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Abstract: We study jump instability phenomena due to external disturbances to an axially loaded beam resting on a nonlinear 

foundation that provides both lateral and axial resistance. The lateral resistance is of destiffening-restiffening type known to 

lead to complex localisation phenomena governed by a Maxwell critical load that marks a phase transition to a periodic 

buckling pattern. For the benefit of having a concrete and realistic example we consider the case of a partially embedded 

trenched subsea pipeline under thermal loading but our results hold qualitatively for a wide class of problems with non-

monotonic lateral resistance. In the absence of axial resistance the pipeline is effectively under a dead compressive load and 

experiences shock-sensitivity for loads immediately past the Maxwell load, i.e., extreme sensitivity to perturbations as may 

for instance be caused by irregular fluid flow inside the pipe or landslides. Nonzero axial resistance leads to a coupling of 

axial and lateral deformation under thermal loading. We define a ‘Maxwell temperature’ beyond which the straight pipeline 

may snap into a localised buckling mode. Under increasing axial resistance this Maxwell temperature is pushed to higher 

(safer) values. Shock sensitivity gradually diminishes and becomes less chaotic: jumps become more predictable. We compute 

minimum energy barriers for escape from pre-buckled to post-buckled states, which, depending on the magnitude of the axial 

resistance, may be induced by either symmetric, or anti-symmetric or non-symmetric perturbations. 
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1. Introduction 

Beams and plates resting on a nonlinear foundation are known to buckle in a localised manner under (uni-)axial loading 

(Hunt et al., 1989; Kerr, 1978; Pocivavsek et al., 2008). If the foundation force is non-monotonic (of destiffening-restiffening 

characteristic) then typically at some point under increase of the load the localised buckle stops growing in amplitude and 

instead starts to spread, thereby creating a periodic pattern that gradually takes up most of the length of the structure (Hunt et 

al., 2000; Peletier, 2001). The phenomenon is governed by a Maxwell load that marks a ‘phase transition’ from the pre-buckled 

straight state to the periodic state. Similar behaviour of localisation followed by spreading is found in axially loaded cylinders 

buckling into a diamond-like pattern (Groh and Pirrera, 2019; Hunt et al., 1999), coiled twisted rods constrained to deform 

on a cylinder (van der Heijden et al., 2002), wrinkling of a thin film on a substrate (Jin et al., 2015) and folding of geological 

layers (Hobbs and Ord, 2012). 

In most analytical work on these localisation phenomena only lateral resistance (elastic or frictional) is taken into account 

and the structure is free to slide in the axial direction. This frictionless sliding may be an acceptable approximation for the 

initial buckling pattern within a small-deflection theory as the amount of axial contraction goes as the deflection squared and 

is therefore small. However, as the buckling pattern spreads the end shortening can become large even for small deflections 

by the cumulative effect. Here we consider the case with axial resistance included using the subsea pipeline as a concrete and 

meaningful example. 

Trenched subsea pipelines indeed offer an ideal example to explore the above complicated localisation phenomena in a 

realistic setting. In long pipelines localised buckling is the natural mode of buckling under the alignment conditions imposed 

by the longer structure at the ends of the buckle, and with the pipeline free to find its own lateral mobilisation length. In 

studies of pipeline buckling the effect of axial resistance has traditionally been included (Hobbs, 1984). Thermal effects as a 



 

2 

 

result of axial friction lead to a coupling between axial and lateral deformation and we will explore its consequences for 

localised buckling. 

Lateral foundation forces considered in the literature are often somewhat artificial, especially if they are treated as purely 

elastic. The pipeline problem offers a natural case for a realistic non-monotonic lateral resistance. Embedment of the pipeline, 

due to its own weight, produces a softening behaviour after breakout, while the trench walls give rise to restiffening behaviour 

at larger deflections. On the downside, due to the frictional nature of the resistance the proposed foundation characteristic is 

only valid in situations in which the displacements grow monotonically. We show that, nevertheless, valuable results can be 

obtained, by focussing on stability of the trivial state under finite perturbations (shocks). 

The increasing global demand for oil and gas pushes the exploitation of hydrocarbon sources into ever deeper water. Long 

subsea pipelines are consequently becoming increasingly important for the transport of the hydrocarbon products from deep 

sea to the shore. To prevent solidification of the wax fraction in these products, subsea pipelines are required to operate under 

high-temperature and high-pressure conditions. This may lead to excessive axial compressive forces and localised lateral 

buckling is well-known to occur in exposed subsea pipelines (DNV-RP-F110, 2018). During their whole operational life 

pipelines undergo regular start-up and shut-down cycles. The resulting thermal cycles induce repeated localised buckling, 

which causes soil berms to accumulate in front of the pipeline’s motion. This leads to increased soil resistance (Wang et al., 

2017) and after several thermal cycles the pipeline appears to buckle in a trench. Another case is that the pipeline is laid in an 

open trench without backfill for mitigating hydrodynamic loads (DNV-RP-F109, 2011). Here we investigate the effect of the 

trench wall on lateral thermal pipeline buckling. 

Much of the analytical research on lateral, as well as upheaval, subsea pipeline buckling in the literature is based on Hobbs’s 

work (Hobbs, 1984). In this work the pipeline is modelled as a beam-column and the lateral resistance force is assumed to be 

constant, independent of the deflection. Based on this approach, Taylor and co-workers derive analytical solutions for ideal 

submarine pipelines by considering a deformation-dependent (nonlinear) resistance model (Taylor and Gan, 1986a) as well 

as analytical solutions for lateral and upheaval buckling of pipelines with initial imperfections (Taylor and Gan, 1986b). In 

(Hong et al., 2015) lateral buckling modes of pipelines with imperfection are compared against finite-element solutions. A 

nonlinear soil resistance model, allowing for partial pipeline embedment, is used in a lateral buckling analysis in (Zhang and 

Guedes Soares, 2019). 

In all the above pipeline research the buckling mode is taken to be given by a solution of the linearised equations. The 

buckle profiles consist therefore of a (small) number of essentially sinusoidal lobes. It is good to realise though that localised 

buckling, with exponentially decaying deflection, is an intrinsic property of perfect elastic structures resting on a nonlinear 

foundation. This localised buckling is quite different from (Euler) column buckling. It is described by a Hamiltonian-Hopf 

bifurcation rather than the pitchfork bifurcation of column buckling. An important consequence is that unlike the critical load 

for column buckling, which depends strongly (quadratically) on the length of the structure, the critical load for localised 

buckling does not depend on this length (although the structure of course has to be long enough to support a localised buckle). 

The critical load for localised buckling is in fact lower than that for Euler buckling, although even this load is generally not 

reached as localised deflection is initiated by imperfections or perturbations. 

Genuine localised buckling is considered in (Wang and van der Heijden, 2017) where we compute bifurcation diagrams of 

localised solutions (homoclinic orbits) for a partially embedded pipeline on an even seabed. Localised solutions are also 

considered in (Zhu et al., 2015) although the quoted boundary conditions do not maintain localisation as parameters of the 

system are varied. In (Zeng and Duan, 2014) a nonlinear and non-monotonic lateral soil resistance is employed to model 

partial embedment and homoclinic orbits are explicitly computed. Although the authors are not motivated by trenched 

pipelines, and do not consider thermal buckling, they find some of the homoclinic phenomena that we report on in this paper. 

However, they give limited physical interpretation of their results and do not investigate the stability implications. 

Here we study localisation phenomena for a trenched pipeline with both lateral and axial resistance included. In the absence 

of axial resistance the pipeline is effectively under a dead compressive load. We identify a critical Maxwell point marking a 

‘phase transition’ to a periodic buckling pattern with the pipeline bouncing between the trench walls. Associated with this 

critical point we find load-displacement curves with high sensitivity of solutions to small perturbations, giving rise to what 
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has been called shock sensitivity (Thompson and van der Heijden, 2014). So, unlike the usual practice of reading load-

displacement bifurcation diagrams, with or without imperfections included, as quasi-static processes that might encounter 

linear instability under infinitesimal perturbations, we are here interested in nonlinear instability phenomena with the pipeline 

being forced, by external finite disturbances, out of a linearly stable state and into another stable state. In particular, we are 

interested in the energy barrier, represented by an intermediate unstable ‘mountain pass’ state, to be overcome for such a 

transition from the straight pre-buckled state to a localised state, and its dependence on the axial resistance. 

The organisation of the paper is as follows. In Section 2 we give details of the thermal, elastic and soil modelling of our 

trenched pipeline and identify the central Hamiltonian-Hopf bifurcation with associated homoclinic orbits describing localised 

buckling modes. In Section 3 we compute these homoclinic orbits and their bifurcation diagrams (load-displacement curves). 

By considering energy, in Section 4 we then discuss pipeline stability implications of these diagrams under various types of 

loading, dead, rigid and thermal. Thermal loading is found to interpolate between dead and rigid loading as the axial resistance 

increases from zero. In the process, shock sensitivity gradually diminishes. We quantify the shock sensitivity by computing 

energy barriers as a function of the axial soil resistance. Section 5 briefly discusses the dependence of our results on the 

breakout coefficient, which controls the non-monotonicity of the lateral resistance, and Section 6 closes the study with a 

summary and discussion. 

2. Problem modelling 

2.1 Thermal pipeline buckling 

We imagine a pipeline laid in a trench and subjected to a total temperature difference 𝑇0 between the fluid flowing inside 

the pipe and the environment. If the ends of the pipe are unrestrained then under an increase of the temperature difference the 

pipe will expand axially. This expansion will be resisted by friction between pipe and seabed (and surrounding soil). If the 

soil resistance for axial movement is constant, say 𝑓𝐴, then a compressive force will build up in the pipe, which will increase 

linearly with the distance from the freely-expanding end. At some point this compressive force is sufficient to halt further 

expansion of the central segment of the pipe. Thus an immobilised segment spreads from the centre of the pipe. The end points 

of this segment are called virtual anchor points. Between these points the compressive force in the pipe is equal to the force 

in a pipe with fixed ends under the same thermal load. Within the range of linear elastic response this compressive force can 

be written as 

𝑃0 = 𝐸𝐴𝛼𝑇0                                       (1) 

where 𝐸  is the elastic modulus, 𝐴 is the cross-sectional area of the pipeline and 𝛼  is the coefficient of linear thermal 

expansion. Immobilisation will only occur if this compressive force is attained, which in the present scenario will only be the 

case if the length of the pipe is larger than 2𝑙𝑖, where 

𝑙𝑖 = 𝐸𝐴𝛼𝑇0/𝑓𝐴                                     (2) 

 

Fig. 1 Configuration and load distribution of localised lateral buckling. 

 

Fig. 2 Axial compressive force distribution of localised lateral buckling. 
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Under increasing temperature difference, the compressive force 𝑃0 increases and at some point buckling may be initiated. 

For a sufficiently long pipe this will be localised buckling, with exponentially decaying deflection. For a pipe without 

imperfections we expect this buckling to occur in the centre of the pipe, in a region of length 2𝐿 (see Fig. 2). Here we shall 

assume this buckling to be lateral, i.e., horizontal, against the resistance of the surrounding soil, rather than vertical, against 

gravity. For normal coefficients of friction, the lateral mode occurs at a lower axial load than the vertical mode (Hobbs, 1984). 

In the buckling process a central segment of the pipe will mobilise. The same scenario as described above then applies, but 

now in reverse. Thus, as pipe feeds into the buckle the compressive force in the pipe drops, pulling more pipe into the buckle. 

This feed-in will be halted at two more virtual anchor points, at compressive force 𝑃0, bounding the mobilised region. Fig. 2 

shows the feed-in region, of length 2𝑙𝑠 (> 2𝐿), within the larger immobilised pipe segment together with the localised buckle 

and the typical compressive force variation. In practice multiple (independent) localised buckles may form in the immobilised 

pipe segment, especially if it is long. In the following we present a theory for a single localised buckle.  

2.2 Governing pipeline equations 

We model the pipeline as an Euler-Bernoulli beam subjected to an axial compressive force. The lateral buckling shape of 

the pipeline is shown in Fig. 1. Note that by symmetry we need only consider half the length of the mobilised pipe (0 ≤ 𝑥 ≤

𝑙𝑠). For the lateral and axial displacements, 𝑤 and 𝑢, we have the coupled equations (Kerr, 1978) 

{

d2

d𝑥2
(𝐸𝐼

d2𝑤

d𝑥2
) −

d

d𝑥
[𝐸𝐴 (

d𝑢

d𝑥
+
1

2
(
d𝑤

d𝑥
)
2
− 𝛼𝑇0)

d𝑤

d𝑥
] + 𝐹(𝑤) = 0

d

d𝑥
[𝐸𝐴 (

d𝑢

d𝑥
+
1

2
(
d𝑤

d𝑥
)
2
− 𝛼𝑇0)] + 𝑓𝐴 = 0                 

          (3) 

up to leading nonlinear terms due to the nonlinear axial elastic strain 𝜀 =
d𝑢

d𝑥
+
1

2
(
d𝑤

d𝑥
)
2
 as a result of lateral deflection. Here 

𝐸𝐼 is the bending stiffness with 𝐼 the second moment of area of the pipe’s cross-section and 𝐹 is the nonlinear lateral soil 

resistance provided by the seabed and detailed in the next section. For the axial soil resistance (a force per unit length) we can 

write 

𝑓𝐴 = 𝜇𝐴𝑊pipe                                                (4) 

where 𝜇𝐴 is the axial friction coefficient between pipeline and seabed and 𝑊pipe is the submerged weight per unit length 

of the pipeline. We will take both elastic stiffnesses 𝐸𝐼 and 𝐸𝐴 to be constant. 

In terms of the axial compressive force 𝑃̅ = −𝐸𝐴(𝜀 − 𝛼𝑇0) we can solve the second equation in Eq. (3) as 

𝑃̅(𝑥) = 𝑃 + 𝑓𝐴𝑥                                              (5) 

where 𝑃 is the compression at the centre of the pipe. Since at the anchor points the compression 𝑃̅(𝑥) is 𝑃0, we have 

𝑃0 − 𝑃 = 𝑓𝐴𝑙𝑠                                                (6) 

The linear profile of the compressive force 𝑃̅(𝑥) is sketched in Fig. 2. 

By using Eq. (5) in the first equation of Eq. (3) we obtain a decoupled linear equation for the lateral deflection 𝑤. We 

simplify this equation further by making the assumption that the axial compressive force is constant in the buckling region 

0 ≤ 𝑥 ≤ 𝐿 and equal to the force at the centre of the pipe, i.e., 𝑃̅ = 𝑃. This amounts to neglecting the axial resistance 𝑓𝐴 in 

the lateral buckle. This is standard practice in the pipeline and rail track literature (Hobbs, 1984; Hong et al., 2015; Kerr, 1978; 

Taylor and Gan, 1986a). An error analysis in (Wang et al., 2018), where solutions for minimum (𝑃) and maximum (𝑃0) 

uniform compression in the buckled region are compared, shows that this assumption is acceptable. Further a posteriori 

justification is given in Section 4.3. For the lateral deflection we then have the constant-coefficient equation 

𝐸𝐼
d4𝑤

d𝑥4
+ 𝑃

d2𝑤

d𝑥2
+ 𝐹(𝑤) = 0           (0 ≤ 𝑥 ≤ 𝐿)              (7) 

Boundary conditions for Eq. (7), which must support localised solutions as shown in Fig. 1, will be discussed in detail in 

Section 2.4. 

However, we make the above assumption only to compute 𝑤. For the axial deformation we solve the full equation. Thus, 

in the buckling region we solve 



 

5 

 

𝐸𝐴(
d𝑢

d𝑥
+
1

2
(
d𝑤

d𝑥
)
2
− 𝛼𝑇0) = −𝑓𝐴𝑥 − 𝑃           (0 ≤ 𝑥 ≤ 𝐿)             (8) 

with boundary condition 𝑢(0) = 0, giving 

𝑢(𝑥) = −
𝑓𝐴

2𝐸𝐴
(𝑥 − 𝑙s)

2 +
𝑓𝐴𝑙𝑠

2

2𝐸𝐴
−
1

2
∫ (

d𝑤

d𝑥
)
2
d𝑥

𝑥

0
      (0 ≤ 𝑥 ≤ 𝐿)             (9) 

In the slip region (𝐿 ≤ 𝑥 ≤ 𝑙s) we solve the same equation for 𝑢 but since now 𝑤 = 0, this becomes 

𝐸𝐴(
d𝑢

d𝑥
− 𝛼𝑇0) = −𝑓𝐴𝑥 − 𝑃                     (𝐿 ≤ 𝑥 ≤ 𝑙s)            (10) 

Note that this satisfies the slip-length boundary condition 
d𝑢

d𝑥
(𝑙s) = 0 (Taylor and Gan, 1986b). A final integration subject 

to the boundary condition 𝑢(𝑙s) = 0 gives 

𝑢(𝑥) = −
𝑓𝐴

2𝐸𝐴
(𝑥 − 𝑙s)

2                         (𝐿 ≤ 𝑥 ≤ 𝑙s)           (11) 

Continuity of axial deformation at the end of the buckling region, 𝑥 = 𝐿 (or 𝑥 = 𝐿̃ for any 𝐿̃ > 𝐿), requires 

𝑓𝐴𝑙𝑠
2

2𝐸𝐴
=

1

2
∫ (

d𝑤

d𝑥
)
2
d𝑥

𝐿

0
                                                (12) 

This condition can be interpreted as a deformational compatibility condition 𝑢1 = 𝑢2 (Wang and van der Heijden, 2017). 

The left-hand side of Eq. (12) is the axial expansion 

𝑢1 = ∫
∆𝑃̅(𝑥)

𝐸𝐴
d𝑥

𝑙𝑠

0
                                                   (13) 

with ∆𝑃̅(𝑥) the drop in axial compressive force along the pipeline after buckling, given by 

∆𝑃̅(𝑥) = 𝑓𝐴(𝑙𝑠 − 𝑥)                                                 (14) 

The right-hand side of Eq. (12) is the geometric shortening 𝑢2 as a result of the lateral deflection. Eq. (12) simply states that, 

since there are virtual anchor points at distance 𝑙s from the centre of the pipe, the extra length of pipe in the buckle must 

come from axial expansion of the mobilised section of pipe. 

From Eq. (12) we obtain an expression for 𝑙𝑠:  

𝑙𝑠 = √
2𝐸𝐴𝑢2

𝑓𝐴
                                                       (15) 

Combining this with Eq. (1) and Eq. (6), we finally obtain a relationship between 𝑃 and 𝑇0: 

𝑇0 =
(𝑃+√2𝐸𝐴𝑢2𝑓𝐴)

𝐸𝐴𝛼
                                                  (16) 

For consistency we require 𝑙𝑠 to be larger than 𝐿 (see Fig. 2). Since there is no a priori guarantee that 𝑙𝑠 as computed 

from Eq. (15) satisfies this condition, we need to check any computed solutions for acceptability. 

2.3 Nonlinear lateral pipe-soil interaction 

For the pipe-soil interaction we construct a nonlinear model by combining a realistic model for the lateral resistance of a 

partially embedded pipeline on an even seabed with a stiffening characteristic for the trench walls. For the former we choose 

the model proposed by Chatterjee et al. (Chatterjee et al., 2012) on the basis of a detailed large-deformation finite-element 

analysis. This model simulates breakout resistance induced by the initial embedment as a result of partial penetration of the 

pipeline into the soil owing to its self-weight. Once breakout has occurred the lateral resistance drops and approaches a steady 

residual value. The model can be expressed by 

𝜇1 =
𝑤

|𝑤|
(𝜇brk (1 − ⅇ

−𝑎1(
|𝑤|

𝐷
)
𝑎2

) + (𝜇res − 𝜇brk) (1 − ⅇ
−𝑎3(

|𝑤|

𝐷
)
𝑎4

))          (17) 

Here 𝜇1  is the equivalent friction coefficient, 𝜇𝑏𝑟𝑘  is the breakout equivalent friction coefficient, 𝜇𝑟𝑒𝑠  is the residual 

equivalent friction coefficient and 𝐷  is the external diameter of the pipeline. The quantities 𝐹1 = 𝜇1𝑊pipe , 𝐹brk =
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𝜇brk𝑊pipe  and 𝐹res = 𝜇res𝑊pipe  are therefore, respectively, the lateral soil resistance, the breakout resistance and the 

residual resistance for a pipeline laid on an even seabed. 𝐹1 captures both a frictional component of resistance below the pipe 

and a passive component required to lift and deform the region of soil in front of the pipe (White and Cheuk, 2008). The value 

of the coefficient 𝑎3, which determines the distance required to mobilise the steady resistance, is in (Chatterjee et al., 2012) 

given in terms of the weight of the pipe 𝑊pipe and the vertical bearing capacity 𝑉𝑚𝑎𝑥 as 

𝑎3 = 𝑎5 (
𝑊pipe

𝑉𝑚𝑎𝑥
) + 𝑎6                                        (18) 

where the values of the two further coefficients 𝑎5 and 𝑎6, for different values of the initial embedment 𝑤𝑖𝑛𝑖𝑡, are given by 

𝑎5 = 8.2
𝑤𝑖𝑛𝑖𝑡

𝐷
− 4.9,        𝑎6 = −5.8

𝑤𝑖𝑛𝑖𝑡

𝐷
+ 4.5               (19) 

We follow (Chatterjee et al., 2012) in choosing 𝑎1 = 25 and 𝑎4 = 1.5, but take 𝑎2 = 1 in order to have a finite linear 

resistance (𝑘𝑙  in Section 2.4), which is physically realistic. We furthermore take 𝑉𝑚𝑎𝑥 = 5𝑊pipe  and 𝑤𝑖𝑛𝑖𝑡 = 0.3D, so 

that 𝑎3 = 2.272, and set 𝜇res = 0.5 and 𝜇𝑏𝑟𝑘 = 2.1. Of all these parameters only 𝜇𝑏𝑟𝑘 is varied in this paper (in Section 5). 

The effect of the trench is not yet included in Eq. (17). We introduce a cubic nonlinearity to simulate the steeply rising soil 

resistance provided by the wall of the trench when the buckled pipe contacts the wall. The corresponding friction coefficient 

of this cubic nonlinearity term is expressed by 

𝜇2 = 𝑘
𝑤

|𝑤|
(
|𝑤|−𝑑

𝐷
)
3

           (|𝑤| ≥ 𝑑)                      (20) 

where 𝑘 is a ‘softness’ parameter that controls the steepness of the trench wall resistance, while 𝑑 represents the width of 

the trench. This additional trench force only acts if the displacement |𝑤| exceeds 𝑑. 

Combining Eq. (17) and Eq. (20), the friction coefficient of the whole nonlinear lateral pipe-soil interaction model for the 

pipeline, as shown in Fig. 3, is  

𝜇 = {
𝜇1                  |𝑤| < 𝑑

𝜇1 + 𝜇2             |𝑤| ≥ 𝑑
                          (21) 

The nonlinear lateral soil resistance for the pipeline can then be calculated by 

𝐹 = 𝜇𝑊pipe                                               (22) 

Note that 𝐹 is continuous and (twice) differentiable at |𝑤| = 𝑑. The non-monotonic softening-restiffening characteristic of 

the soil resistance 𝐹, combining the effects of embedment and trenching, will play an important role in determining localised 

buckling patterns. 

 

Fig. 3 Nonlinear lateral soil resistance model. (𝑑 = 3D, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 
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2.4 Localised buckling 

Here we discuss the localised solutions of Eq. (7) with 𝐹 as given in Eq. (22). It is useful to rewrite the fourth-order Eq. 

(7) as an equivalent four-dimensional system of first-order equations (writing 𝑤 = 𝑤1) 

{
  
 

  
 

d𝑤1

d𝑥
= 𝑤2

d𝑤2

d𝑥
= 𝑤3

d𝑤3

d𝑥
= 𝑤4

d𝑤4

d𝑥
= −

1

𝐸𝐼
(𝑃𝑤3 + 𝐹(𝑤1))

                                         (23) 

This four-dimensional system is a Hamiltonian system (when viewed in appropriate coordinates) with Hamiltonian 

𝐻 =
1

2
𝐸𝐼𝑤3

2 − 𝐸𝐼𝑤2𝑤4 −
1

2
𝑃𝑤2

2 − ∫ 𝐹(𝑦)d𝑦
𝑤1
0

                         (24) 

This 𝐻 is therefore a conserved quantity, meaning that it is independent of 𝑥 along solutions of the system of equations. 

(That 𝐻 is constant can be verified directly by differentiating 𝐻 in Eq. (24) with respect to 𝑥 and substituting from Eq. 

(23) to show that d𝐻/d𝑥 = 0.) 

Solutions of Eq. (23) are orbits in a four-dimensional phase space with coordinates (𝑤1, 𝑤2, 𝑤3, 𝑤4). The straight pipe 

solution is represented by the fixed point 𝑗  = (0, 0, 0, 0). The Hamiltonian in this fixed point has value 𝐻 = 0 . The 

eigenvalues of the fixed point are 

±i√
𝑃±√𝑃2−4𝐸𝐼𝑘𝑙

2𝐸𝐼
                                                (25) 

where, since 𝑎2 = 1, 𝑘𝑙 = (
dF

dw
)
𝑤=0

=
𝑎1𝜇brk𝑊pipe

𝐷
. We conclude that at the critical load 𝑃 = 𝑃𝑐𝑟, where 

𝑃𝑐𝑟 = 2√𝑘𝑙𝐸𝐼                                                  (26) 

the eigenvalues change from a quadruple of complex eigenvalues to two complex conjugate pairs of imaginary eigenvalues 

(see Fig. 4). This is called a Hamiltonian-Hopf bifurcation (Hunt et al., 1989; van der Heijden et al., 1998) and marks the loss 

of (linear) stability of the straight solution. For 𝑃 < 𝑃𝑐𝑟 the eigenvalues in Eq. (25) can be written as ±λ ± iω, with real 𝜆 

and 𝜔 given by  

𝜆 =
√2√𝐸𝐼𝑘𝑙−𝑃

2√𝐸𝐼
,   𝜔 =

√2√𝐸𝐼𝑘𝑙+𝑃

2√𝐸𝐼
                                  (27) 

For comparison, the critical load for buckling of a pinned-pinned beam of given length  𝐿 into a pattern of 𝑛 half sine waves 

is 

𝑃𝑐𝑟,𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 =
𝑛2𝜋2𝐸𝐼

𝐿2
+

𝑘𝑙𝐿
2

𝑛2𝜋2
                                       (28) 

It is straightforward to show that 𝑃𝑐𝑟 ≤ 𝑃𝑐𝑟,𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 for all 𝑛. 

The symmetry and multiplicity of bifurcating solutions is governed by the symmetry of the system of equations. We have 

the following two reversing symmetries, i.e., the equations are invariant under the following simultaneous sign changes: 

𝑅1: 𝑥 → −𝑥,  (𝑤1, 𝑤2, 𝑤3, 𝑤4) → (𝑤1, −𝑤2, 𝑤3, −𝑤4)              (29) 

𝑅2: 𝑥 → −𝑥,  (𝑤1, 𝑤2, 𝑤3, 𝑤4) → (−𝑤1, 𝑤2, −𝑤3, 𝑤4)              (30) 

It is well-known that among the solutions bifurcating from the trivial straight solution into the region of the complex 

quadruple of eigenvalues (here for 𝑃 < 𝑃𝑐𝑟) are so-called homoclinic orbits that leave the unstable fixed point in the plane 

spanned by the eigenvectors corresponding to the unstable eigenvalues (with positive real part), make a large excursion in the 

phase space and then return to the fixed point in the plane spanned by the eigenvectors corresponding to the stable eigenvalues 

(with negative real part) (Champneys and Spence, 1993; van der Heijden et al., 1998). These solutions thus approach the 

straight solution in both limits 𝑥 → ±∞ and are therefore also called localised solutions. We are here interested in these 

localised solutions and therefore apply what might be called homoclinic boundary conditions: we take the end points of the 

solution to be close to the fixed point 𝑗, thereby ensuring straight tails. Since we have no control over the length 𝐿, for this 
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approach to give good solutions we need to assume the pipe to be long enough that solutions decay to zero towards the ends. 

This is reasonable in thermal pipeline buckling in which a relatively small segment of pipe, of unknown length, buckles within 

an effectively infinitely long immobilised pipeline providing alignment end conditions. The boundary conditions of thermal 

pipeline buckling are thus ‘naturally homoclinic’. 

Because of the above reversing symmetries, both a symmetric (𝑅1 -reversible) and an anti-symmetric (𝑅2 -reversible) 

solution bifurcate. Half these localised solutions are shown in Fig. 5(a), while the corresponding half orbits in (a two-

dimensional projection of) the phase space are shown in Fig. 5(b). Note that the homoclinic orbits spiral out of (and back into) 

the fixed point because of the complex eigenvalues. By continuity it follows therefore that along these localised solutions 

𝐻 = 0, since the fixed point has this Hamiltonian value. 

       

(a)                         (b)                        (c) 

Fig. 4 The behaviour of eigenvalues at the Hamiltonian-Hopf bifurcation. (a) 𝑃 < 𝑃𝑐𝑟. (b) 𝑃 = 𝑃𝑐𝑟. (c) 𝑃 > 𝑃𝑐𝑟. 

Table 1. Design parameters. 

Parameters Values Unit 

External diameter 𝐷 650  mm 

Wall thickness 𝑡 15  mm 

Elastic modulus 𝐸 206 GPa 

Coefficient of thermal expansion 𝛼 1.1 × 10−5 /℃ 

Axial friction coefficient 𝜇𝐴 0.5 --- 

Submerged weight 𝑊pipe 3800  N/m 

 

 (a) (b) 

Fig. 5 Typical (half) solutions obtained by the shooting method. (a) Deformed shapes. (b) Homoclinic orbits in phase space. 

(𝑑 = 3D, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1, 𝑃 = 4.2 MN.) 
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    (a)                                               (b) 

Fig. 6 (a) Bifurcation diagram with branches of homoclinic and periodic solutions, with Hamiltonian 𝐻 = 0, bifurcating 

subcritically at the critical (Hamiltonian-Hopf) load 𝑃𝑐𝑟 = 19.51 MN. 𝑃𝑀 = 1.9181 MN is the Maxwell load. (b) Total 

potential energy of the homoclinic and periodic solutions. (𝑑 = 3D, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 

3. Homoclinic solutions and their bifurcations 

For 𝑃 < 𝑃𝑐𝑟, we compute approximate (half) homoclinic solutions as shown in Fig. 5(a) by formulating a shooting problem 

on a truncated 𝑥 interval [−𝐿, 0]. Here 𝐿, the half length of the homoclinic solution, is chosen large enough that the solution 

is well-localised in the sense that it is very nearly decayed to the trivial straight solution 𝑗 at 𝑥 = −𝐿. For details of the 

shooting method we refer to (Wang and van der Heijden, 2017). The (realistic) physical parameters used in this study are 

listed in Table 1. For these parameters and the additional choice 𝑑 = 3𝐷, 𝑘 = 2 and 𝜇brk = 2.1 of Fig. 3, we have 𝑘𝑙 =

3.06923 × 105 N/m . For the case 𝑃 = 4.2  MN, shown in Fig. 5, 𝐿 = 116.59001 m  for the symmetric and 𝐿 =

128.12790 m  for the anti-symmetric homoclinic solution. From Eq. (15) we also obtain 𝑙𝑠 = 308.68224 m  for the 

symmetric solution and 𝑙𝑠 = 356.79818 m for the anti-symmetric solution, noting that they are larger than 𝐿, as required 

(see Fig. 2). 

Fig. 6 illustrates the bifurcation diagram, obtained by parameter continuation, showing the branches 𝑢𝑠  and 𝑢𝑎  of 

symmetric and anti-symmetric homoclinic orbits bifurcating from the critical load 𝑃𝑐𝑟 (in fact, pairs of branches of 𝑅1-, 

respectively 𝑅2-symmetric homoclinic orbits) . The plot in Fig. 6 confirms that the post-buckling localised solutions exist for 

loads smaller than the critical load 𝑃𝑐𝑟 , which, from Eq. (26), is 𝑃𝑐𝑟 = 19.51 MN , i.e., the localised solutions bifurcate 

subcritically. 

At lower values of 𝑃  the branches of localised solutions in Fig. 6 start to oscillate upwards in what is known as a 

homoclinic tower (Avitabile et al., 2010; Burke and Knobloch, 2006, 2007; van der Heijden et al., 2002; Woods and 

Champneys, 1999). As we go up the tower the localised solutions acquire more and more periods (oscillations), as illustrated 

in Fig. 7 and Fig. 8 for the symmetric solutions, eventually taking up almost the entire homoclinic orbit leaving only small 

straight tails at the ends. (Parameter continuation in 𝐿 has been used to present all localised solutions in Fig. 8 with the same 

length 𝐿 = 1200 m.) Each successive fold (saddle-node bifurcation) in the bifurcation diagram adds half a period at each 

end to the solution, leading to greater end shortening 𝑢2. Left-opening folds (and right-opening folds) occur very nearly at 

identical  𝑃 values, but close inspection shows that folds higher up the tower occur for smaller 𝑃. The solution measure 

plotted in Fig. 6 is the normalised end shortening 𝑢2/𝐿, where 𝐿 = 1200 m, chosen to be slightly larger than the length of 

the periodic segment for the localised solutions at the top of the tower. 

For finite length 𝐿 of the localised solution only a finite number of periods can be accommodated and therefore only a 

finite number of wiggles can be computed in the tower while maintaining the homoclinic boundary conditions. For an 

infinitely long pipeline infinitely many wiggles would appear and the values of 𝑃 where a fold occurs would asymptotically 

approach values 𝑃1 and 𝑃2 (monotonically and from the right), which we estimate in Fig. 6 to be 𝑃1 = 1.5823 MN and 
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𝑃2 = 2.7086 MN. On the interval [𝑃1, 𝑃2] there would be infinitely many localised solutions that would approach a fully-

developed periodic solution, with finite value of the normalised end shortening 𝑢2/𝐿 as 𝐿 → ∞. 

Fig. 9 shows different localised solutions on the same branch of the tower between two successive folds. It is seen that 

under increasing compressive load 𝑃 the amplitude of the periodic segment increases while the period decreases, as one 

would expect. A comparison of the amplitudes of solutions in Fig. 8 and Fig. 9 with Fig. 3 reveals that the pipeline in these 

solutions is pressed firmly against the trench wall. 

 
Fig. 7 Close-up of the bifurcation diagram for the symmetric localised solution in Fig. 6(a). Labels mark the locations of the 

localised solutions shown in Fig. 8 and Fig. 9. 

 

Fig. 8 Sample shapes of symmetric localised solutions indicated in Fig. 7. (𝑑 = 3D, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1, 𝑃 = 2 MN.) 
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Fig. 9 Sample shapes of symmetric localised solutions along a single branch in Fig. 7. (𝑑 = 3D, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1, 

𝑃(𝑠7) = 1.7 MN, 𝑃(𝑠2) = 2 MN, 𝑃(𝑠8) = 2.3 MN.) 

Because the localised solutions have 𝐻 = 0, the embedded periodic solutions must also have 𝐻 = 0. Also shown in Fig. 

6 is a branch 𝑢𝑝 of periodic solutions, having 𝐻 = 0, that branches from the Hamiltonian-Hopf bifurcation and intersects 

the tower of localised solutions. To draw this curve of periodic solutions in Fig. 6, 𝐿 is taken equal to their (varying) period. 

It is these periodic solutions at the top of the tower that are approached by the localised solutions. The black dot on the branch 

𝑢𝑝 indicates the periodic solution with the same total potential energy density as the pre-buckled straight solution. This energy 

density (i.e., energy per unit length) can be written as 

𝐸𝑑 = 𝐸𝑏 + 𝐸𝑓 + 𝐸𝑃 =
1

𝐿
∫ (

1

2
𝐸𝐼𝑤3

2 + ∫ 𝐹(𝑦)d𝑦
𝑤1
0

−
1

2
𝑃𝑤2

2)d𝑥
𝐿

0
                          (31) 

where the first term, 𝐸𝑏, is the bending energy, the second term, 𝐸𝑓, is the foundation energy and the third term, 𝐸𝑃, is the 

work done by the compressive load 𝑃. Note that the energy density of the straight solution is zero. 

The critical load where the periodic solution has the same energy density as the pre-buckled straight solution is called the 

Maxwell load 𝑃𝑀, as indicated in Fig. 6(b); numerically, 𝑃𝑀 = 1.9181 MN. It marks a ‘phase transition’ from the straight 

state to a periodic state in which the pipeline bounces back and forth between the trench walls. 

Because the Hamiltonian-Hopf bifurcation is subcritical, both localised and periodic solution branches initially carry 

unstable solutions but stabilise at the first fold, and for the localised solutions then change stability at each successive fold. 

Stability of the various solutions (under infinitesimal perturbations) is therefore as indicated in Fig. 12, which we discuss in 

more detail later. Note that the fold along 𝑢𝑝, at 𝑃 = 𝑃3, implies that the periodic solution at the black dot in Fig. 6 is stable. 

The interpretation of these bifurcation diagrams needs some care. The resistance 𝐹 as defined in Section 2.3 is positive 

for 𝑤 > 0 and negative for 𝑤 < 0 (in both cases resisting the deformation, as illustrated in Fig. 1). It therefore describes 

friction only if the pipeline ‘tends to’ increase its deflection (for all 𝑥 ). Now, one likes to interpret load-displacement 

bifurcation diagrams as quasi-static loading processes. This interpretation is only valid here if the deflection |𝑤| increases. 

It is good to realise, though, that each point along the bifurcation diagram individually, at certain load 𝑃, is a valid equilibrium 

solution under the corresponding force 𝐹. From this solution we can then increase the load 𝑃, causing the lateral deflection 

|𝑤| to increase. If we then encounter a jump to another solution (for instance, at a fold) in which |𝑤| decreases then this 

new solution need not lie on the bifurcation diagram, but if we subsequently increase 𝑃 again and the deflection starts to 

increase then the solution jumps back onto the computed bifurcation diagram (the friction force simply changes sign in the 

process). 

In conclusion, we can interpret bifurcation diagrams as quasi-static processes only if we avoid reversals of the deformation. 

This is, however, not much of a restriction because in this work we are primarily interested in jumps of the pipeline out of its 

straight configuration and into a post-buckled localised state, as induced by external disturbances. For these individual 

localised states the lateral friction force is valid, as is the energy barrier computed for the jump. All stable solutions in our 

bifurcation diagrams are legitimate possible destinations for the pipeline when perturbed out of its stable straight 
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configuration. Of course, if the frictional component of 𝐹 is negligible and 𝐹 may be interpreted as an elastic resistance 

then we are allowed to vary 𝑃 in both directions and any interpreted quasi-static loading sequence in our bifurcation diagrams 

is entirely physical. 

In addition to symmetric and anti-symmetric localised solutions the equations also have non-symmetric localised solutions. 

These exist on branches connecting pairs of pitchfork bifurcations on the symmetric and anti-symmetric branches (see Fig. 

10). These connecting branches (in fact, four branches of 𝑅1-symmetric and 𝑅2-symmetric pairs of solutions, all having the 

same end shortening 𝑢2 ), sometimes called ‘rungs’ (Burke and Knobloch, 2007), may be computed by replacing the 

symmetry conditions at 𝑥 = 0 (see Fig. 5) by boundary conditions over the entire interval [−𝐿, 𝐿] so that non-symmetric 

solutions are allowed. All non-symmetric solutions are unstable (Burke and Knobloch, 2007). Solutions at labels ‘a’, ‘b’, ‘c’, 

‘d’, ‘e’ and ‘f’ in Fig. 10 are displayed in Fig. 11. It is seen that the non-symmetric solutions (‘b’ and ‘e’, at 𝑃 = 2 MN) 

`interpolate’ between symmetric and anti-symmetric solutions by gradually deforming their shape. 

We remark here also that in addition to these non-symmetric solutions there are multi-pulse localised solutions consisting 

of multiple copies of the single-pulse solutions computed here and lying on curves that also run up the homoclinic tower 

(Knobloch, 2015; Knobloch et al., 2011; van der Heijden et al., 2002). Since these solutions have correspondingly higher 

energy they will play no role in our stability discussion later and we will not further consider them. 

 

Fig. 10 Bifurcation diagram with ‘rungs’ connecting the symmetric and anti-symmetric localised solution branches. The 

labels ‘a’ to ‘f’ mark the locations of the solutions shown in Fig. 11. (𝑑 = 3D, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 

 

Fig. 11 Solution shapes at points indicated in Fig. 10 showing non-symmetric solutions intermediate between symmetric 

and anti-symmetric solutions. (𝑑 = 3D, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 
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4. Stability under finite disturbances for various types of loading 

The complicated intertwining bifurcation behaviour in Fig. 6 and Fig. 10 is familiar from previous studies, especially those 

of the Swift-Hohenberg equation, and is commonly referred to as homoclinic snaking (Avitabile et al., 2010; Burke and 

Knobloch, 2006, 2007; van der Heijden et al., 2002; Woods and Champneys, 1999). An explanation of the behaviour in terms 

of the underlying phase-space dynamics as well as a physical interpretation is given in the Appendix. This in particular clarifies 

why a branch of periodic solutions like 𝑢𝑝 exists. Here we continue with an analysis of the stability implications for our 

pipeline problem. Although temperature 𝑇0 is the control parameter in thermal pipeline buckling, if the axial resistance 𝑓𝐴 

is negligible then, according to Eq. (16), controlling 𝑇0 is equivalent to controlling the compression 𝑃 at the centre of the 

pipe. We will therefore first consider the case of dead compressive loading in which 𝑃 is the control parameter (Section 4.1). 

It will also be instructive to consider the case of rigid loading in which the end shortening 𝑢2 is controlled. In view of Eq. 

(16) this corresponds to the other extreme of large 𝑓𝐴. We consider this case in Section 4.2. In Section 4.3 we finally deal 

with thermal loading by considering intermediate values of axial resistance, thereby interpolating between the extremes of 

dead and rigid loading. 

4.1 Dead loading (𝑷 control) 

To be able to give a stability discussion we compute the total potential energy 𝐸𝑑 given in Eq. (31). Fig. 6(b) shows 𝐸𝑑 

against 𝑃 along the branches of localised and periodic solutions in Fig. 6(a). Recall that the straight pipeline has 𝐸𝑑 = 0. 

For small 𝑃 the straight solution will be stable. Indeed Fig. 6(b) shows that all other solutions have energy 𝐸𝑑 > 0. At the 

Maxwell load 𝑃𝑀 the periodic solution has the same energy as the straight solution (by definition). For 𝑃 > 𝑃𝑀 the periodic 

solution has lower energy (while the localised solutions initially continue to have higher energy). The straight solution is still 

locally stable (and remains so for loads all the way up to 𝑃𝑐𝑟), but is no longer globally stable. It is called metastable. Under 

the right perturbation the pipeline may be forced into the lower-energy periodic state. We will obtain an estimate for the 

minimum energy required to induce this transition. 

Fig. 12 shows enlargements of the bifurcation diagram and energy plot in Fig. 6 for the symmetric localised solution and 

the periodic solution, with stability under dead loading indicated. In Fig. 12(b) we see that stable (solid) branches in the 

bifurcation diagram rotate (approximately) in clockwise direction about a point labelled 𝑐1, while unstable (dashed) branches 

rotate (approximately) about point 𝑐2, the latter having higher energy. As a result of this rotating motion successive stable 

branches in the homoclinic tower (𝑛1-𝑛2, 𝑛3-𝑛4, 𝑛5-𝑛6, ...) intersect each other. This means that at the corresponding P 

values successive stable branches have solutions with the same energy 𝐸𝑑. At these 𝑃 values, therefore, transitions between 

stable localised solutions with different number of periods in the periodic segment are possible at relatively low energy cost. 

 

    (a)                                               (b) 

Fig. 12 Stability analysis of homoclinic orbits under dead loading conditions (solid lines indicate stable solutions, dashed 

lines unstable solutions). The big black dot indicates the ‘mountain pass’ state with lowest energy barrier for escape from 

the trivial straight solution. (a) Close-up of the bifurcation diagram of symmetric localised solutions in Fig. 6(a). (b) Close-

up of the total potential energy plot in Fig. 6(b). (𝑑 = 3D, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 
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Fig. 13 Energy landscape at a constant axial compressive force of 𝑃 = 2.4 MN. The labels in this figure correspond to the 

labels in Fig. 12. 

Two such transitions (𝑐1𝑎 -𝑐1𝑏  at 𝑃  = 𝑃c1  = 1.91829 MN and 𝑐1𝑏 -𝑐1𝑐  at 𝑃  = 𝑃c2  = 1.91822 MN) are indicated by 

arrows in Fig. 12(a). These vertical jumps occur at such points that equal areas 𝐴i are cut off in this 𝑃-𝑢2 diagram in which 

enclosed area represents potential energy. For instance, the coloured area 𝐴3 represents the energy barrier to be overcome to 

escape from the stable solution labelled 𝑐1𝑏 via the unstable saddle-type ‘mountain pass’ state 𝑐2𝑐. The equal area 𝐴4 then 

represents the energy released in ‘descending’ from the unstable state 𝑐2𝑐 to the stable solution 𝑐1𝑐 of the same energy as 

𝑐1𝑏, but with one more period. This equal-area rule is analogous to the Maxwell construction for isotherms in pressure-volume 

phase diagrams (or similar diagrams of conjugate variables) in thermodynamics (Reichl, 2016). 

It is good to stress here that the direct vertical path from 𝑐1𝑏 to 𝑐1𝑐 is not an equilibrium path. In reality the transition 

will occur as a dynamic jump not covered by this statics theory. This will involve vibrations that need to be damped out if we 

are to end up on the equilibrium curve. So energy will be dissipated and we need to jump sooner to end up in the destination 

state. We ignore these dynamical effects here by pretending that the transition occurs quasi-statically. 

The areas separated by 𝑃c2 are by direct numerical calculation found to be 𝐴3 = 7.00 × 10
−5 and 𝐴4 = 6.99 × 10

−5, 

which is indeed equal to the difference between energies at 𝑐1 and 𝑐2 in Fig. 12(b), representing the energy barrier for a 

jump out of the stable state 𝑐1𝑏 via the mountain pass state 𝑐2𝑐. In these jumps the pipeline snaps from a localised state with 

approximately three central periods into a state with approximately four central periods. Similarly, the areas separated by 𝑃c1 

are found to be 𝐴1 = 7.00 × 10
−5  and 𝐴2 = 6.96 × 10

−5 . The 𝑃  values (𝑃c1 , 𝑃c2 , ...) along successive wiggles where 

these jumps may happen are very close to the Maxwell load 𝑃𝑀 and converge (from the right) to 𝑃𝑀 as we go up the tower.  

Under quiet environmental conditions the pipeline will remain in the straight configuration for loads 𝑃 > 𝑃𝑀. Fig. 13 shows 

the energy landscape for successive jumps, indicated in Fig. 12(a), at 𝑃  = 2.4 MN. Localised equilibrium solutions are 

indicated by black dots. Labels 𝑚2, 𝑚4, 𝑚6 and 𝑚8 represent stable equilibria (energy minima), while 𝑚1, 𝑚3, 𝑚5 and 

𝑚7 represent unstable equilibria (here represented by energy maxima). The solid curve connecting these equilibria is not 

computed directly but, for the purpose of illustration, interpolated by means of a cubic spline. Equilibrium 𝑚1 (with 𝐸𝑑 =

1.51847 × 10−4) represents the mountain pass for the trivial equilibrium (with 𝐸𝑑 = 0) to escape, possibly to equilibrium 

𝑚2, with one period in the localisation. From this state the pipeline can escape to 𝑚4 at considerably lower energy cost via 

𝑚3 (or 𝑚1). From 𝑚4 an even smaller energy hump needs to be overcome to snap into a localised state with more periods 

and correspondingly higher end shortening 𝑢2, etc. Hence, once the small energy barrier of equilibrium 𝑚1 is traversed, the 

pipeline easily cascades down the energy landscape into localised states with more and more periods. Similar sequential 

jumping scenarios can be sketched for all loads 𝑃 between 𝑃𝑀 and 𝑃2 (≈ 2.7), while the straight pipeline is globally stable 

and resistant to small external disturbances for larger 𝑃 (up to 𝑃𝑐𝑟). 

We conclude that under dead loading, with control of 𝑃, the Maxwell load 𝑃𝑀 is the lowest load at which another (post-

buckled) solution acquires lower energy than the trivial solution. At 𝑃𝑀 the pipeline only needs to be excited to the energy 

level of the unstable saddle-type solution with the lowest energy (assuming it is accessible by a well-placed kick) to be forced 

out of its stable straight state. We call this the mountain pass state for the trivial solution. Looking at Fig. 12(b) (left inset) this 
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is seen to be the solution labelled 𝑐2𝑎 on branch ‘1’ (indicated by the big black dot in the figure), with a single period in the 

localisation, giving an energy barrier of 𝐸𝑑 = 2.9288 × 10
−4. Once out of its potential well, there is a vast number of stable 

states of lower energy available to jump into, with the periodic solution 𝑢𝑝 having the lowest energy. (Which state is jumped 

into depends on the nature of the perturbation and the dynamical details of the system, which are outside the present statics 

theory.) It is therefore safe to assume that under a perturbation imparting an energy 𝐸𝑑 = 2.9288 × 10
−4 to the pipeline, it 

will snap into a localised state taken up almost entirely by a periodic pattern of bounces between the trench walls. 

The Maxwell load therefore signals the onset of a super-sensitivity to static and dynamic lateral disturbances. The energy 

differences between trivial and non-trivial solutions in Fig. 12(b), beyond the Maxwell load, can be interpreted as measures 

of shock sensitivity of the pipeline (Thompson and van der Heijden, 2014). In practice the required perturbations could for 

instance be caused by dynamic disturbances due to irregular fluid flow through the pipe, earthquakes or landslides. If periodic 

bouncing inside the trench is undesirable then the Maxwell load can be considered to be the failure load. 

4.2 Rigid loading (𝒖𝟐 control) 

Here we consider the other extreme case of rigid loading in which the end shortening 𝑢2 rather than the compressive load 

𝑃 is controlled. The total potential energy density is then given by 

𝐸𝑟 = 𝐸𝑏 + 𝐸𝑓 =
1

𝐿
∫ (

1

2
𝐸𝐼𝑤3

2 + ∫ 𝐹(y)dy
𝑤1
0

) d𝑥
𝐿

0
                                (32) 

In Fig. 14(b) the energy 𝐸𝑟 is plotted against 𝑢2. Successive intersections of solution branches mean that wiggles higher 

up the curve acquire lower energy and therefore take over global stability as 𝑢2 is increased. Fig. 14(a) shows the bifurcation 

diagram (with axes interchanged) with this global stability information under control of 𝑢2 included. Arrows again indicate 

possible jumps, now at constant 𝑢2, between equal-energy states along successive stable branches. These jumps occur again 

at such points that equal areas are cut off, as confirmed by the direct numerical estimates 𝐴5 = 0.01421, 𝐴6 = 0.01418 for 

the two coloured areas in Fig. 14(a) representing the energy barrier for the jump. In the jump from states 𝑡3 to 𝑡4 the pipeline 

develops another period under a dropping axial force 𝑃 . Due to the increasingly slanted nature of the wiggles as 𝑢2  is 

increased, the globally stable solution asymptotically approaches the periodic state on 𝑢𝑝 exactly held at the Maxwell load 

𝑃𝑀. 

For the jump 𝑡1-𝑡2 the energy analysis in Fig. 15 reveals that the bending energy 𝐸𝑏 goes down, while the foundation 

energy 𝐸𝑓 goes up. Meanwhile, the maximum deflection of the pipe in the trench, 𝑤𝑚, goes down a little, as seen in Fig. 16, 

which makes sense as the compression 𝑃  drops in the jump. Under subsequent increase of 𝑢2  both 𝐸𝑏  and 𝐸𝑓  then 

increase. Under quiet environmental conditions the pipeline will snap at the folds (e.g., 𝑡1a) into a localised state with an 

extra period. Note though that, since both these downward jumps represent reversals of the lateral deformation, the states at 

the end of the jumps cannot be predicted from the bifurcation diagram. 

 

    (a)                                               (b) 

Fig. 14 Stability analysis for the symmetric homoclinic orbit under rigid loading conditions. (a) Bifurcation diagram. (b) 

Total potential energy. (𝑑 = 3D, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 
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    (a)                                               (b) 

Fig. 15 Energy analysis under rigid loading conditions. (a) Bending energy 𝐸𝑏. (b) Foundation energy 𝐸𝑓. (𝑑 = 3D, 𝑘 = 2, 

𝜇𝑏𝑟𝑘 = 2.1.) 

 

Fig. 16 Relationship between end shortening 𝑢2 and maximum displacement 𝑤𝑚 for the symmetric localised solution 

under rigid loading conditions. (𝑑 = 3D, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 

4.3 Thermal loading (𝑻𝟎 control) 

Finally we consider thermal loading by introducing the effect of axial resistance 𝑓𝐴. Eq. (16) gives the relationship between 

the temperature difference 𝑇0 and the axial compressive force 𝑃. This relationship is depicted for both the symmetric and 

anti-symmetric localised solutions in Fig. 17. 𝑇𝑐𝑟 is the critical temperature difference at bifurcation corresponding to the 

critical axial force 𝑃𝑐𝑟. We see that at much lower temperature, around 𝑇0 = 50 ℃, localised buckling modes first become 

available. We confirm that for all solutions, except those close to 𝑇𝑐𝑟, 𝑙𝑠 > 𝐿, as required for consistency (this makes sense 

as we recall from Eq. (15) that 𝑙𝑠 increases with the end shortening 𝑢2, which goes up as we climb the homoclinic tower). 

Fig. 18 gives a zoomed view of the bifurcation diagram for the symmetric homoclinic orbit and also shows the maximum 

deflection 𝑤𝑚  and the axial thermal expansion 𝑢1  as a function of temperature 𝑇0 . The minimum temperature where 

localised solutions are available is labelled 𝑇𝑚. Hysteresis cycles (for instance, b2 → ⅇ2 → c2 → ⅇ3) with snap behaviour at 

folds are also indicated but, as commented in Section 3, these have limited quantitative value unless we can interpret our soil 

resistance law as purely elastic (note that this now applies to both the lateral and the axial resistance). We see, for instance, 

that in the jump at b2 an extra period is created in the pipeline and the axial deformation 𝑢1 correspondingly goes up but 

𝑤𝑚 goes down slightly in a reversal of lateral deformation. In the presence of imperfections, 𝑇𝑚 may be considered the 

maximum safe operating temperature difference of the pipeline (Wang and van der Heijden, 2017). 
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Fig. 17 Relationship between the temperature difference 𝑇0 and the central axial force 𝑃 for the localised buckling modes. 

(𝑑 = 3𝐷, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 

   

    (a)                                               (b) 

 

      (c) 

Fig. 18 Stability of typical buckling behaviour for symmetric localisation. (a) Axial compressive force 𝑃. (b) Maximum 

deflection 𝑤𝑚. (c) Axial thermal expansion 𝑢1. (𝑑 = 3𝐷, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 
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    (a)                                               (b) 

Fig. 19 Energy analysis under thermal loading. (a) ∆𝐸 = 𝐸𝑡 − 𝐸𝑖. (b) The various components of the total energy 𝐸𝑡. (𝑑 =

3𝐷, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 

Stable solution branches without reversals in either 𝑤 or 𝑢 are physical and may be subjected to an energy analysis as in 

the dead and rigid loading cases. The total potential energy of the straight pipeline, namely before buckling, is now nonzero 

and given by 

𝐸𝑖 =
1

2𝐸𝐴
∫ 𝑃0

2 d𝑥
𝑙𝑠
0

                                            (33) 

representing the thermal strain energy, while the energy of the buckled pipeline can be written as 

𝐸𝑡 = 𝐸𝑏 + 𝐸𝑓 + 𝐸𝑝 + 𝐸𝑓𝐴 = ∫ (
1

2
𝐸𝐼𝑤3

2) d𝑥
𝐿

0
+ ∫ (∫ 𝐹(𝑦)d𝑦

𝑤1
0

)d𝑥
𝐿

0
+

1

2𝐸𝐴
∫ 𝑃̅2d𝑥
𝑙𝑠
0

− ∫ 𝑓𝐴𝑢d𝑥
𝑙𝑠
0

     (34) 

where the first term, 𝐸𝑏, is the bending energy, the second term, 𝐸𝑓, is the foundation energy, the third term, 𝐸𝑝, is the axial 

strain energy induced by the distributed axial force and the fourth term, 𝐸𝑓𝐴, is the energy loss due to axial friction. Fig. 19(a) 

shows the energy difference ∆𝐸 = 𝐸𝑡 − 𝐸𝑖  as a function of 𝑇0  for the branch of symmetric localised solutions. Self-

intersections of this curve again correspond to equal-energy states and possible jumps between such equal-energy states are 

indicated by arrows in Fig. 18. 

For nonzero 𝑓𝐴  a truly periodic solution is unrealistic because it would have an infinite feed-in length 𝑙s  and thus, 

according to Eq. (6), require an infinite pressure difference 𝑃0 − 𝑃. It would also have infinite end shortening 𝑢2 and, by 

Eq. (16), require an infinite temperature 𝑇0. We could consider a finite number, n, of periods of this solution but we would 

have a different curve for each n in Fig. 18. Besides, such solutions would only be artificial, non-smooth, localised solutions, 

pointless because we already have the real localised solutions. We therefore ignore periodic solutions and define the Maxwell 

temperature 𝑇𝑀 as the lowest temperature 𝑇0 where a localised solution has the same energy as the trivial solution. In the 

limit 𝑓𝐴 = 0  this temperature corresponds to the Maxwell load 𝑃𝑀  as given by Eq. (1). In Fig. 19(a) the Maxwell 

temperature occurs at 𝑇𝑀 = 60.9667 ℃. 

Fig. 19(b) gives the contribution from each of the separate energy sources to the total energy 𝐸𝑡. Also included in this figure 

is a plot of 𝐸𝑒𝑟𝑟𝑜𝑟, defined as the axial potential energy we effectively ignore in the coupled system Eq. (3) by taking 𝑓𝐴 = 0 

when computing the deflection 𝑤 in the buckling region: 

𝐸𝑒𝑟𝑟𝑜𝑟 = −∫ 𝑓𝐴𝑢d𝑥
𝐿

0
= −∫ 𝑓𝐴 (𝑓𝐴

2𝑙s𝑥−𝑥
2

2𝐸𝐴
−
1

2
∫ 𝑤2

2d𝑥
𝑥

0
)d𝑥

𝐿

0
                 (35) 

This energy depends on 𝐿, which is somewhat arbitrary. However, if we take 𝐿 = 300 m, which is long enough to cover the 

buckling region for all solutions along the branches shown in Fig. 19(b), then 𝐸𝑒𝑟𝑟𝑜𝑟 is never more than 6 % of the total 

energy 𝐸𝑡. The fact that 𝐸𝑒𝑟𝑟𝑜𝑟 is significantly smaller than the other energy components is further justification for the 

approximation to ignore 𝑓𝐴 in the buckling region. 
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    (a)                                               (b) 

Fig. 20 (a) Axial thermal expansion 𝑢1 for different axial friction coefficients 𝜇𝐴. The parabolic red curves represent the 

rigid-loading limit given by Eq. (16) with 𝑃 set to zero. (b) Maxwell temperature 𝑇𝑀 as a function of 𝜇𝐴 (𝑑 = 3𝐷, 𝑘 =

2, 𝜇𝑏𝑟𝑘 = 2.1.) 

Fig. 20(a) shows the effect of the axial friction coefficient 𝜇𝐴 on the homoclinic tower. Recall that for 𝜇𝐴 = 0 thermal 

loading is equivalent to dead loading with the relationship between the compressive load 𝑃 and temperature 𝑇0 simply 

given by Eq. (1). We see in Fig. 20(a) that under increasing 𝜇𝐴  the tower shears to the right. As a result, the Maxwell 

temperature increases and the bifurcation diagram increasingly comes to resemble the diagram of the rigid-loading case. This 

is consistent with Eq. (16), which shows that for large 𝜇𝐴  (and hence large 𝑓𝐴 ), controlling 𝑇0  becomes equivalent to 

controlling the end shortening 𝑢2 (which is equal to the axial expansion 𝑢1). For comparison, the red curves in Fig. 20(a) 

give the relationship according to Eq. (16) with 𝑃 set to zero, confirming that this rigid-loading limit is approached for 

large 𝜇𝐴 (bear in mind here that the difference between red and black curves should be measured vertically). Fig. 20(b) shows 

the variation of the Maxwell temperature with 𝜇𝐴 (for both symmetric and anti-symmetric localised solutions). It is seen that 

𝑇𝑀 varies extremely sensitively at small values of 𝜇𝐴. The limiting value 𝑇𝑀,0 = 28.2852 ℃ at 𝜇𝐴 = 0 corresponds to the 

Maxwell load 𝑃𝑀 = 1.9181 MN under dead loading (see Fig. 12), as given by Eq. (1). 

As a result of this shearing effect, at given 𝑇0  fewer localised solutions (stable or unstable) become available as 𝜇𝐴 

increases, i.e., shock sensitivity decreases with increasing 𝜇𝐴. One could say that the system becomes less chaotic near the 

Maxwell temperature 𝑇𝑀: jumps become more predictable and under increasing temperature 𝑇0 we are more likely, for 

larger 𝜇𝐴, to have successive jumping into a gradually expanding periodic phase. A quantitative expression of this behaviour 

is given in Fig. 21, where the mountain pass energy ∆𝐸𝑟 is plotted as a function of 𝜇𝐴. This ∆𝐸𝑟 is the energy barrier at 

𝑇𝑀 for escape from the pre-buckled solution via the lowest-energy unstable solution, labelled 𝑟1 in Fig. 19(a), to the stable 

solution labelled 𝑠1 (or the stable solution labelled 𝑠2 of slightly higher energy, but still lower than that of 𝑟1). Results are 

given for both symmetric and anti-symmetric localised solutions showing that escape via a symmetric state (induced, most 

likely, by a symmetric perturbation) generally requires less energy, but for small 𝜇𝐴 the energy landscape becomes very 

complicated and for small windows of 𝜇𝐴 values anti-symmetric solutions offer lower-energy escape. 

For symmetric solutions, we see in Fig. 21(a) that for 𝜇𝐴 larger than about 0.76 the only unstable localised state available 

is a single-pulse solution, shown in the figure, so escape will necessarily take place via this state. Note that the (also unique) 

stable state the pipeline jumps into, also shown in the figure, has the same shape as this unstable state but larger amplitude, 

reaching the trench wall. It is seen that to induce a jump into wall contact it is sufficient, at this 𝜇𝐴 value of about 1.1, to 

perturb the pipeline a distance of 0.9898 m or 51 % of the trench width. For 𝜇𝐴 smaller than 0.76 a second unstable solution 

appears, initially with much lower energy barrier. This solution has a wider pulse with side lobes in the opposite direction, 

which grow in the final stable state to create three point contacts with the trench wall. The first unstable branch is continued 

as a dashed curve in this region because it may in practice still be the more likely escape route. For even smaller 𝜇𝐴 gradually 
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more escape routes, with more and more periods, become available as we approach the chaotic dead-loading limit where the 

precise post-buckling state depends sensitively on the value of 𝜇𝐴 (and the precise nature of the perturbation). The dashed 

curve, meanwhile, terminates at 𝜇𝐴 = 0.0048. 

For anti-symmetric solutions, in Fig. 21(b), broadly similar behaviour is observed but the single-pulse unstable solution is 

the sole escape route for all 𝜇𝐴 larger than 0.16, and the stable solution shown in the figure the only destination. This unstable 

solution also remains available for all 𝜇𝐴 values down to zero (dashed curve). 

It turns out to be necessary also to include in this energy discussion the non-symmetric solutions along the rungs in Fig. 10. 

For these solutions the total energy can be written as 

𝐸𝑡 = ∫ (
1

2
𝐸𝐼𝑤3

2) d𝑥
𝐿𝑟
−𝐿𝑙

+ ∫ (∫ 𝐹(𝑦)d𝑦
𝑤1
0

)d𝑥
𝐿𝑟
−𝐿𝑙

+
1

2𝐸𝐴
∫ 𝑃̅2d𝑥
𝑙𝑠
−𝑙𝑠

+ ∫ 𝑓𝐴|𝑢|d𝑥
𝑙𝑠
−𝑙𝑠

         (36) 

Here we have chosen the origin of the 𝑥 axis at the point in the buckle where the axial displacement is zero so that the full 

localised solution, of length 𝐿, can be interpreted as combined left and right half solutions, of half-lengths 𝐿𝑙 and 𝐿𝑟, on 

intervals −𝐿𝑙 ≤ 𝑥 ≤ 0 and 0 ≤ 𝑥 ≤ 𝐿𝑟, respectively, where 𝐿𝑙 + 𝐿𝑟 = 𝐿 and 𝐿𝑙 can be computed from the condition 

∫ 𝑤2
2 d𝑥

0

−𝐿𝑙
=

1

2
∫ 𝑤2

2 d𝑥
𝐿𝑟

−𝐿𝑙
                                     (37) 

Since both half solutions have the same end shortening 𝑢2, by Eq. (15) they then also have the same slip length 𝑙𝑠. 

Energy barriers at 𝑇𝑀 for escape via these non-symmetric solutions are given in Fig. 22, together with the barriers offered 

by symmetric and anti-symmetric solutions. For comparison with the non-symmetric barriers the barriers of half solutions in 

Fig. 21 have been multiplied by 2. Fig. 22(a) shows that the single-pulse non-symmetric solution in fact offers lower-energy 

escape than either the symmetric or anti-symmetric solution for 𝜇𝐴 values between 0.76 and 1.53 (labelled ‘4’ in Fig. 22(a)) 

and also in a narrow region of 𝜇𝐴 values near 0.2 (labelled ‘2’ in Fig. 22(a)). A representative non-symmetric solution is 

shown in the figure; 𝑅1 - and 𝑅2 -reflected versions of this solution have the same energy. The top figure in Fig. 22(b), 

for 𝜇𝐴 = 0.5, shows an enlargement of Fig. 19(a) with the branch of non-symmetric solutions (the lowest rung in Fig. 10) 

included. Solutions along higher rungs have energies lower than the energy of the trivial solution and therefore cannot act as 

mountain pass states for escape from the trivial solution at 𝑇𝑀. The curve of non-symmetric solutions in Fig. 22(a) terminates 

at 𝜇𝐴 = 1.53, where the first-rung non-symmetric solutions acquire negative ∆𝐸𝑟 as well and therefore no longer offer a 

mountain pass for escape, as illustrated in the bottom figure of Fig. 22(b). We finally mention that (DNV-RP-F114, 2017) gives 

0.3 < 𝜇𝐴 < 1.0 as the range of axial friction coefficients for non-carbonate soils. Fig. 22(a) predicts that over this range 

symmetric solutions offer the dominant lowest-energy escape routes. 

   

(a) (b) 

Fig. 21 Energy barriers at 𝑇𝑀 for varying axial friction coefficient 𝜇𝐴. (a) Symmetric case. (b) Anti-symmetric case. 

Integers indicate the number of unstable localised solutions available for escape. Insets show unstable (dashed) and stable 

(solid) solutions for escape at the indicated points. (𝑑 = 3𝐷, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 
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              (a)                                 (b) 

Fig. 22 (a) Comparison of energy barriers at 𝑇𝑀 for symmetric, anti-symmetric and non-symmetric solutions. (b) 

Enlargements of the relevant region near 𝑇𝑀 in Fig. 19(a). (𝑑 = 3𝐷, 𝑘 = 2, 𝜇𝑏𝑟𝑘 = 2.1.) 

 

Fig. 23 Effect of 𝜇𝑟𝑘 on the various critical loads. 

5. Effect of varying 𝝁𝒃𝒓𝒌  

In this section we briefly investigate the dependence of the various phenomena observed in the previous sections on the 

trench parameter 𝜇𝑏𝑟𝑘. This 𝜇𝑏𝑟𝑘, representing the breakout resistance of the soil, is the source of non-monotonicity of the 

lateral resistance 𝐹 , so one would expect the complicated homoclinic tower to disappear when 𝜇𝑏𝑟𝑘  vanishes and 𝐹 

becomes monotonic. However, our soil resistance model, Eq. (17), is such that even for 𝜇𝑏𝑟𝑘 = 0 the force 𝐹 has a nearly 

horizontal plateau, with exponentially small derivative. As a result, we find that a Maxwell load exists for all values of 𝜇𝑏𝑟𝑘. 

In the thermodynamic analogy this means that there is no critical point (second-order phase transition) where the curve of 

first-order phase transitions (coexistence of phases), defined by the Maxwell point, terminates and the two phases become 

indistinguishable. 

In addition, for 𝜇𝑏𝑟𝑘 =  0 the slope of 𝐹  at 𝑤 =  0 is zero, so 𝑘𝑙 =  0 and hence 𝑃𝑐𝑟 =  0. The fixed point 𝑗  is also 

degenerate as two of its eigenvalues are zero and our shooting approach for computing homoclinic orbits breaks down. We 

also find that at 𝜇𝑏𝑟𝑘 = 0.275 the Hamiltonian-Hopf bifurcation changes from being subcritical to being supercritical. This 

means that for 𝜇𝑏𝑟𝑘 < 0.275 bifurcating branches of homoclinic and periodic orbits first turn right (towards larger 𝑃 values) 

but then make a turn in a fold before they form the homoclinic tower with a Maxwell load larger than the critical load (i.e., 

𝑃𝑀 > 𝑃𝑐𝑟).  
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This is confirmed in Fig. 23, which shows the Maxwell load 𝑃𝑀, as well as the loads 𝑃1, 𝑃2 and 𝑃3 associated with the 

homoclinic tower, as a function of 𝜇𝑏𝑟𝑘. The Maxwell load goes down monotonically under decreasing 𝜇𝑏𝑟𝑘. The width of 

the tower, i.e., the interval [𝑃1, 𝑃2], decreases with 𝜇𝑏𝑟𝑘 but has a finite limit at 𝜇𝑏𝑟𝑘  = 0.  

6. Summary and discussion 

We have studied localisation in a slender structure resting on a nonlinear foundation that provides both lateral and axial 

resistance. The lateral resistance is of destiffening-restiffening type known to lead to complex localisation and jump 

phenomena near a Maxwell critical load. By considering the coupling of lateral and axial deformation we are able to 

investigate the mitigating effect of axial resistance on these phenomena. To have a concrete and realistic example we consider 

the case of a partially embedded trenched subsea pipeline but our results hold qualitatively for a wide class of problems with 

non-monotonic lateral resistance. 

The main assumption in our mathematical modelling is that we take the compressive force 𝑃̅ in the localised buckle to be 

constant. This assumption is commonly made in the literature and justified by an energy analysis. However, it is good to stress 

that we make this assumption only in computing the deflection 𝑤 of the localised solution and not in the treatment of axial 

deformation which relates the compressive force to temperature and not when computing the energy for the stability analysis. 

The buckling problem then separates into semi-decoupled lateral and axial deformation problems, the first governed by a 

fourth-order uniform beam-column equation, the second by a second-order bar equation. Only the axial problem depends on 

the axial resistance. 

The beam-column equation for bending is valid for small deflections from the straight unstressed state of the pipe. This is 

sufficient in the current application because the trench prevents large deformations. It is the steeply rising stiffness of the 

trench walls, combined with the initial breakout resistance of the soil, that introduces nonlinearity into the model causing 

complicated buckling and post-buckling behaviour. The reduced fourth-order description allows us to study this complexity 

by means of powerful techniques and results from dynamical systems theory valid in a 4D phase space in which the localised 

solutions are described by homoclinic orbits. 

Given the lateral deflection, the axial problem is easily solved and we use deformational compatibility between lateral and 

axial response within the longer immobilised pipeline to relate the compressive force at the centre of the buckle to the 

temperature difference 𝑇0 between pipeline and environment, thereby coupling the lateral and axial system of equations. 

We find that linear instability is described by a Hamiltonian-Hopf bifurcation, at a critical load 𝑃𝑐𝑟 that only depends on 

the linear stiffness 𝑘𝑙 of the soil. Nonlinear instability, however, under finite perturbations, our main concern here, is found 

to be governed by a Maxwell critical load 𝑃𝑀 that typically occurs at much smaller loads. It is near this load that complicated 

jump phenomena occur. 

Coupling of axial and lateral deformation under thermal loading leads to an interpolation between dead and rigid loading 

conditions governed by the axial resistance. For zero axial resistance (𝜇𝐴 = 0) the pipe is effectively under a dead axial load 

𝑃 (given by the temperature difference 𝑇0). Under this condition the pipeline is found to experience shock sensitivity once 

loaded past the Maxwell load 𝑃𝑀, where a large number of stable localised solutions become available. It takes only a small 

perturbation for the stable straight pipe to be forced into a localised post-buckled state. After this initial jump the pipe is then 

overwhelmingly likely, by only tiny disturbances, to cascade to more extended localised solutions with more and more periods 

(approaching the periodic phase of repeated bounces between the trench walls). We have identified and quantified the minimal 

energy barrier, represented by an unstable mountain pass state (𝑐2𝑎 in Fig. 12), that needs to be overcome for this escape of 

the straight pipeline from its potential well to a localised state. 

For positive axial resistance (𝜇𝐴 > 0) we define the ‘Maxwell temperature’ 𝑇𝑀 to be the lowest temperature where a 

localised solution acquires the same energy as the pre-buckled straight solution. The effect of increased axial resistance is to 

push this 𝑇𝑀 to higher values and to reduce shock sensitivity. This happens through a shearing of the bifurcation diagram 

(seen in Fig. 20(a)) as a result of which localised solutions are pulled away from the critical point 𝑇𝑀. Fewer post-buckled 

states are then available, making the buckling process more predictable. For large axial resistance the pipeline is effectively 

under rigid loading and is more likely to jump successively into expanding localised states with more and more periods. The 
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diminished shock sensitivity under increasing axial resistance is quantified by the energy barrier plots in Fig. 21 and Fig. 22. 

We find that, depending on the value of the axial resistance coefficient 𝜇𝐴 , lowest-energy escape is offered by either a 

symmetric, an anti-symmetric or a non-symmetric unstable solution (and expectedly induced by disturbances of the same 

type). 

Energy barriers for jumps out of non-trivial solutions, as for instance those at loads 𝑃c1 and 𝑃c2 in Fig. 12(a), could 

similarly be analysed but are harder to interpret in our present model because our lateral as well as axial (static) resistances 

are assumed to have a definite sign and therefore are frictional only in the loading phase (not the unloading phase). Energy 

barriers for jumps between states computed here are thus only valid as long as both lateral and axial deformations proceed 

monotonically, which, as Fig. 18 shows, need not always be the case for jumps out of non-trivial states. There seems to be no 

easy a priori characterisation of monotonic deformations, but for jumps that involve only such monotonic deformations our 

energy analysis, based on Eq. (36), would be valid. 

Even under quiet environmental conditions complicated snap behaviour, induced by folds, should be expected near the 

Maxwell load/temperature, although this behaviour is not described in detail by our present model because we can only 

physically interpret (quasi-static) loading sequences that avoid reversals in either lateral or axial deformation. Complete 

hysteresis cycles under thermal loading, as in Fig. 18, are therefore not entirely realistic, but the jumps at the folds are. 

Hysteresis cycles can therefore be expected (albeit between slightly different states) in cases where the temperature goes up 

as well as down. This may for instance be caused by periodic pipeline start-ups and shut-downs. 

It is good to realise that even if we know which unstable solution offers the easiest escape (in terms of energy) then this 

need not say much about the likelihood of escape in practice occurring in this way. This practical escape is a dynamics problem 

and it is hard to predict what type of dynamical perturbation would be required for escape from a particular state. It may, for 

instance, require a symmetrical perturbation which in practice would be hard to be induced by fluid flow inside the pipe, or 

would be destroyed by gravity. Once escaped it is also hard to predict in which stable state the system ends up. It is certainly 

not required that states with one, two, three periods are visited in neat succession; states may be skipped (and even be jumped 

back into). It would be interesting to do a proper dynamical analysis of this pipeline buckling problem. 
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Appendix: Maxwell load, homoclinic snaking and periodic patterns  

The oscillatory bifurcation curves of localised solutions found in this work are reminiscent of the homoclinic snaking 

observed in the widely studied Swift-Hohenberg equation usually written in the form 

∂𝑢

∂𝑡
= 𝑟𝑢 − (𝜕𝑥

2 + 𝑞𝑐
2)2𝑢 + 𝑁(𝑢)                                     (A.1) 

where 𝑟 and 𝑞𝑐 are parameters, 𝜕𝑥 is the partial derivative with respect to the spatial variable 𝑥 and 𝑁(𝑢) is a nonlinear 

function usually taken polynomial (Knobloch, 2015). The PDE (A.1) was originally introduced to study the effects of thermal 

fluctuations on convective hydrodynamic instability (Swift and Hohenberg, 1977), but has since been used extensively as a 

scalar model to study various types of behaviour associated with pattern formation: convection rolls (or cells) in 

hydrodynamics, solidification fronts in supercooled liquids, solitary waves in fibre optics, oscillatory chemical reactions, etc. 

(Cross and Hohenberg, 1993). 

For stationary (i.e., time-independent) solutions (patterns) Eq. (A.1) reduces to an ODE exactly of the form of our beam-

column equation (Eq. (7)). To observe the equilibrium phenomena discussed in Section 3, 𝑁 has to be non-monotonic, cubic-

like, but the precise details are otherwise unimportant (Peletier, 2001). Our 𝐹, although not polynomial, is of this form thanks 

to the softening-restiffening characteristic of the combined soil and trench restraint shown in Fig. 3. Similar nonlinearities 

have been considered in the study of cellular buckling of long structures (Hunt et al., 2000). 
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What follows below is a physical and mathematical explanation of the complicated bifurcation behaviour in Fig. 6, which 

to a large extent is universal and seen in a variety of systems. For the purpose of this discussion it is convenient to think of 

the compressive force 𝑃 in the pipe as a control parameter (in (A.1), 𝑟 is usually taken as the bifurcation parameter). We 

can then consider the lateral deformation in the central buckled segment of pipe isolated from the axial deformation and 

thermal effects. Our results are then also more comparable to those of localisation studies in the literature (Hunt et al., 2000; 

Knobloch, 2015). 

It is easy to imagine that a trenched pipeline under a compressive load may buckle into a periodic configuration with the 

pipe bouncing back and forth between the walls of the trench. This is made possible in the present model by the strongly 

stiffening characteristic of the restoring force 𝐹 for relatively large lateral displacements (see Fig. 3). However, starting from 

a straight pipeline, as we do, we will only observe a transition to this periodic state if the energies of the straight and periodic 

states are not too widely separated. In our system the two energy densities become in fact equal at a certain critical load 𝑃𝑀 

called the Maxwell load. At that point we have a ‘phase transition’ from the straight to the periodic configuration. 

Indeed, the Maxwell critical point is well-known from first-order phase transitions in thermodynamics and statistical 

mechanics (for instance, the liquid-gas transition) (Reichl, 2016). At the Maxwell point one can have coexistence of states. 

Different states (phases) can occur together in equilibrium because they have the same energy density, so there is no tendency 

for one phase to ‘invade’ the other. The analogy in our pipeline is that a solution with given total energy can be constructed 

from arbitrary pieces of straight and periodic solutions put together. The analogy is not complete because in our mechanical 

problem the pieces would have to be put together subject to continuity conditions (on slope and curvature) to maintain 

equilibrium, but in the limit of an infinitely long pipe (the ‘thermodynamic limit’) the energy associated with these transitions 

would become insignificant compared to the bulk energy and we would have a true first-order phase transition. In the 

thermodynamic analogy the load-deflection curve in Fig. 6 is an isotherm in a pressure-volume phase diagram. 

Now, in thermodynamic systems, phase transitions normally occur at a single sharp value of the control parameter (e.g., 

pressure) because both phases are homogeneous. If the control parameter is changed the energy densities of the two phases 

change differently, which means that energy balance is disturbed. The total energy of the system can be reduced by favouring 

one phase over the other: the phase with lower energy density will ‘invade’ the phase with higher energy density and ultimately 

dominate the entire system. In a dynamical context, such as in the Swift-Hohenberg PDE, we would have moving fronts or 

interfaces between phases. Thus, any small change from the critical parameter value would destroy equilibrium. 

In our case, however, one state (the trivial state) is homogeneous, but the other state (the periodic state) is not. It is this 

inhomogeneity that leads to the complicated snaking behaviour seen in Fig. 6. The reason is that the periodic state has some 

flexibility (slack): the period can vary. 

Thus, as the load 𝑃 varies away from the critical value 𝑃𝑀 the period of the periodic solution varies and hence the energy 

density varies. A transitory solution between the two states is however still possible because the total energy can be 

redistributed over slightly different lengths of straight and periodic phases. This mechanism, anticipated by (Pomeau, 1986), 

is why localised solutions can exist for 𝑃 away from 𝑃𝑀 and why the homoclinic snaking is observed. Specifically, in our 

pipeline problem, for 𝑃 < 𝑃𝑀 the straight solution is energetically preferred (see Fig. 6(b)). In the dynamical context (Eq. 

(A.1)), the front between the two phases would tend to move into the periodic phase. However, this would have to take place 

against expanding periods in the periodic phase as a result of the relaxed compression 𝑃 . A new equilibrium will be 

established, which, as Fig. 9 shows, has an increased wavelength in the periodic phase, compared to the wavelength at 𝑃𝑀. 

Similarly, for 𝑃 > 𝑃𝑀 the periodic solution is energetically preferred, so the front in the coexistent phase (localised solution) 

would tend to move into the straight phase, but this would have to take place against an increased compression 𝑃 and the net 

effect is that the wavelength decreases. (In the Swift-Hohenberg equation, where the ‘linear stiffness’ 𝑟 is varied, opposite 

wavelength behaviour through the Maxwell point is observed: for 𝑟 > 𝑟𝑀 the wavelength increases.) 

This flexibility to adjust the period is, however, finite, which means that over some interval [𝑃1, 𝑃2] of 𝑃 values straddling 

𝑃𝑀 we have localised solutions consisting of pieces of straight and periodic parts. The precise width of the interval depends 

on the details of the system. In the dynamical context, it takes a certain amount of energy, and therefore a finite deviation of 

𝑃 from 𝑃𝑀, to induce moving fronts because the periodic phase readjusts itself by varying its period. The interface is said, 



 

25 

 

in (Pomeau, 1986), to be ‘pinned’ on the periodic state and the energy is referred to as a ‘pinning energy’. In conclusion, the 

critical Maxwell load is broadened into an interval due to the heterogeneity of the periodic phase. 

As we go up the tower in Fig. 6 more and more periods occur in the periodic part (see Fig. 8). Of course we need a 

sufficiently long pipe to accommodate a large number of periods. At the top of the tower (in an infinitely long pipe, i.e., in the 

‘thermodynamic limit’) the localised solutions approach so-called heteroclinic solutions connecting an infinitely long straight 

phase with an infinitely long periodic phase. These periodic phases have different periods for different 𝑃 in [𝑃1, 𝑃2] (cf. Fig. 

9). The one at 𝑃𝑀 has the same energy density as the straight phase and therefore marks the phase transition. 

This phase transition is of course only possible if, in addition to the trivial straight state, a periodic state is available. This 

is perhaps physically plausible as a bouncing solution between the trench walls, but mathematically the periodic orbit has to 

be of a special type. This is because the system of equations has a conserved quantity, namely the Hamiltonian H. This H is 

thus constant along solutions. Now, since the trivial solution has 𝐻 = 0, all localised solutions in the tower will also have 

𝐻 = 0 because they are asymptotically connected to the trivial solution (the saddle point in the phase space, cf. Fig. 5(b)). 

But then the required periodic orbit will also have 𝐻 = 0 because it is part of the localised solution, high up the tower. It 

would at first sight seem very special to have a periodic orbit that has exactly 𝐻 = 0 at 𝑃 = 𝑃𝑀. However, results from 

dynamical systems theory tell us that we can in fact expect this to happen near a Hamiltonian-Hopf bifurcation, which we 

have as our central bifurcation at 𝑃 = 𝑃𝑐𝑟. 

In a Hamiltonian-Hopf bifurcation homoclinic orbits (localised solutions) are generated (Iooss and Pérouème, 1993; 

Robinson, 1970), as computed in Section 3. Near these homoclinic orbits there exists a two-parameter family of periodic 

solutions that converge to the homoclinic orbit (Devaney, 1977). This means that we can impose a condition on the periodic 

orbit and still have a one-parameter curve of periodic solutions coming out of 𝑃𝑐𝑟. This is exactly the curve 𝑢𝑝 in Fig. 6 with 

condition 𝐻 = 0  satisfied. Within the two-parameter family of periodic solutions the two conditions 𝐻 = 0  and 

𝐸𝑑(periodic) = 𝐸𝑑(straight) pick out a unique solution at a certain critical value 𝑃𝑀 and with certain wavelength. This is the 

periodic solution indicated by the black dot in Fig. 6. One might say that the two conditions in our conservative system select 

the wavelength of the periodic pattern (Nepomnyashchy et al., 1994). Thus it is the multiplicity of periodic orbits near a 

Hamiltonian-Hopf bifurcation that makes possible the interaction between the curves of localised and periodic solutions and 

therefore the homoclinic snaking and the broadening of the Maxwell load into an interval [𝑃1, 𝑃2]. 

Variation of any parameters in the nonlinear function 𝑁(𝑢) , such as the breakout coefficient 𝜇𝑏𝑟𝑘  in the pipe-soil 

interaction model in Eq. (17), may remove the non-monotonicity of 𝑁(𝑢) (similar to the role played by temperature in the 

pressure-volume phase diagram in thermodynamics). For a monotonic 𝑁(𝑢) a branch of periodic solutions (𝑢𝑝) will then still 

emerge from the Hamiltonian-Hopf bifurcation, alongside the branches of localised solutions (𝑢𝑠 and 𝑢𝑎). However, the 

periodic and localised branches no longer interact, in the sense that there is no longer a load 𝑃 at which both types of solution 

have the same energy density. No phase transition and no homoclinic snaking occurs. The critical parameter value where non-

monotonicity is lost corresponds to a second-order phase transition in thermodynamics (at critical temperature). It occurs as 

the end point of a curve of first-order phase transitions (Maxwell loads) in the temperature-pressure phase diagram (parameter 

space), where the two phases become indistinguishable. 

At the level of the underlying phase-space dynamics, it is the chaotic nature of the 4D system of equations that explains the 

existence of all the required periodic and homoclinic solutions. More precisely, this complex (horseshoe) dynamics exists due 

to so-called heteroclinic tangles (Woods and Champneys, 1999). These exist for parameter values between two critical values 

corresponding to tangencies of invariant manifolds of the trivial solution (fixed point at the origin) and the periodic orbit 

(Coullet et al., 2000; Knobloch, 2015; Woods and Champneys, 1999). These critical parameter values are precisely the 𝑃1 

and 𝑃2 in Fig. 6. In between these values we have ‘spatial chaos’, here manifested by the infinitely many localised solutions 

in the homoclinic tower. This interval [𝑃1 , 𝑃2 ], therefore, is the asymptotic interval at the top of the tower (in the 

‘thermodynamic limit’) where heteroclinic connections between the trivial solution and a periodic solution exist. The 

oscillations lower down in the tower slightly move away from the interval [𝑃1, 𝑃2] due to finite-size effects. 

For dimensional reasons the above scenario holds generally in a 4D system: if the system is chaotic then we have a 

‘smeared-out’ Maxwell load, i.e., the interval [𝑃1, 𝑃2]; if the system is not chaotic then a phase transition can still occur but 
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it will occur at a sharply defined Maxwell load 𝑃𝑀 (and involve a homogeneous non-trivial state, namely a fixed point). A 

particularly transparent example of a system in which, depending on parameters, either a sharp critical Maxwell load 𝑃𝑀 

occurs or a critical interval [𝑃1, 𝑃2] is that of a rod constrained to lie on a cylinder (van der Heijden, 2001; van der Heijden 

et al., 2002). 

 

References 

Avitabile, D., Lloyd, D.J., Burke, J., Knobloch, E., Sandstede, B., 2010. To snake or not to snake in the planar Swift–Hohenberg 

equation. SIAM Journal on Applied Dynamical Systems 9, 704-733. 

Burke, J., Knobloch, E., 2006. Localized states in the generalized Swift-Hohenberg equation. Physical Review E 73, 056211. 

Burke, J., Knobloch, E., 2007. Snakes and ladders: Localized states in the Swift–Hohenberg equation. Physics Letters A 360, 

681-688. 

Champneys, A.R., Spence, A., 1993. Hunting for homoclinic orbits in reversible systems: a shooting technique. Advances in 

Computational Mathematics 1, 81-108. 

Chatterjee, S., White, D.J., Randolph, M.F., 2012. Numerical simulations of pipe-soil interaction during large lateral movements 

on clay. Géotechnique 62, 693-705. 

Coullet, P., Riera, C., Tresser, C., 2000. Stable static localized structures in one dimension. Physical Review Letters 84, 3069. 

Cross, M.C., Hohenberg, P.C., 1993. Pattern formation outside of equilibrium. Reviews of Modern Physics 65, 851. 

Devaney, R.L., 1977. Blue sky catastrophes in reversible and Hamiltonian systems. Indiana University Mathematics Journal 26, 

247-263. 

DNV-RP-F109, 2011. On-bottom stability design of submarine pipelines, RP-F109. Oslo: Det Norske Veritas. 

DNV-RP-F110, 2018. Global buckling of submarine pipelines structural design due to high temperature/high pressure. Oslo: Det 

Norske Veritas. 

DNV-RP-F114, 2017. Pipe-soil interaction for submarine pipelines. Oslo: Det Norske Veritas. 

Groh, R.M.J., Pirrera, A., 2019. On the role of localizations in buckling of axially compressed cylinders. Proceedings of the Royal 

Society A 475, 20190006. 

Hobbs, B.E., Ord, A., 2012. Localized and chaotic folding: the role of axial plane structures. Philosophical Transactions of the 

Royal Society A 370, 1966-2009. 

Hobbs, R.E., 1984. In-service buckling of heated pipelines. Journal of Transportation Engineering 110, 175-189. 

Hong, Z., Liu, R., Liu, W., Yan, S., 2015. Study on lateral buckling characteristics of a submarine pipeline with a single arch 

symmetric initial imperfection. Ocean Engineering 108, 21-32. 

Hunt, G.W., Bolt, H., Thompson, J., 1989. Structural localization phenomena and the dynamical phase-space analogy. 

Proceedings of the Royal Society A 425, 245-267. 

Hunt, G.W., Lord, G., Champneys, A., 1999. Homoclinic and heteroclinic orbits underlying the post-buckling of axially-

compressed cylindrical shells. Computer Methods in Applied Mechanics and Engineering 170, 239-251. 

Hunt, G.W., Peletier, M.A., Champneys, A.R., Woods, P.D., Ahmer Wadee, M., Budd, C.J., Lord, G.J., 2000. Cellular buckling 

in long structures. Nonlinear Dynamics 21, 3-29. 

Iooss, G., Pérouème, M.-C., 1993. Perturbed homoclinic solutions in reversible 1: 1 resonance vector fields. Journal of Differential 

Equations 102, 62-88. 

Jin, L., Takei, A., Hutchinson, J.W., 2015. Mechanics of wrinkle/ridge transitions in thin film/substrate systems. Journal of the 

Mechanics and Physics of Solids 81, 22-40. 

Kerr, A.D., 1978. Analysis of thermal track buckling in the lateral plane. Acta Mechanica 30, 17-50. 

Knobloch, E., 2015. Spatial localization in dissipative systems. Annual Review of Condensed Matter Physics 6, 325-359. 

Knobloch, J., Lloyd, D.J., Sandstede, B., Wagenknecht, T., 2011. Isolas of 2-pulse solutions in homoclinic snaking scenarios. 

Journal of Dynamics and Differential Equations 23, 93-114. 



 

27 

 

Nepomnyashchy, A.A., Tribelsky, M.I., Velarde, M.G., 1994. Wave number selection in convection and related problems. Physical 

Review E 50, 1194. 

Peletier, M.A., 2001. Sequential buckling: A variational analysis. SIAM Journal on Mathematical Analysis 32, 1142-1168. 

Pocivavsek, L., Dellsy, R., Kern, A., Johnson, S., Lin, B., Lee, K.Y.C., Cerda, E., 2008. Stress and fold localization in thin elastic 

membranes. Science 320, 912-916. 

Pomeau, Y., 1986. Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23, 3-11. 

Reichl, L.E., 2016. A Modern Course in Statistical Physics (4th ed.). Wiley-VCH. 

Robinson, R.C., 1970. Generic properties of conservative systems. American Journal of Mathematics 92, 562-603. 

Swift, J., Hohenberg, P.C., 1977. Hydrodynamic fluctuations at the convective instability. Physical Review A 15, 319. 

Taylor, N., Gan, A.B., 1986a. Refined modelling for the lateral buckling of submarine pipelines. Journal of Constructional Steel 

Research 6, 143-162. 

Taylor, N., Gan, A.B., 1986b. Submarine pipeline buckling-imperfection studies. Thin-Walled Structures 4, 295-323. 

Thompson, J.M.T., van der Heijden, G.H.M., 2014. Quantified "shock-sensitivity" above the Maxwell load. International Journal 

of Bifurcation and Chaos 24, 14. 

van der Heijden, G.H.M., 2001. The static deformation of a twisted elastic rod constrained to lie on a cylinder. Proceedings of the 

Royal Society A 457, 695-715. 

van der Heijden, G.H.M., Champneys, A.R., Thompson, J.M.T., 1998. The spatial complexity of localized buckling in rods with 

noncircular cross section. SIAM Journal on Applied Mathematics 59, 198-221. 

van der Heijden, G.H.M., Champneys, A.R., Thompson, J.M.T., 2002. Spatially complex localisation in twisted elastic rods 

constrained to a cylinder. International Journal of Solids and Structures 39, 1863-1883. 

Wang, Z., Tang, Y., Feng, H., Zhao, Z., Liu, H., 2017. Model test for lateral soil resistance of partially embedded subsea pipelines 

on sand during large-amplitude lateral movement. Journal of Coastal Research 33, 607-618. 

Wang, Z., Tang, Y., van der Heijden, G.H.M., 2018. Analytical study of lateral thermal buckling for subsea pipelines with sleeper. 

Thin-Walled Structures 122, 17-29. 

Wang, Z., van der Heijden, G.H.M., 2017. Localised lateral buckling of partially embedded subsea pipelines with nonlinear soil 

resistance. Thin-Walled Structures 120, 408-420. 

White, D.J., Cheuk, C.Y., 2008. Modelling the soil resistance on seabed pipelines during large cycles of lateral movement. Marine 

Structures 21, 59-79. 

Woods, P.D., Champneys, A.R., 1999. Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible 

Hamiltonian–Hopf bifurcation. Physica D 129, 147-170. 

Zeng, X., Duan, M., 2014. Mode localization in lateral buckling of partially embedded submarine pipelines. International Journal 

of Solids and Structures 51, 1991-1999. 

Zhang, X., Guedes Soares, C., 2019. Lateral buckling analysis of subsea pipelines on nonlinear foundation. Ocean Engineering 

186, 106085. 

Zhu, J., Attard, M.M., Kellermann, D.C., 2015. In-plane nonlinear localised lateral buckling of straight pipelines. Engineering 

Structures 103, 37-52. 

 


