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ABSTRACT

ABSTRACT

The amount and complexity of genome related data is growing quickly. This highly interrelated 

data is distributed at many different sites, stored in numerous different formats, and maintained 

by independent data providers. CORBA, the industry standard for distributed computing, offers 

the opportunity to make implementation differences and distribution transparent and thereby 

helps to combine disparate data sources and application programs. In this thesis, the different 

aspects of CORBA access to molecular biology data are examined in detail. The work is 

motivated by a concrete application for distributed genome maps. Then, the different design 

issues relevant to the implementation of CORBA access layers are surveyed and evaluated. The 

most important of these issues is the question of how to represent data in a CORBA 

environment using the interface definition language IDL. Different representations have 

different advantages and disadvantages and the best representation is highly application specific. 

It is therefore in general impossible to generate a CORBA wrapper automatically for a given 

database. On the other hand, coding a server for each application manually is tedious and error 

prone. Therefore, a method is presented for the semiautomatic generation of CORBA wrappers 

for relational databases. A declarative language is described, which is used to specify the 

mapping between relations and IDL constmcts. Using a set of such mapping rules, a CORBA 

server can be generated automatically. Additionally, the declarative mapping language allows 

for the support of ad-hoc queries, which are based on the IDL definitions.
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Chapter 1

INTRODUCTION

Integration of data from multiple, distributed and autonomous data sources is a challenging 

problem in many domains. Semantic and technical heterogeneity is common and data stmctures 

are often con^lex and evolve over time. The field of Molecular Biology can serve as an 

example. Research groups have collected genome-related data for the last 20 years, during 

which the amount of data has grown exponentially. Medical, pharmaceutical, and agricultural 

researchers increasingly seek to utilise this information for the development of new treatments, 

drugs, and crops. There are now more than 300 publicly available collections of highly 

interrelated data, containing many different types of information. They include data as diverse 

as nucleotide sequences, protein sequences, protein structures, genome maps, taxonomic 

classifications, and metabolic pathways. The combination of these data collections promises 

new insights through new high level integrated views.

The more the size and complexity of molecular biology data grow the more important 

automatic tools for management, querying and analysis become. Many of the current limitations 

in using this wealth of information are not due to missing technology but to a lack of 

standardisation. Biologists utilise every possible hardware platform, operating system, database 

management system and programming language. Therefore a large proportion of the available 

programming resources have to be dedicated to unnecessary data transformations, which could 

be better used concentrating on the functionality of programs. In this thesis an approach is
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investigated to alleviate these problems using the Common Object Request Broker Architecture 

(CORBA). Using CORBA, it is possible to hide the implementation details of data sources and 

application programs and make them readily accessible via a network such as the internet. This 

approach promises to reduce drastically the effort required for the deployment and maintenance 

of distributed systems and facilitates the reuse of existing components.

The rest of the introduction is organised as follows: First the current situation in molecular 

biology is analysed together with the most important systems and technologies used. Then the 

concepts of interfaces and components are introduced and the question is discussed of how they 

can facilitate the building of future distributed applications. Finally, the CORBA standard itself 

is introduced and compared with related technologies.

1.1 Data Collections in Molecular B iology

Data management in molecular biology is characterised by a situation where historic 

development and organisational obstacles have prevented the definition and proliferation of 

standards. End users are confronted with an overwhelming diversity in data formats, query 

languages and access methods. In this section the most important of the currently used systems 

and technologies are surveyed. These are flat files for the storage of data, the World Wide Web 

for the access of biocomputing resources, and several proprietary systems for the management of 

molecular and genomic information.

1.1.1 Flat Files

Molecular biology data has been traditionally stored in simple text files, often referred to as flat 

files. Flat files are popular because no database management system is needed and they can be 

distributed easily using ftp or CD-ROM. Furthermore, flat-files can be read and understood 

directly by humans. This fact has lead biologists to identify an entry of a data collection with its



INTRODUCTION 10

flat file representation. The advent of the World Wide Web strengthened this view. Flat files 

can be transformed easily to hypertext by turning references into hypertext links. The Sequence 

Retrieval System SRS [Etzold 96] is a well-known example for this approach. Flat files became 

the centre of the data flow in molecular biology. Every data collection has to provide a flat file 

version in order to distribute the data and most analysis programs use flat files as their data 

source.

This central role of flat-files has several disadvantages. The most obvious problem is that 

flat-files are difficult to use. Writing a parser is a non-trivial task, which is fiuther complicated 

by imprecisely specified and fi-equently changing formats. Even though some standard flat file 

formats exist, such as the EMBL/DDBJ/GenBank format, biologists find it in general difficult to 

agree on a single model of their data. Another major drawback is that flat files can lead to an 

immense waste of computing resources. Different programs often expect different flat-file 

formats so that the same site needs to keep multiple copies of the same data. For example 

sequence comparison programs, such as BLAST [Altschul 90] or FASTA [Pearson 90], have 

their own format, which is different fi-om the format of the primary sequence databases. Finally, 

the wish of human readability results in the attempt to keep all information associated with an 

entry together. Since this attempt conflicts with the goal of normalisation, flat-files tend to be 

redundant. For instance the address of an author might appear in all entries of that author.

1.1.2 The World Wide Web

The World Wide Web [Bemers-Lee 94] has revolutionised the way molecular biology data is 

accessed today. All large providers of molecular biology resources, such as the National Center 

for Biotechnology! (NCBI) and the European Bioinformatics Institute^ (EBI), now offer a Web- 

based access to their data collections and tools. Hypertext links are ideally suited for the rich 

interconnectedness of biological data and allow for an easy browsing of distributed information.
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Form-based keyword searches are capable of expressing con^lex queries and new technologies 

such as JAVA permit the development of sophisticated Web-based user-interfaces and 

visualisation tools. The main advantages of the Web are its ease of use and its small hard- and 

software requirements. A desktop computer with Internet connection and a Web browser are 

sufficient - no other programs need to be installed locally. In many cases this is a very good 

solution as long as the service provider has anticipated the specific requirements for searching, 

analysis and visualisation of the data. The situation is however problematic if a researcher 

would like to analyse the data using his own methods and tools. In this case Web interfaces are 

very cumbersome to use. In order to utilise data fi"om the Web in a program, the relevant HTML 

pages have to be saved on the local computer individually and then parsed by a hand-written 

program.

1.1.3 Information Systems

The need for software, which allows for a unified access to the diverse data sources in molecular 

biology, has been recognised early. Many different systems for the management, integration and 

distribution of biological data have been developed [Bishop 98, Letovsky 99]. Some of the most 

important systems are examined here.

1.1.3.1 Entrez

Entrez^ is an integrated Web front end and search engine for the databases at the NCBI. This 

includes the MEDLINE bibliographic citation service, the GenBank nucleotide sequence 

database, a protein database - which includes SwissProt and translated GenBank entries, the 

Molecular Modelling Database (MMDB) of 3-D structures, the Genome Database with genetic 

and physical maps from several different species, and a taxonomy database. Entrez maintains 

links between these databases and calculates neighbours of sequences using BLAST. Apart of 

the Web interface, NCBI also supports the so-called Programmers Toolkit, a C language library.
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which allows accessing Entrez via a network. NCBI uses the Abstract Syntax Notation (ASN. 1) 

to integrate its various databases. In separate text files, ASN. 1 is used to express both the model 

of the data as well as the data itself. The toolkit includes a program, which automatically 

generates C language stmcture definitions fi’om an ASN.l model and object loaders, which read 

and write firom ASN. 1 files to C stmctures. Even though ASN. 1 files are used for the intemal 

data management, they are less suitable to be read and understood by humans than the traditional 

flat file formats.

1.1.3.2 SRS

The Sequence Retrieval System^ (SRS) [Etzold 96] is another tool for the integration of 

molecular biology data collections. Most users will access its Web interface but it also has a C 

language API and a UNIX command line interface. SRS installations are replicated at many 

sites, thereby providing for a certain degree of fault tolerance and allowing users to select the 

version with the best network connection. Unlike Entrez, SRS installations contain not only 

well-known databases like EMBL [Stoesser 99] and SwissProt [Bairoch 99] but also a large 

number of smaller, highly specialised data collections. SRS can directly utilise the original 

ASCII text file distribution formats of the data collection. Its main strengths are its powerful 

parser and the maintenance of indices of links between the different data collections. SRS 

implements a proprietary query language, view support, and a CORBA interface [Coupaye 99].

1.1.3.3 ACEDB

ACEDB [Durbin 94] was originally developed to manage the genetic data of the nematode 

C.elegans. It consists of a non-standard object-oriented database management system and a 

large number of excellent graphical visualisation tools. Both mouse navigation and queries are 

supported. A proprietary text file format is used as an external data representation for reading 

from or writing to a file. ACEDB has proved to be very popular with many other organism
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communities and became the core element of the Integrated Genome Database (IGD) project 

[Bryant 97].

1.1.3.4 OPM

The OPM data management tools [Markowitz 99] are based on the Object Protocol Model 

(0PM)5 [Chen 95], an object model with special support for the modelling of scientific 

experiments (protocols). The system provides wrapper facilities for the commercial relational 

database management systems Sybase^ and Oracle^. It supports the automatic mapping of an 

object model to a relational schema as well as the mapping of queries [Chen 98]. Additional 

retrofitting tools provide views for already existing relational databases and for structured fiat 

files using SRS. OPM has been employed for the development and maintenance of several 

biological databases. Examples include the version 6 of the Genome Data Base (GDB)8, a 

repository for all published mapping information generated by the Human Genome Project, and 

the Primary Database of German Human Resource Center (RZPD)9.

1.1.3.5 BioKleisli

BioKleisli [Davidson et al 1999] is a system for the integration of heterogeneous, distributed 

data sources using the Collection Programming Language (CPL). Its main strength is its rich 

type system, its query capabilities, and the large number of different data sources supported -  

among others it provides drivers for ASN.l, ACEDB, SRS indexed files, and relational database 

systems. BioKleisli supports virtual integration using views as well as physical integration by 

instantiating data warehouses.

1.1.4 Componentry

The information systems discussed provide integrated user interfaces to diverse types of 

biological information. Each of the systems has its own focus and a different conceptual origin.
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The main strength of ACEDB is, the graphical display of the data, while other systems, such as 

BioKleisli, concentrate on the possibility to query heterogeneous data sources. Even though all 

of the systems try to anticipate as many user demands as possible they are not necessarily ideally 

suited for a specific application. Unfortunately it is difficult to combine different parts of these 

systems with other programs and tools. For example it would be hard to combine the query 

engine of SRS with the graphical user interface of ACEDB or to use a different genome viewer 

together with the ACEDB database. This is of course possible but it requires a lot of knowledge 

and programming effort. This effort seems to be so high that many developers find it easier to 

implement a new system fi-om scratch rather than to try to combine existing programs. In this 

sense a program like ACEDB is sometimes called a closed, monolithic application. Monolithic 

applications limit the possibilities for reuse and lead projects to reimplement functionality that 

already exists in other systems.

In [Goodman 95b], this problem is addressed and the observation is made that: “almost all 

genome information systems are constructed fi-om scratch with little reuse of software developed 

elsewhere”. According to [Goodman 95b], the reason for this situation is that the architect of a 

genome information system has only two possibilities: The first is to build a complete new 

system, thereby guaranteeing that it has precisely the needed functionality. The second is to use 

an already existing system and live with most of its limitations. The paper suggests the concept 

of componentry as a way to allow for a solution between these two extremes. A corrqjonent is a 

piece of software, which can be used in different contexts through a well-defined interface. The 

idea is to replace monolithic applications by collections of smaller components, which can be 

mixed and matched in order to obtain a tailor made solution for the specific problem in hand. 

The potential advantage would be more reuse of already existing code and therefore less wasted 

programming effort. Because the unit of contribution is no more a whole system but only a
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corrq)onent, it would become easier for an individual researcher to contribute to future 

information systems.

Several research groups in molecular biology have been motivated by this argument and 

have tried to create toolkits of compatible components for graphical user interfaces. One 

example is the bioTk project [Searls 95]. BioTk consists of a set of graphical widgets for the 

display of biological objects, such as chromosome maps. The bioTk widgets have been 

implemented in the programming language Tcl/Tk, using a consistent style and standardised 

data structures. Another example is the BioWidgets project [Fischer 99], which uses a very 

similar approach but is based on Java beans instead of Tcl/Tk. Both projects concentrate on 

only one programming language to facilitate the base-level interoperation of the different 

components. Also, both stress the irr^ortance of keeping the model of the underlying data 

stmctures as “schema neutral” as possible -  the graphic widgets should deal with concepts of the 

display and selection of data rather than with biological concepts. This approach makes the 

components more general and therefore easier to replace or reuse.

The other main trend with the aim of facilitating componentry, has been the growing 

interest in the CORBA standard. Unlike bioTk and bioWidgets, CORBA is not restricted to a 

specific programming language. The aim of CORBA is to allow components to interoperate, 

independent of programming language, platform, and location.

1.2 The Common Object Request Broker Architecture

In 1989, the Object Management Group ̂  0 (OMG) was formed. Its members include a large 

number of major software vendors, hardware vendors, and large end-users. The stated goal of 

the OMG is to standardise and promote object technology. Its specifications are sanctioned by 

the International Standards Organisation (ISO) by reference. The core specification adopted by 

the OMG is the Common Object Request Broker Architecture -  CORBA [OMG 99] (see [Orfali
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1996], [Siegel 1996] for good introductions). CORBA combines the concept of interfaces with 

the distributed object-oriented programming paradigm. Among other things the standard 

specifies:

■ The Interface Definition Language (IDL), which provides a language-independent way of 

describing the public interface of distributed objects.

■ The Object Request Broker (ORB), a piece of middle-ware, which transparently transmits 

request from clients to object implementations.

The public interface describes all methods a client can invoke on a distributed object together 

with the necessary input and output parameters. Once the interface of a CORBA object has been 

implemented by a server, a client can use it like a local programming language object. It is 

transparent to the client where the object implementation resides or in what programming 

language it is implemented.

1.2.1 The Interface Definition Language

The Interface Definition Language describes the attributes and operations of CORBA objects, 

whereby attributes function as a shorthand for get and set methods. The input and output 

parameters can have basic types, such as string or float, or constructed types, such as structs and 

unions, or template types, such as arrays and sequences. Another important type is the object 

reference, which is used to reference CORBA objects. Interfaces and data types can be grouped 

in a hierarchical name space using modules.

A compiler takes the IDL definitions as an input and generates a programming library for a 

specific target language, e.g. C++ or Java. For a client, the compiler generates so-called
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Stubs are the client side representation of distributed objects in the programming language of the 

client. For a server, so-called skeletons are generated by the IDL compiler. Skeletons contain 

only empty method declarations in accordance with the signature of the object to be 

implemented. The developer of the server has to provide the implementation of the methods. 

Stubs and skeletons already include the necessary code for network communication and 

marshalling of parameters.

IDL Compiler 
generates

Client Skel­
eton

Stub ORB

y

Figure 1 : Stubs and Skeletons are automatically generated

The Interface Definition Language plays a central role in CORBA because it is the basis for its 

language independence. For each programming language, a standard mapping has been defined, 

which translates IDL definitions into constmcts of that particular language. Without the usage 

of such an intermediate language it would be necessary to define a mapping for every pair of 

programming languages, which is clearly impractical. The CORBA standard includes language 

mappings for most of the important programming languages. Examples are C, C++, Java, and 

Smalltalk.
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1.2.2 CORBA Objects and Object References

In order to invoke methods on a CORBA object the client needs to obtain an object reference for 

that object. The object reference serves as a proxy object on which the client can use the 

methods defined in IDL (Figure 2).

ServerCLIENT

►
Object

Reference Object
Implementation

Figure 2: Object R eferences are Proxies for Object Implementations

It is interesting to compare the CORBA approach with the traditional Remote Procedure Call 

(RPC) [Bloomer 92]. Using RPC a client invokes a function on a server, while in CORBA a 

client invokes a method on an object. Such a CORBA object is a purely logical entity whose 

implementation is unknown to the client. In many cases the server implements several CORBA 

objects as shown in Figure 3 (from [Orfali 96]).

RPC: Server CORBA: Server

Client

Figure 3; RPC vs CORBA
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It is common to implement a CORBA server using an object-oriented language such as C++ or 

Java. In this case, the programming language object, which implements the CORBA object, is 

sometimes called the servant. Again, one servant can implement one or several logically 

distinct CORBA objects.

CORBA objects are bound to a specific inq)lementation and only passed by reference using 

the object reference data type. In contrast, IDL data types such as structs, unions or sequences, 

are always passed by value and therefore copied between clients and servers.

1.2.3 The Object Management Architecture

CORBA and IDL minimise dependencies between different components by hiding 

implementation details like operating system, network, location, and programming language. 

This decoupling of clients and servers alleviates many of the common interoperability problems 

today and facilitates the development and maintenance of application programs. Even though 

this is obviously an improvement of the state of affairs it pushes the problem to another level. 

How can software components developed by independent groups interoperate? They can do so 

only if  they share a set of common IDL definitions. The purpose of the Object Management 

Architecture (OMA) is the standardisation of IDL on several different levels (Figure 4).
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Application
Objects

J

Common
Facilities

V J

Object Request Broker (ORB)

r
Common Object 

Services

Figure 4: The Object M anagement Architecture (OMA)

The lowest level is formed by the Common Object Services. CORBA services standardise 

interfaces for basic functions, anticipated to be needed by many different applications across 

application domains. Examples are interfaces for life-cycle operations, the naming of CORBA 

objects and the querying of databases. The next group are the Common Facilities, which include 

higher level domain specific services, such as telecommunications or life sciences. Finally there 

are the application objects, which can make use of the CORBA services as well as the CORBA 

facilities.

1.2.4 CORBA in Molecular Biology

The advantages of the CORBA standard have been recognised by many research groups in 

molecular biology and there are an increasing number of CORBA applications available. 

Examples include CORBA servers and clients for the Radiation Hybrid Database [Rodriguez 

97], HuGeMap [Barillot 99b], and SRS [Coupaye 99]. Several other applications in 

bioinformatics can be found at the CORBA page of EBfU.
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The OMG’s Domain Task Forces (DTP) provide a formai framework for the adoption of 

standard interfaces for a specific application domain. In September 1998, a “Life Sciences 

Research” (LSR) Domain Task Force was formed whose goal is to provide a forum for 

everybody who wants to get involved in the creation of standards for the life sciences field. 

Under the umbrella of the LSR DTP, several working groups have been estabhshed. Among 

them are groups for gene expression, macromolecular stmcture, maps, sequence analysis, and 

visualisation and user interfaces.

1.2.5 Related Technologies

In this section CORBA is compared to related technologies. These are alternatives for 

distributed programming and object-oriented databases.

1.2.5.1 Distributed Programming

There are several other approaches, which can be regarded as a way of providing distributed 

programming capabilities. The most important of these are briefly surveyed here: sockets, CGI, 

RMI, and DCOM. A more thorough comparison together with a speed evaluation for JAVA can 

be found in [Orfali 97b].

1.2.5.1.1 Sockets

Berkeley sockets are the de-facto standard for network applications using TCP/IP. Most higher 

level middle-ware, including object request brokers, is built on top of sockets. Socket 

programming is very low level and provides no parameter marshalling. Therefore sockets 

require more programming effort but can achieve a better performance. According to [Orfali 

97b], socket communication can be up to 50% faster in JAVA than an equivalent CORBA 

application.
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1.2 .5 .1 .2  HTTP/CGI

The Common Gateway Interface (CGI) 12 is part of the Hypertext Transfer Protocol (HTTP) of 

the World Wide Web. A CGI application is a program, which acts on data from a Web-based 

input form and is invoked by a Web server. The result of a CGI invocation is a HTML page, 

which is displayed in the client’s Web browser. This means that virtual HTML pages can be 

created on the fly instead of being stored on the server side before hand. Another advantage is 

that CGI servers can be written in any programming language. The CGI/HTTP protocol is 

stateless even though cookies can help to save state between different invocations. The main 

disadvantages are that CGI is very slow and that it is only a specialised solution for Web front- 

ends.

1.2 .5 .1 .3  DCOM

Microsoft’s Distributed Component Object Model (DCOM) [Session 98] is an important 

alternative to CORBA. Shipped with Microsoft operating systems it has a large installation 

base. Apart from a different terminology, CORBA and DCOM offer a very similar functionality 

[Orfali 97b]. The performance of DCOM is similar to the performance of CORBA and like 

CORBA it offers parameter marshalling and language independence via DCOM IDL. Most of 

the arguments and methods in this thesis could be applied to DCOM as well. However, DCOM 

is not considered here because of its proprietary nature and lack of cross-platform support.

1.2 .5 .1 .4  Java/RMI

Finally, the Remote Method Invocation (RMI) of Java is considered here [Harold 97]. RMI is a 

system for distributed programming in the Java programming language. Unlike CORBA, RMI 

does not try to be programming language independent. The advantage for the programmer is 

that Java serves as implementation language and as interface specification language. Hence, 

there is no mapping necessary between these two. This makes programming easier and allows 

for the support of specialised features of Java, which cannot be supported by a language
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independent system. An example for this is RMI’s dynamic downloading of class code. RMI 

offers both pass-by-reference and pass-by-value for Java objects. [Orfali 97a] reports a 42% 

performance advantage of a CORE A/Java ORB in comparison with Java/RMI at that time. 

However, there seems to be no good reason why there should be a big difference in performance 

given a similar quality of implementation. The language dependence of RMI and the proprietary 

nature of Java, can be regarded as the main disadvantages compared with CORBA.

1.2.5.2 Object-Oriented Database Management Systems

Even though object-oriented database management systems (OODBMSs) [Atkinson 89, Cattell 

97] are not directly concerned with distributed cornputing, they do share some features with the 

approach discussed here. The main objective of an OODBMS is to achieve a seamless 

integration of the database language with an object-oriented programming language. This 

motivation -  reduced impedance mismatch - is the same when CORBA IDL is used to represent 

data. Since many OODBMSs concentrate on only one host language -  usually C++ or Java -  

they can achieve a better integration than would be possible with the language neutral IDL. The 

downside of such a system is that compromises have to be made when a database has been 

designed in one programming language but is used from within another language. Also, 

OODBMSs have no equivalent to the concept of CORBA objects as a unit of distribution. 

References between objects in an OODBMS may be turned into pointers of the programming 

language when the object is stored in memory -  a process called swizzling (e.g. in [Cattell 94]). 

This is not possible with CORBA object references because the implementation of a CORBA 

object is hidden and resides potentially on another machine. Based on the concrete experiences 

with an attempt to implement a genome mapping system using a OODBMS, [Goodman 95] 

argues that the C++ type system is a poor choice as a database language because it is more 

complicated than a typical data modelling language. In this article, Goodman is also sceptical of 

implementing too many programs as part of the database schema because they tend to be very
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application specific. These two points have to be considered for similar reasons when CORBA 

DDL is used to represent data and will be discussed later.

’ http://www.ncbi.nlm.nih.gov/
 ̂http://www.ebi.ac.uk/
 ̂http://www.ncbi.nlm.nih.gov/Entrez 
http://srs.ebi.ac.uk/

 ̂http://gizmo.lbl.gov/opm.html 
 ̂http://www.sybase.com/
 ̂http://www.oracle.com/

® http://www.gdb.org/
 ̂http://www.rzpd.de/

10 http 
“ http 
"h ttp

//www. omg.org/
//corba. ebi.ac.uk/
//hoohoo.ncsa. uiuc.edu/docs/cgi/overview.html

http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/
http://www.ncbi.nlm.nih.gov/Entrez
http://srs.ebi.ac.uk/
http://gizmo.lbl.gov/opm.html
http://www.sybase.com/
http://www.oracle.com/
http://www.gdb.org/
http://www.rzpd.de/
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Chapter 2

GENOMIC MAPS

2.1 Introduction

There are now a large number of different types of genetic and physical maps available [Schuler 

1996], [Dib 1996], [Hudson 1995]. Maps are interesting biological objects because they can be 

used to link different genes and other markers using positional information. It is, for example, 

possible to identify homologue regions in genomes of different species using syntenic regions. 

Furthermore, they are well suited for different visualisation techniques such as the highlighting 

of parts of a map as a result of a query.

The available maps are distributed at many different sites, each offering different kinds of 

access methods and viewers. They are typically accessible through Web interfaces, directly 

printable graphic files (e.g. Postscript) or simple text files. As discussed in the introduction, 

these options are not well suited for access by a program and restrict the user to predefined 

views, anticipated by the data provider. CORBA offers here new opportunities to overcome 

such restrictions. Using CORBA, clients and servers interact through public interfaces, which 

hide implementation details. This separation allows a flexible recombination of data sources 

with different viewers and applications, including Web interfaces. Several research groups have 

presented CORBA servers for map databases and map viewers. These systems can be found for 

instance in [Rodriguez-Tomé 1997, Barillot 1998, Hu 1998].
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The main aim of this chapter is to demonstrate the benefits of CORBA for distributed 

applications in molecular biology. It also allows to highlight the relevant issues concerning the 

design of such CORBA applications. For this purpose, an IDL for the distribution of genomic 

maps is presented together with a map viewer, which serves as a client for this IDL. The origin 

of the system presented here is Mapplet, a Java/CORBA map viewer for the Radiation Hybrid 

Database (RHdb), which has been implemented by the author together with a specialised 

CORBA server. The Radiation Hybrid Database (RHdb) contains experimental radiation hybrid 

data and maps derived from these experiments [Rodriguez-Tomé 1999]. This includes STS data, 

scores, experimental conditions and extensive cross-references. EBI and Infobiogen in Paris 

have later collaborated to create an Common Map IDL (EU Grant BIO4-CT96-0346). This is a 

set of interface definitions, which are general enough to accommodate both, the radiation hybrid 

maps of EBI, and the genetic maps of Infobiogen [Barillot 99a]. Mapplet has been adapted by 

the author to the Common IDL, for which it served as a proof of concept [Jungfer 98]. It is this 

version, which is presented here. In the meantime the effort of establishing a standard IDL for 

genome maps has been taken over by the Life Sciences Research Task Force of the OMG.

The main requirements for Mapplet and the Common IDL have been:

• The map viewer should be able to access and display radiation hybrid maps from EBI in

England as well as genetic maps from Infobiogen in France.

• The application has to work with a reasonable speed even for large maps with several

thousand markers.

• The basic functionality of Mapplet should depend only on the common IDL, while 

additional information for radiation hybrid maps has to be accessible as well.
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2.2 Architecture

CORBA objects are used to represent the main components of the application. These 

components are:

• Maps: Having an object reference to a map object, a client can request general information 

about the map, such as name and type, as well as the markers on the map and their position.

• The Map Trader: A client can ask the trader which maps are available. Example criteria are 

species, chromosome or a specific marker on the map. If the trader knows about maps, 

which satisfy the query, it returns one or more object references for these maps. The map 

viewer can use the object reference to directly access the map and display it.

• The Score Database: If the map is a radiation hybrid map of RHdb then additional 

information about the markers is available. Examples are marker types and score vectors.

The Common IDL treats maps as CORBA objects. This has the advantage that map and trader 

can be separated. The trader can know about maps, which are not local to the trader. When a 

client asks for a map then the trader does not return the map itself, but a reference to the map. 

The client can then use the reference to access the map directly without having to know where it 

resides (Figure 5).



GENOMIC MAPS 28

Map
TraderEBI:

MapInfobiogen: f  Map EBI:

Map
ViewerSomewhere:

Figure 5: Architecture

2.3 The IDL

The IDL definitions for the application consist of two parts. The first part is the Common Map 

IDL, which contains methods and data available for all types of maps. The second additional 

part has only methods specific to radiation hybrid maps. The complete listing of the Common 

Map IDL can be found in appendix A. Here only those aspects of the common IDL are 

presented, which are necessary to understand the map viewer.

2.3.1 The Common IDL

The Common Map IDL consists of two parts: maps and traders.

2.3.1.1 M aps

The maps themselves are defined in the module maps. Their main attributes are “oid”, “name”, 

“type”, “species”, “chromosome” and “elements”. Through the attribute “elements” it is 

possible to get a list of all markers, which belong to the map. Because the “MapElement” 

(marker) is represented as stmct and not as interface it is passed-by-value. It is therefore 

possible to get all marker data belonging to a map with only one method call.
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module Maps {

struct MapElement {
MarkerData markerData; 
float position;

};
typedef sequence <MapElement> MapElementList; 

interface Map {
readonly attribute string oid;
readonly attribute string name ;
readonly attribute string type;
readonly attribute string species;
readonly attribute string chromosome;

readonly attribute MapElementList elements;
};

};

2.3.1.2 Traders

The Common IDL defines the interfaces for traders and maps. The most basic method of a 

trader is to return an object reference given an object identifier. Since this method is not specific 

to map traders, it was defined in a separate trader module.

module Traders {
interface Trader {

Object getByOid(in string oid) 
raises (NotFound);

}; 

};
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A specialised version of the Trader is defined in the module “Maps”. Here it is possible to 

specify general search criteria like species and chromosome. The result type “MapList” 

represents a sequence of maps, since more than one map can match a query.

module Maps {

typedef sequence<Map> MapList;

interface MapTrader : Traders::Trader {
MapList getMapList( in string mapType,

in string species, 
in string chromosome, 
in Strings markers ) 

raises (Traders:: Trader ::NotFound);
};

};

2.3.2 The IDL for Radiation Hybrid Data

The scores database is represented by the interface “DB” in the module “RHScores”. It has two 

methods. The first allows to access additional information for an individual marker, and the 

second to get the marker types of all markers of a specified map. This second method is in 

theory redundant but was added for performance reasons. The map viewer allows the 

highlighting of all markers of a specific type. If the viewer would have to request the marker 

type individually for each marker then network load and response time would be unacceptable.

module RHScores {

typedef sequence<string> Strings;

struct Reference {
string database;
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string accession;
};
typedef sequence <Reference> References;

struct Score { 
string rhid; 
string panel; 
string author; 
string vector; 
string sts;
Strings stsTypes;

};

typedef sequence <Strings> Types;

exception NotFound {};

interface DB {
Score getScore(in string rhid) raises(NotFound);
Types getTypes(in string mapid) raises(NotFound);

};

}; // module RHScores

2.4 Mapplet: The Map Viewer

Mapplet allows a quick overview of the maps in RHdb (Figure 6.). It displays four maps side by 

side, which can be selected by chromosome. Each map can be scrolled and zoomed 

independently. Zooming can be done using the “In”, “Out” and “Full” buttons.
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A marker can be selected with the mouse by clicking on it. Pressing the “show” button of the 

corresponding map will display detailed information about the marker, like name, position, and 

cross-references. For Radiation hybrid maps at EBI the assay information together with the 

score vector is displayed. The “Next” and “Prev” button select the next or previous marker. 

Different marker types can be highlighted: for example, all markers, which belong to the 

framework or all genetic markers or all ESTs. The histogram will then show the density of the 

highlighted markers.

2.5 Implementation

The map viewer was implemented in Java using the CORBA 2.0 compliant ORB OmniBroker 

2.0.31 . It can run as a standalone application as well as within a Web browser. Since no 

proprietary features are used, the same source code should work with any other recent, CORBA 

compliant Java ORB. Therefore, the applet can use the built-in ORB of Netscape’s 

Communicator.

Unfortunately, when the client runs within a Web browser, security restrictions require the 

map trader, the map, and the HTTP-server from which the applet is loaded, to reside on the same 

machine. Other, more advanced ORBs, such as Visibroker^, offer a solution to this problem 

using a daemon, which runs on the same machine as the HTTP-server and which can forward 

requests to object implementations on different machines.

It would have been possible for the application to utilise the normal existing CORBA 

servers for the Radiation Hybrid Database [Rodriguez-Tomé 1999] as a data source. However, 

in order to increase the performance, a special caching server was implemented, which uses 

these servers but avoids direct access to the underlying relational database at run-time. Since 

both servers use the same IDL, none of these changes affect the map viewer.
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2.6 Discussion

The map viewer has been designed for use over Wide Area Networks (WANs) where round-trip 

response times can be slow and where granularity of data access becomes the single most 

important factor in browsing performance. A straightforward translation of a conceptual data 

model into an interface-based DDL will normally lead to inefficient solutions. An example is 

[Hu 1998], where the “MapElement” equivalent “Locus” is only represented as an interface. 

This means that in order to display a map it is necessary to access each displayed “Locus” 

individually by remote method calls. Such an approach is therefore limited to small maps or 

local network applications. In this context it is important to realise that IDL is not a data 

modelling language but a specification language for an API. Ultimately the concrete application 

determines the IDL -  not an abstract data model. Using the common map IDL, the map viewer 

can download positions and names of all markers belonging to a map with only one method call. 

This is possible because the “MapElement” is modelled as a struct, which can be passed-by- 

value. Apart from this difference, the IDL in [Hu 1998] and the Common Map IDL show many 

similarities.

The Mapplet is based on the Common Map DDL. However, it was necessary to extend this 

IDL to implement features specific to RHdb. This is probably a typical situation. Agreement on 

a common interface, while desirable, is often difficult to achieve. If achieved it is often an 

unsatisfactory compromise. Since CORBA deals only with interfaces and not with 

implementations, this problem is less significant than, for example, with flat file formats. It is 

easy to built servers supporting different DDL definitions. Another possibility is the mechanism 

of inheritance for CORBA interfaces. E.g. it would be possible to define a specialised map 

interface for radiation hybrid maps, which inherits from the common map interface. The 

specialised map object itself could then give the additional information. However, this approach 

was not chosen here in order to keep score data and map objects separate. The main
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functionality is preserved when the Mapplet is restricted to the common IDL. Specialised 

features are accessible using an additional set of IDL definitions.

2.7 Conclusions

Representing genomic maps and markers using CORBA IDL allows clients to access remote 

information like local programming language objects. This is convenient since no parsing or 

other internalisation process are necessary. CORBA object references provide location 

transparency so that the client does not need to know where the map resides. Speed of the 

application depends highly on the chosen IDL. Stmcts are faster for bulk data transfers, while 

interfaces can take advantage of location transparency, computed methods, and inheritance. 

Such speed considerations are the main reason why IDL definitions are very application specific 

even though DDL definitions hide many implementation details. The standardisation of DDL for 

specific application domains, such as genomic maps, allows for an independent developing of 

clients and servers. Interoperability between independent data providers and applications is only 

possible if  agreement on standard interfaces is achieved. The common map DDL is an attempt to 

set such a standard. Mapplet demonstrates the usefulness of the common DDL for the purpose of 

a map viewer. The IDL is designed to deal with large maps of more than one thousand markers. 

Mapplet focuses on a quick overview of large maps.

’ http://www.ooc.com/ob.html 
 ̂http://www.inprise.com/visibroker

http://www.ooc.com/ob.html
http://www.inprise.com/visibroker
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Chapter 3

CORBA WRAPPERS

3.1 Introduction

In the previous chapter, the advantages of accessing molecular biology data using CORBA have 

been discussed from the perspective of a client. The aim of this chapter is to examine the server 

side of such applications in a systematic way. In general, today’s molecular biology databases 

do not support CORBA interfaces. In order to allow such a database to interact with CORBA 

components it is therefore necessary to build a so-called wrapper -  a program, which 

implements IDL interfaces for already existing legacy systems.

Data­
base

Wrapper ORB
CORBA

Client

Figure 7: CORBA wrappers make existing DBs available through the ORB

The system depicted in Figure 7 is a classical three-tier architecture. The wrapper represents the 

middle-tier, insulating the client and data source from each other. Because the wrapper can 

already provide an application specific view of the data, it allows the client to concentrate on its 

main functionality. It is possible to speak of a thin client if most of the data transformations and 

processing is left to the middle-tier. The client remains simple and is mainly responsible for
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data presentation. Thin clients are often desirable because they are easy to distribute via a 

network, typically executed within a Web browser. Another advantage of thin clients is that 

their simplicity makes it easier to replace them with the in^lementation from an independent 

provider. This issue makes them even more interesting in the context of CORBA since it is one 

of the main aims of CORBA to support componentry.

The two aspects addressed in this chapter are the interface and the implementation of 

CORBA wrappers for databases. The external interface of the wrapper defines its fimctionality 

and is specified using CORBA IDL. In the context here this means mainly data representation 

and access. The second aspect consists of a variety of issues concerning the actual 

implementation of the wrapper.

3.2 Interfacing Databases using CORBA IDL

How should data be represented in a CORBA environment? Should the IDL reflect the data 

model and if  yes how? How can a CORBA wrapper support queries? The answer to these 

questions is crucial in this context and will therefore be examined in detail in this section.

3.2.1 Data Representation

Using CORBA IDL, data can be represented in many different ways. Each possibility has 

advantages and disadvantages depending on the type of application. These possibilities will be 

evaluated in this section with respect to performance, extensibility and, simplicity. There are in 

general four types of representations, which are summarised in Figure 8. The two principal 

design choices, which lead to this table are: generic types versus domain specific types and 

CORBA objects versus value types.
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Value-based Object-based

Generic types Strings, Sequence of Octets Generic CORBA objects

Domain types Stmcts, Unions, CORBA 3 Values Domain CORBA objects

Figure 8; Types of Data Representations in IDL

3.2.1.1 Generic Types

Many existing systems use CORBA IDL only for the infrastructure of the system, while using 

generic types to represent the data itself [Dogac 96]. In this approach the IDL definitions do

therefore not reflect the data model. This can be achieved for example by encoding the data 

objects in strings or byte sequences. The following string for example could represent an entry 

of a sequence database:

“((accession ‘AC24123’) (species ‘human’) (sequence ‘ACGCGTTAATCGGC’))”

This is similar to the normal access of a relational database using an SQL prompt, where each 

result entry is returned as a string to the user. An example of a syntax for the encoding of 

objects in text files is the object interchange format OIF, defined in the ODMG 2.0 standard 

[Cattell 97].

The second generic possibility is to utilise a CORBA object to represent the data but to use 

a completely generic interface, which is independent from the structure of the represented object. 

The following IDL for example could be used for such a purpose:

interface DBObject {
string getClassName();
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any getAttribute(in string attributeName);
};

The main advantage of generic approaches is the ease of maintenance. Using DDL, clients and 

servers have to be compiled together with the classes, which have been generated from the IDL 

definitions. This can become a major burden if  the data model is large or changes frequently. 

Generic applications, which are not interested in the semantics of the data -  e.g. a tool for 

displaying data in the form of a table or a query evaluator -  are therefore often better served by 

generic data representations. However, for other more specialised applications, such as a map 

viewer, generic representations can be very cumbersome to use. In the case of the encoding the 

objects in sequence types the objects have to be parsed and brought into an internal 

representation.

3.2.1.2 Domain SpecificTypes

The second possibility is to use CORBA IDL not only for the infrastmcture of the system but 

also to represent the data objects themselves. The main reason for representing data using 

domain specific DDL types is to simplify the task of writing clients. As seen above the generic 

approach requires the client to transform the data object into an internal representation, which 

can be used more conveniently. This problem is often referred to as impedance mismatch 

between the database language and the application programming language. If however the data 

model is directly expressed in CORBA IDL, then encoding, decoding and translation into an 

internal representation is done by the stubs and skeletons, which have been generated 

automatically by the IDL compiler. The client can access remote information like local 

programming language objects.

Similar to the generic case there are again two main possibilities depending on whether 

CORBA objects are used or value types. Of course, these different possibilities do not exclude 

each other -  they simply meet different requirements of different clients.
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3.2.1.2.1 Object-Based

The following example shows a possible representation of a protein sequence as a CORBA 

object:

interface ProteinSequence { 
attribute string accession; 
attribute string species; 
attribute string sequence;

};

This is perhaps the most natural representation. Every class of the data model is represented by 

a corresponding interface. Every database entry is represented as a CORBA object. The 

application program can use such a sequence object as if  it were local. Because CORBA 

interfaces support directly both multiple inheritance and associations, interfaces can resemble a 

conceptual data model very naturally. However, this approach can be too slow for many 

applications, because every access to an attribute is a remote method invocation over the 

network. If the application program wants to get all three attribute values then three remote 

method invocations will occur. If the application requires access to many such objects the 

network load becomes unacceptable. Such fine grained data access has led many to conclude 

that CORBA as such is inefficient. In reality it is just one possibility, which is suitable in some 

situations and not suitable in others.

3.2 .1 .2 .2  Value-Based

The second possibility is not to use CORBA objects to avoid the mentioned potential 

performance problems, but instead models the data as values such as IDL structs.

struct ProteinSequence { 
string accession; 
string description; 
string sequence;
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}

In contrast to CORBA objects, structs are passed by value. Access to the individual fields is 

therefore local and very fast. On the other hand the application has to get the whole struct even 

if it is only interested in the accession field. Structs are therefore more suitable for bulk data 

transfers. On the other hand, structs neither support inheritance nor associations. If such 

concepts are used, they need to be circumscribed using IDL unions or any s. This problem will 

often occur if an extended entity-relationship model is used as the starting point for the IDL 

development, but interfaces are no option

The upcoming CORBA 3.0 standard has extended the DDL by a new type calledvn/nc. 

CORBA 3.0 values are similar to stmcts but do additionally support inheritance. Even though, 

following the example of Java, values are restricted to single inheritance, this overcomes one of 

the most severe disadvantages of DDL stmcts.

3.2.1.3 Associations

Associations can be modelled in IDL using three different possibilities. Object references, 

logical keys and embedded stmcts. For each approach an example is given below.

3.2.1.3.1 Object References:

interface SwissProtSequence { 
attribute string accession; 
attribute string description; 
attribute string sequence; 
attribute EMBLSequence EMBL;

}

interface EMBLSequence { ... } ;

The main advantage of object references is their ease of use. The client can navigate from a 

protein sequence to an EMBL sequence easily by simply following a pointer.
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3 .2 .1 .3 .2  Logical Keys:

This is the same example as above but this time only a logical key indicates, which 

EMBLSequence is referenced.

interface SwissProtSequence { 
attribute string accession; 
attribute string description; 
attribute string sequence; 
attribute string EMBLaccession;

}

The advantage of logical keys is that they do not only point to a specific implementation but to 

the appropriate EMBL sequence in any instance of the database. The disadvantage is less 

convenient access for the client, which has to know itself how to get the EMBLSequence using 

its accession number.

3 .2 .1 .3 .3  Em bedded Structs:

Here the same example using embedded stmcts. Note that the EMBLSequence is always copied 

as a whole together with the parent stmct SwissProtSequence.

struct SwissProtSequence { 
string accession; 
string description; 
string sequence ;
EMBLSequence EMBL;

}

struct EMBLSequence { ... } ;

3 .2 .1 .3 .4  Multiple Associations:

One-to-n and n-to-m relationships can be modelled using the same principal approaches but do 

additionally require the usage of IDL types such as sequences or arrays .
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3.2.1.4 Evaluation

This section summarises the advantages and disadvantages of IDL stmcts, interfaces and 

CORBA 3.0 value types.

3.2.1.4.1 Time

Value based data transfer is quicker if a large amount of data has to be transferred. This applies 

to both stmcts as well as the new CORE A3.0 value types. Object based access, however, allows 

for a more precise selection of the downloaded data. This is an advantage when not all data of a 

specific object is needed and only few objects are involved.

3 .2 .1 .4 .2  S p ace

If value based data representations are used, the whole data is copied to the client. Therefore 

value based representations are in most cases less space efficient. There are however cases when 

the size of an CORBA object reference alone is bigger than the data contained in the object. In 

this case there would be no advantage fi-om using interface based representations.

3 .2 .1 .4 .3  Extensibility

Inheritance is one of the most important technique to extend existing code. Stmcts do not 

support inheritance, while both interfaces and the CORBA3.0 value types do. CORBA 3.0 

value types therefore overcome one of the most important disadvantages of stmcts.

3 .2 .1 .4 .4  Simplicity/Readability

Again inheritance is an important way to stmcture and simplify code. Therefore interfaces and 

CORBA3.0 values are again superior to stmcts in this respect.

3.2.1.5 Applications

It is also possible to view the differences of the different approaches from the perspective of 

different types of applications.
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3.2.1.5.1 Browsing

Simple navigation and browsing of CORBA objects, is best supported by object based data 

representations if  no large amounts of data need to be transferred.

3 .2 .1 .5 .2  Bulk Data Transfer

If large amounts of data need to be transferred then value-based representations are most 

efficient.

3.2 .1 .5 .3  Data Integration

As seen in the interface example for biological sequences, CORBA object references provide an 

easy way of interconnecting objects fi’om different independent and possibly heterogeneous data 

sources -  a point which has been made for example in [Markowitz 95]. Even though this 

approach is easy to implement, it does support only simple navigation but no queries. It is in 

many respects veiy similar to the interconnection of Web pages using URLs instead of object 

references. In contrast, stmcts and CORBA 3.0 values do not provide a similar simple 

mechanism of integration of data fi*om independent sources.

3 .2 .1 .5 .4  Object Sharing

One interesting new application opened by CORBA is the possibility to share distributed objects 

among several clients. An example would be a CORBA object which represents an alignment of 

nucleotide sequences. It is possible to support the decision about what is the correct alignment 

by making an assumption about a taxonomic tree of the species involved. If the tree changes, 

the alignment will in general change as well. This behaviour can be naturally modelled when 

the alignment viewer and the tree editor both hold object references to the same alignment 

object.
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3.2.2 Data Models

When using DDL to represent domain objects it is tempting to treat it just like a data modelling 

language. This is especially true when using interface-based representations, which allow for a 

very natural one-to-one mapping between a conceptual model and IDL. It is however important 

to distinguish between these two. The following picture depicts the relationship of database 

schema, conceptual model, and the DDL.

Conceptual 
Data Model

reflects reflects

Database
Schema Mapping IDL

j

Figure 9; IDL vs. Data Model

While the conceptual model is the abstract, logical, and global structure of the domain data, the 

IDL merely represents an application specific API. Therefore, the IDL usually deals only with a 

subset of the conceptual model. Furthermore it already has the access paths encoded used by a 

client. Because several different access paths are often needed within the same application, DDL 

tends to be redundant and more complicated. It is worth remembering that similar arguments 

hold for the database schema, which often have to be denormalised in order to speed up specific 

applications. All this can result in a non-trivial relationship between database schema and DDL, 

which complicates the implementation of a wrapper whose task it is to implement the mapping 

between these two.
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3.2.3 Queries

The ability to express queries is clearly an important aspect for every database. This aspect is 

standardised by OMG through its Query Service specification [OMG 98]. The central element 

of this IDL is a CORBA object of the type Evaluator. A  query evaluator takes a query 

string as input and returns a reference to a collection object, which represents the result. This 

result collection gives access to its elements through another CORBA object: the Iterator. The 

query service does not specify how the elements of the result should look; the iterator always 

returns the IDL type any. It can therefore be combined with any of the above listed data 

representations. Furthermore the query service can be used with any possible query language 

depending on the underlying database system. Result collections can themselves support the 

query evaluator interface allowing to narrow a query in an iterative way.

Queiy support is common when generic data representations are used. JDBC is a well 

known example for such an API in the case of Java. However, if CORBA IDL is used to 

represent the data it is not obvious whether and how ad-hoc queries should be supported. 

Simple navigation and methods providing access to pre-canned queries are sufficient for many 

applications. On the other hand it seems clear that some applications would benefit fi’om query 

support leaving the question how this can be done best. The main question is in what terms the 

query should be expressed. There are essentially three possibilities:

• In terms of the schema of the underlying database

• In terms of a conceptual data model

• In terms of the IDL itself

To base the queries on the schema of a database is probably the easiest to implement 

solution. The disadvantage is that the user has to know both the schema and the IDL as well as
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the connection between these two. The approach is therefore only realistic if schema and IDL 

resemble each other closely.

Very similar arguments hold if  a conceptual model is used instead of the schema. The 

advantage might be that a conceptual model has better chances to resemble the IDL. The reason 

is that unlike some database schemas -  such as a relational one - it can support IDL concepts 

such as inheritance and associations.

In contrast, to express queries in terms of the IDL itself has the advantage that the user 

needs to know the DDL only. The disadvantage is however that -  as discussed before -  the DDL 

tends to be more complicated and less readable than a conceptual model. This approach might 

therefore be better suited for small specialised applications.

3.3 Implementation

The implementation and maintenance of CORBA wrappers for biological databases can be a 

challenging problem. This section discusses several issues, which need to be addressed in this 

context.

3.3.1 Generation o f CORBA Wrappers

When using CORBA IDL to represent the domain objects of an application, it is one of the main 

tasks of the CORBA wrapper to implement the mapping between the database stmctures on one 

hand and the corresponding IDL constructs on the other. This can be done in several different 

ways.

3.3.1.1 Manual Implementation

Usually, this mapping is implemented manually: the developer first specifies appropriate IDL 

definitions, lets the IDL compiler generate the skeletons, and then adds the necessary
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implementation. This is mainly code to access the database through a database gateway such as 

JDBC. The problem is that implementing a new CORBA server for each application and 

maintaining it in the presence of evolving IDL definitions and database schemas is tiresome. 

Furthermore, it is completely unclear how IDL based ad hoc queries can be supported in such a 

setting.

3.3.1.2 Automatic Code Generation

Another possibility is the automatic generation of IDL and CORBA server based on the schema 

of the underlying database. The problem with this approach is that the automatically generated 

IDL is usually not what we need for a concrete application. One reason is that in order to allow 

for the interoperation of independently developed clients and servers it is advantageous to agree 

on a common IDL [Barillot 99a]. Another reason is, as detailed above, that there are many 

different ways to represent data in IDL. The different representations have different advantages 

and disadvantages, and can significantly influence the performance of a distributed system. The 

IDL is therefore highly application specific and cannot be derived fi*om a database schema only.

3.3.1.3 Semi-automatic Code Generation

Finally, it is possible to try to find a compromise between the completely manual and the 

completely automatic implementation. This approach will be called semi-automatic here. The 

central idea is as follows: First the developer decides on an IDL that ideally suits his

application. Then he specifies a set of mles, which describe the customised mapping between 

database schema and the target IDL. Using the mapping rules the CORBA wrapper can now be 

generated automatically. The semi-automatic server generation has the advantage, that the 

developer has a large degree of freedom when choosing the target IDL but still leaves the most 

difficult part of the implementation to an automatic code generator. Also, it is still possible to 

support ad hoc queries, which are expressed in terms of the DDL data types.
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3.3.1.4 Query Support

It is relatively easy to support queries by simply giving access to the underlying query system of 

a CORBA wrapped database. However it is more difficult to support ad hoc queries, which are 

based on the IDL definitions of the server. Especially in the case of a manually implemented 

CORBA wrapper it is not obvious whether and how such queries could be supported. The 

situation is better in the case of automatically and semi-automatically generated servers. The 

mapping rules are in these cases known explicitly and can be used to translate queries and results 

from and to the IDL representation.

3.3.1.5 Code Maintenance

As discussed before, manually implemented CORBA wrappers are difficult to maintain if either 

the schema of the database or the target IDL change. However, automatically and semi- 

automatically generated CORBA servers also have their problems with respect to code 

maintenance. The automatically generated server will in most cases not provide the DDL needed 

for a specific application. It is therefore usually necessary to modify it by hand in order to adapt 

it. This will not happen as often in the semi-automatic case but even there it is sometimes 

desirable to add the implementation of convenience methods. Therefore in both cases manually 

and automatically generated code have to coexists. When the automatic part of the code is 

regenerated because of a schema change, it has to be recombined with the hand coded 

modifications. To avoid error prone code merging it is in the experience of the author better to 

use either inheritance or delegation to combine the two types of code.

3.3.2 Registering Large Numbers o f Objects

Databases can contain millions of objects. If the CORBA wrapper used interface based 

representations, the ORB has to be able to keep track of the connection between these database 

objects and the corresponding CORBA object references. It is therefore not practical in this case
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to use the standard individual object registration provided by CORBA. Instead it is necessary to 

use an implicit registration method. The general idea is to have the object identifier of the 

database object encoded in the CORBA object reference. Many ORBs implemented an own 

proprietary way of implicitly registering large numbers of objects. The recently by OMG 

adopted Portable Object Adapter (POA) now standardises this possibility.

3.3.3 Caching

Typically, every CORBA object is represented by one corresponding object of the 

implementation language of the server; e.g. a C++ object. In the case of a database wrapper this 

means that the C++ server contains a copy of the database entiy (Figure 10a). If a client invokes 

for the first time a method on an object reference the corresponding database entry is loaded and 

the C++ object is instantiated. It stays in memory for subsequent method invocations until the 

server actively removes it to prevent the server fi*om maintaining a copy of the whole database. 

This approach can be fast because the CORBA server is a cache for database entries but it makes 

a policy for garbage collection necessary.

a)
Wrapper

b)
Wrapper

o
Figure 10: CORBA wrappers with a) and without state b)

In the second possibility (Figure 10b) the CORBA server is stateless. One language object 

implements a set of different CORBA objects each representing another database entry. For 

every request the server extracts the object identifier from the request in order to find out which
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CORBA object it has to emulate. In this approach no data eviction strategy is needed but every 

request requires access to the underlying database.

3.3.4 Object-Relational Mapping

Relational database management systems (RDBMS) are still the standard today: many major 

and minor data collections in molecular biology, like EMBL [Stoesser 99] or IXDB [Leser 98b], 

utilise a relational database management system. Since the relational model is very different 

from an object-oriented IDL, object-relational mapping [Wiederhold 86] becomes the central 

problem for CORBA wrappers. There are different tools, which can help to define an object 

model on top of a relational database. An example is the object-relational mapping tool 

“Persistence”. It follows the philosophy of object-oriented databases in the sense that it makes 

database entries directly available as C++ objects. Persistence is therefore well suited to 

implement CORBA servers, which cache database entries in main memory. The main 

disadvantage of this tool is that the developer has not much freedom to define object schemas. 

The Persistence object schema is very close to the original table structure of the database. 

Relational views and a certain amount of hand coding are often necessary to do the required 

mapping. Another tool for object-relational mapping is 0PM  [Chen 95]. In contrast to 

Persistence it supports the mapping of object-oriented queries to SQL queries. It is therefore 

better suited for stateless wrappers and for the implementation of a CORBA query service.

3.4 Conclusion

Usually, existing data collections do not provide CORBA interfaces. In order to make such data 

collections available in a CORBA environment it is necessary to implement a so-called CORBA 

wrapper. The most important design question, which a developer of such a wrapper faces, is the 

question of how to represent data in IDL. The answer to this question depends veiy much on the
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concrete application, and will have a major impact on the performance of the distributed 

application. One way to find the best IDL is often by a use-case analysis [Jacobson 92].

The implementation of CORBA wrappers by hand is tedious and error prone. 

Automatically generated wrappers on the other hand are too inflexible in the choice of the 

implemented IDL. Semi-automatic wrapper generation offers here a good compromise. The 

IDL can largely be influenced by the developer while the most complicated part of the code is 

automatically generated.
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Chapter 4

A MAPPING LANGUAGE FOR RELATIONAL 
DATABASES

4.1 Introduction

In this section a high-level language is presented, designed to describe mappings between 

relations on one side and CORBA IDL types on the other side. The IDL types are coirç)letely 

specified by the mapping definitions. The mapping language is declarative and is intended to 

guide automatic query translation and data transformations. In order to facilitate the task, the 

IDL has been restricted to most often used constmcts of the interface definition language of 

CORBA V2.0:

• Modules

• Interfaces and object references

• The template type sequence

• The constmcted types enumeration and stmct

• The base types long, float, string, and boolean
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Interfaces are restricted to read-only attributes. Other types such as arrays and unions can easily 

be incorporated using a similar method.

To keep the mapping language simple and without loss of generality we assume that relational 

views can be used to get closer to the needed IDL. This means that mapping possibilities, which 

can be expressed by a relational view are not considered here. More specifically:

■ The simple values long, float, string, boolean and enum are represented directly by exactly 

one table attribute. No null-values are permitted.

■ All single-valued members (attributes) of a stmct (interface) can be found in the same table.

■ Multi-valued members (attributes) of a stmct (interface) are stored in a different table, which 

is connected to the base table by foreign keys.

The here presented mapping language has been completely developed by the author. An earlier 

and less general version of the language has been published in [Jungfer 99a].

4.2 The Mapping Language

4.2.1 Views

The top-level constmct of the mapping language is the definition of an IDL view. A view has a 

name and is associated with a table and the mapping for an IDL type. The DDL type can be in 

this case either a stmct or an interface (xxx_mp in the grammar means: mapping definition for 

xxx). Different views can use the same DDL types based on different tables.

<idl_view> ::= ( VIEW <view_name>
TABLE <table name>
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<interface_mp> | <struct_mp>)

4.2.2 Interfaces

The mapping definition for interfaces specifies first the IDL name of the interface. Then all 

interfaces fi-om which it inherits are specified in the “EXTENDS” clause. All interface names 

are scoped to specify the appropriate DDL module. The extended interfaces are merely necessary 

to define the DDL type - they do not affect the mapping. Especially they do not imply any set 

inclusion properties between different views represented by these interfaces. The following 

“SUB” clause allows the specification of non-overlapping “sub-views” (See the examples in 

section 3.2 of this chapter for the usage of this constmct). Then the primary key for the main 

table of this view is given. The key is necessary to allow the CORBA object adapter to keep 

track of the connection between object references and database entries. For each attribute, the 

attribute name and the mapping for the attribute type is given. All attributes have to be specified 

here, including those inherited from other interfaces.

<interface_mp> ::= ( INTERFACE <scoped_interface_name>
[ EXTENDS ( <scoped_interface_name>* ) ]
[ SUB ( <view_name> ) ]
[ KEYS ( <column_name>+ )

( <attribute_name> <data_type_mp> )+ ]
)

4.2.3 Data Types

The type of an attribute or stmct member is either a base type or an enumeration or an object 

reference or a stmct or a sequence.

<data_type_mp> ::= <base_type_mp>
I <enum_mp>
I <reference_mp>
I <struct mp>
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I <sequence_mp>

4.2.4 Structs

For every struct the scoped struct name is specified as well as the mapping for each member. 

Since stmcts are passed by-value, there is no need for keys.

<struct_mp> ::= ( STRUCT <scoped_struct_name>
( <member_name> <data_type_mp> )+ )

4.2.5 V iew References

Inside the mapping definition of an DDL view it is possible to refer to an already existing view. 

Depending on the type of the referenced view, this is either used to represent an embedded struct 

or an object reference. While an embedded stmct can also be defined directly inside the outer 

type, a view reference is the only possibility to specify a CORBA object reference using this 

mapping language. For a view reference it is necessary to specify the connection between the 

current table and the table of the referenced view. This is done by giving the primary / foreign 

keys of the two involved tables.

<reference_mp> ::= ( REFERENCE <view_name>
KEYS ( <column_name>+ )

( <column_name>+ ) )

4.2.6 Sequences

The data, which belongs to a sequence, is multi-valued and therefore stored in a different table. 

This table together with the connecting columns is specified in the “table_mp” constmct of the 

mapping language. Another possibility is the usage of a view reference where the new table is 

already specified by the referenced view. An exception is the case where the subtype of the 

sequence is an object reference. In this case the new table is already specified by the referenced
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view (see the examples in 4.3.1 for the usage of these two possibilities). Since sequences are 

ordered it is additionally necessary to specify an order-by-clause.

<sequence_mp> ::= ( SEQUENCE <scoped_sequence_name>
<table_mp> | <reference_mp>
ORDERBY <order_by_clause> )

<table_mp> ::= ( TABLE <table_name>
KEYS ( <column_name>+ ) ( <column_name>+ )
<data_type_mp> )

4.2.7 Base Types

Every type mapping is defined in the context of a table. All basic types are directly represented 

by one of the table’s columns. The only exception is the type boolean, which does not exist in 

some relational databases. In this case it is necessary to give additionally the value which 

represents true.

<base_type_mp> ::= ( BOOLEAN <column_name> <true_value> )
I ( LONG <column_name> )
I ( FLOAT <column_name> )
I ( STRING <column_name> )

4.2.8 Enumerations

The mapping for an enumeration is specified by giving the scoped name of the enumeration and 

a list of specifications for every possible value of the enumeration type (enumerator). Each 

enumerator is associated with a column name and the value, which represents the enumerator in 

the database.

<enum_mp> ::= ( ENUM <scoped_name>
COLUMN <column_name>
( <enumerator> <enum value> )+ )
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4.3 Examples

The examples are divided in two parts. The first part contains the basic mappings for interfaces, 

structs, enumeration and sequences. The second part deals with the representation of inheritance.

4.3.1 Basic Mappings

The following conceptual model of genome maps and markers is used throughout this section 

(Figure 11). It is a simplified version of the model in the second chapter. A map has a name, a 

type and contains a possibly large number of markers. Each marker, which is assigned to a map 

has a position on this map, a rank, and a boolean flag indicating whether it belongs to the 

fi-amework of the map or not. Each marker on its own has a name and a type and can occur on 

several different maps.

Map

name string 
type string

Assignment

position float 
rank long 
fw boolean

Marker

name string 
type string

Figure 11: Conceptual Model

The following relational schema (Figure. 12) represents this model. The attribute “ID” is the 

primary key of the tables “MAPS” and “MARKERS”. They correspond to the foreign keys 

“MAP ID” and “MARKER ID” of the table “MAP MARKERS”. The types have been omitted 

but are assumed to be compatible with the types of the conceptual model.
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MAPS: MARKERS:

ID TYPE ID TYPE

MAP MARKERS:

MAP_ID MARKER_ID FW RANK POSITION

Figure 12: Relational Schem a.

4.3.1.1 Struct

The following CORBA IDL is one possibility to represent the assignment class of the 

conceptual model in figure 11.

module Genome {
struct Assignment { 

string map_name; 
string marker_name; 
float position; 
long rank; 
boolean fw;

}; 
};

This simple IDL could be mapped using the following view definition:

( VIEW Assignments 
TABLE MAP_MARKERS 
( STRUCT Genome::Assignment

( map_name ( STRING MAP_ID ) )
( marker name ( STRING MARKER ID ) )
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( position ( FLOAT POSITION ) )
( rank ( LONG RANK ) )
( fw ( BOOLEAN FW Y ) )

)

)

In this example, a view with the name “Assignments” has been defined. The data for the view 

can be found in the table “MAP MARKERS”. The view is represented by the IDL struct 

“Assignment” in the module “Genome”. The struct member “map name” is represented by the 

table attribute “MAP ID” and has the IDL type string. Note that in the case of the boolean struct 

member “fw”, it is additionally necessary to specify the value which represents tme in the 

relational database; in this case “Y”.

4.3.1.2 Interface

Mapping specifications for interfaces are very similar to those of structs. Here an example for 

the class “Map” of the conceptual model.

module Genome { 
interface Map {

readonly attribute string name; 
readonly attribute string type;

}; 

} ;

The following mapping specification implements this IDL:

VIEW Maps 
TABLE MAPS
( INTERFACE Genome : : Map 
EXTENDS ()
KEYS ( ID )
( name ( STRING ID ) )
( type ( STRING TYPE ) )
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)

)

Mapping definitions of structs and interfaces are identical apart fi'om the additional specification 

of extended interfaces and keys. In this case no other interface is extended by “Genome: :Map”. 

The primary key of the table “MAPS” is specified in the “KEYS” clause and can be used by the 

object adapter of the object request broker.

4.3.1.3 Nested Struct -  One Table

In this example, the same information as in example 4.3.1.1 is represented but this time using 

two nested stmcts. The example is a bit artificial but demonstrates the point.

module Genome { 
struct Names { 

string map_name; 
string marker_name;

I n ­

struct Assignment {
Names names; 
float position; 
long rank; 
boolean fw;

}; 
};
The corresponding mapping definition directly reflects the nested IDL stmcts.

( VIEW Assignments 
TABLE MAP_MARKERS 
( STRUCT Genome::Assignment

( names ( STRUCT Genome::Names
( map_name (STRING MAP_ID ) )
( marker_name (STRING MARKER_ID ) ) )

( position ( FLOAT POSITION) )
( rank ( LONG RANK ) )
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( fw ( BOOLEAN FW )
)

4.3.1.4 Nested Struct -  Two Tables

In this example, the “Assignment” stmct contains not only the marker name but the full marker 

information in an own stmct.

module Genome {
struct Marker { 

string name; 
string type;

};
struct Assignment { 

string map_name;
Marker marker; 
float position; 
long rank; 
boolean fw;

}; 
};
The following mapping definition creates two CORBA views; one for the markers and one for 

the assignments. The “Assignments” view refers to the “Markers” view using the 

“REFERENCE” constmct of the mapping language.

( VIEW Markers 
TABLE MARKERS 
( STRUCT Genome::Marker 

( name ( STRING ID )
( type ( STRING TYPE

)

)

( VIEW Assignments 
TABLE MAP MARKERS
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( STRUCT Genome::Assignment
( map_name ( STRING map_id ) )
( marker ( REFERENCE Markers

KEYS (MARKER_ID) (ID) ) 
( position ( FLOAT POSITION) )
( rank ( LONG RANK ) )
( fw ( BOOLEAN FW ) )

)

4.3.1.5 Object Reference

This example represents the same information as the previous example but uses an interface for 

the markers.

module Genome {
interface Marker {

readonly attribute string name; 
readonly attribute string type;

};
struct Assignment { 

string map_name;
Marker marker; 
float position; 
long rank; 
boolean fw;

};  

};
Again, two views are defined. The only difference to the previous example is that the view 

“Markers” is now represented by an interface. The same reference construct can be used as 

before but this time resulting in a CORBA object reference.

( VIEW Markers 
TABLE MARKERS 
( INTERFACE Genome::Marker
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EXTENDS ()
KEYS (ID)
( name ( STRING ID ) )
( type ( STRING TYPE ) )

( VIEW Assignments 
TABLE MAP_MARKERS 
( STRUCT Genome::Assignment

( map_name ( STRING map_id ) )
( marker ( REFERENCE Markers

KEYS (MARKER_ID) (ID) )
( position ( FLOAT POSITION) )
( rank ( LONG RANK ) )
( fw ( BOOLEAN FW ) )

)

)

4.3.1.6 Sequence

Here the struct “Map” contains a sequence of strings. The contents of a sequence is always on a

separate table.

module Genome {
typedef sequence <string> Markers; 
struct Map { 

string name; 
string type;
Markers markers;

}; 

};

The following view definition implements this DDL:

( VIEW Maps 
TABLE MAPS
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( STRUCT Genome::Map
( name ( STRING ID ) )
( type ( STRING TYPE ) )
( markers ( SEQUENCE Genome::Markers 

( TABLE MAP_MARKERS 
KEYS (ID) (MAP_ID)
( STRING MARKER_ID )
ORDERBY POSITION ) )

)

)

The mapping specification of the sequence contains the connecting columns of the two involved 

tables, the mapping definition of the sub-type of the sequence, and an order-by clause.

4.3.1.7 Sequence of Structs -  Two Tables

In this example the struct “Map” contains a sequence of “Assignment” structs. Note that the

member “map name” of the stmct “Assignment” has been omitted in this example because it 

would be redundant.

module Genome {
struct Assignment { 

string marker_name; 
float position; 
long rank; 
boolean fw;

};
typedef sequence <Assignment> Assignments; 
struct Map { 

string name; 
string type;
Assignments assignments;

}; 

};

Here the corresponding mapping definition if only one view is used:
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( VIEW Maps 
TABLE MAPS 
( STRUCT Genome::Map

( name ( STRING ID ) )
( type ( STRING TYPE ) )
( assignments ( SEQUENCE Genome::Assignments 

( TABLE MAP_MARKERS 
KEYS (ID) (MAP_ID)
( STRUCT Genome::Assignment

( marker_name ( STRING MARKER_ID ) )
( position ( FLOAT POSITION ) )
( rank ( LONG RANK ) )
( fw ( BOOLEAN FW Y ) )

)

ORDERBY POSITION ) ) )
)

)

Alternatively, if a separate view for assignments is wanted:

( VIEW Assignments 
TABLE MAP_MARKERS 
( STRUCT Genome::Assignment

( marker_name ( STRING MARKER_ID ) )
( position ( FLOAT POSITION ) )
( rank ( LONG RANK ) )
( fw ( BOOLEAN FW Y ) )

VIEW Maps 
TABLE MAPS 
( STRUCT Genome::Map

( name ( STRING ID ) )
( type ( STRING TYPE ) )
( assignments ( SEQUENCE Genome::Assignments 

( REFERENCE Assignments
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KEYS (ID) (MAP_ID) ) 
ORDERBY POSITION ) ) )

In this case the “REFERENCE” construct is used instead of the “TABLE” construct.

4.3.1.8 Sequence of Structs -  Three Tables

Here the struct “Map” contains a sequence markers instead of a sequence of assignments as in 

the previous example.

module Genome { 
struct Marker { 

string name; 
string type;

};

typedef sequence <Marker> Markers; 
struct Map { 

string name; 
string type;
Markers markers;

};  

};

Note that in contrast to the previous example, the “TABLE” construct as well as the 

“REFERENCE” construct have to be used in the mapping definition of the view “Maps”.

( VIEW Markers 
TABLE MARKERS 
( STRUCT Genome:zMarker

( name ( STRING MARKER_ID ) 
( type ( STRING TYPE ) )
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VIEW Maps 
TABLE MAPS 
( STRUCT Genome::Map

( name ( STRING ID ) )
( type ( STRING TYPE ) )
( markers ( SEQUENCE Genome ::Markers 

{ TABLE MAP_MARKERS 
KEYS (ID) (MAP_ID)
( REFERENCE Markers
KEYS (MARKER_ID) (ID) ) )

ORDERBY POSITION ) )

)

4.3.1.9 Interface Containing a Sequence of Nested Structs

Here “Map” is an interface containing a sequence of nested “Assigimient” and “Marker” structs. 

This example could be a realistic IDL for the complete relational schema.

module Genome {
struct Marker { 

string name; 
string type;

};
struct Assignment {

Marker marker; 
float position; 
long rank; 
boolean fw;

};
typedef sequence <Assignment> Assignments;
interface Map {

readonly attribute string name; 
readonly attribute string type; 
readonly attribute Assignments assignments;

};  

};
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Here the corresponding mapping definitions using three separate views.

VIEW Markers 
TABLE MARKERS 
( STRUCT Genome :rMarker 

( name ( STRING ID ) )
( type ( STRING TYPE ) )

)

VIEW Assignments 
TABLE MAP_MARKERS 
( STRUCT Genome::Assignment

( map_name ( STRING map_id ) )
( marker ( REFERENCE Markers

KEYS (MARKER_ID) (ID) ) 
( position ( FLOAT POSITION) )
( rank ( LONG RANK ) )
( fw ( BOOLEAN FW ) )

VIEW Maps 
TABLE MAPS
( INTERFACE Genome::Map 
EXTENDS ()
KEYS (ID)
( name (STRING ID) )
( type (string TYPE)
( assignments ( SEQUENCE Genome::Assignments 

( REFERENCE Assignments 
KEYS (ID) (MAP_ID) ) 

ORDERBY POSITION ) )
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4.3.1.10 Enumeration

In the previous examples the type of a map was represented by a string. If there is only a small 

number of possible different types then an enumeration could be used instead.

module {
enum MapType { genetic, radiation_hybrid } 
interface Map

readonly attribute string name; 
readonly attribute MapType type;

}; 

};

In the mapping definition, each possible enumerator is associated with exactly one value in the 

database.

( VIEW Maps 
TABLE MAPS
( INTERFACE Genome::Map 
EXTENDS ()
KEYS ( ID )
( name ( STRING ID ) )
( type ( ENUM Genome::MapType 

COLUMN TYPE 
( genetic genetic )
( radiation_hybrid rh ) ) )

)

)

4.3.2 Inheritance

In the examples so far, genome maps had a type, represented by a string or an enumeration. If 

the map types form a hierarchy, possibly having different attributes for different types of maps, 

then a different conceptual model would be more natural. Figure 12 depicts a conceptual model
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where “Physical Map” and “Genetic Map” are sub-classes of “Map”. Genetic maps have the 

additional attribute “lod score”.

Map

name string 
species string

Genetic Map

lod score float

Physical Map

Figure 13: Conceptual Model - Inheritance

There are two common ways how to represent such a hierarchy in a relational database: 

horizontal partitioning and vertical partitioning [Ceri 84].

4.3.2.1 Horizontal Partitioning

A schema using horizontal partitioning is depicted in Figure 14. The table “MAPS” contains 

only entries for maps, which are neither assigned to be genetic nor physical maps. The table 

“GENETIC MAPS” contains all genetic maps and the table “PHYSICAL_MAPS” contains all 

physical maps. Advantage of this possibility is an efficient access to the sub-classes; 

disadvantage is that an access to the super-class “Map” requires a union of three tables. 

Horizontal partitioning is the only directly supported representation of the mapping language.
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MAPS; GENETIC MAPS:

ID SPECIES

Ml Mouse

ID SPECIES LOD_SCORE

H2 Human 2.25

PHYSICAL MAPS:

ID SPECIES

R3 Rat

Figure 14: Horizontal Partitioning.

4.3.2.2 Vertical Partitioning

Figure 15 depicts a schema using vertical partitioning. The table “MAPS” contains entries for all 

maps, while the tables “GENETIC MAPS” and “PHYSICAL MAPS” contain only keys and 

additional attributes. This time access to the super-class “Map” is efficient, whereas access to 

one of the sub-classes requires a costly join operation. Vertical partitioning is not directly 

supported by the mapping language; it is instead necessary to use relational views to define the 

mapping.

MAPS:

ID SPECIES

Ml Mouse

H2 Human

R3 Rat

GENETIC MAPS:

ID LODSCORE

H2 2.25

PHYSICAL MAPS:

ID

R3

Figure 15: Vertical Partitioning

4.3.2.3 Interfaces

The following IDL is one possibility to represent the conceptual schema in Figure 13 using 

interfaces:
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module {
interface Map {

readonly attribute string name; 
readonly attribute string species;

};
interface GeneticMap : Map {

readonly attribute float lod_score;
};
interface PhysicalMap : Map {
}; 

};
If horizontal partitioning is used (Figure 14), the mapping is straightforward. Note that the 

“EXTENDS” clause only specifies the complete IDL type of an interface, while the “SUB” 

clause defines the subset relationship of the involved views.

( VIEW Maps 
TABLE MAPS
( INTERFACE Genome::Map
SUB ( GeneticMaps PhysicalMaps ) 
KEYS ( ID )
( name ( STRING ID ) )
( species ( STRING SPECIES ) )

)

)

( VIEW GeneticMaps 
TABLE GENETIC_MAPS 
( INTERFACE Genome::GeneticMap 

EXTENDS ( Genome::Map )
KEYS ( ID )
( name ( STRING ID ) )
( species ( STRING SPECIES ) )
( lod_score ( FLOAT LOD_SCORE ) )

)

)

( VIEW PhysicalMaps 
TABLE PHYSICAL MAPS
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( INTERFACE Genome::PhysicalMap 
EXTENDS ( Genome::Map )
KEYS ( ID )
( name ( STRING ID ) )
( species ( STRING SPECIES ) )

)

)

4.3.2.4 Structs

CORBA IDL structs do not support inheritance. If however, performance considerations require 

the usage of structs to represent a class hierarchy, then it is still possible to mimic some of the 

relevant behaviour in a crude way. There are two separate issues: the type hierarchy and the 

sub/super-set relationship. The best one can do with respect to the type hierarchy is “cut and 

paste inheritance” as in the following IDL.

module Genome { 
struct Map { 

string name; 
string species;

I n ­

struct GeneticMap { 
string name; 
string species; 
float lod_score;

I n ­

struct PhysicalMap { 
string name; 
string species;

};  

};
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Even though each struct has the appropriate members, a compiler would of course not allow to 

use a “GeneticMap” in a place where a stmct of the type “Map” is expected. The following 

mapping definition implements the IDL above:

( VIEW Maps 
TABLE MAPS 
( STRUCT Genome::Map

( name ( STRING ID ) )
( species ( STRING SPECIES ) )

)

)

( VIEW GeneticMaps 
TABLE GENETIC_MAPS 
( STRUCT Genome::GeneticMap 

( name ( STRING ID ) )
( species ( STRING SPECIES ) )
( lod_score ( FLOAT LOD_SCORE

)

)

( VIEW PhysicalMaps 
TABLE PHYSICAL_MAPS 
( STRUCT Genome::PhysicalMap 

( name ( STRING ID ) )
( species ( STRING SPECIES ) )

In contrast to the mapping of interfaces, there is no “SUB” clause available for the mapping of 

structs. The reason is that the different stmct types are not compatible with each other so that a 

CORBA view using one stmct type can not just include another CORBA view using another 

stmct type. Therefore SQL views have to be used to achieve the required one-to-one 

relationship between a stmct and a relational table. Figure 16 depicts such views for the mapping 

definitions above.
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MAPS:

ID SPECIES

Ml Mouse

H2 Human

R3 Rat

GENETIC MAPS: PHYSICAL MAPS:

ID SPECIES LOD_SCORE

H2 Human 2.25

ID SPECIES

R3 Rat

Figure 16: SQL Views for the Mapping of Structs

Using the virtual tables of Fig. 15, all maps are included in the view "Maps" aW  the tables for 

genetic and physical maps contain all attributes belonging to that map. The disadvantage of this 

solution, in comparison with the previous interface example, is that a chent, which retrieves a 

stmct using the view “Maps” can not directly decide whether this stmct has a more specific sub- 

type. Also such a stmct cannot be narrowed to a more specific type as it is the case for object 

references.

4.4 Discussion

In this section the advantages and disadvantages of the chosen mapping language are discussed 

and compared to alternative approaches.

4.4.1 Two-Stage Mapping using Relational Views

The examples of vertical partitioning and inheritance fo r structs in section 3.2 have 

demonstrated two cases where the presented mapping language is not sufficient to express the 

required mapping. Instead it was necessary to use relational views as an intermediate mapping 

step (Figure 17).
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Tables SQL Views

Figure 17: Tw o-stage Mapping using SQL Views

There are of course many other cases where this is tme especially since the aim of the approach

is to allow for a maximal freedom in the choice of the relational schema and in the choice of the

IDL. The advantages of splitting of the responsibilities between relational views and mapping

language are:

• A powerful existing mechanism is utilised instead of duplicating functionality.

• Reuse is facilitated. Not only can different DDL views share the same relational views but 

also other applications can do so. In fact, in many cases the relational views will already 

exist when an additional CORBA access layer is added.

• CORBA servers are better insulated from schema changes in the relational database.

• A simple and pragmatic criterion is provided to decide the question of what should be part

of the mapping language and what should be excluded.

The disadvantages on the other hand are:

• The mapping information has to be maintained at two different places.

• Even though the here presented approach is intended to provide a read-only access to the 

database, it is of course possible to employ the same strategy to do update operations. 

Update operations however, might benefit from more explicit control over the possible 

mappings.
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An alternative would be to try to enrich the mapping language to allow for other common 

mappings such as the mentioned vertical partitioning. There is probably no reason to be too 

dogmatic about such extensions as long as the language becomes easier to use. Such constructs 

would be orthogonal to the here presented ones but not provide anything new in the context of 

this thesis since they have nothing to do with CORBA IDL and merely reimplement existing 

SQL features. The problem of updating relational views is a research topic in its own right and 

is treated for example in [Date 86].

4.4.2 Usage o f an Intermediate Object Model

Another option is the usage of an object model as an intermediate mapping step (Figure 18).

Tables
Model

Figure 18: Tw o-stage Mapping Using an Intermediate Object Model

One problem is that the object oriented model is more complex than the relational model. 

Therefore an equivalent mapping language for the mapping between an object-oriented model 

and CORBA IDL is necessarily more complex. This approach is only justified if the object 

model and the mapping to the object model already exist and the final mapping step fi'om the 

object model to IDL is simple.
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4.4.3 Logic as a Mapping Language

Instead of the here presented mapping language, other possibilities could have been employed. 

The most general method to describe the mapping between CORBA DDL and tables of a 

relational database would be the direct usage of logic, whereby queries could be evaluated by 

theorem proving [Lloyd 1987]. While allowing a greater freedom in the choice of possible 

mappings, it is likely that in this case there would be no efficient method available for the 

evaluation of queries. Another disadvantage is that general logic is less easy use and understand 

by the CORBA developer than the small, predefined set of constructs of the specialised mapping 

language. The here presented method presents a good compromise between efficiency, ease of 

use, and a large number of mapping possibilities.

4.5 Conclusion

A declarative mapping language has been presented in this chapter, which allows to specify 

mappings between tables of relational databases and IDL types. The language is intended to 

guide automatic query translations and the necessary data transformations for the retrieval of 

data. To allow for a maximal freedom in the choice of the DDL and relational schema it is 

necessary to rely on relational views as an intermediate mapping step. This approach of two 

mapping steps simplifies the mapping language, facilitates reuse and insulates the CORBA 

server from changes in the relational database. The mapping language represents a good 

compromise with respect to efficiency, ease-of-use, and generality in comparison with other 

approaches such as hand-coding or usage of logic as a mapping specification.
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Chapter 5

IDLVIEWS -  A CORBA WRAPPER 
GENERATOR

5.1 Introduction

In the previous chapter a mapping language has been presented. IDLViews is a system which 

can use this language to generate CORBA wrappers for relational databases. It thereby serves as 

a proof of concept for the mapping language and allows to discuss the issues of chapter three 

from a practical point of view.

5.2 Architecture

Figure 19 depicts an overview of the architecture of the system. The process of generating a 

CORBA wrapper is as follows: The first step is to decide what IDL optimally serves the 

application. Then one or more IDL views can be defined using the mapping language. The 

view definitions describe the mapping between IDL constructs on one side and tables and 

columns on the other side. Using these rules, a generator creates both a CORBA server and a 

file with the implemented IDL. The generated IDL can be used to implement a CORBA client 

for this server.
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Figure 19: Architecture of IDLViews

The client can query the server using a query language, which is based on the generated DDL. 

The queries are translated to SQL queries using the definitions of the mapping language. The 

results are then translated back in the required DDL representation and returned to the CORBA 

client.

5.3 Interfaces

The IDL implemented by the CORBA server consists of two parts. The first part represents the 

data needed by the application. The second part specifies the API for the database itself and 

defines methods for querying and data retrieval. The following IDL represents the data of an 

application and is used in this chapter as an example.

module Example { 

struct Marker {
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string name;
float position;
boolean frameworkMarker;

};

typedef sequence <Marker> Markers;

interface GenomeMap {
readonly attribute string name; 
readonly attribute string chromosome; 
readonly attribute Markers markers;

};

}; // End of module Example

The second part of the IDL specifies methods for the querying and retrieval of the data. The 

basic idea of this API is similar to examples such as JDBC or the CORBA Query Service. A 

query evaluator allows to specify a query. The evaluator returns an iterator, which then gives 

access to the individual result elements. However, unlike in JDBC and the Query Service, the 

iterator is specific for a certain type. Even though this requires the definition of an own iterator 

interface for each possible return type, the advantage is that the usage of the generic type any is 

avoided. Anys are less efficient for the data transfer and require the conversion of the data on 

the client side to the actual type. If a view for the maps in the data IDL above has been defined, 

the following additional server IDL is generated:

module Views {

exception NoMoreElements {}; 
exception InvalidQuery {};
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interface Iterator { 
boolean m o r e (); 
void close ( );

};

typedef sequence<Example: :GenomeMap> GenomeMapSeq;

interface GenomeMaps: Iterator {
Example::GenomeMap next() raises(NoMoreElements); 
GenomeMapSeq next_n(in long n);

};

interface Evaluator {
long count(in string viewName, in string where) 

raises (InvalidQuery);
GenomeMaps get_GenomeMaps(in string where) 

raises (InvalidQuery);
};

}; // End of module Views

The Evaluator interface has a get method defined for each view. The client can specify here a 

where-clause similar to SQL queries (see next section). The evaluator returns an object 

reference to an iterator. There is a separate iterator specified for each view. The iterator has a 

next method, which returns object references or stmcts of the type defined in the view. 

Additionally, there are methods count and nextji to allow the client to optimise the data 

retrieval. Note that the count method can be used for all views implemented by the server 

whereas each get method is defined for only one view.
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5.4 Queries

The approach chosen for the IDLViews system maps a relational schema into IDL, thereby 

alleviating the infamous impedance mismatch between application code and relational database. 

Query results are always represented by a predefined type, either structs or object references. 

This is naturally achieved by class specificger methods and iterators as described above. Using 

this approach, we can avoid the usage of the generic IDL type any. Anys are less efficient for 

the data transfer and inconvenient to use in client programs. However, using fixed result types 

inevitably restricts the query power, as arbitrary joins and projections have to be disallowed. In 

practice this restriction is of little significance and shared by many other applications such as 

digital libraries.

The get methods of the Evaluator interface takes as input parameter a string, which is 

comparable to a SQL where-clause. The predicates of the query are formulated using attribute 

names and member names of the IDL interfaces and structs. Client code depends therefore only 

on the IDL and is immune against most schema changes in the database.

5.4.1 The Query Language

We introduce the language informally using some examples, the grammar for this language can 

be found in the appendix. Conditions on basic types can be specified using the predicates ‘<’, 

‘>’, ‘<=’, and ‘>=’. Predicates can be combined using ‘and’, ‘or’ and ‘not’. If a member or 

attribute contains a sequence then the quantifiers ‘exists’ and ‘all’ can be used. Queries can 

contain nested subqueries to specify embedded stmcts or referenced objects.
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5.4.2 Examples

We assume that a view for markers exists for the IDL in the main example. The following 

where-clauses could be specified in the get_Markers method. Note that in this case structs and 

not object references would be returned. If, as in Q4, several member conditions are specified, 

then all conditions have to be tme.

Ql: “All markers”

No condition has to be specified.

Q2 : “The markers with the name ‘RH2345’ and ‘RH5432’.”

(name (or 'RH2345' 'RH5432'))

Q3 : “All markers except the marker with the name ‘RH2345’.”

(name (not 'RH2345'))

Q4 : “All non-ffamework markers with a position greater than 100.”

(frameworkMarker false) (position (> 100))

Q5 : “All markers with a position between 20 and 30.”

(position (and (>= 20) (<= 30)))

For the view GenomeMaps, as defined in the last section, the following queries are possible. The 

GenomeMap attribute markers contains a sequence of stmcts. At this place the quantifiers exists 

and all can be used. Inside the quantifier a specification for the stmct has to be given, which is a 

list of member conditions as in Q1-Q5.

Q 6 : “All maps which contain the marker with the id ‘RH3456’ ”
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(markers (exists (name 'RH3456')))

Q7 : “All maps which contain only framework markers”

(markers (all (frameworkMarker true)))

5.4.3 Query Mapping

The translation of our query language to SQL is based on the mapping rules. As these rules 

always associate each stmct or interface with one table, this translation is fairly straightforward. 

Nested queries are translated to nested SQL statements using the predicate ‘in’. We give the 

translation of queries Q2 and Q6 as examples. Again we assume the relational schema in 3.2.

Q 2 : select distinct id, position, fw from map_markers 
where id='RH2345' or id='RH5432'

Q6: select distinct id from maps
where id in (select map_id from markers 

where id='RH3456')

Note, that in Q2 all information on the markers is retrieved whereas in Q6 only the key. The 

reason is that in Q2 a stmct is returned, which has to contain all data, while in Q6 only an object 

reference is returned.

5.5 Implementation

The generator has been implemented in the programming language Java on a Solaris UNIX 

system. The generated server accesses an Oracle relational database using a JDBC driver. The 

used object request broker is Omnibroker. At the time of the implementation. Omnibroker did
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not support the Portable Object Adapter (POA) and offered no other possibility to implicitly 

register CORBA objects. Therefore each object is registered individually when accessed the 

first time. The object is then loaded completely into the memory of the server and stays there 

until it is actively removed. This approach works fine as long as there are only few CORBA 

objects but clearly a different method would be necessary if  a more fine grained approach is 

used.

5.6 Related Work

The author is not aware of any other project that follows the presented method of generating 

CORBA servers and IDL based on a set of declarative mapping rules. However, a number of 

research areas share problems. For instance, mapping relations to IDL interfaces is related to 

object-relational mapping (e.g. [Papazoglou 96], [Tari 97], [Wiederhold 86]). The mapping step, 

consequently called “semantic enrichment” in [Hohenstein 96], can in general not be automated 

because the relational schema simply does not carry the necessary information. Hence, the 

mapping rules must be specified by a human operator, as done in our approach.

The translation of object-oriented queries into a query against a semantically equivalent 

relational schema is covered in depth in [Fahl 97] and [Qian 95]. The approach of [Fahl 97] is 

similar to the one in this thesis in that they also assume that each (object-oriented) class is 

represented by exactly one relational table. However, the query language presented here is only 

a subset of theirs, as it does not treat path expressions. [Qian 95] considers extensional 

relationships in inheritance hierarchies by mapping the translation into DATALOG programs, 

which are used as a mediator between the query and the database. In contrast, for the mapping
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language presented here, no relationships between extents of interfaces that are in a 

specialisation relationship are required or guaranteed.

Another related research area is the integration of database systems in a CORBA 

framework. [Leser 98a] discusses several design issues in this context, including the 

consequences of using stmcts or interfaces for object representation. They clearly point out that 

it is in general very difficult to achieve full relational query power through CORBA, mainly due 

to the static type system. The OMG itself has contributed to this area through the “Object Query 

Service Specification" [OMG 89]. However, as detailed in [Leser 98a] and [Wells 94], this 

specification has severe pitfalls. For instance, it does not support any representation of domain 

objects on the CORBA level.

There are only few commercial tools available, which support the generation of CORBA 

access layers for relational databases. For example Persistence TM’ defines an object-oriented 

schema on top of a relational schema. A programming library is generated, which makes the 

data accessible through a set of C++ classes. Additionally the tool can generate a CORBA 

server, which maps the 0 0  schema into IDL and uses the library to access the database. The 

main problem with this tool is the limited influence the developer has in the choice of the 

generated IDL. It is purely interface-based with no support for stmct-based representations, 

which are essential to ensure sufficient performance. Hence, in real-life applications, it is 

necessary to change the generated CORBA server to a great degree by hand. But these changes 

are not visible for the query processor. A similar approach is taken by the OPM project [Chen 

98].

http://www.persistence.com

http://www.persistence.com
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5.7 Discussion

A method has been presented for the semiautomatic generation of CORBA wrappers for 

relational databases. Compared to the two other major approaches -  hand-coding or completely 

automatic generation -  our system offers many advantages. CORBA views can be defined 

easily, allowing many applications to share data, each with its own IDL. It is straightforward to 

generate redundant IDL definitions, for instance containing both a struct and an interface for the 

same data. This leaves it to the client application to choose the most convenient access method.

The server is equipped with a query language, which can express complex conditions. 

Usage of this query language does not require any knowledge of the schema of the underlying 

database, but is entirely based on the IDL itself. The client code is therefore completely 

independent of schema changes, provided that the mapping rules are adjusted. Although, it is 

clear that the queiy language can only express a limited set of queries, it proved to be sufficient 

for most applications.

Using a set of mapping rules, the system generates Java source code for the server. This 

compilation strategy has been the chosen strategy for several reasons. Firstly, it offers a 

considerably better performance compared to an interpretation of the rules at run-time. 

Secondly, the code can be used as a template for further customisations. Finally, it allows the 

usage of skeleton code generated by the IDL compiler, which significantly simplifies the code 

generation task. The disadvantage is that every change in the mapping rules requires the 

regeneration of the server. However, the choice between interpretation and compilation is an 

implementation detail, which does not touch the principal of our approach.

As detailed in chapter four, some problems remain when specifying a query based on IDL 

definitions. They stem fi'om the fact that IDL was designed to specify an API and not to model
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data. An example is the usage of inheritance. If an interface A specialises an interface B then a 

query against B does not necessarily return a superset of the same query against A. Such a 

behaviour can be enforced using the mapping language and appropriate relational views, but it is 

not visible from the IDL alone. Other problems can occur when the requirements for querying 

are not identical to the requirements for data retrieval. For instance one might not want to 

retrieve the information indicating whether a marker belongs to the framework of a map but still 

be able to use it in a query. These problems would vanish if  we use the schema and query 

language of the underlying relational database and IDL merely represents query results. The 

disadvantage would be that then the user has to know the relational schema, the DDL and the 

mapping between the two.
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5.8 Conclusion

The wrapper generator IDLViews has been presented in this chapter, which implements the 

mapping language in chapter four, thereby serving as a proof of concept. The IDL Views system 

is well suited to support the implementation of applications such as the standard map IDL in 

chapter two. It allows for the quick deployment of CORBA wrappers, which can support simple 

specialised client programs.
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Chapter 6

CONCLUSIONS

The emergence of the CORBA standard has created many new opportunities for the combination 

of heterogeneous and distributed components in the field of Bioinformatics. This thesis has 

focused on one of the most important aspects in such an environment - the representation and 

distribution of molecular biology data. The main advantages of CORBA are the hiding of 

implementation details and the ability to access remote information like local programming 

language objects. The result is a simplified development of clients for CORBA wrapped data 

sources, such as visualisation and analysis tools.

Wrappers implement CORBA interfaces for already existing traditional data sources such as 

flat-files or relational databases. The most important question the developer of a wrapper faces 

is how to represent the data in CORBA IDL. The decision whether to represent data by value 

types or by CORBA objects has a major impact on the performance of the distributed system. 

The developer also has to choose between generic representations and domain specific 

representations. For both questions, the better choice depends very much on the concrete 

application. This text, concentrates on domain specific representations, because they are easier 

to use by the client and because they are more interesting in the context of this thesis.
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The main problem of CORBA wrappers is the considerable effort necessary for their 

development and deployment. Coding the wrapper by hand, the most commonly used approach, 

is tedious and leads to many maintenance problems. In contrast, the automatic generation of 

CORBA wrappers, based on the schema of the underlying data source, is almost effortless. 

However, for many applications such a server is not useful, either because the performance is not 

sufficient or because an external standard imposes a different IDL. This thesis suggests a third 

option, which tries to combine the advantages of the previous two. The developer specifies a set 

of mles, which define the mapping between IDL constructs and schema of the data source. Once 

this mapping has been defined, the CORBA wrapper can be automatically generated, removing 

most of the burden of the server development. Additionally, such a CORBA server can support 

a query language, which is based on the IDL definitions. In this thesis such a mapping language 

has been presented for the important case of relational databases and the language has been 

implemented by the wrapper generator IDL Views. IDL Views is well suited for the devlopment 

of thin clients, because of the large degreee of freedom the developer has when choosing an IDL 

for his application.

Even though IDL is often used to model data, it is an API and not a data modelling 

language. To ensure sufficient performance, application specific access paths have to be 

encoded in the IDL. IDL definitions are therefore often redundant and more complex, and more 

difficult to understand than a data model. A similar point has been made about object-oriented 

databases in [Goodman 95]. In this paper the authors claim that C++ is a poor choice for 

modelling data, because the code tends to be application specific and complex.

The method of semiautomatic server generation is very general and can be used in many 

different contexts. It could just as well be used for the generation of DCOM servers or for the
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generation of Enterprise Java Beans (EJBs). Different data sources such as flat-files or object- 

oriented databases could be used instead of relational databases. However the implementation 

would be more conq)lex in these cases and it would be more difficult to support ad-hoc queries.

Standardisation of interfaces for common applications facilitates interaction of components 

developed by independent research groups. However, agreement on standards is a painful and 

difficult process -  not easier in the case of IDL than in the case of flat-file formats. It might be 

even more difficult for CORBA interfaces because there are more possibilities to represent data 

and access methods using DDL and the aspect of distribution adds a new dimension to the 

problem. On the other hand it is relatively easy to support several different IDLs or to extend an 

existing one for a specialised purpose without breaking existing code.

The usage of CORBA as a middle-ware is more con^lex than programming within a single 

distributed language such as Java. However, when language and platform independence are 

required, there are currently no viable alternatives to CORBA. This is almost certainly true for 

the large public data providers such as the EBI, which would have difficulties to impose a 

specific programming environment on its users.

In the past four years the awareness of the CORBA standard and its possibilities has grown 

in the Bioinformatics community. Its advantages in an inherently distributed and heterogeneous 

environment have been recognised and there are an increasing number of applications available. 

The involvement of the EBI and the work, which has led to this thesis, have contributed to this 

development.
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APPENDIX A

The Common IDL

module Traders {

interface Trader {
exception NotFound {};
Object getByOid(in string oid) 

raises (NotFound);
} ;  

};

module Maps {

typedef sequence <string> Strings;

struct CrossReference { 
string database; 
string accession;

};
typedef sequence < CrossReference > CrossReferenceList;

struct MarkerData { 
string oid;
string species ; // of marker.

// Can place e.g. mouse marker
// on a human map. 

string chromosomeSegment; // Position at chromosome:
// chr + arm + band

CrossReferenceList crossReferences ;
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};
typedef sequence < MarkerData > MarkerList;

struct MapElement {
string oid; // unique object id.
MarkerData markerData; // Associated marker
float position; // distance from top of map
boolean frameworkMarker; // Is a framework marker?

};
typedef sequence < MapElement > MapElementList;

interface Map {
readonly attribute string 
readonly attribute string 
readonly attribute string 
readonly attribute string 
readonly attribute string 
readonly attribute float 
readonly attribute string 
readonly attribute long

oid; 
name ; 
type; 
species ; 
chromosome; 
length; 
unit ; 
size;

readonly attribute MapElementList elements ;
}
typedef sequence < Map > MapList;

interface MapTrader : Traders::Trader { 
MapList getMapList( in string mapType,

in string species, 
in string chromosome, 
in Strings markers); 

raises (Traders:: Trader : :NotFound);
};
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APPENDIX B

Grammar of the IDLViews Query Language

<where_clause> ::= <condition>*

<condition> ::= <base_spec>
I <slot_spec>
I <sequence_spec>
I <compound_cond>

<compound_cond> ::= (&& <condition>+)
I (II <condition>+)
I ( ! <condition>)

<sequence_spec> ::= <exists>
I <all>

<exists> (exists <where_clause>)
<all> ::= (all <where>_clause)

<slot_spec> ::= (<slot_name> <where_clause>)

<base_spec> ::= <base_value> | <range_spec>

<range_spec> ::= <gt_spec>
I <ge_spec>
I <lt_spec>
I <le_spec>

<gt_spec> ::= (> <base_value>)
<ge spec> ::= (>= <base value>)
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<lt_spec> ::= (< <base_value>)
<le_spec> ::= (<= <base_value>)

<base_value> :== <string>
I <int>
I <float>
I <boolean>

<boolean> : := true | false


