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Abstract 
Making decisions on how best to treat cancer patients requires the integration of different 
datasets including genomic profiles, tumour histopathology, radiological images, proteomic 
analysis, and more. This wealth of biological information calls for novel strategies to integrate 
such information in a meaningful, predictive and experimentally verifiable way. In this 
Perspective we explain how executable computational models meet this need. Such models 
provide a means for comprehensive data integration, can be experimentally validated, are 
readily interpreted both biologically and clinically, and have the potential to predict effective 
therapies for different cancer types and subtypes. We explain what executable models are, how 
they can be used to represent the dynamic biological behaviours inherent in cancer and 
demonstrate how such models, when coupled with automated reasoning, facilitate our 
understanding of the mechanisms by which oncogenic signalling pathways regulate tumours. 
We explore how executable models have impacted the field of cancer research and argue that 
extending them to represent a tumour in a specific patient (that is, an avatar) will pave the way 
for improved personalised treatments and precision medicine. Finally, we highlight some of the 
ongoing challenges in developing executable models, and stress that effective cross-disciplinary 
efforts are key to forward progress in the field. 
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[H1] Introduction  

Cancers are highly complex and diverse diseases driven by genetic mutations, copy number 
aberrations and epigenetics that disrupt a multitude of signalling pathways that change phenotypes 
such as cell proliferation, survival or death, repair, movement and invasion, and operate across 
different cell types1. A cancer  cannot be considered as a static organism, it is much more like an 
evolving species. Cancer development is noisy2, accounting in part for genetic variation, both 
between the same cancer type in different individuals, and in the tumour cell populations of an 
individual tumour3,4. Yet, like other biological systems, cancer development is robust5, due to 
functional and signalling redundancy, intrinsic error correction and internal self-organization. This 
can, for example, give rise to drug resistance as a tumour reacts by re-routing signals to restore 
homeostasis6 in response to targeted drugs. Even when oncologists attempt to control resistance 
using intermittent therapies, patients can relapse due to growth of resistant cancer clones7. It is 
therefore clear that cancer can only be understood as a holistic, dynamic, reactive and evolving 
system.  

Despite the enormous success of 21st century molecular biology, a coherent explanation of 
mechanisms underyling cancer development is still lacking in most cases. While genomic, 
transcriptomic and proteomic approaches contribute to our depth of understanding of cancer, they 
cannot be directly translated into better treatments. We need to understand how genomic, 
transcriptomic, proteomic, cell signalling and microenvironmental factors interact as a system to 
influence cancer development, progression and resistance to therapy. 

A further challenge to laboratory investigations of cancer is that experimental interventions 
may themselves disrupt the phenomena being studied. Conventional in vitro models of cancers utilise 
cell lines in reductive 2-dimensional (2D) cultures that distort cell morphology, alter signalling 
pathways and fail to recapitulate resistance mechanisms8. In consequence, agents showing 
therapeutic promise in vitro have often turned out to lack clinical efficacy9–13.. While more clinically-
relevant 3D patient-derived organoid models have been developed, they too are not perfect genomic 
representations of their tumours of origin14. In fact, while key phenotypic and genetic characteristics are 
captured, many major patient-derived organoid cohorts reported to date show differences in somatic 
mutations from matched primary tumours15–19. 

In vivo models too are insufficient. For example, genetically engineered mouse models 
(GEMMs) and patient-derived xenografts (PDXs), while more physiologically relevant than in vitro 
models, also experience genomic evolution both at the tumour level and the host level20. 
Furthermore, the xenograft environment is quite distinct from the original patient environment with 
respect to its metabolism, physiology, cellular interactions, microenvironment and absence of a 
functioning immune system21. 

In summary, we do not have the means to do experiments on cancer at the whole system 
level without either using inferior systems (e.g., mouse versus human), compromising the system 
(e.g., by knocking out genes) or ignoring key features of the system (e.g., immune system response). 
More inclusive methods are required that recapitulate and integrate the cellular, genomic, 
microenvironmental and spatial features of cancers to be able to understand and overcome their 
multifaceted resistance mechanisms. We believe that, despite the innate complexity of biological 
systems, underlying commonalities and principles exist and govern their behaviour22 since such 
systems, and especially cancer tumours, give rise to reproducible phenotypes and are capable of making 
identifiable binary decisions2,5. The question is, how can we uncover these principles, determine how 
they operate and understand how to exploit them to achieve a desired biological change? By 
discovering and codifying commonalities and principles in biological systems as discrete instructions 
i.e. “executable computational models” (Box 1), and understanding how these models interact, we 
can hope to elucidate biological function and predict the effect of perturbations such as genetic 
mutations or drugs on specific cancer types to provide more precise and effective disease 
treatments23. While a computational model cannot capture all the features observed in a real system, 
it makes explicit what can and cannot be included. Moreover, a computational model can be 
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interrogated in more depth than a real system allowing deeper exploration and the characterisation 
of its strengths and weakness. 

Executable computational models provide a means to mathematically represent mechanistic 
explanations of biological behaviours at the genetic, molecular and cellular level alongside one 
another, and specify how these behaviours evolve and interact. In essence, executable models treat 
biological systems as networks of programmed interacting biological “machines”, giving a 
mechanistic view of the whole system. By describing such biological machines as executable computer 
programs [G], we gain access to computer science concepts such as abstraction [G], modularity [G], 
compositionality [G], and concurrency [G] to enable creation of multi-scale models of complex 
biological systems. Furthermore, by adopting computer science techniques for verifying of the 
behaviour of complex software and hardware systems, we can reason about the dynamic behaviour, 
properties and responses of biological systems “in silico” as a complement to classical experimental 
approaches. Over the last two decades, this “Executable Biology”24 approach has led to new 
biological insights and a methodology complementary to other computational approaches such as 
mathematical modelling, bioinformatics and machine learning (Box 2, Table 1). In this Perspective 
we explore the executable modelling approach to study cancer, the results achieved and future 
prospects. 
 
[H1] Executable computational models  

The basic underpinning of an executable computational model of a biological system is a state 
transition system that defines how, given certain events (e.g., molecular signals), one system state is 
transformed into another. The components of a state machine [G] represent biological entities - cells, 
proteins, or genes. In a state transition system, components react to events signalled from other 
components by changing the state of the system. State transitions are scalable and may be assembled 
together to generate larger scale and/or finer grained models representing complex, dynamic 
biological behaviours24–27. As the name suggests, such a model can also be treated as an executable 
computer program – i.e., it can be run as a simulation and can be analysed to predict properties such 
as stability and termination (i.e., ceasing to evolve). There are various types of executable models in 
use today for describing biological systems; the most common are outlined in Box 3. 

Executable computational modelling is different from quantitative mathematical approaches 
(Box 1 and Box 2) such as ordinary differential equations (ODEs)28. ODEs are limited to describing the 
behaviour of a biological system with reference to time and observable properties such as diffusion 
and reaction rates of molecules – i.e., they are continuous or analogue models [G]. By contrast, 
executable computational models are qualitative and expressed in terms of the relative ordering of 
“events”29. In the simplest case an event may correspond to an observed phenomena, but more 
generally may be defined as a point reached in terms of a logical and temporal relationship between 
events – i.e., statements such as “A and B followed by C while D is occurring”30–32. Such statements 
naturally lead to an understanding of the dynamics of a system in terms of cause and effect. They 
are a digital model of the system. Additionally, executable models allow different types of 
information to be combined to describe the same biological phenomena at different levels of detail 
and for these levels to be related to one another. For example, executable models can represent the 
molecular level or, at a higher level of abstraction, the cellular or tissue level, and then express how 
events at one level correlate with events at another25–27. These are often referred to as “multi-scale 
models” (Box 2).  

Executable models are ideal for testing [G] and comparing hypotheses about the 
mechanisms underpinning biological behaviours. Using formal verification [G] methods derived from 
software and hardware engineering, executable models can identify discrepancies between 
hypothesized models of biological mechanisms and actual experimental observations, identifying 
missing behaviours in the models and so informing subsequent experiments to further flesh them 
out. In simple cases, direct execution of a model can be used to ascertain whether a proposed 
mechanism conforms to the data (Figure 1). However, in a complex system exhibiting noise or 
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stochastic behaviours, each execution may yield a different outcome, potentially making it 
impossible to exhaustively check by execution that the full distribution of outcomes conforms to the 
data. Fortunately, thanks to a formal verification technique called model checking [G] 32,33, it is 
possible to systematically analyse all of the many possible outcomes of an executable model against 
a specification [G] without having to execute them one by one. Thus, having model checking confirm 
that all possible outcomes of the executable model agree with the experimental data (i.e., the 
specification), and that all experimental outcomes are reproduced, we know the model describes a 
potential mechanism fitting the data. If the model does not fully match the data, then either the 
model is wrong or it is incomplete, and it needs to be improved. A further benefit of model checking 
is that it identifies possible executions that do not fit the data in cases of a mismatch, thereby 
suggesting additional, targeted experiments to confirm or invalidate the mechanistic hypothesis 
represented by the model (Figure 1). 

By an iterative process of model creation and refinement, interleaved with experimental 
validation of predictions derived from the model, executable models can deliver grounded, 
formalised, mechanistic explanations of complex biological systems such as cancer. Hence, it can be 
hoped that combining experimental data with multi-scale executable models will offer a unique 
opportunity to better understand the determinants of cancer development and treatment, including 
the mechanisms of therapy resistance. We can further hope that by tailoring the initial state of an 
executable cancer model to an individual patient’s genetics, we can predict effective and efficient 
individual patient treatments, delivering on the vision of personalised cancer therapies. 

  
[H1] Delivering mechanistic insights  

The first step in building an executable model of a biological system is to identify the interactions 
driving the behaviour of interest. This can be done bottom-up by deriving the model from multiple 
datasets across the literature34,35, or top-down from a single dataset, which can work particularly well 
for transcriptomic data36,37. However, top-down network inference methods such as ARACNE 
(algorithm for the reconstruction of accurate cellular networks) 38 can result in false positives as it is 
difficult to disentangle co-expression observed in such datasets from the co-regulation, which cannot 
be directly measured39. Top-down approaches also require that the dataset must cover all the 
interactions of interest. By contrast, bottom-up approaches have the advantage of being able to 
combine different datasets and methodologies, which can compensate for the difficulty of measuring 
different parts of the system. Unfortunately, the literature is often incomplete and may lack 
information about how the interactions change in different contexts. This means that regardless of 
the method of construction, executable models must be thoroughly verified against known 
behaviours. A helpful aspect of model checking is that it can accommodate “non-determinism [G] ” 
in parts of a system, allowing models to represent poorly understood interactions in a qualitative 
way. 

[H2] Identifying new modes of interaction between signalling pathways 
To test the validity of an executable model it can be run as a simulation, and the phenotype of a cell 
determined by the integration of a wide array of signals from across the model (Figure 2). This 
phenotype can then be compared to experimental observations. While mathematical models give 
quantitative predictions, they require kinetic information for each component, which limits the range 
of behaviours and scale of systems against which they can be tested. By taking a coarser level of 
abstraction40 [G], qualitative executable models are able to capture a broader set of properties for 
characterising systems. For example,  qualitative modelling has been used to discover the key 
functional modules of signalling in the ERBB family of receptor tyrosine kinases41. As this model does 
not require precise information about kinetic constants, it can model a larger part of the ERBB  
system than comparable ODE-based models42. Similarly, a qualitative model of liver cancer derived 
from a static network representation found new interactions not known in the literature, and also 
cases of hypothesized interactions which, when removed from the model, improved its fidelity43.  
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[H2] Deciphering the sequence of molecular events 
Executable models allow the exploration of the sequence of molecular events in a cell: many events 
must occur in a precise sequence for a cell to function, from the short scale ordering of events in the 
cell cycle,44,45 to more long-term orderings that occur during development46. To understand these 
temporal relationships a dynamic model is required. This is an area in which current computer science 
approaches to modelling interaction do not carry over well to biology. For example, in order to model 
the synchronisation between the epidermal growth factor receptor (EGFR) and Notch signalling 
during the process of cell fate determination in C. elegans, a new approach called “Bounded 
Asynchrony” for describing the timing of molecular interactions47 was required to understand how 
different cells within the developing tissue synchronise their signalling25–27. 

In the case of a system that must be very tightly controlled, such as cell development, it is 
paramount that the model does not allow the healthy cell to deviate from the developmental path. 
This is difficult to test in a continuous model as the parameter space is infinite, but in a discrete model 
[G], model checking and formal verification make it possible to test against a high-level specification 
of all possible stable states of a system, and/or all possible sequences of events. This was 
demonstrated  in a hybrid model combining a discrete signalling network model of C. elegans germ 
cells with a continuous model of their physical interactions48. As germ-cells develop, they need to pass 
through distinct stages at the correct time in the correct order. This process is controlled by different 
microenvironments to which the cells are exposed as they develop, in particular signalling from Notch 
and Ras. These signals cue the transition between different developmental phases. To ensure correct 
development, the germ-cell must be robust to perturbations as these environments change. To check 
that the model reproduced this robustness model-checking was conducted to find all the possible 
stable states of the model, for all possible initial conditions, without the need for exhaustive 
simulation. While the network may have multiple possible stable states, the sequence of signals that 
the cell receives enforces a stable and linear fate progression in the model. Furthermore, differences 
in the forces on mitotic cells encourages mixing, and so breaks up regions of clonal dominance. In the 
germline, clonal dominance must be avoided to maintain genetic diversity, while similar mechanisms 
are required to reduce the risk of cancer in other tissues. An example of such a mechanism can be 
seen in the structure of the intestinal crypt. As cells are constantly being pushed out of the niche, any 
clone that gains an oncogenic mutation that does not immediately improve proliferative fitness is 
outcompeted by healthy cells, lowering the chance of a tumourigenic clone acquiring dominance49.  

Being able to predict all possible outcomes of perturbations and how the sequence of 
molecular events and perturbations affects which stable state of a network is reached, will be important 
for predicting effective cancer therapies. For example, this opens up new opportunities for network 
reprogramming50. This is important for understanding the specification of lineages51 and therefore for 
lineage reprogramming52. Zañudo et al. explored reprogramming for cancer therapy using a Boolean 
network model. A Boolean network model of leukemia shows how reprogramming can be of use for 
cancer therapy53. By analysing the stable states in the Boolean network model and how they changed 
under perturbation, the authors showed how this can reveal sequences of changes that convert a cell 
from a stably cancerous phenotype to a stably beneficial phenotype, such as apoptosis. Similarly, a 
Boolean model of transforming growth factor-β (TGFβ) signalling in hepatocellular carcinoma 
suggested a specific sequence of events needed for Epithelial–mesenchymal transition (EMT)54, a 
behaviour that may contribute to tumour progression  and metastasis55. Further Boolean network 
models of oncogenic signalling have shown that, even when such reprogramming is not the goal, the 
timing of interventions can affect their therapeutic impact56,57. 

[H2] Tracing cancer evolution  
As a cancer emerges and evolves, each mutation will change the possible stable states of the gene 
regulatory network. Some cancer types appear to acquire mutations in specific orders58,59. This raises 
the question of whether certain sequences have a benefit over others because they produce stable 
states associated with higher fitness. Machine learning models have shown to reproduce and predict 
such order in lung and colon cancers60, while Boolean network models have been used to investigate 
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the effect of each mutation in the canonical route to colorectal cancer61.  
It is possible to further model potential alternative orderings of acquired mutations 

compared to those that are observed clinically to learn why certain orderings of mutations are more 
prevalent. For example, a mathematical model can show how the order of acquisition of different 
cell characteristics, such as replication and mutation rates, affects the rate of development of 
cancer62. By using an ODE model, techniques such as sensitivity analysis can be used to determine 
the relative contributions of each characteristic to the differences between these paths to cancer.  

It is possible to further examine this problem at the level of a genetic regulatory network63. 
Here, a method is implemented to compute all the reachable stable states from any subset of initial 
states in a Qualitative Network, an extension of Boolean networks in which nodes can take multiple 
finite values beyond simply “on” or “off”. This method is used to trace changes in the available stable 
states as cancer evolves from tumorigenesis onward and investigated all possible orderings of 
mutations. By tying the states of the network to overall cell phenotypes, they showed which 
sequence of mutations produced the fastest increase in proliferation while minimizing  apoptosis. 
This suggests which sequences of mutations are likely to be the most commonly observed as a cancer 
develops, and which sequences are less common, as clones that attempt to follow these routes will 
be less fit. Reconstructing common patterns of mutation is complex, and for early founding 
mutations more so64. But using executable models to understand the patterns of the order of 
acquisition of mutations could help to produce more effective therapies by identifying likely early, 
founder mutations. These founder mutations are likely to be present in all the cells of even a 
heterogeneous tumour and so may be more effective treatment targets65–67. 

[H2] Discovering novel therapeutic strategies 
One of the key uses of a verified executable model of cancer is to accelerate the search for and testing 
of novel therapies (Figure 2). This can save time and expense by guiding experiments to those areas 
most likely to be effective and thereby overcome the slowdown in drug discovery currently attributed 
to the exhaustive nature of purely experimental approaches11,12. One can either search for 
perturbations that shift the network from one stable state to another50,53, or that introduce new 
stable states that are beneficial to the patients68. 

Targeted therapies are highly effective, but quickly lead to resistance69,70. To combat this, 
combinations of drugs are often used, as it is less likely that a tumour will contain cells with mutations 
rendering it resistant to multiple drugs at once71,72. An executable network model allows the easy 
simulation and comparison of the effects of multiple pairwise combinations, and their comparison 
to monotherapies, to find additive, possibly even synergistic, drug combinations34,73,74. Executable 
models allow for the testing of more complex drug combinations, which would otherwise be cost 
and time prohibitive in a laboratory. For example, digital systems design methods were first used to 
generate a Boolean representation of the growth factor signalling networks for the insulin-like 
growth factor 1 receptor (IGF1R) and ERBB families75. The authors then found and classified potential 
faults that would lead to aberrant dynamics, including cancer, analogously to how an electrical digital 
system might be assessed for potential faults. Finally, they tested 64 possible combinations of 6 drugs 
for their capability to reduce proliferation in the case of such faults, and identified the most effective 
combinations, as well as those potential faults that cannot be treated with any combination of drugs. 
Although only tested here on a small scale, such an approach could be used to cut down on the 
number of potential combinations to be tested and focus in vitro and in vivo validation only on the 
most promising combinations. However, such brute force searches may not always be possible in 
very large networks, or for more than pairwise combinations of a large number of drugs.  

A key question is how different cancers will respond differently to therapy, for example when 
targeting the p53 transcription factor network68. The authors constructed Boolean network models 
of p53 signalling, with unique networks resulting from rewiring caused by different mutations and 
copy number alterations in various genes. Considering 83 cancer cell lines derived from 14 tissues, 
they found 45 different versions of the p53 network. For each network, the stable states, or 
attractors [G] , were tied back to cellular behaviour based on the stable state of certain nodes in the 
network. For example, stable Caspase activity was tied to cell death. The authors then simulated how 
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these attractors change when one or a combination of nodes is perturbed (to simulate drug therapy) 
and predicted which single and combination therapies should be the most effective depending on 
the genotype, validating their results experimentally for 8 cancer cell lines. Attempting to cluster 
cancers on genotype alone, rather than by the attractors, did not correlate with the simulated drug 
responses, showing the importance of dynamic models to correctly predict the effects of therapy 
and choose the best treatments in a personalised manner.  

[H2] Determining mechanisms of drug resistance 
Executable cancer models offer the opportunity to predict resistance mechanisms, which in turn may 
lead to discovery of new methods to pre-empt or overcome resistance. For example, Boolean network 
models were constructed separately for three breast cancer cell lines with different levels of resistance 
to common inhibitors of ERBB family members, namely sensitive to both trastuzumab (which targets 
ERBB2) and pertuzumab (which inhibits dimerization of ERBB2 with other ERBB family members), 
trastuzumab resistant, or pertuzumab resistant76. The choice of a Boolean framework allowed the 
inference of these cell-specific networks without the need for measurement or estimation of kinetic 
constants. The authors then compared these models for mutations and novel interactions within the 
gene regulatory network that could underpin potential drug resistance mechanisms and found unique 
feedback loops in the trastuzumab resistant cell line, providing a potential mechanism for resistance. 
Others have attempted to predict new resistance mechanisms. For example Zañudo et al.77 developed 
a Boolean model  of oestrogen receptor-positive breast cancer based on literature data, while 
Silverbush et al.73 developed a qualitative network model of acute myeloid leukaemia using 
proteomics data from cell lines with different levels of resistance to PIM kinase inhibitors. By 
simulating the effect of single or double gene mutations under the effects of PI3K inhibition77 or PIM 
inhibition73, these models suggested novel resistance mechanisms to the inhibitors. Silverbush et al. 
used this understanding to predict and validate that AKT1/2 inhibition can overcome resistance to PIM 
inhibition, while Zañudo et al. further model the degree to which PI3K inhibitors might affect the 
survival of the cell77.  

Executable network models can also address another layer of complexity in that tumours are 
largely heterogeneous, with different clones having different mutations4,78. This is important as drugs 
may have different effects on different clones within a tumour65,79. Being able to choose the most 
effective therapy therefore necessitates a mechanistic understanding of how these clones compete 
and cooperate. Qualitative network modelling has been used to investigate how clones with normal 
and dysregulated MYC expression cooperate in breast cancer80. Using this model, the authors 
predicted the difference in the effects of single and pairwise combination therapies on different MYC 
clones within the tumour. They further investigated how these effects are changed by the cooperation 
of the clones in a heterogeneous tumour compared to pure clonal tumours. The authors then 
predicted the most effective combination therapy and validated its effectiveness in a novel mouse 
model of such heterogeneous tumours.  

These examples illustrate how executable and mathematical models could impact cancer 
treatment through the guidance of experiments and drug discovery in academia. In the pharmaceutical 
industry, there is an increased need for pharmacokinetic/pharmacodynamic (PKPD) models that can 
simulate systems level interactions, such as in the case of the interactions across pathways in response 
to combination therapy. In order to bridge this gap the field of Quantitative Systems Pharmacology 
(QSP) is emerging. The challenges at the interface of pharmacology and systems biology and the 
emerging methods to overcome them are reviewed by van Hasselt et al.81 and Kirouac et al.82. 

 
[H1] Clinical applications  

Executable computational models have great potential for impact in the clinic as tools to aid 
prognosis and to bring the planning of treatments to a personalised level. As the area of executable 
modelling is still fairly new, it will take time for such methods to clear the regulatory hurdles and be 
accepted into clinical practice. However, we can see how things are likely to develop by looking at 
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some of the earlier statistical, machine learning and mathematical models, which have blazed a trail 
that executable models can follow. Importantly, a key benefit of executable models over machine 
learning approaches is that an executable model affords a mechanistic interpretation, which can be 
reviewed for biological plausibility and fit to clinical expertise. This is critical if prognostic and 
treatment planning tools derived from computational models are to be acceptable for use by 
clinicians. 

[H2] Improved prognostic markers 
Presently disease prognosis is dependent on low-throughput tests such as cytogenetics83,84. High-
throughput genomic and transcriptomic technologies offer the potential to increase the accuracy of 
such tests and to stratify patients into more useful prognostic categories using statistical models. For 
example, the OncoTypeDX test85  offers a 21-gene recurrence score assay that can identify patients 
who are not likely to require chemotherapy, sparing them painful and stressful treatment. There has 
been a decrease in the use of adjuvant chemotherapy since the production of the test86 and this is 
likely to decrease further as the accuracy of the test becomes better understood87. 

While such statistical models can be immensely useful in predicting what will happen during 
the progression of a cancer, they are of limited use in elucidating how and why the disease develops 
differently in different patients. By contrast, mechanistic models can be used to find new treatments 
that can be applied in the clinic. As an example, a model of the competition between drug-resistant 
and drug-sensitive cells within a cancer using evolutionary game theory was used to develop a new 
treatment strategy for metastatic castration-resistant prostate cancer based on the predictions of 
the model88. The authors used cycles of dosing to reduce the bulk of the tumour, but not eliminate 
the sensitive cells, as these then competed with the resistant cells during drug holidays. In this 
manner the cancer could be managed as a chronic disease. They report that an ongoing pilot clinical 
trial88,89 showed significant benefit compared to those treated with standard-of-care methods. 
Critically, their modelling of previously attempted trials of intermittent dosing strategies90–93, suggest 
that such non-adaptive therapies are no better than continuous treatment at maximum therapeutic 
dose. Similarly, dosing strategies can be improved based on mathematical modelling of evolution in 
prostate cancer94. Further such models will be necessary to find the correct dosing schedules to apply 
the broader adaptive therapy [G] paradigm95, as every cancer type is likely to have unique dynamics. 
This can be aided by applying these principles to executable models, which, as shown in the prior 
sections, can flexibly model different backgrounds and adapt to incorporate resistance mechanisms 
as they emerge.  

[H2] Personalised treatment regimes 
Modelling can also be useful once treatment begins. One of the main limiting factors in personalised 
cancer medicine today is the inability to plan treatment choices based on a patient’s response over 
time, whether due to changing sensitivity to specific therapies as the cancer develops resistance or 
in managing dosage and timing to give the patient reasonable quality of life during treatment. 
Mathematical models are being developed to make radiotherapy more personalised and responsive 
by evaluating not only variables such as tumour volume or lymph node involvement, but the rate of 
change over time, and using this to inform ongoing treatment96. By the same token it is expected 
that executable models can also be personalised using such biomarkers and their dynamics over 
time. Such models would then allow more responsive therapy as they can be quickly updated to 
respond to new data, allowing changes to the model to be made based on measurements taken 
during treatment, and in turn allowing changes to be made to therapy to adapt to unforeseen tumour 
behaviour. However, executable models may be able to work well even in cases where it is 
impractical to gain the level of detailed measurement a mathematical model requires, as they 
operate at a higher level of abstraction. 

[H2] Clinical trials 
The maturity of executable modelling is now such that results from using these techniques are 
reaching clinical trial. Network-based approaches dominate, although these are so far mostly 
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restricted to analysis of the topology of static networks97. The current focus is trying to find the causes 
of aberrant gene expression by predicting which areas of a network are affected by perturbations98. 
For example, network inference with ARACNE38 and topology analysis to find master regulator 
transcription factors with MARINa (master regulator inference algorithm) MARINa99 was used to suggest 
Janus kinase (JAK) as a drug target in breast cancer100, and followed up with an ongoing clinical trial101. 
A further trial based on targets identified by ARACNE, MARINa and similar techniques 
for gastroenteropancreatic neuroendocrine tumors is also underway102,103.  
 

[H1] Challenges and outlook 
From the forgoing, it is evident that executable computational models are contributing to the 
understanding of cancer and there is emerging evidence that use of such models in clinical settings 
could potentially improve cancer treatment. The key questions are therefore whether current 
executable modelling approaches are sufficient or whether they need further development to be 
fully practical, and how they can be made more widely accessible to both the research and the clinical 
communities? It is evident that practical executable computational modelling calls for broad 
expertise spanning cell biology, biochemistry, theoretical computer science, software engineering, 
bioinformatics, data science, and clinical research. It is unreasonable to expect to find all these skills 
in any one individual and so work in this field is inevitably interdisciplinary and therefore brings with 
it both the opportunities of cross-fertilization between different disciplines and the challenges of 
working across organizational and funding boundaries. Particularly in an academic context, how can 
members of an interdisciplinary team communicate the value of their contributions back to their 
own discipline and how do they balance innovating in their own domain against applying existing 
knowledge to benefit others in the team? From our own experience we have found that 
interdisciplinary work can stimulate new developments in one’s own field. 

[H2] From a reductionist to holistic view 
Biological sciences are going through a cultural shift, moving away from the conventional reductionist 
approach of investigating single molecules at depth towards an approach based on identifying 
patterns of behaviour (i.e., models) to elucidate a mechanistic understanding of biological 
phenomena as a coherent whole (rather than as a collection of parts). This shift is not intuitive and 
requires a leap of faith that biological mechanisms can be explained without needing to understand 
every detail at every level, i.e., that the principle of abstraction is as applicable to biology as it is to 
mathematics, physics or computer science. It is inevitable that in order to handle biological 
complexity we must come up with abstract models that will necessarily make simplifying 
assumptions about the systems we study. Importantly though, abstraction must be accompanied by 
real world validation – for a model to be justifiable it must be shown to fit experimental data. Indeed, 
there is a co-dependency between experiments and models – inconsistency between data and a 
model requires the model to be improved to fit, and behaviours predicted by models need to be 
validated experimentally. 

[H2] Levels of abstraction 
Abstraction is key to modelling complex systems. While all computational models are necessarily 
based on some form of abstraction, this can vary from low-level differential equations through 
mathematical logics to behaviour expressed as computation, i.e., computer programs. There is no 
“magic bullet” level of abstraction suitable for all purposes. Biology can learn from the approach taken 
by computer engineers to design complex hardware systems: a microprocessor cannot be 
understood in terms of the behaviour of its constituent transistors and logic gates – the detail is 
overwhelming. Higher level abstractions such as “instruction set architecture [G] ” are used to explain 
the internal operation of the electronics in a form that is meaningful to a computer programmer. 
Similarly, the behaviour of a cell cannot be understood entirely by studying its chemistry at a 
molecular level. Dealing with the complexity of biological systems similarly needs a structured toolkit 
of biological abstractions. 
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In formal terms such a toolkit is effectively a graph (in the mathematical sense of nodes and 
edges) of modelling approaches encompassing different forms of abstraction with arcs expressing 
equivalences between entities appearing in each form of abstraction40. So, a key question to be 
answered is what are the best forms of abstraction and modelling methods to meet the needs of 
biologists? This question has many of the aspects of discussing the design of a computer programming 
language – it has to have sufficient expressive power to capture a wide range of biological knowledge 
yet remain accessible to practitioners and not just of relevance to computational biologists. In this 
respect we see use of computer program-like approaches being particularly attractive as many 
biologists have some training in programming or have people in their research group who have such 
training and if models are executable as programs they can be run as simulations to look for unknown 
emergent behaviours. But as computer scientists have found, resolving the tensions between scope 
of application, expressive power and accessibility is a thorny problem. 

[H2] Spatial modelling 
Spatial aspects such as the extent and structure of a tumour also impact its evolution and reaction 
to treatments, and so discrete, continuous and mixed methods to model this have been developed 
(Box 2). Extending an existing computational model by adding a spatial dimension brings the task of 
integrating continuous physical properties of a biological system with discrete cell signalling all in one 
modelling framework. Such hybrid models are challenging on several levels. First, they need to 
combine very different forms of abstraction (e.g., Boolean networks and ODEs) into one model and 
allow the different abstractions to talk to one another. Secondly, the analysis of hybrid models 
usually cannot go beyond simulation: sadly, model checking is not an option here as it is only 
applicable to models with a finite number of states. Innovative methods for the construction and 
analysis of hybrid computational models are very much needed. However, combining a discrete 
representation of cells with continuous modelling of the microenvironment has been shown  to yield 
key benefits over a purely continuous formalism104, so there are rewards for overcoming these 
challenges.  

[H2] Automated model construction 
Executable modelling as described so far is essentially a manual process. Automatic processes are 
attractive as they are potentially less labour intensive and more scalable to multiple patients and 
diseases. So, an important question for computational modelling is whether there is the possibility 
of learning models from data? One possible approach that can be borrowed from computer science is 
“program synthesis [G] ”, which is a method to produce programs automatically from high-level 
specifications relating “inputs” to “outputs”. In the context of biological modelling, synthesis would 
correspond to splitting data into inputs (e.g., biomarkers, treatments) and outputs (e.g., tumour type, 
clinical outcomes) and from these automatically constructing “behaviours” that tie them together. 
We anticipate such an approach could accelerate model development but would still need some level 
of engagement with the biologist to steer the synthesis algorithm [G] to biologically plausible 
mechanisms. 

A further challenge with program synthesis is the issue of scalability. On the one hand, there 
has been success in automating the construction of computational models from mutation 
experimental data105 and high-throughput gene expression measurements36. Current combinatorial 
synthesis methods include the Single Cell Network Synthesis tool106, which reconstructs Boolean 
network models from single-cell gene expression data, as demonstrated by a model of the regulatory 
network controlling haematopoitic development36. Additionally, the Reasoning Engine for Interaction 
Networks  tool107, is a method to narrow down a set of possible Boolean network models to those 
that reproduce a set of known experimental behaviours, for example to model the choice between 
self-renewal and pluripotency in mouse embryonic stem cells. On the other hand, these tools do not 
scale up sufficiently to describe mechanisms as complex as those found in cancer. There is ongoing 
exploration on how to use machine learning algorithms in combination with program synthesis to 
reduce the search space [G] and provide more general solutions that can be applied to a wider range 
of datasets108. 
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[H2] Model verification and predictive power 
The use of formal verification methods allows validation of all possible behaviours of an executable 
model, and so confirmation that a model is able to reproduce a specification of all known behaviours 
of a system. This is only as good as the knowledge of the ground truth, and so the clinical utility of 
these models will depend on the ability to improve the measurement of patient status with emerging 
technologies such as next generation sequencing and proteomics. However, while the number of 
predictions these models make has long outstripped out capacity to validate them experimentally, 
new techniques such as CRISPR-Cas screening109 mean that we can now test, in vitro, changes to gene 
regulatory and signalling networks at a similar scale as we can model. This will allow more thorough 
validation of these models and better understanding of their trustworthiness and evaluation of the 
reliability of their predictions, which will be vital to safely integrating them into clinical use. 

[H2] Digital clinical advisor for improved patient outcomes 
In addition to their contribution to the science of cancer, there are already examples of 
computational and mathematical models being used in clinical practice to improve decision making. 
Because of their ability to represent treatments such as drugs or radiotherapy as perturbations to 
the default evolution of the cancer, computational models have the potential to integrate 
combinations of therapies into an overall treatment plan that gives the best patient outcomes. The 
obvious next step is to take this forward using patient-specific data to create a personalised 
executable model, derived from learned population models of different types of cancer (Figure 3). One 
can think of such a model as an extension of a personal electronic health record including images, 
omics data, treatments and outcomes, with a digital avatar with the ability to run a forward prognosis 
of the patient’s susceptibility to different forms of cancer, enabling early detection and, when 
detected, predict personalised treatments. As the disease progresses, the model can be rerun on 
new data allowing the treatment to be optimised as it proceeds. This leads naturally to the concept 
of a “clinical advisor” app, that interacts with a patient “digital avatar” and allows cancer to be 
treated as a chronic rather than acute condition, with hopefully better survivability and quality of life 
for patients. 
 
[H1] Concluding remarks 

Executable computational modelling is now established as an important tool for understanding 
complex biological systems, sitting alongside in vivo and in vitro experimentation, mathematical 
modelling and data science. Executable models bring particular benefits to the exploration of dynamic, 
evolving systems such as those manifested in cancer and have led to substantial steps forward in our 
understanding of the underlying mechanisms of this insidious disease. Executable computational 
modelling is being exploited to speed up the discovery of new therapies and treatment regimes. The 
current frontier is to bring such modelling into the clinical context through tools that allow patient-
specific management of cancer through early prediction and adaptive therapies. The hope is that by 
such means cancer can be changed from being an acute medical condition to one that is regarded as 
a manageable chronic condition with significantly improved patient outcomes. From the perspective 
of those who worked in the area of computational modelling since the earliest days, the approach 
has reached a level of maturity and capability to make it a key methodology inthe framework of 
modern biology and act as an enabler for new clinical approaches to the treatment and management 
of cancer patients. 
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Glossary  

Discrete model: a model with a countable number of states. States represent remembered history of the 
system modeled. Discrete models are to be contrasted with continuous models.  

Continuous model: a model with an infinite number of states, which may also be called analogue models. 
State machine: an abstract model of a discrete system. A state machine can only be in exactly one of a 
countable (often finite) number of states at any given time. The machine can change from one state to 
another in response to some external (input) events (input signals); the change from one state to another 
is called a (state) transition and may give rise to external (output) signals. 

Algorithm: a step-by-step sequence of basic operations required to produce a desired result in a discrete 
system. 
Computer programs: collections of instructions that perform a specific algorithm when executed by a 
computer. 

Specification: a set of known behaviours which a model must be able to produce in the correct 
circumstances in order to be considered valid. 

Formal verification: a method to prove or disprove the correctness of computer programs with respect to 
a certain formal specification or property, by treating the program as a mathematical structure and proving 
theorems about it. 
Testing: the process of checking the consistency of a program with a given specification by comparing inputs 
to outputs across multiple runs of the program. 

Model checking: a means of checking whether a program meets a given specification by the used of 
automated theorem proving (a branch of mathematical logic dealing with proving mathematical theorems 
by computer programs). 

Program synthesis: a technique that automatically constructs a computer program that satisfies a given high-
level specification. 
Abstraction: a model at a certain level of description, simplifying lower-level details in a principled way 
preserving key properties of the system behaviour.  

Levels of abstraction: a hierarchy of abstractions where higher levels of abstraction are placed at the top 
and more detailed concepts underneath.  
Concurrency: the parallel execution of multiple interacting computer programs. 
Non-determinism: the abstraction of a complex behaviour showing more than one possible output (e.g., 
phenotype) for a given input (e.g., genotype).  
Modularity: the focus on keeping components of a model or a computer program in discrete units allowing 
them to be flexibly put together in different combinations. 

Compositionality: the ability to combine separate component models into a larger overall system model. 
Instruction set architecture: an abstract description of a computer processer at the level required by 
programmers, including those writing compilers for high-level programming languages (e.g., Python). 

Attractors: states toward which a system tends to evolve from a wide variety of starting conditions. A system 
in an attractor state remains stable even if subject to perturbation. 

Adaptive Therapy:  the application of cancer treatment in a manner which quickly responds to changes in 
the disease rather than following a fixed protocol, with the goal of managing the cancer and maintaining a 
limited tumour burden, rather than attempting to totally eliminate the disease95.  
 
Search Space: the set of possible states or solutions through which an algorithm must search to find the 
optimum solution to some problem.  
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Phase Plane: a 2-dimensional visualisation of the behaviour of a system of differential equations where each 
axis shows one variable of the equations. Often used to aid the visualisation of the long-term behaviour of 
these systems. Higher dimensional visualisations are refered to as a phase space. For example, the Lotka-
Volterra equations model the change in predator and prey populations over time. Plotting the number of 
predators or prey against time would show oscillatory behaviour, but plotting prey vs predator would reveal 
a closed loop in the phase plane, revealing the balanced tradeoff in the number of predators and prey.  
 
Logic Gates: a representation of a Boolean logical operation. Combines binary inputs to produce a binary 
output based on operations such as AND, OR or XOR (exclusive OR).  
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Table 1 Comparison of Models 
 

Model Discrete vs 
continuous 

Input data Construction Outputs Key 
insights 

Mechanistic 
explanation 

Reusability 
and 
extensibility 

Strengths Challenges Examples 
of success 

Network Discrete Quantitative 
(e.g. gene 
expression 
data), 
qualitative (e.g. 
transcription 
factor targets) 
or both  

Can be 
inferred from 
one dataset 
(top-down) 
or built up 
from multiple 
datasets 
(bottom up) 

Stable states 
of the system 
(attractors), 
attractor 
basins and  
ordering of 
events 

Ordering 
and 
connection 
between 
molecular 
events; 
identifying 
all possible 
states of 
the system 

Yes Easy Flexible in 
terms of 
data to be 
built from, 
yield 
precise 
knowledge 
of all 
possible 
behaviours 

Automatic 
network 
inference and  
synthesis 

43,68,80,138 

Statistical Continuous Quantitative 
(e.g. gene 
expression 
data) or 
qualitative (e.g. 
tumour images 
of whether or 
not cancer 
regression 
occurs) 

Inferred from 
data (top 
down); high 
volumes 
needed for 
machine 
learning 
approaches 

Classification, 
clustering 
and 
regression 

Structure of 
high-
dimensional 
and high-
volume 
data 

No Difficult Able to 
extract 
patterns 
from large 
volumes of 
high-
dimensional 
data 

Model 
interpretability 
and selection 

38,122,129,139,140 

ODE Continuous Quantitative 
(kinetic 
parameter 
measurements) 

Construction 
of models 
from 
different 
hypothesised 
processes 
(bottom up); 
estimation of 
parameters 

Stability 
analysis, 
relationship 
between 
variables 
(phase 
planes [G]) 
and effects 
of changes to 
parameters 
(sensitivity 
analysis)  

Precise 
prediction 
of future 
behaviour 
of 
continuous 
systems 

Yes Possible Precise 
predictions 
and change 
over time; 
ability to 
investigate 
stability and 
sensitivity 

Parameter 
measurement 
or estimation, 
analysis of 
non-linear 
systems; 
model 
identifiability 

42,88,104,141,142 
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Figure Legends 
 
Figure 1. Computational modelling iterative cycle. The first step is to analyse experimental data to 
suggest a mechanistic hypothesis that is then formalised as a computational model. The second step 
is to compare rigorously the computational model to the experimental data, in a formal way (i.e., 
using formal verification). If the model fails to reproduce the data, the model needs refinement until 
it fully conforms with the data. The third step is to use the 
computational model to make predictions of behaviours outside the experimental data. These 
predictions are then checked experimentally and if validated are added to the experimental dataset. 

  
Figure 2. Exploring cancer therapies using a computational model. A schematic for a computational 
model of a signalling network (model) in a healthy cell (beige cells) vs a cancer cell (blue cells) and 
the output cell phenotypes produced by the model (output). Numerical values in purple boxes to the 
right of nodes in the signalling network represent level of activity for proteins (e.g., 0 represents low 
or no activity, 1 represents moderate activity and 2 represents high activity). Values to the right of 
the phenotypic outputs (e.g., proliferation) can represent absence (0), moderate level (1) or high 
level (2) of cell behaviours, or the presence (1) or absence (0) of a cell property (e.g., growth arrest) 
– all examples of cellular phenotypic outputs. The difference between a healthy cell and a cancer cell 
is simulated by setting the initial level of relevant nodes (e.g. to 2 for an activating mutation in a gene 
encoding a relevant protein, to 0 for inhibition by a drug) and read by the phenotypic outputs 
predicted by the model. The top row of cells illustrates the inputs and outputs of simulating 
untreated cells (healthy vs cancer). The bottom row of cells shows the simulation of drug treatments, 
and their effect on the phenotypic output as predicted by the computational model. As illustrated, if 
the treatment is of low toxicity to healthy cells, the phenotypic output is less than the effect on the 
cancer cells. If the treatment is effective when applied to the cancer cells there will be a 
corresponding phenotypic output indicating a decrease in disease state. 

  
Figure 3. A possible digital avatar for a cancer patient. Schematic showing how different datasets 
could be integrated into a computational model leading to a digital avatar that could advise clinical 
decision making. Computational models of different types of cancer would be built based on the 
integration of diverse biomedical datasets. This library of computational cancer models could then 
be personalised with individual patient data to identify personalised therapies. As these models 
are applied across many different patients, their successes and failures could be used to further 
improve the models by leveraging machine learning techniques to identify principal features linking 
patient data to cancer stage and evolution. This would then feedback into ever more 
accurate predictions of the most effective therapies. Cloud repository allows such datasets to be 
aggregated across clinical populations and subject to techniques such as deep learning. 
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Box 1. Computational and Mathematical Models  

A computational model is a discrete model which prescribes a sequence of steps or instructions to 
be executed by an idealised computer that defines the semantics of the model. Since the model is 
computational it can be either directly executed by a real computer or transformed algorithmically 
into a suitable form for execution. 

A mathematical model is a continuous model using mathematical equations to show the relationship 
between quantities and how they change over time. There may be many different algorithms to solve 
the equations, either analytical methods for deriving exact solutions or, e.g., numerical methods for 
deriving approximate solutions. The application of such methods to biology is reviewed by Materi et 
al.110  

Computational modelling versus data science   
A comprehensive understanding of cancer is necessarily grounded by analysis and integration of pre-
clinical data (i.e., genomic, transcriptomic, proteomic, metabolomic and phenotypic cellular data) 
with data more commonly measured in the clinic (e.g., radiomics, histopathology, liquid biopsies). 
Such data integration collectively analyses the different datasets and builds an overarching data 
model for the aggregated data. Machine learning approaches can then be applied to look for patterns 
in the aggregated data that might provide opportunities for improved diagnostics or treatment 
pathways based on experience to date. While not denying the value of such insights, machine 
learning is a ‘black box’ approach and essentially a form of interpolation. It is not able to directly 
generate mechanistic insights nor is it able to predict outcomes outside of those captured in the data 
used for training111. By contrast, computational modelling, by definition, gives a mechanistic 
explanation of the data from which it is derived and is able to be predictive of the result of perturbing 
a system beyond the scope of that originating data. 

Box 2. Mathematical models in cancer biology 

[H1] ODE and PDE models 

Systems of ordinary differential equations (ODEs) and partial differential equations (PDEs) are widely 
used in physics and engineering to predict how interdependent variables change over time. These 
often cannot be solved analytically, and so solutions must be estimated numerically. However, there 
are a wide array of frameworks for analysis of how the system evolves (stability analysis and phase 
planes) and how sensitive the behavior of the system is to changes to different parameters (sensitivity 
analysis). It is challenging to accurately measure or fit parameters, especially in non-linear cases. They 
can be used to model the population of cells in a tumour94,112, or chemical reactions, such as in a 
regulatory pathway42,113,114. An important branch of these models is pharmacokinetic/dynamic (PKPD) 
models for modelling the effects of drugs115. 

[H1] Probabilistic Models 

Probabilistic models concern the probability that random variables will take certain values. A common 
use in cancer modelling is probabilistic graphical models, which are graphs that expresses the 
conditional dependence between variables. Bayesian networks are often used for cancer 
prognosis116,117. Bayesian networks also lend themselves to network inference118 or modelling cancer 
evolution119,120 with further examples in the review by Beerenwinkel et al.121. 

[H1] Statistical models 

Statistical models can be used to extract patterns or find parameters to describe large datasets. 
Patterns within such datasets can be used to correlate groups of particular characteristics with specific 
outcomes, for example finding cancer prognostic parameters122. These descriptive models can also be 
a first step towards a predictive model123,124 and mechanistic models125 using for example network 
inference39,126. 
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[H1] Machine learning 

Machine learning methods, such as Artificial Neural Networks or Random Forests, attempt to 
generalize from a limited training set. Taking advantage of modern computing resources, machine 
learning methods are able to extract structure from high-volume and high-dimensional datasets. 
Common applications include classification, clustering and fitting regression models. There has been 
particular interest in the use of machine learning to leverage the increasing amounts of patient data, 
such as sequencing and expression data, to improve cancer prognostics127,128. These models are often 
opaque and trade-off explanatory power for predictive accuracy. However, there are various attempts 
to ameliorate this drawback and extract mechanistic hypotheses from such models129.  

[H1] Spatial models 

Malignant tumours are heterogenous shifting ecosystems of cells. There is therefore a need for 
models which can account for signalling between clones and cell types, and the spatial structure that 
affects signalling and the microenvironment130,131. This may be accomplished in a discrete132, 
continuous133 or hybrid104,134 models.  

[H1] Hybrid and multiscale models 

Biological problems cross many different scales and are influenced by processes happening in different 
regimes. These may be suited to different modelling techniques, yet all contribute to one 
phenomenon. Therefore, hybrid models that can combine techniques and scales are proving 
useful135,136. Such hybrid and multiscale models include for example: the effects of heterogeneity in 
cell cycle stage within a tumour on treatment effectiveness137 and the effects of a harsh 
microenvironment on tumour invasion and evolution104, which compares the hybrid model to a prior 
continuous model, and shows how the hybrid model reveals new biologically important behaviours.  

Box 3. Types of computational models 

[H1] State machines  
State machines are discrete models that define the behaviour of a system over time in response to 
external signals or events. At each such event, the machine transitions from one state to another, 
where a state represents remembered knowledge of the history of the system. State machines can 
be combined to describe how different parts of a larger system communicate: for example, state 
transitions in one part generating events that trigger transitions elsewhere in the system. The state 
of a system at any point in time is determined by the states of its component parts. For example, the 
state of a cell can be represented by the states of various genes and proteins, each having its own 
reaction to the presence or absence of certain other molecules. Changes in the overall state of the 
cell are determined by the interdependent state changes of its component parts. 

[H1] Boolean networks  

Boolean networks represent state machines as directed graphs and are widely used as discrete 
models of biological networks such as gene regulatory networks. The nodes of such graphs typically 
represent expression status of genes and the directed edges represent the actions of genes on one 
another. The state of each node is a Boolean variable (0 or 1) determined by the sum of its inputs. 
[H1] Qualitative networks  
Qualitative networks are extensions to Boolean networks. These graph models allow the state of each 
node to have more than Boolean values (e.g., off, low, medium, high). Furthermore, these models 
have target functions that provide “weight” to the edges in a form of logic gates [G] (e.g., AND, OR, 
MIN, MAX). 
[H1] Hybrid models  

Hybrid models aim to bridge the gap between mathematical models and computational models by 
combining the two in a single framework, with variables that span discrete and continuous domains. 
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Discrete variables are state machines with input events triggered by values of continuous variables. 
Continuous variables are governed by differential equations, which depend on discrete states 
represented as numbers. In effect, the discrete part of such models is an executable control 
mechanism that drives a continuous physical system. 

 

Table of contents summary  
This Perspective discusses how executable computational models,  integrating various datasets 
derived from pre-clinical models and cancer patients, can be used to represent the dynamic biological 
behaviours inherent in cancer. It argues that these models might be used as patient avatars to 
improve personalised treatments. 
 
 
 


