns in residential buildings 

using an available binary segmentation method in ‘R’ programming software.  

However, most of the studies so far focused on analysing the building energy behavioural 

patterns and identifying emerging energy consumption related anomalies. Detection of 

environmental anomalies, while significantly influencing occupants’ wellbeing and 

productivity, has not been studied adequately. Bosman et al. (2013) proposed to use a 

lightweight machine learning technique to reveal anomalous issues in sensor data produced 

by long-lived deployed sensors, based on supervised Linear Least Squares Estimation 

(LLSE). Bosman et al. (2015) developed a heterogeneous set of local online learning 



classifiers, each performing an incremental unsupervised learning on recognizing anomalies. 

Labelled datasets are essential in evaluating the performance of these methods, while in real-

world datasets the labelling is not always exact and largely depends on expert knowledge. 

This study proved its effectiveness in identifying indoor environmental events, based on its 

statistical properties and the cross-referencing of building asset information.  

However, the choice of an appropriate technique is not straightforward. This paper seeks 

to present effective and efficient methods that identify building temperature anomalies based 

on limited available building time-series data, in order to develop an inspection decision 

support system.  

 

3. Methodology 

The proposed AR-enhanced inspection system (as shown in Fig.1), is incorporated into the 

general process of daily O&M management. Various non-geometric O&M data sources and 

BIM are integrated through the building DT platform. The DT analyses the as-is condition of 

the environment using anomaly detection functions and is able to extract data regarding 

related assets from other integrated data sources by querying through the BIM model. 

Meanwhile, the professional O&M knowledge (e.g. fault trees and cause-effect relationships) 

is conveyed through knowledge representation models. The FM professionals can be kept 

informed of the analysis results through the DT platform and the corresponding tasks can be 

assigned to the site workers accordingly. Additionally, the visualization enhanced inspection 

tool (i.e. AR equipment) with embedded information display modules can be launched to 

provide visualisation of hidden assets to maintenance personnel. 

 

 

Figure 1. The proposed process of the visualised inspection system in daily O&M 

management 

 



 

Figure 2. The architecture of the proposed inspection system 

 

As shown in Fig. 2, the architecture of the visual inspection system consists of four 

layers. It was developed based on the concepts presented in Motamedi et al. (2014). Firstly, a 

building DT platform in the data layer is established as the data platform that can integrate 

data from different sources, respond to data queries and further store information feedback 

collected from site workers/FM professionals. 

In the function layer, typical anomaly detection algorithms are implemented to analyse 

the condition of the indoor environment. Three types of statistical methods: moving average 

(MA), cumulative sum (CUSUM) and a binary segmentation-based change point detection 

method, are implemented for detecting anomalies in the environmental data.  

Starting from a naive hypothesis, that is “tomorrow is going to be the same as today”, the 

moving average of the previous day (k values) is considered to be the expected value of the 

present day: 
1

1 k

t t i

i

y y
k





  . The anomalous alarm is triggered once the observed value 

exceeds the predefined confidence band.  

The CUSUM algorithm, alternatively, detects time instants of change by sequentially 

accumulating deviations from the anticipated value, and alarms when the tracking statistics 

exceed the control limits. The two-sided CUSUM version (De Oca et al. 2010) designed for 

non-stationary data is based on calculating the following two tracking statistics: 

  1max 0,
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Q   and 

 1
i

Q   denote the upper and lower  -percentiles respectively, during the screened 

sustained period of historical data.  



The binary segmentation-based change point detection algorithm (Fryzlewicz 2014) is 

another promising candidate in statistically separating normal and anomalous time periods. 

The binary segmentation is an iterative process. A single change point test statistic is first 

applied to the entire dataset and the dataset is split into two at the found change point location 

by minimizing the objective function  
1

1

1

1:
1 1 1

arg min
i i

m

m

n i

C y 
 







     

 
  , where i  is the ith 

change point;  C   denotes the cost function incurred from a segment of the data, can be 

either quadratic error loss, Huber loss, or the negative log-likelihood; and  is the penalty 

when introducing a change point, which avoids overfitting. The procedure is repeated at the 

two separated datasets until no change point is found in any part of the dataset. An 

appropriate algorithm that shows better performance in identifying environmental anomalies 

is identified through comparative analysis and preliminary tests in the studied case.  

In the knowledge layer, a comprehensive classification and categorisation of temperature 

issues relating to building assets is constructed based on fault tree analysis (FTA). This 

encompasses diverse events to distinguish different kinds of commonly appearing 

temperature issues in daily O&M management. FTA is a graphical tool for analysing possible 

causes of a failure (Yu et al. 2014, Motamedi et al. 2014). It can be used to model the logical 

relationships and further evaluate different events qualitatively and quantitatively. 

Corresponding to different events, common failure sub-categories and associated assets are 

identified. Following this, a decision-making tree was designed and developed to match 

between the anomalous temperature events with the corresponding failed assets.  The 

knowledge layer is essential for the semi-automation of the inspection process. The expert 

knowledge conveyed through the classification and categorisation using FTA enables the 

event-asset matching, which is conducted manually in this paper but is possible to be 

automated using machine learning techniques once sufficient data through the human-driven 

process is gathered. 

The traditional practice of inspection is to have an index sheet and relevant drawings at 

the work sites, which is usually a time-consuming, tedious, and error-prone process, 

especially when checking specific details. An AR tool is introduced for improving human 

perception and cognition with both real and virtual information sources (Hou et al. 2014). In 

the user interface layer, an AR model and a DT platform is created and incorporated to assist 

inspection and identification of faulty assets. The user interface layer has two main functions: 

a) to link the identified temperature issues with their corresponding assets; and b) to guide 

site workers in finding the target assets behind decorations using the AR equipment. 

 

4. Case Study Development and Evaluation 

This system was deployed at the Institute for Manufacturing (IfM) building at the University 

of Cambridge. The IfM building is a three-story building at the West Cambridge site and 

includes study, office, research and laboratory spaces, each with different assets such as a 

radiator, air handling units and a variable refrigerant flow (VRF). 



4.1 Data layer (Digital Twin establishment) 

Referring to Fig.3, this dynamic DT platform was developed based on the system architecture 

proposed by Lu et al., 2019. This developed DT was integrated with the data acquired from 

the building management system (BMS) in addition to Monnit wireless IoT sensors that were 

used to gather temperature and humidity data with a one-minute heartbeat. The sensor data as 

well as the data from the BMS was uploaded to the DynamoDB NoSQL database provided 

by Amazon Web Services (AWS) using the Hyper Text Transfer Protocol (HTTP). Further 

information about the setup of the building digital twin can be found in Lu et al. (2020b).  

 

Figure 3. The system architecture of the building DT (modified according to Lu et al. 2019) 

 

4.2 Function Layer  

On the basis of the temperature data collected by the sensors, anomalous behaviour of the 

indoor environment is detected to provide important clues for the diagnosis of the HVAC 

system. Fig. 4 shows the temperature log obtained from a seminar room in the building 

during the period from 1st July 2018 to 1st October 2018. According to the mechanical, 

electrical and pumping drawings of the building, the seminar room is conditioned by a VRF 

air conditioning system, in which the water pump plays a significant role. Pump maintenance 

records were obtained from the facilities management system, which indicated that a pump 

malfunction event occurred between 19th July and 8th August (period of interest).  

 

Figure 4. Temperature logs in seminar room of IfM  



 

The performance of three anomaly detection algorithms, including moving average 

(MA), cumulative sum (CUSUM) and a binary segmentation-based change point detection 

method, were evaluated to examine their ability to detect the aforementioned anomaly.  

Moving average is a basic and easy to execute method. Here, the moving average 

temperature on the daily basis (past 24 hours, 𝑘 = 24) is taken as the expected temperature of 

the present moment. An alarm is triggered once the observed value exceeds the predefined 

confidence band. As shown in Fig. 5, applying daily smoothing on past data allows us to 

clearly observe the dynamics of temperature. MA is found to be capable of detecting several 

anomalies observed during our period of interest. However, various anomalies that sit outside 

the period (false positives) are also evident, which would be troublesome to facility 

managers.  

 

Figure 5. Anomaly detection results of moving average (MA)  

 

From the perspective of decreasing the false positive rate (i.e., the fraction of observed 

non-anomalies that are false positive events), CUSUM is adopted to reveal anomalous 

temperature issues during the same period of pump malfunction. The CUSUM algorithm 

calculates the  deviations of monitored temperature (relative to target means) in an 

accumulative way and rejects the null hypothesis of no change-point when the two tracking 

statistics 𝑆𝑖
+ or 𝑆𝑖

− gets too large. Fig. 6 demonstrates the detection results of the CUSUM 

control chart. Before the facility manager reports the malfunction (19th July), CUSUM timely 

detects a statistically meaningful change point. After the pump replacement (8th August), the 

environmental performance gradually gets back to normal. Compared with MA, CUSUM 

could better identify the anomalous temperature issues, which contributes to tracing back to 

the failure or malfunction of relevant building assets.  



 

Figure 6. Anomaly detection results of cumulative sum (CUSUM) control chart  

 

Instinctively, if the CUSUM chart gives an out-of-order indication in spatial temperature, 

then it is reasonable to suspect that there is an anomaly somewhere before the identified 

change point. Indeed, the CUSUM algorithm is particularly effective in detecting abrupt 

changes in time series, but without specifically indicating the severity level of these changes. 

CUSUM is generally unable to identify the duration of anomalies, as its primary objective is 

to point out the moments when the monitored temperature deviates from its previous 

behaviour.  

In order to address the drawbacks of CUSUM, a binary segmentation-based change point 

detection is applied to identify the critical change period in the data, by highlighting its 

starting and end time respectively, as shown in Fig. 7. The x-coordinates of the vertical lines 

indicate the detected change point locations. The five estimated change point locations are 

mostly distributed around the anomalies found by CUSUM. Binary segmentation provides 

clearer boundaries between periods with different statistical properties (14th-27th July, 27th 

July-1st Aug and 1st-9th Aug). The impact of pump malfunction event occurring during the 

period of interest is clearly identified.  In addition, binary segmentation is an approximation 

algorithm with the computational complexity of  logO m m . Thus, it only requires 

lightweight computing power, which is suitable for continuous anomaly detection. 

 

Figure 7. Anomaly detection results of binary segmentation-based change point detection 



 

4.3 Knowledge Layer 

In the knowledge layer, temperature issues detected via the function layer are assessed to 

ascertain whether it is an asset-failure related problem (see Fig. 8). If it is, the space ID and 

the target asset ID of failed assets are provided through the building DT platform (i.e., DT is 

linked with the BMS database).  

 

Figure 8. The decision-making tree of making decisions and matching with relevant failed 

assets 

Within the building DT, the corresponding assets have been classified and allocated for 

each space. By matching the assets with each space ID, the failed assets (including locations) 

can be confirmed and presented through the building DT platform. Based on the detected 

failures for each space, the ‘real-time’ status of each asset can be ascertained from the 

developed DT, which could help facility managers to verify the failed assets based on the 

FTA. A list of analysed temperature issues relating to building assets using FTA can be seen 

in Fig.9, which is summarised through the interview with FM professionals.  



 

Figure 9. Fault tree analysis of temperature related issues for the IfM building 

 

4.4 User Interface Layer 

Based on the designed processes and equipment, a DT user interface platform and an AR 

model have been developed for communicating between FM professionals and site workers 

(see Fig.10). In this study, the seminar room was used as an example. The associated data 

was integrated and analysed and the inspected as-is condition was demonstrated using the DT 

user interface. Microsoft HoloLens 1 was used in this project for presenting the AR models. 

The working processes are presented in Fig.11. If there are temperature anomalies in the 

seminar room identified by the function layer, the FM professionals would discover the alarm 

from the DT platform and gain ‘real-time’ information about the failed assets. Thus, based on 

provided information from DTs, site workers could use AR techniques and find the target 

assets in the corresponding spaces. 



 

Figure 10. The DT user interface and the launched AR model  

 

 

Figure 11. The inspection working process expressed by UML diagram 



 

5. Discussion 

5.1 Summary 

A comfortable indoor environment has a great influence on the productivity and well-being 

of human occupants. With the trend of digitalisation of the built environment, automated 

inspection for the indoor environment without excessive intervention from facility managers 

is becoming increasingly possible. Essentially, decisions regarding the occurrence of 

environmental anomalies are usually made based on various types of accumulated historical 

data collected using sensors and the BMS. It must be pointed out that DT with a BIM 

embedded plays a significant role in facilitating the availability and accessibility of 

heterogeneous environmental parameters, which enables data from different stakeholders in 

the O&M phase of a building to be created, shared, exchanged and managed. Instead of 

requiring extremely busy facility managers to subjectively evaluate the environmental 

condition, data analytics techniques are shown to enable automatic extraction of anomalous 

environmental behaviour that do not conform to expectation.  

For most current studies, one of the premises is that the targeted space environment has 

been monitored for a period so that sufficient data can be collected to train a model. In 

addition to the requirements of data volume, data under anomalous and non-anomalous 

scenarios needs to be manually labelled. The binary segmentation-based change point 

detection partially solves the problem of data scarcity by automatically partitioning the data 

according to its statistical properties. Due to the complexity of interrelations between 

different building components and systems, suspicious anomalies are not always caused by 

the failure or malfunction of building assets. Sending alerts regarding all the anomalous 

events to site workers and FM professionals is not a good and effective solution, because they 

cannot prioritise these anomalies according to their severity and possible consequence using 

only the detected anomalies themselves. The visualized inspection system presented in this 

paper shows the potential for integrating knowledge of deteriorated or failed assets (including 

their locations) and heuristically assisting FM professionals in filtering and finding the main 

cause of the major anomalies. Moreover, the visualized inspection system could also make it 

easier for the site workers to locate and repair failed assets when conducting maintenance 

tasks.  

5.2 Research Limitations 

It is infeasible to completely rely on building architectural information and first principles, 

because the gaps between as-built drawings and as-is condition can never be ignored. 

Therefore, data driven methodologies are extensively used in daily O&M management due to 

their broad applicability and simplicity in application. In this paper, anomaly detection for 

building environment is defined and implemented in function layer of building DTs, and the 

performances of different data-driven anomaly detection algorithms are evaluated. Although 

the proposed binary segmentation-based change point detection overcomes the requirement 

of large volume labelled data, still completely putting aside the physical information is not a 

good choice. Ideally, by combining physical prior knowledge with empirical data, the pattern 



behind the environmental parameters under normal conditions could be extracted, which 

provide a general metric classifying anomalous and non-anomalous data. 

The building DT established in this case study was developed based on live data, which 

means that the dynamic DT is capable of tracing the as-is condition of assets and the indoor 

environment in a real time manner. The AR platform used by site workers was developed 

based on embedded databases, which include asset information and relevant historical data 

within a predefined set period of time. The failure assets can be found easily through this 

developed system, but cannot be highlighted automatically at this stage. 

5.3 Future work 

Instead of pure data-driven anomaly detection algorithms, data centric solutions that integrate 

knowledge from mathematical physics-based models are more likely to provide better 

decision making under enormously uncertainty. However, the synthesis of the mathematical 

model with the data is still unclear and represents a key challenge for statisticians and 

engineers. A possible way to synthesize is to estimate the unknown parameters in the 

physical model using observed data. Further improvement is needed to introduce prior 

knowledge into the O&M management, including environmental anomaly detection. 

Regarding the matching between found environmental anomalies and corresponding 

causes or failed assets, expert knowledge is still the dominant judgement criterion. But the 

knowledge is basically the understanding of symptoms for different asset failure scenarios. 

Summarizing the knowledge and realising automated matching between anomalous 

environmental symptoms and corresponding causes of asset failures is necessary.  

In addition, in order to keep consistency with the developed dynamic building DTs, 

colour coding and real-time interaction functions in the AR platform will also be introduced 

in the future work. The colour coding will be used to highlight the failed assets on site and 

the real-time interaction functions (such as real-time queries) embedded in AR techniques 

will be used for presenting the as-is condition of assets. 

 

6. Conclusion 

In order to develop an easy-to-use and practical visualised inspection system for daily O&M 

management, an inspection system based on building DTs was developed, specifically 

focused on spatial temperature anomalies. This was not only to demonstrate the application of 

the developed inspection system in detecting suspicious anomalies, but also to contribute to 

the advancement of research through the following:  

 An architecture of DT-based visual inspection systems is proposed for daily O&M, 

which is used to support identification of indoor environmental anomalies and 

corresponding failed assets; 

 The binary segmentation-based change point detection is adopted to identify temperature 

anomalies indicated by change-points, without requiring large volume labelled data; 

 A decision-making tree is developed to support matching between the found anomalous 

temperature symptoms and corresponding asset failures; 



 An AR based visualization tool is developed for site workers, which is capable of 

highlighting the failed assets with their related information. 

The proposed system would provide a visualized way for site workers and FM 

professionals to detect temperature-relevant failures and develop solutions/plans for timely 

and effective inspection. Future work will be focused on improving the reasoning linkages 

between temperature anomalies and corresponding assets. In order to further improve this 

system, indoor localization of AR techniques for site workers will also be part of our future 

research directions. 
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