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ABSTRACT  

Recent debate has concentrated on the contribution of bad luck to cancer 

development. The tight correlation between the number of tissue-specific stem cell 

divisions and cancer risk of the same tissue suggests that bad luck has an 

important role to play in tumor development, but the full extent of this contribution 

remains an open question. Improved understanding of the interplay between 

extrinsic and intrinsic factors at the molecular level is one promising route to 

identifying the limits on extrinsic control of tumor initiation, which is highly relevant 

to cancer prevention. Here we use a simple mathematical model to show that recent 

data on the variation in numbers of breast epithelial cells with progenitor features 

due to pregnancy are sufficient to explain the known protective effect of full-term 

pregnancy in early adulthood for estrogen receptor positive (ER+) breast cancer 

later in life. Our work provides a mechanism for this previously ill-understood effect 

and illuminates the complex influence of extrinsic factors at the molecular level in 

breast cancer. These findings represent an important contribution to the ongoing 

research into the role of bad luck in human tumorigenesis. 

 

Major Findings 

A mathematical model demonstrates that the pregnancy-associated reduction in 

Ki67+ and p27+ cells numbers in the human breast can explain the protective effect 

of pregnancy against ER+ breast cancer. 
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Quick Guide to Equations and Assumptions 

 

Cellular dynamics of the stem cell and proliferative progenitor cell populations 

There are N stem cells per terminal end duct. The stem cells follow a stochastic process 

known as the Moran model. One cell division occurs during each time step of length tcycle  / 

N. In each time step a single stem cell is randomly chosen to divide proportional to the fit-

ness of the cell, with the two daughter cells replacing the divided cell and another random-

ly chosen cell. 

 

With probability p, stem cell divisions are asymmetric, giving rise to one stem cell that re-

places the divided cell and one progenitor cell that forms the founder in a new cascade of 

progenitors. All cells in a progenitor cascade divide during every time step. In non-

pregnant women, wild-type progenitor cells can divide a total of z times before becoming 

terminally differentiated (see below for the effects of mutations and effects of pregnancy). 

Cells that are terminally differentiated exit the simulation. 

 

Cancer initiation 

During each cell division, one of the two daughter cells in a division attains a new 

(epi)genetic mutation with probability μ. In stem cells, mutations increase the relative fit-

ness of the cell by a factor of fmut. In progenitor cells mutations increase the number of lev-

els in the differentiation hierarchy by zmut levels. Thus a stem cell with n mutations has rel-

ative fitness in the Moran model given by equation (1) and a progenitor cell with n muta-

tions is able to divide a total number of times given by equation (2) before terminal differ-

entiation: 

 

(1)  (fmut)n 
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(2) n * zmut 

 

Additionally, progenitor cells must acquire the ability to self-renew. We assumed that the 

probability of a progenitor cell at differentiation level 0 ≤ i ≤ z + n * zmut attaining self-

renewal is given by equation (3): 

 

(3) γ = γbase – (i * γbase) / (2 * z) 

 

We assumed that cancer initiation occurs when a cell has accumulated a total of nmut mu-

tations and either retained (through being a stem cell) or attained (through a self-renewal 

event) the ability to self-renew. 

 

Effect of pregnancy 

Our model simulates an entire life-course over ttotal years. The model takes into account 

possible changes to cellular dynamics during pregnancy, after pregnancy, and after men-

opause. During pregnancy we assumed that the stem cell cycle length decreases to 

tcycle,preg , whereas the number of levels in the differentiation hierarchy of progenitor cells 

increases by zpreg levels. After menopause, the stem cell cyle length increases to 

tcycle,menopause. 

 

In parous scenarios, after the first birth the probability of asymmetric stem cell division 

changes by a multiplicative factor ppost,init (0 < ppost,init < 1). After the second birth and sub-

sequent births, the probability of asymmetric stem cell division changes by a factor of 

ppost,subs (ppost,init < ppost,subs < 1). 
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INTRODUCTION  

A recent study (1) by Tomasetti and Vogelstein analyzed the relationship between the 

number of stem cell divisions and cancer risk across tissues to investigate the role of “bad 

luck” in carcinogenesis. The authors demonstrated that the logarithm of lifetime cancer 

incidence in a tissue is closely correlated with the logarithm of the cumulative number of 

stem cell divisions in the same tissue (R2 = 0.64). As a result, the authors claimed that the 

majority of the variance in cancer risk among tissues is due to bad luck (Fig. 1A). 

In the reporting of the study and ensuing debate some commentators drew broader 

conclusions from the correlation found by Tomasetti and Vogelstein. While the initial study 

claimed that two thirds of the variation in cancer risk between tissues is due to bad luck, an 

accompanying commentary suggested that two thirds of all cancers, rather than two thirds 

of the variation, are due to random mutations in healthy cells (2). Subsequent analyses 

have shown that the initial correlation is not sufficient to imply a lower bound on the 

proportion of all cancers that are due to bad luck at 64%. To draw this conclusion from the 

study would require strong assumptions about the possible effects of controllable factors in 

the data set considered (3).  

Importantly, the regression analysis used by Tomassetti and Vogelstein cannot 

quantify the possible effects of extrinsic factors that do not already vary within the data set 

used, which notably did not include breast cancer (4). Therefore, the regression cannot be 

used to draw conclusions about unavoidable bad luck, taking into account the variation of 

all possible extrinsic factors. To illustrate this point, consider the (perhaps unlikely) 

possibility that it is possible to safely alter the fitness advantage of mutations that can lead 

to cancer. The correlation analysis presented cannot tell us about the impact such 

variation could have on cancer risk. 

The insufficiency of the current evidence to draw conclusions about the contribution 

of unavoidable bad luck to cancer demonstrates the important potential role of mechanistic 



 

 6

models in determining the contribution of controllable factors to different cancer types, and 

whether these factors can be harnessed for cancer prevention. The changes that lead to 

cancer are thought to develop in a complex molecular setting, which defies simple 

characterization. In this setting variation of any number of parameters may affect lifetime 

risk of cancer; these include but are not limited to the number of cells susceptible to 

transformation, the mutation rate of cells, and the fitness advantage conferred by those 

mutations when they occur (Fig. 1B). 

Full-term pregnancy in young adulthood is a well-documented natural protective 

factor for breast cancer (5,6). Estimates suggest that risk increases by 5% for every five-

year increase in the age at first birth for women with one birth (6). The specific effects of 

parity vary by hormone-receptor status of the resulting tumors (7). Analysis of the Nurses 

Health Study (NHS) cohort showed that the risk for ER+ breast cancer decreases with the 

number of pre-menopausal years accumulated since first birth (7). Hence, early first birth 

confers the greatest protective effect; a woman with four births at age 20, 23, 26 and 29 

years old has an estimated 29% reduced risk of ER+/PR+ breast cancer between the ages 

of 30 and 70, compared to a nulliparous woman during the same time period. The same 

study found that first birth causes a one-off increase in risk for PR- cancer compared to 

nulliparous women, with an effect size that increases with age at first birth. As a result, 

women with a first birth over the age of 35 can be at an increased risk of breast cancer.  

In the absence of high-resolution single-cell data which are nearly impossible to 

obtain in large cohorts of humans, mathematical models have demonstrated the 

plausibility of general molecular explanations for the protective effects of pregnancy. An 

important study by Moolgavkar et al. explored a framework where breast cancer is caused 

by two cellular transitions occurring in normal cells (8). In this model, pregnancy increases 

the rate of differentiation of normal and partially transformed cells, decreasing the pool of 

cells susceptible to the cellular transitions leading to cancer. The study leads to a good fit 
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to the data of MacMahon et al. (5). The model of Pike et al. (9) uses a concept of breast 

tissue age: breast cancer incidence is modeled as a linear function of the logarithm of 

breast tissue age, and risk factors for breast cancer alter the rate of breast tissue aging. 

First full-term pregnancy causes a one-off increase in breast tissue age, but decreases its 

subsequent rate of increase. This study also demonstrated a good fit to the Moolgavkar et 

al. (8) data. Rosner and Colditz then adapted and extended the model developed by Pike 

et al. (9), including changes to further improve the fit and accommodate multiple births, 

and applied the adapted model to data from the NHS cohort (7,10,11). The fit of these 

models to epidemiological data provide support for the theory that pregnancy alters the 

number of cells that are at risk for accumulating changes leading to breast cancer. 

However, they do not identify the molecular mechanisms responsible, nor do they 

accommodate the effects of a cellular hierarchy of stem and progenitor cells.     

 Recently, single cell technology has made it possible to collect quantitative data on 

changes in individual mammary sub-populations, presenting the possibility to quantitatively 

assess the molecular-level changes, as well as the epidemiological incidence curves, 

associated with pregnancy. Studies in mice and humans provide evidence that p27+ 

mammary epithelial cells with progenitor features decrease in number with pregnancy, and 

are present in high numbers in BRCA1 and BRCA2 germline mutation carriers (12,13). 

Evidence was presented that a subset of p27+ cells with progenitor features are hormone-

responsive quiescent luminal progenitors with proliferative potential, and that their variation 

could relate to breast cancer risk (12). Here, we use a simple mathematical model to test 

whether, given a role for p27+ progenitor cells as proliferative progenitors which can 

accumulate changes leading to breast cancer, the observed reduction in the populations of 

p27+ progenitor cells with pregnancy is sufficient to explain the protective effect of 

pregnancy.   
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MATERIALS AND METHODS  
 
We aimed to test the hypothesis that a decreasing cell number and proliferative capacity of 

luminal progenitor cells after pregnancy can result in a protective effect against breast 

cancer and that the effect decreases with increasing age of pregnancy. To this end, we 

designed a mathematical model of the dynamics of proliferating cells in the breast tissue 

that can accumulate the changes leading to cancer initiation. We considered two types of 

cells: a self-renewing population of stem cells, and a population of proliferating luminal 

progenitor cells that result from differentiation of these stem cells and respond to hormonal 

stimuli. We first tested whether we could identify a biologically plausible parameter setting 

in our model under which the variation in progenitor cell numbers results in a risk decrease 

that fits the quantitative risk decreases observed with pregnancy. We then tested the 

robustness of the fit of our model in the surrounding parameter space. 

 We first studied the dynamics of stem cells in the breast ductal system. Given the 

population structure inherent to breast ducts, we considered the stem cells in each duct to 

act independently. As such, we investigated the dynamics of a single duct within the 

breast since the total probability of cancer initiation is given by the probability per niche 

times the number of niches; thus, the relative likelihood of cancer initiation is not altered by 

considering only one niche. The overall number of stem cells in the breast is estimated to 

be on the order of 5 to 10 cells per duct (14,15), and we denoted this number by N, 

although there is some uncertainty in these estimates. We defined a fundamental time unit 

of our system to be dictated by the division time of stem cells, tcycle, which varies during 

pregnancy. In in vivo experiments, the mean cell cycle length of benign breast cancer cells 

was approximately 162 hours per cell (16). We assumed that even pre-cancerous cells 

divide faster than stem cells; thus, using tcycle = 162 hours as the average pre-menopausal 

stem cell cycle length when not pregnant may be an overestimation of the number of stem 

cell divisions that occur in the normal breast, and we verified that our results were 
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unaffected at higher stem cell cell cycle lengths. Further, previous data by our lab (12) and 

several others (17-22) suggests that the percentage of cells in normal breast that stain 

positive for Ki67 are approximately 3% and 12% in the follicular and luteal phases of the 

menstrual cycle, respectively. Assuming that the duration of these two menstrual cycle 

phases is roughly the same, at two weeks per cycle, leads to an average Ki67 value of 

7.5%. Considering that Ki67 is detectable for 24 hours during the active phases of the cell 

cycle (23,24), this translates to an estimate of 320 hours (24 / 0.075) for the average cell 

cycle length, which is also within the range tested (162 hours to 324 hours). Other studies 

have shown a broadly consistent range of Ki67 / KiS5 values (20) or lower values 

consistent with still longer cell cycle times (18,19).    

Experimental data suggests that proliferation decreases 4-5 fold after menopause, 

irrespective of parity (12,25). To take this effect into account, we assumed that the cell 

cycle length increases by a factor of αmenopause = 4 after menopause. In our model, a single 

stem cell in each duct is randomly chosen to divide during each time step, proportional to 

the fitness of the cell, following a stochastic process known as the Moran model (26). 

According to this model, the divided cell is replaced by one of the daughter cells of the 

division, while the other daughter replaces another stem cell that was randomly selected 

from the population to die. The use of this model ensures preservation of homeostasis in 

the normal breast epithelial cell population. Since the specific dynamics of stem cells in the 

breast are not known, we chose the Moran model as it has been used to model stem cell 

populations in other tissues (27-29). For each cell division, we allowed for a single 

mutation to arise in one of the two daughter cells of the division with a certain probability. 

 In the mature breast, stem cells divide primarily to maintain cellular integrity. 

However, differentiating events do occur, although rarely (30-32). In our model, with 

probability p, we allowed the cell division in the current time step to be asymmetric, 

producing one daughter stem cell to maintain the stem cell population and one progenitor 
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daughter to arise. Since the exact rate of differentiation is unknown, we tested p = 10–1 to 

10–3. With the remaining 1 – p probability, the stem cell division is symmetric and follows 

the usual Moran division dynamics. In each time step thereafter, all cells resulting from the 

progenitor daughter divide and differentiate further until a total of z cell divisions are 

accumulated. The number of luminal epithelial progenitors in humans is unknown. As a 

result, we set z = 10 to fit data from mouse mammary fat pad transplantation experiments 

(33), and tested a wide range of alternate values for this parameter. After zpre divisions, we 

considered the cells differentiated and at this point, they are no longer considered in our 

mathematical model. Thus, in the wild-type system, there are N stem cells per duct and 

2z+1 − 1 progenitor cells per differentiation cascade. Since the dynamics of progenitor cells 

in the human breast are not known, we have adopted the assumption that progenitor cells 

undergo a limited number of divisions, similar to what has been observed for transit-

amplifying cells in the colon and other tissues. Fig. 2A describes the temporal dynamics of 

the system. 

During each cell division, genetic alterations contributing to cancer initiation may 

arise with a small probability. We considered a number nmut of mutations that, when 

combined, result in a single cell leading to cancer initiation. These mutations could each 

be any of the many mutations commonly found in breast cancer with initiation potential. As 

a simplifying assumption we considered a mutation rate on the order of 10-5 mutations per 

oncogenic mutation per cell division to limit the required number of simulations for 

detection to a reasonable number. 

The baseline mutation rate is roughly 5 x 10-9 per base pair per cell division (34,35). 

It is estimated that there are roughly 34,000 possible driver base pairs in the genome (36), 

thus it may be reasonable to assume that there are on the order of 10,000 possible ways 

to achieve each oncogenic mutation, which would lead to the above rates on the order of 

10-5 mutations per oncogenic mutation. However, it is important to note that not all driver 
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loci are relevant in breast cancer, and in particular the exact combinations of driver loci 

that could cause breast cancer are unknown, thus the 10-5 figure can only be a broad 

approximation. For this reason, we also tested our model at other mutation rates, and 

found that our main conclusions were also consistent at lower mutation rates. 

 We studied the following mutational effects for each mutation: under the default 

assumptions in stem cells, mutant cells had a relative fitness of fmut = 1.1, i.e. a fitness 

increase of 10%, resulting in an increased probability of dividing, while mutant progenitor 

cells divided an additional zmut = 1 times (Fig. 2B). Since the number of stem cells per duct 

is small, the fitness of mutant alleles has little effect on cancer initiation probabilities, as 

the fixation time of mutations is much smaller than the mutation accumulation time (27); 

we also tested our results at other values of fmut and zmut. Additionally, progenitor cells 

must accumulate some propensity towards self-renewal: we defined a parameter γ = γbase 

– (i * γbase) / (2 * z) as the probability of a progenitor cell at differentiation level 0 ≤ i ≤ 

z + n * zmut to acquire self-renewal. We chose this functional form to capture a decrease in 

the probability of attaining self-renewal as progenitor cells differentiate, and explored 

different values of γbase within this framework. We defined cancer initiation as a single cell 

that accumulated all required mutations and either retained or acquired the ability to self-

renew, either through being a stem cell or through acquiring a genetic or epigenetic self-

renewal event.  

 As we were interested in the effects of the timing of pregnancy, we considered the 

phenotypic alterations that occur in the breast during pregnancy and as a result of 

pregnancy. For the purposes of this simulation, we considered the 280 day period of time 

for the pregnancy itself as the time period during which parameters are altered by 

pregnancy. Evidence suggests that pregnancy results in the differentiation of mammary 

epithelial cells (37,38) as well as their increased proliferation (19,39). To model these 

effects, we allowed further differentiation of progenitor cells during pregnancy by an 
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additional zpreg differentiation levels, and a decrease in the cell cycle length of stem cells 

(Figure 2C). There is a 4.5 to 8.5-fold increase in the number of Ki67+ cells during 

pregnancy (19,39). Thus, we allowed a 4-fold to 8-fold increase in progenitor cells during 

pregnancy, corresponding to zpreg = 2 to 3. The remaining ~1.1 fold increase in 

proliferation was modeled as a decrease in stem cell cycle length, specifically a change by 

a factor of αpreg = (1/1.1). Importantly, we considered that pregnancy reduces the 

progenitor population in our model. We simulated this change in population structure by 

decreasing the rate of asymmetric division of stem cells giving rise to progenitor cells by a 

factor of ppost,init after an initial pregnancy. Our experiments suggested a 2-3 fold drop in 

p27+ expressing progenitor cells, which suggests a value of ppost,init = 0.5 (12).  

 We also modeled the effects of later pregnancies. In runs of the model with more 

than one birth, we considered the effect of the period of subsequent pregnancies to be the 

same as for the first birth. That is, the number of levels in the differentiation hierarchy of 

progenitor cells increases by zpreg levels, and the cell cycle length of stem cells decreases 

to tcycle,preg = 147 hours. Regarding the lasting effects of pregnancy on the structure of the 

breast epithelium, we allowed for the possibility of a smaller decrease in the probability of 

asymmetric stem cell division after later births compared to the decrease after the first 

birth, and defined a separate parameter, ppost,subs, for the decrease in asymmetric divisions 

after subsequent births.   

 Our simulation spanned from menarche to death or initiation of cancer within the 

duct. Our total simulation time was calculated from the average woman’s life expectancy in 

the US, which was 81.2 years in 2014 (40), and the average age of menarche, which 

ranged between 12.2 – 12.8 years of age for different ethnic groups in 2007 (41). We used 

the mean age of menarche between the groups, which was 12.5 years and thus resulted 

in a total of 68.7 years of simulation time.  
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 The parameters in Table S1 were set at fixed values from the literature. The 

parameters in Table S2 were set at values that fit to epidemiological data, as described 

below. We tested the robustness of the fit by varying each of these parameters 

individually. 

 

RESULTS 
 
We first investigated whether our model could quantitatively match the epidemiological 

data available on the protective effect of early pregnancy on breast cancer risk, within the 

space of biologically plausible parameters. From the literature, a woman with one birth at 

age 20 has a cumulative relative risk of ER+/PR+ breast cancer of 0.88 (C.I = 0.81 to 0.96) 

between the ages of 30 and 70, compared to a nulliparous woman, while a woman with 

four births at ages 20, 23, 26 and 29 has a cumulative relative risk of 0.71 (C.I. = 0.60 to 

0.84) over the same age range (7). To match these rates, we varied the probability that a 

progenitor cell acquires the ability to self-renew, γbase, and the reduction of the size of the 

p27+ progenitor cell population after the second pregnancy and later pregnancies, 

ppost,subs. We found that with γ = 3.2x10-3 and ppost,subs = ppost,init = 0.5, the modeled relative 

risk were within the confidence intervals reported in the literature for these two data points, 

at 0.86 and 0.73, respectively (Fig. 3A). Due to binning of modeled incidence into annual 

groups we considered risk during the 40-year period from age 30.5 to 70.5. Note that there 

are likely other parameter settings that could fit the data, in addition to those that we used; 

the ones presented here serve as an example of how our model can explain the data, 

rather than as an exact parameter estimation approach.  

 Using the fitted model, we first tested the effects of varying model parameters in the 

nulliparous simulations to test the behavior of the model. As expected, we found that the 

rate of cancer initiation per duct was increased by increasing the number of stem and 

progenitor cells per duct, the rate of asymmetric stem cell division, the mutation rate, the 
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probability of progenitor cells attaining self-renewal capacity, and the fitness advantage of 

mutated progenitor cells compared to wild type cells. By contrast, the rate of cancer 

initiation per duct was increased by decreasing the number of mutations required for 

cancer initiation. Also, as expected, changes in the proliferative capacity of progenitor cells 

during pregnancy, and the effects of subsequent pregnancies, have no effect in the 

nulliparous state (Fig. 3B, C).  

 We then tested the robustness of the fit of our model to the result that early 

pregnancy protects against breast cancer in the surrounding parameter space. We 

compared the relative likelihood of cancer initiation with pregnancy occurring at five year 

intervals during a woman’s childbearing years as compared to the nulliparous simulations. 

We tested for the effects of pregnancy occurring from the age of menarche until 

immediately before menopause at the average age of 51.3 in 1998 (42). We tested the 

effects of varying the simulation parameters independently for each pregnancy age tpreg. 

All fixed value parameters are listed in Table S1, while Table S2 lists the values of all other 

parameters. We found that the probability of cancer initiation in a duct increases as the 

age of first pregnancy increases within the range of all simulated parameters (Fig. 4A). 

Additionally, the average probability of cancer initiation across birth ages was lower than 

the nulliparous risk for all parameter settings. Both of these effects were less marked 

under parameter settings in which most of the cancers resulted from the stem cells under 

the nulliparous scenario (p =  < 4x10-4 Spearman’s rank correlation coefficient, in both 

cases). Indeed, the z = 6 setting had the highest proportion of stem cell cancers under the 

nulliparous setting.   

We also investigated the effects of multiple births on cancer risk. We tested model 

runs with one, two, three, and four total births. For each of these cases, we investigated 

varying the age at first birth in five year intervals as above from the age of menarche to the 

age of menopause, assuming that all subsequent births were distributed evenly across the 
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intervening years between the first birth and the age of menopause. For all numbers of 

total births, risk increased with increasing age at first birth. Additionally, as expected, 

scenarios with a larger total number of births were at a lower risk compared to scenarios 

with fewer births (Fig. 4B). 

We also tested for robustness of the quantitative fit to the two data points 

considered. As expected, we found that for some parameters the decrease in risk in the 

two modeled scenarios remained within the bounds of the confidence intervals for all 

settings tested, whereas for other parameters, there were some settings where the risk 

decrease did not match the literature values (Supplementary Fig. S1). In particular the 

quantitative fit to both data points was robust to changes in the cell cycle time of stem 

cells, the number of stem cells per duct, the fitness effects of mutations in stem cells, the 

number of additional progenitor cell divisions during pregnancy and the reduction in 

numbers of progenitors with subsequent births, within the range of values tested. The 

quantitative fit was also robust to decrease in the mutation rate in the range of values 

tested. Thus, our analysis demonstrates that the hypothesis can explain these two 

observed quantitative decreases in breast cancer risk, under some, but not all, plausible 

biological settings. Our hypothesis is thus one possible explanation for the observed 

protective effect of parity. However, we cannot rule out other possible explanations for the 

relatively limited amount of available data on the quantitative risk reduction.  

 Another interesting result is the specificity of the effect of the decrease in the 

progenitor pool with pregnancy to decrease the risk of cancers initiating from the 

progenitor compartment. We noted that the risk of cancers initiating from the progenitor 

cell compartment increased with age at first birth, while the risk of cancers where the final 

mutation occurs in the stem cell compartment showed a (smaller) decrease (p < 4x10-5 in 

both cases under linear regression). Similarly, under the default parameter settings, 

whereas the risk of cancers initiated from the progenitor compartment was lower under all 
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parous scenarios compared to the nulliparous scenarios, the risk of cancers initiated from 

the stem compartment was slightly higher under all parous scenarios.  

This result raises one possible explanation for the specificity of the protective effect 

of early pregnancy to ER+/PR+ cancer (7). Mounting experimental evidence suggests that 

the typical cell of origin of breast carcinomas is a stem or progenitor cell (43). The 

specificity of the protective effects in our model to a single cellular compartment poses the 

question of whether other breast cancer molecular subtypes may have a different cell of 

origin as a possible explanation for the observed specificity of protective effects. Relatedly 

it is also possible that changes during carcinogenesis render other breast cancer subtypes 

insensitive to hormone-driven growth or that some of the molecular parameters considered 

differ between breast cancer subtypes. By the same token, our model is agnostic on 

whether the pregnancy should protect against other histological breast cancer types, such 

as lobular cancers. Whether or not protective effects would be expected for these 

subtypes depend on the extent to which the etiology of these cancer types, in terms of cell 

of origin and other molecular parameters, corresponds to ER+ cancers.  

As a further test of our framework, we investigated whether our model reproduced 

the known effect that breast cancer risk is increased for a short period immediately 

following pregnancy (6). For these purposes we investigated an extended model including 

a variable delay between initiation of cancer within the duct and clinical presentation. We 

investigated two scenarios, first birth at age 20, and first birth at age 40, and calculated the 

relative risk compared to nulliparous women of matched age in the years following 

pregnancy for varying average waiting times to clinical presentation between 0 and 5 

years. We found that with an average waiting time of one year, relative risk in both parous 

scenarios was greater than one during the two years following the pregnancy (Fig. S2) 

 
DISCUSSION 
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Here we investigated whether variation in the size of the progenitor cell population is 

sufficient to explain the protective effects of pregnancy. We used a simple mathematical 

model of the steps leading to cancer initiation, which included both stem cells and 

progenitor cells. We found that within the range of biologically plausible parameters, our 

model matches the observed decrease in ER+/PR+ cancer risk for a woman with a birth at 

age 20 and a woman with four births in her 20’s compared to a nulliparous woman. Using 

these parameter settings, we found that the risk of cancer in our model decreased with 

increasing age of first birth in scenarios with one birth. Moreover, the risk of cancer was 

lower in all scenarios with one birth compared to the nulliparous case. This behavior was 

robust to variation in key model parameters. The ability of our model to robustly recreate 

the effect on cancer risk when varying the progenitor population size with pregnancy is 

striking given the modeled assumption that progenitor cells terminally differentiate after a 

finite number of divisions, so that mutations arising in progenitor cells are liable to leave 

the population without any functional impact. Taken together, these results support the 

hypothesis that a subset of p27+ cells represents quiescent hormone-responsive luminal 

progenitor cells with proliferative potential.  

Our mathematical modeling approach for breast cancer can be useful in 

understanding the contribution of unavoidable bad luck to cancer risk. We have presented 

evidence that, in the setting of breast cancer, the size of a sub-population of progenitor 

cells may vary safely over the course of a life to alter breast cancer risk, independent of 

the probability of mutations. While it is possible that the mechanisms explored here are 

specific to the breast cancer setting, our results highlight the possibility that extrinsic 

factors can interact with molecular parameters to affect cancer risk in ways that are not yet 

fully mapped out. These results therefore further motivate the use of complementary 

approaches to assess the contribution of bad luck to cancer risk that do not rely on strong 

assumptions about the effects of extrinsic factors, which may still be subject to revision. 
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The modeling approach developed here is one such possible complementary approach. 

Therefore, the main implications of our study are support for a mechanism in the breast 

cancer setting, with potential implications for other cancers with an important role for 

hormone-driven growth, including endometrial and ovarian cancers. And, in addition, the 

current approach may be usefully applied in a range of cancer types. 

 In conclusion, our results demonstrate that variation in the size of the pool of 

progenitor cells with proliferative potential is capable of explaining the protective effect of 

early pregnancy against breast cancer. We obtained good agreement between our simple 

model’s predictions and specific epidemiological data points within the range of plausible 

parameters. Intense recent debate, prompted by the work of Tomasetti and Vogelstein (1), 

has indicated the limits of regression techniques for determining the ultimate contribution 

of bad luck to cancer incidence. Continuing improvements in our mechanistic 

understanding of the etiology of different cancers can help elucidate the contribution of 

bad luck to cancer risk and the limits of cancer prevention strategies. Given the complexity 

of the molecular setting in which cancer develops, mathematical models can be a useful 

tool in developing such a mechanistic understanding. Our work has developed this 

approach for the case of breast cancer to provide evidence for a possible mechanism for 

the protective effect of early pregnancy against the disease. 
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FIGURE LEGENDS 
 
Figure 1. Multiple factors can affect cancer risk in a complex setting. A, An analysis 

by Tomassetti and Vogelstein demonstrated a close correlation between the log of lifetime 

cancer incidence in a tissue and the cumulative number of stem cell divisions in the same 

tissue. Plot shown is a schematic using simulated data. B, Variation in multiple molecular 

factors may affect cancer risk when they change from the homeostatic state (top left), 

including the number of progenitor cells (top right), the mutation rate (bottom left), and 

the fitness effect conferred by mutations (bottom right).  

 

Figure 2. Schematic representation of the mathematical model. A, Initially, there are N 

wild-type stem cells (blue), which give rise to a differentiation cascade of 2z+1 − 1 wild-type 

luminal progenitor cells (purple). At each time step, all progenitor cells as well as one 

randomly selected stem cell divide. With probability 1 - p, the stem cell divides 

symmetrically and one daughter cell replaces another randomly chosen stem cell. With 

probability p, the stem cell divides asymmetrically and one daughter cell remains a stem 

cell while the other daughter cell becomes committed to the progenitor population (light 

pink). Regardless of the dividing stem cell’s fate, all existing progenitor cells divide 

symmetrically for a total of z times to give rise to successively more differentiated cells 

(progressively darker shades of purple) before becoming terminally differentiated. In the 

figure, the darkening purple gradations refer to successively more differentiated cells and 

serve to clarify a single time step of the stochastic process. B, The acquisition of mutations 

leading to breast cancer initiation all result in an increased relative fitness (i.e. growth rate) 

fmut in stem cells (red) as compared to wild-type cells (blue) and an additional number of 

divisions zmut progenitor cells can undergo before terminally differentiating. C, During 

pregnancy, progenitor cells experience an expansion in proliferative capacity through an 
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additional number of divisions zpreg in order to form terminally differentiated milk-producing 

cells (dotted triangle) and a decrease in cell cycle length.  

 

Figure 3. Model fitting and effect of parameter variation on cancer initiation in 

nulliparous simulations. A, Evolution of initiation-free ducts with age under the default 

parameter settings for three birth scenarios (nulliparous, a single birth at age 20, and four 

births at ages 20, 23, 26 and 29). B, Effects of varying individual parameters of the model 

on nulliparous cancer initiation. C, Evolution of intiation-free ducts with age under the 

nulliparous scenario for different settings of the probability of asymmetric division (top), the 

mutation rate (middle), and the number of mutations required for cancer (bottom). Default 

values were N = 8, z = 10, p = 10-2, μ = 2 x 10-6, fmut = 1.1, zmut = 1, nmut = 2, zpreg = 2, 

 

Figure 4. Relative probability of cancer initiation per duct as compared to 

nulliparous simulations. A), Variation in cancer initiation relative to nulliparous for 

different ages at first birth under default parameter settings (green lines), and when 

varying individual model parameters upwards (red lines) or downwards (blue lines). Left to 

right from top left, effects of varying stem cell cell cyle time, number of stem cells, number 

of progenitors, probabilities of stem cell differentiation, mutation rate, probability of 

progenitor cells attaining ability to self-renew, fitness effects of mutations, number of 

mutations required for cancer initiation, and additional pregnancy divisions, are shown. B), 

Variation in cancer initiation relative to nulliparous for different ages at first birth and 

different numbers of total births  
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