
A CORBA-BASED MEDIATION SYSTEM FOR

THE INTEGRATION OF WRAPPED

MOLECULAR BIOLOGY DATA SOURCES

Anastassia Spiridou

Ph.D. Thesis
University College London

2002

ProQuest Number: 10014368

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10014368

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Integration of data from disparate, heterogeneous and autonomous data sources is

a common problem encountered in different domains, including the domain of

Molecular Biology. Mediator-based architectures have been developed to deal

with integration of information from heterogeneous and autonomous data sources,

and views have been used to restructure data representation.

CORBA can resolve some of the problems involved in data integration by

providing programming language, platform and network transparency. In CORBA,

it is advantageous to model data itself in DDL, essentially creating DDL schemas.

Integration of data served by different CORBA servers and modelled in DDL

requires resolving schematic heterogeneity between the different DDL schemas.

That involves mapping from one or more source DDL schemas to a preferred target

DDL schema. Manual implementation of the mapping is possible but tedious.

The system described in this thesis offers creation of customised representations of

data and data integration on CORBA-wrapped data sources. Views are employed

to restructure data representation. The system supports semi-automatic generation

of target CORBA servers based on the specification of source to target DDL

mapping in a specially developed language. The mapping language has a high-

level notation for expressing mappings easily and concisely, as well as procedural

features to support complex cases. The mediation system is applied to the

integration of bacterial genome data from two independently developed CORBA

wrapped data sources.

- 2 -

Acknowledgements

I want to thank my supervisors Patricia Rodriguez-Tomé, Janet McDonnell, and

Janet Thornton for their continuous support during my work and their useful

comments. I would also like to thank Kim Jungfer, Philip Lijnzaad, Jeremy

Parsons and Martin Senger for our fruitful discussions, as well as Thena Rosahl

for proof reading. Last, but not least, special thanks to Paulo and Helena for their

invaluable support and patience.

To my father, with love.

- 3 -

Table Of Contents

Abstract..2

Acknowledgements...3

Chapter 1 : INTRODUCTION...8

1.1 Data Integration in Molecular Biology.. 9

1.1.1 Data characteristics...10

1.1.2 Data storage/management.. 10

1.1.3 Data access...11

1.1.4 Information Systems... 12

1.2 The Common Object Request Broker Architecture (CORBA)...............16

1.2.1 The Object Management Architecture (OMA)................................. 17

1.2.2 The Interface Definition Language (IDL).. 19

1.2.3 Important ORB features..21

1.2.4 CORBA 3-tier architecture for data access....................................... 21

1.3 Mediators.. 23

1.4 CORBA in Molecular Biology...25

1.5 A CORBA-based Mediation System.. 26

1.6 Outline of Thesis... 29

- 4 -

Chapter 2: CORBA MEDIATORS.. 30

2.1 Architecture.. 30

2.2 Common model and schema definition language.....................................32

2.3 Target object derivation.. 39

2.4 Publishing initial CORBA objects.. 41

2.5 Wrapper query support... 42

2.6 Mediator query support.. 46

2.7 Conclusions..47

Chapter 3: THE MAPPING LANGUAGE.. 48

3.1 General requirements..48

3.2 Design.. 49

3.2.1 Common model and schema definition language.............................50

3.2.2 Target object derivation..52

3.2.3 Publishing initial CORBA objects.. 52

3.2.4 Wrapper query support... 53

3.2.5 Mediator query support.. 54

3.3 Description... 54

3.3.1 Include directive.. 56

3.3.2 Server declaration... 56

3.3.3 Module... 58

3.3.4 View..58

3.3.5 Location... 61

3.3.6 Definition... 61

- 5 -

3.3.7 Source references... 63

3.3.8 Mapping.. 63

3.3.9 User methods.. 69

3.3.10 Names and Scope..69

3.4 Conclusions..73

Chapter 4: THE MEDIATOR SYSTEM...75

4.1 Architecture..75

4.2 The IDL View Generator...77

4.2.1 Use of the IDL View Generator...77

4.2.2 Mediator generated files..78

4.2.3 Implementation... 79

4.3 Mediators.. 79

4.3.1 Object composition and the adapter design pattern......................... 79

4.3.2 Interface implementation.. 82

4.3.3 Inheritance implementation...85

4.4 Conclusions..88

Chapter 5: APPLICATION IN BACTERIAL GENOMES................................ 89

5.1 Source CORBA Servers..90

5.1.1 SubtiList..90

5.1.2 EMBL.. 94

5.2 Object M odel...96

5.3 Mediator CORBA Server DDL..100

5.4 View Definition...102

- 6 -

5.5 A Client Application.. 116

5.6 Conclusions... 121

Chapter 6: CONCLUSIONS.. 123

Appendices...130

Appendix A: The mapping language specification in BNF.............................. 131

Appendix B: The SubtiList CORBA server DDL.. 135

Appendix C: The bacterial genomes objects model... 149

Appendix D: Generated mediator code... 160

Appendix E: Client application code... 176

References..180

- 7 -

Chapter 1: INTRODUCTION

The various genome projects have produced a large amount of data, which is

growing rapidly. Integrating selected interrelated genome data can be

advantageous in many cases enabling the discovery of new relationships between

data and analysis of the integrated data. Genome-related data is inherently

complex, highly diverse, with a stmcture that is continuously modified as

biological theories evolve. It is stored in different formats, managed by a variety of

systems distributed around the world, and accessed through different methods.

Integration of data from distributed, heterogeneous and autonomous data sources

is a challenging problem, commonly encountered in many domains. In every case,

the heterogeneity present at the different levels needs to be resolved, in order to

achieve the goal of data integration.

A number of systems have been developed to integrate data from different

molecular biology data sources. They try to resolve data sources heterogeneity at

all levels, i.e. programming language, hardware platform, operating system, and

data representation. At the same time, they try to offer different ways of accessing

and utilising the data served, including a range of visualisation and analysis tools,

as well as supporting access over the Internet. This is a large task that often leads

to duplication of programming effort by different systems and to proprietary

solutions, unless available technologies that promote standardisation are used.

In this thesis, an approach is examined that attempts to solve some of the problems

involved in molecular biology data integration using the Conunon Object Request

- 8 -

Broker Architecture (CORBA) within a mediation system. CORBA, which is

based on standardisation, handles heterogeneity at the programming language and

platform levels, and provides network transparency. This allows CORBA-based

data integration approaches to focus on resolving heterogeneity at the level of data

representation. Mediator-based architectures have been used to integrate

information from autonomous and heterogeneous data sources. They resolve

heterogeneity at the level of data representation. The approach examined in this

thesis is a mediation system that utilises CORBA. It supports the integration of

data from molecular biology data sources that provide access through CORBA. It

also supports the creation of customised CORBA views of such data sources. This

is achieved by resolving the schematic heterogeneity involved.

The remainder of the introduction is organised as follows. First, the data

integration problem in the domain of molecular biology is analysed, and the most

influential and currently available systems are surveyed. Then, an overview of the

. most important, and relevant to this thesis, elements of CORBA is provided, with

a focus on data access in the framework of CORBA. Mediator architectures and

their components are then introduced, together with the use of views within a

mediation system. The different initiatives of utilising CORBA in the domain of

Molecular Biology are outlined. The approach of this thesis is, then, introduced

and compared to related work. The chapter concludes with an outline of the rest of

the thesis.

1.1 Data Integration in Moiecular Biology

Integrating interrelated biological data of interest opens up new possibilities such

as discovering new relationships between data, and analysing the integrated data.

In order to achieve data integration, the heterogeneity present at the different

levels needs to be resolved.

The data integration problem in the domain of molecular biology is analysed here

by examining the characteristics of the domain data, the different options for data

- 9 -

storage and management, and the different methods for data access used. Some of

the most important molecular biology information systems currently used for data

integration as well as providers of the integrated data are also surveyed.

1.1.1 Data characteristics

Genome projects and various research groups have produced a large amount of

data, which has been growing rapidly. Genome-related data is highly complex for

a number of reasons such as, the high degree of interrelationships, the changes in

the type/form of data based on different conditions, and the uncertainty inherent in

science. It is also very diverse including data such as, nucleotide sequences,

genomic objects, protein sequences, metabolic pathways, protein structures,

genome maps, taxonomies, and bibliographic references. Adding to the

complexity is the fact that biology as a science is continuously being augmented

and altered. As a result, the structure of the data changes frequently in order to

consistently represent the state of biological knowledge over time.

1.1.2 Data storage/management

Molecular biology data is stored in different formats and managed by a variety of

systems. Formatted text files, called flat files, have been widely used for the

storage and exchange of molecular biology data because no database management

system is required and the data is in a human-readable form. Though it appears to

be simple, this approach has certain disadvantages. First, a parser has to be written

for each flat file format, which may, in addition, not be fully specified and change

frequently. Second, the redundancy in data storage can be quite high. For example,

multiple copies of the same data may need to be stored one for each required

format, since different programs use different flat file formats. The same piece of

information may also be stored multiple times one for each flat file entry, resulting

in redundant flat files. Besides flat files, database management systems have been

used for the storage and management of molecular biology data. These include

- 10 -

relational and object-oriented commercial systems, as well as others specifically

developed for a given project (for instance, the Acedb [Durbin 94]).

As a consequence of using different formats and systems for the storage and

management of molecular biology data, a number of different data models are

being used, such as the relational, the object-oriented, and the data model of a flat

file format when this is defined. This creates data model heterogeneity (also called

metamodel heterogeneity [OMG 01c], [Frankel 99]) between the different

systems. Furthermore, and because different research groups have different ideas

on how to best represent biological objects, many different conceptual models of

the domain data (also called schemas) are used, resulting in schematic

heterogeneity. Examples of schematic heterogeneity are:

synonyms (different terms referring to the same entity),

homonyms (the same term referring to different entities), and

• the same entity being modelled at different levels of detail within different

schemas.

Schematic heterogeneity for the relational model is analysed in Kim et al. [Kim

91].

1.1.3 Data access

Molecular biology data is accessed through a variety of methods. The World Wide

Web has become the most popular access method (offered by systems such as, the

SRS [Etzold 96], OPM [Kosky 98], Entrez [Schuler 96], and ACEDB [Durbin

94]) due to its ease-of-use, its support by a wide range of hardware and software

systems, as well as the development of powerful Web-based graphical user

interfaces using JAVA and related tools. It offers mainly two ways for data

exploration. The first is navigation using hypertext links. Although this method is

very well suited for browsing molecular biology data due to the high degree of

interrelationships present in the data, it is limited to exploring only a small number

- 11 -

of data. The second method is using Web queries, which usually take the form of

keyword combinations. Keyword combinations can express quite complex

queries. However, this method is limited to searching according to the criteria

provided by the designer of the Web interface only. In many cases, it is required to

search according to different criteria, or to apply one’s own visualisation and/or

analysis tools to the data. In those cases, utilising Web data becomes cumbersome

since it involves retrieval and parsing.

Besides Web interfaces, many systems provide access to their data through

Application Programming Interfaces (APIs) for one or more programming

languages (for example, the SRS [Etzold 96], and ACEDB [Durbin 94]). The

advantage of this method is that once data is retrieved in data structures of the

programming language, it can be manipulated with great flexibility. However, in

comparison to Web interfaces, this requires a lot more involved work. Application

developers have to know and use the programming language of the API to retrieve

data, even if they may need to use different programming languages for

visualisation and/or analysis of the retrieved data.

In contrast to APIs, which are tied to a specific programming language, a CORBA

interface is programming language independent, and still offers the advantage of

flexible data manipulation. CORBA, which is designed for development in

distributed heterogeneous environments, also offers platform independence and

network transparency. Due to the useful features of CORBA, which are examined

in more detail in Section 1.2, many systems provide access to their data through

CORBA (for example, the SRS [Coupaye 99], and ACEDB [Durbin 94]).

1.1.4 Information Systems

In molecular biology, a number of information systems have been developed to

integrate data from heterogeneous data sources. In some cases, the developed

systems act as providers of the integrated data, as well. A few of the most

important of these systems are examined here by looking at their data management

- 12 -

features and integration approach, whether they support user views, and the data

access methods offered:

• SRS

The Sequence Retrieval System (SRS) [Etzold 96] integrates data from a large

number of molecular biology data sources ranging from major databases, such as

the EMBL [Stoesser 02] and SwissProt [Bairoch 00], to small and specialised

ones. It takes the formatted text files distributed by data sources as input and,

using its powerful parser, it builds indices on data fields and on links between data

sources for efficient retrieval and navigation purposes. It provides its own query

language and a number of different interfaces, i.e. a Web interface, a C language

API, a UNIX command line interface, as well as a CORBA interface. The

CORBA interface [Coupaye 99] provides SRS Object Servers, which are CORBA

wrappers for the data sources managed by SRS. SRS Object Servers can be

generated based on view definitions, thus providing flexible access to the

underlying data sources. Queries on the created CORBA objects are also

supported, though they can be expressed in the proprietary SRS Query Language

only. Support for creation of user views has also been added to the SRS system

including features such as the selection of the data fields to be displayed, and the

definition of virtual entries that may contain information from many data sources

[Etzold 97].

• BioKleisli

BioKleisli [Davidson 96] is a system that integrates heterogeneous data sources

and application programs using the Collection Programming Language (CPL) for

querying and transforming the data. BioKleisli does not support schemas. It

provides drivers to Sybase, ASN.l, OPM, and ACEDB databases, as well as to the

Blast and PASTA sequence analysis packages. It supports complex data types

such as, records, variants, and arbitrarily nested sets, bags and lists. It also

supports the specification of database transformations and constraints using a

- 13 -

declarative language, called the Well-founded Object Logic (WOL), a prototype

implementation of which is provided within the Morphase system [Davidson 97].

• OPM

The OPM data management tools have been developed for the exploration of

heterogeneous databases [Kosky 98]. They use the Object Protocol Model (OPM)

as the common data model [Chen 95]. This is an object-oriented data model with

added support for modelhng scientific experiments (i.e. using the protocol

construct). The resulting system supports the assembly of heterogeneous databases

into a multidatabase system using tools for translating OPM schemas into

relational schemas, and, in the opposite direction, for creating OPM views for

existing relational databases and flat files. OPM views generated automatically on

top of existing data sources can further be refined using a number of schema

restructuring operations [Chen 97]. The system also includes facilities for

browsing metadata, and support for multidatabase queries using either a Web

query interface or expressed textually in the OPM multidatabase query language.

A CORBA wrapper for OPM systems was planned [Kosky 96], but has not been

developed. The OPM tools have been employed for the construction of prototype

multidatabase systems that involve heterogeneous molecular biology databases

such as the Genome Database (GDB), the Genome Sequence Database (GSDB)

and GenBank [Kosky 98].

• Entrez

Entrez [Schuler 96] is a retrieval system that integrates information from a number

of molecular biology and biomedical databases at the National Center for

Biotechnology Information (NCBI). These databases include nucleotide sequences

(e.g. GenBank), protein sequences (e.g. SwissProt, translated GenBank

sequences), 3-D macromolecular structures (e.g. MMDB), complete genome

assemblies, population study data sets, taxonomic data, and biomedical literature

(i.e. PubMed, OMIM). The system maintains links between these databases, as

- 14 -

well as calculating and storing ‘neighbours’ (i.e. links within a database) for

biological sequences, 3-D structures and scientific articles. The Abstract Syntax

Notation (ASN.l) is used as the common data model for the integration of the

databases, as well as the language in which data is expressed. Compared to flat

files, the ASN.l is less suitable to be read by humans. The system provides a Web

interface, and a C language API with network modules that allows accessing

Entrez via the Internet.

• ACEDB

Acedb [Durbin 94] is a genome database system that was originally developed for

the C.elegans genome project (A C. elegans DataBase). It provides its own object-

oriented database management system with a non-standard data model and many

graphical displays and tools specifically developed for genomic data. Besides

graphical browsing, it also provides its own query language. It uses a custom,

human readable text file format to express/exchange data. It supports a number of

schema refinement operations. It provides a Web interface, and access through

Perl and Java APIs. It also provides a CORBA interface that supports accessing

Acedb data through generic CORBA interfaces and submitting queries in the

Acedb query language. However, the CORBA interface provides very limited

support for accessing metadata (i.e. only class names can be retrieved). Thus,

metadata, which are necessary for the utilisation of generic CORBA interfaces,

have to be obtained separately, in a way that is not specified. Acedb has been used

as the data management system of many different genomic databases from bacteria

to human (IGD [Ritter 94]).

• EcoCyc

EcoCyc [Karp 96] is a knowledge base system that integrates metabolic and

genomic data. It is based on the frame data model, which has certain similarities to

an object-oriented data model, and, in addition, has features that facilitate schema

evolution. The system provides a number of graphical displays specifically

- 1 5 -

designed for metabolic and genomic data. It supports the KIF declarative

language, as well as providing a number of built-in queries via menus.

The above information systems follow different approaches to solving the data

integration problem in molecular biology. Each one of them has developed its own

solution for accessing the data from data sources and integrating it. This involved

resolving data sources heterogeneity at all levels, i.e. programming language,

hardware platform, operating system, and data representation. In addition, some of

these systems have been employed in molecular biology data integration projects

and provide regularly updated versions of the integrated data (for example, SRS

[Etzold 96], Entrez [Schuler 96], and EcoCyc [Karp 96]). They usually offer

different ways of accessing and utilising the data served, including a range of

visualisation and analysis tools, as well as supporting access over the Internet. A

result of this big task being undertaken by different groups each developing its

own system is duplication of development effort in trying to resolve data sources

heterogeneity. Another drawback is that using the produced integrated data outside

the provided system usually requires a lot of effort.

Alternatively, well-established technologies that promote standardisation can be

utilised. That would minimise duplication of required development, and provide

integrated data in a form that is easier and more flexible to use. One such

technology is the Common Object Request Broker Architecture (CORBA)

described in the following Section.

1.2 The Common Object Request Broker Architecture

(CORBA)

CORBA is the product of the Object Management Group (OMG) [OMG]. The

OMG is a software consortium that was founded in 1989 with the purpose of

developing and promoting standards for software development in distributed

heterogeneous environments. It adopts specifications based on contributions of its

- 16 -

members, which include a large number of software and hardware vendors as well

as end-users. Software that is developed conforming to these specifications is

guaranteed to work in a heterogeneous computing environment across all major

hardware platforms and operating systems.

An overview of the OMG’s Object Management Architecture (OMA), which

describes the main elements of CORBA, is provided in Section 1.2.1. The main

component of OMA is the CORBA specification ([OMG 99b], [Vinoski 97],

[Siegel 96]) which includes:

• the Interface Definition Language (IDL), which is the language CORBA

objects are described in (see Section 1.2.2), and

• the Object Request Broker (ORB), which is responsible for the

communication between CORBA objects (see Section 1.2.3).

The use of CORBA in a 3-tier architecture setting for data access is discussed in

Section 1.2.4.

1.2.1 The Object Management Architecture (OMA)

The OMA [OMG 97] is composed of an Object Model and a Reference Model.

The Object Model defines how objects distributed across a heterogeneous

environment can be described. The Reference Model characterises interactions

between those objects.

In the OMA Object Model, an object is an identifiable, encapsulated entity whose

services can be accessed through well-defined interfaces. Clients issue requests to

objects to perform services on their behalf. The implementation and location of

objects are hidden from clients, thus supporting programming language, platform

and network transparency.

-17

Application
Interfaces

Domain
Interfaces

Common
Facilities

Object Request Broker
^ I

r
Object

Services

Figure 1-1: The OMA Reference Model

The OMA Reference Model identifies and characterises the components,

interfaces and protocols that compose the OMA (Figure 1-1). This includes the

Object Request Broker (ORB) that enables chents and objects to communicate in a

distributed environment and four categories of object interfaces:

• Object Services: These are interfaces for general, domain-independent

services that are likely to be used by many distributed object programs

[OMG 98b]. Examples are the Naming Service and the Trader Service that

provide for the discovery of objects, and the Query Service that provides

support for queries on collections of objects.

- 18 -

• Common Facilities: These are interfaces oriented towards end-user

applications, such as the document management application.

• Domain Interfaces: These are interfaces oriented towards specific

apphcation domains, such as the domain of Life Sciences Research.

• Application Interfaces: These are non-standardised interfaces developed

specifically for a given application.

1.2.2 The Interface Definition Language (iDL)

Services provided by CORBA objects can be accessed through their public

interfaces, which describe all the operations and types they support. Object

interfaces are defined in the Interface Definition Language (IDL) [OMG 98a], the

main elements of which are;

• interfaces that define the attributes (i.e. a pair of get and set methods) and

operations of CORBA objects,

• data types used to specify the parameter types and return types for

operations. The IDL supports a number of basic types such as float, short,

char, and boolean, constructed types such as struct and union, and

template types such as sequence and string, and

• modules that support scoping of definition names into a hierarchical name

space to avoid name clashes.

An important feature of the IDL is that it is language independent. The IDL is used

to define only the public interface of a CORBA object. The supported operations

are implemented in a programming language of the developer’s choice. This

allows CORBA objects to be implemented using different programming languages

and still communicate with each other. In order to achieve this, CORBA defines

standard mappings that translate IDL definitions into constructs of all the

supported programming languages, such as JAVA, C++, C and Smalltalk.

- 19 -

Client Stub ORB Skeleton

Figure 1-2: Generation of stubs and skeletons

The way object definitions in IDL are used in a CORBA setting is described

below. An IDL compiler takes IDL definitions as input and generates client-side

stubs and server-side skeletons (Figure 1-2). Stubs effectively issue requests on

behalf of clients, while skeletons deliver requests to object implementations.

Client stubs represent CORBA objects in the local programming language acting

like local proxies for remote server objects. Server skeletons include declarations

of CORBA objects with their methods that have to be implemented by the

CORBA server developer. Stubs and skeletons are responsible for marshalling and

-20

unmarshalling, that is, converting a request between its programming language

form and the form used for transmission.

1.2.3 Important ORB features

The ORB delivers client requests to objects and returns any responses. The main

feature of the ORB is that it performs the communication between clients and

objects transparently. That is, the client knows nothing about the object

implementation (i.e. programming language, operating system and hardware), the

object location, or the communication mechanism used. These features allow

application developers to focus on their own application domain issues and not

have to worry about low-level distributed system programming issues. They also

allow CORBA-based data integration approaches to focus on resolving

heterogeneity at the level of data representation.

In order to issue a request to a CORBA object, a client needs to have a “handle”

on that object, called an object reference in CORBA terminology. An object

reference is created when an object is created, and it always refers to the same

object. An object reference can have a proprietary (i.e. ORB specific) format, or a

standard format, called the Interoperable Object Reference (TOR), which is

understood by different ORBs, thus allowing ORB interoperation.

1.2.4 CORBA 3-tier architecture for data access

As an extension to the traditional 2-tier chent / server architecture, CORBA

supports a 3-tier architecture for data access (Figure 1-3). Databases reside in the

3̂ ̂ tier. In the tier, CORBA server objects are defined using the IDL. Those

objects represent the specific domain and provide access to data stored in

databases. A CORBA server in this middle-tier providing IDL interfaces over an

underlying data source is often called CORBA wrapper of the data source (see

Section 1.3 for more detailed information on wrappers). The tier is formed by

CORBA client applications that access server objects over the ORB. As a result.

21 -

CORBA clients gain access to data stored in databases through the IDL definitions

of CORBA server objects.

O
O o

DBMS

Tier 1
Client Objects

Tier 2
Server Objects

Tiers
Databases

Figure 1-3: CORBA 3-tier Architecture

There are different approaches on how to define the CORBA server objects of the

2° ̂ tier in order to best support CORBA-based data access. Some approaches

define CORBA server objects that offer generic interfaces to clients for accessing

the data residing in the 3"̂ ̂tier ([Dogac 96], (Kemp 00]). Data is encoded in strings

or bit-streams that clients need to parse. In order to guide the parsing and decoding

of data, some kind of metadata is usually provided, as well. Essentially, those

approaches use CORBA only for the infrastructure of the system. An advantage is

- 2 2 -

that CORBA server objects are independent of data definitions. Other approaches

define CORBA server objects that model the data itself in IDL, essentially creating

IDL schemas in the 2^ ̂ tier. The main advantage of the latter is that clients are

offered domain-specific data as opposed to, for instance, strings that they would

have to parse in order to retrieve the encoded data.

If data was to be accessed from more than one data sources and integrated before

being offered to clients, the 3-tier architecture of Figure 1-3 would have to be

extended. Appropriate components would need to be introduced to resolve the

heterogeneities involved and to integrate the data. Mediator-based architectures

have been used to address those issues, and are examined in the following Section.

In Section 1.5, a system is proposed that extends the 3-tier architecture of Figure

1-3 into a mediator-based CORBA architecture in order to support data

integration.

1.3 Mediators

The concept of mediator was first proposed by Wiederhold [Wiederhold 92] as a

way of dealing with integration of information from autonomous and

heterogeneous data sources. A number of projects have adopted a mediator-based

architecture including TSIMMIS [Chawathe 94], Garlic [Carey 95], DISCO

[Tomasic 96] and COIN [Goh 94].

A mediator-based architecture (Figure 1-4) includes two main components:

mediators and wrappers.

A mediator defines a common model for the representation of the information it

serves to applications. It typically transforms data coming from wrappers to that

common model and often to a common domain model or schema, integrates the

transformed data, and provides queries over the integrated data. It translates

queries received from applications into sub-queries to wrappers, and translates

answers from wrappers into a form appropriate to applications.

- 2 3 -

Wrapper Wrapper

Data
Source

Data
Source

Application

Mediator

Wrapper
Generator

Mediator
Generator

Figure 1-4: Mediator-based Architecture

A wrapper provides an interface to a data source. It translates sub-queries received

from mediators into queries to its underlying data source, and translates answers

received from its data source into a form suitable to each mediator.

Tools which facilitate the creation of mediators and wrappers (called mediator

generators and wrapper generators, respectively) are also often present in a

mediator-based architecture. They generate mediators or wrappers either

automatically or semi-automatically from high-level descriptions of the required

functionality.

- 2 4 -

Mediators often need to restructure data representation, that is, the data model

and/or the schema. One way to implement the restructuring of data representation

is using views. Views have been used in relational and object-oriented databases

([Abiteboul 91], [Guerrini 97], [Kuno 96], [Kim 95], [Scholl 91]) for data

integration, to provide users/applications with customised representations of data,

to support database schema evolution, and as shorthand for queries. More recently,

views have also been used to restructure information available on the Web

([Atzeni 97], [Arocena 98], [Fernandez 97]). A mediator generator that

implements mediators using views, would typically use a view mapping language

to define the common schema as well as the mapping between existing wrapper

schemas and the common schema.

1.4 CORBA in Molecular Biology

Several groups in the bioinformatics community have recognised the benefits of

CORBA and have developed applications using CORBA, or have made their

tools, services, and/or data available through CORBA interfaces. Examples

include the EMBL database [Wang 00], SRS [Coupaye 99], ACEDB [ACEDB],

RHDB [Rodriguez-Tomé 97], the HuGeMap database [Barillot 99b], SPiD

[Hoebeke 01], ArkDB [Hu 98], the Virgil database [Achard 98], and JESAM

[Parsons 00]. In many cases it would be advantageous to integrate data from

different CORBA wrapped data sources in order to, for example, analyse or

visualise the integrated data using specific software tools. Providing CORBA

interfaces facilitates data integration by resolving heterogeneity at the

programming language and platform levels, and providing network transparency,

which drastically reduces required development work. However, if each data

source provides a different CORBA interface definition, data integration still

remains a complex task having to resolve schematic heterogeneity between the

different CORBA wrapper schemas.

2 5 -

The OMG’s Life Sciences Research (LSR) group [LSR] was formed in 1997. One

of its main objectives is to improve interoperability among computational

resources in life sciences research. This is achieved by using the OMG technology

adoption process to standardise interfaces for relevant software tools, services,

frameworks and components. Among others, it covers the fields of bioinformatics,

genomics, genetics, structural biology, and computational molecular biology.

Supporting LSR’s activities and providing standardised interfaces for accessing

CORBA wrapped molecular biology data sources, automatically removes

schematic heterogeneity, thus making data integration a much simpler task. As an

example of promoting the approach of standardised interfaces in order to

overcome schematic heterogeneity between different CORBA servers, [Barillot

99a] proposes a consensus/standard EDL definition for genome maps. This

approach utilises CORBA in its full potential for achieving interoperability.

However, in those cases that standardisation cannot be achieved, or for definitions

outside the scope of standardisation, schematic heterogeneity remains an issue.

1.5 A CORBA-based Mediation System

In this thesis, an approach is examined that attempts to solve some of the problems

involved in data integration using CORBA within a mediator-based architecture.

CORBA handles heterogeneity at the programming language and platform levels,

and provides network transparency. This allows CORBA-based data integration

approaches to focus on resolving metamodel and schematic heterogeneity.

Mediator-based architectures have been used to integrate information from

autonomous and heterogeneous data sources. They resolve heterogeneity at the

level of data representation, i.e. metamodel and schematic heterogeneity. In the

approach of this thesis, the useful features of CORBA have been utilised within a

mediator-based architecture in order to support data integration.

- 26 -

Wrapper Wrapper

Data
Source

Data
Source

Application

Mediator Mediator
Generator

Figure 1-5: Mediator-based architecture utilising CORBA

A CORBA-based mediation system that supports the integration of data from

molecular biology data sources and the creation of customised CORBA views of

such data sources has been developed [Spiridon 00] and is described in this thesis.

Its architecture extends the CORBA 3-tier architecture of Figure 1-3 into a

mediator-based CORBA-utilising architecture (Figure 1-5). It is assumed that the

data sources to be integrated provide access through CORBA. The system handles

metamodel heterogeneity by defining a common model based on the CORBA

Object Model, and a schema definition language based on the CORBA IDL. That

leaves only the schematic heterogeneity between the different IDL-based schemas

to be resolved.

- 2 7 -

Resolving schematic heterogeneity at the IDL level involves mapping from IDL

schemas of available CORBA servers (source CORBA servers or wrappers) to a

preferred IDL schema of a new CORBA server (target CORBA server or

mediator). It is, of course, possible to develop target servers that implement the

mapping manually. However, that requires in-depth CORBA experience, and

developing/maintaining the code becomes cumbersome when many source servers

are involved and in the light of frequently evolving source and/or target IDL

schemas. The developed system supports semi-automatic generation of target

servers based on high-level descriptions of the mapping from the source IDL(s) to

the target IDL. In other words, it facilitates the creation of mediators by including

a mediator generator. A view mapping language has been developed to define the

common schema of a mediator and express the mapping between wrapper

schemas and the common schema.

Compared to the information systems surveyed in Section 1.1.4, the approach

examined in this thesis is utilising to a greater extent the useful features of

CORBA. None of the systems of Section 1.1.4 uses CORBA to build its data

integration solution. Instead each one has developed its own solution for accessing

the data from data sources and integrating it. As a result, there is a lot of

duplication of development effort in trying to resolve data sources heterogeneity.

Another drawback is that the components of the resulting systems are less open to

utilisation by independently developed software compared to the components of

the mediation system examined in this thesis, which can be accessed through

CORBA.

Having realised the benefits of CORBA, some of those information systems (i.e.

the SRS [Etzold 96], and ACEDB [Durbin 94]) provide access to their data

through CORBA, as does the mediation system examined in this thesis. The

advantage is that integrated data can be manipulated easily and flexibly using any

programming language supported by CORBA. Similar to the approach of this

-28-

thesis, CORBA data access supported by SRS can include modelling of the data

itself in IDL. On the contrary, ACEDB favours generic interfaces, as does the

proposed system for biological database federations by Kemp et al. [Kemp 00]. A

drawback of ACEDB CORBA access is the limited support for accessing

metadata, which are necessary for the utilisation of generic CORBA interfaces.

Other systems provide data access through Web interfaces, or specific APIs only

(for example, 0PM [Kosky 98], Entrez [Schuler 96]), making the utilisation of the

integrated data more restrictive and cumbersome.

The approach examined in this thesis also differs from approaches of providing

consensus/standard IDL definitions as a way to overcome schematic heterogeneity

between different CORBA servers ([LSR], [Barillot 99a]). Although providing

standard IDL definitions is advantageous in achieving interoperability and should

be promoted whenever possible, there will probably be cases in which

standardisation cannot be achieved, or definitions that are outside the scope of

standardisation. In such cases, schematic heterogeneity could be resolved using the

approach of this thesis. Furthermore, since the mediation system described in this

thesis supports the creation of customised CORBA views, it could also, in

principle, be used to provide views that conform to standard IDL definitions.

1.6 Outline of Thesis

The remainder of the thesis is organised as follows. Mediators in the framework of

CORBA are introduced in Chapter 2 and issues that are important in the design of

CORBA mediators are examined. The design of the mapping language based on

the design dimensions of Chapter 2 is discussed in Chapter 3. In the same chapter,

the mapping language is described in detail. The architecture of the system

including design and implementation issues of the main components is described

in Chapter 4. An example from the domain of molecular biology is used in

Chapter 5 to demonstrate the usability of the system. Finally, conclusions are

presented in Chapter 6.

-29-

Chapter 2: CORBA MEDIATORS

The approach proposed in this thesis uses CORBA within a mediator-based

architecture. CORBA as well as mediators were introduced in Chapter 1. In this

Chapter, mediators in the framework of CORBA are examined in detail. First, the

architecture of CORBA mediators is considered and any relevant terms defined. A

number of issues that are important in the design of CORBA mediators are then

discussed, including a survey of alternative solutions for each design issue. The

mapping language and the proposed system architecture examined in the following

chapters of the thesis are developed based on the design dimensions of this

Chapter.

2.1 Architecture

Integration of data from autonomous and heterogeneous data sources and

restructuring of data representation can be achieved, in CORBA, with a mediator-

based architecture like the one depicted in Figure 2-1.

CORBA wrappers provide IDL interfaces over their underlying data sources,

which can, for example, be databases, or flat files. They may be generated

automatically using available tools, like Persistence'’’̂ [Persistence], generated

semi-automatically from high-level descriptions [Jungfer 99], or developed

manually with/without the use of lower-level tools, libraries. A number of

CORBA wrappers for molecular biology data sources are available ([Wang 00],

30-

[Coupaye 99], [ACEDB], [Rodriguez-Tomé 97], [Barillot 99b], [Hoebeke 01],

[Hu 98], [Achard 98], [Parsons 00]).

ORB

W rapper W rapper

Data
Source

Data
Source

' -Mediator "

Client

M ediator
Generator

Figure 2-1: CORBA Mediator Architecture

The focus of this thesis is on the development of CORBA mediators that provide

restructuring of representation and/or integration of data served by available

CORBA wrappers. This involves defining new IDL interfaces and mapping those

to the IDL interfaces of existing wrappers. Conflicts arising due to the dissimilar

representation of data in different wrapper IDL interfaces (i.e. schematic

heterogeneity) need to be resolved through the mapping. Manually implementing

and maintaining the code of a mediator can be complicated and time consuming.

-31 -

There is scope for automating much of the coding involved. In the database field,

views have successfully been used for similar tasks, namely data integration and

customisation of data representation ([Abiteboul 91], [Guerrini 97], [Kuno 96],

[Kim 95], [Scholl 91]). By developing a view language that allows domain experts

to give high-level descriptions of the required functionality of a mediator, the

actual mediator code can be generated semi-automatically. Thus, a mediator

generator is an important and frequently present component in a mediator-based

architecture. Moreover, a view mapping language is often used for the

implementation of mediator generators.

2.2 Common model and schema definition language

In a mediator-based architecture, a mediator typically defines a common model

and often a common schema to represent the information served. A mediator

generator typically uses a view mapping language to define the common schema

as well as the mapping between existing wrapper schemas and the common

schema. Choosing which common model and which definition language for the

common schema to use is, obviously, an important decision in the design of any

mediator.

A mediator can define its own common model and definition language. The

advantage is that they can be designed in a way that suits the particular purpose of

the mediator. A disadvantage is that mediator specifiers would need to leam that

new model and language.

Alternatively, the common model and definition language of a mediator can be

based on a model and language that already exist, are integrated and widely used

in the context of the chosen mediator-based architecture, and are standardised.

Advantages of this approach include relieving mediator specifiers from having to

leam yet another model / language, and taking advantage of work done by others,

and tools already developed. Of course, any existing models and languages chosen

- 32-

need to be suitable for the particular purpose of the mediator, and, in any case,

extensions may be necessary.

Additionally, in the context of a CORBA mediator architecture like the one

depicted in Figure 2-1, a common model and definition language may need to be

transformed from/to the CORBA object model and IDL definitions. This would

require the development of additional tools, and would probably reduce the

runtime performance of the resulting system.

In the context of CORBA mediators, existing models and definition languages that

could serve as a mediator common model and a definition language for common

schemas are:

• Unified Modelling Language (UML)

“The UML is a language for specifying, visualising, constructing and

documenting the artifacts o f software systems, as well as for business modelling

and other non-software systems” (OMG). It is widely used as a language for

describing object models [Fowler 97]. It was developed by Rational Software

(Rational) and its partners, and is the successor to the modelling languages found

in the Booch [Booch 93], OMT [Rumbaugh 91], OOSE [Jacobson 92] and other

methods. It has been adopted by the OMG as the standard modelling language

[OMG 01 A]. As an object modelling language, the UML includes a rich set of

modelling constructs. For example, it includes classes, attributes, operations,

associations, link attributes, aggregation, and generalisation.

Resolving schematic heterogeneity with CORBA mediators and at the UML level

seems appealing. It means that the mediator common model and common schema

definitions would be based on the UML, and the mapping between wrapper

schemas and the common schema would be expressed in a language supporting

the rich UML set of modelling constructs. Mapping specifiers would work with a

- 33-

well-defined, widely used and standardised common model, and a powerful, high-

level mapping language.

Table 1: The MOF Meta data Architecture

Layer MOF terms Examples

M3 meta-meta-model MOF Model

M2 meta-models UML Meta-model, IDL

Meta-model

M l Models UML Models, IDL

Interfaces

MO user objects

On the other hand, it means that translation between the UML world and

CORBA/IDL world would be necessary, with translation from wrapper DDL

definitions to UML object models, and from the UML common schema to the

mediator DDL definitions. The Meta-Object Facility (MOF) Specification is an

OMG standard which defines a set of object-oriented constructs that can be used

to describe meta-models, such as the UML meta-model ([OMG 01c], [Frankel

99]). Meta-models belong in the M2 layer of the MOF meta-data architecture,

which is shown in Table 1 with examples of meta-models and models for UML

and IDL. The MOF also standardises the MOF-to-IDL mapping, though the

provision of software tools implementing the mapping is not set as a conformance

requirement by the OMG. The MOF-to-IDL taken together with a standardised

UML-to-MOF mapping [OMG 01 A], effectively produces a standard UML-to-

IDL mapping. Software tools that support UML-to-IDL mapping have become

available, such as Rose (Rational), though it is not clear whether they actually

34-

implement the standard UML-to-MOF and MOF-to-IDL mappings. In theory, the

MOF can also be used to specify the OMG object model, treating it as a meta­

model, and treating the IDL as an object modelling language. However, no IDL-

to-MOF mapping is provided nor standardised by the MOF, making the translation

in the opposite direction (i.e. IDL-to-UML) more difficult and prone to proprietary

solutions.

• EDL

Resolving schematic heterogeneity with CORBA mediators at the IDL level

means that the OMG object model is treated as a meta-model, which the mediator

common model is based on, and the EDL is treated as an object modelling

language, which the common schema definitions are expressed in. An obvious

advantage of this approach is that no translation between different models and

definition languages is necessary.

IDL includes the basic constructs that are essential in object-oriented modelling,

i.e. interfaces (corresponding to object classes), attributes and operations as

interface elements, multiple inheritance at the level of interfaces, object

collections and a number of basic types. Although it lacks other more advanced

modelling constructs, such as the ones provided by UML, the constructs it

supports are sufficient to express object models of considerable complexity.

However, EDL is designed to describe interfaces between interacting objects

within CORBA, not object models. Data can be represented in different ways

using EDL. A representation should consider various parameters, such as

simplicity (i.e. the best possible fit to the object model), required functionality

(perhaps including extensibility), and efficiency.

For example, an object could be represented as an IDL interface or as an EDL

struct, each approach having advantages and disadvantages ([Sellentin 98],

[Jungfer 99], [Leser 98]). A representation using interfaces may be closer to the

-35

object model. Interfaces also have the advantage of supporting operations and

multiple inheritance. However, interfaces can be slow. When clients request an

entity represented as an interface, they receive only an object reference. Each

subsequent attribute or operation request needs to go over the network, thus

reducing performance. On the other hand, if a struct is used to represent an object,

clients will receive a copy of the struct. All subsequent attribute requests are local,

avoiding calls over the network and, as a result, improving performance. The

disadvantage is that structs neither support operations nor inheritance, thus

reducing representation flexibility and potentially making it necessary to define an

IDL representation quite different to the object model.

An alternative representation (i.e. besides interfaces and structs) is supported in

IDL as part of the CORB A/HOP 2.3.1 Specification [OMG 99b]. It provides the

possibility of representing an object using value types, which, in some sense,

bridge the gap between interfaces and structs. More specifically, the

implementation of value types is always local, and they support inheritance and

operations. Thus, value types can be particularly useful when the main purpose of

an object is to encapsulate data.

• extensible Markup Language (XML)

The XML is a format for structured documents and data on the Web. It is an open

technology standard of the World Wide Web Consortium (W3C) for information

exchange on the Internet [W3C 00]. It is a subset of the Standard Generalized

Markup Language (SGML) that maintains the important architectural aspects of

contextual separation. It is designed to enable the use of SGML on the Web. That

is, to enable generic SGMDL to be served, received, and processed on the Web in

the way that is now possible with the HyperText Markup Language (HTML).

XML documents are tree-based structures of matched tag pairs containing nested

tags and data. An XML element (i.e. a balanced tag pair) has a content (i.e. the

material between the opening and closing tags) and, optionally, attributes (i.e.

-36-

name-value pairs). A Document Type Definition (DTD) defines the syntax of an

XML document. That is, it defines the different kinds of elements that can appear

in a valid document, the patterns of element nesting that are allowed, and the

attributes that can be included in an element.

More recent XML developments that are relevant to our analysis on common

model and schema definition languages include:

• namespaces'. XML namespaces [W3C 99] provide a method for qualifying

element and attribute names used in XML documents by associating them with

namespaces identified by Uniform Resource Identifier (URI) references. The

goal is to provide support for multiple DTDs in the same document,

• linking'. There are two technologies providing advanced hnking facilities

integrated with Web technology. XLink [W3C 01b] is for cross document

links and XPointer [W3C Ola] is for hnks within a document,

• schema'. The XML Schema definition language [W3C 01c] offers facilities for

describing the structure and constraining the contents of XML documents. The

schema language provides a superset of the capabilities found in XML DTDs.

The XML Schema specification also defines data types.

The XML Metadata Interchange (XMI) Specification is an OMG standard [OMG

02] that enables easy interchange of metadata between modelling tools (based on

the OMG UML) and metadata repositories (based on the OMG MOF) in

distributed heterogeneous environments. It integrates three standards, i.e. the

XML, the UML and the MOF. It uses the XML as a metadata interchange format.

It also standardises the MOF-to-XML DTD mapping, and applies that mapping to

the UML meta-model deriving a complete XML DTD for the UML meta-model.

Resolving schematic heterogeneity with CORBA mediators at the XML level has

the advantage of using a standardised and widely supported language. It can also

integrate with UML object models through the use of MOF. However, there are

- 37-

certain limitations. Compared to the UML, the XML DTD language lacks some

advanced constructs for object modelling. For example, data types support is

restricted, nesting is emphasised over linkage, and inheritance is not supported

explicitly. Thus, when mapping a UML object model to an XML DTD certain

UML constructs are mapped to lower level XML ones. Moreover, the XML DTD

language can only express a subset of the structure and consistency rules contained

in a MOF metamodel. For example, multiplicities on MOF attributes and

associations are not fully supported, MOF constraints are not supported, and data

types support is poor. As a result, a consumer of an XMI document may need

certain extra knowledge not included in the XML DTD in order to check the

semantic correctness of a document, or to reconstruct a model (belonging in the

M l layer of the MOF meta-data architecture. Table 1) in its original form e.g. with

the correct CORBA data types. Of course, new XML technologies recently

developed or currently under development are improving on some of the above

areas. For example, XML Schema provides support for data types, and XLink and

XPointer provide linkage support. However, it will still take some time before

those technologies and their support in XMI are standardised, and associated tools

that fully support those standards become available.

Similar to the case of UML, resolving schematic heterogeneity with CORBA

mediators at the XML level also means that translation between the XML world

and CORBA/IDL world would be necessary. That is, translation from wrapper

IDL definitions to XML DTDs, and from the common schema expressed as an

XML DTD to the mediator IDL definitions. The MOF standardises the MOF-to-

IDL mapping and the XMI standardises the MOF-to-XML DTD mapping.

However, the mappings in the opposite directions are not as simple, and not

standardised. The XML DTD-to-MOF mapping has the problems discussed above

due to the limited expressive power of the XML DTD language. Even the more

recent OMG Specification on XMI production of XML Schema [OMG 01b]

defines the provision of XML-to-MOF, XML DTD-to-MOF, and XML Schema-

- 3 8 -

to-MOF mappings as optional only requirements for compliance. The IDL-to-

MOF mapping is not standardised by OMG either. Thus, translation in the reverse

engineering direction becomes more difficult and prone to proprietary solutions.

2.3 Target object derivation

In view design, the potential for restructuring data representation depends, among

other things, on the flexibility for target object derivation. More specifically, it

depends on how many and of what type source objects a target object can be

derived from. The different possibilities in the CORBA environment are:

• Same interface source objects

One possibility is to support target object derivation from one or more source

objects of the same interface only. This would restrict restructuring to relatively

simple operations, such as adding, removing, or renaming an attribute or an

operation.

• Object assembly

Another possibility is to allow a target object to be derived from one or more

source objects of the same or different interfaces, while restricting composition at

the object level. This is known as object assembly (see Figure 2-2).

More specifically, in object assembly, a target object can contain a number of

source objects, each of which conforms to a particular interface. The object

references of the source objects and their interfaces are accessible to clients. In

other words, a target object provides multiple interfaces; each interface provides a

view of the capabilities of the target object.

OMG is in the process of defining a CORBA component model. The idea is to be

able to describe object-oriented software entities and assemble them into

applications. The proposed CORBA component model [OMG 99a] supports

object assembly, calling the element interfaces facets and the resulting overall

- 39-

interface component. Although the component model is not designed for data

integration, it could potentially be used to achieve a restricted form of data

integration, that is, data integration at the coarse object level.

Same interface
source objects

Object Assembly Object Composition

O Object

Interface

Client Invocation

Figure 2-2: Target Object Derivation

• Object composition

The third alternative is to allow a target object to be derived from one or more

source objects of the same or different interfaces, and to support composition at

the object element (i.e. attribute/operation) level. This is known as object

composition (see Figure 2-2).

-40-

More specifically, object composition enables the inclusion of a number of objects

with different interfaces within a composite (target) object that conforms to a

single interface. Only the interface of the composite object is accessible to clients.

Attributes, operations of the composite interface are mapped internally to

attributes, operations of included interfaces.

One can easily see that, compared to the previous two approaches, object

composition allows for the most complex restructuring possibilities.

2.4 Publishing initiai CORBA objects

A CORBA server typically publishes (i.e. makes available to clients) the

references of a small number of objects that constitute server entry points. That is,

starting from those initial objects, a client can then reach other objects contained

in the server by navigation. A client can obtain such initial object references in one

of three standard ways:

• Explicit References: A server can convert the Interoperable Object References

(lORs) of CORBA objects to be published into strings (i.e. using the object-to-

string CORBA operation), and then write those strings in files, the URLs of

which the server publishes. A client can then use the string-to-object CORBA

operation to obtain the object references from their stringified form. This

approach is simple and easy for clients to use. It works well for a small

number of objects that do not necessarily belong in a naming hierarchy.

However, it requires maintaining one or more files that do not belong in the

CORBA environment.

• Naming Service: A server can use the CORBA Naming Service [OMG 98b] to

attach names to objects and store them in a hierarchical structure. Then, a

client browses through the hierarchy and retrieves references to objects by

their names. This approach is suitable for CORBA objects that conceptually

-41

belong in a naming hierarchy. It requires access to the Naming Service, and

compared to the first approach, it is not as simple for clients to use.

• Trader Service: A server can use the CORBA Trader Service [OMG 98b] to

advertise CORBA objects, which can later be retrieved by clients given a

number of object property values. This approach is suitable when clients do

not know the names of objects they are looking for. It requires access to the

Trader Service.

A server can, of course, publish object references in more than one way, thus

providing alternative possibilities to clients for obtaining its initial object

references.

2.5 Wrapper query support

In CORBA, generic wrappers need to support queries in a way that conforms to

standardised IDL definitions. The CORBA Query Service Specification [OMG

98b] defines a framework for the support of queries on collections of objects. It

specifies a number of generic interfaces (see Figure 2-3), the most important of

which are:

Query evaluators which accept queries as strings, evaluate them and return the

results the type of which is unrestricted (i.e. IDL type any).

Collections of objects which are supported by the collection interface. It

defines methods for adding or removing members as well as for creating an

associated iterator.

Iterators which support manipulation of collections, including traversal over

and retrieval of the objects within the collections.

A queryable collection which is both a query evaluator and a collection, so it

can serve as both the result of a query and the scope of another query.

-42-

iterates

QueryableCollectionnext() ; any
res et 0 : void
more() : boolean

Iterator

q U y p e s : seq u en ce< Q L T yp e>
default_ql_type : QLType

evaiuate(q : string, ql_t : QLType, p : Param eterU st) ; any

Que ryE valuator

cardinality ; bn g

ad d _eiem en t(e : any) : void
add_ali_elem en ts(e : Collect b n) : void
in sert_eiem en t_at(e : any, I ; iterator) : void
rep iace_eiem en t_a t(e : a n y , i ; Iterator) : void
rem ove_eiem ent_at(i : iterator) ; void
rem ove_ail_elem ents() ; void
retrieve_eiem ent_at{i : Iterator) : any
createJterator() : Iterator

Collection

Figure 2-3: UML Model of main CORBA Query Service Interfaces

Queries are specified as strings. The Query Service is designed to be independent

of any specific query language used. At the same time, and in order to provide

query interoperability, a compliant Query Service implementation must support

either SQL Query or OQL.

Weak points of the Query Service Specification include not addressing query

optimisation and indexing issues, and not providing meta-data support ([Leser 98],

[Wells 94]). It has also been argued that an efficient implementation of the

CORBA Query Service is not straightforward [Rohm 99]. In an implementation of

a CORBA Query Service, called Harmony [Rohm 99], ORB-specific features.

- 43-

such as Orbix’s smart proxies and loaders [IONA 97], had to be used in order to

achieve good performance.

In its effort to be generic, the CORBA Query Service accepts queries passed as

strings, and leaves the representation of query results undetermined. This means

that any implementation of the service has to decide on the definition of an

appropriate query language and the description of the query result data structures.

One approach that seems to fit well to the model of the Query Service is to accept

arbitrary ad hoc queries expressed in SQL or OQL, and return strings as a result.

Advantages of this approach include the support of powerful queries that, in

addition, can be optimised by the underlying database, as well as the support of

database schema evolution. A disadvantage is that ad hoc queries require that the

clients have meta-data knowledge, something that is not supported by the Query

Service. Another related problem is that clients would need to parse the query

results.

Another approach could be to accept queries that give predefined CORBA types as

query results. Typically, such types would be (homogeneous) collections of

CORBA objects (i.e. modelled by IDL interfaces, or structs). Advantages of this

approach include the convenience of clients, since they retrieve fully typed query

results, and the support of queries that are sufficiently powerful for many

applications. However, utilising full query power is not possible, since result types

are predefined and cannot be joined to create new ones. Although this approach

would well suit cases in which domain objects are represented at the IDL level, the

CORBA Query Service Specification does not support it in an easy and clear way,

since it allows for arbitrary queries passed as strings and leaves the representation

of query results undetermined.

Perhaps due to such shortcomings of the CORBA Query Service Specification,

available wrapper systems that support CORBA queries over underlying data

sources have implemented their own 'flavour' of CORBA queries. They do not

-44-

necessarily conform to the standard Query Service Specification but adapt it to

their own needs. Some of those CORBA wrapper systems are briefly examined

here.

The Persistence''''^ object-relational mapping software and its Distributed Object

Connection Kit (DOCK) [Persistence] support automatic generation of CORBA

wrappers over relational databases. Each relational table, named <ObjectName>,

is mapped to an IDL interface with the same name. Table columns are mapped to

readonly attributes. In addition, for each table an extra IDL interface is created,

named <ObjectName>Factory, that supports querying the corresponding

table/interface. A number of query operations are provided, the most important of

which are: queryKey, which takes the key of the relational table (i.e. the unique

identifier of the CORBA object) as input, and returns a single CORBA object of

the same interface; querySQLWhere, which takes an SQL where-clause string as

input, and returns a sequence of CORBA objects satisfying the conditions; query,

which is similar to querySQLWhere, but has a special syntax to support joins for

the specification of conditions.

A semi-automatic approach for generating CORBA wrappers over relational

databases is followed by Jungfer et al. [Jungfer 99]. They provide a declarative

language to describe the mapping between relations and IDL constructs. Using the

mapping information, they generate a CORBA server, which also supports

queries. Queries are expressed in their own query language that is similar to an

SQL where-clause. Query results are represented by a predefined type that can be

either a struct or an interface.

Sellentin et al. [Sellentin 99] deal with data intensive applications. They

developed a CORBA Query Service to access EXPRESS-based data. Their

prototype implementation accepts a number of selected rudimentary queries as

input. They define generic IDL data structures that are used as query results. They

45

also provide meta-data support to decompose query results, which, initially, have

to be of a specific type.

Harmony [Rohm 99] accepts execution plans as query input, and returns either a

single value or a CORBA collection as a result. The examples provided show that

CORBA collections returned are always of a specific predefined CORBA type.

2.6 Mediator query support

Mediators typically provide queries over the integrated data they serve. They

translate queries received from applications into sub-queries to wrappers, and

translate answers from wrappers into a form appropriate to applications. In the

context of CORBA mediators there are three different approaches to querying:

• Ad hoc queries: These are query strings expressed in SQL or OQL. Query

results are returned as strings by mediators. The main advantage of this

approach is the support of powerful queries. Disadvantages include that clients

would need to parse the query results, and the requirement that the clients have

meta-data knowledge, something that is not supported by the CORBA Query

Service.

• Type restricted queries: The results of these queries are restricted to be of a

pre-defined CORBA type. The advantages and disadvantages of this approach

are similar to the ones discussed in Section 2.5 for type restricted queries of

CORBA wrappers.

• Fixed parameterised queries: These are fixed queries encapsulated in

parameterised operations in the target schema. Clients do not use any query

language, only the available operations. Query results are under the control of

the corresponding operations. Advantages of this approach include the

convenience of clients, since they retrieve fully typed query results, which, in

addition, are not restricted in any way. It also suits cases in which domain

objects are represented at the IDL level, and it does not require the CORBA

- 46 -

Query Service since it only uses plain CORBA operations. An obvious

disadvantage is the loss of query flexibility since the queries are fixed.

2.7 Conclusions

A number of issues that are important in the design of CORBA mediators have

been discussed in this Chapter. Some of these issues apply to the design of any

mediator (e.g. the choice of the common model and schema definition language),

while others are specific to mediators utilising CORBA (e.g. the publication of

initial CORBA objects).

In any case, when designing mediators that utilise CORBA, the particular

strengths and possible weaknesses of CORBA need to be carefully considered. It

is to the advantage of any CORBA mediator system to utilise as much as possible

the large amount of development work on CORBA. At the same time, alternative

solutions may need to be considered in cases where the specific CORBA standard

does not serve the purposes of the CORBA mediator system. For example,

CORBA mediator systems have to carefully consider the use of the CORBA

Query Service or alternatives for wrapper quer>' support.

For each one of the design issues examined in this Chapter, alternative solutions

have been discussed. The chosen solution, in each case, will shape the resulting

CORBA mediator system.

In particular, the main design decisions for the system described in this thesis have

been the chosen solutions for each of the design dimensions examined in this

Chapter. Both the mapping language and the architecture of the system are

developed based on those design decisions. The design and implementation of the

mapping language are examined in Chapter 3, while the system architecture

including the design and implementation of its main components are examined in

Chapter 4.

-47

Chapter 3: THE MAPPING LANGUAGE

A number of design issues that are important for the development of CORBA

mediators were discussed in Chapter 2. Those influence the design of the view

mapping language used for the implementation of mediator generators. A view

mapping language typically defines the common schema and the mapping between

wrapper schemas and the common schema. The design of the mapping language,

which has been developed as part of the CORBA mediation system described in

this thesis, is based on the design dimensions of Chapter 2.

Chapter 3 begins with the identification of the general requirements for the

mapping language. The design of the mapping language is, then, discussed in

Section 3.2. That is followed by a detailed description of the mapping language in

Section 3.3, and concluding remarks.

3.1 General requirements

The general requirements for the mapping language are:

• To support a high-level notation

The language developed as part of the CORBA mediation system described in this

thesis describes mappings between schemas. A high-level notation is required in

order to express such mappings easily and concisely. This would also facilitate

modification of the mapping definitions when necessary, e.g. in case the source or

target schemas evolve.

48-

• To support constructs for object models

The mapping language is designed for mapping one or more source schemas into a

target schema, all defined in DDL. It needs to support a subset of the modelling

constructs included in the OMG Object Model [OMG 98a]. The supported

constructs need to be able to express object models. That is, constructs that model

objects, inheritance between object definitions, the definition of object

characteristics, and collections of objects are required.

• To support read-only access

As far as access rights to data are concerned, the focus of the proposed system is

to access data, not to create new or change existing data. Both objectives of

creating customised representations of source data and integrating source data into

a target CORBA server can be satisfied by assuming read-only access rights to

source data, and supporting read-only access in the mapping language.

• To provide a way to publish initial object references

The target CORBA server accessed by clients would need to publish a number of

initial object references. At least one way of publishing such references, as

examined in Section 2.4, should be provided.

• To support a suitable mediator and wrapper query model

Mediator queries are mapped to queries supported by available wrappers. When

designing the mapping language, the query model to be supported should be

chosen. That includes the type of queries supported by mediators (alternatives

discussed in Section 2.6) and at least one mapping to available wrappers

(alternatives discussed in Section 2.5).

3.2 Design

In order to support a high-level notation for the mapping definitions, the language

combines declarative and procedural ways to express mappings. In the following

- 49-

sections, the design of the mapping language is examined in terms of the design

dimensions of Chapter 2. For each design dimension, the preferred solution and

the rationale behind the choice made are presented.

3.2.1 Common model and schema definition language

In the system described in this thesis, schematic heterogeneity is resolved at the

IDL level. This means that the OMG object model is treated as a meta-model,

which the mediator common model is based on, and the IDL is treated as an object

modelling language, which the common schema definitions are expressed in.

This approach has certain advantages. First, a model and language are chosen that

already exist, are integrated and widely used in the context of the chosen mediator-

based architecture (i.e. within CORBA), and are standardised. Thus, mediator

specifiers do not have to learn a new model / language. Second, no translation

between different models and definition languages is necessary, as would be the

case for UML- or XML-based solutions.

IDL constructs, though not as rich as UML ones, suffice to express object models

of considerable complexity. In order to support the essential constructs for object-

oriented modelling, the mapping language includes:

• IDL interfaces for modelling objects.

• Multiple inheritance at the DDL interface level.

• Attributes for describing object characteristics. Read-only attributes are

supported as opposed to read-write ones, since read-only data access is

required.

• Operations for describing object functionality. IDL operations can raise

exceptions. Exceptions are not an essential object-oriented modelling

construct. However, if an exception is thrown by any source IDL operation

that is used in the mapping of a target IDL operation, it must either be

-50

caught or thrown by that target IDL operation, in order to ensure correct

compilation of the generated target IDL and target server implementation.

This is the reason for allowing operations declared in the mapping

language to raise exceptions defined in source IDL(s). In order to keep the

implementation simple, declaration of new user exceptions in the target

IDL is not supported.

• A number of basic types.

• Sequences for modelling collections of objects.

Other IDL constructs such as structs and value types are not supported in the

current implementation.

The mapping language is designed in a way that its rules about valid names and

scope are at least as restrictive as the corresponding rules followed in the IDL. In

some cases, and for reasons of simplicity, the rules of the mapping language are

more restrictive compared to those of the IDL. This approach guarantees that any

generated target EDLs will be valid.

In̂ the system described in this thesis, target servers are semi-automatically

generated based on view definitions. Developers can, of course, customise the

resulting server code to suit their specific requirements. In addition to that,

inclusion of user implementation within the view specification itself can be used

in order to create prototype target servers easily and rapidly, and to isolate

mapping specifiers from the implementation details of generated CORBA servers.

In particular, inclusion of user methods within the view specification greatly

enhances mapping possibilities, yet it does not overload the view specification

with many implementation details. For instance, user methods can implement new

(i.e. non-derived from existing ones) attributes / operations / interfaces of target

servers. They also provide an alternative and powerful procedural way to

implement mappings that are too complex/impossible to express in other ways.

-51 -

For these reasons, the mapping language supports user methods inclusion within

the view specification.

Alternatively, schematic heterogeneity could be resolved at the object modelling

level, i.e. at the UML level with/without the use of XML. While bidirectional

UML-MOF-IDL and XML-MOF-IDL mappings are not fully standardised, and

associated tools fully supporting the standard mappings are not yet available, the

system described in this thesis provides a way for resolving schematic

heterogeneity for a selected set of object modelling constructs at the DDL level.

3.2.2 Target object derivation

The model followed in the approach described in this thesis is based on object

composition (described in Section 2.3). Compared to the same interface source

objects model and to the object assembly model (described in Section 2.3), object

composition enables more powerful data integration and customisation of data

representation, since composite object interfaces can define new attributes,

operations and internally map them to attributes, operations of the included

interfaces.

Source references are introduced in the mapping language in order to support

object composition. Source references, as explained in Section 3.3.7, are

references to those source objects, which the target object is derived from. Source

references provide the means to access source objects and combine their elements

(i.e. attributes, operations) in whatever way is appropriate in order to derive the

elements of the composite target object.

3.2.3 Publishing initial CORBA objects

In the system described in this thesis, target servers do not implicitly publish any

CORBA objects. The mapping specifier has the flexibility to explicitly specify the

objects to be published. As described in Section 3.3.5, the mapping language

-52

provides a convenient way to publish initial object references of the generated

server, i.e. using the location field.

Clients can then access those initial object references using the explicit references

option, as described in Section 2.4. Each target server is expected to publish only a

few factory-type objects, so the explicit references approach would typically be

sufficient and easy for clients to use. Using the Naming Service would also be a

suitable alternative but it is not supported in the current implementation.

3.2.4 Wrapper query support

The approach described in this thesis is based on the idea that domain objects are

represented in IDL. In this case, suitable query support would be achieved if

queries are restricted to IDL interfaces and query results are collections of

CORBA objects of predefined interfaces that satisfy the specified query

conditions. In other words, wrappers would need to support restriction queries

(also called selection) on collections of CORBA objects, returning subsets of those

collections that include only the objects satisfying the query conditions.

Advantages of this approach, as discussed in Section 2.5, include the convenience

of chents, since they retrieve fully typed query results, and the support of queries

that are sufficiently powerful for many applications.

In the mapping language, the notion of special CORBA objects (called factories)

that may support restriction queries on collections of CORBA objects is included.

When factories provide query support, they act essentially as query evaluators that

accept an SQL where-clause as input and return a collection of the objects

satisfying the given conditions. In the implementation, any specified queries are

translated to querySQLWhere operations like those supported by the Persistence'’’’̂

generated factory objects. That is, a mapping to Persistence^^ generated CORBA

wrappers is provided, since the functionality those wrappers provide is very close

to the required query support. In principle, it would not be difficult to provide

-53-

mappings to alternative wrappers, provided that their query model is close to the

query model outlined above.

It should be noted that, although wrapper query support enhances mapping

possibilities (by allowing the mapping specifier to map a source reference to a

query within an object specification mapping) it is not a compulsory requirement.

Mapping can be specified using the other options provided by the language.

3.2.5 Mediator query support

The approach described in this thesis is based on the idea that domain objects are

represented in DDL. It was argued in Section 2.5 that the way ad hoc queries are

specified in the CORBA Query Service is not well suited to CORBA servers that

represent domain objects in DDL.

Instead, fixed parameterised queries are supported, which (as discussed in Section

2.6) are encapsulated in CORBA parameterised operations of the target schema.

The mapping language supports the specification and mapping of such operations.

The main advantage of this approach is that query results are fully typed and the

type is controlled by the mapping specifier (i.e. the operation return type defined

by the mapping specifier).

Another possibility could be to support type restricted queries, as described in

Section 2.6. Similar to fixed queries, type restricted queries are also suitable for

domain objects represented in DDL and provide fully typed query results. This

approach is not supported in the current implementation.

3.3 Description

An overview of the mapping language is provided below (words in bold are

language keywords; the star symbol denotes zero or more occurrences; a pair of

brackets denotes optional inclusion). Any necessary DDL files can be included

using #include. The server declaration part contains the declaration of any source

factory objects. Views are defined within a module. A view can be forward

- 54-

declared; it has a name, and optionally a list of views from which it inherits.

Within each view, the following parts are defined:

• an optional location where the view instance may be published,

• the definition of the target IDL interface corresponding to the view,

• the source part defining references to source CORBA objects,

• the mapping part defining the mapping for attributes / operations of the

view, and

• the userjnethod part containing the implementation of any user defined

methods used within mapping.

I I Comments
(#lnclude "<file_name>") *

server <server_name> {
(factory <factory_name> { ,

ftype <type_name> ;
ior "<url>" ;
}

) *

}

module <module_name> {
(view <view_name> ;) *
(view <view_name> [: <superview_list>] {

location "<url>"
definition {

-55-

(<idl_dcl> ;) *

}

source {
(<source_ref_type> <source_ref_name_list> ;) *

}

mapping {
(<target> = <source> ;) *

}

user_method {
<user_method_list>

}

}

) *

}

In the following, the mapping language constructs are examined in more detail.

The full specification of the mapping language in BNF form is included in

Appendix A.

3.3.1 Include directive

Definitions from other IDL files can be included using the Mnclude directive.

Only those files containing definitions used within the definition part of the views

need to be included. All Mnclude directives appearing in the mapping

specification will also appear in the generated target IDL file.

3.3.2 Server declaration

The server declaration part includes the definition of the generated server class

name (given after the keyword server) and the declaration of any factory objects.

- 5 6 -

In the context of the mapping language, a. factory is a CORBA object of a source

server with a published IOR. Typically, factory objects will support queries,

allowing the retrieval of other CORBA objects. Queries can either be in the form

of plain CORBA parameterised operations, or simple SQL where-clause queries

the syntax of which is discussed later in the mapping part.

In the latter case, queries will be translated to querySQLWhere operations like

those supported by the Persistence’’’̂ generated factory objects, described in

Section 2.5. So, the corresponding source server factory objects should have either

been generated using the Persistence’’’̂ software, or should support a

querySQLWhere operation similar to the one supported by Persistence’’’̂ generated

factories.

A factory declaration must include:

• the name of the factory, given after the keyword factory', in the rest of the

specification, the factory object will be referred to by its fully scoped name,

that is, the server class name, followed by the character, followed by the

factory name,

• the type of the factory, given after the keyword ftype, and

• the URL where the Interoperable Object Reference (IOR) of the factory can be

found; it is given after the keyword ior.

For example:

server MyServer {
factory factA {

ftype Serverl.factoryA;
ior "file:/serverl/ior/factoryA.ior";

}

}

- 5 7 -

3.3.3 Module

A module is a kind of container for view definitions. It is used for name scoping.

For details on names and scoping see Section 3.3.10.

3.3.4 View

View is the main construct in the mapping language including, among others, the

definition of target IDL attributes/operations and their mapping to source IDL(s)

elements. Each view defined in the mapping language maps to an interface in the

target IDL.

• View header

A view has a name, and optionally a list of views from which it inherits.

• Forward declaration

A view can be forward declared to allow for cross-referencing. It is not allowed to

inherit from a forward-declared view whose definition has not yet been given. For

example:

module M {
view VI;
view V2 : VI {
}

view VI {
}

view V2 : VI {
}

}

// Forward declaration
// Error: VI has not yet been defined

// Ok

- 5 8 -

• View inheritance

A view can inherit from another view, which is then called a base view of the

derived view. A derived view can declare new elements (i.e. types, attributes, and

operations). It can also refer to the elements of a base view as if they were

elements of its own. Inheritance in the mapping language, generally, follows the

rules for interface inheritance defined by OMG [OMG 98a]. Similar to IDL rules,

a derived view cannot redefine attributes, or operations. Contrary to IDL, and for

reasons of simplicity, a derived view cannot redefine types either. For example:

view VI {
typedef sequence <string> StringList;
string opl();

}

view V2 : VI {
short opl(); // Error: V2 redefines an inherited

// operation name
string StringList(); // Error: V2 redefines an inherited

// type name

The mapping language supports multiple inheritance for view definitions. That is,

a view may be derived from any number of base views inheriting their definitions.

Inheriting from the same view through more than one inheritance path is allowed

(this is called “diamond” shape inheritance). For example, view D in Figure 3-la

inherits from view A through two paths, one path via view B and a second one via

view C. It is also allowed to inherit from two views, one being derived from the

other, as is the case of view E in Figure 3-lb, which inherits from views B and A.

It is not allowed to inherit from two different views with the same attribute,

- 5 9 -

operation, or type name, a rule which guarantees that references to base view

elements are unambiguous.

A
i i

CB E

(a) (b)

Figure 3-1: Legal Multiple Inheritance

The mapping language also supports single inheritance for view implementations.

That is, a view can inherit the implementation of, at most, one other view using

the extends keyword. For example in the following code, view V inherits the

definitions of views VI, V2 and V3 and the implementation of view V2.

- 6 0 -

view V3 {...}
view V : VI, V2 (extends), V3 {...}

• View body

A view is comprised of the following parts: location, definition, source, mapping

and userjnethod. Empty views (i.e. containing none of the above parts) are

allowed.

3.3.5 Location

A target CORBA server needs to publish one or more factory-type object through

which other objects can be obtained. Like every CORBA object, factories are

defined as IDL interfaces. However, only one instance of such an interface is

required, which is created and then published by the server.

The mapping language provides an easy way to create target server factory objects,

i.e. using the location field. The presence of a location field in a view specification

denotes a published factory object. The location specification starts with the

keyword location, which is followed by the URL of the filename into which the

corresponding factory object IOR will be written. This information is used to

generate target CORBA server code that creates a factory object of the associated

interface and writes its IOR into the specified file. For example:

location "file:/tmp/BactGen.GenFactory.ior"

3.3.6 Definition

This is the definition of the view. It includes the declaration of attributes,

operations, and types. The syntax for their declaration is the same as the IDL

syntax.

Definitions ::=“definition” DefinitionBody

DefinitionBody ::=(Definition

-61

Definition : : = TypcDecl

I AttributeDecl

I OperationDecl

• Attribute declaration

The mapping language supports read-only attributes.

• Operation declaration

The mapping language supports declaration of IDL operations. Target IDL

operations must either catch or throw any exceptions defined in source IDL

operations used in the mapping.

If the details of source server exceptions need to be hidden from the clients of the

target CORBA server, the developer of the target CORBA server has to catch and

deal with those source IDL exceptions within the implementation of the relevant

target IDL operations.

If, on the other hand, source server exceptions need to be forwarded to clients of

the target CORBA server (informing them, for instance, of incorrect domain

object identifiers, or problems with a back-end database) target DDL operations can

simply raise those source IDL exceptions in the mapping language.

• Type declaration

The mapping language supports the following DDL types: base types (i.e. floats,

integers, chars, boolean, octet, any), template types (i.e. strings, unbounded

sequences), and type names.

Type declaration, that is, association of a name with a data type, is used for

declaration of sequences.

- 6 2 -

3.3.7 Source references

A target CORBA object is typically derived from (i.e. retrieves its data from) one

or more object of source CORBA server(s). References to those source objects are

declared within source. Values (i.e. source objects) are assigned to those

references during creation of the target object.

SourceRefs ::=“source” (SourceRefDecl “;”)*

SourceRefDecl ::=JavaScopedName ()? <id> (“,” <id>)*

A source reference type is a scoped name that may optionally be followed by

brackets in order to denote a sequence of objects.

In order to avoid naming conflicts source reference names follow the same rules as

attribute / operation / type names do. That is, source reference names follow the

case-sensitivity and name ambiguities in inheritance rules for identifiers defined in

Section 3.3.10, as well as the naming in the presence of inheritance rules defined

in Section 3.3.4.

3.3.8 Mapping

This defines the mapping for attributes / operations of the view, which are either

declared within definition or inherited. The attribute / operation name of the target

IDL to be mapped goes on the left-hand side of the mapping assignment. It can be

mapped to a scoped source name, a user supplied Java method, a Java expression,

or a specification for creation of new object(s).

Target < id > T T (“[]”)?

Source ::= MyScopedName

1 JavaMethod

I JavaExpression

I ObjectSpec

-63 -

• Mapping to a source name

A source name is the name of an attribute, or operation. Source references can be

used in a source name. For example:

op() = a .source.op();

• Mapping to a user method

A user method is a call to a Java method that is implemented within userjnethod.

JavaMethod ::= “jmethod” <id> Arguments

Arguments ::=

I “(” Argument Argument)* “)”

For example:

opO = jmethod { myOpO };

• Mapping to a Java expression

The mapping specifier can use any Java expression that can be placed on the right-

hand side of a plain assignment. Source references as well as standard Java

methods can be used in the implementation. When using abbreviated names to

refer to classes in a Java expression, it may be necessary to manually include the

corresponding Java import statements in the generated code. Java expressions are

included as-is in the generated target server code.

JavaExpression ::= “jexpression” stringToMatchingBrace

For example:

-64

opO = jexpression { (ref.posAO + ref.posBO) / 2 };

• Mapping to an object specification

The keyword object starts the mapping specification for the creation of one or

more new target objects. When new target objects are created, their source

references must also be assigned. A source reference can be mapped to a query, a

user method, or a scoped source name.

ObjectSpec ::= “object” ComponentSpec (“,” ComponentSpec)*

Components pec ::= <id> ()? “=” (JavaMethod | QuerySpec |

MyScopedName)

In the case of a query, the name of the source factory object (to which the query

will be sent) is given as the first argument with JavaScopedName. An SQL where-

clause specifying the query conditions is given as the second argument with

Expression. The predicates of the SQL where-clause are formulated using attribute

names, operation names, parameter names of the current operation, source

reference names of the current object specification, or source reference names of

the current view specification. Conditions are specified using the predicates ‘<’,

‘<=’, ‘>’, ‘>=’, ‘=’, and ‘o ’. Predicates can be negated using the logical operator

‘not’, or combined using the logical operators ‘and’, ‘or’.

QuerySpec ::= “query” “(” JavaScopedName “,” Expression “)” (“[”

(<int>)? “]”)?

For example:

opO = object {
ref = query(Server.factA, id()='an_id' and type()='a_type')

};

-65

• Iterator

In order to facilitate mapping an iterator operator is defined, which provides a

convenient way to iterate over sequences of objects. It is, essentially, a shortcut for

a simple/or loop. It is denoted with a pair of brackets “[]” and can be used within

target mapping or source reference mapping. It is always used in pairs, appearing

in the left- and the right-hand side of a mapping. Its semantics are that for each

object encountered in the right-hand side of a mapping a new object should be

created in the left-hand side. The possible pairs are:

a) Target - Source name; for example:

op()[] = an.op()[];
op{) [] = another 0 [].op();

b) Target - Object specification source_name; for example:

op (-).[] = object {
ref = a.source.op()[]

};

c) Target - Object specification query; for example:

op()[] = object {
ref = query (Server.factory, type()='a_type')[]

};

d) Object specification source reference name - Object_specification source

name; for example:

- 66 -

opO = object {
ref[] = an.op()[]

};

op() = object {
ref[] = another()[]. op {)

};

e) Object specification source reference name - Object specification query; for

example:

opO = object {
ref[] = query (Server.factory, type()='a_type')[]

};

• Accessing a single sequence element

If an integer literal is written between the brackets following a query or a source

name, a single object of the sequence is assigned to the left-hand side. That would

be the object indexed by the specified number. For example:

getGeneO = object {
g = query(Server.geneFactory, id_gene()='an_id')[0]

};

• Writing a parameter name

Parameter names of an operation are written within mapping using a special

syntax, i.e. the operation name, followed by followed by the parameter name.

- 6 7 -

This guarantees that there is no name conflict with other attribute or source

reference names. In the following example, id is a parameter of the operation

getById():

Gene getById(in string id);
getByldO = object {

g = query(Server.geneFactory, id_gene() = getById:id)[0]
};

• Referencing a source reference name of the current object specification

Source reference names of an object specification can be used within the mapping

specification of other source references within the same object specification. This

feature allows the result of one source reference mapping to be used within

another. In the following example, go is used within the mapping specification of

/:

getPromoterO = object {
go = query { Server.genomicObjectPactory,

(type() = 'promoter') and (id_gene() = id())),
f = query (Server.dnaFragmentFactory,

id_dna_fragment0 = go.id_dna_fragment())
};

In case of a naming conflict, source reference names of the current object

specification take precedence over other names, e.g. source reference names of the

current view specification, or attribute names. If the intention is, instead, to use a

source reference name of the current view specification or an attribute name, that

name should be preceded by the prefix 'this. ’.

- 6 8 -

• Union

If a target attribute / operation returns a sequence of elements, and its mapping is

specified more than once, the union of all the elements returned from each

mapping is calculated and returned, instead. For example:

op 0 [] = an. op () [] ;
op()[] = another.op{)[];

3.3.9 User methods

The mapping language supports user methods inclusion within the view

specification. The implementation of any user method called within mapping is

provided in the userjnethod part of the view definition. User methods are

implemented in the same language as the generated target servers (i.e. in Java).

Source references as well as standard Java methods can be used in the

implementation. When using abbreviated names to refer to classes in the

implementation of a user method, it may be necessary to manually include the

corresponding Java import statements in the generated code.

User method implementation is included as-is in the generated target server code.

That is, no parsing is performed.

3.3.10 Names and Scope

The rules of the mapping language about valid names and scope are:

• Case-sensitivity

Identifiers are case insensitive; that is, two identifiers that differ only in the case of

their characters are considered re-definitions of one another. However, all

references to the definition must use the same case as the defining occurrence. For

example:

-69

view V {
typedef sequence<string> StringList;

short opl();
long opl(); // Error: multiple declaration of opl
StringList op2(); // Error: inconsistent capitalisation

• Qualified names

A qualified name in IDL is a name of the form <scoped_name>::<identifier>.

Qualified names can be used in the mapping language to declare any source IDL

exceptions raised by target IDL operations. If an exception is declared within the

scope of an interface (i.e. one of the elements of the <scoped_name> is an

interface), that fact has to be explicitly specified in the mapping language in order

to allow for correct mapping to Java. This is achieved by inserting the keyword

interface in parenthesis after the interface name of the <scoped_name>. For

example, the following IDL definition

module M {
interface I {

exception E {};
};

};

corresponds to the following exception declaration in the mapping language

M: I(interface) :E
- 7 0 -

while the generated Java class for the exception is accessed by

M.IPackage.E

• Name ambiguities in inheritance

Name ambiguity does not arise in the case of multiple inheritance, because

multiple inheritance from views that share one or more identifiers is disallowed.

For example:

view VI {
string op();

}

view V2 {
short op();

}

view A : VI, V2 { // Error: VI and V2 share an operation
name

• Scoping and name resolution

A module, a view, or an operation form scopes. An identifier can only be defined

once in a scope. Identifiers can be redefined in nested scopes, but not within the

immediate scope of a module or a view. That is, the name of a module, or a view

cannot be redefined within the immediate scope of the module, or the view. For

example:

-71 -

module M {
view M { // Errer: M clashes with the module name

short MO; // Error: M clashes with the view name
}

}

A name can be used in an unqualified form within a particular scope; it will be

resolved by successively searching farther out in enclosing scopes, while taking

into consideration inheritance relationships among views. In the following

example, B will be the first scope to search for the declaration of Vlist. If not

found in B, its base view A will then be searched. Similarly, A will be the first

scope to search for the declaration of V. If not found in A, the module M will then

be searched.

module M {
view V {
}

view A {
typedef sequence<V> VList;

}

view B : A {
VList op 0 ;

}

}

7 2 -

3.4 Conclusions

The mediator system described in this thesis includes a mapping language that is

used for the implementation of mediator generators. The language is designed for

mapping one or more source schemas into a target schema. The design of the

mapping language has been driven by the main requirements identified early in

this Chapter, and has been based on the design dimensions discussed in Chapter 2.

In the following, there is a summary of the main features that identify the mapping

language and suggestions for future extensions / improvements, especially with

focus on molecular biology data integration.

The language combines declarative and procedural features designed to support a

high-level notation, in order to provide easy and concise specification of mappings

and to facilitate modification of mapping definitions. The latter is especially

important in the field of molecular biology for the support of source and/or target

schema evolution due to frequent changes of data structures.

Resolving schematic heterogeneity at the IDL level means that mediator specifiers

do not have to leam a new model/language, and no translation between different

models and definition languages is necessary. In the future, and as mappings

between IDL and UML/XML become fully standardised and associated tools

become available, it would be of interest investigating the resolution of schematic

heterogeneity at the object modelling level, i.e. at the UML level with/without the

use of XML.

The IDL constructs supported by the mapping language suffice to express object

models of considerable complexity. However, not all IDL constructs are supported

(e.g. IDL structs and value types). As a result, if an existing CORBA wrapper that

contains such constructs needs to be utilised and its unsupported constructs

mapped, the mapping would have to be implemented manually. It would be of

interest to investigate the inclusion of additional IDL constructs in the mapping

- 7 3 -

language, such as structs and value types, for improved support of more wrappers,

and with regard to efficiency issues.

The object composition model is chosen to support target object derivation.

Compared to alternative models, this enables more powerful data integration and

customisation of data representation. This feature is especially important in the

field of molecular biology due to the different level of detail at which biological

objects are modelled in different data sources, and the high degree of

interrelationships.

The mapping language supports a convenient way (i.e. using explicit references)

of publishing initial CORBA objects. Using the CORBA Naming Service would

also be a suitable option, which takes advantage of other development work on

CORBA, and it would be worth supporting in the future.

The mapping language supports the specification and mapping of fixed

parameterised queries. The main advantage is that query results are fully typed

with a type controlled by the mapping specifier. An alternative to investigate

would be to support type restricted queries, which are also suitable for domain

objects represented in IDL and provide fully typed query results.

A mapping to queries supported by CORBA wrappers generated by Persistence^^

is provided. Query results are fully typed facilitating client development, and

supported queries are sufficiently powerful for the application domain. It would be

of interest to investigate providing query mappings to alternative wrappers /

wrapper query models, especially the ones used for molecular biology data.

7 4 -

Chapter 4: THE MEDIATOR SYSTEM

The approach examined in this thesis is a mediation system that utilises CORE A

in order to support the integration of data from molecular biology data sources that

provide access through CORBA and the creation of customised CORBA views of

such data sources. The architecture of the developed system combines elements of

a mediator-based architecture (as examined in Section 1.3 and depicted in Figure

1-4) with a CORBA-based 3-tier architecture (as examined in Section 1.2.4 and

depicted in Figure 1-3). The result is a mediator-based CORBA utilising

architecture such as the ones examined in Sections 1.5 and 2.1.

In this Chapter, the architecture of the system is examined in detail including

discussion of design and implementation issues of its main components, which are

its mediator generator (called IDL View Generator) and the generated mediators.

4,1 Architecture

The architecture of the CORBA mediation system described in this thesis is

depicted in Figure 4-1. It is based on the general CORBA mediator architectures

of Figure 1-5 and Figure 2-1.

It is assumed that one or more CORBA wrappers are available each one providing

access to data stored in a data source. Data sources can, for example, be databases,

flat files, or information systems. The goal is to create CORBA servers that

customise data representation and/or integrate data (i.e. mediators) providing

preferred IDL interfaces.

- 7 5 -

Clientl (ORB)
Mapping
specifier

IDL View
Generator (ORB) Client2

Mapping
specifier

generatesgenerates

P) Appli-
I ca tion

End-user

sm. ms.

End-user

Wrapper Wrapper

FileDBMS

MediatOr2Mediator 1
Appli­
cation

Information
System

Figure 4-1: System Architecture

Mediators are generated in a semi-automatic way. First, view definitions written in

the mapping language need to be provided by the mapping specifiers. These are

high-level descriptions of the mapping of mediator IDL definitions to wrapper IDL

definitions. In Figure 4-1, ClientX provides view definitions for MediatorX. Based

on the view definitions, the IDL View Generator (that is, the system's mediator

generator) generates the mediator IDL as well as the mediator implementation.

Applications for end-users can then be developed as clients to generated

mediators. Those applications will use the generated IDLs to send requests to

mediators. Mediators will convert received IDL requests to wrapper IDL requests.

- 7 6 -

In the opposite direction, mediators will map results from wrapper IDL

representation to their own IDL representation and return them back to

applications.

One important point to note is that mediators can, in principle, interact not only

with wrappers but also with other mediators, sending requests and receiving

results. Mediatorl in Figure 4-1 is an example of a client of another mediator, i.e.

Mediator2. That is, there are no special requirements or restrictions on the kind of

a CORBA server used as a source by a mediator.

4.2 The IDL View Generator

The IDL View Generator accepts view definitions written in the mapping

language. It parses them and generates the mediator IDL and the mediator

implementation.

4.2.1 Use of the IDL View Generator

The IDL View Generator can be used either as a stand-alone program from the

command line, or as a CORBA server.

In the first case, the program takes as input a filename with the view definitions

that describe a mapping, and generates the mediator files. The command line

syntax is:

java IdlViewG <ViewDefsFile>

In the latter case, the IDL View Generator becomes fully integrated within

CORBA. This has the advantage that any mapping specifier can easily use it over

the Internet. The IDL definition provided by the IDL View Generator is quite

simple and shown below:

7 7 -

module ivgServer {
typedef sequence <octet> FileFlow;
interface ivgManager {

FileFlow generateZipFile(in string viewDefs);
}

}

There is only one interface defined (i.e. ivgManager), which provides one

operation (i.e. generateZipFile). This operation takes as input the view definitions

that describe a mapping and returns a zip-compressed file. The returned file is a

tar-collection of the mediator files.

4.2.2 Mediator generated files

The generated mediator, which is implemented in the Java programming language,

is a collection of files that include:

• One file with the IDL definition of the generated CORBA server. Each view in

the view definitions is mapped to an interface with the same name in the

mediator IDL definition. The file is named <ModuleName>.idl, where

<ModuleName> is the name of the module given within the view definitions,

as described in Section 3.3.3.

• One file that defines the Java class of the server including the main() method.

The file is named <ServerName>.java, where <ServerName> is the name of

the server given in the server declaration part of the view definitions, as

described in Section 3.3.2.

• A number of files implementing the interfaces defined within the generated

IDL. According to the IDL to Java mapping specification [OMG 98a] each

IDL interface is mapped to one Java class. One file is generated for each

interface, and is named after that interface as <InterfaceName>Impl.java.

-78 -

Each of those files defines the Java class that corresponds to the interface and

includes the implementation of all required methods.

In order to get a complete CORBA server, the server class file and the interface

implementation files will need to be compiled together with the skeletons, which

are generated automatically by the ORB after compiling the provided IDL.

4.2.3 Implementation

The DDL View Generator is implemented in the Java programming language.

The JavaCC (Java Compiler Compiler) parser generator program was used for the

implementation. JavaCC is a freely available program that was originally

developed by SUN [Sun] and is now distributed and supported by Metamata

[Metamata]. A parser generator is a tool that reads a high-level grammar

specification and converts it into a program that can recognise matches to the

grammar. This allows language developers to concentrate on the grammar and not

worry about the implementation details of parsing, thus making the development

of a new language easier and faster, as well as providing better documentation and

facilitating maintenance of the code. JavaCC generates pure Java code.

4.3 Mediators

Mediators are CORBA servers that customise data representation and/or integrate

data coming from available CORBA wrapped data sources. They provide

preferred IDL interfaces that can then be used by prospective applications.

4.3.1 Object composition and the adapter design pattern

Target objects are derived from source objects following the object composition

model (see Section 2.3 and Section 3.2.2). That is, composite objects need to

provide an interface to the outside world, while internally mapping the elements of

the supported interface into the elements of one or more interfaces of included

source objects.

- 7 9 -

Target Adaptée
Client

SpecificR equestORequestQ

nterface implementation

Adapter

RequestO

RequestO
implemented using
SpecificRequestO

Figure 4-2: UML Model of Class Adapter (taken from [Gamma 95])

This is similar to the object-oriented design problem of converting the interface of

a class into another interface that clients expect. Frequently occurring design

problems and their solutions in object-oriented software engineering are called

design patterns [Gamma 95]. The adapter design pattern focuses on the problem

mentioned above. It allows conversion of an existing interface (defined by

adaptee) into another one (defined by target) that clients expect [Gamma 95]. An

adapter is used to adapt the interface of adaptee to the target interface. It receives

requests from clients, which it translates into calls to adaptee operations that carry

out the requests.

- 8 0 -

i nte rface
adaptee

Client
RequestQ

Target

RequestQ

Adapter

SpecificRequestQ

Adaptee

RequestQ implemented using
adaptee->SpecificRequest()

Figure 4-3: UML Model of Object Adapter (taken from [Gamma 95])

An adapter can be implemented using multiple inheritance (called class adapter,

see Figure 4-2), or object composition (called object adapter, see Figure 4-3). In

the first case, the adapter inherits the interface definition from target and the

implementation from adaptee. When it receives a Request(), it calls the

corresponding SpecificRequestO operation of adaptee. In the latter case, the

adapter inherits the interface definition from target and holds a reference to the

adaptee. When it receives a RequestQ, it uses the adaptee reference to call the

corresponding SpecificRequest() operation of adaptee.

81 -

The generated mediators are implemented using object adapters as opposed to

class adapters, since the first ones provide greater flexibility in composing a target

object out of many source objects (i.e. adaptee objects) of different interfaces and

allow the source and target interface hierarchies to be kept separate. Object

adapters need to keep references to the corresponding source objects. These are

the source references of the mapping language described in Section 3.3.7. They are

assigned in the constructor method of an adapter.

4.3.2 Interface implementation

CORBA provides two approaches to interface implementation. The ImplBase

approach, which is based on class adapters (explained in Section 4.3.1), and the

TIE approach, which is based on object adapters (explained in Section 4.3.1).

In the ImplBase approach, for each interface, the ORB generates an abstract Java

class named after the interface as _<InterfaceName>ImplBase (see Figure 4-4).

The corresponding interface implementation class should inherit from that

ImplBase class. The Server class instantiates an object of an interface

implementation class within its main() method. This approach requires the user-

defined implementation class to extend an ORB generated base class. That limits

the flexibility of implementation classes and eliminates the possibility of reusing

existing implementations for languages that do not support multiple inheritance,

e.g. Java.

- 8 2 -

extends implements

extends

instantiates- Aimpl

mainO

Server

ASkeleton

_AlmplBase

Figure 4-4: The ImplBase Approach for Interface A

In the TIE approach, for each interface, the ORB generates a Java class named

after the interface as _tie_<InterfaceName> (see Figure 4-5). It also generates an

interface, named _<InterfaceName> Operations, which defines the operations to

be implemented by the interface implementation class. The corresponding

interface implementation class should inherit the definition of that

_<InterfaceName> Operations interface. The Server class instantiates a TIE object

passing an object of the corresponding interface implementation class to the

constructor. As a result, a TIE object is created that delegates incoming operations

to the methods of the corresponding interface implementation object. This

approach requires the creation of an additional object for each implementation

object instantiated in a server. That increases memory requirements especially

- 8 3 -

when a large number of implementation objects are created in the server. In

addition, client invocations are delegated by TIE objects to implementation

objects. That involves an additional Java method invocation for each incoming

request.

extends implements implements

delegates_to
tie_A Almpi

ASkeleton _AOperations

instantiates

Server

mainQ

Figure 4-5: The TIE Approach for Interface A

The generated mediators are implemented in the Java programming language that

does not support multiple inheritance. Therefore, the TIE approach is used to

implement interfaces. This allows implementation to be inherited from other

interfaces.

- 8 4 -

4.3.3 Inheritance Implementation

An example is used here to discuss the implementation of inheritance within

mediators. Three views are defined, namely GenomicObject, Promoter and

Terminator. The Promoter and Terminator views inherit both the definition and

the implementation of the GenomicObject view, as shown in the following code

(details not necessary for the purposes of this example are omitted).

view GenomicObject {
definition {

long posFirst();
long posLast();
string dnaSeqO;

}

. . . }

view Promoter : GenomicObject (extends) {...}
view Terminator : GenomicObject (extends) {...}

As discussed in Section 4.2.2 each view is mapped to an interface in the generated

mediator IDL definition, i.e.

interface GenomicObject {...}
interface Promoter : GenomicObject (...)
interface Terminator : GenomicObject (...)

Each interface is mapped to a Java class in the generated interface

implementations. The use of the TIE approach to interface implementation (see

Section 4.3.2) means that interface implementation classes inherit the definitions

of (i.e. Java implements inheritance) their corresponding CORBA generated

- 8 5 -

_<InterfaceName>Operations interfaces, implementing the methods included in

those definitions. This is depicted (for the current example) in Figure 4-6, where

the interface implementation classes GenomicObjectlmpl, Promoterlmpl and

Terminatorlmpl inherit respectively the definitions of

jGenomicObjectOperations, _PromoterOperations and _TerminatoOperations.

.G enom icO bjectO perations

posFirstQ : long
posLastO ; long
dnaSeqO : string

extends extends

_P rom oterO p era tio n s _T erm in ato rO pe rations

G enom tcO bjectlm pI

im plem ents
extends extends

im plem ents

Prom oterlm pl Term inatorlm pl

Figure 4-6: UML Model of Inheritance Implementation

Additionally, if a view inherits the implementation of another view (i.e. using the

mapping language extends inheritance keyword), its respective interface

implementation class will also inherit the implementation of (i.e. Java extends

inheritance) the superview's interface implementation class. This is depicted in

- 8 6 -

Figure 4-6, where the interface implementation classes Promoterlmpl and

Terminatorlmpl inherit the implementation of GenomtcObjectlmpI. The

corresponding generated Java code is:

class GenomicObjectlmpl implements _GenomicObjectOperations

class Promoterlmpl extends GenomicObjectlmpl implements
_PromoterOperations {...}
class Terminatorlmpl extends GenomicObjectlmpl implements
_TerminatorOperations {...}

As discussed in Section 3.3.4, in the case of multiple view inheritance, a view is

allowed to inherit the definitions of many views but the implementation of at most

one view (i.e. the one for which the extends keyword is used). This is because in

Java, multiple implementation inheritance is not supported. As an example, take a

view A that inherits the definitions of views B, C, and D, as well as the

implementation of view C, i.e.

view A : B, C (extends), D {...}

The Java implementation class of A will inherit the definitions of all the

_<InheritedInterfaceName>Operations interfaces. It will also inherit the

implementation of class C, i.e.

class Almpl extends Clmpl implements _AOperations {...}

where.

- 8 7 -

public interface _AOperations extends _BOperations,
_COperations, _DOperations {...}

4.4 Conclusions

The architecture of the system described in this thesis is a mediator-based one that

utilises CORBA for communication between mediators and wrappers, and

between mediators and end-user applications. It is flexible, modular and extensible

in that mediators can, in principle, communicate not only with wrappers but also

with other mediators. That is, there are no special requirements or restrictions on

the kind of CORBA server used as a source by a mediator. As a consequence,

mediators could be utihsed as modules using which other more complex or more

specialised mediators would be constructed.

One of the main components of the system is the IDL View Generator that

generates mediators based on view definitions written in the mapping language.

The IDL View Generator is provided as a CORBA server, thus becoming fully

integrated within CORBA. The advantage is that mapping specifiers can easily

access and use it over the Internet.

The other main component is the generated mediator in each case. Generated

mediators are implemented using object adapters. This approach enables flexible

composition of a target object out of many source objects of different interfaces,

and allows the source and target interface hierarchies to be kept separate. In

addition, and consistent to the design of the mapping language, mediators

implement inheritance in a way that supports multiple inheritance for view

definitions, and single inheritance for view implementation.

Chapter 5: APPLICATION IN BACTERIAL

GENOMES

An example from the domain of molecular biology and, in particular, bacterial

genome data is used in this chapter to demonstrate the use of the system. It also

proposes a software development process in achieving the goal of data integration.

Two data sources have been used for obtaining genome data of the Bacillus

subtilis bacterium. One is the SubtiList database ([Moszer 95], [Moszer 98]),

which is a relational database for the Bacillus subtilis genome. A CORBA

wrapper for this database has been generated using the Persistence'''^ software. The

other is the EMBL nucleotide sequence database [Stoesser 02], a database for

nucleotide sequence data and related biological information for many organisms,

including Bacillus subtilis. The available CORBA server for this database [Wang

00] has been used to access the data. The data relevant to the application served by

those two CORBA wrappers and the provided IDL interfaces are described in

Section 5.1.

Having the two CORBA wrappers, the aim has been to develop a mediator that

integrates Bacillus subtilis data from the wrappers and provides the integrated data

through an alternative and preferred IDL definition. In order to achieve that, an

object model of bacterial genome data has been developed (see Section 5.2), based

on which, suitable IDL interfaces for the mediator CORBA server have been

defined (see Section 5.3). The IDL View Generator is then used to generate the

8 9 -

required mediator. This involves the definition of the mapping of mediator to

wrapper IDL interfaces (see Section 5.4), which is given as input to the IDL View

Generator. Based on the view definitions, the IDL View Generator generates a

CORBA server with the specified IDL interfaces. In order to test the generated

mediator, a simple textual chent application has been developed that uses the IDL

interfaces of the mediator CORBA server and retrieves the integrated data (see

Section 5.5).

5.1 Source CORBA Servers

Two independently developed CORBA servers have been used for the purposes of

this application.

5.1.1 SubtiList

The SubtiList database is a relational database for the genome of Bacillus subtilis

(reference strain 168), the model organism of sporulating Gram-positive bacteria

([Moszer 98], [Moszer 95]). It provides the complete DNA sequence with location

information within the single chromosome of the organism. It also links the DNA

sequence to relevant annotation and analysis data. This includes characterisation

of protein coding genes and the derived protein sequences, characterisation of

RNA genes, prediction of possible opérons, annotation of protein similarities,

functional classification of protein gene products, nucleotide base composition and

oligonucleotide bias data, repeated sequences and codon usage data. The data

originated mainly from the B. subtilis genome sequencing project [Kunst 97],

supplemented with information from the B. subtilis entries present in the

EMBL/GenBank/DDBJ databanks [Stoesser 02], as well as observations either

published in international journals or communicated directly by individual

researchers. The current data available from the SubtiList Web server [Moszer 98]

were released on April 26, 2001 (data release R16.1).

9 0 -

A subset of the complete SubtiList database was made available, installed locally

and used for the purposes of the application. It includes the complete DNA

sequence with location information, characterisation of protein coding and RNA

genes, functional classification of protein gene products, as well as codon usage

data. The latest data stored in that database and used for the application were

released on November 20, 1997 (data release 14.2). This is the same release for B.

subtihs data as the one used from the EMBL/GenBank/DDBJ databanks (see

Section 5.1.2).

A CORBA wrapper for the locally installed SubtiList database has been generated

using the Persistence^^ software. Persistence^^ generates a C++ class library to

access an underlying relational database providing an object model that closely

reflects the underlying database schema. In addition, it generates a CORBA server

for the IONA Orbix ORB that uses the class library to access the data. The kind of

EDL interfaces generated by Persistence"^^ and their mapping to the database

schema are outlined in Section 2.5.

The complete CORBA server IDL definitions generated by Persistence^"^ for the

SubtiList database are provided in Appendix B. For each project. Persistence""" ̂

generates three IDL definition files: PS.idl, PSAdmin.idl and <project_name>.idl.

The PS module contains declarations for basic capabilities that are commonly

used by CORBA server and client programs. It defines a transaction interface,

enumerations, specialised attribute types, and exception types. The PS Admin

module defines advanced capabilities that are used to configure a CORBA server.

The classes of the PS Admin module are used to manage the server, database

tables, database connections, the cache, and the event log. Most client programs

would not need these operations, and it is possible to “hide” the interface to the

PSAdmin module such that a client cannot easily invoke the methods. The

<project_name> module defines the project specific interfaces. For each class

<class_name> specified in the object model during the generation process, it

- 9 1 -

defines an interface <class_name> containing the relevant attributes and

relationships, an associated factory-type interface <class_name>_Factory that

supports queries, and an associated collection type <class_name>_Cltn as an IDL

sequence of the interface.

buff_class_gene
id_gene ; string
ld_category : string

genes_Factory

buff_class_gene_Factory

querySQ LW here(whereClause : string) : Coll{bufLclass_gene)

classification classification_Factory
id_category ; string
description ; string querySQLW fiere(wfiereCIause : string) : Coii{ciassification}

querySQ LW here(w hereClausa : string) : Coll{genes}

genom ic_object_Factory

querySQ LW here(w hereClause ; string) ; Coll{genomic_object}

g e n e s
ld_gene ; string
nam e ; string
function ; string
ec_num ber ; string
pos_kb : float
codon_usage ; long

genom ic_object
id_kitong : string
id_gene : string
type : string
first : long
last ; long
direction ; string

kitong
kitong_Factory id_kitong ; string

pos_kb ; float
nuc_seq : stringqu0rySQLW iiere(w hereClause : string) ; Coll(kitong)

Figure 5-1: Part of SubtiList CORBA Server IDL in UML notation

A part of the SubtiList IDL definitions used for the purposes of the application is

depicted in Figure 5-1. They represent DNA sequence and location information for

protein coding genes and other functionally significant regions of DNA sequences

(e.g. promoters, terminators), as well as information on functional classification of

protein gene products and codon usage. Five main interfaces are defined: genes.

9 2 -

genomicjDbject, kitong (described later on), bujf_class_gene (described later on)

and classification, as well as five factory-type interfaces for querying purposes:

genes _Factory, genomic_object_Factory, kitong_Factory,

bujf_class_gene_Factory and classification_Factory.

• The genes interface represents biological genes. It contains

naming/identification information (i.e. id_gene, name, ec_number), functional

description (i.e. function), position within the chromosome (i.e. posjcb), and

codon usage (i.e. codonjusage) information.

• The genomic jobject interface represents various functionally significant

regions of DNA sequences (also known as features), such as promoters,

terminators, -35 signals and -10 signals. Their type is distinguished by the

value of the attribute type, while their start and end nucleotide base positions

within a DNA fragment are given by first and last, respectively. Their

nucleotide sequence direction is specified by the attribute direction: a "4-"

value means left-to-right, and a value means right-to-left.

• The kitong interface represents fragments of DNA sequences. It contains the

relevant DNA sequence string (i.e. nucjseq), and the starting position of the

kitong within the chromosome (i.e. posjcb). The name kitong is the exact

name used in the database schema, and it is reflected unchanged in the

generated IDL. Perhaps, it was devised as a close anagram of the word contig,

which means a DNA sequence fragment!

• The buff_class_gene and classification interfaces represent information on

functional classification of protein gene products. The bujf_class_gene

classifies genes into a number (i.e. total 52) of categories, that is, it associates

each gene with one functional class. The name buff_class_gene is the exact

name used in the database schema, and it is reflected unchanged in the

generated IDL. The classification provides a description of each functional

category [Moszer 98].

- 9 3 -

• The genes_Factory, genomic_object_Factory, kitong_Factory,

bujf_class_gene_Factory and classificationJFactory interfaces represent

factory-type objects as described in Section 2.5. They all provide the query

operation querySQLWhere, which takes a string as an input parameter. The

string corresponds to the where-clause of an SQL query. They evaluate the

query and return a collection (i.e. an IDL sequence) of the corresponding

objects.

The CORBA wrapper generated by Persistence^^ has proved useful and

manageable for a small database such as SubtiList. A few adaptations had to be

made to the generated DDL and server program in order to make the existence of

the underlying SubtiList database transparent to client programs and to support

read-only access to the data. They included removing operations that controlled

database connections, and transactions, removing operations of factory-type

interfaces that removed/cleared their corresponding interface objects and

modifying the server program. Apart from these modifications made solely for the

purposes of restricted database access, the generated IDL definitions did not

change in any other way that would facilitate integration.

5.1.2 EMBL

The EMBL nucleotide sequence database [Stoesser 02] maintained at the

European Bioinformatics Institute (EBI) is a database for nucleotide sequence data

and related biological information, such as description, taxonomic classification,

citations, biological features with location information and feature qualifiers. It is

produced in collaboration with the GenBank (NCBI, Bethesda, USA) [Benson 02]

and DDBJ (CEB, Mishima, Japan) [Tateno 02] databanks. The three databanks

exchange data that they receive from genome sequencing centres, individual

scientists and patent offices. Sequence data are assigned accession numbers that

uniquely identify them. The complete nucleotide sequence of the genome of

Bacillus subtilis and associated annotation are stored in the database and assigned

- 9 4 -

the accession number AL009i 2(5. The complete genome data used for the purposes

of this application were created and last updated in November 1997, i.e. they are

of the same data release as the ones stored in the locally installed SubtiList

database (see Section 5.1.1). More recent updates of specific parts of the genome

are also available. However, at the time of the development of the application

those were not available through the complete genome data.

Seqinfo

R e fe re n ceL ib ra ry
getD escriptionO : string
getR eferen cesQ : DbXrefList

getR eference(ld : string) : R eferen ce

N ucS eq Entrylnfo

E m b l
E m b lS eq

getE m b iS eq (b io_seq _ id : string) : Em blSeq

Figure 5-2: Part of EMBL CORBA Server IDL in UML notation

The available EMBL CORBA server [Wang 00] has been used to access the B.

subtilis data that is stored in the EMBL database. A part of the EMBL CORBA

server DDL definitions used for the purposes of the application is depicted in

- 9 5 -

Figure 5-2. They represent information on biological sequences including

description and bibliographic references.

• The Embl interface is the entry point for obtaining nucleotide sequence data. It

defines the operation getEmblSeq() that retrieves a nucleotide sequence given

its accession number.

• The EmblSeq interface inherits from the NucSeq, the Seqinfo and the Entrylnfo

interfaces.

• The NucSeq interface contains the nucleotide sequence and provides access to

feature (i.e. sequence annotation), location and originating organism

information.

• The Seqinfo interface has information associated with a sequence, such as

description, comments, cross references to other databases and cross

references to bibliographic references provided by the publication part of the

EMBL CORBA server.

• The Entrylnfo interface provides information specific to the EMBL database

entry.

• The ReferenceLibrary interface contains bibliographic references associated

with sequences. It defines the operation getReference() that retrieves a

reference given its identifier, and getReferencesQ that retrieves bibliographic

references of a sequence given its accession number.

5.2 Object Model

An object model of bacterial genomes that is the basis for the definition of the

mediator CORBA server IDL (to be discussed in Section 5.3) has been developed.

The mediator integrates Bacillus subtilis data from the two independently

developed wrappers described in Section 5.1. The part of the object model used

9 6 -

for the purposes of the current application is presented and discussed in detail in

this Section.

An object model of bacterial genomes has been developed using the Unified

Modelling Language (UML). It is provided together with an accompanying

glossary of terms in Appendix C. Its purpose is to form the basis for the definition

of IDL interfaces for the mediator CORBA server (see Section 5.3). It focuses on

the representation of structural and functional information primarily at the DNA

and RNA sequence levels, linking that to some high level representation of

structural information at the protein level, as well. More specifically, it tries to

capture, from a biological point of view, the different kinds of genomic objects

coded by nucleotide sequences, their location, their nucleotide sequence, as well

as how they relate to each other and to the resulting proteins.

A simplified part of the overall bacterial genomes object model is depicted in

Figure 5-3. This shows the part of the model used for the purposes of the current

application. It includes classes that represent location and sequence information

for a number of genomic objects such as promoters, terminators, -35 and -10

signals. Genomic objects are associated to genes. Genes include identification and

naming information, links to bibliographic references, and codon usage analysis

results. Suitable classes for the functional classification of protein coding genes

are also identified and linked to genes. A more detailed description of the classes

included in the model is given below:

• The GenomicObject class represents functionally significant regions of

nucleotide sequences. These can be either regulatory signals, or protein coding

sequences. Genomic objects have a location on a nucleotide sequence, for

example, a chromosome.

• The NucSeq class represents a nucleotide sequence associated with a genomic

object. It includes the actual nucleotide sequence string (i.e. seq_string) and a

boolean type attribute that encodes whether the nucleotide sequence direction

- 9 7 -

is left-to-right, or right-to-left (i.e. direction_is_left_to_right). Any nucleotide

sequence can be represented by this class, an example being a chromosome.

0 . . *

0 ..*

0 . .*

0 . .* 0 . .*

-35Signal

Prom oter

R eference

Terminator

R egulSignal

ProteinCoding

G enom icO bject

first_pos : int
la st_ p o s : int

Location

Id : string
description : string

FuhctionalClass
id : int
description : string

C o d o n U sa g e C la ss

seq_string : string
d ire c tio n js Jeft_ to_righ t : boolean

N ucSeq

id : string
nam e : string
ec_num ber : string
function ; string
description : string
pos : int

G ene

Figure 5-3: Part of Bacterial Genomes Model in UML notation

The Location class represents the positions of the first (i.e. first_pos) and last

(i.e. last_pos) nucleotides of a genomic object within a nucleotide sequence.

The RegulSignal class represents DNA sequences that act as signals, such as

promoters, terminators, -35 and -10 signals.

The Promoter class represents promoters. A promoter is the region of DNA

where RNA polymerase initiates transcription. It contains the startpoint where

- 9 8 -

transcription begins, the -35 and -10 signals, and is usually positioned before

the protein coding sequence(s).

The -35Signal class represents -35 signals. A -35 signal is the recognition

domain of a promoter.

The -lOSignal class represents -10 signals. A -10 signal is the unwinding

domain of a promoter.

The Terminator class represents terminators. A terminator is the region of

DNA where transcription ends and is usually positioned after the protein

coding sequence(s).

The Gene class represents genes, which are regions of DNA sequence having

some specific functionality, and containing DNA sequences that encode for

proteins/RNAs, as well as any associated regulatory signals. A gene includes

identification/naming information (i.e. id, name, ecjiumher), the approximate

location of the gene within a nucleotide sequence (i.e. pas), and general

information related to the gene and its function (i.e. function, description). It

may also include links to one or more relevant bibliographic references, and, if

it is a protein coding gene, it can be classified into a functional class, and/or a

codon usage class.

The FunctionalClass class represents suitable classes into which protein

coding genes are classified based on their function. Each functional class is

identified by a structured number (i.e. id) and briefly described (i.e.

description).

The CodonUsageClass class represents classes identified and used for the

classification of genes based on codon usage analysis results. Each codon

usage class is identified by a number (i.e. id) and briefly described (i.e.

description).

99

• The Reference class represents bibliographic reference information that is

related to genes.

• The ProteinCoding class represents DNA sequences that encode proteins.

5.3 Mediator CORBA Server IDL

Based on the object model discussed in Section 5.2, an IDL definition that will be

used for the mediator CORBA server has been developed and is depicted in Figure

5-4. The differences between the object model and the resulting IDL definition are

discussed in this Section.

Gene Factory FunctionalC lass

getByld(id : string, e m b ljd : string) ; Coil{Gene} id() : string
descriptionO : string

Gene

id() : string
nam e() : string
ecNumberQ : string
functionQ : string
descriptionO : string
functionalClassQ : FunctionalClass
codonU sageC lassQ : string
pos() ; long
getPromoterQ : ColI{Promoter}
getM inuslOSignalQ ; Coll{M inus10Signal}
getM inus35Signal() : Coll{M inus35Signal}
getTerminatorO ; Coil{Terminator}
getProteinCodingO : Coll{ProteinCoding}
referencesQ : Coll{string}

Promoter

GenomicObject

firstPosO : tang
lastPosO : tang
nucSeqO : string
directionisL2R() : boolean

Minus35Signal

Terminator

Mlnusi OSignal

ProteinCoding

Figure 5-4: Mediator IDL in UML notation

- 100

The GeneFactory interface has been introduced in the mediator DDL definition. Its

role being to act as a starting point of the CORBA server, from which Gene

objects can subsequently be accessed.

Location and nucleotide sequence information for genomic objects have been

included within the GenomicObject class for simplicity. As a result the NucSeq

and Location classes are not represented within the mediator IDL definition.

The RegulSignal class is not included within the mediator IDL definition for

simplicity. As a result, operations to access any regulatory signal genomic objects

from their associated gene objects are directly included in the Gene class (i.e.

getPromoterO, getMinuslOSignal(), getMinus35Signal(), getTerminatorO).

Aggregation is a special form of association. It implies a part-whole relationship.

This means that usually a part exists when and as long as the whole exists

[Rumbaugh 91]. The aggregation relationship between the Gene class and the

RegulSignal and ProteinCoding classes of the bacterial genomes model of Figure

5-3 is supported in the mediator IDL definition, since ProteinCoding, Promoter,

Terminator, Minus 1 OSignal, and Minus35Signal objects can only be accessed

through their aggregate Gene object. In the case of the aggregation relationship

between the Promoter class and the MinuslOSignal and Minus35Signal classes,

the mediator IDL definition does not support any such "constraint", the reason

being to keep the IDL definition leaner and avoid extra network calls when

accessing information on -10 and -35 signals.

Genes are classified into codon usage classes according to the results of codon

usage analysis. Only three such classes are identified in the SubtiList database

[Moszer 98]:

• Class 1 contains most of the genes except genes for classes 2 and 3,

• Class 2 contains genes that are highly expressed during exponential growth,

and

- 101 -

• Class 3 contains genes of unknown function corresponding to A+T-rich

islands. Their function is often associated with bacteriophages or the cell

envelope.

Due to the small number of classes and in order to keep the IDL definition leaner

and simpler, the CodonUsageClass class is not included within the mediator IDL

definition. Instead, the codonUsage() operation in the Gene class provides the

codon usage class associated with the specific gene.

The Reference class is not included within the mediator IDL definition for

simplicity. Instead, the references() operation in the Gene class provides the list of

bibliographic references that are relevant to the specific gene as a list of strings.

5.4 View Definition

Having the two CORBA wrappers and the mediator CORBA server IDL

definition, the mapping of mediator to wrapper IDL interfaces needs to be defined.

This is given as input to the IDL View Generator in order to generate the required

mediator, which is a CORBA server with IDL interfaces as specified within the

view definitions. The complete generated mediator code is provided in Appendix

D. The complete view definitions, which include the mediator CORBA server DDL

definition and the mapping, are presented and discussed in detail in this Section.

The purpose of this is to give the reader a complete picture of the view definition

code required by the mediator system. In order to aid the reader further,

explanations/comments are included throughout the view definitions code.

/*

The n e c e s s a r y IDL d e f i n i t i o n s f o r t h e EMBL (i . e . t y p e s . i d l ,

n s d b . i d l) and t h e S u b t i L i s t (i . e . P S . i d l) CORBA s e r v e r s t o b e

i n c l u d e d w i t h i n t h e m e d i a t o r IDL.

* /

- 102 -

#include "/embl/idl/types.idl"
#include "/embl/idl/nsdb.idl"
#include "/sldb/idl/PS.idl"

/:

D e c l a r a t i o n o f t h e g e n e r a t e d CORBA s e r v e r c l a s s name /i.e.
S e r v e r) , and d e f i n i t i o n o f a v a i l a b l e w r a p p e r f a c t o r i e s (i . e .

c l a s s g e n e F , c l a s s F , geneF , g e n e o b j F , and d n a f r a g F f o r t h e

S u b t i L i s t , and emblF, c t r l F , an d l i b F f o r t h e EMBL CORBA

w r a p p e r s).
*/

server Server {
// S o u r c e f a c t o r i e s .

factory classgeneF {
ftype SLdb.buff_class_gene_Factory;
ior "file:/sldb/ior/cg_Fact.ior";

}

■factory classF {
ftype SLdb.classification_Factory,•
ior "file:/sldb/ior/c_Fact.ref";

}

factory geneF {
ftype SLdb.genes_Factory;
ior "file:/sldb/ior/g_Fact.ior"

}

factory genobjF {
ftype SLdb.genomic_object_Factory;
ior "file :/sIdb/ior/go_Fact.ior"

}

- 103 -

factory dnafragF {
ftype SLdb.kitong_Factory;
ior "file :/sldb/ior/df_Fact,ior"

}

factory emblF {
ftype nsdb.Embl;
ior "http://corba.ebi.ac.uk/EMBL/IOR/Embl.ior"

}

factory ctrlF {
ftype meta.Controled;
ior "http://corba.ebi.ac.uk/EMBL/ICR/Meta.ior"

}

factory libF {
ftype bibliography.ReferenceLibrary;
ior "http://corba.ebi.ac.uk/EMBL/IOR/Reference.ior"

}

}

module BacterialGenome {
// Forward d e c l a r a t i o n o f v i e w s .

view GeneFactory;
view GenomicObject;
view FunctionalClass;
view Gene ;
view Promoter;
view MinuslOSignal;
view Minus!SSignal;
view Terminator;

- 104 -

http://corba.ebi.ac.uk/EMBL/IOR/Embl.ior
http://corba.ebi.ac.uk/EMBL/ICR/Meta.ior
http://corba.ebi.ac.uk/EMBL/IOR/Reference.ior

view ProteinCoding;

/*

The G e n e F a c t o r y v i e w a c t s a s a s t a r t i n g p o i n t , f r om w hich

Gene o b j e c t s can s u b s e q u e n t l y b e a c c e s s e d .

* /

view GeneFactory {
/ *

A G e n e F a c t o r y f a c t o r y - t y p e o b j e c t w i l l b e p u b l i s h e d b y t h e

m e d i a t o r CORBA s e r v e r . I t s IOR w i l l b e w r i t t e n i n t o t h e

f i l e , t h e URL o f w hich i s s p e c i f i e d a f t e r t h e l o c a t i o n

k e y w o r d .

* /

location "file:/tmp/BactGen.GeneFactory.ior"
definition {

/ *

The o p e r a t i o n g e t B y l d O r a i s e s w r a p p e r IDL e x c e p t i o n s

(i . e . t y p e : : N o R e s u i t and

n s d b : : E m b l (i n t e r f a c e) : : S u p e r c e d e d f o r t h e EMBL, and

PS : :S e r v e r E r r o r f o r t h e S u b t i L i s t CORBA w r a p p e r s) , i n

o r d e r t o f o r w a r d t h o s e e x c e p t i o n s t o c l i e n t s o f t h e

m e d i a t o r CORBA s e r v e r . N o t e t h e i n s e r t i o n o f t h e k e y w o r d

i n t e r f a c e i n n s d b : : E m b l (i n t e r f a c e) : : S u p e r c e d e d , t o p o i n t

o u t t h e f a c t t h a t t h e e x c e p t i o n S u p e r c e d e d i s d e c l a r e d

w i t h i n t h e s c o p e o f t h e i n t e r f a c e Embl, and a l l o w f o r

c o r r e c t m a p p in g t o J a v a (a s e x p l a i n e d i n S e c t i o n

3 . 3 . 1 0) .

* /

Gene getByld(in string id, in string embl_id)
raises (type ::NoResult,

nsdb::Embl(interface): : Superceded,

- 105 -

PS::ServerError);

}

mapping {
/ *

The o p e r a t i o n g e t B y l d () r e t u r n s a new Gene o b j e c t ,

a s s i g n i n g i t s s o u r c e r e f e r e n c e s g , g o , and e s :

• v a r i a b l e g i s a s s i g n e d t h e S L d b . g e n e s o b j e c t t h e

i d o f which (i . e . i d _ g e n e ()) i s t h e same a s t h e i d

g i v e n a s an i n p u t p a r a m e t e r i n t h e c u r r e n t

o p e r a t i o n (s p e c i a l s y n t a x f o r t h e p a r a m e t e r i s :

g e t B y l d : i d) . The f a c t o r y q u e r i e d (i . e . geneF) i s a

S u b t i L i s t f a c t o r y , and t h e q u e r y w i l l b e s e n t t o

t h e P e r s i s t e n c e ™ g e n e r a t e d CORBA w r a p p e r f o r

S u b t i L i s t . In t h e s u p p o r t e d m a p p in g t o

P e r s i s t e n c e ™ g e n e r a t e d CORBA w r a p p e r s , q u e r i e s

a l w a y s r e t u r n s e q u e n c e s o f o b j e c t s (a s e x p l a i n e d

i n S e c t i o n s 3 . 2 . 4 and 2 . 5) . In t h i s c a s e , o n l y one

o b j e c t m us t b e i n c l u d e d i n t h e r e t u r n e d s e q u e n c e

(s i n c e t h e i d _ g e n e () u n i q u e l y i d e n t i f i e s an

S L d b . g e n e s o b j e c t) , h e n c e t h e u s e o f [0]

• i n a s i m i l a r way t o g , v a r i a b l e go i s a s s i g n e d t h e

c o r r e s p o n d i n g S L d b . g e n o m i c _ o b j e c t o b j e c t (s) .

• v a r i a b l e e s i s a s s i g n e d t h e n s d b . E m b l S e q o b j e c t

t h e i d o f w hich i s t h e same a s t h e i d g i v e n a s an

i n p u t p a r a m e t e r i n t h e c u r r e n t o p e r a t i o n (s p e c i a l

s y n t a x f o r t h e p a r a m e t e r i s : g e t B y l d : e m b l _ i d) .

* /

getByld0 = object {
g = query (Server.geneF,

id_gene()=getById: id) [0],
go = query(Server.genobjF,

id_gene()=getById: id),

-106

es = Server.emblF.getEmblSeq(getByld:embl_id)

};

}

}

/ *

The G e n o m icO h jec t v i e w r e p r e s e n t s f u n c t i o n a l l y s i g n i f i c a n t

r e g i o n s o f n u c l e o t i d e s e q u e n c e s .

* /

view GenomicObject {
definition {

The firstPosO an d lastPos()correspond t o t h e b e g i n n i n g

and en d o f t h e g en o m ic o b j e c t a f t e r t a k i n g i n t o a c c o u n t

i t s d i r e c t i o n i n t h e chromosome.

* /

long firstPosO;
long lastPosO;
string nucSeqO;
boolean directionIsL2R() ;

}

source {
// S o u r c e r e f e r e n c e t o t h e g en o m ic o b j e c t i n S u b t i L i s t .

SLdb.genomic_object go;
// S o u r c e r e f e r e n c e t o t h e r e l e v a n t k i t o n g i n S u b t i L i s t

SLdb.kitong k;
}

mapping {
firstPosO = jexpression { (int)(k.pos_kb()*1000) +

- 107 -

go.direction().startsWith("+") ? go.first()
: go.last 0 };

lastPosO =]expression { (int)(k.pos_kb()*1000) +
go.direction().startsWith("+") ? go.last()

: go.first 0 };
nucSeqO = j method { myNucSeqO };
directionIsL2R() = jexpression {

go.direction().startsWith("+")
};

}

user_method {
/ *

I t r e v e r s e s t h e o r d e r o f n u c l e o t i d e s o f a g i v e n

n u c l e o t i d e s e q u e n c e s t r i n g and r e t u r n s t h e r e s u l t i n g

s t r i n g ,

* /

String myNucReverse(String nseq) {
String rev="";
for (int i=0; i<nseq.length(); i++)
rev = rev + nseq.charAt(nseq.length()-1-i);

return rev;
}

/*

I t c o m p l e m e n t s t h e n u c l e o t i d e s o f a g i v e n n u c l e o t i d e

s e q u e n c e s t r i n g and r e t u r n s t h e r e s u l t i n g s t r i n g .

* /

String myNucComplement(String nseq) {
String compl="";

- 108 -

for (int i=0 ; i<nseq. length() i++)
switch (nseq.charAt(i)) {
case ' a ' : compl = compl + " t " ; break;
case ' c ' : compl = compl + "g" ; break;
case •g' : compl = compl + II Ç, II . break;
case ' t ' : compl = compl + II ̂ II. break;
default : compl = compl + break;

return compl;

/*

I t c a l c u l a t e s t h e n u c l e o t i d e s e q u e n c e s t r i n g o f a

gen om ic o b j e c t g i v e n t h e s o u r c e r e f e r e n c e s t o t h e

r e l e v a n t g e n o m i c o b j e c t and k i t o n g i n f o r m a t i o n i n

S u b t i l i s t .

* /

String myNucSeqO {
/*

The n u c l e o t i d e s e q u e n c e s t r i n g o f a k i t o n g i n

S u b t i L i s t a l w a y s h a s a l e f t - t o - r i g h t d i r e c t i o n . I f t h e

d i r e c t i o n o f t h e n u c l e o t i d e s e q u e n c e o f t h e gen om ic

o b j e c t i s l e f t - t o - r i g h t (i . e . t h e n t h e gen om ic

o b j e c t n u c l e o t i d e s e q u e n c e s t r i n g i s a s t r a i g h t

s u b s t r i n g o f t h e k i t o n g which i t b e l o n g s t o .

O t h e r w i s e , t h e n u c l e o t i d e s o f t h e r e t r i e v e d s u b s t r i n g

h a v e t o b e co m p l e m e n t e d and t h e i r o r d e r r e v e r s e d .

* /

if (go.direction().startsWith("+"))
return (k.nuc_seq().substring(

go. first 0, go . last ())) ;
- 109 -

else
return myNucReverse(myNucComplement(

k.nuc_seq() .substring(go.first 0, go.last())));
}

}

}

/*

The F u n c t i o n a l C l a s s v i e w r e p r e s e n t s c l a s s e s i n t o which

p r o t e i n c o d i n g g e n e s a r e c l a s s i f i e d b a s e d on t h e i r f u n c t i o n .

* /

view FunctionalClass {
definition {

string id();
string description();

}

source {
SLdb.buff_class_gene b;
SLdb.classification c;

}

mapping {
id() = b.id_category () ;
description() = c .description();

}

}

/*

The Gene v i e w r e p r e s e n t s g e n e s , w h ic h a r e r e g i o n s o f DNA

s e q u e n c e h a v i n g some s p e c i f i c f u n c t i o n a l i t y , and c o n t a i n i n g

- 110 -

DNA s e q u e n c e s t h a t e n c o d e f o r p r o t e i n s / R N A s , a s w e l l a s a n y

a s s o c i a t e d r e g u l a t o r y s i g n a l s (e . g . p r o m o t e r s , - 3 5 s i g n a l s ,

e t c .) .

* /

view Gene {
definition {

typedef sequence<Promoter> PromoterList;
typedef sequence<MinuslOSignal> MinuslOSignalList;
typedef sequence<Minus35Signal> Minus35SignalList;
typedef sequence<Terminator> TerminatorList;
typedef sequence<ProteinCoding> ProteinCodingList;
typedef sequence<string> StringList;
string id();
string name();
string ecNumber{);
string function();
string description();
FunctionalClass functionalClass()

raises (PS::ServerError);
string codonUsageClass();
long pos();
PromoterList getPromoterO

raises (PS::ServerError);
MinuslOSignalList getMinuslOSignal()

raises (PS::ServerError);
Minus35SignalList getMinus35Signal()

raises (PS::ServerError);
TerminatorList getTerminator()

raises (PS::ServerError);
- I l l -

ProteinCodingList getProteinCoding()
raises (PS::ServerError);

StringList references();
}

source {
SLdb.genes g;
SLdb.genomic_obj ect[] go ;
nsdb.EmblSeq es;

}

mapping {
id 0 = g.id_gene();
name() = g.name();
ecNumber() = g .ec_number();
function 0 = g.function();
description() = es.getDescription();
functionalClass{) = object {

b = query(Server.classgeneF,
id_gene() = name())[0],

c = query(Server.classF,
id_category() = b.id_category())[0]

};

codonUsageClass0 = jmethod { myCodonUsageClass() };
pos0 = jexprèssion { (int)(g.pos_kb()*1000) };
/ *

The o p e r a t i o n getPromoterO o f t h e v i e w Gene r e t u r n s one

o r more n ew P r o m o t e r o b j e c t , a s s i g n i n g t h e s o u r c e

r e f e r e n c e s go, k . N o t e t h e u s e o f t h e i t e r a t o r operator
[] which means t h a t , f o r ea c h g e n o m i c o b j e c t r e t u r n e d b y

t h e f i r s t q u e r y , a new p r o m o t e r o b j e c t w i l l b e c r e a t e d :

- 112 -

• v a r i a b l e go i s a s s i g n e d t h e S L d b . g e n o m i c _ o b j e c t

o b j e c t t h e t y p e o f w h ich i s ' p r o m o t e r ' and t h e i d

o f w h i c h i s t h e same a s t h e i d _ g e n e o f t h e c u r r e n t

Gene o b j e c t .

• v a r i a b l e k i s a s s i g n e d t h e S L d b . k i t o n g o b j e c t t h e

i d o f w h ic h i s t h e same a s t h e i d _ k i t o n g o f t h e

c u r r e n t g o .

The o p e r a t i o n s g e t M i n u s l O S i g n a l () , g e t M i n u s 3 5S i g n a l () ,

g e t T e r m i n a t o r () , and g e t P r o t e i n C o d i n g () w o rk i n a

s i m i l a r way.

* /

getPromoter()[] = object {
go = query(Server.genobjF,

(type() = 'promoter') and (id_gene() = id()))[],
k = query(Server.dnafragF,

id_kitong() = go.id_kitong())[0]
};

getMinuslOSignal0[] = object { ,
go = query(Server.genobjF,

(type() = '-10_signal') and
(id_gene() = id()))[],

k = query(Server.dnafragF,
id_kitong() = go.id_kitong())[0]

};

getMinus35Signal()[] = object {
go = query(Server.genobjF,

(type() = '-35_signal') and
(id_gene() = id())) [] ,

k = query(Server.dnafragF,
id_kitong() = go.id_kitong())[0]

- 113 -

};

getTerminator()[] = object {
go = query(Server.genobjF,

(type() = 'terminator') and
(id_gene() = id()))[],

k = query(Server.dnafragF,
id_kitong() = go.id_kitong())[0]

};

getProteinCoding()[] = object {
go = query(Server.genobj F,

(type() = 'CDS') and (id_gene() = id()))[],
k = query(Server.dnafragF,

id_kitong() = go.id_kitong())[0]
};

references 0 = jmethod { myRefsO };
}

user_method {
/*

I t r e t u r n s t h e l i s t o f b i b l i o g r a p h i c r e f e r e n c e s t h a t a r e

r e l e v a n t t o t h e s p e c i f i c g e n e .

* /

String[] myRefs()
throws type.NoResult, type.InvalidArgumentValue {
bibliography.Reference ref=null;
type.DbXref[] dbRefL;
String[] strL=null;
biblio.BiblioFormatter bibFormatter=null;

- 114 -

/*

B i b l i o F o r m a t t e r i s a c l a s s c o n t a i n i n g m e t h o d s f o r

f o r m a t t i n g EMBL b i b l i o g r a p h i c r e f e r e n c e s . I t i s

b o r r o w e d f rom t h e i m p l e m e n t a t i o n o f an e x a m p le

b i b l i o g r a p h y c l i e n t t o t h e EMBL CORBA s e r v e r and u s e d

i n t h e i m p l e m e n t a t i o n o f t h i s s e r v e r . The c o d e i s n o t

i n c l u d e d i n o r d e r t o k e e p t h e ex a m p le s h o r t .

* /

bibFormatter = new biblio.BiblioFormatter();
dbRefL = es.getReferences();
strL=new String[dbRefL.length];
for (int i=0; i<dbRefL.length; i++) {
ref = Server.libF.getReference(

dbRefL[i].primary_id);
strL[i] = bibFormatter.formatBiblioRef(ref);

}

return strL;

/*

I t r e t u r n s t h e codon u s a g e c l a s s t h e s p e c i f i c g e n e

b e l o n g s t o , a s e x p l a i n e d i n S e c t i o n s 5 . 2 and 5 . 3 .

* /

String myCodonUsageClass() {
switch (g.codon_usage()) {

case 0: return "Not a protein coding gene";
case 1: return "Class 1";
case 2 : return

"Class 2: High expression in exponential growth";
case 3: return "Class 3: Prophages";

-115-

default: return "Unknown codon usage class";

}

}

}

}

/*

The v i e w s P r o m o t e r , M i n u s l O S i g n a l , M i n u s 3 5 S i g n a l , and

T e r m i n a t o r r e p r e s e n t DNA s e q u e n c e s t h a t a c t a s s i g n a l s . The

v i e w P r o t e i n C o d i n g r e p r e s e n t s DNA s e q u e n c e s t h a t e n c o d e f o r

p r o t e i n s . They a l l i n h e r i t t h e d e f i n i t i o n a s w e l l a s t h e

i m p l e m e n t a t i o n (h ence , t h e u s e o f e x t e n d s k ey w o r d) f ro m t h e

v i e w Genomic O b j e c t .

* /

view Promoter : GenomicObject(extends) {}
view MinuslOSignal : GenomicObject(extends) {}
view Minus]SSignal : GenomicObject(extends) {}
view Terminator : GenomicObject(extends) {}
view ProteinCoding : GenomicObject(extends) {}

}

5.5 A Client Application

In order to test the generated mediator, a simple textual client application has been

developed that uses the IDL interfaces of the mediator CORBA server. The

complete client code developed using the Java programming language is provided

in Appendix E. Parts of the client application code along with results generated

using example data are presented in this Section.

The client is called with a number of arguments, i.e.

i. the IOR of the GeneFactory object of the SubtiList CORBA server

-116

ii. the SubtiList accession

iii. the IOR of the Embl object of the EMBL CORBA server

iv. the EMBL accession

// Check i n p u t a r g u m e n t s .

if (args.length < 4) {
System, out.println("Usage : java Client <GeneFactory-ior>

<gene-id> <Embl-ior> <embl-id>");
return;

}

The GeneFactory and Embl lORs are retrieved into suitable factory objects (the

string_to_object CORBA operation is used to obtain the object references from

their stringified form, as explained in Section 2.4).

// O b t a i n ICRs o f f a c t o r y o b j e c t s .

geneFactory = BacterialGenome.GeneFactoryHelper.narrow(
client.retrievelORFromFile(orb, geneFactory_ior));

emblFactory = nsdb.EmblHelper.narrow(
client.retrievelORFromURL(orb, embl_ior));

General identification, naming, approximate location and functional description

information about the gene is retrieved using the factory objects, and then printed

out.

// Get g en e d a t a .

nsdb.EmblSeq emblSeq=null;
emblSeq = emblFactory.getEmblSeq(embl_id);
BacterialGenome.Gene gene=null;
gene = geneFactory.getByld(gene_id, embl_id);
System.out.print("\nGene; " + gene_id

+ "\nid: " + (gene.id()==null ? "" : gene.id())

- 117 -

+ "\nname: " + (gene.name()==null ? "" : gene.name())
+ "\nec number : " +

(gene,ecNumber0 ==null ? "" : gene.ecNumber())
+ "\nfunction: " +

(gene.function 0 ==null ? "" : gene.function())
+ "\ndescription: " +

(gene.description0 ==null ? "" : gene.description())
+ "\npos: " + gene.pos()

) ;

Any bibliographic references associated with the specific gene are also retrieved

and printed out.

// Get g e n e r e f e r e n c e s .

String[] refs = gene.references();
System.out.print("\nreferences (no. = "
+ refs.length +

for (int i=0; i<refs.length; i++) {
System.out.print("\n " + (i+1) + ". " + refs[i]);

}

The genomic objects associated with the specific gene together with their location

and nucleotide sequence are retrieved (the client includes similar code for genomic

objects other than promoters, such as -10 signals, -35 signals and terminators).

// Get g en e p r o m o t e r (s) .

BacterialGenome.Promoter[] promoters=null;
promoters = gene.getPromoter();
for (int i=0; i<promoters.length; i++) {

System.out.print("\nPromoter " + (i+1) + " location: ("
+ promoters [i] .firstPosO + ", "
+ promoters[i].lastPos0 + ") "

- 118 -

+ ((promoters[i].directionIsL2R()) ?
+ "\n sequence : "
+ promoters [i] .nucSeqO
) ;

}

If the gene is a protein coding one, the location and nucleotide sequence of its

protein coding part as well as its functional and codon usage classes are retrieved.

/ * For p r o t e i n c o d i n g g e n e s , g e t a s s o c i a t e d s e q u e n c e , .

codon u s a g e c l a s s , and f u n c t i o n a l c l a s s . * /

BacterialGenome.ProteinCoding[] pCoding=null;
pCoding = gene.getProteinCoding();
BacterialGenome.FunctionalClass func_class=null;
func_class = gene.functionalClass();
for (int i=0; i<pCoding.length; i++) {
System.out.print("\nProteinCoding " + (i+1)

+ " location: (" + pCoding[i].firstPos() + ", "
+ pCoding[i].lastPosO + ") "
+ ((pCoding[i].directionIsL2R()) ?
+ "\n sequence : " +
pCoding[i] .nucSeqO

+ "\n codon usage class: " +
gene.codonUsageClass()

+ " \n functional class : " +
(func_class.id0 ==null ? "" : func_class.id()) +
": " + (func_class.description 0 ==null ? "" :
func_class.description())

) ;

}

- 119 -

The client application was tested with a number of input data, an example of

which is provided here in order to illustrate the generated output. The following

input parameters were used:

gene-id: BG12674
embl-id: AF084950

The resulting output was:

Gene: BG12674
id: BG12674
name: sipV
ec number : EC 3.4.21.89
function: involved in the processing of secretory preproteins
description: Bacillus amyloliquefaciens signal peptidase type I
(sipV) gene, complete cds.
pos: 1121500
references (no. =2):

1. Chu H.H., Hofemeister J.W.; "Multiple type I signal
peptidases of Bacillus amyloliquefaciens"; Unpublished.

2. Chu H.H., Hofemeister J.W.; ; Submitted (20-AUG-1998) to
the EMBL/GenBank/DDBJ databases. Molecular Genetics, Institute
of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse
3, Gatersleben, SA 06466, Germany
Terminator 1 location: (1121985, 1122015) ->

sequence : taaaaagacgctaattgaagaggcgtcttt
ProteinCoding 1 location: (1121480, 1121983) ->

sequence :
atgaaaaaacggttttggtttcttgccggtgtagtgtccgttgttctcgccattcaggttaaa
aatgctgtctttattgattacaaggtagaaggcgtcagtatgaacccgaccttccaggaagga
aacgaattgttggtcaataaattttcgcatcgatttaaaaccatccatcgttttgacatcgtc
ctttttaaaggccctgatcataaagtgctgattaaacgggtaatcggcttgcccggtgaaacg
atcaaatataaagatgatcagctgtatgtgaacggaaagcaggttgctgagccatttttgaag
catttgaaatctgtttctgccggcagccatgtaacgggtgatttttctttgaaagatgtgacg

- 120 -

ggaacaagcaaggtgccgaaaggaaaatattttgtcgttggagataatcgcatatacagcttc
gacagccggcattttggtccgataagagaaaaaaatattgtcggtgtgatttctgatgccgaa

codon usage class: Class 1
functional class: 1.6: Protein secretion

5.6 Conclusions

The use of the mediator system described in this thesis has been demonstrated in

this Chapter with an example from the domain of molecular biology. The example

has also shown the complete software development process that was devised in

order to achieve the goal of data integration.

In particular, bacterial genome data from two sources have been integrated. One

source is the Subtilist database of the Bacillus subtilis genome, which contributed

DNA sequence and location information for protein coding genes and other

functionally significant regions of DNA sequences (e.g. promoters, terminators),

as well as information on functional classification of protein gene products and

codon usage. The other is the EMBL nucleotide sequence database, which

contributed description and bibliographic reference information.

A CORBA wrapper for the SubtiList database has been generated using the

Persistence^^ software and modified minimally for the purposes of restricted

database access. Apart from those modifications, the generated IDL definitions did

not change in any other way that would facilitate integration. The data of the

EMBL database have been accessed using the available CORBA server. No

modifications were made on that wrapper. It should be emphasised that the two

chosen CORBA wrappers were developed completely independently by different

people and for different purposes. The data integration approach presented in this

thesis does not pose any special requirements on the CORBA wrapper definitions.

Thus, data from any CORBA wrapper can be integrated. This kind of flexibility is

- 121 -

important especially in the field of molecular biology, where data providers tend

to make their data available using their own customised definitions.

An object model of bacterial genome data has been developed to model the wider

domain. Part of that model has been used for the current application. Based on the

object model, a number of IDL interfaces for the mediator CORBA server have

been defined. It has already been mentioned in Section 2.2 that there are software

tools available that translate UML object models to IDL definitions automatically.

However, when mapping specifiers need to work at the level of IDL, they would

require control over the mediator IDL definitions, in order to achieve an efficient

and not over-complicated CORBA server. So, it is expected that mediator

specifiers would opt for a mediator IDL that is manually defined. This has also

been the case in the specific application, where the mediator IDL has been

manually defined for reasons of efficiency and simplicity.

Having the two CORBA wrappers and the mediator CORBA server IDL

definition, the mapping of mediator to wrapper IDL interfaces was defined. The

complete view definition code for the specific example has been provided in this

Chapter. These view definitions were given as input to the IDL View Generator

that generated the required mediator. The mediator integrates Bacillus subtilis data

from the two wrappers and provides the integrated data through the preferred IDL

definition.

In order to test the generated mediator, a simple textual client application has been

developed that uses the IDL interfaces of the mediator CORBA server. Parts of the

client application code along with results generated using example data have been

presented in this Chapter. The client application retrieves integrated Bacillus

subtilis data transparently. That is, it does not need to have any knowledge of, or

access directly the SubtiList and EMBL data sources. It simply retrieves the

integrated data from a single server, which is the generated mediator.

- 122 -

Chapter 6: CONCLUSIONS

An approach has been examined in this thesis that solves some of the problems

involved in integration of molecular biology data from distributed, heterogeneous

and autonomous data sources. Molecular biology data is managed by a variety of

systems distributed around the world. The management and access of data

provided by different sources differ at many levels, i.e. programming language,

platform, data representation. Data sources operate, to a large extent,

independently and autonomously. They generally want to manage, represent and

provide access to ‘their’ data in their own ways that may or may not agree with

available standards. Under these conditions, data integration becomes a

challenging problem.

The approach of this thesis solves some of the problems involved in data

integration using CORBA within a mediator-based architecture. CORBA handles

heterogeneity at the programming language and platform levels, and provides

network transparency. This allows CORBA-based data integration approaches to

focus on resolving metamodel and schematic heterogeneity. Mediator-based

architectures have been used to integrate information from autonomous and

heterogeneous data sources. They resolve heterogeneity at the level of data

representation, i.e. metamodel and schematic heterogeneity. The useful features of

CORBA are utilised within a mediator-based architecture resolving schematic

heterogeneity at the IDL level in a semi-automatic way. The approach supports

integration of data from molecular biology data sources that provide access

- 123 -

through CORBA. It also supports creation of customised CORBA views of such

data sources.

In order to investigate the feasibility and suitability of this approach, a mediation

system has been developed and described in this thesis. Similar to other mediator-

based approaches ([Chawathe 94], [Carey 95], [Tomasic 96], [Goh 94]), mediators

of the developed system transform data from wrappers to a common schema

resolving schematic heterogeneity, and provide support for the integration of the

transformed data (i.e. through object composition and union of objects). However,

unlike many other mediator-based approaches and molecular biology information

systems that develop their own proprietary middleware, the system described in

this thesis is based on the OMG CORBA.

The decision to base this system on CORBA means that it works in an open, well-

founded, widely supported and heterogeneous distributed computing environment

across all major hardware platforms and operating systems. As a result, it can

easily be used by other systems within CORBA, as well as take advantage of other

present or future development work in CORBA (such as, the Naming, Trader, and

Collection Service). At the same time, this decision has not been restrictive. The

particular strengths and weaknesses of CORBA have been considered, and

alternative solutions have been sought in cases where the specific CORBA

standard did not suit the purposes of the specific mediation system.

A number of issues, which are important for the design of a CORBA mediator

system, have been examined in the thesis and alternative solutions have been

discussed. These design issues guided the development of the different

components of the system.

A fundamental design decision for the architecture of the mediator system

described was to utilise CORBA for communication between mediators and

wrappers and between mediators and end-user applications. Since any CORBA

server can be used as a source by a mediator (that is, in principle, even another

- 124 -

mediator), mediators could be utilised as modules using which other more

complex or more specialised mediators would be constructed. This results in a

flexible, modular and extensible system. Moreover, in order to make sure the

system is fully integrated within CORE A, its main software components have

been designed with the requirement of CORB A access in mind. That includes both

the IDL View Generator, a CORB A wrapper of which has been developed, as well

as any generated mediators, which are CORBA servers ready to be used by

prospective CORBA clients. As a result, mediator specifiers can easily use the

IDL View Generator to define a mediator IDL definition and generate the mediator

code. More importantly, application developers can easily and flexibly use the

integrated data provided by one or more mediators, programming in their preferred

CORBA supported language for the development of appropriate applications.

Another important design decision was to resolve schematic heterogeneity at the

IDL level. IDL constructs suffice to express object models of considerable

complexity, thus making it possible to treat the DDL as an object modelling

language in which the common schema definitions are expressed. Advantages of

this approach include existing knowledge, wide use and standardisation of the

language, as well as its integration within CORBA, which means that no

translation between different models and definition languages is necessary. In the

future, and when relevant mappings are fully standardised and associated tools

become available, it would be a worthwhile challenge to investigate the resolution

of schematic heterogeneity at the object modelling level, i.e. at the UML level

with/without the use of XML.

Resolving schematic heterogeneity at the IDL level involves mapping between one

or more IDL schemas of available source CORBA servers and the preferred DDL

schema of the target CORBA server. In the system described in this thesis,

mapping specifiers need only provide high-level descriptions of the mapping of

target DDL to source DDL definitions. High-level descriptions are expressed in the

- 125

mapping language especially developed for this purpose. Using the mapping

definitions, the system generates the target IDL and the implementation code of

the target CORBA server. In other words, the system follows a semi-automatic

approach for the production of target CORBA servers that implement mappings,

as opposed to leaving developers implement mappings manually, i.e. without any

supporting tools. The semi-automatic generation has several advantages over

manual implementation of mappings. These include fast implementation of a

working mapping, no need for in-depth CORBA experience, and easier

maintenance of the resulting code especially when many source servers are

involved and in the light of frequently evolving source and/or target IDL schemas.

Obviously, the generated code could later be manually modified, if required.

Within a mediator-based architecture, the semi-automatic approach facilitates the

creation of mediators by including a mediator generator.

A view definition language has been developed to define the common schema of a

mediator and express the mapping between wrapper schemas and the common

schema. The language has a high-level notation, in order to provide easy and

concise specification of mappings and to facilitate modification of mapping

definitions. The later is especially important in the field of molecular biology for

the support of source and/or target schema evolution due to frequent changes of

data structures. Complex mappings are further supported with the inclusion of a

number of procedural features in the language. The IDL constructs supported by

the mapping language (including support of inheritance) suffice to express object

models of considerable complexity. However, the mapping of unsupported IDL

constructs has to be implemented manually. It would be beneficial to investigate

the inclusion of additional IDL constructs in the mapping language (such as,

structs and value types) for improved support of more wrappers, and with regard

to efficiency issues.

- 126 -

The generated mediators of the system described in this thesis do not support ad

hoc queries, a feature that is usually included in other mediator-based systems.

Instead, the mapping language supports fixed parameterised queries, which are

encapsulated in CORBA parameterised operations of the target schema, an

approach that is suitable for domain objects represented in IDL. It would be useful

investigating the support of type-restricted queries as an alternative. Similar to

fixed parameterised queries, type-restricted queries are also suitable for domain

objects represented in DDL and provide fully typed query results.

Wrapper development was beyond the scope of the system described in this thesis.

Instead, the ways the system can work with available wrappers have been

investigated. The functionality required by wrappers, in order to be able to use

queries within mappings has been defined. The current implementation provides

query mapping to wrappers generated by Persistence'''^. In principle, the system

could be extended with a number of options for the generated code that interfaces

with wrappers. For instance, support of collections and iterators to traverse those

collections could be added as an alternative to sequences of objects that currently

represent query results. Such customisation options would make possible the

combination of the system with alternative wrappers. Exploring ways to interface

this system with other systems in the biological domain, which offer CORBA

interfaces and query support for accessing their underlying data ([Coupaye 99]),

would also be of great interest.

Another design decision regarded the different models for supporting target object

derivation. The choice of the object composition model enables powerful data

integration and customisation of data representation. This feature is especially

important in the field of molecular biology due to the different levels of detail at

which biological objects are modelled in data sources, and the high degree of

interrelationships.

- 127 -

The bacterial genomes application has served its purpose of demonstrating the use

of the system by integrating data from the SubtiList database (using the CORBA

server especially developed) and the EMBL database (using the available CORBA

server). The two chosen CORBA wrappers were developed completely

independently and no modifications were made that would facilitate integration.

That is, the data integration approach presented in this thesis does not pose any

special requirements on CORBA wrapper IDL definitions, making possible the

integration of data from any CORBA wrapper. This kind of flexibility is important

especially in the field of molecular biology, where data providers tend to make

their data available using their own customised definitions.

The application has also demonstrated the complete software development process

that was devised in order to achieve the goal of data integration. In summary, the

process includes the analysis of the available data sources and their respective

CORBA servers, the development of a CORBA wrapper using an automatic code

generation approach, the development of an object model for the appHcation

domain, the development of the mediator IDL definition based on the object

model, the definition of the mapping of mediator to wrapper IDL interfaces, the

generation of the mediator code using the IDL View Generator, and finally the

development of a client that retrieves the integrated data from the mediator. In

particular, the mediator DDL has been manually defined based on the object model,

as opposed to automatically generating it using software tools for reasons of

efficiency and simplicity.

It would be of interest to use the mediation system for the integration of data from

other biological data sources that offer access via CORBA interfaces, especially,

to investigate the suitability of the system in tackling more complex and

biologically relevant data integration problems. At the time of development of the

mediation system presented in this thesis not many CORBA wrappers of

biological data were available, which restricted the choice of possible applications.

- 128 -

As more CORBA servers wrapping biological data sources are becoming

available, new possibilities arise of integrating data of interest using the mediation

system.

Using the mediation system for the creation of customised CORBA views of

CORBA-wrapped data sources has useful applications, too. As one example,

CORBA data wrappers within the scope of OMG LSR but not conforming to the

standard DDL definitions, could provide alternative and conformant DDL

definitions with CORBA views developed using the system described in this

thesis. Other examples may include providing specialised CORBA data wrappers

for different user groups, supporting different levels of access to CORBA

wrappers of data sources, etc.

Finally, the focus of the approach has been on integrating data and creating

customised views of data from CORBA-wrapped molecular biology data sources.

In principle, the approach can be applied to the creation of customised views of

any CORBA objects (i.e. not ‘data-wrapping’ objects). In that case, the views used

for the implementation of mediator generators would restructure the source

CORBA objects providing access through target IDL definitions. The approach is

particularly suited for the purposes of object composition with a target object

deriving from one or more source objects and composing their source object

elements (i.e. attributes, methods) into preferred target ones. The restructuring and

mapping of object methods is a particularly challenging problem and would

require further investigation.

- 129 -

Appendices

- 130 -

Appendix A. The mapping language specification in BNF

Specification

ServerDecl

FactoryDecl

FwdViewDecl

ViewDecl

Header

Publicationlnfo

Definitions

Definitions ody

Definition

TypeDecl

AttributeDecl

OperationDecl

(<HASH> <INCLUDE> <JAVA_STRING_LITERAL>)*

ServerDecl

<MODULE> JavaScopedName

<LBRACE> (FwdViewDecl | ViewDecl)* <RBRACE>

<EOF>

::= <SERVER> <ID> <LBRACE> (FactoryDecl)* <RBRACE>

::= <FACTORY> <ID>

<LBRACE>

<FTYPE> JavaScopedName <SEMICOLON>

<IOR> <JAVA_STRING_LITERAL> <SEMICOLON>

<RBRACE>

::= <VIEW> <ID> <SEMICOLON>

::= Header

<LBRACE>

(Publicationlnfo)? (Definitions)? (SourceRefs)?

(Mapping)? (UserMethods)?

<RBRACE>

::= <VIEW> <ID>

(<COLON> <ID> (<LPAREN> <EXTENDS> <RPAREN>)?

(<COMMA> <ID> (<LPAREN> <EXTENDS> <RPAREN>)?)*)?

::= <PUBL_LOC> <JAVA_STRING_LITERAL>

::= <DEF> <LBRACE> DefinitionBody <RBRACE>

::= (Definition <SEMICOLON>)*

::= TypeDecl

I AttributeDecl

I OperationDecl

::= <TYPEDEF> <SEQUENCE> <LT> TypeSpec <GT> <ID>

:;= <READONLY> <ATTRIBUTE> TypeSpec

<ID> (<COMMA> <ID>)*

;;= (<ONEWAY>)? OperTypeSpec

- 131

OperTypeSpec

ParamDecls

ParamDecl

ParamAttr

SourceRefs

SourceRefDecl

Mapping

MappingSpec

Target

Source

JavaMethod

JavaExpression

UserMethods

stringT oMatchingB race

Arguments

Argument

ObjectSpec

<ID> ParamDecls (<RAISES> IDLScopedNameList)?

::= TypeSpec

I <VOID>

<LPAREN> (ParamDecl (<COMMA> ParamDecl)*)? <RPAREN>

::= ParamAttr TypeSpec <ID>

::= <IN>

|<OUT>

|<INOUT>

::= <SOURCE>

<LBRACE> (SourceRefDecl <SEMICOLON>)* <RBRACE>

::= JavaScopedName (<LBRACKET> <RBRACKET>)?

<ID> (<COMMA> <ID>)*

;:= <MAPPING>

<LBRACE> (MappingSpec <SEMICOLON>)* <RBRACE>

::= Target <EQ> Source

;;= <ID> <LPAREN> <RPAREN>

(<LBRACKET> <RBRACKET>)?

::= JavaMethod

I JavaExpression

I ObjectSpec

I MyScopedName

:;= <JAVA_METHOD> <LBRACE> <ID> Arguments <RBRACE>

::= <JAVA_EXP> <LBRACE> stringT oMatchingBrace <RBRACE>

::= <METHOD_IMPL>

<LBRACE> stringToMatchingBrace <RBRACE>

::= java code

;:= <LPAREN> <RPAREN>

1 <LPAREN> Argument (<COMMA> Argument)* <RPAREN>

::= JavaExpression

I JavaMethod

I JavaLiteral

I MyScopedName

::= <OBJECT>

<LBRACE>

- 132 -

ComponentSpec

QuerySpec

Expression

ORExpression

ANDExpiession

RelationalExpression

UnaryExpression

PrimaryExpression

JavaLiteral

SQLLiteral

TypeName

IDLScopedNameList

IDLScopedName

J avaScopedN ame

MyScopedName

ComponentSpec (<COMMA> ComponentSpec)*

<RBRACE>

<ID> (<LBRACKET> <RBRACKET>)?

<EQ> (JavaMethod | QuerySpec | MyScopedName)

::= <QUERY>

<LPAREN> JavaScopedName <COMMA> Expression <RPAREN>

(<LBRACKET> (<INTEGER_LITERAL>)? <RBRACKET>)?

::= ORExpression

::= ANDExpression (<0R > ANDExpression)*

::= RelationalExpression (<AND> RelationalExpression)*

::= UnaryExpression

((<EQ> I <NE> I <LT> I <GT> | <LE> | <GE>) UnaryExpression) ?

;:= <NEG> PrimaryExpression

I PrimaryExpression

I SQLLiteral

:;= (<LPAREN> Expression <RPAREN>)

I MyScopedName

<JAVA_STRING_LITERAL>

I <CHARACTER_LITERAL>

I <BOOLEAN_LITERAL>

I <INTEGER_LITERAL>

I <FLOATING_POINT_LITERAL>

::= <SQL_STRING_LITERAL>

I <CHARACTER_LITERAL>

I <INTEGER_LITERAL>

I <FLOATING_POINT_LITERAL>

::= <ID>

<LPAREN>

IDLScopedName (<COMMA> IDLScopedName)*

<RPAREN>

::= <ID> (<LPAREN> <INTERFACE> <RPAREN>)?

(<DCOLON> <ID> (<LPAREN> <INTERFACE> <RPAREN>)?)*

::= <ID> (<DOT> <ID>)*

::= MyScopedNameElem

- 133 -

MyScopedNameElem

getNextEIement

TypeSpec

BaseTypeSpec

FloatingPtType

IntegerType

Signedint

Unsignedint

CharType

WideCharType

BooIeanType

OctetType

AnyType

StringType

WideStringType

(<DOT> MyScopedNameElem)*

;:= <ID> <COLON> <ID>

I <ID> Arguments (<LBRACKET> <RBRACKET>)?

I (<SELF> <DOT>)? <ID> (<LBRACKET> <RBRACKET>)?

::= java code

::= BaseTypeSpec

I StringType

I WideStringType

I TypeName

::= FloatingPtType

1 IntegerType

I CharType

I WideCharType

I BooIeanType

I OctetType

I AnyType

::= <FLOAT>

I <DOUBLE>

::= Signedint

I Unsignedint

::=<SHORT>

I <LONG>

I <LONG> <LONG>

::= <UNSIGNED> <SHORT>

I <UNSIGNED> <LONG>

I <UNSIGNED> <LONG> <LONG>

:;= <CHAR>

:;=<WCHAR>

::= <BOOLEAN>

::= <OCTET>

::= <ANY>

::= <STRING>

::=<WSTRING>

- 134

Appendix B. The SubtiList CORBA Server IDL

- 135

The PS.idI

File: PS.idI
Author: Persistence(TM) by Persistence Software, Inc.
Copyright (C) 1997 Persistence Software, Inc.
All rights reserved.
Use of this code without permission is prohibited.
The PS module contains declarations for basic capabilities
which are commonly used by application servers and client
programs. It defines a transaction interface, enumerations,
specialized attribute types, and exception types. This chapter
discusses the transaction interfaces and enumerations. The
chapters that follow discuss specialized attribute types and
exception types.

module PS
{

interface Defs
{

const unsigned long k_noWait = 0;
const unsigned long k_infiniteWait = 4 2 9 4 9 6 7 2 9 5 ;

enum DatabaseOperation { k_insert, k_remove, k_read,
k_update };
enum DatabaseType { k_noDatabase, k_informix, k_oracle,
k_sybase, k_odbc };
enum ErrorCategory { k_cache, k_class, k_connection,
k_database, k_decimal, k_dock, k_export, k_factory,
k_import, k_informixError, k_key, k_odbcError,
k_oracleError, k_server, k_sybaseError, k_transaction,
k_utility, k_thread, k_attributeValidity,.
k_classValidity, k_fkeyValidity, k_license, k_project,
k_relationshipValidity, k_validity, k_filePool,
k_functionDisp, k_parser, k__parseTreeNode } ;
enum LockType { k_shared, k_exclusive };
enum ObjectSource { k_cacheThenDatabase, k_cacheOnly };
enum ServerState { k_active, k_idle, k_starting, k_stopping,
k_failed };
enum TableStatus { k_noTables, k_someTables, k_a11Tables };

};

struct Arcid
{

unsigned long hiword;
unsigned long loword;

};
typedef sequence<ArcId> ArcId_Cltn;
struct Classid
{ short id;

string alias ;
};

- 136 -

typedef sequence<ClassId> ClassId_Cltn;
typedef sequence<octet> Binary;
typedef string Decimal;
typedef string Time;
typedef sequence<octet, 12> Oid;
exception ServerError
{

string name;
string description;
Defs::ErrorCategory category;
long code;
long databaseCode;

};

interface PObject_Factory
{

PS : :Arcld makeArcId(in string arcName)
raises(ServerError);

PS::ClassId makeClassId(in string alias)
raises(ServerError);

readonly attribute string className;
};

interface PObject
{

void clear();
void lock();
void read();
void write();
readonly attribute boolean locked;
readonly attribute string className;
readonly attribute unsigned long classIdent;

};

typedef sequence<PObject> PObject_Cltn;
interface TransactionMgr
{

void begin0 raises(ServerError);
void commit 0 raises(ServerError);
void rollback() raises(ServerError);
void rollbackToSavePoint(in string savePoint)

raises(ServerError);
void setSavePoint(in string savePoint)

raises(ServerError);
void write 0 raises(ServerError);
readonly attribute unsigned long nestingCount;
attribute boolean lockUponRead;

};
};
// = = = = = =

- 137 -

The PSAdmin.idI

File: PSAdmin.idI
Author: Persistence(TM) by Persistence Software, Inc.
Copyright (C) 1997 Persistence Software, Inc.
All rights reserved.
Use of this code without permission is prohibited.
The PSAdmin module defines advanced capabilities that are used
to configure an application server. Most client programs would
not need these operations, and it is possible to "hide" the
interface to the PSAdmin module such that a client cannot
easily invoke the methods. The classes of the PSAdmin module
are used to manage the server, database tables, database
connections, the cache, and the event log.

#include "PS.idI"
module PSAdmin
{ // 14.2 PSAdmin: :ServerMgr

interface ServerMgr
{ void reset();

void start();
void stop();
readonly attribute PS::Defs::ServerState state;

};

/ / 1 4 . 6 PSAdmin::DBConnParam
struct DBConnParam
{ string applicationName;

string characterSet;
string databaseName;
PS::Defs: :DatabaseType databaseType;
unsigned long maxConnections;
unsigned long maxDatabaseCursors;
unsigned long minConnections;
string nationalLanguage;
string password;
string serverName;
string userName;
unsigned long waitTime;
boolean trimTrailingBlanks;
boolean charColumnType;

};

/ / 1 4 . 8 PSAdmin::DBConnSpec
interface DBConnSpec
{ attribute DBConnParam connParam;

long sendNonSelectSQL(in string sqlStatement)
raises(PS::ServerError);

long sendNonSelectSP(in string spStatement)
raises(PS::ServerError);

string print();
};

- 138 -

// 14.4 PSAdmin::DBC1assMgr
interface DBClassMgr
{ void createTables(in string classSpec)

raises(PS::ServerError);
void dropTables(in string classSpec)

raises(PS::ServerError);
void exportTables(in string classSpec, in string path)

raises(PS::ServerError);
void importTables(in string classSpec, in string path)

raises(PS::ServerError);
void lockTables(in string classSpec,

in PS::Defs::LockType lockType)
raises(PS::ServerError);

PS : :Defs: :TableStatus doTablesExist(in string classSpec)
raises(PS::ServerError);

void setDBConnSpec(in string classSpec,
in DBConnSpec connSpec)
raises(PS::ServerError);

void setTableName(in string classSpec, in string tableName)
raises(PS::ServerError);

void setSPSpecs(in string classSpec,
in PS::Defs::DatabaseOperation op, in string spName)
raises(PS::ServerError);

DBConnSpec getDBConnSpec(in string classSpec)
raises(PS::ServerError);

string getTableName(in string classSpec)
raises(PS::ServerError);

string getSPName(in string classSpec,
in PS::Defs::DatabaseOperation op)
raises(PS::ServerError);

// 14.10 PSAdmin::DBConnMgr
typedef sequence<DBConnSpec> DBConnSpec_Cltn;
interface DBConnMgr
{

DBConnSpec_Cltn allDBConnSpecs()
raises(PS::ServerError) ;

DBConnSpec makeDBConnSpec(in DBConnParam connParam)
raises(PS::ServerError) ;

DBConnSpec findDBConnSpec(in DBConnParam connParam)
raises(PS::ServerError) ;

void removeDBConnSpec(in DBConnSpec connSpec)
raises(PS::ServerError);

} ;
I I 14.12 PSAdmin: :CacheMgr
interface CacheMgr
{ void clear() raises(PS::ServerError);

readonly attribute PS : :PObject_Cltn alllnstances ;
readonly attribute unsigned long numlnstances ;
attribute unsigned long numWorkingTransactionlnstances,
attribute unsigned long numWorkingSharedlnstances ;
attribute boolean defaultTransLockUponRead;

};

I I 14.14 PSAdmin: :EventLogMgr
interface EventLogMgr

- 139 -

void logEventdn string category, in string message)
raises(PS::ServerError);

void flush() raises(PS::ServerError);
attribute boolean active;
attribute string fileName;

};
/ /

- 140 -

The SLdb.idI
/ / =
// File: idl/SLdb.idl
// Author: Persistence(TM) by Persistence Software, Inc.
/ / =

// Copyright (C) 1997 Persistence Software, Inc.
// All rights reserved.
// Use of this code without permission is prohibited.
/ / =

#ifndef SLDB_IDL
#define SLDB_IDL
#include "PS.idI"
module SLdb
{

interface buff_class_gene;
typedef sequence<buff_class_gene> buff_class_gene_Cltn;
interface classification;
typedef sequence<classification> classification_Cltn;
interface genes;
typedef sequence<genes> genes_Cltn;
interface genomic_object;
typedef sequence<genomic_object> genomic_object_C1tn;
interface kitong;
typedef sequence<kitong> kitong_Cltn;
interface synogenes;
typedef sequence<synogenes> synogenes_Cltn;
interface buff_class_gene_Factory : PS::PObject_Factory
{

buff_class_gene_Cltn alllnstances(
in PS::Defs::ObjectSource onlylnCache);

buff class gene Cltn query(
in PS::ClassId_Cltn clsList, in string from,
in string where, in PS : :ArcId_Cltn arcList)
raises(PS::ServerError);

buff_class_gene_Cltn queryld gene(in string val)
raises(PS::ServerError);

buff_class_gene_Cltn queryId_category(in string val)
raises(PS::ServerError);

buff_class_gene_Cltn queryld qeneRanqe(
in string minVal, in string maxVal)
raises(PS::ServerError);

buff class gene Cltn queryId_categoryRange(
in string minVal, in string maxVal)
raises(PS::ServerError);

buff class gene queryKey(in string id_gene,
in PS::Defs::ObjectSource onlylnCache)
raises(PS::ServerError);

buff_class_qene_Cltn querySP(in string sqStatement)
raises (PS::ServerError);

buff_class_gene_Cltn querySQLWhere(in string whereClause)
raises(PS::ServerError);

};

interface buff_class_gene : PS : :PObject
{

// Attributes
readonly attribute string id_gene;
readonly attribute string id_category;

- 141 -

readonly attribute boolean id_geneNULL;
readonly attribute boolean id_categoryNULL;
// Relationships
readonly attribute genes rel_genes;
attribute classification rel classification;

};

interface classification_Factory : PS : :PObject_Factory
{ classification_Cltn alllnstances(

in PS::Defs::ObjectSource onlylnCache);
classification_Cltn query(in PS ::ClassId_Cltn clsList,

in string from, in string where, in PS::ArcId_Cltn arcList)
raises(PS::ServerError);

classification_Cltn queryId_category(in string val)
raises(PS::ServerError);

classification_Cltn queryDescription(in string val)
raises(PS::ServerError);

classification_Cltn queryId_categoryRange(
in string minVal, in string maxVal)
raises(PS::ServerError);

classification queryKey(in string id_category,
in PS: :Defs :'.ObjectSource onlylnCache)
raises(PS::ServerError);

classification_Cltn querySP(in string sqStatement)
raises (PS::ServerError);

classification_Cltn querySQLWhere(in string whereClause)
raises(PS::ServerError);

};

interface classification : PS : :PObject
{ // Attributes

readonly attribute string id_category;
readonly attribute string, description;
readonly attribute boolean id_categoryNULL;
readonly attribute boolean descriptionNULL;
// Relationships
attribute buff class gene Cltn rel_buff_class_gene;
void addToRel_buff_class_gene(in buff_class_gene rellnst)

raises (PS::ServerError);
void rmvFromRel_buff_class_gene(in buff_class_gene rellnst)

raises (PS::ServerError);
};

interface genes_Factory : PS : :PObject_Factory
{ genes_Cltn alllnstances(in PS::Defs::ObjectSource onlylnCache);

genes_Cltn query(in PS ::ClassId_Cltn clsList,
in string from, in string where, in PS : :ArcId_Cltn arcList)
raises(PS::ServerError);

genes_Cltn queryPhysical_map(in float val)
raises(PS::ServerError);

genes_Cltn queryEc_number2(in string val)
raises(PS::ServerError);

genes_Cltn queryName(in string val)
raises(PS : :ServerError);

genes_Cltn queryLength_prot(in long val)
raises(PS::ServerError);

genes_Cltn queryBrief_descript(in string val)
- 142 -

raises(PS::ServerError);
genes_Cltn queryCodon_usage(in long val)

raises(PS::ServerError);
genes_Cltn queryBrief_descript2(in string val)

raises(PS::ServerError);
genes_Cltn queryIsoelec_point(in float val)

raises(PS::ServerError);
genes_Cltn queryFunction2(in string val)

raises(PS::ServerError);
genes_Cltn queryLength(in long val)

raises(PS::ServerError);
genes_Cltn queryGenetic_map(in long val)

raises(PS::ServerError);
genes_Cltn queryEvidence(in string val)

raises(PS::ServerError);
genes_Cltn querySignal_peptide(in long val)

raises(PS::ServerError);
genes_Cltn queryMnemonic(in string val)

raises(PS::ServerError);
genes_Cltn queryType(in string val)

raises(PS : :ServerError);
genes_Cltn queryComments2(in string val)

raises(PS::ServerError);
genes_Cltn querySp_xref(in string val)

raises(PS::ServerError);
genes_Cltn queryRank(in long val)

raises(PS::ServerError);
genes_Cltn queryProduct(in string val)

raises(PS::ServerError);
genes_Cltn queryCoinments (in string val)

raises(PS::ServerError);
genes_Cltn queryEc_number(in string val)

raises(PS::ServerError);
genes_Cltn queryld_gene(in string val)

raises(PS::ServerError);
genes_Cltn queryFunction(in string val)

raises(PS::ServerError);
genes_Cltn queryText_id(in long val)

raises(PS::ServerError);
genes_Cltn queryMol_weight(in float val)

raises(PS::ServerError);
genes_Cltn queryPos_kb(in float val)

raises(PS::ServerError);
genes_Cltn queryPos_kbRange(in float minVal, in float maxVal)

raises(PS::ServerError);
genes_Cltn queryNameRange(in string minVal, in string maxVal)

raises(PS::ServerError);
genes_Cltn queryEc_number2Range(in string minVal,

in string maxVal)
raises(PS::ServerError);

genes_Cltn queryLength_protRange(in long minVal, in long maxVal)
raises(PS::ServerError);

genes_Cltn queryPhysical_mapRange(in float minVal,
in float maxVal)
raises(PS::ServerError);

genes_Cltn queryMol_weightRange(in float minVal, in float maxVal)
raises(PS::ServerError);

genes_Cltn queryId_geneRange(in string minVal, in string maxVal)
raises(PS::ServerError);

genes_Cltn queryGenetic_mapRange(in long minVal, in long maxVal)
raises(PS::ServerError);

genes_Cltn queryText_idRange(in long minVal, in long maxVal)
raises(PS::ServerError);

genes_Cltn queryRankRange(in long minVal, in long maxVal)
- 143 -

raises(PS::ServerError);
genes_Cltn querySignal_peptideRange(in long minVal,

in long maxVal)
raises(PS::ServerError);

genes_Cltn queryEc_numberRange(in string minVal,
in string maxVal)
raises(PS : :ServerError);

genes_Cltn gueryCodon_usageRange(in long minVal, in long maxVal)
raises(PS::ServerError);

genes_Cltn queryLengthRange(in long minVal, in long maxVal)
raises(PS::ServerError);

genes_Cltn guerySp_xrefRange(in string minVal, in string maxVal)
raises(PS::ServerError);

genes_Cltn queryIsoelec_pointRange(in float minVal,
in float maxVal)
raises(PS:;ServerError);

genes queryKey(in string id gene,
in PS::Defs: :ObjectSource onlylnCache)
raises(PS : :ServerError);

genes_Cltn querySP(in string sqStatement)
raises (PS::ServerError);

genes_Cltn querySQLWhere(in string whereClause)
raises(PS::ServerError) ;

interface genes : PS : :PObject
{

// Attributes
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute

string id_gene;
string name;
string type;
long length;
string function;
string function2;
string evidence;
string ec_number;
string ec_number2;
string product;
float pos_kb;
long genetic_map;
float physical_map;
string sp_xref;
long length_prot;
long rank;
long text_id;
string sea prot;
long signal_peptide;
float mol_weight;
float isoelec_point;
string brief_descript;
string brief_descript2
string mnemonic;
long codon_usage;
string comments;
string comments2;

readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

id_geneNULL;
nameNULL;
typeNULL;
lengthNULL;
functionNULL;
function2NULL ;
evidenceNULL;
ecnumberNULL ;

- 144 -

readonly attribute boolean ec_number2NULL;
readonly attribute boolean productNULL;
readonly attribute boolean pos_kbNULL;
readonly attribute boolean genetic_mapNULL;
readonly attribute boolean physical_mapNULL;
readonly attribute boolean sp_xrefNULL;
readonly attribute boolean length_protNULL;
readonly attribute boolean rankNULL;
readonly attribute boolean text_idNULL;
readonly attribute boolean sea protNULL;
readonly attribute boolean signal_peptideNULL;
readonly attribute boolean mol_weightNULL;
readonly attribute boolean isoelec_pointNULL;
readonly attribute boolean brief_descriptNULL;
readonly attribute boolean brief_descript2NULL;
readonly attribute boolean mnemonicNULL;
readonly attribute boolean codon_usageNULL;
readonly attribute boolean commentsNULL;
readonly attribute boolean comments2NULL;
// Relationships
readonly attribute buff class gene rel buff class gene;
attribute genomic_object_Cltn rel_genomic_object;
void addToRel_genomic_object(in genomic_object rellnst)

raises (PS::ServerError);
void rmvFromRel_genomic_object(in genomic_object rellnst)

raises (PS::ServerError);
readonly attribute synogenes_Cltn rel_synogenes;

}

interface genomic_object_Factory : PS : :PObject_Factory
{ genomic_object_Cltn alllnstances(

in PS::Defs::ObjectSource onlylnCache);
genomi c_object_Cltn query (in PS :-.Class Id_Cltn clsList,

in string from, in string where, in PS ::ArcId_Cltn arcList)
raises(PS::ServerError);

genomic_object_Cltn queryld_gene(in string val)
raises(PS::ServerError);

genomic_object_Cltn queryFirst(in long val)
raises(PS::ServerError);

genomic_object_Cltn queryDirection(in string val)
raises(PS::ServerError);

genomic_object_Cltn queryType(in string val)
raises(PS::ServerError);

genomic_object_Cltn queryLast(in long val)
raises(PS::ServerError);

genomic_object_Cltn queryFrame(in long val)
raises(PS::ServerError);

genomic_object_Cltn queryId_kitong(in string val)
raises(PS::ServerError);

genomic_object_Cltn queryPartial(in long val)
raises(PS::ServerError);

genomic_object_Cltn queryId_geneRange(in string minVal,
in string maxVal)
raises(PS::ServerError);

genomi c_obj ec t_C11n queryLastRange(in long minVal,
in long maxVal)
raises(PS::ServerError);

genomic_object_C1tn queryFrameRange(in long minVal,
in long maxVal)
raises(PS::ServerError);

genomic_object_Cltn queryId_kitongRange(in string minVal,
in string maxVal)

- 145 -

raises (PS: -.ServerError) ;
genomic_object_Cltn queryPartialRange(in long minVal,

in long maxVal)
raises(PS::ServerError);

genomic_object_Cltn queryFirstRange(in long minVal,
in long maxVal)
raises(PS::ServerError);

genomic_object queryKey(in string id_kitong,
in long first, in long last, in string type,
in PS::Defs::ObjectSource onlylnCache)
raises(PS::ServerError);

genomic_object_Cltn querySP(in string sqStatement)
raises (PS::ServerError);

genomic_object_Cltn querySQLWhere(in string whereClause)
raises(PS;:ServerError);

interface genomic_object : PS::PObject
{ // Attributes

readonly attribute string id_kitong;
readonly attribute long first;
readonly attribute long last;
readonly attribute string type;
readonly attribute long partial;
readonly attribute string direction;
readonly attribute long frame;
readonly attribute string id_gene;
readonly attribute boolean id_kitongNULL;
readonly attribute boolean firstNULL;
readonly attribute boolean lastNULL;
readonly attribute boolean typeNULL;
readonly attribute boolean partialNULL;
readonly attribute boolean directionNULL;
readonly attribute boolean frameNULL;
readonly attribute boolean id geneNULL;
// Relationships
readonly attribute kitong rel_kitong;
attribute genes rel_genes;

};
interface kitong_Factory : PS : :PObject_Factory
{

kitong_Cltn alllnstances(in PS::Defs::ObjectSource onlylnCache)
kitong_Cltn query(in PS ::ClassId_Cltn clsList,

in string from, in string where, in PS ::ArcId_Cltn arcList)
raises(PS::ServerError);

kitong_Cltn queryPos_kb(in float val)
raises(PS::ServerError);

kitong_Cltn queryCreation_date(in PS : : Time val)
raises(PS::ServerError);

kitong_Cltn queryStatus(in long val)
raises(PS::ServerError);

kitong_Cltn queryId_replicon(in string val)
raises(PS::ServerError);

kitong_Cltn queryId_kitong(in string val)
raises(PS::ServerError);

kitong_Cltn queryPos_bp(in long val)
raises(PS::ServerError);

kitong_Cltn queryLength(in long val)
raises(PS::ServerError);

kitong_Cltn queryPos_genetic(in long val)
-146 -

raises(PS::ServerError);
kitong_Cltn queryUpdate_date(in PS : : Time val)

raises(PS::ServerError);
kitong_Cltn queryText_id(in long val)

raises(PS::ServerError);
kitong_Cltn queryText_idRange(in long minVal, in long maxVal)

raises(PS::ServerError);
kitong_Cltn queryUpdate_dateRange(in PS : : Time minVal,

in PS : : Time maxVal)
raises(PS::ServerError);

kitong_Cltn queryPos_kbRange(in float minVal, in float maxVal)
raises(PS::ServerError);

kitong_Cltn queryStatusRange(in long minVal, in long maxVal)
raises(PS::ServerError);

kitong_Cltn queryLengthRange(in long minVal, in long maxVal)
raises(PS::ServerError);

kitong_Cltn queryCreation_dateRange(in PS : : Time minVal,
in PS : : Time maxVal)
raises(PS::ServerError);

kitong_Cltn queryId_kitongRange(in string minVal,
in string maxVal)
raises(PS::ServerError);

kitong_Cltn queryPos_geneticRange(in long minVal, in long maxVal)
raises(PS::ServerError);

kitong_Cltn queryPos_bpRange(in long minVal, in long maxVal)
raises(PS::ServerError);

kitong queryKey(in string id_kitong,
in PS::Defs::ObjectSource onlylnCache)
raises(PS::ServerError);

kitong_Cltn querySP(in string sqStatement)
raises (PS::ServerError);

kitong_Cltn querySQLWhere(in string whereClause)
raises(PS::ServerError);

}
interface kitong
{

// Attributes
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute

PS : :PObject

string id_kitong;
long length;
string id_replicon;
long pos_bp;
float pos_kb;
long pos_genetic;
PS:: Time creation_date;
PS : : Time update_date;
long status;
long text_id;
string nuc_seq;

readonly attribute boolean id_kitongNULL;
readonly attribute boolean lengthNULL;
readonly attribute boolean id_rep1iconNULL;
readonly attribute boolean pos_bpNULL;
readonly attribute boolean pos_kbNULL;
readonly attribute boolean pos_geneticNULL;
readonly attribute boolean creation_dateNULL;
readonly attribute boolean update_dateNULL;
readonly attribute boolean statusNULL;
readonly attribute boolean text_idNULL;
readonly attribute boolean nuc_seqNULL;
// Relationships
readonly attribute genomic_object_Cltn rel genomic object :

- 147 -

} ;

interface synogenes_Factory : PS : :PObject_Factory
{

synogenes_Cltn alllnstances(
in PS::Defs::ObjectSource onlylnCache);

synogenes_Cltn query(in PS : :ClassId_Cltn clsList,
in string from, in string where, in PS : :ArcId_Cltn arcList)
raises(PS::ServerError);

synogenes_Cltn queryld gene(in string val)
raises(PS::ServerError);

synogenes_Cltn queryAlias(in string val)
raises(PS::ServerError);

synogenes_Cltn queryAliasRange(in string minVal,
in string maxVal)
raises(PS::ServerError);

synogenes_Cltn queryId_geneRange(in string minVal,
in string maxVal)
raises(PS::ServerError);

synogenes queryKey(in string id gene, in string alias,
in PS::Defs::ObjectSource onlylnCache)
raises(PS::ServerError);

synogenes_Cltn querySP(in string sqStatement)
raises (PS::ServerError);

synogenes_Cltn querySQLWhere(in string whereClause)
raises(PS::ServerError);

};
interface synogenes : PS::PObject
{

// Attributes
readonly attribute string id_gene;
readonly attribute string alias;
readonly attribute boolean id_geneNULL;
readonly attribute boolean aliasNULL;
// Relationships
readonly attribute genes rel_genes;

} ;
#endif

- 148 -

Appendix C. The bacterial genomes object model

An object model of bacterial genomes described in Section 5.2 is presented here in

the UML notation. An overall view of the main and interconnecting objects of

feature, sequence and location information is depicted in Figure C-1. The

complete model is organised into packages, which are depicted in Figures C-2 and

C-4. The overall model of feature, sequence and location information is shown in

Figure C-3. Figures C-5, C-6 and C-1 focus on the representation of feature

information at the DNA, RNA and protein levels respectively, while Figure C-8

shows some extra nucleotide sequence information.

149 -

Location

en
o

CZlI
I
8
g.
§

I
P

:3i

1
o
01
I
s,

I
CL

IICf.
(S
â
I
o

5
LocInNucSeq

LocInPeptlde
1

NucSeq 11 GenomicObject

Gene Operon

RegulSignal

ProteinSeq 11 ProteinFeature

RNAFeature

TranscrUnit

F

ProteinCoding RNACoding MatureRNA

mRNA o - CDS PrimaryPeptIde

o
ç
c
•B03UO

O
1
<DüC0)3cr(D
W

Figure C-2: Container packages for feature, sequence and location information

-151

un
to

3

1
n

01
I
s,I
I
I
8
ë.
§
I

Location
(from Location Info)

Locin Peptide
(from Location Info)

LocInNucSeq
(from Location Info)

ProteinFeature
(from Protein Info)

ProteinSeq
(from Sequence Info)

GenomicObject
(from DNA Info)

NucSeq
(from Sequence Info)

l_string : string

Lf\U)

I
n
n
I
I

I
I
§.
§
s
rt>;
i
3CL

1

RNA Info

(from Logical View)

J
DNA Info

(from Logical View) I
I

I

I

I

Protein Info

(from Logical View)

GwwmwoBÿëen

TranscrUnit

Gene Operon

RegulSignalCTQ

RNACodingProteinCoding

cr

OperatorPromoter

Terminator

OtherSignal

Startpoint-10_Signal-35_Slgnal

ym m m m
(from DNA Info)

(from DNA Info)

RNAFeature

transcribedjnto

ProteinCoding
(from DNA Info)

PrimaryTranscrlpt

5_Leader
transcribedjnto

3_TraiIer

[before CDS)
(after CDS}-

attenuation

mRNA

RBS0..1
MatureRNAAttenuator

0..1

RNA type

CDS
sRNArRNAStartCodon tRNA

StopCodon

ProteinFeature

translatedjnto

(g

posttransl_modif

Protein

SignalPeptide

CDS
(from RNA Info)

M aturePeptide

Prim aryPeptIde

TranslationTable

cr

D)

1œW U)u c3 '=z

i

Figure C-8: Nucleotide sequence

-157

Glossary for the Bacterial Genomes model

3_Trailer: A number of nucleotides that follow a CDS.

5_Leader: A number of nucleotides that precede a CDS.

-10_Signal: Unwinding domain of a Promoter.

-35_Signal: Recognition domain of a Promoter.

Attenuator; It controls whether or not transcription will go on.

CDS: Protein coding nucleotide sequence.

Gene: A region of DNA encoding for proteins/RNAs.

MaturePeptide: The peptide that remains after the leading SignalPeptide is

removed.

MatureRNA: Mature and stable RNA that could be any of tRNA, rRNA, or

sRNA types.

Operator: A region of DNA that acts as a “traffic light”, a go or stop signal for

transcription. It is usually positioned before the TranscrUnit. Positioning of the

Operator relative to the Promoter may vary in different cases.

Operon: A group of genes regulated coordinately.

PrimaryPeptide: Amino-acid sequence; the result of CDS translation.

PrimaryTranscript: RNA sequence that is cleaved post-transcriptionally to yield

the mature RNA products.

Promoter: The region of DNA where RNA polymerase initiates transcription. It

contains the Startpoint where transcription begins. It is usually positioned before

the TranscrUnit.

- 158 -

RBS: (Ribosome Binding Site) Usually 5-10 nucleotides before the initiation

codon where certain short sequences of the 16S RNA (part of the Ribosome) bind.

RBS could also be after the initiation codon.

SignalPeptide: It is a “leader” peptide that directs proteins to specific places. In

bacteria, signal peptides direct proteins across the bacterial plasma membrane.

Signal peptides are usually removed from the protein after the sorting process has

been completed.

StartCodon: The region of mRNA where translation begins. It is translated but

later removed. Start codons found in Bacillus subtilis: AUG, UUG, GUG, AUU,

CUG [Kunst 97].

Startpoint: The region of DNA where transcription begins.

StopCodon: The region of mRNA where translation ends. Examples of stop

codons: UAA, UGA, UAG.

sRNA: Small cytoplasmic RNA.

Terminator: The region of DNA where transcription ends. It is positioned after

the TranscrUnit.

TranscrUnit: The region of DNA to be transcribed.

TranslationTable: It is generally universally applied, however there are some

small differences in different species.

- 159 -

Appendix D. Generated mediator code
// File BacterialGenome.idl
#include "/embl/idl/types.idl"
#include "/embl/idl/nsdb.idl"
#include "/sldb/idl/PS.idl"
module BacterialGenome {
interface GeneFactory;
interface GenomicObject;
interface FunctionalClass;
interface Gene;
interface Promoter;
interface MinuslOSignal;
interface Minus35Signal;
interface Terminator;
interface ProteinCoding;
interface GeneFactory {
BacterialGenome::Gene getById(in string id, in string embl_id)

raises (type::NoResult,
nsdb::Embl{interface): : Superceded,
PS::ServerError);

};
interface GenomicObject {

long firstPos();
long lastPosO;
string nucSeqO ;
boolean directionIsL2R();

};
interface FunctionalClass {
string id();
string description();

};
interface Gene {

typedef sequence<BacterialGenome: :Promoter> PromoterList;
typedef sequence<BacterialGenome: :Minus10Signal> MinuslOSignalList;
typedef sequence<BacterialGenome::Minus35Signal> Minus35SignalList;
typedef sequence<BacterialGenome::Terminator> TerminatorList;
typedef sequence<BacterialGenome: :ProteinCoding> ProteinCodingList;
typedef sequence<string> StringList;
string id();
string name();
string ecNumber();
string function();
string description();
FunctionalClass functionalClass() raises (PS::ServerError);
string codonUsageClass();
long pos();
PromoterList getPromoter() raises (PS::ServerError);
MinuslOSignalList getMinuslOSignal() raises (PS::ServerError);
Minus35SignalList getMinus3 5Signal() raises (PS::ServerError);
TerminatorList getTerminator() raises (PS::ServerError);
ProteinCodingList getProteinCoding() raises (PS::ServerError);
StringList references();

interface Promoter : GenomicObject {

-160

} ;

interface MinuslOSignal : GenomicObject {
};
interface Minus35Signal : GenomicObject {
};

interface Terminator : GenomicObject {
};
interface ProteinCoding : GenomicObject {
};

};

- 161 -

// File GeneFactoryImpi.java
package BacterialGenome;
import BacterialGenome.Server ;
class GeneFactoryImp1 implements _GeneFactoryOperations {

// Constructor
public GeneFactoryImpl() {
}
public BacterialGenome.Gene getByld(String id, String embl_id)

throws type.NoResult, nsdb.EmblPackage.Superceded, PS.ServerError {
SLdb.genes g = null;
g = (Server. creneF. querySOLWhere (" id gene = ' " + id + "'"))[0] ;
SLdb.genomic_object[] go = null;
go = (Server.genobj F.querySQLWhere("id_gene = '" + id +
nsdb.EmblSeq es = null;
es = Server.emblF.getEmblSeq(embl_id);
BacterialGenome.Gene _ivg_GeneTie = new _tie_Gene(
new GeneImpl(g, go, es));

return(_ivg_GeneTie);
}

- 162 -

// File GenomicObjactImpl.java
package BacterialGenome;
import BacterialGenome.Server;
class GenomicObjectlmpl implements _GenomicObj ectOperations {

SLdb.genomic_objact go;
SLdb.kitong k;
// Constructor
public GenomicObj ectlmpl(SLdb.genomic_obj act go, SLdb.kitong k) {

this.go = go;
this.k = k;

}

public int firstPosO {
return((int)(k.pos_kb()*1000) +

go.direction().startsWith("+") ? go.first() : go.last());
}

public int lastPos() {
return((int)(k.pos_kb()*1000) +
go.direction().startsWith("+") ? go.last() : go.first());

}

public String nucSeqO {
return (myNucSeqO);

}

public boolean directionIsL2R() {
return(go.direction().startsWith("+"));

}
String myNucReverse(String nseq) {

String rev="";
for (int i=0; i<nseq.length(); i++)
rev = rev + nseq.charAt(nseq.length()-1-i);

return rev;
}

String myNucComplement(String nseq) {
String compl="";
for (int i=0; i<nseq.length(); i++)
switch (nseq.charAt(i)) {
case 'a': compl = compl + "t"; break
case 'c ': compl = compl + "g"; break
case 'g ': compl = compl + "c"; break
case 't ': compl = compl + "a"; break
default : compl = compl + "?"; break

}
return compl;

}

String myNucSeqO {
if (go.direction().startsWith("+"))
return (k.nuc_seq().substring(go.first(), go.last()));

else
return myNucReverse(myNucComplement(

k.nuc_seq().substring(go.firstO, go.last())));
}

-163

// File FunctionalClassImpl.java
package BacterialGenome;
import BacterialGenome,Server;
class FunctionalClassImpl implements _FunctionalClassOperations {

SLdb.buff_class_gene b;
SLdb.classification c;
// Constructor
public FunctionalClassImpl(SLdb.buff_class_gene b,

SLdb.classification c) {
this.b = b;
this.c = c;

}

public String id() {
return(this.b.id_category());

}

public String description() {
return(myClassDescription());

}
String myClassDescription() {

switch (c.id_category()) {
case "3.5.1" : return("Information pathways; RNA synthesis; " +

c.description());
case "3.5.2" : return("Information pathways ; RNA synthesis; " +

c.description());
case "6": return c.description();
default ; return c .description();

}
}

- 164

// File Genelmpl.java
package BacterialGenome;
import BacterialGenome.Server;
class Genelmpl implements _GeneOperations {

SLdb.genes g;
SLdb.genomic_ob]ect[] go;
nsdb.EmblSeq es ;
// Constructor
public Genelmpl(SLdb.genes g, SLdb.genomic_object[] go,

nsdb.EmblSeq es) {
this.g = g;
this.go = go;
this.es = es;

}

public String id() {
return(this.g .id gene());

}

public String name() {
return{ this.g.name());

}

public String ecNumber() {
return(this.g.ec_number());

}

public String function() {
return(this.g.function());

}
public String description() throws type.NoResult {

return(this.es.getDescription());
}

public BacterialGenome.FunctionalClass functionalClass()
throws PS.ServerError {
SLdb.buff_class_gene b = null;
b = (Server.classgeneF.querySQLWhere("id_gene = '" + name () +

••"■)) [0] ;
SLdb.classification c = null;
c = (Server.classF.querySQLWhere("id_category = '" +
b.id_category0 + "'"))[0];

BacterialGenome.FunctionalClass _ivg_FunctionalClassTie =
new _tie_FunctionalClass(new FunctionalClassImpl(b, c));

return(_ivg_FunctionalClassTie);
}

public String codonUsageClass() {
return(myCodonUsageClass());

}

public int pos() {
return((int)(g.pos_kb()*1000));

}

public BacterialGenome.Promoter[] getPromoter()
throws PS.ServerError {
SLdb.genomic_object[] _ivg_goL = null;

- 165 -

SLdb.genoitiic_object go = null;
SLdb.kitong k = null;
_ivg_goL = (Server.genobj F .querySQLWhere(

"(type = 'promoter') and (id gene = '" + id() +
BacterialGenome.Promoter[] _ivg_PromoterTieL =
new Promoterr ivg goL.length1 ;

for (int i=0; i<_ivg_goL.length; i++) {
go = _ivg_goL[i];
k = (Server.dnafragF.querySQLWhere("id_kitong = '" +

go.id_kitong() + "'"))[0];
_ivg_PromoterTieL[i] = new _tie_Promoter(new PromoterImpl(go, k));

}return(_ivg_PromoterTieL);
}
public BacterialGenome.MinuslOSignal[] getMinuslOSignal()

throws PS.ServerError {
SLdb.genomic_object[] _ivg_goL = null;
SLdb.genomic_object go = null;
SLdb.kitong k = null;
_ivg_goL = (Server.genobj F.querySQLWhere(

"(type = '-10_signal') and (id gene = '" + id() +
BacterialGenome.MinuslOSignal[] _ivg_MinuslOSignalTieL =
new MinuslOSignal[_ivg_goL.length];

for (int i=0; i<_ivg_goL.length; i++) {
go = _ivg_goL[i];
k = (Server.dnafragF.querySQLWhere("id_kitong = '" +

go.id_kitong() + "'"))[0];
_ivg_MinuslOSignalTieL[i] = new _tie_MinuslOSignal(

new MinuslOSignallmpl(go, k));
}
return(_ivg_MinuslOSignalTieL);

}

public BacterialGenome.Minus35Signal[] getMinus3 5Signal()
throws PS.ServerError {
SLdb.genomic_object[] _ivg_goL = null;
SLdb.genomic_object go = null;
SLdb.kitong k = null;
_ivg_goL = (Server.genob]F .querySQLWhere(

"(type = '-35_signal') and (id_gene = '" + id() +
BacterialGenome.Minus35Signal[] _ivg_Minus35SignalTieL =

new Minus35Signal[_ivg_goL.length];
for (int i=0; i<_ivg_goL.length; i++) {
go = _ivg_goL[i];
k = (Server.dnafragF.querySQLWhere("id_kitong = '" +
go.id_kitong() + "'"))[0];

_ivg_Minus3 5SignalTieL[i] = new _tie_Minus35Signal(
new Minus3 5SignalImpl(go, k));

}return(_ivg_Minus35SignalTieL);
}
public BacterialGenome.Terminator[] getTerminator()

throws PS.ServerError {
SLdb.genomic_object[] _ivg_goL = null;
SLdb.genomic_object go = null;
SLdb.kitong k = null;
ivg qoL = (Server.genobj F .querySQLWhere(
"(type = 'terminator') and (id_gene = '" + id() +

- 166 -

}

BacterialGenome.Terminator[] _ivg_TerminatorTieL =
new Terminator[_ivg_goL.length];

for (int i=0; i<_ivg_goL.length; i++) {
go = _ivg_goL[i] ;
k = (Server.dnafragF.querySQLWhere("id_kitong =

go.id_kitong() + "'"))[0];
_ivg_TerminatorTieL[i] = new _tie_Terminator(

new TerminatorImpl(go, k));
}
return(_ivg_TerminatorTieL);

public BacterialGenome.ProteinCoding[] getProteinCoding()
throws PS.ServerError {
SLdb.genomic_object[] ivg aoL = null;
SLdb.genomic_object go = null;
SLdb.kitong k = null;
_ivg_goL = (Server.genobj F .querySQLWhere(

"(type = 'CDS') and (id gene = '" + id() +
BacterialGenome.ProteinCoding[] _ivg_ProteinCodingTieL =

new ProteinCoding[_ivg_goL.length];
for (int i=0; i<_ivg_goL.length; i++) {
go = _ivg_goL[i];
k = (Server.dnafragF.querySQLWhere("id_kitong = '" +

go.id_kitong() + "'"))[0] ;
_ivg_ProteinCodingTieL[i] = new _tie_ProteinCoding(

new ProteinCodingImpl(go, k));
}return(_ivg_ProteinCodingTieL);

}

public String[] references()
throws type.NoResult, type.InvalidArgumentValue {
return(myRefs());

}

String[] myRefs() throws type.NoResult, type.InvalidArgumentValue {
bibliography.Reference ref=null;
type.DbXref[] dbRe fL;
String[] strL=null;
biblio.BiblioFormatter bibFormatter=null;
bibFormatter = new biblio.BiblioFormatter();
dbRefL = es.getReferences();
strL=new String[dbRefL.length] ;
for (int i=0; i<dbRefL.length; i++) {
ref = Server.libF.getReference(dbRefL[i].primary_id);
strL[i] = bibFormatter.formatBiblioRef(ref);
}

return strL;
}
String myCodonUsageClass() {

switch (g.codon_usage()) {
case 0: return "Not a protein coding gene";
case 1: return "Class 1";
case 2 ; return

"Class 2: High expression in exponential growth";
case 3: return "Class 3: Prophages";
default: return "Unknown codon usage class";

>

}

- 167 -

// File PromoterImpl.java
package BacterialGenome;
import BacterialGenome.Server;
class PromoterImpl extends GenomicObjectlmpl

implements _PromoterOperations {
// Constructor
public PromoterImpl(SLdb.genomic_obj ect go, SLdb.kitong k) {

super(go, k);
}

168-

// File Minus10SignalImpl.java
package BacterialGenome;
import BacterialGenome.Server;
class Minus10Signallmpl extends GenomicObjectlmpl

implements _MinuslOSignalOperations {
// Constructor
public MinuslOSignallmpl(SLdb.genomic_object go, SLdb.kitong k) {

super(go, k);
}

-169

// File Minus35SignalImpl.java
package BacterialGenome;
import BacterialGenome.Server;
class Minus35SignalImpl extends GenomicObjectlmpl

implements _Minus35SignalOperations {
// Constructor
public Minus35SignalImpl(SLdb.genomic_object go, SLdb.kitong k) {

super(go, k);
}

- 170-

// File TerminatorImpl.j ava
package BacterialGenome;
import BacterialGenome.Server;
class TerminatorImpl extends GenomicObjectImpl

implements _TerminatorOperations {
// Constructor
public TerminatorImpl(SLdb.genomic_object go, SLdb.kitong k) {

super(go, k);
}

- 171 -

// File ProteinCodinglmpl.java
package BacterialGenome;
import BacterialGenome.Server;
class ProteinCodingImpl extends GenomicObjectlmpl

implements _ProteinCodingOperations {
// Constructor
public ProteinCodingImpl(SLdb.genomic_obj ect go, SLdb.kitong k) {

super(go, k);
}

- 1 7 2 -

// File Server.java
package BacterialGenome;
import IE.Iona.OrbixWeb._CORBA;
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Obj ect;
import org.omg.CORBA.SystemException;
import java.net.* ;
import j ava.io.* ;
import java.lang.String;
import java.util.Vector;
public class Server {

// Factory classes.
public static SLdb.buff class gene Factory buffclassgeneF = null;
public static SLdb.classification_Factory classF = null;
public static SLdb.genes_Factory geneF = null;
public static SLdb.genomic_object_Factory genobjF = null;
public static SLdb.kitong_Factory dnafragF = null;
public static nsdb.Embl emblF = null;
public static meta.Controled ctrlF = null;
public static bibliography.ReferenceLibrary libF = null;
private static final String server_neime = "BactGen_AutoServer" ;
// Constructor,
public Server 0 {
};

// Obtain an Object Reference.
public Object retrievelORFromURL(ORB orb. String urlName) {

Object obj=null;
try {
URL url = new URL(urlName);
BufferedReader inBuf = new BufferedReader(
new InputStreamReader(url.openStreamO));

String objStr = inBuf.readLine();
inBuf.close();
obj = orb.string_to_object(objStr);

}
catch(SystemException sysEx) {

System.err.printIn(
II ***CORBA. Sys temException during string_to_object : ") ;

System.err.println(sysEx.toString());
System.exit(1);

}
catch(lOException ioEx) {
System.err.println("***Java.lOException; Reading IOR failed: ");
Sys tem.err.println(ioEx.toString());
System.exit(1);

}
return obj;

}

// Get factory objects,
public int getFactories(ORB orb) {

try {
classgeneF = SLdb.buf f_class_gene_FactoryHelper.narrow(

this.retrievelORFromURL(orb, "file :/sldb/ior/cg_Fact.ior"));
- 173-

classF = SLdb.classification_FactoryHelper.narrow(
this.retrievelORFromURL(orb, "file:/sldb/ior/c_Fact.ior"));

geneF = SLdb.genes_FactoryHelper.narrow(
this.retrievelORFromURL(orb, "file:/sldb/ior/g_Fact.ior"));

genob]F = SLdb.genomic_obj ect_FactoryHelper.narrow(
this.retrievelORFromURL(orb, "file :/sldb/ior/go_Fact.ior"));

dnafragF = SLdb.kitong_FactoryHelper.narrow(
this.retrievelORFromURL(orb, "file:/sldb/ior/df_Fact.ior"));

emblF = nsdb.EmblHelper.narrow(
this.retrievelORFromURL(orb,

"http://corba.ebi.ac.uk/EMBL/IOR/Embl.IOR"));
ctrlF = meta.ControledHelper.narrow(

this.retrievelORFromURL(orb,
"http://corba.ebi.ac.uk/EMBL/lOR/Meta.IOR"));

libF = bibliography.ReferenceLibraryHelper.narrow(
this.retrievelORFromURL(orb,

"http://corba.ebi.ac.uk/EMBL/lOR/Reference.IOR"));
}
catch(SystemException sysEx) {
System.err.println("***CORBA.SystemException during narrow: ");
System.err.printIn(sysEx.toString());
System.exit(1);

}
return 0 ;

}

// Publicise an Object Reference using the CORBA standard
obj ect_to_string.
public int publiciseObjRef(Object obj. String urlName, ORB orb) {

try {
String str = orb.object_to_string(obj);
URL url = new URL(urlName);
String fileName = url.getFile();
FileWriter outFile = new FileWriter(fileName);
outFile.write(str, 0, str.length());
outFile.close();

}
catch(lOException ioEx) {

System.err.println("***Java.lOException; Writing ObjRef failed: ");
System.err.println(ioEx.toString());
System.exit(1);

}
catch(SystemException sysEx) {

System.err.println(
"***CORBA.SystemException during object_to_string: ");

System.err.println(sysEx.toString());
System.exit(1);

}return 0 ;
}

// Main.
public static void main(String args[]) {

Server server = null;
ORB orb = null;
try {

// Initialise the ORB.
orb = ORB.init();
// Create a Server object,
server = new Server();

- 174-

http://corba.ebi.ac.uk/EMBL/IOR/Embl.IOR
http://corba.ebi.ac.uk/EMBL/lOR/Meta.IOR
http://corba.ebi.ac.uk/EMBL/lOR/Reference.IOR

// Obtain ObjRefs of factory objects.
if (server.getFactories(orb) !=0)
return;

// Set the server name before making object references public
_CORBA.Orbix.setServerName(server_name);
// Create objects to be published and publish their lORs.
BactGen.GeneFactory vGeneFactoryTie =
new _tie_GeneFactory(new GeneFactoryImpl());

if (server.publiciseObjRef(vGeneFactoryTie,
"file:/tmp/BactGen.GeneFactory.ior", orb) != 0)
return;

_CORBA.Orbix.impl_is_ready(server_name);
// Disconnect published objects.
_CORBA.Orbix.disconnect(vGeneFactoryTie);

}catch(SystemException sysEx) {
System.err.println(sysEx.toString());
System.exit(1);

}
}

- 1 7 5 -

Appendix E. Client application code
// Client.java
package BacterialGenome;
import IE.Iona.OrbixWeb._CORBA;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Object ;
import org.omg.CORBA.SystemException;
import java.net.*;
import j ava.io.* ;
import java.lang.String;
public class Client {

public static BacterialGenome.GeneFactory geneFactory = null;
public static nsdb.Embl emblFactory = null;
// Constructor
public Client 0 {
};

public Object retrievelORFromURL(ORB orb, String urlname) {
Object obj=null;
// Obtain an IOR.
try {
URL url = new URL (urlname);
BufferedReader inBuf = new BufferedReader(new InputstreamReader(

url.openstream()));
String objStr = inBuf.readLine();
inBuf.close 0 ;
obj = orb.string_to_object(objStr);

}catch(SystemException sysEx) {
System.err.println("Exception during string_to_object:");
System.err.println(sysEx.toString());
System.exit(1);

}catch(lOException ioEx) {
System.err.println("Reading IOR failed:");
System.err.println(ioEx.toString());
System.exit(1);

}return obj;
}

public Object retrievelORFromFile(ORB orb, String fileName) {
Object obj=null;
// Obtain an IOR.
try {
BufferedReader inBuf = new BufferedReader(
new FileReader(fileName));

String objStr = inBuf.readLine();
inBuf.close();
obj = orb.string_to_object(objStr);

}
catch(SystemException sysEx) {

- 176-

System.err.println{"Exception during string_to_object:");
System.err.println(sysEx.toString());
System.exit(1);

}
catch(lOException ioEx) {

System.err.println("Reading IOR failed:");
System.err.println(ioEx.toString());
System.exit(1);

}
return obj;

}

public static void main(String args[]) {
Client client;
// Check input arguments.
if (args.length < 4) {
System.out.println("Usage: java Client " +

"<GeneFactory-ior> <gene-id> <Embl-ior> <embl-id>");
return;

}

// Get ior(s) and id(s) from args[].
String geneFactory_ior = args[0];
String gene_id = args[l];
String embl_ior = args[2];
String embl_id = args[3];
try {

// Initialize the ORB,
ORB orb = ORB.init();
// Create a Client object,
client = new Client();
// Obtain lORs of factory objects.
geneFactory = BacterialGenome.GeneFactoryHelper.narrow(

client.retrievelORFromFile(orb, geneFactory_ior));
emblFactory = nsdb.EmblHelper.narrow(

client.retrievelORFromURL(orb, embl_ior));
// Get gene data.
nsdb.EmblSeq emblSeq=null;
emblSeq = emblFactory.getEmblSeq(embl_id);
BacterialGenome.Gene gene=null;
gene = geneFactory.getById(gene_id, embl_id);
System.out.print("\nGene: " + gene_id

+ "\nid: " + (gene.id()==null ? "" : gene.id())
+ "\nname: " + (gene.name()==null ? "" : gene.name())
+ "\nec number : " +

(gene.ecNumber()==null ? "" : gene.ecNumber())
+ "\nfunction: " + (gene.function()==null ? "" : gene.function())
+ "\ndescription: " +

(gene.description()==null ? "" : gene.description())
+ "\npos: " + gene.pos()

) ;

// Get gene references.
String[] refs = gene.references();
System.out.print("\nreferences (no. = " + refs.length + "):");
for (int i=0; i<refs.length; i++) {
System.out.print("\n " + (i+1) + ". " + refs[i]);

}

177-

// Get gene promoter(s).
BacterialGenome.Promoter[] promoters=null;
promoters = gene.getPromoter();
for (int i=0; i<promoters.length; i++) {
System.out.print("\nPromoter " + (i+1) + " location: ("

+promoters[i].firstPos0+", "+promoters[i],lastPos()+") "
+ ((promoters [i] .directionIsL2R()) ? "->" :
+"\n sequence: " + promoters[i].nucSeq()

) ;
}

// Get gene minuslOSignal(s).
BacterialGenome.MinuslOSignal[] mlOSignals=null;
mlOSignals = gene.getMinuslOSignal();
for (int i=0; i<mlOSignals.length; i++) {
System.out.print("\nMinuslOSignal " + (i+1) + " location: ("

+mlOSignals[i].firstPos()+", "+mlOSignals[i].lastPos() +")
+((mlOSignals[i].directionIsL2R0) ? "->" :)
+"\n sequence: " + mlOSignals[i].nucSeqO

) ;
}

// Get gene minus35Signal(s).
BacterialGenome.Minus35Signal[] m35Signals=null;
m35Signals = gene.getMinus3 SSignal();
for (int i=0; i<m35Signals.length; i++) {
System.out.print("\nMinus35Signal " + (i+1) + " location: ("

+m35Signals[i].firstPos()+", "+m35Signals[i].lastPos()+")
+((m35Signals[i].directionIsL2R()) ? : "<-")
+ "\n sequence : " + m35Signals[i].nucSeqO

) ;
}

// Get gene terminator(s).
BacterialGenome.Terminator[] terminators=null;
terminators = gene. getTerminator (). ;
for (int i=0; i<terminators.length; i++) {
System.out.print("\nTerminator " + (i+1) + " location: ("

+terminators[i].firstPos()+", "+terminators[i].lastPos()+")
+((terminators[i].directionIsL2R0) ? "->" : "<-")
+"\n sequence: " + terminators[i].nucSeq()

) ;
}

/* For protein coding genes, get associated sequence,
codon usage class, and functional class. */

BacterialGenome.ProteinCoding[] pCoding=null;
pCoding = gene.getProteinCoding();
BacterialGenome.FunctionalClass func_class=null;
func_class = gene.functionalClass();
for (int i=0; i<pCoding.length; i++) {
System.out.print("\nProteinCoding " + (i+1) + " location: ("

+ pCoding[i].firstPos() + ", " + pCoding[i].lastPos() + ")
+ ((pCoding[i].directionIsL2R()) ? : "<-")
+ "\n sequence : " + pCoding[i].nucSeq()
+ "\n codon usage class: " +
gene.codonUsageClass()

+ " \n functional class: "
+ (func_class.id()==null ? "" : func_class.id()) + ": "
+ (func_class.description 0 ==null ? "" :

func_class.description())
) ;

}

- 1 7 8 -

System.out.println();
}
catch(SystemException sysEx) {

System.err.println("***CORBA Exception:");
Sys tem.err.println(sysEx.toString());
return;

}
catch(type.NoResult ex) {

System.err.println("***type.NoResult:");
System.err.println(ex.toString());
System.exit(1);

}
catch(type.InvalidArgumentValue ex) {
System.err.println("* * * type.InvalidArgumentValue:")
System.err.println(ex.toString());
System.exit(1);

}catch(nsdb.EmblPackage.Superceded ex) {
System.err.println(ex.toString());
System.exit(1);

}
// When toPersistenceStringNoException is used,
catch(PS.ServerError ex) {

System.err.println(ex.name);
System.err.println(ex.description);
System.exit(1);

}
}

- 179

References

[Abiteboul 91]

s. Abiteboul, A. Bonner (1991) Objects and Views, In J. Clifford and R.

King editors, ACM SIGMOD International Conference on Management of

Data, pages 238-247.

[ACEDB]

http://www.acedb.org/

[Achard 98]

F. Achard, C. Cussat-Blanc, E. Viara, and E. Barillot (1998) The new Virgil

database: a service of rich links. Bioinformatics 14: 342-348.

[Arocena 98]

GO. Arocena, A.O. Mendelzon (1998) WebOQL: Restructuring

Documents, Databases and Webs, IEEE International Conference On Data

Engineering (ICDE), pages 24-33.

[Atzeni 97]

P. Atzeni, G. Mecca, P. Merialdo (1997) To Weave the Web, VLDB, pages

206-215.

[Bairoch 00]

- 180-

http://www.acedb.org/

A. Bairoch and R. Apweiler (2000) The SWISS-PROT protein sequence

database and its supplement TrEMBL in 2000, Nucleic Acids Research

28(l):45-48.

[Barillot 99a]

E. Barillot, U. Leser, P. Lijnzaad, C. Cussat-Blanc, K. Jungfer, F. Guyon, G.

Vaysseix, C. Helgesen, and P. Rodriguez-Tomé (1999) A proposal for a

standard CORBA interface for genome maps. Bioinformatics 15(2): 157-169.

[Barillot 99b]

E. Barillot, S. Pook, et al. (1999) The HuGeMap Database: Interconnection

and Visualisation of Human Genome Maps, Nucleic Acids Research 27(1),

pages 119-122.

[Benson 02]

DA. Benson, I. Karsch-Mizrachi, DJ. Lipman, J. Ostell, BA. Rapp, DL.

Wheeler (2002) GenBank, Nucleic Acids Research 30(1): 17-20.

[Booch 93]

G. Booch (1993) Object-oriented Analysis and Design with Applications,

Benjamin/Cummings, ISBN 0 805 35340 2.

[Carey 95]

M.J. Carey, L.M. Haas, P.M. Schwarz, M. Arya, W.F. Cody, R. Fagin, M.

Flickner, A.W. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J.H.

Williams, and E.L. Wimmers (1995) Towards Heterogeneous Multimedia

Information Systems: The Garlic Approach, International Workshop on

Research Issues in Data Engineering - Distributed Object Management

(RIDE-DOM), pages 124-131.

[Chawathe 94]

- 181 -

s. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y.

Papakonstantinou, J. Ullman, J. Widom (1994) The TSIMMIS Project:

Integration of Heterogeneous Information Sources, Information Processing

Society of Japan (IPSJ), pages 7-18.

[Chen 97]

IM.A. Chen, A S. Kosky, V.M. Markowitz, E. Szeto (1997) Constructing

and Maintaining Database Views in the Framework of the Object-Protocol

Model, Conference on Scientific and Statistical Database Management.

[Chen 95]

IM.A. Chen, V.M. Markowitz (1995) An Overview of the Object Protocol

Model (OPM) and the OPM Data Management Tools, Information Systems

20(5):393-418.

[Coupaye 99]

T. Coupaye (1999) Wrapping SRS with CORBA: from textual data to

distributed objects. Bioinformatics 15(4):333-338.

[Davidson 97]

S B. Davidson, AS. Kosky (1997) WOL: A Language for Database

Transformations and Constraints, International Conference on Data

Engineering (ICDE), pages 55-65.

[Davidson 96]

S B. Davidson, C. Overton, V. Tannen, L. Wong (1996) BioKleisli: A

Digital Library for Biomedical Researchers, Journal of Digital Libraries,

pages 36-53.

[Dogac 96]

- 182-

A. Dogac, C. Dengi, E. Kilic, G. Ozhan, F. Ozcan, S. Nural, C. Evrendilek,

U. Halici, B. Arpinar, P. Koksal, S. Mancuhan (1996) A Multidatabase

System Implementation on CORBA, RIDE-NDS, pages 2-11.

[Durbin 94]

R. Durbin, J. Thierry-Mieg (1994) The ACEDB Genome Database, In S.

Suhai editor. Computational Methods in Genome Research, Plenum Press,

pages 45-55.

[Etzold 97]

Etzold T, Verde G (1997) Using Views for Retrieving Data from Extremely

Heterogeneous Databanks, Proceedings of the Pacific Symposium on

Biocomputing, Hawai, USA, pages 134-141.

[Etzold 96]

Etzold T, Ulyanov A, Argos P (1996) SRS: Information Retrieval System

for Molecular Biology Data Banks, Methods in Enzymology 266:114-128.

[Fernandez 97]

M. Fernandez, D. Florescu, J. Kang, A. Levy, D. Suciu (1997) STRUDEL:

A Web Site Management System, ACM SIGMOD Conference.

[Fowler 97]

M. Fowler, K. Scott (1997) UML Distilled: Applying the Standard Object

Modelling Language, Addison Wesley, ISBN 0 201 32563 2.

[Frankel 99]

D.S. Frankel (1999) The OMG Meta-Object Facility, Java Report, March

1999:56-71.

[Gamma 95]

- 183-

E. Gamma, R. Helm, R. Johnson, J. Vlissides (1995) Design Patterns:

elements of reusable object-oriented software, Addison Wesley, ISBN 0 201

63361 2.

[Gob 94]

C.H. Gob, S.E. Madnick, M.D. Siegel (1994) Context Interchange:

Overcoming the Challenges of Large-Scale Interoperable Database Systems

in a Dynamic Environment, International Conference on Information and

Knowledge Management (CIKM), pages 337-346.

[Guerrini 97]

G. Guerrini, E. Bertino, B. Catania, J. Garcia-Molina (1997) A Formal

Model of Views for Object-Oriented Database Systems, Theory and Practice

of Object Systems 3(3): 157-183.

[Hoebeke 01]

M. Hoebeke, H. Chiapello, P. Noirot, P. Bessieres (2001) SPiD: A subtilis

protein interaction database, Bioinformatics 17(12):1209-1212.

[Hu 98]

J. Hu, C. Mungall, D. Nicholson, and A.L. Archibald (1998) Design and

implementation of a CORBA-based genome mapping system prototype.

Bioinformatics 14(2): 112-120.

[IONA 97]

IONA Technologies Ltd. (1997) Orbix MT 2.3c Programmer's Guide.

[Jacobson 92]

I. Jacobson, M. Christensen, P. Jonsson, G. Overgaard (1992) Object-

oriented Software Engineering: A Use Case Driven Approach, Addison

Wesley, ISBN 0 201 54435 0.

- 1 8 4 -

[Jungfer 99]

K. Jungfer, U. Leser and P. Rodriguez-Tomé (1999) Constructing IDL

Views on Relational Databases, Conference on Advanced Information

Systems Engineering (CAiSB).

[Karp 96]

P.D. Karp, S. Paley (1996) Integrated Access to Metabolic and Genomic

Data, Journal of Computational Biology 3(1): 191-212.

[Kemp 00]

G.J.L. Kemp, C.J. Robertson, P.M.D. Gray, N. Angelopoulos (2000)

CORBA and XML: Design Choices for Database Federations, British

National Conferenc on Databases (BNCOD), pages 191-208.

[Kim 95]

W. Kim, W. Kelley (1995) On View Support in Object-Oriented Database

Systems, In W. Kim editor, Modem Database System, ACM Press, pages

108-129.

[Kim 91]

W. Kim, J. Seo (1991) Classifying Schematic and Data Heterogeneity in

Multidatabase Systems, IEEE Computer 24(12): 12-18.

[Kosky 98]

A. Kosky, IM.A. Chen, V.M. Markowitz, E. Szeto (1998) Exploring

Heterogeneous Biological Databases: Tools and Applications, International

Conference on Extending Database Technology (EDBT), pages 499-513.

[Kosky 96]

185-

A. Kosky, E. Szeto, LM.A. Chen, V.M. Markowitz (1996) OPM Data

Management Tools for CORBA Compliant Environments, Technical Report

LBNL-38975.

[Kuno 96]

H.A. Kuno, E.A. Rundensteiner (1996) The MultiView OODB View

System: Design and Implementation, Theory and Practice of Object Systems

2(3):202-225.

[Kunst 97]

F. Kunst, N. Ogasawara, I. Moszer, <146 other authors>, H. Yoshikawa, A.

Danchin (1997) The complete genome sequence of the Gram-positive

bacterium Bacillus subtihs. Nature 390:249-256.

[Leser 98]

U. Leser, S. Tai, S. Busse (1998) Design Issues of Database Access in a

CORBA Environment, Workshop on Integration of Heterogeneous Software

Systems, Magdeburg, Germany.

[LSR]

OMG Life Sciences Research (LSR), http://www.omg.org/lsr/index.html

[Metamata]

Metamata, JavaCC - The Java Parser Generator,

http://www.metamata.eom/j avacc/

[Moszer 98]

I. Moszer (1998) The complete genome of Bacillus subtilis: from sequence

annotation to data management and analysis, FEBS Letters 430:28-36.

[Moszer 95]

- 1 8 6 -

http://www.omg.org/lsr/index.html
http://www.metamata.eom/j

I. Moszer, P. Glaser, A. Danchin (1995) SubtiList: a relational database for

the Bacillus subtilis genome. Microbiology 141:261-268.

[OMG]

OMG, http://www.omg.org

[OMG 02]

OMG (2002) XML Metadata Interchange (XMI) Specification, vl.2, OMG

Document formal/02-01-01.

[OMG Ola]

OMG (2001) The UML 1.4 Specification, OMG Document formal/01-09-

67.

[OMG 01b]

OMG (2001) XMI production of XML Schema, Final Adopted

Specification, OMG Document ad/01-06-12.

[OMG 01c]

OMG (2001) CORBA Meta-Object Facility (MOF) Specification, vl.3.1,

OMG Document formal/01-10-41.

[OMG 99a]

OMG (1999) CORBA Components, OMG Document orbos/99-02-05.

[OMG 99b]

OMG (1999) CORBA UOP 2.3.1 Specification, OMG Document formal/99-

10-07.

[OMG 98a]

OMG (1998) CORBA BOP 2.2 Specification, OMG Document formal/98-

07-01.

- 187-

http://www.omg.org

[OMG 98b]

OMG (1998) CORBA Services, OMG Document formal/98-12-09.

[OMG 97]

OMG (1997) A Discussion of the Object Management Architecture, OMG

Document formal/00-06-41.

[Parsons 00]

J.D. Parsons and P. Rodriguez-Tome (2000) JESAM; CORBA software

components to create and publish EST alignments and clusters.

Bioinformatics 16(4):313-325.

[Persistence]

Persistence, http://www.persistence.com

[Rational]

Rational, http://www.rational.com

[Ritter 94]

O. Ritter (1994) The Integrated Genomic Database (IGD), In S. Suhai editor,

Computational Methods in Genome Research, Plenum Press, pages 57-74.

[Rodriguez-Tomé 97]

P. Rodriguez-Tomé, C. Helgesen, P. Lijnzaad, K. Jungfer (1997) A CORBA

server for the Radiation Hybrid Database, International Conference on

Intelligent Systems for Molecular Biology (ISMB), pages 250-253.

[Rohm 99]

U. Rohm, K. Bohm (1999) Working Together in Harmony - An

Implementation of the CORBA Object Query Service and its Evaluation,

International Conference on Data Engineering (ICDE).

- 188

http://www.persistence.com
http://www.rational.com

[Rumbaugh 91]

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen (1991)

Object-Oriented Modeling and Design, Prentice-Hall Inc., ISBN 0 136

30054 5.

[Scholl 91]

M. Scholl, C. Laasch, M. Tresch (1991) Updatable views in Object-Oriented

Databases, International Conference on Deductive and Object-Oriented

Databases, pages 189-207.

[Schuler 96]

G.D. Schuler, J.A Epstein, H. Ohkawa, J.A. Kans (1996) Entrez'. Molecular

Biology Database and Retrieval System, Methods in Enzymology 266:141-

162.

[Sellentin 99]

J. Sellentin, B. Mitschang (1999) Design and Implementation of a CORBA

Query Service Accessing EXPRESS-based Data, DASFAA.

[Sellentin 98]

J. Sellentin, B. Mitschang (1998) Data-Intensive Intra- & Internet

Applications - Experiences Using Java and CORBA in the World Wide

Web, International Conference on Data Engineering (ICDE).

[Siegel 96]

J. Siegel (1996) CORBA Fundamentals and Programming, John Wiley &

Sons Inc., ISBN 0 471 12148 7.

[Spiridou 00]

A. Spiridou (2000) A View System for CORBA-Wrapped Data Sources,

IEEE Advances in Digital Libraries (ADL), pages 228-237.

- 189-

[Stoesser 02]

G. Stoesser, W. Baker, A. van den Broek, E. Camon, M. Garcia-Pastor, C.

Kanz, T. Kulikova, R. Leinonen, Q. Lin, V. Lombard, R. Lopez, N.

Redaschi, P. Stoehr, MA. Tuli, K. Tzouvara, R. Vaughan (2002) The EMBL

Nucleotide Sequence Database, Nucleic Acids Research 30(l):21-26.

[Sun]

Sun, JavaCC[tm] - The Java Parser Generator,

http ://ww w. sun.com/forte/ffi/resources/iavacc .html

[Tateno 02]

Y. Tateno, T. Imanishi, S. Miyazaki, K. Fukami-Kobayashi, N. Saitou, H.

Sugawara, T. Gojobori (2002) DNA Data Bank of Japan (DDBJ) for

genome scale research in life science. Nucleic Acids Research 30(l):27-30.

[Tomasic 96]

A. Tomasic, L. Raschid, P. Valduriez (1996) Scaling Heterogeneous

Databases and the Design of Disco, International Conference on Distributed

Computing Systems (ICDCS), pages 449-457.

[Vinoski 97]

S. Vinoski (1997) CORBA: Integrating Diverse Applications Within

Distributed Heterogeneous Environments, IEEE Communications 14(2).

[W3C Ola]

W3C (2001) W3C Candidate Recommendation: XML Pointer Language

(XPointer) Version 1.0.

[W3C 01b]

W3C (2001) W3C Recommendation: XML Linking Language (XLink)

Version 1.0.

- 190-

[W3C Ole]

W3C (2001) W3C Recommendation: XML Schema Part 0: Primer, XML

Schema Part 1: Structures, XML Schema Part 2: Datatypes.

[W3C 00]

W3C (2000) W3C Recommendation: Extensible Markup Language (XML)

Version 1.0.

[W3C 99]

W3C (1999) W3C Recommendation: Namespaces in XML.

[Wang 00]

L. Wang, P. Rodriguez- Tomé, N. Redaschi, P. McNeil, A. Robinson, P.

Lijnzaad (2000) Accessing and Distributing EMBL Data Using CORBA,

Genome Biology 1(5).

[Wells 94]

D.L. Wells, and C.W. Thompson (1994) Evaluation of the Object Query

Service Submissions to the Object Management Group, IEEE Quarterly

Bulletin on Data Engineering 17(4), pages 36-45.

[Wiederhold 92]

G. Wiederhold (1992) Mediators in the Architecture of Future Information

Systems, IEEE Computer 25(3):38-49.

191 -

