
SEMIAUTOMATIC GENERATION OF
CORBA INTERFACES FOR DATABASES

IN MOLECULAR BIOLOGY

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

by
Kim Michael Jungfer

July 2000

Department of Biochemistry
University College London

ProQuest Number: U 643728

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U 643728

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

SEMIAUTOMATIC GENERATION OF
CORBA INTERFACES FOR DATABASES

IN MOLECULAR BIOLOGY

ABSTRACT

ABSTRACT

The amount and complexity of genome related data is growing quickly. This highly interrelated

data is distributed at many different sites, stored in numerous different formats, and maintained

by independent data providers. CORBA, the industry standard for distributed computing, offers

the opportunity to make implementation differences and distribution transparent and thereby

helps to combine disparate data sources and application programs. In this thesis, the different

aspects of CORBA access to molecular biology data are examined in detail. The work is

motivated by a concrete application for distributed genome maps. Then, the different design

issues relevant to the implementation of CORBA access layers are surveyed and evaluated. The

most important of these issues is the question of how to represent data in a CORBA

environment using the interface definition language IDL. Different representations have

different advantages and disadvantages and the best representation is highly application specific.

It is therefore in general impossible to generate a CORBA wrapper automatically for a given

database. On the other hand, coding a server for each application manually is tedious and error

prone. Therefore, a method is presented for the semiautomatic generation of CORBA wrappers

for relational databases. A declarative language is described, which is used to specify the

mapping between relations and IDL constmcts. Using a set of such mapping rules, a CORBA

server can be generated automatically. Additionally, the declarative mapping language allows

for the support of ad-hoc queries, which are based on the IDL definitions.

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

I wish to thank everybody who has contributed to the success of this thesis. Special thanks go to

my supervisors Patricia Rodriguez-Tomé and Janet Thornton who have made this work possible.

I am grateful to my previous supervisor Tomas Flores who has encouraged me to work on

CORBA interfaces for molecular biology databases. Finally, I would like to thank Jeroen

Coppieters, Richard Gob el, Carsten Helgesen, Ulf Leser, Philip Lijnzaad, Jeremy Parsons,

Martin Senger, and Anastasia Spiridon for our discussions from which I gained many ideas.

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1 8

INTRODUCTION 8
1.1 Data Collections in Molecular Biology 9

1.1.1 Flat Files 9
1.1.2 The World Wide Web 10
1.1.3 Information Systems 11
1.1.4 Componentry 13

1.2 The Common Object Request Broker Architecture 15
1.2.1 The Interface Definition Language 16
1.2.2 CORBA Objects and Object References 18
1.2.3 The Object Management Architecture 19
1.2.4 CORBA in Molecular Biology 20
1.2.5 Related Technologies 21

CHAPTER 2 25

GENOMIC MAPS 25
2.1 Introduction 25

2.2 Architecture 27

2.3 The IDL 28
2.3.1 The Common IDL 28
2.3.2 The IDL for Radiation Hybrid Data 30

2.4 Mapplet: The Map Viewer 31

2.5 Implementation 33

2.6 Discussion 34

2.7 Conclusions 35

CHAPTER 3 36

CORBA WRAPPERS 36
3.1 Introduction 36

TABLE OF CONTENTS 5

3.2 Interfacing Databases using CORBA IDL 37
3.2.1 Data Representation 37
3.2.2 Data Models 45
3.2.3 Queries 46

3.3 Implementation 47
3.3.1 Generation of CORBA Wrappers 47
3.3.2 Registering Large Numbers of Obj ects 49
3.3.3 Caching 50
3.3.4 Object-Relational Mapping 51

3.4 Conclusion 51

CHAPTER 4 53

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 53
4.1 Introduction 53

4.2 The Mapping Language 54
4.2.1 Views 54
4.2.2 Interfaces 55
4.2.3 Data Types 55
4.2.4 Structs 56
4.2.5 View References 56
4.2.6 Sequences 56
4.2.7 Base Types 57
4.2.8 Enumerations 57

4.3 Examples 58
4.3.1 Basic Mappings 58
4.3.2 Inheritance 70

4.4 Discussion 76
4.4.1 Two-stage Mapping using Relational Views 76
4.4.2 Usage of an Intermediate Object Model 78
4.4.3 Logic as a Mapping Language 79

4.5 Conclusion 79

CHAPTER 5 80

IDLVIEWS - A CORBA WRAPPER GENERATOR 80
5.1 Introduction 80

5.2 Architecture 80

5.3 Interfaces 81

5.4 Queries 84
5.4.1 The Query Language 84
5.4.2 Examples 85
5.4.3 Query Mapping 86

5.5 Implementation 86

5.6 Related Work 87

5.7 Discussion 89

TABLE OF CONTENTS

5.8 Conclusion 91

CHAPTER 6 92

CONCLUSIONS 92

BIBLIOGRAPHY 95

APPENDIX A 104
The Common IDL 104

APPENDIX B 106
Grammar of the IDLViews Query Language 106

TABLE OF FIGURES

TABLE OF FIGURES

FIGURE 1 ; STUBS AND SKELETONS ARE AUTOMATICALLY GENERATED 17
FIGURE 2: OBJECT REFERENCES ARE PROXIES FOR OBJECT IMPLEMENTATIONS 18
FIGURE 3: RFC VS CORBA 18
FIGURE 4: THE OBJECT MANAGEMENT ARCHITECTURE (OMA) 20
FIGURE 5: ARCHITECTURE 28
FIGURE 6: SNAPSHOT 32
FIGURE 7: CORBA WRAPPERS MAKE EXISTING DBS AVAILABLE THROUGH THE ORB 36
FIGURE 8: TYPES OF DATA REPRESENTATIONS IN IDL 38
FIGURE 9: IDL VS. DATA MODEL 45
FIGURE 10: CORBA WRAPPERS WITH A) AND WITHOUT STATE B) 50
FIGURE 11 : CONCEPTUAL MODEL 5 8
FIGURE 12: RELATIONAL SCHEMA. 59
FIGURE 13 : CONCEPTUAL MODEL - INHERITANCE 71
FIGURE 14: HORIZONTAL PARTITIONING. 72
FIGURE 15: VERTICAL PARTITIONING 72
FIGURE 16: SQL VIEWS FOR THE MAPPING OF STRUCTS 76
FIGURE 17: TWO-STAGE MAPPING USING SQL VIEWS 77
FIGURE 18: TWO-STAGE MAPPING USING AN INTERMEDIATE OBJECT MODEL 78
FIGURE 19: ARCHITECTURE OF IDLVIEWS 81

TABLE OF FIGURES

Chapter 1

INTRODUCTION

Integration of data from multiple, distributed and autonomous data sources is a challenging

problem in many domains. Semantic and technical heterogeneity is common and data stmctures

are often con^lex and evolve over time. The field of Molecular Biology can serve as an

example. Research groups have collected genome-related data for the last 20 years, during

which the amount of data has grown exponentially. Medical, pharmaceutical, and agricultural

researchers increasingly seek to utilise this information for the development of new treatments,

drugs, and crops. There are now more than 300 publicly available collections of highly

interrelated data, containing many different types of information. They include data as diverse

as nucleotide sequences, protein sequences, protein structures, genome maps, taxonomic

classifications, and metabolic pathways. The combination of these data collections promises

new insights through new high level integrated views.

The more the size and complexity of molecular biology data grow the more important

automatic tools for management, querying and analysis become. Many of the current limitations

in using this wealth of information are not due to missing technology but to a lack of

standardisation. Biologists utilise every possible hardware platform, operating system, database

management system and programming language. Therefore a large proportion of the available

programming resources have to be dedicated to unnecessary data transformations, which could

be better used concentrating on the functionality of programs. In this thesis an approach is

INTRODUCTION

investigated to alleviate these problems using the Common Object Request Broker Architecture

(CORBA). Using CORBA, it is possible to hide the implementation details of data sources and

application programs and make them readily accessible via a network such as the internet. This

approach promises to reduce drastically the effort required for the deployment and maintenance

of distributed systems and facilitates the reuse of existing components.

The rest of the introduction is organised as follows: First the current situation in molecular

biology is analysed together with the most important systems and technologies used. Then the

concepts of interfaces and components are introduced and the question is discussed of how they

can facilitate the building of future distributed applications. Finally, the CORBA standard itself

is introduced and compared with related technologies.

1.1 Data Collections in Molecular B iology

Data management in molecular biology is characterised by a situation where historic

development and organisational obstacles have prevented the definition and proliferation of

standards. End users are confronted with an overwhelming diversity in data formats, query

languages and access methods. In this section the most important of the currently used systems

and technologies are surveyed. These are flat files for the storage of data, the World Wide Web

for the access of biocomputing resources, and several proprietary systems for the management of

molecular and genomic information.

1.1.1 Flat Files

Molecular biology data has been traditionally stored in simple text files, often referred to as flat

files. Flat files are popular because no database management system is needed and they can be

distributed easily using ftp or CD-ROM. Furthermore, flat-files can be read and understood

directly by humans. This fact has lead biologists to identify an entry of a data collection with its

INTRODUCTION 10

flat file representation. The advent of the World Wide Web strengthened this view. Flat files

can be transformed easily to hypertext by turning references into hypertext links. The Sequence

Retrieval System SRS [Etzold 96] is a well-known example for this approach. Flat files became

the centre of the data flow in molecular biology. Every data collection has to provide a flat file

version in order to distribute the data and most analysis programs use flat files as their data

source.

This central role of flat-files has several disadvantages. The most obvious problem is that

flat-files are difficult to use. Writing a parser is a non-trivial task, which is fiuther complicated

by imprecisely specified and fi-equently changing formats. Even though some standard flat file

formats exist, such as the EMBL/DDBJ/GenBank format, biologists find it in general difficult to

agree on a single model of their data. Another major drawback is that flat files can lead to an

immense waste of computing resources. Different programs often expect different flat-file

formats so that the same site needs to keep multiple copies of the same data. For example

sequence comparison programs, such as BLAST [Altschul 90] or FASTA [Pearson 90], have

their own format, which is different fi-om the format of the primary sequence databases. Finally,

the wish of human readability results in the attempt to keep all information associated with an

entry together. Since this attempt conflicts with the goal of normalisation, flat-files tend to be

redundant. For instance the address of an author might appear in all entries of that author.

1.1.2 The World Wide Web

The World Wide Web [Bemers-Lee 94] has revolutionised the way molecular biology data is

accessed today. All large providers of molecular biology resources, such as the National Center

for Biotechnology! (NCBI) and the European Bioinformatics Institute^ (EBI), now offer a Web-

based access to their data collections and tools. Hypertext links are ideally suited for the rich

interconnectedness of biological data and allow for an easy browsing of distributed information.

INTRODUCTION 11

Form-based keyword searches are capable of expressing con^lex queries and new technologies

such as JAVA permit the development of sophisticated Web-based user-interfaces and

visualisation tools. The main advantages of the Web are its ease of use and its small hard- and

software requirements. A desktop computer with Internet connection and a Web browser are

sufficient - no other programs need to be installed locally. In many cases this is a very good

solution as long as the service provider has anticipated the specific requirements for searching,

analysis and visualisation of the data. The situation is however problematic if a researcher

would like to analyse the data using his own methods and tools. In this case Web interfaces are

very cumbersome to use. In order to utilise data fi"om the Web in a program, the relevant HTML

pages have to be saved on the local computer individually and then parsed by a hand-written

program.

1.1.3 Information Systems

The need for software, which allows for a unified access to the diverse data sources in molecular

biology, has been recognised early. Many different systems for the management, integration and

distribution of biological data have been developed [Bishop 98, Letovsky 99]. Some of the most

important systems are examined here.

1.1.3.1 Entrez

Entrez^ is an integrated Web front end and search engine for the databases at the NCBI. This

includes the MEDLINE bibliographic citation service, the GenBank nucleotide sequence

database, a protein database - which includes SwissProt and translated GenBank entries, the

Molecular Modelling Database (MMDB) of 3-D structures, the Genome Database with genetic

and physical maps from several different species, and a taxonomy database. Entrez maintains

links between these databases and calculates neighbours of sequences using BLAST. Apart of

the Web interface, NCBI also supports the so-called Programmers Toolkit, a C language library.

INTRODUCTION 12

which allows accessing Entrez via a network. NCBI uses the Abstract Syntax Notation (ASN. 1)

to integrate its various databases. In separate text files, ASN. 1 is used to express both the model

of the data as well as the data itself. The toolkit includes a program, which automatically

generates C language stmcture definitions fi’om an ASN.l model and object loaders, which read

and write firom ASN. 1 files to C stmctures. Even though ASN. 1 files are used for the intemal

data management, they are less suitable to be read and understood by humans than the traditional

flat file formats.

1.1.3.2 SRS

The Sequence Retrieval System^ (SRS) [Etzold 96] is another tool for the integration of

molecular biology data collections. Most users will access its Web interface but it also has a C

language API and a UNIX command line interface. SRS installations are replicated at many

sites, thereby providing for a certain degree of fault tolerance and allowing users to select the

version with the best network connection. Unlike Entrez, SRS installations contain not only

well-known databases like EMBL [Stoesser 99] and SwissProt [Bairoch 99] but also a large

number of smaller, highly specialised data collections. SRS can directly utilise the original

ASCII text file distribution formats of the data collection. Its main strengths are its powerful

parser and the maintenance of indices of links between the different data collections. SRS

implements a proprietary query language, view support, and a CORBA interface [Coupaye 99].

1.1.3.3 ACEDB

ACEDB [Durbin 94] was originally developed to manage the genetic data of the nematode

C.elegans. It consists of a non-standard object-oriented database management system and a

large number of excellent graphical visualisation tools. Both mouse navigation and queries are

supported. A proprietary text file format is used as an external data representation for reading

from or writing to a file. ACEDB has proved to be very popular with many other organism

INTRODUCTION 13

communities and became the core element of the Integrated Genome Database (IGD) project

[Bryant 97].

1.1.3.4 OPM

The OPM data management tools [Markowitz 99] are based on the Object Protocol Model

(0PM)5 [Chen 95], an object model with special support for the modelling of scientific

experiments (protocols). The system provides wrapper facilities for the commercial relational

database management systems Sybase^ and Oracle^. It supports the automatic mapping of an

object model to a relational schema as well as the mapping of queries [Chen 98]. Additional

retrofitting tools provide views for already existing relational databases and for structured fiat

files using SRS. OPM has been employed for the development and maintenance of several

biological databases. Examples include the version 6 of the Genome Data Base (GDB)8, a

repository for all published mapping information generated by the Human Genome Project, and

the Primary Database of German Human Resource Center (RZPD)9.

1.1.3.5 BioKleisli

BioKleisli [Davidson et al 1999] is a system for the integration of heterogeneous, distributed

data sources using the Collection Programming Language (CPL). Its main strength is its rich

type system, its query capabilities, and the large number of different data sources supported -

among others it provides drivers for ASN.l, ACEDB, SRS indexed files, and relational database

systems. BioKleisli supports virtual integration using views as well as physical integration by

instantiating data warehouses.

1.1.4 Componentry

The information systems discussed provide integrated user interfaces to diverse types of

biological information. Each of the systems has its own focus and a different conceptual origin.

INTRODUCTION 14

The main strength of ACEDB is, the graphical display of the data, while other systems, such as

BioKleisli, concentrate on the possibility to query heterogeneous data sources. Even though all

of the systems try to anticipate as many user demands as possible they are not necessarily ideally

suited for a specific application. Unfortunately it is difficult to combine different parts of these

systems with other programs and tools. For example it would be hard to combine the query

engine of SRS with the graphical user interface of ACEDB or to use a different genome viewer

together with the ACEDB database. This is of course possible but it requires a lot of knowledge

and programming effort. This effort seems to be so high that many developers find it easier to

implement a new system fi-om scratch rather than to try to combine existing programs. In this

sense a program like ACEDB is sometimes called a closed, monolithic application. Monolithic

applications limit the possibilities for reuse and lead projects to reimplement functionality that

already exists in other systems.

In [Goodman 95b], this problem is addressed and the observation is made that: “almost all

genome information systems are constructed fi-om scratch with little reuse of software developed

elsewhere”. According to [Goodman 95b], the reason for this situation is that the architect of a

genome information system has only two possibilities: The first is to build a complete new

system, thereby guaranteeing that it has precisely the needed functionality. The second is to use

an already existing system and live with most of its limitations. The paper suggests the concept

of componentry as a way to allow for a solution between these two extremes. A corrqjonent is a

piece of software, which can be used in different contexts through a well-defined interface. The

idea is to replace monolithic applications by collections of smaller components, which can be

mixed and matched in order to obtain a tailor made solution for the specific problem in hand.

The potential advantage would be more reuse of already existing code and therefore less wasted

programming effort. Because the unit of contribution is no more a whole system but only a

INTRODUCTION 15

corrq)onent, it would become easier for an individual researcher to contribute to future

information systems.

Several research groups in molecular biology have been motivated by this argument and

have tried to create toolkits of compatible components for graphical user interfaces. One

example is the bioTk project [Searls 95]. BioTk consists of a set of graphical widgets for the

display of biological objects, such as chromosome maps. The bioTk widgets have been

implemented in the programming language Tcl/Tk, using a consistent style and standardised

data structures. Another example is the BioWidgets project [Fischer 99], which uses a very

similar approach but is based on Java beans instead of Tcl/Tk. Both projects concentrate on

only one programming language to facilitate the base-level interoperation of the different

components. Also, both stress the irr^ortance of keeping the model of the underlying data

stmctures as “schema neutral” as possible - the graphic widgets should deal with concepts of the

display and selection of data rather than with biological concepts. This approach makes the

components more general and therefore easier to replace or reuse.

The other main trend with the aim of facilitating componentry, has been the growing

interest in the CORBA standard. Unlike bioTk and bioWidgets, CORBA is not restricted to a

specific programming language. The aim of CORBA is to allow components to interoperate,

independent of programming language, platform, and location.

1.2 The Common Object Request Broker Architecture

In 1989, the Object Management Group ̂ 0 (OMG) was formed. Its members include a large

number of major software vendors, hardware vendors, and large end-users. The stated goal of

the OMG is to standardise and promote object technology. Its specifications are sanctioned by

the International Standards Organisation (ISO) by reference. The core specification adopted by

the OMG is the Common Object Request Broker Architecture - CORBA [OMG 99] (see [Orfali

INTRODUCTION 16

1996], [Siegel 1996] for good introductions). CORBA combines the concept of interfaces with

the distributed object-oriented programming paradigm. Among other things the standard

specifies:

■ The Interface Definition Language (IDL), which provides a language-independent way of

describing the public interface of distributed objects.

■ The Object Request Broker (ORB), a piece of middle-ware, which transparently transmits

request from clients to object implementations.

The public interface describes all methods a client can invoke on a distributed object together

with the necessary input and output parameters. Once the interface of a CORBA object has been

implemented by a server, a client can use it like a local programming language object. It is

transparent to the client where the object implementation resides or in what programming

language it is implemented.

1.2.1 The Interface Definition Language

The Interface Definition Language describes the attributes and operations of CORBA objects,

whereby attributes function as a shorthand for get and set methods. The input and output

parameters can have basic types, such as string or float, or constructed types, such as structs and

unions, or template types, such as arrays and sequences. Another important type is the object

reference, which is used to reference CORBA objects. Interfaces and data types can be grouped

in a hierarchical name space using modules.

A compiler takes the IDL definitions as an input and generates a programming library for a

specific target language, e.g. C++ or Java. For a client, the compiler generates so-called

INTRODUCTION 17

Stubs are the client side representation of distributed objects in the programming language of the

client. For a server, so-called skeletons are generated by the IDL compiler. Skeletons contain

only empty method declarations in accordance with the signature of the object to be

implemented. The developer of the server has to provide the implementation of the methods.

Stubs and skeletons already include the necessary code for network communication and

marshalling of parameters.

IDL Compiler
generates

Client Skel­
eton

Stub ORB

y

Figure 1 : Stubs and Skeletons are automatically generated

The Interface Definition Language plays a central role in CORBA because it is the basis for its

language independence. For each programming language, a standard mapping has been defined,

which translates IDL definitions into constmcts of that particular language. Without the usage

of such an intermediate language it would be necessary to define a mapping for every pair of

programming languages, which is clearly impractical. The CORBA standard includes language

mappings for most of the important programming languages. Examples are C, C++, Java, and

Smalltalk.

INTRODUCTION 18

1.2.2 CORBA Objects and Object References

In order to invoke methods on a CORBA object the client needs to obtain an object reference for

that object. The object reference serves as a proxy object on which the client can use the

methods defined in IDL (Figure 2).

ServerCLIENT

►
Object

Reference Object
Implementation

Figure 2: Object R eferences are Proxies for Object Implementations

It is interesting to compare the CORBA approach with the traditional Remote Procedure Call

(RPC) [Bloomer 92]. Using RPC a client invokes a function on a server, while in CORBA a

client invokes a method on an object. Such a CORBA object is a purely logical entity whose

implementation is unknown to the client. In many cases the server implements several CORBA

objects as shown in Figure 3 (from [Orfali 96]).

RPC: Server CORBA: Server

Client

Figure 3; RPC vs CORBA

INTRODUCTION 19

It is common to implement a CORBA server using an object-oriented language such as C++ or

Java. In this case, the programming language object, which implements the CORBA object, is

sometimes called the servant. Again, one servant can implement one or several logically

distinct CORBA objects.

CORBA objects are bound to a specific inq)lementation and only passed by reference using

the object reference data type. In contrast, IDL data types such as structs, unions or sequences,

are always passed by value and therefore copied between clients and servers.

1.2.3 The Object Management Architecture

CORBA and IDL minimise dependencies between different components by hiding

implementation details like operating system, network, location, and programming language.

This decoupling of clients and servers alleviates many of the common interoperability problems

today and facilitates the development and maintenance of application programs. Even though

this is obviously an improvement of the state of affairs it pushes the problem to another level.

How can software components developed by independent groups interoperate? They can do so

only if they share a set of common IDL definitions. The purpose of the Object Management

Architecture (OMA) is the standardisation of IDL on several different levels (Figure 4).

INTRODUCTION 20

Application
Objects

J

Common
Facilities

V J

Object Request Broker (ORB)

r
Common Object

Services

Figure 4: The Object M anagement Architecture (OMA)

The lowest level is formed by the Common Object Services. CORBA services standardise

interfaces for basic functions, anticipated to be needed by many different applications across

application domains. Examples are interfaces for life-cycle operations, the naming of CORBA

objects and the querying of databases. The next group are the Common Facilities, which include

higher level domain specific services, such as telecommunications or life sciences. Finally there

are the application objects, which can make use of the CORBA services as well as the CORBA

facilities.

1.2.4 CORBA in Molecular Biology

The advantages of the CORBA standard have been recognised by many research groups in

molecular biology and there are an increasing number of CORBA applications available.

Examples include CORBA servers and clients for the Radiation Hybrid Database [Rodriguez

97], HuGeMap [Barillot 99b], and SRS [Coupaye 99]. Several other applications in

bioinformatics can be found at the CORBA page of EBfU.

INTRODUCTION 21

The OMG’s Domain Task Forces (DTP) provide a formai framework for the adoption of

standard interfaces for a specific application domain. In September 1998, a “Life Sciences

Research” (LSR) Domain Task Force was formed whose goal is to provide a forum for

everybody who wants to get involved in the creation of standards for the life sciences field.

Under the umbrella of the LSR DTP, several working groups have been estabhshed. Among

them are groups for gene expression, macromolecular stmcture, maps, sequence analysis, and

visualisation and user interfaces.

1.2.5 Related Technologies

In this section CORBA is compared to related technologies. These are alternatives for

distributed programming and object-oriented databases.

1.2.5.1 Distributed Programming

There are several other approaches, which can be regarded as a way of providing distributed

programming capabilities. The most important of these are briefly surveyed here: sockets, CGI,

RMI, and DCOM. A more thorough comparison together with a speed evaluation for JAVA can

be found in [Orfali 97b].

1.2.5.1.1 Sockets

Berkeley sockets are the de-facto standard for network applications using TCP/IP. Most higher

level middle-ware, including object request brokers, is built on top of sockets. Socket

programming is very low level and provides no parameter marshalling. Therefore sockets

require more programming effort but can achieve a better performance. According to [Orfali

97b], socket communication can be up to 50% faster in JAVA than an equivalent CORBA

application.

INTRODUCTION 22

1.2 .5 .1 .2 HTTP/CGI

The Common Gateway Interface (CGI) 12 is part of the Hypertext Transfer Protocol (HTTP) of

the World Wide Web. A CGI application is a program, which acts on data from a Web-based

input form and is invoked by a Web server. The result of a CGI invocation is a HTML page,

which is displayed in the client’s Web browser. This means that virtual HTML pages can be

created on the fly instead of being stored on the server side before hand. Another advantage is

that CGI servers can be written in any programming language. The CGI/HTTP protocol is

stateless even though cookies can help to save state between different invocations. The main

disadvantages are that CGI is very slow and that it is only a specialised solution for Web front-

ends.

1.2 .5 .1 .3 DCOM

Microsoft’s Distributed Component Object Model (DCOM) [Session 98] is an important

alternative to CORBA. Shipped with Microsoft operating systems it has a large installation

base. Apart from a different terminology, CORBA and DCOM offer a very similar functionality

[Orfali 97b]. The performance of DCOM is similar to the performance of CORBA and like

CORBA it offers parameter marshalling and language independence via DCOM IDL. Most of

the arguments and methods in this thesis could be applied to DCOM as well. However, DCOM

is not considered here because of its proprietary nature and lack of cross-platform support.

1.2 .5 .1 .4 Java/RMI

Finally, the Remote Method Invocation (RMI) of Java is considered here [Harold 97]. RMI is a

system for distributed programming in the Java programming language. Unlike CORBA, RMI

does not try to be programming language independent. The advantage for the programmer is

that Java serves as implementation language and as interface specification language. Hence,

there is no mapping necessary between these two. This makes programming easier and allows

for the support of specialised features of Java, which cannot be supported by a language

INTRODUCTION 23

independent system. An example for this is RMI’s dynamic downloading of class code. RMI

offers both pass-by-reference and pass-by-value for Java objects. [Orfali 97a] reports a 42%

performance advantage of a CORE A/Java ORB in comparison with Java/RMI at that time.

However, there seems to be no good reason why there should be a big difference in performance

given a similar quality of implementation. The language dependence of RMI and the proprietary

nature of Java, can be regarded as the main disadvantages compared with CORBA.

1.2.5.2 Object-Oriented Database Management Systems

Even though object-oriented database management systems (OODBMSs) [Atkinson 89, Cattell

97] are not directly concerned with distributed cornputing, they do share some features with the

approach discussed here. The main objective of an OODBMS is to achieve a seamless

integration of the database language with an object-oriented programming language. This

motivation - reduced impedance mismatch - is the same when CORBA IDL is used to represent

data. Since many OODBMSs concentrate on only one host language - usually C++ or Java -

they can achieve a better integration than would be possible with the language neutral IDL. The

downside of such a system is that compromises have to be made when a database has been

designed in one programming language but is used from within another language. Also,

OODBMSs have no equivalent to the concept of CORBA objects as a unit of distribution.

References between objects in an OODBMS may be turned into pointers of the programming

language when the object is stored in memory - a process called swizzling (e.g. in [Cattell 94]).

This is not possible with CORBA object references because the implementation of a CORBA

object is hidden and resides potentially on another machine. Based on the concrete experiences

with an attempt to implement a genome mapping system using a OODBMS, [Goodman 95]

argues that the C++ type system is a poor choice as a database language because it is more

complicated than a typical data modelling language. In this article, Goodman is also sceptical of

implementing too many programs as part of the database schema because they tend to be very

INTRODUCTION 24

application specific. These two points have to be considered for similar reasons when CORBA

DDL is used to represent data and will be discussed later.

’ http://www.ncbi.nlm.nih.gov/
 ̂http://www.ebi.ac.uk/
 ̂http://www.ncbi.nlm.nih.gov/Entrez
http://srs.ebi.ac.uk/

 ̂http://gizmo.lbl.gov/opm.html
 ̂http://www.sybase.com/
 ̂http://www.oracle.com/

® http://www.gdb.org/
 ̂http://www.rzpd.de/

10 http
“ http
"h ttp

//www. omg.org/
//corba. ebi.ac.uk/
//hoohoo.ncsa. uiuc.edu/docs/cgi/overview.html

http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/
http://www.ncbi.nlm.nih.gov/Entrez
http://srs.ebi.ac.uk/
http://gizmo.lbl.gov/opm.html
http://www.sybase.com/
http://www.oracle.com/
http://www.gdb.org/
http://www.rzpd.de/

GENOMIC MAPS 25

Chapter 2

GENOMIC MAPS

2.1 Introduction

There are now a large number of different types of genetic and physical maps available [Schuler

1996], [Dib 1996], [Hudson 1995]. Maps are interesting biological objects because they can be

used to link different genes and other markers using positional information. It is, for example,

possible to identify homologue regions in genomes of different species using syntenic regions.

Furthermore, they are well suited for different visualisation techniques such as the highlighting

of parts of a map as a result of a query.

The available maps are distributed at many different sites, each offering different kinds of

access methods and viewers. They are typically accessible through Web interfaces, directly

printable graphic files (e.g. Postscript) or simple text files. As discussed in the introduction,

these options are not well suited for access by a program and restrict the user to predefined

views, anticipated by the data provider. CORBA offers here new opportunities to overcome

such restrictions. Using CORBA, clients and servers interact through public interfaces, which

hide implementation details. This separation allows a flexible recombination of data sources

with different viewers and applications, including Web interfaces. Several research groups have

presented CORBA servers for map databases and map viewers. These systems can be found for

instance in [Rodriguez-Tomé 1997, Barillot 1998, Hu 1998].

GENOMIC MAPS 26

The main aim of this chapter is to demonstrate the benefits of CORBA for distributed

applications in molecular biology. It also allows to highlight the relevant issues concerning the

design of such CORBA applications. For this purpose, an IDL for the distribution of genomic

maps is presented together with a map viewer, which serves as a client for this IDL. The origin

of the system presented here is Mapplet, a Java/CORBA map viewer for the Radiation Hybrid

Database (RHdb), which has been implemented by the author together with a specialised

CORBA server. The Radiation Hybrid Database (RHdb) contains experimental radiation hybrid

data and maps derived from these experiments [Rodriguez-Tomé 1999]. This includes STS data,

scores, experimental conditions and extensive cross-references. EBI and Infobiogen in Paris

have later collaborated to create an Common Map IDL (EU Grant BIO4-CT96-0346). This is a

set of interface definitions, which are general enough to accommodate both, the radiation hybrid

maps of EBI, and the genetic maps of Infobiogen [Barillot 99a]. Mapplet has been adapted by

the author to the Common IDL, for which it served as a proof of concept [Jungfer 98]. It is this

version, which is presented here. In the meantime the effort of establishing a standard IDL for

genome maps has been taken over by the Life Sciences Research Task Force of the OMG.

The main requirements for Mapplet and the Common IDL have been:

• The map viewer should be able to access and display radiation hybrid maps from EBI in

England as well as genetic maps from Infobiogen in France.

• The application has to work with a reasonable speed even for large maps with several

thousand markers.

• The basic functionality of Mapplet should depend only on the common IDL, while

additional information for radiation hybrid maps has to be accessible as well.

GENOMIC MAPS 27

2.2 Architecture

CORBA objects are used to represent the main components of the application. These

components are:

• Maps: Having an object reference to a map object, a client can request general information

about the map, such as name and type, as well as the markers on the map and their position.

• The Map Trader: A client can ask the trader which maps are available. Example criteria are

species, chromosome or a specific marker on the map. If the trader knows about maps,

which satisfy the query, it returns one or more object references for these maps. The map

viewer can use the object reference to directly access the map and display it.

• The Score Database: If the map is a radiation hybrid map of RHdb then additional

information about the markers is available. Examples are marker types and score vectors.

The Common IDL treats maps as CORBA objects. This has the advantage that map and trader

can be separated. The trader can know about maps, which are not local to the trader. When a

client asks for a map then the trader does not return the map itself, but a reference to the map.

The client can then use the reference to access the map directly without having to know where it

resides (Figure 5).

GENOMIC MAPS 28

Map
TraderEBI:

MapInfobiogen: f Map EBI:

Map
ViewerSomewhere:

Figure 5: Architecture

2.3 The IDL

The IDL definitions for the application consist of two parts. The first part is the Common Map

IDL, which contains methods and data available for all types of maps. The second additional

part has only methods specific to radiation hybrid maps. The complete listing of the Common

Map IDL can be found in appendix A. Here only those aspects of the common IDL are

presented, which are necessary to understand the map viewer.

2.3.1 The Common IDL

The Common Map IDL consists of two parts: maps and traders.

2.3.1.1 M aps

The maps themselves are defined in the module maps. Their main attributes are “oid”, “name”,

“type”, “species”, “chromosome” and “elements”. Through the attribute “elements” it is

possible to get a list of all markers, which belong to the map. Because the “MapElement”

(marker) is represented as stmct and not as interface it is passed-by-value. It is therefore

possible to get all marker data belonging to a map with only one method call.

GENOMIC MAPS 29

module Maps {

struct MapElement {
MarkerData markerData;
float position;

};
typedef sequence <MapElement> MapElementList;

interface Map {
readonly attribute string oid;
readonly attribute string name ;
readonly attribute string type;
readonly attribute string species;
readonly attribute string chromosome;

readonly attribute MapElementList elements;
};

};

2.3.1.2 Traders

The Common IDL defines the interfaces for traders and maps. The most basic method of a

trader is to return an object reference given an object identifier. Since this method is not specific

to map traders, it was defined in a separate trader module.

module Traders {
interface Trader {

Object getByOid(in string oid)
raises (NotFound);

};

};

GENOMIC MAPS 30

A specialised version of the Trader is defined in the module “Maps”. Here it is possible to

specify general search criteria like species and chromosome. The result type “MapList”

represents a sequence of maps, since more than one map can match a query.

module Maps {

typedef sequence<Map> MapList;

interface MapTrader : Traders::Trader {
MapList getMapList(in string mapType,

in string species,
in string chromosome,
in Strings markers)

raises (Traders:: Trader ::NotFound);
};

};

2.3.2 The IDL for Radiation Hybrid Data

The scores database is represented by the interface “DB” in the module “RHScores”. It has two

methods. The first allows to access additional information for an individual marker, and the

second to get the marker types of all markers of a specified map. This second method is in

theory redundant but was added for performance reasons. The map viewer allows the

highlighting of all markers of a specific type. If the viewer would have to request the marker

type individually for each marker then network load and response time would be unacceptable.

module RHScores {

typedef sequence<string> Strings;

struct Reference {
string database;

GENOMIC MAPS 31

string accession;
};
typedef sequence <Reference> References;

struct Score {
string rhid;
string panel;
string author;
string vector;
string sts;
Strings stsTypes;

};

typedef sequence <Strings> Types;

exception NotFound {};

interface DB {
Score getScore(in string rhid) raises(NotFound);
Types getTypes(in string mapid) raises(NotFound);

};

}; // module RHScores

2.4 Mapplet: The Map Viewer

Mapplet allows a quick overview of the maps in RHdb (Figure 6.). It displays four maps side by

side, which can be selected by chromosome. Each map can be scrolled and zoomed

independently. Zooming can be done using the “In”, “Out” and “Full” buttons.

GENOMJC MAPS 32

Ready

S e lec t Map:

MapID:CM24

Namc.Ctulv?
TypcEHnup

Sptcies: Homo Sapiens

Chïomosomi; J

KumbexofMaxkexs; 1281 :

Umt;cE

Atahor: KimJim^er, JiJsngfer^ebLacM

C h M ~ 4 Highlight Marker: EST

Eaq»ID:CM39

' ' HacneiChzSvS

' -Type RHtwp '

' Species: Homo Sapiens

ChxomossMae; 3

Humbex o f MaÂexs : 1012

Unit:cR

M:̂ }D:CM35
Hame: Qu2v3

'type:EHmap

: : Sÿedes'Homo Sapiens

:fChxomoiom*-2

Nombex of Mafkexs : 1108

••'tJaTCcE

MapID:CM40

Name:Chi4v3

Type; RHmap

Species: Homo Sapiens

Chxomosome: 4

Hurabex of Maikexs: 702;

r
050,0*

lOO.Orlooe- 960 JO-
150.0-150.0-

970JO- 200 .0 -200.0 -
250.0-980.0250.0-

300.0- 9%J0-
350.0-350.0-

lOOO.d- 400.0-
450.0- 450.0-1010.0 -

500.0-
1020.0 -550.0- 550.0-

600.0- 1030-0- 600.0-
650.0- 650.0-104ÛJ0-
700.0-

700.0-
1050JO-750 0-

750.0-
800.0- 1060.0- 800.0-850.0-

850.0-1070.0-900.0-

0«
RH49695 FW 814.48016

Pxev I Next I Show

Full

NoMaxkex Selected

Pxev I Next Show

No Maxkex Selected

Pxev 1 S ex t Show

Figure 6; Snapshot

Unit cR

355.0-
360.0-
365.0-

'#370:6-
'

#375-1)-
380.0-

'385.0- —
390.0-

[!U395.0-
400.0- m 1

405.0-
410.0-

» ,

415.0- 1

420.0-
425.0- # 1

430.0-
435.0-

-

440.0-

Full 1 Out In

RH58956 FW 37426996 ;

Piev I Next

The maps are depicted in three parts:

• A Scale.

• The Markers:

Depending on the zoom-level they generally overlap.

• A M arker Densit\' Histogram:

Depicts how many markers are mapped in a specific region.

GENOMIC MAPS 33

A marker can be selected with the mouse by clicking on it. Pressing the “show” button of the

corresponding map will display detailed information about the marker, like name, position, and

cross-references. For Radiation hybrid maps at EBI the assay information together with the

score vector is displayed. The “Next” and “Prev” button select the next or previous marker.

Different marker types can be highlighted: for example, all markers, which belong to the

framework or all genetic markers or all ESTs. The histogram will then show the density of the

highlighted markers.

2.5 Implementation

The map viewer was implemented in Java using the CORBA 2.0 compliant ORB OmniBroker

2.0.31 . It can run as a standalone application as well as within a Web browser. Since no

proprietary features are used, the same source code should work with any other recent, CORBA

compliant Java ORB. Therefore, the applet can use the built-in ORB of Netscape’s

Communicator.

Unfortunately, when the client runs within a Web browser, security restrictions require the

map trader, the map, and the HTTP-server from which the applet is loaded, to reside on the same

machine. Other, more advanced ORBs, such as Visibroker^, offer a solution to this problem

using a daemon, which runs on the same machine as the HTTP-server and which can forward

requests to object implementations on different machines.

It would have been possible for the application to utilise the normal existing CORBA

servers for the Radiation Hybrid Database [Rodriguez-Tomé 1999] as a data source. However,

in order to increase the performance, a special caching server was implemented, which uses

these servers but avoids direct access to the underlying relational database at run-time. Since

both servers use the same IDL, none of these changes affect the map viewer.

GENOMIC MAPS 34

2.6 Discussion

The map viewer has been designed for use over Wide Area Networks (WANs) where round-trip

response times can be slow and where granularity of data access becomes the single most

important factor in browsing performance. A straightforward translation of a conceptual data

model into an interface-based DDL will normally lead to inefficient solutions. An example is

[Hu 1998], where the “MapElement” equivalent “Locus” is only represented as an interface.

This means that in order to display a map it is necessary to access each displayed “Locus”

individually by remote method calls. Such an approach is therefore limited to small maps or

local network applications. In this context it is important to realise that IDL is not a data

modelling language but a specification language for an API. Ultimately the concrete application

determines the IDL - not an abstract data model. Using the common map IDL, the map viewer

can download positions and names of all markers belonging to a map with only one method call.

This is possible because the “MapElement” is modelled as a struct, which can be passed-by-

value. Apart from this difference, the IDL in [Hu 1998] and the Common Map IDL show many

similarities.

The Mapplet is based on the Common Map DDL. However, it was necessary to extend this

IDL to implement features specific to RHdb. This is probably a typical situation. Agreement on

a common interface, while desirable, is often difficult to achieve. If achieved it is often an

unsatisfactory compromise. Since CORBA deals only with interfaces and not with

implementations, this problem is less significant than, for example, with flat file formats. It is

easy to built servers supporting different DDL definitions. Another possibility is the mechanism

of inheritance for CORBA interfaces. E.g. it would be possible to define a specialised map

interface for radiation hybrid maps, which inherits from the common map interface. The

specialised map object itself could then give the additional information. However, this approach

was not chosen here in order to keep score data and map objects separate. The main

GENOMIC MAPS 35

functionality is preserved when the Mapplet is restricted to the common IDL. Specialised

features are accessible using an additional set of IDL definitions.

2.7 Conclusions

Representing genomic maps and markers using CORBA IDL allows clients to access remote

information like local programming language objects. This is convenient since no parsing or

other internalisation process are necessary. CORBA object references provide location

transparency so that the client does not need to know where the map resides. Speed of the

application depends highly on the chosen IDL. Stmcts are faster for bulk data transfers, while

interfaces can take advantage of location transparency, computed methods, and inheritance.

Such speed considerations are the main reason why IDL definitions are very application specific

even though DDL definitions hide many implementation details. The standardisation of DDL for

specific application domains, such as genomic maps, allows for an independent developing of

clients and servers. Interoperability between independent data providers and applications is only

possible if agreement on standard interfaces is achieved. The common map DDL is an attempt to

set such a standard. Mapplet demonstrates the usefulness of the common DDL for the purpose of

a map viewer. The IDL is designed to deal with large maps of more than one thousand markers.

Mapplet focuses on a quick overview of large maps.

’ http://www.ooc.com/ob.html
 ̂http://www.inprise.com/visibroker

http://www.ooc.com/ob.html
http://www.inprise.com/visibroker

GENOMIC MAPS 36

Chapter 3

CORBA WRAPPERS

3.1 Introduction

In the previous chapter, the advantages of accessing molecular biology data using CORBA have

been discussed from the perspective of a client. The aim of this chapter is to examine the server

side of such applications in a systematic way. In general, today’s molecular biology databases

do not support CORBA interfaces. In order to allow such a database to interact with CORBA

components it is therefore necessary to build a so-called wrapper - a program, which

implements IDL interfaces for already existing legacy systems.

Data­
base

Wrapper ORB
CORBA

Client

Figure 7: CORBA wrappers make existing DBs available through the ORB

The system depicted in Figure 7 is a classical three-tier architecture. The wrapper represents the

middle-tier, insulating the client and data source from each other. Because the wrapper can

already provide an application specific view of the data, it allows the client to concentrate on its

main functionality. It is possible to speak of a thin client if most of the data transformations and

processing is left to the middle-tier. The client remains simple and is mainly responsible for

CORBA WRAPPERS 37

data presentation. Thin clients are often desirable because they are easy to distribute via a

network, typically executed within a Web browser. Another advantage of thin clients is that

their simplicity makes it easier to replace them with the in^lementation from an independent

provider. This issue makes them even more interesting in the context of CORBA since it is one

of the main aims of CORBA to support componentry.

The two aspects addressed in this chapter are the interface and the implementation of

CORBA wrappers for databases. The external interface of the wrapper defines its fimctionality

and is specified using CORBA IDL. In the context here this means mainly data representation

and access. The second aspect consists of a variety of issues concerning the actual

implementation of the wrapper.

3.2 Interfacing Databases using CORBA IDL

How should data be represented in a CORBA environment? Should the IDL reflect the data

model and if yes how? How can a CORBA wrapper support queries? The answer to these

questions is crucial in this context and will therefore be examined in detail in this section.

3.2.1 Data Representation

Using CORBA IDL, data can be represented in many different ways. Each possibility has

advantages and disadvantages depending on the type of application. These possibilities will be

evaluated in this section with respect to performance, extensibility and, simplicity. There are in

general four types of representations, which are summarised in Figure 8. The two principal

design choices, which lead to this table are: generic types versus domain specific types and

CORBA objects versus value types.

CORBA WRAPPERS 38

Value-based Object-based

Generic types Strings, Sequence of Octets Generic CORBA objects

Domain types Stmcts, Unions, CORBA 3 Values Domain CORBA objects

Figure 8; Types of Data Representations in IDL

3.2.1.1 Generic Types

Many existing systems use CORBA IDL only for the infrastructure of the system, while using

generic types to represent the data itself [Dogac 96]. In this approach the IDL definitions do

therefore not reflect the data model. This can be achieved for example by encoding the data

objects in strings or byte sequences. The following string for example could represent an entry

of a sequence database:

“((accession ‘AC24123’) (species ‘human’) (sequence ‘ACGCGTTAATCGGC’))”

This is similar to the normal access of a relational database using an SQL prompt, where each

result entry is returned as a string to the user. An example of a syntax for the encoding of

objects in text files is the object interchange format OIF, defined in the ODMG 2.0 standard

[Cattell 97].

The second generic possibility is to utilise a CORBA object to represent the data but to use

a completely generic interface, which is independent from the structure of the represented object.

The following IDL for example could be used for such a purpose:

interface DBObject {
string getClassName();

CORBA WRAPPERS 39

any getAttribute(in string attributeName);
};

The main advantage of generic approaches is the ease of maintenance. Using DDL, clients and

servers have to be compiled together with the classes, which have been generated from the IDL

definitions. This can become a major burden if the data model is large or changes frequently.

Generic applications, which are not interested in the semantics of the data - e.g. a tool for

displaying data in the form of a table or a query evaluator - are therefore often better served by

generic data representations. However, for other more specialised applications, such as a map

viewer, generic representations can be very cumbersome to use. In the case of the encoding the

objects in sequence types the objects have to be parsed and brought into an internal

representation.

3.2.1.2 Domain SpecificTypes

The second possibility is to use CORBA IDL not only for the infrastmcture of the system but

also to represent the data objects themselves. The main reason for representing data using

domain specific DDL types is to simplify the task of writing clients. As seen above the generic

approach requires the client to transform the data object into an internal representation, which

can be used more conveniently. This problem is often referred to as impedance mismatch

between the database language and the application programming language. If however the data

model is directly expressed in CORBA IDL, then encoding, decoding and translation into an

internal representation is done by the stubs and skeletons, which have been generated

automatically by the IDL compiler. The client can access remote information like local

programming language objects.

Similar to the generic case there are again two main possibilities depending on whether

CORBA objects are used or value types. Of course, these different possibilities do not exclude

each other - they simply meet different requirements of different clients.

CORBA WRAPPERS 40

3.2.1.2.1 Object-Based

The following example shows a possible representation of a protein sequence as a CORBA

object:

interface ProteinSequence {
attribute string accession;
attribute string species;
attribute string sequence;

};

This is perhaps the most natural representation. Every class of the data model is represented by

a corresponding interface. Every database entry is represented as a CORBA object. The

application program can use such a sequence object as if it were local. Because CORBA

interfaces support directly both multiple inheritance and associations, interfaces can resemble a

conceptual data model very naturally. However, this approach can be too slow for many

applications, because every access to an attribute is a remote method invocation over the

network. If the application program wants to get all three attribute values then three remote

method invocations will occur. If the application requires access to many such objects the

network load becomes unacceptable. Such fine grained data access has led many to conclude

that CORBA as such is inefficient. In reality it is just one possibility, which is suitable in some

situations and not suitable in others.

3.2 .1 .2 .2 Value-Based

The second possibility is not to use CORBA objects to avoid the mentioned potential

performance problems, but instead models the data as values such as IDL structs.

struct ProteinSequence {
string accession;
string description;
string sequence;

CORBA WRAPPERS 41

}

In contrast to CORBA objects, structs are passed by value. Access to the individual fields is

therefore local and very fast. On the other hand the application has to get the whole struct even

if it is only interested in the accession field. Structs are therefore more suitable for bulk data

transfers. On the other hand, structs neither support inheritance nor associations. If such

concepts are used, they need to be circumscribed using IDL unions or any s. This problem will

often occur if an extended entity-relationship model is used as the starting point for the IDL

development, but interfaces are no option

The upcoming CORBA 3.0 standard has extended the DDL by a new type calledvn/nc.

CORBA 3.0 values are similar to stmcts but do additionally support inheritance. Even though,

following the example of Java, values are restricted to single inheritance, this overcomes one of

the most severe disadvantages of DDL stmcts.

3.2.1.3 Associations

Associations can be modelled in IDL using three different possibilities. Object references,

logical keys and embedded stmcts. For each approach an example is given below.

3.2.1.3.1 Object References:

interface SwissProtSequence {
attribute string accession;
attribute string description;
attribute string sequence;
attribute EMBLSequence EMBL;

}

interface EMBLSequence { ... } ;

The main advantage of object references is their ease of use. The client can navigate from a

protein sequence to an EMBL sequence easily by simply following a pointer.

CORBA WRAPPERS 42

3 .2 .1 .3 .2 Logical Keys:

This is the same example as above but this time only a logical key indicates, which

EMBLSequence is referenced.

interface SwissProtSequence {
attribute string accession;
attribute string description;
attribute string sequence;
attribute string EMBLaccession;

}

The advantage of logical keys is that they do not only point to a specific implementation but to

the appropriate EMBL sequence in any instance of the database. The disadvantage is less

convenient access for the client, which has to know itself how to get the EMBLSequence using

its accession number.

3 .2 .1 .3 .3 Em bedded Structs:

Here the same example using embedded stmcts. Note that the EMBLSequence is always copied

as a whole together with the parent stmct SwissProtSequence.

struct SwissProtSequence {
string accession;
string description;
string sequence ;
EMBLSequence EMBL;

}

struct EMBLSequence { ... } ;

3 .2 .1 .3 .4 Multiple Associations:

One-to-n and n-to-m relationships can be modelled using the same principal approaches but do

additionally require the usage of IDL types such as sequences or arrays .

CORBA WRAPPERS 43

3.2.1.4 Evaluation

This section summarises the advantages and disadvantages of IDL stmcts, interfaces and

CORBA 3.0 value types.

3.2.1.4.1 Time

Value based data transfer is quicker if a large amount of data has to be transferred. This applies

to both stmcts as well as the new CORE A3.0 value types. Object based access, however, allows

for a more precise selection of the downloaded data. This is an advantage when not all data of a

specific object is needed and only few objects are involved.

3 .2 .1 .4 .2 S p ace

If value based data representations are used, the whole data is copied to the client. Therefore

value based representations are in most cases less space efficient. There are however cases when

the size of an CORBA object reference alone is bigger than the data contained in the object. In

this case there would be no advantage fi-om using interface based representations.

3 .2 .1 .4 .3 Extensibility

Inheritance is one of the most important technique to extend existing code. Stmcts do not

support inheritance, while both interfaces and the CORBA3.0 value types do. CORBA 3.0

value types therefore overcome one of the most important disadvantages of stmcts.

3 .2 .1 .4 .4 Simplicity/Readability

Again inheritance is an important way to stmcture and simplify code. Therefore interfaces and

CORBA3.0 values are again superior to stmcts in this respect.

3.2.1.5 Applications

It is also possible to view the differences of the different approaches from the perspective of

different types of applications.

CORBA WRAPPERS 44

3.2.1.5.1 Browsing

Simple navigation and browsing of CORBA objects, is best supported by object based data

representations if no large amounts of data need to be transferred.

3 .2 .1 .5 .2 Bulk Data Transfer

If large amounts of data need to be transferred then value-based representations are most

efficient.

3.2 .1 .5 .3 Data Integration

As seen in the interface example for biological sequences, CORBA object references provide an

easy way of interconnecting objects fi’om different independent and possibly heterogeneous data

sources - a point which has been made for example in [Markowitz 95]. Even though this

approach is easy to implement, it does support only simple navigation but no queries. It is in

many respects veiy similar to the interconnection of Web pages using URLs instead of object

references. In contrast, stmcts and CORBA 3.0 values do not provide a similar simple

mechanism of integration of data fi*om independent sources.

3 .2 .1 .5 .4 Object Sharing

One interesting new application opened by CORBA is the possibility to share distributed objects

among several clients. An example would be a CORBA object which represents an alignment of

nucleotide sequences. It is possible to support the decision about what is the correct alignment

by making an assumption about a taxonomic tree of the species involved. If the tree changes,

the alignment will in general change as well. This behaviour can be naturally modelled when

the alignment viewer and the tree editor both hold object references to the same alignment

object.

CORBA WRAPPERS 45

3.2.2 Data Models

When using DDL to represent domain objects it is tempting to treat it just like a data modelling

language. This is especially true when using interface-based representations, which allow for a

very natural one-to-one mapping between a conceptual model and IDL. It is however important

to distinguish between these two. The following picture depicts the relationship of database

schema, conceptual model, and the DDL.

Conceptual
Data Model

reflects reflects

Database
Schema Mapping IDL

j

Figure 9; IDL vs. Data Model

While the conceptual model is the abstract, logical, and global structure of the domain data, the

IDL merely represents an application specific API. Therefore, the IDL usually deals only with a

subset of the conceptual model. Furthermore it already has the access paths encoded used by a

client. Because several different access paths are often needed within the same application, DDL

tends to be redundant and more complicated. It is worth remembering that similar arguments

hold for the database schema, which often have to be denormalised in order to speed up specific

applications. All this can result in a non-trivial relationship between database schema and DDL,

which complicates the implementation of a wrapper whose task it is to implement the mapping

between these two.

CORBA WRAPPERS 46

3.2.3 Queries

The ability to express queries is clearly an important aspect for every database. This aspect is

standardised by OMG through its Query Service specification [OMG 98]. The central element

of this IDL is a CORBA object of the type Evaluator. A query evaluator takes a query

string as input and returns a reference to a collection object, which represents the result. This

result collection gives access to its elements through another CORBA object: the Iterator. The

query service does not specify how the elements of the result should look; the iterator always

returns the IDL type any. It can therefore be combined with any of the above listed data

representations. Furthermore the query service can be used with any possible query language

depending on the underlying database system. Result collections can themselves support the

query evaluator interface allowing to narrow a query in an iterative way.

Queiy support is common when generic data representations are used. JDBC is a well

known example for such an API in the case of Java. However, if CORBA IDL is used to

represent the data it is not obvious whether and how ad-hoc queries should be supported.

Simple navigation and methods providing access to pre-canned queries are sufficient for many

applications. On the other hand it seems clear that some applications would benefit fi’om query

support leaving the question how this can be done best. The main question is in what terms the

query should be expressed. There are essentially three possibilities:

• In terms of the schema of the underlying database

• In terms of a conceptual data model

• In terms of the IDL itself

To base the queries on the schema of a database is probably the easiest to implement

solution. The disadvantage is that the user has to know both the schema and the IDL as well as

CORBA WRAPPERS 47

the connection between these two. The approach is therefore only realistic if schema and IDL

resemble each other closely.

Very similar arguments hold if a conceptual model is used instead of the schema. The

advantage might be that a conceptual model has better chances to resemble the IDL. The reason

is that unlike some database schemas - such as a relational one - it can support IDL concepts

such as inheritance and associations.

In contrast, to express queries in terms of the IDL itself has the advantage that the user

needs to know the DDL only. The disadvantage is however that - as discussed before - the DDL

tends to be more complicated and less readable than a conceptual model. This approach might

therefore be better suited for small specialised applications.

3.3 Implementation

The implementation and maintenance of CORBA wrappers for biological databases can be a

challenging problem. This section discusses several issues, which need to be addressed in this

context.

3.3.1 Generation o f CORBA Wrappers

When using CORBA IDL to represent the domain objects of an application, it is one of the main

tasks of the CORBA wrapper to implement the mapping between the database stmctures on one

hand and the corresponding IDL constructs on the other. This can be done in several different

ways.

3.3.1.1 Manual Implementation

Usually, this mapping is implemented manually: the developer first specifies appropriate IDL

definitions, lets the IDL compiler generate the skeletons, and then adds the necessary

CORBA WRAPPERS 48

implementation. This is mainly code to access the database through a database gateway such as

JDBC. The problem is that implementing a new CORBA server for each application and

maintaining it in the presence of evolving IDL definitions and database schemas is tiresome.

Furthermore, it is completely unclear how IDL based ad hoc queries can be supported in such a

setting.

3.3.1.2 Automatic Code Generation

Another possibility is the automatic generation of IDL and CORBA server based on the schema

of the underlying database. The problem with this approach is that the automatically generated

IDL is usually not what we need for a concrete application. One reason is that in order to allow

for the interoperation of independently developed clients and servers it is advantageous to agree

on a common IDL [Barillot 99a]. Another reason is, as detailed above, that there are many

different ways to represent data in IDL. The different representations have different advantages

and disadvantages, and can significantly influence the performance of a distributed system. The

IDL is therefore highly application specific and cannot be derived fi*om a database schema only.

3.3.1.3 Semi-automatic Code Generation

Finally, it is possible to try to find a compromise between the completely manual and the

completely automatic implementation. This approach will be called semi-automatic here. The

central idea is as follows: First the developer decides on an IDL that ideally suits his

application. Then he specifies a set of mles, which describe the customised mapping between

database schema and the target IDL. Using the mapping rules the CORBA wrapper can now be

generated automatically. The semi-automatic server generation has the advantage, that the

developer has a large degree of freedom when choosing the target IDL but still leaves the most

difficult part of the implementation to an automatic code generator. Also, it is still possible to

support ad hoc queries, which are expressed in terms of the DDL data types.

CORBA WRAPPERS 49

3.3.1.4 Query Support

It is relatively easy to support queries by simply giving access to the underlying query system of

a CORBA wrapped database. However it is more difficult to support ad hoc queries, which are

based on the IDL definitions of the server. Especially in the case of a manually implemented

CORBA wrapper it is not obvious whether and how such queries could be supported. The

situation is better in the case of automatically and semi-automatically generated servers. The

mapping rules are in these cases known explicitly and can be used to translate queries and results

from and to the IDL representation.

3.3.1.5 Code Maintenance

As discussed before, manually implemented CORBA wrappers are difficult to maintain if either

the schema of the database or the target IDL change. However, automatically and semi-

automatically generated CORBA servers also have their problems with respect to code

maintenance. The automatically generated server will in most cases not provide the DDL needed

for a specific application. It is therefore usually necessary to modify it by hand in order to adapt

it. This will not happen as often in the semi-automatic case but even there it is sometimes

desirable to add the implementation of convenience methods. Therefore in both cases manually

and automatically generated code have to coexists. When the automatic part of the code is

regenerated because of a schema change, it has to be recombined with the hand coded

modifications. To avoid error prone code merging it is in the experience of the author better to

use either inheritance or delegation to combine the two types of code.

3.3.2 Registering Large Numbers o f Objects

Databases can contain millions of objects. If the CORBA wrapper used interface based

representations, the ORB has to be able to keep track of the connection between these database

objects and the corresponding CORBA object references. It is therefore not practical in this case

CORBA WRAPPERS 50

to use the standard individual object registration provided by CORBA. Instead it is necessary to

use an implicit registration method. The general idea is to have the object identifier of the

database object encoded in the CORBA object reference. Many ORBs implemented an own

proprietary way of implicitly registering large numbers of objects. The recently by OMG

adopted Portable Object Adapter (POA) now standardises this possibility.

3.3.3 Caching

Typically, every CORBA object is represented by one corresponding object of the

implementation language of the server; e.g. a C++ object. In the case of a database wrapper this

means that the C++ server contains a copy of the database entiy (Figure 10a). If a client invokes

for the first time a method on an object reference the corresponding database entry is loaded and

the C++ object is instantiated. It stays in memory for subsequent method invocations until the

server actively removes it to prevent the server fi*om maintaining a copy of the whole database.

This approach can be fast because the CORBA server is a cache for database entries but it makes

a policy for garbage collection necessary.

a)
Wrapper

b)
Wrapper

o
Figure 10: CORBA wrappers with a) and without state b)

In the second possibility (Figure 10b) the CORBA server is stateless. One language object

implements a set of different CORBA objects each representing another database entry. For

every request the server extracts the object identifier from the request in order to find out which

CORBA WRAPPERS 51

CORBA object it has to emulate. In this approach no data eviction strategy is needed but every

request requires access to the underlying database.

3.3.4 Object-Relational Mapping

Relational database management systems (RDBMS) are still the standard today: many major

and minor data collections in molecular biology, like EMBL [Stoesser 99] or IXDB [Leser 98b],

utilise a relational database management system. Since the relational model is very different

from an object-oriented IDL, object-relational mapping [Wiederhold 86] becomes the central

problem for CORBA wrappers. There are different tools, which can help to define an object

model on top of a relational database. An example is the object-relational mapping tool

“Persistence”. It follows the philosophy of object-oriented databases in the sense that it makes

database entries directly available as C++ objects. Persistence is therefore well suited to

implement CORBA servers, which cache database entries in main memory. The main

disadvantage of this tool is that the developer has not much freedom to define object schemas.

The Persistence object schema is very close to the original table structure of the database.

Relational views and a certain amount of hand coding are often necessary to do the required

mapping. Another tool for object-relational mapping is 0PM [Chen 95]. In contrast to

Persistence it supports the mapping of object-oriented queries to SQL queries. It is therefore

better suited for stateless wrappers and for the implementation of a CORBA query service.

3.4 Conclusion

Usually, existing data collections do not provide CORBA interfaces. In order to make such data

collections available in a CORBA environment it is necessary to implement a so-called CORBA

wrapper. The most important design question, which a developer of such a wrapper faces, is the

question of how to represent data in IDL. The answer to this question depends veiy much on the

CORBA WRAPPERS 52

concrete application, and will have a major impact on the performance of the distributed

application. One way to find the best IDL is often by a use-case analysis [Jacobson 92].

The implementation of CORBA wrappers by hand is tedious and error prone.

Automatically generated wrappers on the other hand are too inflexible in the choice of the

implemented IDL. Semi-automatic wrapper generation offers here a good compromise. The

IDL can largely be influenced by the developer while the most complicated part of the code is

automatically generated.

GENOMIC MAPS 53

Chapter 4

A MAPPING LANGUAGE FOR RELATIONAL
DATABASES

4.1 Introduction

In this section a high-level language is presented, designed to describe mappings between

relations on one side and CORBA IDL types on the other side. The IDL types are coirç)letely

specified by the mapping definitions. The mapping language is declarative and is intended to

guide automatic query translation and data transformations. In order to facilitate the task, the

IDL has been restricted to most often used constmcts of the interface definition language of

CORBA V2.0:

• Modules

• Interfaces and object references

• The template type sequence

• The constmcted types enumeration and stmct

• The base types long, float, string, and boolean

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 54

Interfaces are restricted to read-only attributes. Other types such as arrays and unions can easily

be incorporated using a similar method.

To keep the mapping language simple and without loss of generality we assume that relational

views can be used to get closer to the needed IDL. This means that mapping possibilities, which

can be expressed by a relational view are not considered here. More specifically:

■ The simple values long, float, string, boolean and enum are represented directly by exactly

one table attribute. No null-values are permitted.

■ All single-valued members (attributes) of a stmct (interface) can be found in the same table.

■ Multi-valued members (attributes) of a stmct (interface) are stored in a different table, which

is connected to the base table by foreign keys.

The here presented mapping language has been completely developed by the author. An earlier

and less general version of the language has been published in [Jungfer 99a].

4.2 The Mapping Language

4.2.1 Views

The top-level constmct of the mapping language is the definition of an IDL view. A view has a

name and is associated with a table and the mapping for an IDL type. The DDL type can be in

this case either a stmct or an interface (xxx_mp in the grammar means: mapping definition for

xxx). Different views can use the same DDL types based on different tables.

<idl_view> ::= (VIEW <view_name>
TABLE <table name>

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 55

<interface_mp> | <struct_mp>)

4.2.2 Interfaces

The mapping definition for interfaces specifies first the IDL name of the interface. Then all

interfaces fi-om which it inherits are specified in the “EXTENDS” clause. All interface names

are scoped to specify the appropriate DDL module. The extended interfaces are merely necessary

to define the DDL type - they do not affect the mapping. Especially they do not imply any set

inclusion properties between different views represented by these interfaces. The following

“SUB” clause allows the specification of non-overlapping “sub-views” (See the examples in

section 3.2 of this chapter for the usage of this constmct). Then the primary key for the main

table of this view is given. The key is necessary to allow the CORBA object adapter to keep

track of the connection between object references and database entries. For each attribute, the

attribute name and the mapping for the attribute type is given. All attributes have to be specified

here, including those inherited from other interfaces.

<interface_mp> ::= (INTERFACE <scoped_interface_name>
[EXTENDS (<scoped_interface_name>*)]
[SUB (<view_name>)]
[KEYS (<column_name>+)

(<attribute_name> <data_type_mp>)+]
)

4.2.3 Data Types

The type of an attribute or stmct member is either a base type or an enumeration or an object

reference or a stmct or a sequence.

<data_type_mp> ::= <base_type_mp>
I <enum_mp>
I <reference_mp>
I <struct mp>

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 56

I <sequence_mp>

4.2.4 Structs

For every struct the scoped struct name is specified as well as the mapping for each member.

Since stmcts are passed by-value, there is no need for keys.

<struct_mp> ::= (STRUCT <scoped_struct_name>
(<member_name> <data_type_mp>)+)

4.2.5 V iew References

Inside the mapping definition of an DDL view it is possible to refer to an already existing view.

Depending on the type of the referenced view, this is either used to represent an embedded struct

or an object reference. While an embedded stmct can also be defined directly inside the outer

type, a view reference is the only possibility to specify a CORBA object reference using this

mapping language. For a view reference it is necessary to specify the connection between the

current table and the table of the referenced view. This is done by giving the primary / foreign

keys of the two involved tables.

<reference_mp> ::= (REFERENCE <view_name>
KEYS (<column_name>+)

(<column_name>+))

4.2.6 Sequences

The data, which belongs to a sequence, is multi-valued and therefore stored in a different table.

This table together with the connecting columns is specified in the “table_mp” constmct of the

mapping language. Another possibility is the usage of a view reference where the new table is

already specified by the referenced view. An exception is the case where the subtype of the

sequence is an object reference. In this case the new table is already specified by the referenced

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 57

view (see the examples in 4.3.1 for the usage of these two possibilities). Since sequences are

ordered it is additionally necessary to specify an order-by-clause.

<sequence_mp> ::= (SEQUENCE <scoped_sequence_name>
<table_mp> | <reference_mp>
ORDERBY <order_by_clause>)

<table_mp> ::= (TABLE <table_name>
KEYS (<column_name>+) (<column_name>+)
<data_type_mp>)

4.2.7 Base Types

Every type mapping is defined in the context of a table. All basic types are directly represented

by one of the table’s columns. The only exception is the type boolean, which does not exist in

some relational databases. In this case it is necessary to give additionally the value which

represents true.

<base_type_mp> ::= (BOOLEAN <column_name> <true_value>)
I (LONG <column_name>)
I (FLOAT <column_name>)
I (STRING <column_name>)

4.2.8 Enumerations

The mapping for an enumeration is specified by giving the scoped name of the enumeration and

a list of specifications for every possible value of the enumeration type (enumerator). Each

enumerator is associated with a column name and the value, which represents the enumerator in

the database.

<enum_mp> ::= (ENUM <scoped_name>
COLUMN <column_name>
(<enumerator> <enum value>)+)

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 58

4.3 Examples

The examples are divided in two parts. The first part contains the basic mappings for interfaces,

structs, enumeration and sequences. The second part deals with the representation of inheritance.

4.3.1 Basic Mappings

The following conceptual model of genome maps and markers is used throughout this section

(Figure 11). It is a simplified version of the model in the second chapter. A map has a name, a

type and contains a possibly large number of markers. Each marker, which is assigned to a map

has a position on this map, a rank, and a boolean flag indicating whether it belongs to the

fi-amework of the map or not. Each marker on its own has a name and a type and can occur on

several different maps.

Map

name string
type string

Assignment

position float
rank long
fw boolean

Marker

name string
type string

Figure 11: Conceptual Model

The following relational schema (Figure. 12) represents this model. The attribute “ID” is the

primary key of the tables “MAPS” and “MARKERS”. They correspond to the foreign keys

“MAP ID” and “MARKER ID” of the table “MAP MARKERS”. The types have been omitted

but are assumed to be compatible with the types of the conceptual model.

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 59

MAPS: MARKERS:

ID TYPE ID TYPE

MAP MARKERS:

MAP_ID MARKER_ID FW RANK POSITION

Figure 12: Relational Schem a.

4.3.1.1 Struct

The following CORBA IDL is one possibility to represent the assignment class of the

conceptual model in figure 11.

module Genome {
struct Assignment {

string map_name;
string marker_name;
float position;
long rank;
boolean fw;

};
};

This simple IDL could be mapped using the following view definition:

(VIEW Assignments
TABLE MAP_MARKERS
(STRUCT Genome::Assignment

(map_name (STRING MAP_ID))
(marker name (STRING MARKER ID))

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 60

(position (FLOAT POSITION))
(rank (LONG RANK))
(fw (BOOLEAN FW Y))

)

)

In this example, a view with the name “Assignments” has been defined. The data for the view

can be found in the table “MAP MARKERS”. The view is represented by the IDL struct

“Assignment” in the module “Genome”. The struct member “map name” is represented by the

table attribute “MAP ID” and has the IDL type string. Note that in the case of the boolean struct

member “fw”, it is additionally necessary to specify the value which represents tme in the

relational database; in this case “Y”.

4.3.1.2 Interface

Mapping specifications for interfaces are very similar to those of structs. Here an example for

the class “Map” of the conceptual model.

module Genome {
interface Map {

readonly attribute string name;
readonly attribute string type;

};

} ;

The following mapping specification implements this IDL:

VIEW Maps
TABLE MAPS
(INTERFACE Genome : : Map
EXTENDS ()
KEYS (ID)
(name (STRING ID))
(type (STRING TYPE))

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 61

)

)

Mapping definitions of structs and interfaces are identical apart fi'om the additional specification

of extended interfaces and keys. In this case no other interface is extended by “Genome: :Map”.

The primary key of the table “MAPS” is specified in the “KEYS” clause and can be used by the

object adapter of the object request broker.

4.3.1.3 Nested Struct - One Table

In this example, the same information as in example 4.3.1.1 is represented but this time using

two nested stmcts. The example is a bit artificial but demonstrates the point.

module Genome {
struct Names {

string map_name;
string marker_name;

I n ­

struct Assignment {
Names names;
float position;
long rank;
boolean fw;

};
};
The corresponding mapping definition directly reflects the nested IDL stmcts.

(VIEW Assignments
TABLE MAP_MARKERS
(STRUCT Genome::Assignment

(names (STRUCT Genome::Names
(map_name (STRING MAP_ID))
(marker_name (STRING MARKER_ID)))

(position (FLOAT POSITION))
(rank (LONG RANK))

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 62

(fw (BOOLEAN FW)
)

4.3.1.4 Nested Struct - Two Tables

In this example, the “Assignment” stmct contains not only the marker name but the full marker

information in an own stmct.

module Genome {
struct Marker {

string name;
string type;

};
struct Assignment {

string map_name;
Marker marker;
float position;
long rank;
boolean fw;

};
};
The following mapping definition creates two CORBA views; one for the markers and one for

the assignments. The “Assignments” view refers to the “Markers” view using the

“REFERENCE” constmct of the mapping language.

(VIEW Markers
TABLE MARKERS
(STRUCT Genome::Marker

(name (STRING ID)
(type (STRING TYPE

)

)

(VIEW Assignments
TABLE MAP MARKERS

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 63

(STRUCT Genome::Assignment
(map_name (STRING map_id))
(marker (REFERENCE Markers

KEYS (MARKER_ID) (ID))
(position (FLOAT POSITION))
(rank (LONG RANK))
(fw (BOOLEAN FW))

)

4.3.1.5 Object Reference

This example represents the same information as the previous example but uses an interface for

the markers.

module Genome {
interface Marker {

readonly attribute string name;
readonly attribute string type;

};
struct Assignment {

string map_name;
Marker marker;
float position;
long rank;
boolean fw;

};

};
Again, two views are defined. The only difference to the previous example is that the view

“Markers” is now represented by an interface. The same reference construct can be used as

before but this time resulting in a CORBA object reference.

(VIEW Markers
TABLE MARKERS
(INTERFACE Genome::Marker

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 64

EXTENDS ()
KEYS (ID)
(name (STRING ID))
(type (STRING TYPE))

(VIEW Assignments
TABLE MAP_MARKERS
(STRUCT Genome::Assignment

(map_name (STRING map_id))
(marker (REFERENCE Markers

KEYS (MARKER_ID) (ID))
(position (FLOAT POSITION))
(rank (LONG RANK))
(fw (BOOLEAN FW))

)

)

4.3.1.6 Sequence

Here the struct “Map” contains a sequence of strings. The contents of a sequence is always on a

separate table.

module Genome {
typedef sequence <string> Markers;
struct Map {

string name;
string type;
Markers markers;

};

};

The following view definition implements this DDL:

(VIEW Maps
TABLE MAPS

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 65

(STRUCT Genome::Map
(name (STRING ID))
(type (STRING TYPE))
(markers (SEQUENCE Genome::Markers

(TABLE MAP_MARKERS
KEYS (ID) (MAP_ID)
(STRING MARKER_ID)
ORDERBY POSITION))

)

)

The mapping specification of the sequence contains the connecting columns of the two involved

tables, the mapping definition of the sub-type of the sequence, and an order-by clause.

4.3.1.7 Sequence of Structs - Two Tables

In this example the struct “Map” contains a sequence of “Assignment” structs. Note that the

member “map name” of the stmct “Assignment” has been omitted in this example because it

would be redundant.

module Genome {
struct Assignment {

string marker_name;
float position;
long rank;
boolean fw;

};
typedef sequence <Assignment> Assignments;
struct Map {

string name;
string type;
Assignments assignments;

};

};

Here the corresponding mapping definition if only one view is used:

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 66

(VIEW Maps
TABLE MAPS
(STRUCT Genome::Map

(name (STRING ID))
(type (STRING TYPE))
(assignments (SEQUENCE Genome::Assignments

(TABLE MAP_MARKERS
KEYS (ID) (MAP_ID)
(STRUCT Genome::Assignment

(marker_name (STRING MARKER_ID))
(position (FLOAT POSITION))
(rank (LONG RANK))
(fw (BOOLEAN FW Y))

)

ORDERBY POSITION)))
)

)

Alternatively, if a separate view for assignments is wanted:

(VIEW Assignments
TABLE MAP_MARKERS
(STRUCT Genome::Assignment

(marker_name (STRING MARKER_ID))
(position (FLOAT POSITION))
(rank (LONG RANK))
(fw (BOOLEAN FW Y))

VIEW Maps
TABLE MAPS
(STRUCT Genome::Map

(name (STRING ID))
(type (STRING TYPE))
(assignments (SEQUENCE Genome::Assignments

(REFERENCE Assignments

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 67

KEYS (ID) (MAP_ID))
ORDERBY POSITION)))

In this case the “REFERENCE” construct is used instead of the “TABLE” construct.

4.3.1.8 Sequence of Structs - Three Tables

Here the struct “Map” contains a sequence markers instead of a sequence of assignments as in

the previous example.

module Genome {
struct Marker {

string name;
string type;

};

typedef sequence <Marker> Markers;
struct Map {

string name;
string type;
Markers markers;

};

};

Note that in contrast to the previous example, the “TABLE” construct as well as the

“REFERENCE” construct have to be used in the mapping definition of the view “Maps”.

(VIEW Markers
TABLE MARKERS
(STRUCT Genome:zMarker

(name (STRING MARKER_ID)
(type (STRING TYPE))

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 68

VIEW Maps
TABLE MAPS
(STRUCT Genome::Map

(name (STRING ID))
(type (STRING TYPE))
(markers (SEQUENCE Genome ::Markers

{ TABLE MAP_MARKERS
KEYS (ID) (MAP_ID)
(REFERENCE Markers
KEYS (MARKER_ID) (ID)))

ORDERBY POSITION))

)

4.3.1.9 Interface Containing a Sequence of Nested Structs

Here “Map” is an interface containing a sequence of nested “Assigimient” and “Marker” structs.

This example could be a realistic IDL for the complete relational schema.

module Genome {
struct Marker {

string name;
string type;

};
struct Assignment {

Marker marker;
float position;
long rank;
boolean fw;

};
typedef sequence <Assignment> Assignments;
interface Map {

readonly attribute string name;
readonly attribute string type;
readonly attribute Assignments assignments;

};

};

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 69

Here the corresponding mapping definitions using three separate views.

VIEW Markers
TABLE MARKERS
(STRUCT Genome :rMarker

(name (STRING ID))
(type (STRING TYPE))

)

VIEW Assignments
TABLE MAP_MARKERS
(STRUCT Genome::Assignment

(map_name (STRING map_id))
(marker (REFERENCE Markers

KEYS (MARKER_ID) (ID))
(position (FLOAT POSITION))
(rank (LONG RANK))
(fw (BOOLEAN FW))

VIEW Maps
TABLE MAPS
(INTERFACE Genome::Map
EXTENDS ()
KEYS (ID)
(name (STRING ID))
(type (string TYPE)
(assignments (SEQUENCE Genome::Assignments

(REFERENCE Assignments
KEYS (ID) (MAP_ID))

ORDERBY POSITION))

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 70

4.3.1.10 Enumeration

In the previous examples the type of a map was represented by a string. If there is only a small

number of possible different types then an enumeration could be used instead.

module {
enum MapType { genetic, radiation_hybrid }
interface Map

readonly attribute string name;
readonly attribute MapType type;

};

};

In the mapping definition, each possible enumerator is associated with exactly one value in the

database.

(VIEW Maps
TABLE MAPS
(INTERFACE Genome::Map
EXTENDS ()
KEYS (ID)
(name (STRING ID))
(type (ENUM Genome::MapType

COLUMN TYPE
(genetic genetic)
(radiation_hybrid rh)))

)

)

4.3.2 Inheritance

In the examples so far, genome maps had a type, represented by a string or an enumeration. If

the map types form a hierarchy, possibly having different attributes for different types of maps,

then a different conceptual model would be more natural. Figure 12 depicts a conceptual model

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 71

where “Physical Map” and “Genetic Map” are sub-classes of “Map”. Genetic maps have the

additional attribute “lod score”.

Map

name string
species string

Genetic Map

lod score float

Physical Map

Figure 13: Conceptual Model - Inheritance

There are two common ways how to represent such a hierarchy in a relational database:

horizontal partitioning and vertical partitioning [Ceri 84].

4.3.2.1 Horizontal Partitioning

A schema using horizontal partitioning is depicted in Figure 14. The table “MAPS” contains

only entries for maps, which are neither assigned to be genetic nor physical maps. The table

“GENETIC MAPS” contains all genetic maps and the table “PHYSICAL_MAPS” contains all

physical maps. Advantage of this possibility is an efficient access to the sub-classes;

disadvantage is that an access to the super-class “Map” requires a union of three tables.

Horizontal partitioning is the only directly supported representation of the mapping language.

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 72

MAPS; GENETIC MAPS:

ID SPECIES

Ml Mouse

ID SPECIES LOD_SCORE

H2 Human 2.25

PHYSICAL MAPS:

ID SPECIES

R3 Rat

Figure 14: Horizontal Partitioning.

4.3.2.2 Vertical Partitioning

Figure 15 depicts a schema using vertical partitioning. The table “MAPS” contains entries for all

maps, while the tables “GENETIC MAPS” and “PHYSICAL MAPS” contain only keys and

additional attributes. This time access to the super-class “Map” is efficient, whereas access to

one of the sub-classes requires a costly join operation. Vertical partitioning is not directly

supported by the mapping language; it is instead necessary to use relational views to define the

mapping.

MAPS:

ID SPECIES

Ml Mouse

H2 Human

R3 Rat

GENETIC MAPS:

ID LODSCORE

H2 2.25

PHYSICAL MAPS:

ID

R3

Figure 15: Vertical Partitioning

4.3.2.3 Interfaces

The following IDL is one possibility to represent the conceptual schema in Figure 13 using

interfaces:

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 73

module {
interface Map {

readonly attribute string name;
readonly attribute string species;

};
interface GeneticMap : Map {

readonly attribute float lod_score;
};
interface PhysicalMap : Map {
};

};
If horizontal partitioning is used (Figure 14), the mapping is straightforward. Note that the

“EXTENDS” clause only specifies the complete IDL type of an interface, while the “SUB”

clause defines the subset relationship of the involved views.

(VIEW Maps
TABLE MAPS
(INTERFACE Genome::Map
SUB (GeneticMaps PhysicalMaps)
KEYS (ID)
(name (STRING ID))
(species (STRING SPECIES))

)

)

(VIEW GeneticMaps
TABLE GENETIC_MAPS
(INTERFACE Genome::GeneticMap

EXTENDS (Genome::Map)
KEYS (ID)
(name (STRING ID))
(species (STRING SPECIES))
(lod_score (FLOAT LOD_SCORE))

)

)

(VIEW PhysicalMaps
TABLE PHYSICAL MAPS

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 74

(INTERFACE Genome::PhysicalMap
EXTENDS (Genome::Map)
KEYS (ID)
(name (STRING ID))
(species (STRING SPECIES))

)

)

4.3.2.4 Structs

CORBA IDL structs do not support inheritance. If however, performance considerations require

the usage of structs to represent a class hierarchy, then it is still possible to mimic some of the

relevant behaviour in a crude way. There are two separate issues: the type hierarchy and the

sub/super-set relationship. The best one can do with respect to the type hierarchy is “cut and

paste inheritance” as in the following IDL.

module Genome {
struct Map {

string name;
string species;

I n ­

struct GeneticMap {
string name;
string species;
float lod_score;

I n ­

struct PhysicalMap {
string name;
string species;

};

};

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 75

Even though each struct has the appropriate members, a compiler would of course not allow to

use a “GeneticMap” in a place where a stmct of the type “Map” is expected. The following

mapping definition implements the IDL above:

(VIEW Maps
TABLE MAPS
(STRUCT Genome::Map

(name (STRING ID))
(species (STRING SPECIES))

)

)

(VIEW GeneticMaps
TABLE GENETIC_MAPS
(STRUCT Genome::GeneticMap

(name (STRING ID))
(species (STRING SPECIES))
(lod_score (FLOAT LOD_SCORE

)

)

(VIEW PhysicalMaps
TABLE PHYSICAL_MAPS
(STRUCT Genome::PhysicalMap

(name (STRING ID))
(species (STRING SPECIES))

In contrast to the mapping of interfaces, there is no “SUB” clause available for the mapping of

structs. The reason is that the different stmct types are not compatible with each other so that a

CORBA view using one stmct type can not just include another CORBA view using another

stmct type. Therefore SQL views have to be used to achieve the required one-to-one

relationship between a stmct and a relational table. Figure 16 depicts such views for the mapping

definitions above.

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 76

MAPS:

ID SPECIES

Ml Mouse

H2 Human

R3 Rat

GENETIC MAPS: PHYSICAL MAPS:

ID SPECIES LOD_SCORE

H2 Human 2.25

ID SPECIES

R3 Rat

Figure 16: SQL Views for the Mapping of Structs

Using the virtual tables of Fig. 15, all maps are included in the view "Maps" aW the tables for

genetic and physical maps contain all attributes belonging to that map. The disadvantage of this

solution, in comparison with the previous interface example, is that a chent, which retrieves a

stmct using the view “Maps” can not directly decide whether this stmct has a more specific sub-

type. Also such a stmct cannot be narrowed to a more specific type as it is the case for object

references.

4.4 Discussion

In this section the advantages and disadvantages of the chosen mapping language are discussed

and compared to alternative approaches.

4.4.1 Two-Stage Mapping using Relational Views

The examples of vertical partitioning and inheritance fo r structs in section 3.2 have

demonstrated two cases where the presented mapping language is not sufficient to express the

required mapping. Instead it was necessary to use relational views as an intermediate mapping

step (Figure 17).

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 77

Tables SQL Views

Figure 17: Tw o-stage Mapping using SQL Views

There are of course many other cases where this is tme especially since the aim of the approach

is to allow for a maximal freedom in the choice of the relational schema and in the choice of the

IDL. The advantages of splitting of the responsibilities between relational views and mapping

language are:

• A powerful existing mechanism is utilised instead of duplicating functionality.

• Reuse is facilitated. Not only can different DDL views share the same relational views but

also other applications can do so. In fact, in many cases the relational views will already

exist when an additional CORBA access layer is added.

• CORBA servers are better insulated from schema changes in the relational database.

• A simple and pragmatic criterion is provided to decide the question of what should be part

of the mapping language and what should be excluded.

The disadvantages on the other hand are:

• The mapping information has to be maintained at two different places.

• Even though the here presented approach is intended to provide a read-only access to the

database, it is of course possible to employ the same strategy to do update operations.

Update operations however, might benefit from more explicit control over the possible

mappings.

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 78

An alternative would be to try to enrich the mapping language to allow for other common

mappings such as the mentioned vertical partitioning. There is probably no reason to be too

dogmatic about such extensions as long as the language becomes easier to use. Such constructs

would be orthogonal to the here presented ones but not provide anything new in the context of

this thesis since they have nothing to do with CORBA IDL and merely reimplement existing

SQL features. The problem of updating relational views is a research topic in its own right and

is treated for example in [Date 86].

4.4.2 Usage o f an Intermediate Object Model

Another option is the usage of an object model as an intermediate mapping step (Figure 18).

Tables
Model

Figure 18: Tw o-stage Mapping Using an Intermediate Object Model

One problem is that the object oriented model is more complex than the relational model.

Therefore an equivalent mapping language for the mapping between an object-oriented model

and CORBA IDL is necessarily more complex. This approach is only justified if the object

model and the mapping to the object model already exist and the final mapping step fi'om the

object model to IDL is simple.

A MAPPING LANGUAGE FOR RELATIONAL DATABASES 79

4.4.3 Logic as a Mapping Language

Instead of the here presented mapping language, other possibilities could have been employed.

The most general method to describe the mapping between CORBA DDL and tables of a

relational database would be the direct usage of logic, whereby queries could be evaluated by

theorem proving [Lloyd 1987]. While allowing a greater freedom in the choice of possible

mappings, it is likely that in this case there would be no efficient method available for the

evaluation of queries. Another disadvantage is that general logic is less easy use and understand

by the CORBA developer than the small, predefined set of constructs of the specialised mapping

language. The here presented method presents a good compromise between efficiency, ease of

use, and a large number of mapping possibilities.

4.5 Conclusion

A declarative mapping language has been presented in this chapter, which allows to specify

mappings between tables of relational databases and IDL types. The language is intended to

guide automatic query translations and the necessary data transformations for the retrieval of

data. To allow for a maximal freedom in the choice of the DDL and relational schema it is

necessary to rely on relational views as an intermediate mapping step. This approach of two

mapping steps simplifies the mapping language, facilitates reuse and insulates the CORBA

server from changes in the relational database. The mapping language represents a good

compromise with respect to efficiency, ease-of-use, and generality in comparison with other

approaches such as hand-coding or usage of logic as a mapping specification.

IDLVIEWS - A WRAPPER GENERATOR 80

Chapter 5

IDLVIEWS - A CORBA WRAPPER
GENERATOR

5.1 Introduction

In the previous chapter a mapping language has been presented. IDLViews is a system which

can use this language to generate CORBA wrappers for relational databases. It thereby serves as

a proof of concept for the mapping language and allows to discuss the issues of chapter three

from a practical point of view.

5.2 Architecture

Figure 19 depicts an overview of the architecture of the system. The process of generating a

CORBA wrapper is as follows: The first step is to decide what IDL optimally serves the

application. Then one or more IDL views can be defined using the mapping language. The

view definitions describe the mapping between IDL constructs on one side and tables and

columns on the other side. Using these rules, a generator creates both a CORBA server and a

file with the implemented IDL. The generated IDL can be used to implement a CORBA client

for this server.

IDLVIEWS - A WRAPPER GENERATOR 81

gene­

rates

generates

SQL
ORB

IDL
Mapping
Definition

CORBA

Server

CORBA

ClientRDBMS

Generator

Figure 19: Architecture of IDLViews

The client can query the server using a query language, which is based on the generated DDL.

The queries are translated to SQL queries using the definitions of the mapping language. The

results are then translated back in the required DDL representation and returned to the CORBA

client.

5.3 Interfaces

The IDL implemented by the CORBA server consists of two parts. The first part represents the

data needed by the application. The second part specifies the API for the database itself and

defines methods for querying and data retrieval. The following IDL represents the data of an

application and is used in this chapter as an example.

module Example {

struct Marker {

IDLVIEWS - A WRAPPER GENERATOR 82

string name;
float position;
boolean frameworkMarker;

};

typedef sequence <Marker> Markers;

interface GenomeMap {
readonly attribute string name;
readonly attribute string chromosome;
readonly attribute Markers markers;

};

}; // End of module Example

The second part of the IDL specifies methods for the querying and retrieval of the data. The

basic idea of this API is similar to examples such as JDBC or the CORBA Query Service. A

query evaluator allows to specify a query. The evaluator returns an iterator, which then gives

access to the individual result elements. However, unlike in JDBC and the Query Service, the

iterator is specific for a certain type. Even though this requires the definition of an own iterator

interface for each possible return type, the advantage is that the usage of the generic type any is

avoided. Anys are less efficient for the data transfer and require the conversion of the data on

the client side to the actual type. If a view for the maps in the data IDL above has been defined,

the following additional server IDL is generated:

module Views {

exception NoMoreElements {};
exception InvalidQuery {};

IDLVIEWS - A WRAPPER GENERATOR 83

interface Iterator {
boolean m o r e ();
void close ();

};

typedef sequence<Example: :GenomeMap> GenomeMapSeq;

interface GenomeMaps: Iterator {
Example::GenomeMap next() raises(NoMoreElements);
GenomeMapSeq next_n(in long n);

};

interface Evaluator {
long count(in string viewName, in string where)

raises (InvalidQuery);
GenomeMaps get_GenomeMaps(in string where)

raises (InvalidQuery);
};

}; // End of module Views

The Evaluator interface has a get method defined for each view. The client can specify here a

where-clause similar to SQL queries (see next section). The evaluator returns an object

reference to an iterator. There is a separate iterator specified for each view. The iterator has a

next method, which returns object references or stmcts of the type defined in the view.

Additionally, there are methods count and nextji to allow the client to optimise the data

retrieval. Note that the count method can be used for all views implemented by the server

whereas each get method is defined for only one view.

IDLVIEWS - A WRAPPER GENERATOR 84

5.4 Queries

The approach chosen for the IDLViews system maps a relational schema into IDL, thereby

alleviating the infamous impedance mismatch between application code and relational database.

Query results are always represented by a predefined type, either structs or object references.

This is naturally achieved by class specificger methods and iterators as described above. Using

this approach, we can avoid the usage of the generic IDL type any. Anys are less efficient for

the data transfer and inconvenient to use in client programs. However, using fixed result types

inevitably restricts the query power, as arbitrary joins and projections have to be disallowed. In

practice this restriction is of little significance and shared by many other applications such as

digital libraries.

The get methods of the Evaluator interface takes as input parameter a string, which is

comparable to a SQL where-clause. The predicates of the query are formulated using attribute

names and member names of the IDL interfaces and structs. Client code depends therefore only

on the IDL and is immune against most schema changes in the database.

5.4.1 The Query Language

We introduce the language informally using some examples, the grammar for this language can

be found in the appendix. Conditions on basic types can be specified using the predicates ‘<’,

‘>’, ‘<=’, and ‘>=’. Predicates can be combined using ‘and’, ‘or’ and ‘not’. If a member or

attribute contains a sequence then the quantifiers ‘exists’ and ‘all’ can be used. Queries can

contain nested subqueries to specify embedded stmcts or referenced objects.

IDLVIEWS - A WRAPPER GENERATOR 85

5.4.2 Examples

We assume that a view for markers exists for the IDL in the main example. The following

where-clauses could be specified in the get_Markers method. Note that in this case structs and

not object references would be returned. If, as in Q4, several member conditions are specified,

then all conditions have to be tme.

Ql: “All markers”

No condition has to be specified.

Q2 : “The markers with the name ‘RH2345’ and ‘RH5432’.”

(name (or 'RH2345' 'RH5432'))

Q3 : “All markers except the marker with the name ‘RH2345’.”

(name (not 'RH2345'))

Q4 : “All non-ffamework markers with a position greater than 100.”

(frameworkMarker false) (position (> 100))

Q5 : “All markers with a position between 20 and 30.”

(position (and (>= 20) (<= 30)))

For the view GenomeMaps, as defined in the last section, the following queries are possible. The

GenomeMap attribute markers contains a sequence of stmcts. At this place the quantifiers exists

and all can be used. Inside the quantifier a specification for the stmct has to be given, which is a

list of member conditions as in Q1-Q5.

Q 6 : “All maps which contain the marker with the id ‘RH3456’ ”

IDLVIEWS - A WRAPPER GENERATOR 86

(markers (exists (name 'RH3456')))

Q7 : “All maps which contain only framework markers”

(markers (all (frameworkMarker true)))

5.4.3 Query Mapping

The translation of our query language to SQL is based on the mapping rules. As these rules

always associate each stmct or interface with one table, this translation is fairly straightforward.

Nested queries are translated to nested SQL statements using the predicate ‘in’. We give the

translation of queries Q2 and Q6 as examples. Again we assume the relational schema in 3.2.

Q 2 : select distinct id, position, fw from map_markers
where id='RH2345' or id='RH5432'

Q6: select distinct id from maps
where id in (select map_id from markers

where id='RH3456')

Note, that in Q2 all information on the markers is retrieved whereas in Q6 only the key. The

reason is that in Q2 a stmct is returned, which has to contain all data, while in Q6 only an object

reference is returned.

5.5 Implementation

The generator has been implemented in the programming language Java on a Solaris UNIX

system. The generated server accesses an Oracle relational database using a JDBC driver. The

used object request broker is Omnibroker. At the time of the implementation. Omnibroker did

IDLVIEWS - A WRAPPER GENERATOR 87

not support the Portable Object Adapter (POA) and offered no other possibility to implicitly

register CORBA objects. Therefore each object is registered individually when accessed the

first time. The object is then loaded completely into the memory of the server and stays there

until it is actively removed. This approach works fine as long as there are only few CORBA

objects but clearly a different method would be necessary if a more fine grained approach is

used.

5.6 Related Work

The author is not aware of any other project that follows the presented method of generating

CORBA servers and IDL based on a set of declarative mapping rules. However, a number of

research areas share problems. For instance, mapping relations to IDL interfaces is related to

object-relational mapping (e.g. [Papazoglou 96], [Tari 97], [Wiederhold 86]). The mapping step,

consequently called “semantic enrichment” in [Hohenstein 96], can in general not be automated

because the relational schema simply does not carry the necessary information. Hence, the

mapping rules must be specified by a human operator, as done in our approach.

The translation of object-oriented queries into a query against a semantically equivalent

relational schema is covered in depth in [Fahl 97] and [Qian 95]. The approach of [Fahl 97] is

similar to the one in this thesis in that they also assume that each (object-oriented) class is

represented by exactly one relational table. However, the query language presented here is only

a subset of theirs, as it does not treat path expressions. [Qian 95] considers extensional

relationships in inheritance hierarchies by mapping the translation into DATALOG programs,

which are used as a mediator between the query and the database. In contrast, for the mapping

IDLVIEWS - A WRAPPER GENERATOR 88

language presented here, no relationships between extents of interfaces that are in a

specialisation relationship are required or guaranteed.

Another related research area is the integration of database systems in a CORBA

framework. [Leser 98a] discusses several design issues in this context, including the

consequences of using stmcts or interfaces for object representation. They clearly point out that

it is in general very difficult to achieve full relational query power through CORBA, mainly due

to the static type system. The OMG itself has contributed to this area through the “Object Query

Service Specification" [OMG 89]. However, as detailed in [Leser 98a] and [Wells 94], this

specification has severe pitfalls. For instance, it does not support any representation of domain

objects on the CORBA level.

There are only few commercial tools available, which support the generation of CORBA

access layers for relational databases. For example Persistence TM’ defines an object-oriented

schema on top of a relational schema. A programming library is generated, which makes the

data accessible through a set of C++ classes. Additionally the tool can generate a CORBA

server, which maps the 0 0 schema into IDL and uses the library to access the database. The

main problem with this tool is the limited influence the developer has in the choice of the

generated IDL. It is purely interface-based with no support for stmct-based representations,

which are essential to ensure sufficient performance. Hence, in real-life applications, it is

necessary to change the generated CORBA server to a great degree by hand. But these changes

are not visible for the query processor. A similar approach is taken by the OPM project [Chen

98].

http://www.persistence.com

http://www.persistence.com

IDLVIEWS - A WRAPPER GENERATOR 89

5.7 Discussion

A method has been presented for the semiautomatic generation of CORBA wrappers for

relational databases. Compared to the two other major approaches - hand-coding or completely

automatic generation - our system offers many advantages. CORBA views can be defined

easily, allowing many applications to share data, each with its own IDL. It is straightforward to

generate redundant IDL definitions, for instance containing both a struct and an interface for the

same data. This leaves it to the client application to choose the most convenient access method.

The server is equipped with a query language, which can express complex conditions.

Usage of this query language does not require any knowledge of the schema of the underlying

database, but is entirely based on the IDL itself. The client code is therefore completely

independent of schema changes, provided that the mapping rules are adjusted. Although, it is

clear that the queiy language can only express a limited set of queries, it proved to be sufficient

for most applications.

Using a set of mapping rules, the system generates Java source code for the server. This

compilation strategy has been the chosen strategy for several reasons. Firstly, it offers a

considerably better performance compared to an interpretation of the rules at run-time.

Secondly, the code can be used as a template for further customisations. Finally, it allows the

usage of skeleton code generated by the IDL compiler, which significantly simplifies the code

generation task. The disadvantage is that every change in the mapping rules requires the

regeneration of the server. However, the choice between interpretation and compilation is an

implementation detail, which does not touch the principal of our approach.

As detailed in chapter four, some problems remain when specifying a query based on IDL

definitions. They stem fi'om the fact that IDL was designed to specify an API and not to model

IDLVIEWS - A WRAPPER GENERATOR 90

data. An example is the usage of inheritance. If an interface A specialises an interface B then a

query against B does not necessarily return a superset of the same query against A. Such a

behaviour can be enforced using the mapping language and appropriate relational views, but it is

not visible from the IDL alone. Other problems can occur when the requirements for querying

are not identical to the requirements for data retrieval. For instance one might not want to

retrieve the information indicating whether a marker belongs to the framework of a map but still

be able to use it in a query. These problems would vanish if we use the schema and query

language of the underlying relational database and IDL merely represents query results. The

disadvantage would be that then the user has to know the relational schema, the DDL and the

mapping between the two.

CONCLUSIONS 91

5.8 Conclusion

The wrapper generator IDLViews has been presented in this chapter, which implements the

mapping language in chapter four, thereby serving as a proof of concept. The IDL Views system

is well suited to support the implementation of applications such as the standard map IDL in

chapter two. It allows for the quick deployment of CORBA wrappers, which can support simple

specialised client programs.

CONCLUSION 92

Chapter 6

CONCLUSIONS

The emergence of the CORBA standard has created many new opportunities for the combination

of heterogeneous and distributed components in the field of Bioinformatics. This thesis has

focused on one of the most important aspects in such an environment - the representation and

distribution of molecular biology data. The main advantages of CORBA are the hiding of

implementation details and the ability to access remote information like local programming

language objects. The result is a simplified development of clients for CORBA wrapped data

sources, such as visualisation and analysis tools.

Wrappers implement CORBA interfaces for already existing traditional data sources such as

flat-files or relational databases. The most important question the developer of a wrapper faces

is how to represent the data in CORBA IDL. The decision whether to represent data by value

types or by CORBA objects has a major impact on the performance of the distributed system.

The developer also has to choose between generic representations and domain specific

representations. For both questions, the better choice depends very much on the concrete

application. This text, concentrates on domain specific representations, because they are easier

to use by the client and because they are more interesting in the context of this thesis.

CONCLUSION 93

The main problem of CORBA wrappers is the considerable effort necessary for their

development and deployment. Coding the wrapper by hand, the most commonly used approach,

is tedious and leads to many maintenance problems. In contrast, the automatic generation of

CORBA wrappers, based on the schema of the underlying data source, is almost effortless.

However, for many applications such a server is not useful, either because the performance is not

sufficient or because an external standard imposes a different IDL. This thesis suggests a third

option, which tries to combine the advantages of the previous two. The developer specifies a set

of mles, which define the mapping between IDL constructs and schema of the data source. Once

this mapping has been defined, the CORBA wrapper can be automatically generated, removing

most of the burden of the server development. Additionally, such a CORBA server can support

a query language, which is based on the IDL definitions. In this thesis such a mapping language

has been presented for the important case of relational databases and the language has been

implemented by the wrapper generator IDL Views. IDL Views is well suited for the devlopment

of thin clients, because of the large degreee of freedom the developer has when choosing an IDL

for his application.

Even though IDL is often used to model data, it is an API and not a data modelling

language. To ensure sufficient performance, application specific access paths have to be

encoded in the IDL. IDL definitions are therefore often redundant and more complex, and more

difficult to understand than a data model. A similar point has been made about object-oriented

databases in [Goodman 95]. In this paper the authors claim that C++ is a poor choice for

modelling data, because the code tends to be application specific and complex.

The method of semiautomatic server generation is very general and can be used in many

different contexts. It could just as well be used for the generation of DCOM servers or for the

CONCLUSION 94

generation of Enterprise Java Beans (EJBs). Different data sources such as flat-files or object-

oriented databases could be used instead of relational databases. However the implementation

would be more conq)lex in these cases and it would be more difficult to support ad-hoc queries.

Standardisation of interfaces for common applications facilitates interaction of components

developed by independent research groups. However, agreement on standards is a painful and

difficult process - not easier in the case of IDL than in the case of flat-file formats. It might be

even more difficult for CORBA interfaces because there are more possibilities to represent data

and access methods using DDL and the aspect of distribution adds a new dimension to the

problem. On the other hand it is relatively easy to support several different IDLs or to extend an

existing one for a specialised purpose without breaking existing code.

The usage of CORBA as a middle-ware is more con^lex than programming within a single

distributed language such as Java. However, when language and platform independence are

required, there are currently no viable alternatives to CORBA. This is almost certainly true for

the large public data providers such as the EBI, which would have difficulties to impose a

specific programming environment on its users.

In the past four years the awareness of the CORBA standard and its possibilities has grown

in the Bioinformatics community. Its advantages in an inherently distributed and heterogeneous

environment have been recognised and there are an increasing number of applications available.

The involvement of the EBI and the work, which has led to this thesis, have contributed to this

development.

BIBLIOGRAPHY 95

BIBLIOGRAPHY

[Atkinson 89]
M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik. “The
Object-Oriented Database System Manifesto”, First International Conference on
Deductive and Object-Oriented Databases, 1989, pp. 40-57.

[Altschul 90]
S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman: “Basic Local
Alignment Search Tool”, Journal o f Molecular Biology, 215, 1990, pp. 403-410.

[Bairoch 99]
A. Bairoch, R. Apweiler: “The SWISS-PROT protein sequence data bank and its
supplement TrEMBL in 1999”, Nucleic Acids Research, 27(1), Oxford University
Press, 1999, pp. 119-122.

[Baker 98]
P. G. Baker, A. Brass, S. Bechhofer, et al.: “TAMBIS - Transparent Access to
Multiple Bioinformatics Information Sources”, Proceedings o f the 6̂ ̂
International Conference on Intelligent Systems for Molecular Biology (ISMB-
98), AAAI Press, 1995, pp. 25-34.

[Barillot 99a]
E. Barillot, U. Leser, P. Lijzaad, et al: “A Proposal for a Standard CORBA
Interface for Genome Maps”, Bioinformatics, 15(2), Oxford University Press,
1999, pp. 157-169.

[Barillot 99b]
E. Barillot, S. Pook, et al.: “The HuGeMap Database: Interconnection and
Visualization of Human Genome Maps”, Nucleic Acids Research, 27(1), Oxford
University Press, 1999, pp. 119-122.

[Barker 99]
W. C. Barker, J. Garavelli, et al.: The PIR-Intemational Protein Sequence
Database. Nucleic Acids Research, 27(1), Oxford University Press, 1999, pp. 39-
43.

[Bergeman 95]
E. R. Bergeman, M. Graves, C. B. Lawrence: Viewing Genome Data as Objects
fo r Application Development. Proceedings of the 5‘̂ International Conference on

BIBLIOGRAPHY 96

Intelligent Systems for Molecular Biology (ISMB-95), AAAI Press, 1995, pp. 48-
56.

[Benson 99]
D. A. Benson, M. S. Boguski, D. J. Lipman, et al.: “GenBank”, Nucleic Acids
Research, 27(1), Oxford University Press, 1999, pp. 12-17.

[Bemers-Lee 94]
T. Bemers-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret: “The
World Wide Web”, Communications o f the ACM, 37(8), 1994, pp. 76-82.

[Bishop 98]
M. J. Bishop, ed.: Guide to Human Genome Computing, second edition.
Academic Press, 1998.

[Blake 99]
J. Blake, J. E. Richardson, et al.: “The Mouse Genome Database (MGD): genetic
and genomic information about the laboratory mouse”. Nucleic Acids Research,
27(1), Oxford University Press , 1999, pp. 95-98.

[Bloomer 92]
J. Bloomer: Power Programming with RPC, O ’Reilly & Associates, 1992.

[Cattell 94]
R. G. G. Cattell: Object Data Management: Object-Oriented and Extended
Relational Database Systems, rev. ed., Addison-Wesley Publishing Company,
1994.

[Cattell 97]
R. G. G. Cattell, et al.: The Object Database Standard: ODMG 2.0, Morgan
Kaufmann, 1997.

[Ceri 84]
S. Ceri and G. Pelagatti: Distributed Databases: Principles and Systems, McGraw
Hill, 1984.

[Chen 95]
I. A. Chen and V. M. Markowitz: “An Overview of the Object-Protocol Model
(OPM) and the OPM Data Management Tools”, Information Systems, 20(5),
1995, pp. 393-418.

[Chen 98]

BIBLIOGRAPHY 97

I. A. Chen, A. S. Kosky, V. M. Markowitz, et al: “Advanced Query Mechanisms
for Biological Databases”, Proceedings o f the 6̂ ̂ International Conference on
Intelligent Systems fo r Molecular Biology (ISMB-98), AAAI Press, 1998, pp. 43-
51.

[Coupaye 99]
T. Coupaye: “Wrapping SRS with CORBA: from Textual Data to Distributed
Objects”, Proceedings o f the 6̂ ̂ International Conference on Intelligent Systems

fo r Molecular Biology (ISMB-98), AAAI Press, 1998, pp. 43-51.

[Crabtree 99]
J. Crabtree, S. Fischer, M. Gibson, G. C. Overton: “Biowidgets: Reusable
Vizualisation Components for Bioinformatics”, Bioinformatics: Databases and
Systems, S. Letovsky (ed), Kluwer Academic Publishers, 1999, pp. 255-263.

[Darwen 95]
H. Darwen and C. J. Date: “The Third Manifesto”, SIGMOD Record, 24(1), 1995,
pp. 39-49.

[Davidson 99]
S. B. Davidson, 0 . P. Bunemann, J. Crabtree, V. Tannen, G. C. Overton, and L.
Wong: “BioKleisli: Integrating Biomedical Data and Analysis Packages”,
Bioinformatics: Databases and Systems, S. Letovski (ed), Kluwer Academic
Publishers, 1999, pp. 245-254.

[Date 86]
C. J. Date: “Updating Views”, Relational Databases: Selected Writings, Addison-
Wesley, 1986.

[Date 95]
C. J. Date: An Introduction to Database Systems, 6‘̂ edition, Addison-Wesley,
1995.

[Dib 96]
C. Dib, et al: (1996) “A comprehensive genetic map of the human genome based
on 5,264 microsatellites”. Nature, 380, 1996, pp. 152-154.

[Dogac 96]
A. Dogac, C. Dengi, et al: “A Multi database System Implementation on
CORBA”, 6th Int. Workshop on Research Issues in Data Engineering:
Nontraditional Database Systems, New Orleans, Louisiana, 1996.

BIBLIOGRAPHY 98

[Durbin 94]
R. Durbin, and J. Thierry-Mieg: “The ACBDB GenomeDatabase”, Computational
Methods in Genome Research, ed. S. Suhai, Plenum Press, 1994, pp. 45-55.

[Etzold 96]
T. Etzold, A. Ulyanov, and P. Argos: “SRS: Information Retrieval System for
Molecular Biology Data Banks”, Methods in Enzymology, 266, Academic Press,
1996, pp. 114-128.

[Fahl 97]
G. Fahl, and T. Risch: “Query Processing over Object Views of Relational Data”,
The VLDB Journal, 6(4), Springer-Verlag, 1997, 261-281.

[Fischer 99]
S. Fischer, J. Crabtree, B. Brunk, M. Gibson, and G.C. Overton: “bioWidgets:
data interaction components for genomics”. Bioinformatics, 15(10), Oxford
University Press, 1999, 837-846.

[FlyBase 99]
The FlyBase Consortium: The Flybase Database o f the Drosophila Genome
Projects and community literature. Nucleic Acids Research, 27(1), Oxford
University Press, 1999, pp. 185-88.

[Goodman 95]
N. Goodman: “An Object-Oriented DBMS War Story: Developing a Genome
Mapping Database in C++”, Modem Database Systems: The Object Model,
Interoperability, and Beyond, W. Kim (ed), ACM Press, 1995, pp. 217-237.

[Goodman 95b]
N. Goodman, S. Rozen, L. Stein: “The Case for Componentry in Genome
Information Systems”,
http://www-genome.wi.mit.edu/ informatics/componentry.html, 1995.

[Harold 97]
E. R. Harold: JAVA Network Programming, O ’Reilly, 1997.

[Hohenstein 96]
Hohenstein U.: “Using Semantic Enrichment to Achieve Interoperability of
Relational and ODMG Databases”, International Hong Kong Computer Society
Database Workshop, 1996, pp. 210-232.

[Hu 98]

http://www-genome.wi.mit.edu/

BIBLIOGRAPHY 99

J. Hu, C. Mungall, D. Nicholson, A. L. Archibald: “Design and Implementation
of a CORBA-based Genome Mapping System”, Bioinformatics, 14, 1998, pp.
112- 120.

[Hudson 95]
T. Hudson, et al: “An STS-Based Map of the Human Genome”, Science, 270,
1995, 1945-1954.

[Jacobson 92]
I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard: Object-Oriented
Software Engineering, Addison-Wesley, 1992.

[Jungfer 98]
K. Jungfer, and P. Rodriguez-Tomé: “Mapplet: A CORBA-based Genome Map
Viewer”, Bioinformatics, 14(8), Oxford University Press, 1998, pp. 734-738.

[Jungfer 99a]
K. Jungfer, U. Leser, and P. Rodriguez-Tomé: “Constructing IDL Views on
Relational Databases”, Proceedings o f the 11th International Conference on
Advanced Information Systems Engineering (CAiSE'99), Springer Verlag, 1999,
pp. 255-268.

[Jungfer 99b]
K. Jungfer, G. Cameron, and T. Flores: “CORBA and the EBI Databases”,
Bioinformatics: Databases and Systems, S. Letovski (ed), KJuwer Academic
Publishers, 1999, pp. 245-254.

[Karp 95]
P. D. Karp: A Strategy fo r Database Interoperation. Journal of Computational
Biology, 2(4), Oxford University Press, 1995, pp573-586.

[Karp 99]
P. D. Karp, M. Riley, et al.: Encyclopedia o f Escherichia coli genes and
metabolism. Nucleic Acids Research., 27(1), Oxford University Press, 1999, pp.
55-58.

[Leser 98a]
U. Leser, S. Tai, S. Busse: “Design Issues of Database Access in a CORBA
Environment”, Workshop on Integration o f Heterogeneous Software Systems,
Magdeburg, Germany, 1998.

[Leser 98b]

BIBLIOGRAPHY 100

U. Leser, R. Wagner, et al; “IXDB, an X Chromosome Integrated Database”,
Nucleic Acids Research, 26(1). Oxford University Press, 1998, pp. 108-111.

[Letovsky 99]
S. I. Letovsky, editor: Bioinformatics: Databases and Systems, Kluwer Academic
Publishers, 1999.

[Lloyd 87]
J. W. Lloyd: “Deductive Databases”, Foundations o f Logic Programming, second
extended edition. Springer-Verlag, 1987, pp. 141-172.

[Maltchenko 98]
S. Z. Maltchenko: “The BioObjects project. Part I: The Object Data Model core
elements”. Bioinformatics, 14(6), Oxford University Press, 1998, pp. 479-485.

[Markowitz 95]
V. M. Markowitz, and O. Ritter: “Characterizing Heterogeneous Molecular
Biology Data Systems”, Journal o f Computational Biology, 2(4), Oxford
University Press, 1995, pp. 547-556.

[Markowitz 99]
V. M. Markowitz, I. A. Chen, A. S. Kosky, and E. Szento: “0PM: Object-
Protocol Model Data Management Tools‘97”, Bioinformatics: Databases and
Systems, S. Letovski (ed), Kluwer Academic Publishers, 1999, pp. 187-199.

[Mewes 99]
H. W. Mewes, K. Heumann, et al: “MIPS: a database for genomes and protein
sequences”. Nucleic Acids Research, 27(1), Oxford University Press, 1999, pp.
44-48.

[Ohkawa 95]
H. Ohkawa, J. Ostell, and S. Bryant: An ASN.l Specification for Macromolecular
Structure. Proceedings of the 5̂ ̂ International Conference on Intelligent Systems
for Molecular Biology (ISMB-95), AAAI Press, 1995, pp. 259-267.

[OMG 98]
Object Management Group: CORBAservices: Common Object Services
Specification, OMG publication 98-12-09, http://www.omg.org/, 1998.

http://www.omg.org/

BIBLIOGRAPHY 101

[OMG 99]
Object Management Group: The Common Object Request Broker: Architecture
and Specification (Revision 2.3). OMG publication 98-12-01,
http://www.omg.org/, 1999.

[Orfali 96]
R. Orfali, D. Harkey, J. Edwards. The Essential Distributed Objects Sur\dval
Guide, John Wiley & Sons, 1996.

[Orfali 97]
R. Orfali, D. Harkey: Client/Server Programming with JAVA and CORBA, John
Wiley & Sons, 1997.

[Papazoglou 96]
M. Papazoglou, Z Tari, and N. Russell: “Object-Oriented Technology for
Interschema and Language Mappings” Object-Oriented Multidatabase Systems:
A Solution fo r Advanced Applications, O A. Bukhres, A.K. Elmagarmid (eds.),
Prentice Hall, New Jersey, 1996, pp. 203-250

[Pearson 90]
W. R Pearson: “Rapid and Sensitive Sequence Comparison with FASTP and
FASTA”, Methods in Enzymology, 183, 1990, pp. 63-98.

[Qian 95]
X. Qian, and L. Raschid: “Query Interoperation among object-oriented and relational
databases”, 11th Int. Conference on Data Engineering, Tapei, Taiwan. IEEE
Computer Soc. Press, 1995.

[Rodriguez 97]
P. Rodriguez-Tomé, C. Helgesen, P. Lijnzaad, and K. Jungfer: “A CORBA server
for the Radiation Hybrid Database”, Proceedings o f the 5̂ ̂ International
Conference on Intelligent Systems for Molecular Biology (ISMB-97), AAAI Press,
1997, pp. 250-253.

[Rodriguez 99]
P. Rodriguez-Tomé, and P. Lijnzaad: “The Radiation Hybrid Database”, Nucleic
Acids Research, 27(1), Oxford University Press, 1999, pp. 115-118.

[Schuler 96a]
G. D. Schuler, et al: “A Gene Map of the Human Genome”, Science, 274, 1996,
pp. 540-546.

http://www.omg.org/

BIBLIOGRAPHY 102

[Schuler 96b]
G D. Schuler, J. A. Epstein, et al: “Entrez: Molecular Biology Databases and
Retrieval System”, Methods in Enzymology, 266, Academic Press, 1996, pp. 141-
162

[Searls 95]
D.B. Searls: “bioTk: Componentry for Genome Informatics Graphical User
Interfaces”, Gene, 163(2), pp. GCl-16, 1995.

[Sessions 96]
R. Sessions: Object Persistence: Beyond Object-Oriented Databases, Prentice
Hall, 1996, pp. 235-239.

[Sessions 98]
R. Sessions: COM and DCOM: Microsoft’s Vision fo r Distributed Objects, John
Wiley & Sons, 1998.

[Siegel 96]
J. Siegel.: CORBA Fundamentals and Programming, New York, John Wiley &
Sons, 1996.

[Skupski 99]
M. P. Skupski, M. Booker, A. Farmer, et al.: The Genome Sequence DataBase;
towards an integrated functional genomics resource. Nucleic Acids Research,
27(1), Oxford University Press, 1999, pp. 35-38.

[Stoesser 99]
G. Stoesser, M. A. Tuli, R. Lopez, and P. Sterk: “The EMBL Nucleotide
Sequence Datbase”, Nucleic Acids Research, 27(1), Oxford University Press,
1999, pp. 35-38.

[Stonebraker 90]
M. Stonebraker et al.: Third Generation Database System Manifesto. ACM
SIGMOD Record 19(3), 1990.

[Tari 97]
Tari Z., Stokes J.: Designing the Reengineering Service fo r the DOK Federated
Database System. Proc. of the IEEE Int. Conf. On Data Engineering (ICDE’97),
Birmingham, 1997, pp. 465-475.

[Wells 94]

BIBLIOGRAPHY 103

D. L. Wells, and C. W. Thompson: “Evaluation of the Object Query Service
Submissions to the Object Management Group”, IEEE Quarterly Bulletin on
Data Engineering, 17(4), 1994, pp. 36-45.

[Wiederhold 86]
G. Wiederhold: “Views, Objects and Databases”, IEEE Computer, 19(12), 1986,
pp. 37-44.

[Wiederhold 92]
G. Wiederhold: “Mediators in the Architecture of Future Information Systems”,
IEEE Computer, 1992, pp. 38-49.

APPENDIX 104

APPENDIX A

The Common IDL

module Traders {

interface Trader {
exception NotFound {};
Object getByOid(in string oid)

raises (NotFound);
} ;

};

module Maps {

typedef sequence <string> Strings;

struct CrossReference {
string database;
string accession;

};
typedef sequence < CrossReference > CrossReferenceList;

struct MarkerData {
string oid;
string species ; // of marker.

// Can place e.g. mouse marker
// on a human map.

string chromosomeSegment; // Position at chromosome:
// chr + arm + band

CrossReferenceList crossReferences ;

APPENDIX 105

};
typedef sequence < MarkerData > MarkerList;

struct MapElement {
string oid; // unique object id.
MarkerData markerData; // Associated marker
float position; // distance from top of map
boolean frameworkMarker; // Is a framework marker?

};
typedef sequence < MapElement > MapElementList;

interface Map {
readonly attribute string
readonly attribute string
readonly attribute string
readonly attribute string
readonly attribute string
readonly attribute float
readonly attribute string
readonly attribute long

oid;
name ;
type;
species ;
chromosome;
length;
unit ;
size;

readonly attribute MapElementList elements ;
}
typedef sequence < Map > MapList;

interface MapTrader : Traders::Trader {
MapList getMapList(in string mapType,

in string species,
in string chromosome,
in Strings markers);

raises (Traders:: Trader : :NotFound);
};

APPENDIX 106

APPENDIX B

Grammar of the IDLViews Query Language

<where_clause> ::= <condition>*

<condition> ::= <base_spec>
I <slot_spec>
I <sequence_spec>
I <compound_cond>

<compound_cond> ::= (&& <condition>+)
I (II <condition>+)
I (! <condition>)

<sequence_spec> ::= <exists>
I <all>

<exists> (exists <where_clause>)
<all> ::= (all <where>_clause)

<slot_spec> ::= (<slot_name> <where_clause>)

<base_spec> ::= <base_value> | <range_spec>

<range_spec> ::= <gt_spec>
I <ge_spec>
I <lt_spec>
I <le_spec>

<gt_spec> ::= (> <base_value>)
<ge spec> ::= (>= <base value>)

APPENDIX 107

<lt_spec> ::= (< <base_value>)
<le_spec> ::= (<= <base_value>)

<base_value> :== <string>
I <int>
I <float>
I <boolean>

<boolean> : := true | false

