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Abstract

Aims Left ventricular ejection fraction (EF) is required to categorize heart failure (HF) [i.e. HF with preserved (HFpEF),
mid-range (HFmrEF), and reduced (HFrEF) EF] but is often not captured in population-based cohorts or non-HF registries.
The aim was to create an algorithm that identifies EF subphenotypes for research purposes.
Methods and results We included 42 061 HF patients from the Swedish Heart Failure Registry. As primary analysis, we per-
formed two logistic regression models including 22 variables to predict (i) EF≥ vs. <50% and (ii) EF≥ vs. <40%. In the secondary
analysis, we performed a multivariable multinomial analysis with 22 variables to create a model for all three separate EF
subphenotypes: HFrEF vs. HFmrEF vs. HFpEF. The models were validated in the database from the CHECK-HF study, a
cross-sectional survey of 10 627 patients from the Netherlands. The C-statistic (discrimination) was 0.78 [95% confidence in-
terval (CI) 0.77–0.78] for EF ≥50% and 0.76 (95% CI 0.75–0.76) for EF ≥40%. Similar results were achieved for HFrEF and HFpEF
in the multinomial model, but the C-statistic for HFmrEF was lower: 0.63 (95% CI 0.63–0.64). The external validation showed
similar discriminative ability to the development cohort.
Conclusions Routine clinical characteristics could potentially be used to identify different EF subphenotypes in databases
where EF is not readily available. Accuracy was good for the prediction of HFpEF and HFrEF but lower for HFmrEF. The pro-
posed algorithm enables more effective research on HF in the big data setting.
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Introduction

Left ventricular ejection fraction (EF) is used in heart failure
(HF) for diagnosis, characterization and treatment selection
and is a key inclusion criterion for HF trials.1 Current Euro-
pean guidelines classify HF according to EF as HF with pre-
served EF (HFpEF; EF ≥50%), HF with mid-range EF (HFmrEF;
EF = 40–49%), and HF with reduced EF (HFrEF; HF <40%).2

Electronic health records (EHRs) provide an abundance of
routine clinical care data, which may contribute to assess qual-
ity of care and uncover the current unmet needs in HF, i.e.

identifying underuse of evidence-based therapies and reasons
for undertreatment in order to implement care.3–5 Further-
more, phenotyping real-world HF patients could facilitate the
development of new treatments or the establishment of new
uses of existing treatments and may also help in designing of
and pre-screening for randomized trials in all EF categories.
However, EHRs frequently lack readily available phenotypic
information that is needed to discern relevant
subphenotypes.6–9 In the case of HF, EF is often missing or not
documented in EHRs, thereby preventing analyses focusing on
specific EF subphenotypes and limiting EHRs use in HF research.
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Previous algorithms have been developed for the purpose
of identifying EF subphenotypes (i.e. HFpEF vs. HFmrEF vs.
HFrEF) in routine care data using International Classification
of Diseases (ICD) codes, but none have considered routine
clinical information that may be relevant for EF prediction in
trials data sets, registries, and EHRs.10,11

Therefore, we aimed to develop and validate algorithms to
discern HFrEF, HFmrEF, and HFpEF subphenotypes using two
representative, large, contemporary HF registries.

Methods

Development cohort

The Swedish Heart Failure Registry (SwedeHF) has been pre-
viously described.12 Briefly, it was created in 2000 and
broadly implemented throughout Sweden by 2003. The only
inclusion criterion is clinician-judged HF. Patients are regis-
tered at discharge from hospital or after outpatient clinic visit
on a web-based care report form and entered into the data-
base (managed by Uppsala Clinical Research Center, Uppsala,
Sweden).

All permanent residents in Sweden have unique personal
identification numbers that allows linking of disease-specific
health registries, governmental health, and statistical regis-
tries. For the current analysis, we linked SwedeHF to the Na-
tional Patient Registry, which provided more data on baseline
comorbidities.

In this study, we included 42 061 patients with known EF
registered between 11 May 2000 and 31 December 2012. In
SwedeHF, EF is recorded as a categorical variable, i.e. <30%,
30–39%, 40–49%, and ≥50%. We defined HFrEF as EF <40%,
HFmrEF as EF between 40% and 49%, and HFpEF as
EF ≥50%. The study flow diagram is reported in Supporting In-
formation, Figure S1A.

Validation cohort

The CHECK-HF (Chronic Heart Failure ESC-guideline based
Cardiology Practice Quality project) registry is a
cross-sectional collection of 10 910 unselected patients with
the diagnosis of chronic HF treated at outpatient HF clinics
(96%) of 34 Dutch hospitals or encountered at the general
cardiology outpatient clinic of the same hospitals (4%) be-
tween September 2013 and September 2016.13 Inclusion
criteria for this study were 18 years of age or older and
known EF (n = 10 627). EF was recorded as a continuous var-
iable but recoded to HFrEF <40%, HFmrEF = 40–49%, and
HFpEF ≥50%. The study flow diagram is reported in
Supporting Information, Figure S1B.

Statistical methods

Baseline characteristics and missing data
Patient characteristics were summarized by HF subphenotype
as mean (SD) or median (interquartile range [IQR]) for continu-
ous variables and percentages for categorical variables.Multiple
imputation using the mice algorithm in the statistical software
package R was used to impute missing data for the variables in-
cluded in themodels.14 Supporting Information, Table S1 shows
the variables included in the multiple imputation models and
the amount of missing records in the SwedeHF data set. We
generated 10 imputed data sets, and analyses were performed
on each imputed data set separately. The results were then
pooled using Rubin’s rules. All the analyses, except for descrip-
tive statistics, were performed on imputed data.

Development of predictive models
In the primary analysis, we usedmultivariable logistic regression
to fit two different predictive models: one for ≥50% (HFpEF) vs.
EF <50% (HFrEF and HFmrEF) and one for EF <40% (HFrEF) vs.
≥40% (HFmrEF and HFpEF). For the secondary analysis, we used
a multinomial logistic model to separately predict HFpEF,
HFmrEF, and HFrEF (HFrEF was used as reference).

We screened several sources of EHR for commonly available
variables to assess as potential predictors of EF subphenotypes
in our analyses, and we selected the following6–9: age, sex, clin-
ical characteristics [N terminal pro b-type natriuretic peptide
(NT-proBNP), New York Heart Failure Association (NYHA) class,
mean arterial pressure, heart rate, body mass index (BMI), and
estimated glomerular filtration rate (eGFR)], comorbidities [his-
tory of ischaemic heart disease, atrial fibrillation, chronic ob-
structive pulmonary disease (COPD), diabetes, hypertension,
anaemia, cancer in the previous 3 years, and valvular disease],
and treatments [device therapy (implantable cardioverter defi-
brillator or cardiac resynchronization therapy), renin–
angiotensin system (RAS) inhibitors, beta-blockers, diuretics,
mineralocorticoid receptor antagonist (MRA), and digoxin].

Variance inflation factor was used to test for multicollinearity
among predictors. If a pair of predictors was highly correlated
(variance inflation factor> 10), we included only one of the pre-
dictors in the multivariable model. We performed backward se-
lection on the multivariable model based on Akaike’s
information criterion to regress the full model towards the final
model. Predicted probability threshold cut-offs for the predic-
tion of EF subphenotypes were investigated to maximize accu-
racy, sensitivity, and specificity of the model.

Model discrimination
Area under the receiver operating curves were used to dis-
cern model discrimination. The C-statistic was used to assess
model performance. For the secondary analysis, i.e. multino-
mial models, discrimination and calibration were calculated
with a one-vs.-rest approach. The outcome for each EF cate-
gory j was dichotomized, i.e. HFrEF vs. HFmrEF and HFpEF.
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The C-statistic was then obtained by evaluating the predicted
risk of EF category j vs. the predicted risk of the remaining
categories.15,16 Observed vs. predicted plots were created
to visually assess model calibration. We externally validated
the models in the CHECK-HF registry.

Sensitivity analysis
In a sensitivity analysis, we simplified the models by excluding
the clinical variables (NT-proBNP, NYHA class, mean arterial
pressure, heart rate, BMI, and eGFR) and therefore only in-
vestigated demographics, comorbidities, and treatments. This
was done because many EHRs, such as claim databases, in-
clude categorical data but not clinical variables that are often
continuous (e.g. chronic kidney disease rather than eGFR) or
ordinal (e.g. NYHA class).

In further sensitivity analyses, we excluded only
NT-proBNP and then NT-proBNP + NYHA class because both
are HF specific variables that are not always recorded in EHRs.

All statistical analyses were performed in R software ver-
sion 3.5.1.

Results

Baseline characteristics

Baseline patient characteristics are summarized in Table 1. In
the SwedeHF cohort, 56% of patients had HFrEF, 21%
HFmrEF, and 23% HFpEF. Overall, HFpEF patients were older,

Table 1 Baseline characteristics of the SwedeHF cohort

HFrEF HFmrEF HFpEF P-value

N 23402 (55.6%) 9019 (21.4%) 9640 (22.9%)
Demographics

Age [years, mean (SD)] 71.66 (12.33) 74.33 (11.72) 77.38 (10.61) <0.001
Sex [female (%)] 6745 (28.8) 3536 (39.2) 5260 (54.6) <0.001

Heart failure measurements
NYHA class [Class III/IV (%)] 8187 (45.8) 2075 (31.7) 2358 (38.8) <0.001
NT-proBNP [= >median (%)] 4015 (55.8) 1214 (44.2) 1279 (41.6) <0.001

Clinical variables
Systolic blood pressure [mean (SD)] 124.39 (20.49) 130.64 (20.89) 133.42 (21.90) <0.001
Diastolic blood pressure [mean (SD)] 73.38 (12.26) 73.79 (12.09) 73.13 (12.39) 0.001
MAP [≥90 mmHg (%)] 11964 (51.8) 5303 (59.5) 5734 (60.6) <0.001
Heart rate [≥70 BPM (%)] 13244 (60.5) 4673 (55.7) 5312 (59.7) <0.001
BMI (%) <0.001
<18.5 kg/m2 336 (3.1) 111 (2.7) 142 (3.4)
18.5–24.9 kg/m2 4369 (40.1) 1456 (35.3) 1455 (34.5)
25–29.9 kg/m2 3896 (35.8) 1467 (35.6) 1397 (33.1)
≥30 kg/m2 2290 (21.0) 1087 (26.4) 1223 (29.0)

eGFR (%) <0.001
≥90 mL/min/1.73 m2 2761 (11.8) 1011 (11.2) 919 (9.6)
60–89.9 mL/min/1.73 m2 9630 (41.3) 3598 (40.0) 3394 (35.3)
30–59.9 mL/min/1.73 m2 9273 (39.7) 3707 (41.2) 4420 (46.0)
<30 mL/min/1.73 m2 1669 (7.2) 673 (7.5) 875 (9.1)

Anaemia [Yes (%)] 7348 (31.4) 3110 (34.5) 3945 (40.9) <0.001
Revascularised [Yes (%)] 7536 (32.2) 2939 (32.6) 2130 (22.1) <0.001

Comorbidities
Atrial fibrillation [Yes (%)] 11936 (51.0) 5235 (58.0) 6128 (63.6) <0.001
COPD [Yes (%)] 3710 (15.9) 1570 (17.4) 2089 (21.7) <0.001
Diabetes [Yes (%)] 6257 (26.7) 2408 (26.7) 2705 (28.1) 0.035
Hypertension [Yes (%)] 12670 (54.1) 5677 (62.9) 6809 (70.6) <0.001
Ischaemic heart disease [Yes (%)] 12994 (57.8) 5006 (57.1) 4328 (46.3) <0.001
Myocardial infarction [Yes (%)] 9975 (42.6) 3710 (41.1) 2805 (29.1) <0.001
Peripheral artery disease [Yes (%)] 2277 (9.7) 915 (10.1) 981 (10.2) 0.338
Cancer previous 3 years [Yes (%)] 2896 (12.4) 1212 (13.4) 1454 (15.1) <0.001
Valvular disease [Yes (%)] 5335 (23.4) 2230 (25.4) 3152 (33.6) <0.001

Therapy
RAS inhibitor [Yes (%)] 21037 (90.4) 7487 (83.6) 6836 (71.7) <0.001
Beta-blocker [Yes (%)] 21045 (90.3) 7689 (85.7) 7503 (78.4) <0.001
Loop diuretic [Yes (%)] 18534 (79.6) 6659 (74.2) 8125 (84.7) <0.001
MRA [Yes (%)] 7591 (32.7) 2104 (23.5) 2503 (26.2) <0.001
Digoxin [Yes (%)] 4092 (17.6) 1430 (15.9) 1737 (18.1) <0.001
Device therapy [Yes (%)] 1421 (6.1) 195 (2.2) 95 (1.0) <0.001

BMI, body mass index; BPM, beats per minute; COPD, chronic obstructive pulmonary disease; eGFR, estimated Glomerular filtration rate;
HFmrEF, heart failure with mid-range ejection fraction; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with re-
duced ejection fraction; MAP, mean arterial pressure; mean (SD), mean (standard deviation); MRA, mineralocorticoid receptor antagonist;
NT-proBNP, N-terminal pro b-type natriuretic peptide; NYHA class, New York Heart Association class; RAS inhibitor, renin angiotensin sys-
tem inhibitor.
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more likely female patients, and had higher blood pressure
and BMI. Generally, comorbidities were more likely observed
in HFpEF compared with HFrEF and HFmrEF, except for his-
tory of myocardial infarction, which was considerably more
common in HFrEF and HFmrEF. HFrEF but also HFmrEF pa-
tients were more likely to receive RAS inhibitors, beta-
blockers, MRAs, and device therapy compared with HFpEF
patients, while diuretics were more often prescribed in HFpEF
patients. Baseline characteristics of the external validation co-
hort are summarized in Supporting Information, Table S2.
Similar characteristics were overall observed in the
CHECK-HF population and its subphenotypes. However, in
the CHECK-HF vs. SwedeHF cohort, there were slightly less
HFmrEF (15%) and HFpEF (21%) patients but more HFrEF
(64%) patients. HFrEF patients were slightly more likely fe-
male patients (35% vs. 29%, respectively) and had lower
NYHA class (28% vs. 46% NYHA class III/IV, respectively). Re-
gardless of the EF subphenotype, in the CHECK-HF vs.
SwedeHF cohort, there were less patients with anaemia and
cardiovascular comorbidities such as hypertension, ischaemic
heart disease, atrial fibrillation, and valvular disease.
CHECK-HF patients were more likely to receive MRAs and de-
vice therapy but less likely to receive RAS inhibitors and
beta-blockers compared with those in SwedeHF, regardless
of the EF subphenotype.

Prediction models

Primary analysis
The model predicting EF ≥50% vs. <50% is presented in
Figure 1. The strongest predictors [those with an odds ration
(OR) > 1.5] for EF ≥50% were older age, female sex, hyper-
tension, anaemia, and atrial fibrillation. Device therapy, use
of RAS inhibitors, and higher NT-proBNP levels had the stron-
gest association with EF < 50% (OR < 0.5). The model discrim-
inated well, with a C-statistic of 0.775 [95% confidence
interval (95% CI) 0.770–0.780] (Figure 3A). There was a slight
overestimation for the predicted probabilities between 0.4
and 0.6 (Figure 4A). With a predicted probability threshold
of 0.21, we maximized the sensitivity and specificity of
predicting EF ≥50%, while a higher threshold of 0.44 led to
a higher overall accuracy and higher specificity to predict
EF <50% (Supporting Information, Table S3).

Comparable results were observed for the model
predicting EF ≥40% vs. <40%, with older age and female sex
as strongest predictors for EF ≥40% (Figure 1). Furthermore,
BMI ≥30 kg/m2, atrial fibrillation, hypertension, and anaemia
were strong predictors for EF ≥40% (OR > 1.5), while device
therapy, RAS inhibitors, and higher NT-proBNP levels were
the strongest predictors for EF <40% (OR < 0.5). The discrim-
ination of this model was good, with a C-statistic of 0.757

Figure 1 Multivariable logistic prediction models predicting EF ≥ 50% vs. EF < 50% and EF ≥ 40% vs. <40%. BMI, body mass index; BPM, beats per
minute; COPD, chronic obstructive pulmonary disease; eGFR, estimated Glomerular filtration rate; MAP, mean arterial pressure; MRA, mineralocorti-
coid receptor antagonist; NT-proBNP, N-terminal pro b-type natriuretic peptide; NYHA class, New York Heart Association class; RAS inhibitor,
renin angiotensin system inhibitor.
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(95% CI 0.752–0.763) (Figure 3B) and slight underestimation
and overestimation in the lower and higher ends of the pre-
dicted probabilities (Figure 4B). Predicted probability thresh-
olds to maximize overall accuracy or sensitivity + specificity
was similar, with cut-offs of 0.48 and 0.45, respectively
(Supporting Information, Table S3).

Secondary analysis
The results from the multinomial model are shown in Figure 2.
HFrEF was the reference category. Compared with HFrEF,
older age, female sex, higher BMI and atrial fibrillation were
the strongest predictors for HFmrEF. Predictors for HFpEF
were similar to those for HFmrEF, but the associations were
much stronger. C-statistics according to the one-vs.-rest ap-
proach for HFrEF and HFpEF were similar to the logistic
models for EF ≥40% or EF ≥50% in the primary analysis,
0.758 (95% 0.754–0.763) and 0.775 (95% 0.770–0.780), re-
spectively (Figure 3C). However, the discriminative perfor-
mance for predicting HFmrEF was only moderate, with a
C-statistic of 0.633 (95% CI 0.627–0.640). Model calibration
was not optimal (Figure 4C). Overall accuracy was much lower
for the multinomial model than for the primary analyses, with
an accuracy of 58.1–60.8% (Supporting Information, Table
S3).

External validation
Models were externally validated in the CHECK-HF data set,
with good discriminative performance that was comparable

with the development cohort, and the EF ≥50% models
performing best with a C-statistic of 0.728 (0.724–0.731) for
the main model (Supporting Information, Table S4).

Sensitivity analyses
We performed sensitivity analyses to investigate simpler
models, i.e. excluding clinical characteristics (NT-proBNP,
NYHA class, mean arterial pressure, heart rate, BMI, and
eGFR) (Supporting Information, Tables S5, S6, and S11) as
well as models excluding only NT-proBNP (Supporting Infor-
mation, Tables S7, S8, and S12) and models excluding
NT-proBNP and NYHA (Supporting Information, Table S9,
S10, and S13). The models had lower but good discriminative
ability for EF ≥ 50% vs. <50% (Supporting Information, Figures
S2, S4, and S6), with a C-statistic for the simple model of
0.737 (95% CI 0.732–0.743), 0.753 (95% CI 0.748–0.759) for
the model without NT-proBNP, and 0.750 (95% CI 0.744–
0.755) for the model without NT-proBNP and NYHA. This
was similar for the logistic model predicting EF ≥40% vs.
<40%, with a C-statistic of 0.703 (95% CI 0.698–0.708) for
the simpler model, 0.734 (95% CI 0.729–0.739) for the logistic
model excluding NT-proBNP, and 0.721 (95% CI 0.716–7.26)
for the model excluding NT-proBNP and NYHA (Supporting In-
formation, Figures S3, S5, and S7). Likewise, HFrEF and HFpEF
at the multinomial analysis had good discriminative ability,
while predicting HFmrEF was only moderate (Supporting In-
formation, Figures S8–S10).

Figure 2 Multinomial prediction model predicting HFmrEF or HFpEF with HFrEF as reference category. BMI, body mass index; BPM, beats per minute;
COPD, chronic obstructive pulmonary diseas; eGFR, estimated Glomerular filtration rate; HFmrEF, heart failure with mid-range ejection fraction; HFpEF,
heart failure with preserved ejection fraction; MAP, mean arterial pressure; MRA, mineralocorticoid receptor antagonist; NT-proBNP, N-terminal pro
b-type natriuretic peptide; NYHA class, New York Heart Association class; RAS inhibitor, renin angiotensin system inhibitor.
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We externally validated these sensitivity analyses in the
CHECK-HF data set, with similar discriminative performances
as in the development cohort (Supporting Information, Table
S4).

Discussion

EHRs and routine clinical care data represent a great potential
resource for HF research.6–9 While these databases provide
for large samples sizes ensuring generalizability and many
clinically relevant variables, the main limitation is often the
depth of phenotypic information required to identify and in-
vestigate specific HF subphenotypes.6–9 Currently, EF is the
key to phenotype HF patients and is used for treatment selec-
tion in clinical practice and as inclusion criterion in HF trials.
Moreover, as shown in numerous previous studies, patients
with different EF subphenotypes have different risk profiles,
disease trajectories, and outcomes.17–20 Absence of readily
available EF measurements limits research on HF in routine

EHR data. Several natural language processing models could
be used to extract data on left ventricular systolic function re-
ported as free text in EHR.21,22 For those instances that this
information is not available, simple prediction models for EF
might be used to gain more knowledge on HF phenotypic in-
formation in EHRs, claim databases, trials, and large cohorts.
With recent data on angiotensin-receptor-Neprilysin inhibi-
tors and potentially emerging data on sodium/glucose
cotransporter 2 inhibitors in HF, the use of these drugs may
be expanded.23,24 It would be important for regulators,
payers, and health systems to be able to use EF prediction
models to assess implications of these new drugs in their
own health care systems and databases.

We hereby propose prediction models that could be used
to infer EF category in secondary care HF patients based on
patients’ characteristics for research purposes. Our models
discriminated well, especially for HFpEF and HFrEF, while
predicting HFmrEF was more challenging.

Two previous studies aimed to create algorithms to predict
EF category in HF patients.10,11 Bovitz et al. realized a predic-
tive model for EF based on ICD-9 codes for systolic and

Figure 3 Discrimination plots. Discrimination plots displaying ROC curves for (A) logistic model EF cut-off ≥50%, (B) logistic model EF cut-off ≥40%, and
(C) multinomial model predicting HFrEF, HFmrEF, and HFpEF with the plot displaying one vs. all discrimination, that is, HFrEF vs. HFmrEF + HFpEF,
HFmrEF vs. HFrEF + HFpEF, and HFpEF vs. HFmrEF + HFrEF.

Figure 4 Calibration plots. Calibration plots of observed proportions vs. predicted probabilities to assess the goodness of fit for (A) logistic model EF
cut-off ≥50%, (B) logistic model EF cut-off ≥40%, and (C) multinomial model predicting HFrEF, HFmrEF, and HFpEF with the plot displaying one vs. all
calibration plots, that is, HFrEF vs. HFmrEF + HFpEF, HFmrEF vs. HFrEF + HFpEF, and HFpEF vs. HFmrEF + HFrEF.
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diastolic HF in 2714 patients encountered in a single centre.
The area under the curve for this model was 0.821 and had
a predicted probability threshold cut-off for EF of 43.5%.10

The main limitation was generalizability. Indeed, no external
validation was performed, and this study enrolled a small co-
hort of patients from only one centre, whereas ICD coding
practice is highly varying from one centre to another. Further-
more, this model did not incorporate clinical or laboratory
data such as blood pressure, eGFR, or NT-proBNP. A predic-
tive model from Desai et al. included 11 073 patients (of
which 7105 patients are in the development cohort) and
aimed to predict HFrEF, HFmrEF, or HFpEF as well as with
EF< or ≥45% in patients with known EF from a centre refer-
ring to Medicare (claim database).11 The discriminative per-
formance varied between 0.84 and 0.88. This model was
externally validated in a cohort of patients from a different
hospital but still limited to Medicare patients only.

Compared with previous models that have been developed
to be mainly applied to claim data, our model, which con-
siders also clinically relevant variables, can be used as well
in clinical cohorts or trials where HF is diagnosed at baseline
but EF is not collected.25 Furthermore, we have developed
predicted probability thresholds to optimize accuracy or sen-
sitivity and specificity that can guide researchers in classifying
patients based on our models.

We created prediction models for HFrEF, HFmrEF, and
HFpEF as well as for EF ≥ 40% vs <40% and EF ≥50% vs.
<50% in SwedeHF. Our models had good performance, with
the lowest C-statistic 0.633 for HFmrEF in the multinomial
model and the highest performance for the EF ≥50% model
with a C-statistic of 0.775. The lower C-statistic for HFmrEF
may be explained by the heterogeneity that characterizes this
subphenotype,18,26,27 with a large proportion of patients hav-
ing transitioning EF for different reasons (e.g. atrial fibrillation
and ischaemic heart disease) that may make EF prediction
more challenging.28 Most trials use EF 40% or 50% as
cut-offs for enrolment, and we provided models to identify
patients based on these cut-offs (i.e. EF ≥40% vs <40% and
EF ≥50% vs. <50). If a trial or other research programme
wishes to specifically select HFrEF, HFpEF, or HFmrEF pa-
tients, our models to identify the specific subphenotype
could be applied, albeit that the area under the curve was
worse (0.633) than for the dichotomous models (0.775 and
0.757, respectively).

Similar to the binary model by Desai et al.11 male sex, im-
plantable devices, and use of ACE inhibitors, beta-blockers,
and MRAs predicted HFrEF in both models using an EF of
40% and 50% as cut-offs, while anaemia, valvular disease,
obesity, and hypertension were predictive of HFpEF. Out of
the comorbidities we included in our model, only ischaemic
heart disease was predictive for HFrEF or EF <50%. This is
comparable with what is known from recent studies, i.e.
HFpEF is more related to ageing, female sex, and comorbidi-
ties, while HFrEF (and HFmrEF) are more likely to be

associated to ischaemic heart disease.17–20 The main vari-
ables associated with HFrEF were medication use and vari-
ables associated with worsening or symptomatic HF, such as
higher NYHA class and higher NT-proBNP levels. While medi-
cation use is not directly involved in the pathophysiology of
any HF subphenotype, it is still helpful as a marker reflecting
clinician decisions that in turn reflect EF. Interestingly, only
severe renal disease (eGFR < 30 mL/min/1.73 m2) was associ-
ated with HFrEF, while mildly reduced kidney function was
not associated with either EF subphenotype.

Strengths and limitations

SwedeHF and CHECK-HF are both large, unselected, contem-
porary HF cohorts, collecting data on demographics, clinical
characteristics, biomarkers, medication use, and, notably, EF
measurements. A strength of our analysis is that we were
able to externally validate our models from SwedeHF in an in-
dependent sample with good discriminative performance
(CHECK-HF). Furthermore, SwedeHF data was collected be-
tween 2000-2012, while the CHECK-HF registry was con-
ducted between 2013-2016, indicating that the model
performs well over time. However, there are also several lim-
itations which need to be mentioned. First, EF is collected as
a categorical variable in SwedeHF; therefore, we were unable
to investigate linear associations between predictors and EF.
However, clinical guidelines and trials use EF categories as
well and would not be improved by linear information. Based
on our models, it remains difficult to classify HFmrEF, which
may be misclassified as HFrEF or HFpEF, and, therefore, we
rather suggest using the models pooling HFmrEF with HFpEF
or HFrEF. Second, many of the HF therapies were predictive
for HFrEF/HFpEF and thus, when applying our models, we
suggest considering the use of medications for 3–6 months
after the initial HF diagnosis to allow for optimizing therapies
and reflection of clinician decision making. Third, the inclu-
sion criterion for SwedeHF is clinician-judged HF, which dif-
fers from the ICD definition of HF in EHRs and thus our
model should be further evaluated and validated in an EHR
setting. Finally, repeated measurements of clinical character-
istics (e.g. NYHA class, blood pressure, etc.) and EF are limited
in SwedeHF and thus we could not assess how sensitive our
model is to reclassify the patient EF subphenotype based on
changes in clinical measurements.

Conclusions

We created an algorithm based on patient demographics,
clinical characteristics and use of treatments to identify EF
subphenotypes in HF patients without an available EF assess-
ment. Accuracy was good for the prediction of HFpEF and
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HFrEF but lower for HFmrEF, perhaps due to the heterogene-
ity that characterizes this subphenotype. Our model could
significantly support more effective research in the ‘big data’
setting.
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